
Solving Winograd Schema Challenge : Using Semantic Parsing, Automatic
Knowledge Acquisition and Logical Reasoning

by

Arpit Sharma

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved October 2014 by the
Graduate Supervisory Committee:

Chitta Baral, Chair
Joohyung Lee

Heather Pon-Barry

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

Turing test has been a benchmark scale for measuring the human level intelligence

in computers since it was proposed by Alan Turing in 1950. However, for last 60

years, the applications such as ELIZA, PARRY, Cleverbot and Eugene Goostman,

that claimed to pass the test. These applications are either based on tricks to fool

humans on a textual chat based test or there has been a disagreement between AI

communities on them passing the test. This has led to the school of thought that it

might not be the ideal test for predicting the human level intelligence in machines.

Consequently, the Winograd Schema Challenge has been suggested as an alterna-

tive to the Turing test. As opposed to deciding the intelligent behavior with the help

of chat servers, like it was done in the Turing test, the Winograd Schema Challenge

is a question answering test. It consists of sentence and question pairs such that the

answer to the question depends on the resolution of a definite pronoun or adjective

in the sentence. The answers are fairly intuitive for humans but they are difficult

for machines because it requires some sort of background or commonsense knowledge

about the sentence.

In this thesis, I propose a novel technique to solve the Winograd Schema Chal-

lenge. The technique has three basic modules at its disposal, namely, a Semantic

Parser that parses the English text (both sentences and questions) into a formal

representation, an Automatic Background Knowledge Extractor that extracts the

Background Knowledge pertaining to the given Winograd sentence, and an Answer

Set Programming Reasoning Engine that reasons on the given Winograd sentence

and the corresponding Background Knowledge. The applicability of the technique is

illustrated by solving a subset of Winograd Schema Challenge pertaining to a cer-

tain type of Background Knowledge. The technique is evaluated on the subset and a

notable accuracy is achieved.

i

To Mom and Dad

ii

ACKNOWLEDGEMENTS

I would like to thank many people for their support and guidance which made this

project possible. First of all, thanks to my advisor, Dr. Chitta Baral, who guided

me at every step in the project with his experience and helped me in making sense

out of numerous confusing scenarios. Also thanks to him for providing me financial

support during the project. Thanks to my committee members, Dr. Joohyung Lee

and Dr. Heather Pon-Barry, who offered guidance and support whenever i needed.

Thanks to the Arizona State University for providing me an opportunity to work with

such great minds and technology. Thanks to my colleagues in Dr. Baral’s lab who

encouraged me and corrected me at times with their knowledge of subject matter and

experience. Without them this project would not have been possible. And finally,

thanks to my parents, and numerous friends who endured this long process with me,

always offering support and love.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1. INTRODUCTION AND MOTIVATION . 1

1.1 The Winograd Schema Challenge . 2

1.2 Related Works . 4

1.3 An Overview of the Approach . 7

2. SEMANTIC PARSING AND PRONOUN EXTRACTION 11

2.1 Defining Formal Representation . 11

2.1.1 Syntactic Dependency Parsing . 14

2.1.2 Class Population . 15

2.1.3 Other Features . 17

2.2 Translating Winograd Sentence and Question into Formal Repre-

sentation . 18

2.3 Answer Set Programming Rules to Extract Pronoun To Be Resolved 19

3. AUTOMATIC BACKGROUND KNOWLEDGE EXTRACTION 22

3.1 Introduction and Motivation . 22

3.2 An Overview of the Approach . 24

3.2.1 Creating String Queries . 24

3.2.2 Using Queries to Extract Background Knowledge 25

3.2.3 Post-processing the Background Knowledge 28

3.3 Translating Background Knowledge Sentences Into Formal Repre-

sentation . 29

4. LOGICAL REASONING . 32

iv

CHAPTER Page

4.1 Introduction . 32

4.2 Answer Set Programming . 33

4.3 Reasoning Process . 33

4.3.1 Representing Winograd and Background Sentences 34

4.3.2 General Properties for Winograd and Background Graphs. . . 41

4.3.3 Type Specific ASP Rules . 44

5. CONCLUSION AND FUTURE WORKS . 54

5.1 Summary . 54

5.2 Evaluation and Error Analysis . 55

5.3 Future Work . 57

REFERENCES . 59

v

LIST OF TABLES

Table Page

3.1 Background Sentences Extracted For the Winograd Sentence “The

man could not lift his son because he was so weak .” 28

5.1 Evaluation Results Table . 56

vi

LIST OF FIGURES

Figure Page

1.1 Work-Flow Diagram for the Pronoun Resolution System 7

2.1 Stanford Dependency Parse of “George loves Mary.” 14

2.2 Graphical Semantic Representation of “Tom hit John because he was

rude” . 15

2.3 Graphical Semantic Representation of “If John had not loved every cat,

he would have loved a dog” . 16

2.4 Graphical Semantic Representation of the Sentence “The man couldn’t

lift his son because he was so weak” . 20

2.5 Graphical Semantic Representation of the question “Who was weak ?’ . 20

3.1 Google Search Results for the Query “.*not.*lift.*because.*weak.*” 26

3.2 Google Search Results for the Query “.*not.*lift.*because.*weak.*” 27

3.3 Graphical Semantic Representation of the Sentence “She could not lift

it off the floor because she is a weak girl” . 30

4.1 Graphical Semantic Representation of “Ann asked Mary what time the

library closes , but she had forgotten .” . 36

4.2 Graphical Semantic Representation of “But you asked me the security

question but I forgotten” . 37

4.3 Graphical Semantic Representation of “The man could not lift his son

because he was so weak” . 39

4.4 Graphical Semantic Representation of “She could not lift it off the floor

because she is a weak girl” . 39

vii

Chapter 1

INTRODUCTION AND MOTIVATION

There are three main components of the thought process that defines the intelligent

behavior in humans. First is to semantically parse the input received either in the

form of text or speech. Second is to gather all the commonsense knowledge about the

input via previous experiences. Third and last one is to reach a conclusion or extract a

piece of conclusive information by using the other two components. Natural Language

Understanding is a field of Artificial Intelligence in which computer scientists try to

simulate this kind of intelligent behavior in machines.

Several attempts have been made in past decades to realize this goal. And a

number of tests were defined along the way to check their genuineness. Turing test,

proposed by Alan Turing in 1950, is the most famous among such tests. Since then,

a number of computer programs have been developed which claimed to pass the test.

The initial programs such as Eliza computer therapist (1966), PARRY and Cleverbot

Mauldin (1994) and other chatter bots used the bag of words based algorithms to

chat with humans and made them believe that they are chatting with a real human

being. Eugene Goostman ADASHCHIK (2014) is another program developed in 2001

and claimed to pass the Turing test in June 2014 by deceiving 33% of judges.

Another criteria for testing the intelligence in machines could be the Captcha. It

consists of a set of numbers or letters printed on the screen and the task is to identify

them. The letters and numbers are distorted such that its not straight forward to

identify them. Humans are able to identify the digits after careful analysis. The test

can be used to identify a machine from a real person but the test is more of a measure

of ability of an observer to recognize the patterns and not really of understanding

1

something.

But recently there has been a shift of interest from the Turing test. This might

have been because of the systems developed to deceive the machine in that particular

test(i.e. chatting with a machine to determine if it is a human) or this test might

not be a true judge of demonstration of an intelligent behavior. Considering these,

a new test called The Winograd Schema Challenge, proposed by Hector J. Levesque

Levesque et al. (2011), has been widely accepted as an alternative to the Turing test.

Furthermore, walking along the path, the company Nuance have started an yearly

competition to solve Winograd Schema Challenge.

1.1 The Winograd Schema Challenge

The Winograd Schema Challenge is a Question Answering test based on a sentence

and a question related to the sentence. The schema consists of pairs of a sentence

and a question such that the answer to the question can be achieved by resolving a

definite pronoun or possessive adjective to one of its two co-referents in the sentence.

The co-referents belong to same gender (i.e. both are either objects, males or females)

and they have a number agreement between them (i.e. both are either singular or

plural). This property makes the resolution harder because the pronoun can not be

resolved just by considering the gender and the number of pronoun and matching

it with each of the entities present in the sentence. The sentence also contains a

“special word” which when replaced by another word (alternate word), the answer

to the question also changes. There are 141 sentences in Winograd Schema corpus

and each contains a special word and an alternate word, making the total count of

Schema sentences as 282. An example of a sentence from Winograd Schema and its

corresponding alternate sentence is demonstrated below.

2

Sentence: The man couldn’t lift his son because he was so heavyspecial word

Question: Who was heavy ?

Answer: son

Sentence: The man couldn’t lift his son because he was so weakalternate word

Question: Who was weak ?

Answer: man

One of the motive behind this challenge is to simulate human-like reasoning in ma-

chines. A machine can be said to have such a behavior if it reaches a conclusion from

a situation like humans do or in words of Hector Levesque Levesque (2014) “...we also

want to avoid as much as possible questions that can be answered using cheap tricks

(aka heuristics)...”. For example, in the sentence “The fish ate the worm because it

was tasty”, if we try to find the evidence in a large corpus about existence of a “tasty

fish” or a “tasty worm” then fish would be the answer based on evidence support,

which is wrong in this case because this sentence require some background knowledge

that something that is eaten might be tasty.

From the above example, it can be observed that there is a need of sentence specific

background knowledge to answer the question. With this idea, this work proposes

a mechanism to semantically represent the given sentence, automatically extract the

background knowledge about the given sentence and perform logical reasoning on

them to get the answer to the given question. Its applicability is demonstrated by

categorizing the Winograd Schema corpus into five broad categories (explained in

later Chapter) and solving two sub-types of one of the categories.

3

1.2 Related Works

Mitkov (1997) mentions that the pronoun resolution depends on several factors

like gender and number agreement between entities, structure of the text, semantic

weaving of events, entities and relations between them. There has been a number of

works which use statistical techniques, for example Hobbs (1976) uses the distance

measure between the pronoun and the possible antecedents as a feature. Ge et al.

(1998), Raghunathan et al. (2010), Broscheit et al. (2010), Ng and Cardie (2002) train

on a big corpus using features like gender and number agreement between pronouns

and other entities present in the text. Lee et al. (2011) furthermore adds semantic

features by making use of WordNet and Freebase to find correlation between entities

or to relax the string matching criteria to find more probable answer. The above

techniques have been proved effective in cases where resolution can be accomplished

by considering the features like gender, numbers, syntactic structure of sentences but

these techniques fail where background knowledge about the events and entities in

the text is required. There are a few works which attempt to use lexicalized feature

sets with syntactic features. These include Rahman and Ng (2012), Gilbert and Riloff

(2013), Bengtson and Roth (2008), Rahman and Ng (2011).

Rahman and Ng (2012) develops a system which attempts to solve the problem

of pronoun resolution on a corpus which requires some sort of reasoning on it. The

system is evaluated by developing a big corpus of 941 sentence pairs like Winograd

Schema except the fact that they are a bit relaxed in terms of interweaving of se-

mantics and also there is redundancy in the corpus. For example the test set alone

contains two sentences : John shot Bill and he died. and The man shot his friend

and he died. In both of these sentences the reasoning is same, so if the system is able

to answer one of them correctly then other should also be correctly answered. The

4

system uses a number of statistical techniques. One of them is the use of Google, a

set of queries is created using the sentence based on the two antecedents and Google

search results are compared. The idea underneath it is to find the more probable

candidate to have a property or perform an action. This technique is helpful in case

of sentences like, Lions eat zebras because they are predators (From Rahman and Ng

(2012)) because one of the queries “Lions are predators” is essentially more common

than “zebras are predators”. But if the sentence is changed to Lions ate zebras be-

cause they were hungry, the system will fail using this technique or if it passes then it

is by shear luck because ideally both “Lions were hungry” and “zebras were hungry”

must be equally likely, when no additional text is provided. This technique is the

top contributor in the overall accuracy of the system (33% when using single-feature

co-reference model). One reason behind such a behavior is the high coupling of sen-

tences with this technique which disagrees with an important property of Winograd

Schema Challenge i.e. it should not be Googlable Levesque et al. (2011).

Another technique used by the paper is based on the usage of Narrative Chains

Chambers and Jurafsky (2008). Narrative chains are sequences of partially ordered

set of events (or verbs) centered around a common actor. own-s spin off-s plan-s

purchase-s sell-s operate-s buy-s announce-s pay-s build-s acquire-s merge-s is one

such chain which represents the knowledge that someone who owns may spin off, plan,

purchase, sell, operate, buy, announce, pay, build, acquire and merge (in respective

order). The chains store knowledge about the probable actions performed by an

entity over the course of time but one of the major issue with them is their very

limited number. Furthermore, many times the resolution of pronoun depends on

the properties and not events, like in the “Lions” example mentioned above. The

Narrative Chains would not be of any help here because they contain only verbs

(events) and not the attributes of the entities participating in those verbs. Another

5

issue with Narrative Chains is that they do not represent the relation between events.

For example the sentence Ed punished Tim because he tried to escape is expressed by

a chain containing punish-o escape-s. But if the sentence is changed to Ed punished

Tim so he tried to escape, still it can be represented by the chain punish-o escape-s

whereas in first case the escape event occurred before punish event and vice versa

in second case. It contributes to 30% of the overall accuracy (with single-feature co-

reference models). The reason for its high accuracy is also the high coupling between

this technique and the corpus.

Another work by Peter Schuller Schuller (2014), demonstrates a graph based tech-

nique and performs experiments on 4 out of 141 Winograd Schema pairs. It converts

the given Winograd sentence to a dependency graph using Stanford dependency parser

and then manually creates a background knowledge dependency graph which is re-

quired to answer the question. The main contribution is to formalize a way to combine

both given sentence dependency graph and the manually created background knowledge

dependency graph in using relevance theory and then use Answer Set Programming

(ASP) Gelfond and Lifschitz (1988), Baral (2003) to extract the answer. As men-

tioned above, this paper illustrates the application of the technique on 4 pairs of

Winograd Schema to show the usability of this technique. Extraction of Background

knowledge is one of the main components of reasoning process. It is manually encoded

into the system proposed by Schuller (2014).

Considering above mentioned motivation, limitations and drawbacks, a technique

has been formulated, which simulates the human like thought process in solving such

problems. It includes Semantic Parsing, Automatic Background Knowledge Acquisi-

tion and Logical Reasoning.

6

Figure 1.1: Work-Flow Diagram for the Pronoun Resolution System

1.3 An Overview of the Approach

As previously mentioned, the approach is based on the thought process of human

beings. It includes three basic component modules, namely, Semantic Parser and

Pronoun Extractor (SPPE) to parse a Winograd Schema sentence into a graph based

semantic representation and extract the pronoun to be resolved from, the given Wino-

grad sentence, Automatic Background Knowledge Extractor (ABKE) which extracts

the background knowledge required to answer the question about the given Wino-

grad sentence, and finally a Logical Reasoning Module (LRM) which uses Logical

Programming rules to reason on the semantic representations of the actual Winograd

sentence and the Background sentence extracted by other module. As illustrated by

the work-flow diagram of the system in Figure 1.3, both the Winograd sentence and

question are first passed to SPPE. The output of SPPE i.e. semantic representations

7

of the sentence and Question are then passed as input to ABKE. The background

knowledge sentence extracted from ABKE is then passed to SPPE for semantic pars-

ing. Finally the semantic representations of both the given Winograd sentence and

its corresponding Background Knowledge sentences are passed to the LRM, which

returns the final answer to the Winograd question, or the co-referent of the pronoun

to be resolved.

After careful consideration of the complexity and semantics, the complete Wino-

grad Schema corpus (containing 282 sentences) is divided into two broad categories

namely, Causal and Non Causal. The categories are defined as follows:

• Causal:

In this category there is a causality relation in the sentence such that a phrase

in the sentence contains information caused due the information contained in

other phrase present in the sentence. For example:

Sentence: The fish ate the worm because it was tasty.

Question: What was tasty ?

Answer: worm

In above sentence, the phrase it was tasty causes The fish ate the worm. This

causal relationship is due to the semantics associated with the word because.

• Non Causal:

In this category there is a chain of events mentioned in the sentence but there

is no causality relation between those events. Events here refer to either actions

or an entity having an attribute. For example:

Sentence: Mary took out her flute and played one of her favorite pieces. She

has had it since she was a child.

Question: What has Mary had since she was a child ?

8

Answer: flute

In above sentence, the event She has had it since she was a child. does not have

causal relationship with Mary took out her flute and played one of her favorite

pieces.

One of category which covers a major part of the Winograd Schema Challenge

corpus is causal (with more than 200 sentences out of 282). Hence, further analysis

of the Causal category is performed and two subcategories are identified based on the

causality within the sentences in the corpus. In this work, the two subcategories are

solved using a novel approach to extract the sentence specific background knowledge

on the fly. These subcategories contribute to a significant part of the corpus (100

sentences out of >200). The subcategories are:

• Direct Causal Events: In this category, there are two events in the sentence

which are connected to each other with a causality relation (defined by a set of

relations from KM component library). The pronoun which is required to be

resolved participates in one of the events and its candidate co-referent partici-

pates in the other. For example,

Sentence: The older students were bullying the younger ones , so we rescued

them .

Question: Whom did we rescue ?

Answer: younger ones

In above sentence the event rescued is caused by the event bullying and the

pronoun, them participates in the rescued event whereas its, candidate answer

younger ones participates in the bullying event

• Causal Attributive: In this category, the pronoun to be resolved has a prop-

erty that plays an important role in occurrence of an event to occur. For

9

example,

Sentence: Pete envies Martin because he is very successful.

Question: Who is successful ?

Answer: Martin

In above sentence the property successful, associated with he, causes the event

envies to occur.

In this Chapter the motivation behind this work and a detailed introduction of

the problem is provided. Also, the Winograd Schema corpus is categorized based on

some characteristics. Furthermore, a brief overview of the novel approach used to

solve the Winograd Schema Challenge is discussed. In the following Chapters each of

the component of this approach are discussed and explained in detail with appropriate

examples.

10

Chapter 2

SEMANTIC PARSING AND PRONOUN EXTRACTION

In Chapter 1, the motivation behind this thesis was explained and a brief overview of

the technique used to solve the Winograd Schema Challenge was provided. It was also

mentioned that every Natural Language Understanding problem involves the task of

• Representing the text’s syntax and semantics in an expressive formal represen-

tation

• Broadening the scope of knowledge present in the text by including information

about events and entities in it. This specific kind of information is called world

or background knowledge Davis (2013).

• Reasoning on the formal representations of the given text and the Background

knowledge about the given text. (Diakidoy et al. (2013))

There are three main steps followed to accomplish each of the above illustrated

tasks in the system. In this chapter the first step is explained in detail. The step

is to define an expressive formal representation language and translate the given

Winograd sentence and question into it. Later in this step, both the translations

are used along with a set of Answer Set Programming rules and the pronoun to be

resolved is extracted.

The sections below explain each component of this step in detail.

2.1 Defining Formal Representation

A representation is considered good if it can express the structure of the text,

can distinguish between the events and their environment in the text, uses a general

11

set of relations between the events and their participants, and is able to represent

the same events or entities in different perspectives. There has been a lot of work in

recent years to translate English text into a semantic representation so that it can be

used for tasks which involve reasoning on either the syntax or the semantics of the

language. Many systems such as Yao and Van Durme (2014) and Berant and Liang

(2014), have shown promising results by focusing on a specific domain (eg. Factual

Question Answering on Freebase). However, natural languages like English represent

a complex interweaving of events and relations between them. The events also have a

surrounding environment which includes the entities participating in them. Further-

more, the language is so intricate that sometimes the background about the events

and entities is required to actually understand and reason upon it. For example the

Winograd Schema Challenge Levesque et al. (2011) sentences mentioned below re-

quire some background knowledge to answer the question about the sentence.

Sentence: The drain is clogged with hair. It has to be cleaned.

Question: What has to be cleaned?

Answer: The drain

Sentence: The drain is clogged with hair. It has to be removed.

Question: What has to be removed?

Answer: The hair

Most of the current semantic parsers and semantic role labelers lack in capturing

the basic semantic relations in the text. However, some recent systems Hermann

et al. (2014),Das et al. (2010) encode the commonsense knowledge from FrameNet,

VerbNet, PropBank, etc. while still lacking the semantic relations. Also, each system

has its own representation schema, so in most of the cases the representations are not

really compatible with each other.

12

From the above discussion it can be observed that there is a need of a representa-

tion which can be used to represent the basic knowledge mentioned in the given text

along with the background knowledge required to understand the meaning associated

with the sentence.

With this motivation, in this Chapter a formal representation for English text

is defined, which would be useful in Co-reference Resolution, Machine Translation,

Deep Question Answering, etc. While doing so, a popular ontology, called Knowledge

Machine(KM) Clark et al. (2004) is used to represent the relations between concepts.

The usability of KM ontology has been proved by a number of projects, such as

AURA Chaudhri et al. (2009) which is developed under Project Halo Gunning et al.

(2010). The use of KM ontology provides us the ability to

• combine the data provided by several NLP tools,

• merge the information of many sentences into a single representation, and

• make the system’s output compatible to a whole range of systems currently

using KM.

Such systems include reasoning and factoid question answering Baral and Liang

(2012); Chaudhri and Son (2012) for data enrichment (through inheritance and cloning)

and Deep Question Answering Baral et al. (2012). The concept of proto-classes (from

Clark et al. (2004)) has also been used to represent the quantification of entities in

the text. Furthermore, many off-the-shelf NLP tools are also used for features such

as Word Sense Disambiguation and Named Entity Recognition.

In the next sections the related works in this field are discussed and this work is

compared with them. Later the techniques behind this work are explained in detail.

13

2.1.1 Syntactic Dependency Parsing

This component is responsible for parsing the English text into a syntactic depen-

dency parse tree. The Stanford dependency parser De Marneffe et al. (2006) is used

to parse the text. For example, the sentence “George loves Mary.” is parsed into the

dependency graph shown in Figure 2.1.

Figure 2.1: Stanford Dependency Parse of “George loves Mary.”

In the dependency parse, nsubj and dobj predicates show that George-1 and Mary-3

are respectively the nominal subject and object of loves event. The meaning of the

dependency predicates used by Stanford Dependency parse is analyzed from De Marn-

effe and Manning (2008).

The predicates in dependency parse of Stanford parser are very fine grained. For

example, in the dependency parse of sentence “George played with the ball in the

field.” “prep in” is used to represent the mention of the preposition “in”. Similarly,

Stanford Dependency Parser has different predicates for all prepositions and even for

the conjunctions such as “and” and “but”. To generalize the predicates, the well

defined and popular ontology i.e. Knowledge Machine(KM) Barker et al. (2001),

Clark et al. (2004) is used. KM has been used by various projects such as Project

AURA Chaudhri et al. (2009), which is developed under Halo Gunning et al. (2010).

The Stanford dependency predicates are mapped to the set of relations defined in

14

KM using manual rules. Furthermore, thousands of English sentences are analyzed,

and a new participant relation is defined as a part of the mappings explained above.

It is used to encode a special type of relation between an event and an entity. It

can be explained with the help of the example sentence Tom hit John because he was

rude. The semantic parse of the sentence is shown in Figure 2.2. In this example the

edge participant between hit and he is encoded to capture the relation that he is a

participant in the event hit i.e. he is a co-referent of either of its children(Tom and

John in this case).

Figure 2.2: Graphical Semantic Representation of “Tom hit John because he was
rude”

2.1.2 Class Population

This is a two step process. The first step is to encode the relation between two

words which are present in the text in different grammatical forms. This is done by

adding a common class for both the words in the representation. For example, in

the sentence If John had not loved every cat, he would have loved a dog, the word

15

love occurs in two contexts but their conceptual meaning is same. This information

is encoded by adding a directed edge instance of from both the “love”s to their base

form as illustrated in Figure 2.3.

Figure 2.3: Graphical Semantic Representation of “If John had not loved every cat,
he would have loved a dog”

Another level of generalization is added by adding the superclass information to

each word class in the representation. It is helpful in representing the sense associated

with each word in the sentence. For example, in the graph in Figure 2.3, the words

John at position 2 and cat at position 7 belong to John and cat classes respectively,

they also belong to same supper classes or sense which are Person and Animal re-

spectively. This information is encoded by using the lexical information about words

from WordNet Miller (1995). Furthermore, Word Sense Disambiguation Basile et al.

(2007) is used to get lexical information associated with the correct meaning of the

word in context of the given sentence.

16

2.1.3 Other Features

Named Entity Recognition

There are instances in English language where multiple words represent one named

entity. For example in the sentence The boy wants to visit New York City(from

Levesque et al. (2011)), the last three words represent a named entity and it is a

location. We capture this information by using the Stanford Named Entity Recognizer

Finkel et al. (2005). The information is used to preprocess the sentence to make

New York City as a single entity and it is also used while populating the superclass

information i.e. its superclass is defined as location. Similar procedure is followed

for different named entities with different named tags such as ORGANIZATION,

PERSON etc.

Entity Based Co-reference Resolution

There is a possibility that only one entity is present in the given text or some entity

specific words are used. For example in the sentence He carried me so I thanked him.

In this sentence we do not need any Background knowledge about the entities and

events in the sentence to resolve me to I and He to him. This is because in any

sentence me and I are always co-referents of each other (Its a property of English

language). Now, consider the sentence, She took off because she was in hurry. In

this sentence, it is obvious that there is only one entity present, so both [she]s are

co-referents of each other. This type of lower level co-reference resolution is done

before semantically parsing the sentences. In this preprocessing, all the co-referent

words are replaced by ENT (number) where number determines the number of co-

referent entities in the sentence. For example the above sentences are preprocessed

to ENT1 carried ENT2 so ENT2 thanked ENT1 and ENT1 took off because ENT1

17

was in hurry respectively.

2.2 Translating Winograd Sentence and Question into Formal Representation

Continuing with the Winograd example mentioned earlier, the sentence is trans-

lated into a graphical representation as shown in Figure 2.4. The sentence is repre-

sented in Answer Set Programming language by using the has predicate. The first

argument of the predicate represents the context of the formal representation graph

i.e. winograd or question. The second and fourth arguments represent the originating

and end nodes of the edge in the graph and the label of the edge is represented by the

third argument (The detailed explanation of the ASP syntax is present in Chapter4).

For example the lift example sentence’s formal graph is represented in ASP as.

Sentence 1.

% Sentence = The man couldn ’t lift his son because he was so weak

has(winograd ,lift_5 ,instance_of ,lift).

has(winograd ,lift ,superclass ,motion).

has(winograd ,lift_5 ,agent ,man_2).

has(winograd ,lift_5 ,recipient ,son_7).

has(winograd ,lift_5 ,negative ,not_4).

has(winograd ,lift_5 ,participant ,he_9).

has(winograd ,he_9 ,trait ,weak_12).

has(winograd ,weak_12 ,trait ,so_11).

has(winograd ,man_2 ,instance_of ,man).

has(winograd ,man ,superclass ,person).

has(winograd ,son_7 ,possesed_by ,his_6).

has(winograd ,son_7 ,instance_of ,son).

has(winograd ,son ,superclass ,person).

has(winograd ,his_6 ,instance_of ,his).

has(winograd ,his ,superclass ,person).

has(winograd ,not_4 ,instance_of ,not).

18

has(winograd ,not ,superclass ,all).

has(winograd ,he_9 ,instance_of ,he).

has(winograd ,he ,superclass ,person).

has(winograd ,weak_12 ,instance_of ,weak).

has(winograd ,weak ,superclass ,all).

has(winograd ,so ,superclass ,all).

Similarly the Question’s formal graph is represented in has format as below.

Question 1.

% Question = Who was weak ?

has(question ,q_1 ,instance_of ,q).

has(question ,q_1 ,trait ,weak_3).

has(question ,weak_3 ,instance_of ,weak).

has(question ,weak ,superclass ,all).

2.3 Answer Set Programming Rules to Extract Pronoun To Be Resolved

A set of Answer Set Programming rules are proposed to extract the “pronoun

to be resolved” from the representations of Winograd sentences and the respective

questions about them. The rules match a question’s formal representation with that

of the respective sentence’s and extract the word which is preceded by the Wh string

in the question.

An Example of formal representation of a sentence is given in Figure 2.4 and its

corresponding question’s representation is shown in Figure 2.5.

The ASP rules and predicates used for pronoun extraction are mentioned below.

The predicate toBeResolved is used to extract all the pronouns needed to be

resolved to answer the given question about the Winograd sentence.

Definition 1 (toBeResolved(P)). Let there is a node P in the Winograd sentence

graph. Also, there is an edge has(winograd,X2, R, P) or has(winograd, P,R, Y 2)

19

Figure 2.4: Graphical Semantic Representation of the Sentence “The man couldn’t
lift his son because he was so weak”

Figure 2.5: Graphical Semantic Representation of the question “Who was weak ?’

in the Winograd sentence graph and there is an edge has(question,X1, R, Y 1) in the

given question, if

1. Y 1 is an instance of q and both X1 and X2 have same class node (say X) or

2. X1 is an instance of q and both Y 1 and Y 2 have same class node (say Y)

20

then, P is the pronountoberesolved.

Following ASP rules are defined to extract this predicate.

toBeResolved(P) :- has(question ,X1 ,R,Y1),

has(question ,X1 ,instance_of ,X),

has(question ,Y1 ,instance_of ,q),

has(winograd ,X2 ,R,P),

has(winograd ,X2 ,instance_of ,X).

toBeResolved(P) :- has(question ,X1 ,R,Y1),

has(question ,X1 ,instance_of ,q),

has(question ,Y1 ,instance_of ,Y),

has(winograd ,P,R,Y2),

has(winograd ,Y2 ,instance_of ,Y) .

After applying the technique to extract the pronoun on the two representations

in figure 2.4 and 2.5, we get the pronoun to be resolved as it .

In this Chapter, the formal semantic representation for the given Winograd sen-

tence and its respective question is defined. Also, both the sentence and the question

are translated into the representation to extract the pronoun to be resolved. In next

chapters the remaining two modules of the pronoun resolution system i.e. Automatic

Background Knowledge Extraction and Logical Reasoning are explained in detail.

21

Chapter 3

AUTOMATIC BACKGROUND KNOWLEDGE EXTRACTION

In Chapter 2, a formal representation for English text is defined and both the given

Winograd sentence and question are translated into it. In this chapter a technique to

automatically extract the Background Knowledge about the given Winograd sentence

and question is explained in detail.

3.1 Introduction and Motivation

As mentioned in previous chapters of this work, language is a complex phe-

nomenon. To understand conversations, written or uttered, many a times it is required

to have some sort of background information or commonsense knowledge about the

entities and incidences which are mentioned in the conversation. For example in the

Winograd Schema mentioned below.

Sentence: The man could not lift his son because he was so weak.

Question: Who was weak ?

Answer: The man.

The answer to above question depends on resolution of he in the sentence to either

man or man’s son. This can be done by using the background knowledge about lift

incidence that weak person cannot lift heavy things. We as humans can observe that

we do not need to think or gather any background knowledge before answering this

sentence i.e. we do not go search in a Knowledge base to find such a knowledge. This

is because we already have it stored in our brain. We just retrieve it at a very high

speed.

Now, from the above discussion, the answers to two questions are of utmost im-

22

portance in simulating human like reasoning. They are

• From where do humans get the background knowledge about things ?

• How do humans extract it ?

One of the main contributor of the answer to the first question is reading performed

by humans since the time they started to understand the written language. There are

studies12 which suggest that reading does not only make you understand the written

language momentarily but it also increases the levels of intelligence in humans. In

other words, one of the reason that humans have commonsense knowledge about

entities and events is day-to-day reading. Another source of commonsense knowledge

for humans are experiences. For example,considering the lift example mentioned

above, a real scenario might occur that, a human being tries to lift another person

and he is not able to. From this scenario he/she knows that the other person is heavy

or he/she is weak.

The answer to the second question mentioned above is as important as the other

one. When humans answer the lift question mentioned above, then they do not search

all their knowledge base stored in their brain. However, they filter the knowledge

based on the entities and events which participate in the sentence and its correspond-

ing question. And if such knowledge is not present then they relax the filtering criteria

by using words which are already stored in their Knowledge Base (i.e. brain) and are

conceptually similar to the actual words in the sentence and the question.

1A research supported by Spencer Foundation states that “Reading has cognitive consequences

that extend beyond its immediate task of lifting meaning from a particular passage”
2Another article on http://www.theguardian.com/us states that “There is evidence that reading

can increase levels of all three major categories of intelligence.”

23

3.2 An Overview of the Approach

In this work also, it is tried to simulate the human thought process as mentioned

above. This includes the extraction of the Winograd sentence and question specific

background knowledge from a big source of raw text. It is accomplished by creating

string queries using the concepts in the sentence and the question. Later the queries

are used to retrieve sentences from a large corpus of raw text. Following subsections

explain these steps in detail. The Winograd Schema example mentioned below will

be considered to demonstrate the technique in this chapter.

Sentence: The man could not lift his son because he was so weak .

Question: Who was weak?

3.2.1 Creating String Queries

As mentioned in previous section, humans retrieve the commonsense knowledge

pertaining to a particular context. The context is defined by entities and events in

the Winograd sentence and question. It is also noticeable that whenever humans

search for a context in a sentence they do not consider all the entities, for example

in the sentence John loves Mia because she is a good girl, John and Mia are not very

important to know the context i.e.someone loves a good girl, of the sentence. Whereas

the entity girl which is a more general term and good which identifies a property of girl

are important. Considering these points, following set of string queries are created to

capture the context of the Winograd sentences.

• First set of queries (say Q1) is created by using formal representations of both

the Winograd sentence and the question. All the nodes from the question’s

formal representation (except the ones which represent “Wh” words) are traced

into the formal representation of the given sentence. If two nodes in different

24

graphs belong to same class and superclass then they are considered as similar.

From the traced output, all the words/nodes which do not specify a nominal

entity are extracted and their different combinations (with and without prepo-

sitions, adverbs and conjunctions in the sentence) are joined together using a

wild card (.*) and double quotes (“”). An example query for the lift example

mentioned above is, “.*not.*lift.*because.*weak.*”. Another query generated

for same sentence is, “.*not.*lift.*because.*so.*weak.*”

• Second set of queries (say Q2) is created by replacing the verbs in the previously

created set of queries by their synonyms. For eg. one of the new queries

generated for lift example is, “.*not.*pick.*because.*weak.*”, where pick is a

synonym of lift.

Finally, a combined set of queries is formed by merging the two sets extracted above

i.e Q = Q1 ∪Q2.

3.2.2 Using Queries to Extract Background Knowledge

As discussed in the previous section, humans store most of the knowledge, that

they get by reading and experiences, in their brains. There are a billions of sources

of such knowledge which would require billions of terabytes of memory, which is

impossible till current day for a personal computer. So, a big source of raw knowledge

such as books, magazines, newspapers and websites such as Google, Bing and Yahoo

Answers are a possible substitute which can be used.

The second sub-step in background knowledge extraction process is to automati-

cally search such large corpus of raw English text using the queries created in previous

subsection and extract the sentences that are retrieved using the queries. Following

tools and techniques are used to accomplish this functionality.

25

• Automated Google Search: Currently, the Google search engine is used to

extract the background sentences but the searching can be performed on other

datasets too (The Google search is called from java program by using honest

user agents). The idea here is to extract the sentences which are semantically

and structurally similar to the given Winograd sentence. The Google search

returns the web search results for a particular search query. These results are

the urls of the web pages that has text matching with out search query. For

example the web pages extracted for the above mentioned lift example while

using the query “.*not.*lift.*because.*weak.*” are highlighted in Figure 3.2.2.

Figure 3.1: Google Search Results for the Query “.*not.*lift.*because.*weak.*”

. The Sentences Are Extracted from the Highlighted URLs.

26

• Extracting sentences from Google search result pages: This is a modi-

fication of above mentioned Google search technique. In this technique the text

which is shown in bold letters in the Google search results for a given query

is extracted directly from the Google search results web page. For example

the text extracted for the above mentioned lift example while using the query

“.*not.*lift.*because.*weak.*” are highlighted in Figure 3.2.2.

Figure 3.2: Google Search Results for the Query “.*not.*lift.*because.*weak.*”

. The Highlighted Text Is Extracted from the Search Results Page.

• Sentence Splitter Usually, the text extracted by above techniques is a group

of many sentences combined together. To divide this text into its constituent

sentences a Natural Language Processing tool kit called LingPipe (Alias-i.2008

27

Table 3.1: Background Sentences Extracted For the Winograd Sentence “The man
could not lift his son because he was so weak .”

She could not lift it off the floor because she is a weak girl

She could not even lift her head because she was so weak.

I could not even lift my leg to turn over because the muscles were weak after surgery.

The doctor has ordered me not to lift heavy weights because my heart is weak.

(2008)) is used. LingPipe is tool kit for processing text using computational

linguistics. LingPipe is used for tasks such as Sentence Splitting, Part of Speech

tagging, Sentiment Analysis and Named Entity Recognition.

A few of the sentences extracted from Google by using the above mentioned query

for lift example are shown in Table 3.1.

3.2.3 Post-processing the Background Knowledge

The techniques and tools mentioned above are used to extract a bunch of sup-

posedly knowledgeable sentences. But the number of sentences extracted from a web

page is very large. Only a few of those sentences are actually useful. So, to filter the

sentences and extract only the ones which could prove useful, a filtering mechanism

is implemented. The sentences are filtered based on below mentioned criteria.

• All the words in the query must be present in the sentence in any form.

• The order of appearance of words in query must match the order in the sentence.

If the above conditions are met, the sentence is kept for further processing other-

wise it is discarded as useless.

Furthermore, it is possible that the extracted sentences contain the given Wino-

grad sentence because the words in the query would exactly match the words in the

sentence and it would pass through the previous filter. So, another filter to remove

28

sentences which match with the given Winograd sentence is implemented. On the

Internet the Winograd sentences are present as pairs. For example

The man could not lift his son because he was so [weak/heavy] .

Where as one of the given sentence in our system would be

The man could not lift his son because he was so weak .

It can be observed that both of these sentences are similar but not exactly same.

To consider this a relaxed sentence matching technique is implemented. In this tech-

nique, the sentences are matched based on percentage of words matched. The thresh-

old for the matching to allow a sentence to be rejected in this process is kept as

80%.

3.3 Translating Background Knowledge Sentences Into Formal Representation

After the application of previous sections, a set of sentences is extracted which

could have the background knowledge about the given Winograd sentence and could

be helpful in answering the given Winograd question. To finally answer the question a

logical reasoning is performed on the formal representation of the given sentence, the

pronoun to be resolved extracted in previous chapter and the formal representation

of the background sentences that are extracted using a technique explained in this

chapter. Considering this, the last step in this chapter is to translate the extracted

background knowledge sentences into the formal representation similar to that of the

given Winograd sentence. Let us consider one of the background sentences extracted

for the lift example mentioned above.

Background sentence: She could not lift it off the floor because she is a weak

girl

It is translated to the graphical formal representation illustrated in Figure 3.3.

Also, in terms of textual logic rules, it is represented as below.

29

Figure 3.3: Graphical Semantic Representation of the Sentence “She could not lift
it off the floor because she is a weak girl”

Sentence 2.

% She could not lift it off the floor because she is a weak girl

has(background ,lift_104 ,agent ,ent1_101).

has(background ,lift_104 ,recipient ,it_105).

has(background ,lift_104 ,negative ,not_103).

has(background ,lift_104 ,participant ,ent1_110).

has(background ,lift_104 ,instance_of ,lift).

has(background ,lift ,superclass ,motion).

has(background ,it_105 ,instance_of ,it).

has(background ,it ,superclass ,object).

has(background ,ent1_101 ,instance_of ,ent1).

has(background ,ent1 ,superclass ,person).

has(background ,ent1_110 ,instance_of ,ent1).

has(background ,not_103 ,instance_of ,nt).

has(background ,nt ,superclass ,all).

has(background ,weak_113 ,instance_of ,weak).

has(background ,weak ,superclass ,all).

has(background ,ent1_110 ,instance_of ,girl_114).

has(background ,girl_114 ,instance_of ,girl).

30

has(background ,girl ,superclass ,person).

has(background ,girl_114 ,trait ,weak_113).

has(background ,ent1_110 ,trait ,weak_113).

In this chapter a technique is defined which automatically extracts the Background

knowledge about a particular Winograd sentence and the question pertaining to the

sentence. Also, the Background knowledge is translated into a formal representation

similar to that of the given sentence (as explained in previous chapter). In the next

chapters, Logical reasoning on formal translations of both the given Winograd sen-

tence and the Background sentence extracted about it, is explained in detail with

the help of examples. Also, the evaluation of the technique described in this work is

performed and future works are discussed.

31

Chapter 4

LOGICAL REASONING

In Chapter 3, the process of automatic extraction of Background Knowledge is dis-

cussed in detail. How this Knowledge is translated to the formal language is also

defined in chapter 3. In this chapter, the reasoning engine to match the formal repre-

sentations of the given Winograd sentence, the automatically extracted Background

Knowledge and the pronoun to be resolved, is explained in detail. The details include

ASP formulation of the formal representation and a set of logical rules to simulate

the reasoning.

4.1 Introduction

Until now it has been explained that when humans tackle a Natural Language

Understanding problem like the Winograd Schema Challenge, they first translate the

given text into a formal semantic representation. The representation allegedly is graph

based because it is fairly easy to represent different concepts and their arguments in a

graph based representation. After representing, the humans automatically extract the

Background knowledge about the entities and events in the given text. They extract

this knowledge from the knowledge that they learned from previous experiences such

as reading. After the Background knowledge is extracted, it is required to use that

knowledge and merge it with the given text or match both of them to infer something

that was not stated in the given text. One way of doing that, which is adapted for

most of the cases by humans, is to use logical reasoning on both of them and expand

the knowledge.

This chapter explains the simulation of such human behavior in machines. The

32

reasoning task is performed by converting the formal graphical representations of

the given text and the automatically extracted Background Knowledge into the logic

language syntax. The pronoun to be resolved is also translated into the logic language

syntax. After that, a set of logic language rules are defined individually for both the

types of Winograd sentence which are focused in this work.

4.2 Answer Set Programming

An expressive logic language i.e. Answer Set Programming Gelfond and Lifschitz

(1988) (ASP) has been used to simulate the reasoning process in the system.

An ASP program is a collection of rules of the form:

a← a1, ... , am, not am+1, ... , not am+n

where a, a1, ..., am+n are atoms. The rule reads as “a is true if a1...am are all

known to be true and am+1...am+n can be assumed to be false”. The semantics of

answer set programs are defined using answer sets. An entailment relation (|=) with

respect to answer set programs is defined as follows: A program Π entails an atom p

iff p is true in all the answer sets of Π.

Answer Set Programming has been chosen for the reasoning task considering the

following features possessed by it

1. ASP has simple syntax but yet is expressive.

2. ASP has a strong theoretical foundation with many building-block results Baral

(2003).

4.3 Reasoning Process

As explained in earlier Chapters, we focus on two types of sentences identified

from Winograd Schema corpus. The types are Direct Causal Events and Causal

33

Attributive. For the type Direct Causal Events following example Winograd Schema

sentence and question will be focused.

Sentence: Ann asked Mary what time the library closes , but she had forgotten .

Question: Who had forgotten ?

Answer: Mary

And for Causal Attributive type following Winograd sentence and question will

be demonstrated.

Sentence: The man could not lift his son because he was so weak.

Question: Who was weak ?

Answer: The man

The above example Winograd sentences will be used throughout this chapter and

they will be referred as asked and lift examples respectively.

Similar type of logical reasoning is used for both the types. A subgraph from

the given Winograd sentence is matched with a subgraph from the automatically

extracted Background sentence by looking for the entity which fills the same slot in

Background sentence representation as filled by the pronoun to be resolved in the

given Winograd sentence.

Reasoning in ASP include various aspects such as, representing the Winograd

sentence and the Background sentence in ASP paradigms, defining a set of general

ASP predicates and rules which are applicable for both the types of reasoning, and

finally defining the predicates and ASP rules specific to a reasoning type. In the

subsections below, above mentioned ASP paradigms are explained in detail.

4.3.1 Representing Winograd and Background Sentences

In previous Chapter the formal representation for representing any English text

is defined. The representation is a graph of semantics in which each node represents

34

either an entity, an event, an entity class or an event class. To use this graphical

representation in ASP paradigms, each edge (including two nodes) is converted into a

has predicate with four arguments. First argument illustrates the context of the text.

For example if the text is a Winograd sentence then the context would be winograd

whereas if the text is a Background sentence, the context is background.

Following ASP tuples demonstrate the ASP representation of formal representa-

tion of text.

context(winograd;background).

has(C,NODE1 ,REL ,NODE2), context(C).

A predicate named, context, illustrated above is used to specify the type of sentence

(Winograd or Background).

The Example Winograd Sentences mentioned above are translated to ASP predi-

cates as depicted below. For asked example,

Example 1.

% Ann asked Mary what time the library closes , but she had

forgotten .

has(winograd ,asked_2 ,recipient ,mary_3).

has(winograd ,asked_2 ,agent ,ann_1).

has(winograd ,asked_2 ,next_event ,forgotten_13).

has(winograd ,forgotten_13 ,agent ,she_11).

has(winograd ,mary_3 ,instance_of ,mary).

has(winograd ,mary ,superclass ,person).

has(winograd ,ann_1 ,instance_of ,ann).

has(winograd ,all ,superclass ,person).

has(winograd ,asked_2 ,instance_of ,ask).

has(winograd ,ask ,superclass ,communication).

has(winograd ,forgotten_13 ,instance_of ,forget).

has(winograd ,forget ,superclass ,cognition).

35

has(winograd ,she_11 ,instance_of ,she).

has(winograd ,she ,superclass ,person).

The graphical representation of the above translation is illustrated in figure 4.3.1

Figure 4.1: Graphical Semantic Representation of “Ann asked Mary what time the
library closes , but she had forgotten .”

One of the corresponding background knowledge sentences which is used to answer

the question related to above mentioned Winograd sentence is represented graphically

in Figure 4.3.1 and its ASP formulation is illustrated below.

Background Sentence for Example 1.

% But you asked me the security question but I forgotten

has(background ,asked_103 ,agent ,you_102).

has(background ,asked_103 ,recipient ,ent1_104).

has(background ,asked_103 ,object ,question_107).

has(background ,question_107 ,complement_phrase ,security_106).

has(background ,asked_103 ,next_event ,forgotten_110).

36

Figure 4.2: Graphical Semantic Representation of “But you asked me the security
question but I forgotten”

has(background ,forgotten_110 ,agent ,ent1_109).

has(background ,ent1_109 ,instance_of ,ent1).

has(background ,asked_103 ,instance_of ,ask).

has(background ,ask ,superclass ,communication).

has(background ,you_102 ,instance_of ,you).

has(background ,you ,superclass ,person).

has(background ,ent1_104 ,instance_of ,ent1).

has(background ,ent1 ,superclass ,person).

has(background ,question_107 ,instance_of ,question).

has(background ,question ,superclass ,communication).

has(background ,security_106 ,instance_of ,security).

has(background ,security ,superclass ,communication).

has(background ,forgotten_110 ,instance_of ,forget).

has(background ,forget ,superclass ,cognition).

For lift example,

37

Example 2.

% The man could not lift his son because he was so weak.

has(winograd ,lift_5 ,agent ,man_2).

has(winograd ,lift_5 ,recipient ,son_7).

has(winograd ,son_7 ,possesed_by ,his_6).

has(winograd ,lift_5 ,participant ,he_9).

has(winograd ,he_9 ,trait ,weak_12).

has(winograd ,weak_12 ,trait ,so_11).

has(winograd ,lift_5 ,negative ,not_4).

has(winograd ,lift_5 ,instance_of ,lift).

has(winograd ,lift ,superclass ,motion).

has(winograd ,man_2 ,instance_of ,man).

has(winograd ,man ,superclass ,person).

has(winograd ,son_7 ,instance_of ,son).

has(winograd ,son ,superclass ,person).

has(winograd ,his_6 ,instance_of ,his).

has(winograd ,his ,superclass ,person).

has(winograd ,so_11 ,instance_of ,so).

has(winograd ,so ,superclass ,all).

has(winograd ,weak_12 ,instance_of ,weak).

has(winograd ,weak ,superclass ,all).

has(winograd ,he_9 ,instance_of ,he).

has(winograd ,he ,superclass ,person).

has(winograd ,not_4 ,instance_of ,not).

has(winograd ,not ,superclass ,all).

The graphical representation of the above translation is illustrated in figure 4.3.1

One of the corresponding background knowledge sentences which is used to answer

the question related to above mentioned Winograd sentence is represented graphically

in Figure 4.3.1 and its ASP formulation is illustrated below.

38

Figure 4.3: Graphical Semantic Representation of “The man could not lift his son
because he was so weak”

Figure 4.4: Graphical Semantic Representation of “She could not lift it off the floor
because she is a weak girl”

Background Sentence for Example 2.

% She could not lift it off the floor because she is a weak girl.

has(background ,lift_104 ,agent ,ent1_101).

has(background ,lift_104 ,recipient ,it_105).

has(background ,lift_104 ,negative ,not_103).

has(background ,lift_104 ,participant ,ent1_110).

39

has(background ,lift_104 ,instance_of ,lift).

has(background ,lift ,superclass ,motion).

has(background ,it_105 ,instance_of ,it).

has(background ,it ,superclass ,object).

has(background ,ent1_101 ,instance_of ,ent1).

has(background ,ent1 ,superclass ,person).

has(background ,ent1_110 ,instance_of ,ent1).

has(background ,not_103 ,instance_of ,nt).

has(background ,nt ,superclass ,all).

has(background ,weak_113 ,instance_of ,weak).

has(background ,weak ,superclass ,all).

has(background ,ent1_110 ,instance_of ,girl_114).

has(background ,girl_114 ,instance_of ,girl).

has(background ,girl ,superclass ,person).

has(background ,girl_114 ,trait ,weak_113).

has(background ,ent1_110 ,trait ,weak_113).

It is noticeable that each word in the above representation has an underscore at

the end followed by a number. The number represents the position of the word in a

sentence and helps in differentiating between words in case there are two exact same

words used in the sentence in different contexts. The number in the background

sentence starts from 101 whereas in the Winograd sentence it starts from 1.

The pronoun to be resolved is also translated into the ASP syntax by using a

predicate named toBeResolved. It is illustrated below.

toBeResolved(P).

Where P represents the actual pronoun to be resolved in the given Winograd

sentence. For example she 11 and he 9 respectively for the asked and lift example

sentences mentioned above.

40

4.3.2 General Properties for Winograd and Background Graphs

A set of ASP predicates and rules are explained in subsections below to extract

some general properties from the Winograd and the Background sentence’s graphical

translations.

Reachability

This property represents the basic transitivity relationship between events in a partic-

ular type of graph i.e either Winograd or Background. A set of predefined event-event

relations is required to find transitivity between events. These event-event relations

are taken from the KM component library as mentioned in the Semantic Parsing

section of this work. These relations are represented with the help of eventRelations

predicate. There are 23 such relations mentioned as below.

causes, caused by, defeats, defeated by, enables, enabled by, inhibits, inhibited by,

by means of, means by which, first subevent, first subevent of, objective, next event,

prev event, prevents, prevented by, resulting state, resulting from, subevent, subevent of,

supports, supported by

Formal definition for extracting reachability relation is as follows

Definition 2 (reachableFrom(C,E1, E2)). Let E1 and E2 are event nodes in graph

with context C. reachableFrom(C,E1, E2) defines that: E2 is transitively reachable

from E1 while traversing along any directed edge representing an event-event relation

R, where R ∈ Revent−event (a set of event-event relations).

ASP rules defining above property are.

reachableFrom(C,E1,E2) :- has(C,E1,REL ,E2),

context(C),

41

eventRelations(REL).

reachableFrom(C,E1,E3) :- reachableFrom(C,E1,E2),

has(C,E2 ,REL ,E3),

context(C),

eventRelations(REL),

E1!=E2 , E2!=E3.

An example of ASP predicates extracted from asked example is below.

Reachability Example 1.

reachableFrom(winograd ,asked_2 ,next_event ,forgotten_13).

Cross-Context Siblings

This property represents that if two different nodes/words in different sentences(Winograd

or Background) are instances of the same conceptual class then they are siblings.

The predicate synonym is used to represent two synonymous words. As mentioned

in Chapter 3 the second set of queries, to extract Background Knowledge sentences,

have synonyms of actual words used in the given Winograd sentence. The Background

sentences extracted using these queries again have these synonymous sentences. So,

to match these words in both the given Winograd sentence and the Background sen-

tences extracted, new facts are added to the representations using synonym predicate.

For example, let the given Winograd sentence has a word lifted and one of the Back-

ground sentence extracted for it has a corresponding word picked then a fact is added

as

Synonym Example 1.

synonym(lift ,pick).

42

Definition 3 (crossContextSiblings(X, Y)). Let X and Y are nodes in Winograd

and Background graph such that one of them is in Winograd graph and another is in

Background graph. crossContextSiblings(X, Y) defines that: X and Y both are in-

stances of same conceptual class T . In other words there exists an edge in both Wino-

grad and Background graph has(C,N, instanceof, T) where C ∈ winograd, background

and N ∈ X, Y .

ASP rules defining above property are.

crossContextSiblings(X,Y) :- has(background ,X,instance_of ,T),

has(winograd ,Y,instance_of ,T),

X!=Y.

crossContextSiblings(Y,X) :- has(background ,X,instance_of ,T),

has(winograd ,Y,instance_of ,T),

X!=Y.

crossContextSiblings(X,Y) :- has(winograd ,X,instance_of ,T1),

has(background ,Y,instance_of ,T2),

synonym(T1 ,T2),

T1!=T2.

An example of ASP predicates extracted from asked example and its corresponding

Background knowledge sentence, is illustrated below.

Cross Context Siblings Example 1.

crossContextSiblings(asked_2 ,asked_103).

Negative Polarity

This property represents the nodes in any context which have negative polarity i.e.

preceded by a negation word such as ”not”.

43

Definition 4 (negativePolarity(E)). Let E be a nodes in either Winograd or Back-

ground graph such that it has a negative edge originating from it.

negativePolarity(E) defines that: E has a negative polarity.

ASP rule defining above property is.

negativePolarity(E) :- has(C,E,negative ,N1),

context(C).

An example of ASP predicates extracted from lift example, is illustrated below.

Negative Polarity Example 1.

negativePolarity(lift_5).

4.3.3 Type Specific ASP Rules

As mentioned in previous Chapter, this thesis focuses on solving two kinds of

sentences in the Winograd corpus with the help of two kinds of ASP rules. The

reasoning criteria implemented for both the types is graph matching but a different

set of predicates are defined to extract different relations and properties among them.

Following subsections define each of type specific ASP rules and predicates in detail

with the help of examples.

Type1: Direct Causal Events

In this section, the different ASP predicates and the rules to extract those predicates

are defined.

The predicate matchingEvents(A,B,A1,B1) defines that A and B are the reach-

able event nodes in the sentence graph which has A1 and B1 as crossContextSibling,

reachable events respectively from Background sentence graph. Formally, it can be

defined as

44

Definition 5 (matchingEvents(A,B,A1, B1)). Let A and B are event nodes in

the Winograd sentences graph and A1 and B1 are event nodes in the Background

sentence graph.matchingEvents(A,B,A1, B1) defines that if there exist a relation

reachableFrom(winograd,A,B) and a relation reachableFrom(A1, B1) where, A

and A1 are cross-context siblings and B and B1 are cross-context siblings, and any

one of the following conditions is satisfied then A and B have matching events A1

and B1.

1. A, A1, B and B1 are having negative polarity.

2. A, A1, B and B1 are not having negative polarity.

3. A and A1 are having negative polarity and B and B1 are not having negative

polarity.

4. A and A1 are not having negative polarity and B and B1 are having negative

polarity.

Following four ASP rules are defined to extract this predicate.

matchingEvents(A,B,A1 ,B1) :- crossContextSiblings(A,A1),

reachableFrom(winograd ,A,B),

crossContextSiblings(B,B1),

reachableFrom(background ,A1 ,B1),

not negativePloarity(A),

not negativePloarity(A),

not negativePloarity(A),

not negativePloarity(A),

A!=B,A1!=B1.

matchingEvents(A,B,A1 ,B1) :- crossContextSiblings(A,A1),

reachableFrom(winograd ,A,B),

45

crossContextSiblings(B,B1),

reachableFrom(background ,A1,B1),

not negativePloarity(A),

negativePloarity(A),

not negativePloarity(A),

negativePloarity(A),

A!=B,A1!=B1.

matchingEvents(A,B,A1 ,B1) :- crossContextSiblings(A,A1),

reachableFrom(winograd ,A,B),

crossContextSiblings(B,B1),

reachableFrom(background ,A1,B1),

negativePloarity(A),

not negativePloarity(A),

negativePloarity(A),

not negativePloarity(A),

A!=B,A1!=B1.

matchingEvents(A,B,A1 ,B1) :- crossContextSiblings(A,A1),

reachableFrom(winograd ,A,B),

crossContextSiblings(B,B1),

reachableFrom(background ,A1,B1),

negativePloarity(A),

negativePloarity(A),

negativePloarity(A),

negativePloarity(A),

A!=B,A1!=B1.

An example of ASP predicates extracted from asked example, is illustrated below.

Cross Context Matching Events Example 1.

matchingEvents(asked_2 ,forgotten_13 ,asked_103 ,forgotten_110)

46

The predicate eventSubgraph defines the subgraph from the Winograd sentence

which contains the pronoun to be resolved, the event in which it participates and

their relation.

Definition 6 (eventSubgraph(winograd,A,R,X)). Let A is an event node in Wino-

grad sentence graph and X is the pronoun which is needed to be resolved to answer

the question about the given Winograd sentence. eventSubgraph(winograd,A,R,X)

defines the edge from Winograd sentence graph which has A as its origin node and X

as its ending node. R is any relation between A and X.

Following ASP rules are defined to extract this predicate.

eventSubgraph(winograd ,A,R,X) :- matchingEvents(A,B,C,D),

has(winograd ,A,R,X),

toBeResolved(X).

eventSubgraph(winograd ,B,R,X) :- matchingEvents(A,B,C,D),

has(winograd ,B,R,X),

toBeResolved(X).

An example of ASP predicates extracted from asked example, is illustrated below.

Event Subgraph Example 1.

eventSubgraph(winograd ,forgotten_13 ,agent ,she_11)

The predicate eventSubgraph is also defines the subgraph from Background sen-

tence which contains a matchingEvent of the event to which the pronoun to be resolved

is related in the Winograd sentence.

Definition 7 (eventSubgraph(background,A1, R,X1)). Let A1 is an event node in

the Background sentence graph. eventSubgraph(background,A1, R,X1) defines the

edge from the Background sentence graph which has A1 as its origin node and X1

47

as its ending node. R is any relation between A1 and X1. Also, there is a rela-

tion between the subgraph extracted from the Winograd sentence graph in above step

i.e.eventSubgraph(winograd,A,R,X) where A1 and A are related with a matching

nodes relation i.e. matchingEvents(A,B,A1, B1).

Following ASP rules are defined to extract this predicate.

eventSubgraph(background ,A1,R,X1) :- eventSubgraph(winograd ,A,R,X),

matchingEvents(A,B,A1 ,B1),

has(background ,A1 ,R,X1).

eventSubgraph(background ,B1,R,X1) :- eventSubgraph(winograd ,B,R,X),

matchingEvents(A,B,A1 ,B1),

has(background ,B1 ,R,X1).

An example of ASP predicates extracted from asked example, is illustrated below.

Event Subgraph Example 2.

eventSubgraph(background ,forgotten_110 ,agent ,i_109)

The predicate eventPronounRelation is used to extract the event and relation from

the Background graph. It is helpful in getting the final answer.

Definition 8 (eventPronounRelation(background, C,R1)). Let

eventsubgraph(background, C,R,X1) is the subgraph extracted from the Background

sentence graph, matchingEvents(A,B,C,D) is the relation extracted from both the

Winograd and the Background sentence graphs, the Background sentence graph con-

tains an edge has(background, C,R1, X2) then if X1 and X2 are instances of same

conceptual class X, then we extract the event-pronoun relation from the Background

sentence graph as eventPronounRelation(background, C,R1).

Following ASP rules are used to extract this predicate in all possible cases.

48

eventPronounRelation(background ,C,R1) :-

matchingEvents(A,B,C,D),

eventsubgraph(background ,D,R,X1),

has(background ,C,R1 ,X2),

has(background ,X1 ,instance_of ,X),

has(background ,X2 ,instance_of ,X).

eventPronounRelation(background ,D,R1) :-

matchingEvents(A,B,C,D),

eventsubgraph(background ,C,R,X1),

has(background ,D,R1 ,X2),

has(background ,X1 ,instance_of ,X),

has(background ,X2 ,instance_of ,X).

An example of ASP predicates extracted from asked example, is illustrated below.

Event Pronoun Relation Example 1.

eventPronounRelation(background ,asked_103 ,recipient)

Finally, the predicate hasCoreferent is used to extract the co-referent of the pro-

noun to be resolved from the Winograd sentence graph.

Definition 9 (hasCoreferent(P,X)). Let eventPronounRelation(background, C,R)

specifies the relation R extracted from the Background sentence graph along with the

event node C. The edge with labeled R originates from C. We also have the matching

nodes in the Winograd and Background sentence graphs i.e. matchingEvents(A,B,C,D).

If the Winograd sentence graph contains an edge has(winograd,A, S,X) and P is pro-

noun to be resolved such that P ! = X then co-referent of P in the Winograd sentence

is X.

Following ASP rules are used to extract the co-referent in all possible cases.

49

hasCoreferent(P,X) :- eventPronounRelation(background ,C,S),

matchingEvents(A,B,C,D),

has(winograd ,A,S,X),

toBeResolved(P), P!=X.

hasCoreferent(P,X) :- eventPronounRelation(background ,D,S),

matchingEvents(A,B,C,D),

has(winograd ,B,S,X),

toBeResolved(P), P!=X.

An example of ASP predicates extracted from asked example, is illustrated below.

Has Co-referent Example 1.

hasCoreferent(she_11 ,mary_3)

From above example it is shown that the pronoun she 11 has co-referent mary 3

Type2: Causal Attributive

The reasoning for this type also follows a similar graph matching pattern as explained

above. The only difference is that in this case the trait/property of entities is matched

from background knowledge graph instead of their relations with matchingEvents. In

this section, the different ASP predicates and the rules to simulate this reasoning are

defined.

The predicate attributeSubgraph(winograd,E,X,A) is defined to extract a subgraph

from the Winograd sentence graph such that it contains the event to which the pro-

noun to be resolved is connected and the node which defines the property of pronoun

to be resolved. Formally, it can be defined as

Definition 10 (attributeSubgraph(winograd, E,X,A)). Let E is an event node in

the Winograd sentence graph, X is the pronoun to be resolved and A is the attribute as-

50

sociated with X via the edge labeled trait. Then attributeSubgraph(winograd,A,X,B)

defines the partial subgraph from the Winograd sentence graph containing only nodes

E, X and A.

Following ASP rules are defined to extract this predicate.

attributeSubgraph(winograd ,A,X,B) :- has(winograd ,A,participant ,X),

has(winograd ,X,trait ,B),

toBeResolved(X).

An example of ASP predicates extracted from lift example, is illustrated below.

Attribute Subgraph Example 1.

attributeSubgraph(winograd ,lift_5 ,he_9 ,weak_12)

The predicate attributeSubgraph is also defined for the Background sentence graph

similar to the Winograd sentence graph, for extracting the corresponding nodes from

the Background sentence graph.

Definition 11 (attributeSubgraph(background,E,X1, A)). Let

attributeSubgraph(winograd, E1, X,A1) is attribute subgraph extracted from the Wino-

grad sentence graph, E and A nodes in the Background sentence graph are cross con-

text siblings of E1 and A1 respectively. Also, either both E and E1 have positive polar-

ity or both have negative polarity. If there is a subgraph has(background,E, participant,X1)

and an edge has(background,X1, trait, A) in the Background sentence graph then

attributeSubgraph(background,E,X1, A) is extracted.

Following ASP rules are defined to extract this predicate.

attributeSubgraph(background ,E,X1,A) :-

attributeSubgraph(winograd ,E1,X,A1),

crossContextSiblings(E1 ,E),

crossContextSiblings(A1 ,A),

51

has(background ,E,participant ,X1),

has(background ,X1 ,trait ,A),

negativePloarity(E1),

negativePloarity(E).

attributeSubgraph(background ,E,X1,A) :-

attributeSubgraph(winograd ,E1,X,A1),

crossContextSiblings(E1 ,E),

crossContextSiblings(A1 ,A),

has(background ,E,participant ,X1),

has(background ,X1 ,trait ,A),

not negativePloarity(E1),

not negativePloarity(E).

An example of ASP predicates extracted from lift example, is illustrated below.

Attribute Subgraph Example 2.

attributeSubgraph(background ,lift_104 ,ent1_110 ,weak_113)

The predicate eventPronounRelation is defined to extract the relation between

an event and possible co-referent of the pronoun to be resolved from the Winograd

sentence graph.

Definition 12 (eventPronounRelation(winograd, E,R)). Let

attributeSubgraph(background,E1, X1, A) be the subgraph extracted from the Back-

ground sentence graph in previous step. And there is an edge in Background sentence

graph has(background,E1, R,X2) such that E and E1 are cross context siblings. If

X1 and X2 are siblings in the Background sentence graph i.e. they are instances of

same class, then the relation R is extracted in the predicate

eventPronounRelation(winograd, E,R).

Following ASP rules are defined to extract this predicate.

52

eventPronounRelation(winograd ,E,R) :-

attributeSubgraph(background ,E1,X1,A),

has(background ,E1 ,R,X2),

crossContextSiblings(E1 ,E),

has(background ,X1 ,instance_of ,X),

has(background ,X2 ,instance_of ,X).

An example of ASP predicates extracted from lift example, is illustrated below.

Event Pronoun Relation Example 2.

eventPronounRelation(winograd ,lift_5 ,participant)

eventPronounRelation(winograd ,lift_5 ,agent)

Finally, the predicate hasCoreferent is used to extract the co-referent of the pro-

noun to be resolved from the Winograd sentence graph.

Definition 13 (hasCoreferent(P,X)). Let eventPronounRelation(winograd, E,R)

specifies the relation R extracted from the Background sentence graph along with the

event node E from Winograd sentence graph. If the Winograd sentence graph contains

an edge has(winograd, E,R,X) and P is pronoun to be resolved such that P ! = X

then co-referent of P in the Winograd sentence is X.

Following ASP rules are defined to extract this predicate.

hasCoreferent(P,X) :- eventPronounRelation(winograd ,E,R),

has(winograd ,E,R,X),

toBeResolved(P), P!=X.

An example of ASP predicates extracted from lift example, is illustrated below.

Has Co-referent Example 2.

hasCoreferent(he_9 ,man_2)

From above example it is shown that the pronoun he 9 has co-referent man 2

53

Chapter 5

CONCLUSION AND FUTURE WORKS

In Chapter 4 the final component of the Co-reference resolution system was defined.

The component is called the Logical Reasoning Module. It uses a logic language

i.e. Answer Set Programming to reason on the given Winograd sentence graph and

the automatically extracted Background knowledge sentence graph. In this chapter

a conclusion is made about the need and usefulness of the technique described in

this work by evaluating it on the Winograd Schema corpus. Also, the possible future

works in the same field are proposed.

5.1 Summary

This work aims at solving a very important problem of Co-reference resolution.

There are many state of the art Co-reference resolvers which use only statistical

techniques like gender agreement between the co-referent entities, number agreement

between them and the distance (in terms of words) between them in a sentence or

paragraph. The main ingredient that these resolvers lack is human like thinking

i.e. considering each and every word in the sentence or paragraph and then make a

semantic graph of those words and use background or commonsense knowledge about

the entities and events in the text to come up with a real reason of one entity being

a co-referent of another. In this work a mechanism is simulated, which would follow

human like thinking and reason on a problem like human beings.

Today, Artificial Intelligence has gone beyond human intelligence, for example

humans can not predict future whereas AI systems such as Weather Forecast System,

Search Query Completion System and other Data Mining systems are able to predict

54

the future. While making AI better than humans we left a big gap in AI and a

very less advancement has been made in the direction of making machines think like

humans. For example, one of the biggest test of intelligent behavior in machines was

suggested by Alan Turing in 1950 and since then there has not been a single system

which passed the test with mutual consent among all the AI communities. One of

the reason of this test not being passed all these years was the use of only statistical

techniques to deceive humans in the test whereas other main reason as proposed

by many AI scientists was that this test was not an ideal candidate for testing the

intelligent behavior in machines.

Continuing on this a new test called the Winograd Schema Challenge was proposed

in 2011 as an alternative to Turing test and is widely accepted. It is a co-reference

resolution task and it has been designed in such a way that it is fairly easy for any

human being whereas it can not be solved using just the statistical techniques. In

this work, a system is proposed to solve this problem for a specific set of Winograd

Schema. The mechanism used in the system follows a human like thinking and put a

stepping stone in the path to the systems which would think like humans and one day

would be available at our disposal for performing chores such as answering customer

support questions, giving verbal commands to robots to clean our home and help

catching criminals by understanding the surveillance camera feeds..

5.2 Evaluation and Error Analysis

There are 282 total sentence and question pairs in Winograd Schema Challenge

corpus. Out of those, we identified a total of 100 sentences from both the categories

Causal Attributive and Direct Causal Events combined. Among the 100 pairs, the

system is able to answer 80 and rest 20 are left unanswered. Out of the 80 answered,

70 are correctly answered and 10 are incorrectly answered.

55

Table 5.1: Evaluation Results Table

Without random selection With random selection

Precision Recall Precision Recall

87.5 80 80 100

It must be noted that there are 20 pairs which could not be answered. This is

because any type of relevant background knowledge is not found for those pairs. This

is an advantageous feature of the system which states that if there is no background

knowledge found from one source then another one can be used and this process

can be repeated many times or random selection can be done on unanswered pairs1.

Evaluation statistics are mentioned in Table 5.1.

The reason for 10 pairs being wrongly answered is that inappropriate background

knowledge is found for them. This knowledge is inappropriate because it requires a

little deeper analysis of this knowledge to filter it and consider it suitable for answering

the question. For example following are the Winograd sentence and the Background

sentence extracted for it.

Winograd Sentence: Bob paid for Charlie’s college education, he is very grateful.

Background Sentence: I paid the price for my stupidity. How grateful I am.

In the above background sentence, there is only one entity (I, me). This entity

participates as agent and as a part of recipient of the event paid. It is a condition

that violates the knowledge requirement of the given Winograd sentence and forces

the system to provide the wrong answer.

1It was observed that there are 20 unanswered questions. In another test setting, those 20

sentences are answered randomly with an accuracy of 0.5 making the number of correctly answered

as 80 out of 100.

56

5.3 Future Work

A technique was presented to parse an English sentence into a graphical semantic

representation, then automatically extract background knowledge about the given

sentence and the question and then reason on the given and background knowledge

using Answer Set Programming (ASP) to get the answer to the question pertaining

to the sentence. The technique is evaluated on a subset of the Winograd Schema

Corpus, which is specifically designed by experts to simulate human like reasoning.

The results look promising.

Currently two types of sentences in Winograd Schema are solved. Other types of

sentences, as mentioned in previous Chapters, have also been identified. Also, the

technique currently implemented represents a general case of reasoning in any Natural

Language Understanding problem such as Co-reference Resolution, Machine Reading,

Reading Comprehension and Deep Question Answering. In this work the usability of

this technique on a subset of The Winograd Schema Challenge has been demonstrated.

The problem focused in this work also represents a case of the real world reasoning.

It is mentioned that there are many categories in which the Winograd corpus can be

divided. Two of which are focused in this work, and it is believed that this technique

can be used for others with some modifications or additions. For example a category

in the Winograd Schema corpus as observed contain chains of causal events and the

solution depends on the events far from each other in the chain. This case can be

considered as an extended version of one of the subcategory that currently solved (i.e.

Direct Causal Events). The task of solving this category and applying the technique

to other problems is one of the future directions of this work.

Furthermore, a mechanism to filter the background knowledge which is responsible

for providing wrong answers (as explained in the section above) is another future work

57

of this work.

58

REFERENCES

ADASHCHIK, A., “Eugene-goostman”, URL http://www.princetonai.com/
(2014).

Alias-i.2008, “Lingpipe 4.1.0.”, URL http://alias-i.com/lingpipe (2008).

Baral, C., Knowledge representation, reasoning and declarative problem solving (Cam-
bridge university press, 2003).

Baral, C. and S. Liang, “From knowledge represented in frame-based languages to
declarative representation and reasoning via asp.”, in “KR”, (2012).

Baral, C., N. H. Vo and S. Liang, “Answering why and how questions with respect
to a frame-based knowledge base: a preliminary report.”, in “ICLP (Technical
Communications)”, pp. 26–36 (2012).

Barker, K., B. Porter and P. Clark, “A library of generic concepts for composing
knowledge bases”, in “Proceedings of the 1st international conference on Knowledge
capture”, pp. 14–21 (ACM, 2001).

Basile, P., M. Degemmis, A. L. Gentile, P. Lops and G. Semeraro, “The jigsaw
algorithm for word sense disambiguation and semantic indexing of documents”, in
“AI* IA 2007: Artificial Intelligence and Human-Oriented Computing”, pp. 314–
325 (Springer, 2007).

Bengtson, E. and D. Roth, “Understanding the value of features for coreference reso-
lution”, in “Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing”, pp. 294–303 (Association for Computational Linguistics, 2008).

Berant, J. and P. Liang, “Semantic parsing via paraphrasing”, in “Proceedings of
ACL”, (2014).

Broscheit, S., M. Poesio, S. P. Ponzetto, K. J. Rodriguez, L. Romano, O. Uryupina,
Y. Versley and R. Zanoli, “Bart: A multilingual anaphora resolution system”, in
“Proceedings of the 5th International Workshop on Semantic Evaluation”, pp. 104–
107 (Association for Computational Linguistics, 2010).

Chambers, N. and D. Jurafsky, “Unsupervised learning of narrative event chains.”,
in “ACL”, pp. 789–797 (Citeseer, 2008).

Chaudhri, V. K., P. E. Clark, S. Mishra, J. Pacheco and A. Spaulding, “Aura: Cap-
turing knowledge and answering questions on science textbooks”, (2009).

Chaudhri, V. K. and T. C. Son, “Specifying and reasoning with underspecified knowl-
edge bases using answer set programming.”, in “KR”, (2012).

Clark, P., B. Porter and B. P. Works, “Kmthe knowledge machine 2.0: Users manual”,
Department of Computer Science, University of Texas at Austin (2004).

59

http://www.princetonai.com/
http://alias-i.com/lingpipe

computer therapist, E., “computer therapist”, URL http://www.manifestation.
com/neurotoys/eliza.php3 (1966).

Das, D., N. Schneider, D. Chen and N. A. Smith, “Semafor 1.0: A probabilistic frame-
semantic parser”, Language Technologies Institute, School of Computer Science,
Carnegie Mellon University (2010).

Davis, E., “The singularity and the state of the art in artificial intelligence”, (2013).

De Marneffe, M.-C., B. MacCartney, C. D. Manning et al., “Generating typed depen-
dency parses from phrase structure parses”, in “Proceedings of LREC”, vol. 6, pp.
449–454 (2006).

De Marneffe, M.-C. and C. D. Manning, “Stanford typed dependencies manual”, URL
http://nlp. stanford. edu/software/dependencies manual. pdf (2008).

Diakidoy, I.-A., A. Kakas, L. Michael and R. Miller, “Narrative text comprehension:
From psychology to ai”, in “Proc. of 11th International Symposium on Logical
Formalizations of Commonsense Reasoning (Commonsense?13)”, (2013).

Finkel, J. R., T. Grenager and C. Manning, “Incorporating non-local information
into information extraction systems by gibbs sampling”, in “Proceedings of the
43rd Annual Meeting on Association for Computational Linguistics”, pp. 363–370
(Association for Computational Linguistics, 2005).

Ge, N., J. Hale and E. Charniak, “A statistical approach to anaphora resolution”, in
“Proceedings of the sixth workshop on very large corpora”, vol. 71 (1998).

Gelfond, M. and V. Lifschitz, “The stable model semantics for logic programming.”,
in “ICLP/SLP”, vol. 88, pp. 1070–1080 (1988).

Gilbert, N. and E. Riloff, “Domain-specific coreference resolution with lexicalized
features.”, in “ACL (2)”, pp. 81–86 (Citeseer, 2013).

Gunning, D., V. K. Chaudhri, P. E. Clark, K. Barker, S.-Y. Chaw, M. Greaves,
B. Grosof, A. Leung, D. D. McDonald, S. Mishra et al., “Project halo up-
dateprogress toward digital aristotle”, AI Magazine 31, 3, 33–58 (2010).

Hermann, K. M., D. Das, J. Weston and K. Ganchev, “Semantic frame identification
with distributed word representations”, in “Proceedings of ACL”, (2014).

Hobbs, J. R., “Pronoun resolution. technical report 76-1”, (1976).

Lee, H., Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu and D. Jurafsky, “Stan-
ford’s multi-pass sieve coreference resolution system at the conll-2011 shared task”,
in “Proceedings of the Fifteenth Conference on Computational Natural Language
Learning: Shared Task”, pp. 28–34 (Association for Computational Linguistics,
2011).

Levesque, H. J., “On our best behaviour”, Artificial Intelligence 212, 27–35 (2014).

60

http://www.manifestation.com/neurotoys/eliza.php3
http://www.manifestation.com/neurotoys/eliza.php3

Levesque, H. J., E. Davis and L. Morgenstern, “The winograd schema challenge.”, in
“AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning”,
(2011).

Mauldin, M. L., “Chatterbots, tinymuds, and the turing test: Entering the loebner
prize competition”, in “AAAI”, vol. 94, pp. 16–21 (1994).

Miller, G. A., “Wordnet: a lexical database for english”, Communications of the ACM
38, 11, 39–41 (1995).

Mitkov, R., “Factors in anaphora resolution: they are not the only things that matter:
a case study based on two different approaches”, in “Proceedings of a Workshop
on Operational Factors in Practical, Robust Anaphora Resolution for Unrestricted
Texts”, pp. 14–21 (Association for Computational Linguistics, 1997).

Ng, V. and C. Cardie, “Improving machine learning approaches to coreference res-
olution”, in “Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics”, pp. 104–111 (Association for Computational Linguistics,
2002).

Raghunathan, K., H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu, D. Jurafsky
and C. Manning, “A multi-pass sieve for coreference resolution”, in “Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing”,
pp. 492–501 (Association for Computational Linguistics, 2010).

Rahman, A. and V. Ng, “Coreference resolution with world knowledge”, in “Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1”, pp. 814–824 (Association for Compu-
tational Linguistics, 2011).

Rahman, A. and V. Ng, “Resolving complex cases of definite pronouns: the winograd
schema challenge”, in “Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning”, pp. 777–789 (Association for Computational Linguistics, 2012).

Schuller, P., “Tackling winograd schemas by formalizing relevance theory in knowledge
graphs”, (2014).

Yao, X. and B. Van Durme, “Information extraction over structured data: Question
answering with freebase”, in “Proceedings of ACL”, (2014).

61

	LIST OF TABLES
	LIST OF FIGURES
	Introduction and Motivation
	The Winograd Schema Challenge
	Related Works
	An Overview of the Approach

	Semantic Parsing and Pronoun Extraction
	Defining Formal Representation
	Syntactic Dependency Parsing
	Class Population
	Other Features

	Translating Winograd Sentence and Question into Formal Representation
	Answer Set Programming Rules to Extract Pronoun To Be Resolved

	Automatic Background Knowledge Extraction
	Introduction and Motivation
	An Overview of the Approach
	Creating String Queries
	Using Queries to Extract Background Knowledge
	Post-processing the Background Knowledge

	Translating Background Knowledge Sentences Into Formal Representation

	Logical Reasoning
	Introduction
	Answer Set Programming
	Reasoning Process
	Representing Winograd and Background Sentences
	General Properties for Winograd and Background Graphs
	Type Specific ASP Rules

	Conclusion and Future Works
	Summary
	Evaluation and Error Analysis
	Future Work

	REFERENCES

