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ABSTRACT  

   

Hydraulic fracturing is an effective technique used in well stimulation to increase 

petroleum well production. A combination of multi-stage hydraulic fracturing and 

horizontal drilling has led to the recent boom in shale gas production which has changed 

the energy landscape of North America. 

During the fracking process, highly pressurized mixture of water and proppants 

(sand and chemicals) is injected into to a crack, which fractures the surrounding rock 

structure and proppants help in keeping the fracture open. Over a longer period, however, 

these fractures tend to close due to the difference between the compressive stress exerted 

by the reservoir on the fracture and the fluid pressure inside the fracture. During 

production, fluid pressure inside the fracture is reduced further which can accelerate the 

closure of a fracture. 

In this thesis, we study the stress distribution around a hydraulic fracture caused by 

fluid production. It is shown that fluid flow can induce a very high hoop stress near the 

fracture tip. As the pressure gradient increases stress concentration increases. If a fracture 

is very thin, the flow induced stress along the fracture decreases, but the stress 

concentration at the fracture tip increases and become unbounded for an infinitely thin 

fracture. 
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The result from the present study can be used for studying the fracture closure 

problem, and ultimately this in turn can lead to the development of better proppants so 

that prolific well production can be sustained for a long period of time. 
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CHAPTER 1 

INTRODUCTION 

Hydraulic fracturing has been widely used as a well stimulation method in 

petroleum engineering since 1940’s. Hydraulically fractured wells have higher rate of well 

production. Hydraulic fracturing is one of the most important technologies behind the 

recent boom in shale gas production in North America. Because of the low emission rate 

of natural gas and the vast shale gas reserves in the US, advancement in hydraulic fracturing 

techniques is expected to continue to play a very important role in petroleum production 

for years to come. 

There has been increased interest in studying fluid production mechanism from 

unconventional reservoirs such as shale where permeability is very low, often in the 

nano-darcy, and sometimes even in the sub-nano-darcy range. A related but less 

frequently studied issue is the closure of the hydraulic fractures over long times. 

Hydraulic fracturing in a shale involves horizontal wells and multiple fracturing. 

However, fluid production mechanisms and fracture closing mechanisms remain 

unchanged from those for a vertical fracture, which is much easier to analyze.  Thus, the 

focus of the present work is on a single vertical fracture. 
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1.1 HYDRAULIC FRACTURING 

Hydraulic fracturing also sometimes called as hydro-fracturing, hydro-fracking, 

fracking. It is a well-stimulation technique in which rock is fractured by a hydraulically 

pressurized liquid Fjaer et al (1992). Some hydraulic fractures form naturally. In this 

process highly pressurized mixture of water, proppants 1, chemicals are injected inside 

the well. As the resistance to flow in the formation increases, the pressure in the wellbore 

increases to a value that exceeds the breakdown pressure of the formation that is open to 

the wellbore. Once the formation ‘breaks-down’, a crack or fracture is formed, and the 

injected fluid begins moving down the fracture. The purpose of the propping agent is to 

prop open the fracture and keep the fracture open as shown in Figure 1.1. 

 

Figure 1.1 Fracking Proppants Holding the Fissure Open 

(Source: http://www.forbes.com/sites/greatspeculations/2014/09/26/fracking-

sand-among-the-best-pure-shale-plays/) 
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1.2 STRESSES IN A HYDRAULIC FRACTURING 

Rocks at depth are subjected to stresses resulting from the weight of the overlying 

layers of rocks and from the stresses of geophysical origin. When a fracture is initiated in 

the rock, the stress field is locally disturbed and a new set of stresses are induced in the 

rock surrounding the fracture. Knowledge of the magnitudes and directions of these in 

situ and induced stresses is an essential component of underground fracturing process. 

These in situ stresses are normally compressive, anisotropic, and 

nonhomogeneous as explained by Gidley et al (1989a) which means that the compressive 

stresses on the rock are not equal and vary in magnitude on the basis of direction. The 

magnitude and direction of the principal stresses are important because they control the 

pressure required to create and propagate a fracture, the shape of the fracture, the 

direction of the fracture, and the stresses trying to close the fracture. 

Figure (1.2) shows the different pressures which needs to be considered during 

the fracking process. 

 

Figure 1.2 Different Types of Pressure in Fracking Process 

(Source: http://petrowiki.org/Fracture_mechanics#cite_note-r2-1) 
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To initiate the Fracturing process, different fracture pressures needs to be 

considered. Breakdown pressure is the pressure needed to initiate a fracture in a rock. 

Closure pressure is the pressure at which the fracture closes after the fracturing pressure 

is relaxed. Both are determined by the overburden pressure, pore pressure, Poisson's 

Ratio, porosity and geophysical stresses.  

Various studies have been done to study this closure stresses. The 2D circular arc 

crack solution was derived by Muskhelishvili (1953). It has been used widely to study 

curved crack behavior in an infinite, homogeneous and isotropic elastic material. Using 

this theory various numerical methods have been used to further analyze this solution. In 

the recent work by Elizabeth Ritz et al [2011] they have disproved the previous theory by 

Muskhelishvili. Many other studies have been done using different Numerical schemes 

Maiti S. K. et al (1997), Chow et al (1995) and different geometries of the fracture Sung 

Pil Heo et al (2002). All these studies on the closure stresses have been done keeping 

only in situ stresses and geophysical stresses into consideration Gidley et al (1989b), 

Sookprasong (1986), Sookprasong (2010), Montgomery et al (1984). 

 

1.3 THESIS OVERVIEW 

Stress induced by the fluid production process has never been considered for 

evaluating the closure stresses. This thesis proposes that the closure stress for a fracture 

can be significantly different from conventional estimate due to the addition of the flow 

induced stress. In light of the pressure gradient singularity present at the fracture tip 
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during fluid production Chen et al (2013), stress induced by fluid production can be 

important, particularly near the fracture tip. In Chapter 2, different factors affecting the 

fluid production is discussed. In Chapter 3, components of the flow induced stresses are 

being evaluated. The results are discussed in Chapter 4. Conclusions are made in Chapter 

5. 
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CHAPTER 2 

RESEARCH PROBLEM 

Since the main focus of this thesis is to study the distribution of the flow-induced 

stress around a fracture, we will first discuss the pertinent parameters affecting the flow 

into a hydraulic fracture. To this end, we review the work of Prats (1961a) and Chen et al 

(2014) on the fluid production by a single elliptic fracture. 

 

2.1 PRATS WORK 

Past studies have shown that two flow regions are involved in fluid production 

from a hydraulically fractured wells (i) flow from the reservoir to the fracture, (ii) and 

flow along the length of the fracture from the tip to the well. 

Prats (1961a) attributed the enhancement in the production of a fractured well to 

two main factors: large contact area between the fracture and the reservoir and the high 

conductivity pathway along the fracture, both of which are created during the fracturing 

process. Further analysis of these factors have been studied by Prats et al (1962), 

Gringarten et al (1975). 

 

2.2 CHEN’S WORK 

Recent study by Chen et al (2013) indicates that along with large contact area and 

high conductivity paths, there is one more significant factor enhancing the production rate 
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of a hydraulically fractured well. Chen has shown that the pressure gradient around the tip 

of the fracture is nearly singular, and it plays a major role in creating a large suction at the 

fracture tip, thus increasing the production rate of the fracture.  

This near-singular suction force at the fracture tips makes production from 

unconventional reservoirs possible: with permeability down to nano-darcy, only a nearly-

infinite suction force can move these fluids. He has also been able to show that the 

physical mechanism is broad and general and pressure gradient singularity exists 

regardless of the fracture conductivity. 

 

2.3 PROBLEM SETUP 

Studies on production from a fracture have considered different geometrical shapes 

for the fracture. Rounding off the sharp geometric ends of the fracture eliminates the 

singularity phenomenon mathematically. However, the reservoir pressure gradient still 

remains very large and near singular near the fracture ends, so long as the fracture is thin 

and long. 

Prats has modelled the fracture as a degenerated ellipse in his work (1961b); and 

he has shown that elliptical geometry is more suitable for fracture related problems. For 

the same fracture area, a stronger but integrable singularity is always more beneficial to 

productivity. Modelling the fracture geometry by a nearly degenerate ellipse regularizes 

the pressure-gradient tip singularity. However, the pressure-gradient at the fracture tips 
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nevertheless remains very large and nearly singular. Hence we use degenerated ellipse for 

fracture in defining our problem. 

In accordance with the previous work done by Chen et al (2014), Single fully-

penetrated vertically-fractured well is considered with steady-state production. The 

fracture is modeled as a thin ellipse, which intersects the wellbore with a fracture width 

smaller than the wellbore diameter as shown in Figure 2.1. Assumption is made that the 

fracture conductivity is much higher than the reservoir conductivity so that the well 

production comes entirely from the fracture. The fracture length is considered much 

larger than the well radius so that the exit from the fracture to the well can be regarded as 

located at the y-axis. 

 

Where,𝑎 = 𝐿 cosh 𝜉1, 𝑏 = 𝐿 sinh 𝜉1, L being the half crack length. 

Figure 2.1 Top View of the Vertical Fracture 
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Y 
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2.3.1 COORDINATE SYSTEM 

Elliptical coordinate system is thus selected to study the problem at hand. To use 

elliptic system effectively, all the relevant mathematical operators are first expressed in 

this coordinate system. 

Transformation equations from Cartesian coordinate to Elliptic coordinate are 

given by equation (2.1) and (2.2), and a graphical representation of the elliptic coordinate 

is shown in Figure 2.2: 

 

𝑋 = 𝐿 cosh 𝜉 . cos 𝜂 

𝑌 = 𝐿 sinh 𝜉 . sin 𝜂 

(2.1) 

(2.2) 

Where, 

ξ is a non-negative real number 

η ranges from 0 to 2π 

L is half crack length 
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Constant ξ represents family of confocal ellipse, whereas constant η represents 

family of hyperbole as shown in Figure 2.3. 

 

Figure 2.3. Family of Confocal Ellipse and Family of Hyperbole 

(Source: "Elliptical coordinates grid" by SharkD - Own work. Licensed under 

Creative Commons Attribution-Share Alike 3.0-2.5-2.0-1.0 via Wikimedia Commons - 

http://commons.wikimedia.org/wiki/File:Elliptical_coordinates_grid.svg#mediaviewer/Fi

le:Elliptical_coordinates_grid.svg) 

Fig 2.2 Elliptical Coordinate System 
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Position vector in elliptic coordinate system is represented as shown in Huston et 

al (2009) 

 

𝑷 = 𝐿 cosh 𝜉 . cos 𝜂 𝒏𝑥 + 𝐿 sinh 𝜉 . sin 𝜂 𝒏𝑦 (2.3) 

Where, 𝒏𝑥 and 𝒏𝑦 are unit vectors in X-direction and Y-direction respectively. 

 

 

Base vectors are given by partially differentiating position vector with new 

coordinates at a time. 

 

𝜕𝐏

𝜕𝜉
= 𝒈𝛏 = 𝐿 sinh 𝜉 . cos 𝜂 𝒏𝑥 + 𝐿 cosh 𝜉 . sin 𝜂 𝒏𝑦 

𝜕𝑷

𝜕𝜂
= 𝒈𝛈 =  −𝐿 cosh 𝜉 . sin 𝜂 𝒏𝑥 + 𝐿 sinh 𝜉 . cos 𝜂 𝒏𝑦 

(2.4) 

 

(2.5) 

 

Metric coefficients are then derived as the scalar dot product of base vectors as 

                           𝑔ξξ = L2 [cosh2 ξ – cos2 η] 

                          𝑔ηη = L2 [cosh2 ξ – cos2 η] 

(2.6) 

(2.7) 
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Scale factors for any coordinate system are the most important property, as every 

other mathematical operators are primarily based on scale factors. Scale factors are 

square root of Matric coefficients. Hence scale factors for elliptic coordinate systems are 

defined as 

ℎ1 = 𝐿 √[𝑐𝑜𝑠ℎ2𝜉 −  𝑐𝑜𝑠2𝜂] 

ℎ2 = 𝐿 √[𝑐𝑜𝑠ℎ2𝜉 − 𝑐𝑜𝑠2𝜂] 

(2.8) 

(2.9) 

 

Using these scale factors we can now easily define various differential operators 

in elliptic system. 

Divergence of any vector in elliptic coordinate is given as 

𝛻 . 𝑭 =
1

ℎ1. ℎ2
[
𝜕[ℎ2. 𝐹1]

𝜕𝜉
+  

𝜕[ℎ1. 𝐹2]

𝜕𝜂
] 

(2.10) 

 

Where, F is any given vector with F1 and F2 being its components 

 

Gradient of a Scalar in elliptic coordinate is given as 

𝛻µ =  
ê𝟏

ℎ1
.
𝜕µ

𝜕𝜉
+  

ê𝟐

ℎ2
.
𝜕µ

𝜕𝜂
 

(2.11) 
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Where, µ is any given scalar and ê𝟏 and ê𝟐 being the unit vectors 

 

Laplacian operator in elliptic coordinate is given as 

𝛻2µ =  
1

ℎ1. ℎ2
[

𝜕

𝜕𝜉

ℎ2

ℎ1

𝜕

𝜕𝜉
+  

𝜕

𝜕𝜂

ℎ1

ℎ2

𝜕

𝜕𝜂
] 

(2.12) 
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CHAPTER 3 

STRESS ANALYSIS 

To analyze the stress distribution in low permeable rocks, theory of poroelasticity 

needs to be considered. The general development of the linear poroelasticity was first given 

by Biot (1941). Biot’s theory states that the isotropic, permeable porous rock, and the pore-

filling fluid are in mechanical equilibrium. This theory gives a complete and general 

description of the mechanical behavior of a poroelastic medium. The evaluated stress in 

poroelastic media is always the effective stress. 

If the pores of a poroelastic mass are filled with a fluid, and if a pressure is 

introduced into the pore fluid, it will try to separate the grains. This pressure is termed as 

pore pressure (p). The total compressive pressure caused by the surrounding is termed as 

the total stress. It is the combined effect of total stress and pore pressure that controls 

rock behavior such as shear strength, compression and distortion. The difference between 

the total stress and the pore pressure is called the effective stress as shown in Figure 3.1 

 

Figure 3.1 Effective Stress 

(Source: http://environment.uwe.ac.uk/geocal/SoilMech/stresses/stresses.htm) 
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3.1 EQUILIBRIUM EQUATION 

Now to study the effect of fluid production on the closure stresses, we will evaluate 

the stresses acting on and near the fracture due to this fluid production phenomenon. 

Stress field are distributed continuously within a body due to distinctive body 

forces such as pressure gradient, gravitational forces due to weight, etc. For this problem 

related to crack in the rock, we will consider only the fluid pressure gradient, which in an 

elliptic coordinates is a body force 𝛻𝑃(𝜉, 𝜂) given by Chen et al (2014). For the porous 

rock under an equilibrium condition, all the forces are summed to zero: 

𝛻. 𝜎 +  𝛻𝑃(𝜉, 𝜂) = 0 (3.1) 

 

where, 𝜎𝑖𝑗 is the stress tensor on the rock and the body force potential is the 

reservoir fluid pressure 𝑃(𝜉, 𝜂) given by Chen et. al. (2014): 

𝑃(𝜉, 𝜂) = 𝑃𝑒 +  ∆𝑃. 𝑓 {𝜉 − 𝜉𝑒

− ∑
(−1)𝑛. cos 2𝑛𝜂. sinh 2𝑛(𝜉𝑒 − 𝜉)

𝑛 cosh 2𝑛(𝜉𝑒 − 𝜉1) + 𝑛2𝐶𝑓𝑑 sinh 2𝑛(𝜉𝑒 − 𝜉1)

∞

𝑛=1

} 

(3.2.1) 

 

The components of the pressure gradient in the elliptic coordinate system are 

given by equations (3.2.2), (3.2.3): 
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𝜕𝑃(𝜉, 𝜂)

𝜕𝜉
=

∆𝑃. 𝑓

ℎ1

+ ∑
∆𝑃. 𝑓. 2. (−1)𝑛. cos 2𝑛𝜂. cosh 2𝑛(𝜉𝑒 − 𝜉)

ℎ1(cosh 2𝑛(𝜉𝑒 − 𝜉1) + 𝑛𝐶𝑓𝑑 sinh 2𝑛(𝜉𝑒 − 𝜉1))

∞

𝑛=1

 

(3.2.2) 

 

𝜕𝑃(𝜉, 𝜂)

𝜕𝜂
= ∑

∆𝑃. 𝑓. 2 (−1)𝑛. sin 2𝑛𝜂. sinh 2𝑛(𝜉𝑒 − 𝜉)

ℎ2(cosh 2𝑛(𝜉𝑒 − 𝜉1) + 𝑛𝐶𝑓𝑑 sinh 2𝑛(𝜉𝑒 − 𝜉1))

∞

𝑛=1

 
(3.2.3) 

 

For further evaluations of the required terms, it is essential to find the second 

derivative of this pressure term with respect to ξ. This is shown in equation (3.2.4) 

𝜕2𝑃(𝜉, 𝜂)

𝜕𝜉2

=
2. ∆𝑃. 𝑓. sinh 2𝜉

𝐿. [𝑐𝑜𝑠ℎ2𝜉 − 𝑐𝑜𝑠2𝜂]
3

2

− ∑
∆𝑃. 𝑓. 2. (−1)𝑛. cos 2𝑛𝜂. (cosh 2𝑛(𝜉

𝑒
− 𝜉).

𝜕ℎ1

𝜕𝜉
+ 2𝑛. ℎ1. sinh 2𝑛(𝜉

𝑒
− 𝜉)) 

ℎ1
2(cosh 2𝑛(𝜉

𝑒
− 𝜉

1
) + 𝑛𝐶𝑓𝑑 sinh 2𝑛(𝜉

𝑒
− 𝜉

1
))

∞

𝑛=1

 

(3.2.4) 

 

Where, 

𝜉1 = Fracture Surface 

𝜉𝑒 = Outer Boundary of Reservoir 

𝑃𝑒 = Far Field Pressure 
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𝑃𝑤 = Pressure at the fracture exit to the well 

∆P = 𝑃𝑒 – 𝑃𝑤 (Pressure drawdown) 

𝐶𝑓𝑑 = Dimensionless Fracture Conductivity 

𝐶𝑓𝑑 =
𝐾𝑓𝑤𝑓

𝐾𝑚𝐿
 

Kf = Permeability of Fracture 

Km = Permeability of Reservoir 

wf = the aperture of the fracture at the well 

The term ‘𝑓’ has been defined as a function of 𝐶𝑓𝑑, 𝜉1, 𝜉𝑒 by Chen as follows 

𝑓 =  
1

𝜉𝑒 − 𝜉1 +
1

𝐶𝑓𝑑
[
𝜋2

6 − ∑
1

𝑛2 + 𝑛3𝐶𝑓𝑑 tanh 2𝑛(𝜉𝑒 − 𝜉1)
∞
𝑛=1 ]

 
(3.3.1) 

 

For the case where the fracture conductivity is large, which corresponds to the 

situation where the pressure loss along the fracture is small,  𝑓 can be further simplified. 

For the limit of large 𝜉𝑒, small 𝜉1 and large values of 𝐶𝑓𝑑, we can approximate the 

function 𝑓 as 

𝑓 =  
1

𝜉𝑒 −
𝜋2

6𝐶𝑓𝑑

 
(3.3.2) 
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The two terms in the bracket of (3.2.1) shows that the flow in the reservoir is due 

to the superposition of two basic flows: 

 Confocal elliptical flow 

 Redistributive non-producing flow 

Using (2.10) and (2.11), the equilibrium equation (3.1) in elliptic coordinate can 

be written as 

𝜕[ℎ2. 𝜎𝜉𝜉]

𝜕𝜉
+  

𝜕[ℎ1. 𝜎𝜉𝜂]

𝜕𝜂
+ 𝜎𝜉𝜂

𝜕ℎ1

𝜕𝜂
− 𝜎𝜂𝜂

𝜕ℎ2

𝜕𝜂
+

ê1

ℎ1
.
𝜕𝑃

𝜕𝜉
= 0 

(3.4.1) 

𝜕[ℎ2. 𝜎𝜉𝜂]

𝜕𝜉
+  

𝜕[ℎ1. 𝜎𝜂𝜂]

𝜕𝜂
+ 𝜎𝜉𝜂

𝜕ℎ2

𝜕𝜂
− 𝜎𝜉𝜉

𝜕ℎ2

𝜕𝜂
+

ê2

ℎ2
.
𝜕𝑃

𝜕𝜂
= 0 

(3.4.2) 

 

 

3.2 STRESS FUNCTION 

The equilibrium equations (3.4.1), (3.4.2) are very difficult to solve direct using 

analytical method. However, a scalar potential function Φ called Airy stress function can 

be used to the solution. The Airy stress function is a special form of the Beltrami stress 

function. This special type of stress function is specifically used in two-dimensional 

space. In general, when a stress function is used to solve the static governing equation, 

the stress function satisfies the governing equation only if the body force is conservative, 

possessing a body force potential. In our problem, the body force potential is clearly the 

reservoir fluid pressure. 
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Stress functions are in general defined by the relations as shown in Coker et al (1957), 

𝜎𝑥 =
𝜕2𝛷

𝜕𝑦2
, 𝜎𝑦 =

𝜕2𝛷

𝜕𝑥2
, 𝜎𝑥𝑦 = −

𝜕2𝛷

𝜕𝑥𝜕𝑦
 

(3.5.1) 

 

In order to determine the constraints placed on the stress function, the 

compatibility equation needs to be considered. Using the definition of the stress function, 

we can show that the compatibility equation is automatically satisfied. The equilibrium 

equation gives 

  

𝜕4𝛷

𝜕𝑥4
+ 2

𝜕4𝛷

𝜕𝑥2𝜕𝑦2
+

𝜕4𝛷

𝜕𝑦4
= (

𝜕2

𝜕𝑥4
+

𝜕2

𝜕𝑦2
)

2

𝛷 = 0 
(3.5.2) 

∇4𝛷 = 0 

 

This shows that the stress function must be biharmonic in nature. This system of 

stress function can also be extended to the cases where body force is non-zero, provided 

that the body force is expressed in terms of gradient of scalar potential which is the 

reservoir pressure for our case. Thus applying operators in elliptical coordinates to 

equilibrium equations, we get stress equilibrium equation in elliptic coordinate system. 

After expressing this stress equilibrium equation in terms of stress function and 

simplifying as per Coker et al (1957) we then obtain the stress components as 
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𝜎𝜉𝜉 =
1

2𝐽2

𝜕2𝛷

𝜕𝜂2
+

1

(2𝐽2)2

𝜕𝛷

𝜕𝜉

𝜕(2𝐽2)

𝜕𝜉
−

1

(2𝐽2)2

𝜕𝛷

𝜕𝜂

𝜕(2𝐽2)

𝜕𝜂
+ 𝑃(𝜉, 𝜂) 

(3.6.1) 

𝜎𝜂𝜂 =
1

2𝐽2

𝜕2𝛷

𝜕𝜉2
+

1

(2𝐽2)2

𝜕𝛷

𝜕𝜂

𝜕(2𝐽2)

𝜕𝜂
−

1

(2𝐽2)2

𝜕𝛷

𝜕𝜉

𝜕(2𝐽2)

𝜕𝜉
+ 𝑃(𝜉, 𝜂) 

(3.6.2) 

 

𝜎𝜉𝜂 = −
1

2𝐽2

𝜕2𝛷

𝜕𝜉𝜕𝜂
+

1

(2𝐽2)2

𝜕𝛷

𝜕𝜉

𝜕(2𝐽2)

𝜕𝜂
+

1

(2𝐽2)2

𝜕𝛷

𝜕𝜂

𝜕(2𝐽2)

𝜕𝜉
 

(3.6.3) 

 

 

Where, 

(2𝐽2) = 𝐿2(cosh 2𝜉 − cos 2𝜂)        (3.7) 

 

Equation (3.6.1), (3.6.2), (3.6.3) simplifies to 

𝜎𝜉𝜉 =
1

2𝐽2

𝜕2𝛷

𝜕𝜂2
+

𝐿2 sinh 2𝜉

(2𝐽2)2

𝜕𝛷

𝜕𝜉
−

𝐿2 sin 2𝜂

(2𝐽2)2

𝜕𝛷

𝜕𝜂
+ 𝑃(𝜉, 𝜂) 

(3.8.1) 

 

𝜎𝜂𝜂 =
1

2𝐽2

𝜕2𝛷

𝜕𝜉2
+

𝐿2 sin 2𝜂

(2𝐽2)2

𝜕𝛷

𝜕𝜂
−

𝐿2 sinh 2𝜉

(2𝐽2)2

𝜕𝛷

𝜕𝜉
+ 𝑃(𝜉, 𝜂) 

(3.8.2) 
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𝜎𝜉𝜂 = −
1

2𝐽2

𝜕2𝛷

𝜕𝜉𝜕𝜂
+

𝐿2 sin 2𝜂

(2𝐽2)2

𝜕𝛷

𝜕𝜉
+

𝐿2 sinh 2𝜉

(2𝐽2)2

𝜕𝛷

𝜕𝜂
 

(3.8.3) 

 

To find the final expressions for the stress components, we must find the stress 

function Φ. Solution for Φ is assumed to be a linear combination of the 10 solutions listed 

below, which are fundamental solutions of the biharmonic equation, as per Coker et al 

(1957). 

The biharmonic equation solution ∇4𝛷 = 0 gives four independent solutions, 

 

𝛷1 = 𝑒(𝑛+1)𝜉 cos(𝑛 − 1)𝜂 + 𝑒(𝑛−1)𝜉 cos(𝑛 + 1)𝜂 (3.9.1) 

 

𝛷2 = 𝑒−(𝑛+1)𝜉 cos(𝑛 − 1)𝜂 + 𝑒−(𝑛−1)𝜉 cos(𝑛 + 1)𝜂 (3.9.2) 

 

𝛷3 = 𝑒(𝑛+1)𝜉 sin(𝑛 − 1)𝜂 + 𝑒(𝑛−1)𝜉 sin(𝑛 + 1)𝜂 (3.9.3) 

 

𝛷4 = 𝑒−(𝑛+1)𝜉 sin(𝑛 − 1)𝜂 + 𝑒−(𝑛−1)𝜉 sin(𝑛 + 1)𝜂 (3.9.4) 

 

We also have four different harmonic functions in the form of 
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𝛷5 = 𝑒𝑛𝜉 cos 𝑛𝜂 (3.9.5) 

 

𝛷6 = 𝑒−𝑛𝜉 cos 𝑛𝜂 (3.9.6) 

 

𝛷7 = 𝑒𝑛𝜉 sin 𝑛𝜂 (3.9.7) 

 

𝛷8 = 𝑒−𝑛𝜉 cos 𝑛𝜂 (3.9.8) 

 

In addition, there are two special harmonic solutions, 

𝛷9 = 𝜉 (3.9.9) 

 

𝛷10 = 𝜂            (3.9.10) 

 

In the above, ‘n’ is any non-zero real number. All of these10 functions can 

combined to provide us a general solution for the stress function. 
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𝛷 = 𝐴0𝜉 + 𝐵0𝜂 + 𝐶𝑛[𝑒(𝑛+1)𝜉 cos(𝑛 − 1)𝜂 + 𝑒(𝑛−1)𝜉 cos(𝑛 + 1)𝜂]

+ 𝐷𝑛[𝑒−(𝑛+1)𝜉 cos(𝑛 − 1)𝜂 + 𝑒−(𝑛−1)𝜉 cos(𝑛 + 1)𝜂]

+ 𝐸𝑛[𝑒(𝑛+1)𝜉 sin(𝑛 − 1)𝜂 + 𝑒(𝑛−1)𝜉 sin(𝑛 + 1)𝜂]

+ 𝐹𝑛[𝑒−(𝑛+1)𝜉 sin(𝑛 − 1)𝜂 + 𝑒−(𝑛−1)𝜉 sin(𝑛 + 1)𝜂]

+ 𝐺𝑛[𝑒𝑛𝜉 cos 𝑛𝜂] + 𝐻𝑛[𝑒−𝑛𝜉 cos 𝑛𝜂] + 𝐼𝑛[𝑒𝑛𝜉 sin 𝑛𝜂]

+ 𝐽𝑛[𝑒−𝑛𝜉 sin 𝑛𝜂] 

(3.10) 

 

 

Using these function, different stress component values were evaluated. For 

example, assuming n=1 for 𝛷1, 𝛷2, 𝛷3, 𝛷4, 𝛷7, 𝛷8, 𝛷9, 𝛷10, and n=2 for 𝛷5, 𝛷6, we 

have: 

 

Values of 𝜎𝜉𝜉are as follows 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉1

= 2 cos 4𝜂 − 8 cos 2𝜂 cosh 2𝜉 + 4 + 2𝑒4𝜉  

 

(3.11.1) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉2

= 2 cos 4𝜂 − 8 cos 2𝜂 cosh 2𝜉 + 4 + 2𝑒−4𝜉 

(3.11.2) 
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 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉3 = 2 sin 4𝜂 − 8 sin 2𝜂 cosh 2𝜉 

 

(3.11.3) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉4 = 2 sin 4𝜂 − 8 sin 2𝜂 cosh 2𝜉 

 

(3.11.4) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉5

= cos 4𝜂𝑒2𝜉 − cos 2𝜂𝑒4𝜉 + 3 cos 2𝜂 + 3𝑒2𝜉  

 

(3.11.5) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉6

= cos 4𝜂𝑒−2𝜉 − cos 2𝜂𝑒−4𝜉 + 3 cos 2𝜂 + 3𝑒−2𝜉 

 

(3.11.6) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉7

= sin 4𝜂 𝑒2𝜉 − sin 2𝜂𝑒4𝜉 − 3 sin 2𝜂 

 

(3.11.7) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉8

= sin 4𝜂 𝑒−2𝜉 − sin 2𝜂𝑒−4𝜉 − 3 sin 2𝜂 

 

(3.11.8) 
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 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉9 = 2 sinh 2𝜉 

 

(3.11.9) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜉10 = −2 sin 2𝜂 (3.11.10) 

 

 

Values of 𝜎𝜂𝜂 are as follows 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂1

= 2 cos 4𝜂 − 8 cos 2𝜂 𝑒2𝜉 + 4 + 2𝑒4𝜉  

 

(3.12.1) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂2

= 2 cos 4𝜂 − 8 cos 2𝜂 𝑒−2𝜉 + 4 + 2𝑒−4𝜉 

 

(3.12.2) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂3 = 2 sin 4𝜂 

 

(3.12.3) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂4 = 2 sin 4𝜂 

 

(3.12.4) 
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 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂5

= − cos 4𝜂𝑒2𝜉 + cos 2𝜂𝑒4𝜉 − 3 cos 2𝜂 − 3𝑒2𝜉 

 

(3.12.5) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂6

= − cos 4𝜂𝑒−2𝜉

+ cos 2𝜂𝑒−4𝜉 − 3 cos 2𝜂 − 3𝑒−2𝜉 

 

(3.12.6) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂7

= −sin 4𝜂 𝑒2𝜉 + sin 2𝜂𝑒4𝜉 + 3 sin 2𝜂 

 

(3.12.7) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂8

= −sin 4𝜂 𝑒−2𝜉 + sin 2𝜂𝑒−4𝜉 + 3 sin 2𝜂 

 

(3.12.8) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂9 = −2 sinh 2𝜉 

 

(3.12.9) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜂𝜂10 = 2 sin 2𝜂 (3.12.10) 

 

 



  27 

Values of 𝜎𝜉𝜂are as follows 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂1 = 4 sin 2𝜂 cosh 2𝜉 

 

(3.13.1) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂2 = −4 sin 2𝜂 cosh 2𝜉 

 

(3.13.2) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂3 = 4 cos 2𝜂 sinh 2𝜉 

 

(3.13.3) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂4 = −4 cos 2𝜂 sinh 2𝜉 

 

(3.13.4) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂5

= − sin 4𝜂𝑒2𝜉 + sin 2𝜂𝑒4𝜉 + 3 sin 2𝜂 

 

(3.13.5) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂6

= sin 4𝜂𝑒−2𝜉 − sin 2𝜂𝑒−4𝜉 − 3 sin 2𝜂 

 

(3.13.6) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂7

= cos 4𝜂𝑒2𝜉 − cos 2𝜂𝑒4𝜉 − 3 cos 2𝜂 

(3.13.7) 
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 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂8

= cos 4𝜂𝑒−2𝜉 + cos 2𝜂𝑒−4𝜉 + 3 cos 2𝜂 

 

(3.13.8) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂9 = 2 sin 2𝜂 

 

(3.13.9) 

 𝐿2(cosh 2𝜉 − cos 2𝜂)2𝜎𝜉𝜂10 = 2 sinh 2𝜉 (3.13.10) 

 

Applying boundary conditions to (3.10), and selecting appropriate function from 

(3.11), (3.12) & (3.13) we can find the stress function for the problem considered. 

 

3.3 BOUNDARY CONDITIONS 

To find the stresses in the given domain, certain boundary conditions must be 

applied. Boundary condition on the fracture surface for the normal stress in ξ direction is 

straight forward: it equals the negative of the internal pressure in the fracture, which is 

given by Chen et al (2014):  
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𝑃𝑓(𝜂) = 𝑃𝑤 +
∆𝑃

𝐶𝑓𝑑
. 𝑓 {

𝜋2

4
− 𝜂2 − ∑

(−1)2𝑛 − (−1)𝑛 cos 2𝑛𝜂

𝑛2 + 𝑛3𝐶𝑓𝑑 tanh 2𝑛(𝜉𝑒 − 𝜉1)

∞

𝑛=1

} 
(3.14) 

 

This boundary condition is graphically shown in Figure 3.2. 

 

To find the shear stress 𝜎𝜉𝜂 at the fracture surface, consider an infinitesimally 

small section of the fracture boundary as shown in Fig 3.3 

P
f(η)

 

P
f(η)

 

Fig 3.2 Boundary Condition at ξ
1
 , All Round Tension P

f(η)
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Consider the case where P1 > P2.  

𝜏 =
𝐴𝑟𝑒𝑎

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
.
𝑃1 − 𝑃2

∆𝑥
 

(𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒. ∆𝑥). 𝜏 = (𝑃1 − 𝑃2). 𝐴𝑟𝑒𝑎 

𝜏 =
𝐴𝑟𝑒𝑎

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
.
𝑑𝑃

∆𝑥
 

𝜏 =
𝜕𝑃𝑓

𝜕𝜂
 

 

 

 

(3.15) 

 

Since the stresses considered are ‘flow-induced’, at the far boundary, all the 

stresses are set to be zero. All the boundary conditions are listed below: 

 

P2 P1 

τ 

τ 

∆x 

Fig 3.3 Shear Stress Condition at the Fracture Boundary  
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𝐴𝑡 𝜉 = 𝜉1, 

𝜎𝜉𝜉 = 𝑃𝑓 

𝜎𝜉𝜂 =
𝜕𝑃𝑓

𝜕𝜂
 

 

(3.16.1) 

(3.16.2) 

 

𝐴𝑡 𝜉 = 𝜉𝑒 , 

𝜎𝜉𝜉 = 0 

𝜎𝜂𝜂 = 0 

𝜎𝜉𝜂 = 0 

 

 

 

(3.16.3) 

(3.16.4) 

(3.16.5) 

 

Second boundary condition (3.16.2) is given by taking the gradient of the 

reservoir pressure term in η direction:  

 

𝜕𝑃𝑓

𝜕𝜂
= −

2. ∆𝑃. 𝑓. 𝜂

𝐶𝑓𝑑
−

∆𝑃. 𝑓

𝐶𝑓𝑑
∑

2(−1)𝑛 sin 2𝑛𝜂

𝑛 + 𝑛2𝐶𝑓𝑑 tanh 2𝑛(𝜉𝑒 − 𝜉1)

∞

𝑛=1

 
(3.17.1) 

For further use, we may also evaluate the partial derivative of (3.17.1):  
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𝜕2𝑃𝑓

𝜕𝜂2
= −

2. ∆𝑃. 𝑓

𝐶𝑓𝑑
−

∆𝑃. 𝑓

𝐶𝑓𝑑
∑

4(−1)𝑛 cos 2𝑛𝜂

1 + 𝑛𝐶𝑓𝑑 tanh 2𝑛(𝜉𝑒 − 𝜉1)

∞

𝑛=1

 
(3.17.2) 

 

Far end boundary conditions are given by third, fourth and fifth boundary 

condition which stats that normal stresses in ξ direction (𝜎𝜉𝜉) and η (𝜎𝜂𝜂) direction and 

shear stress 𝜎𝜉𝜂 are all zero.  

3.4 STRESS VALUES 

Analyzing the terms involved in boundary conditions, only related Stress 

Function solutions were selected. They were as follows 

𝛷A = 𝑒2𝜉 + cos 2𝜂 (3.18.1) 

 

𝛷B = 𝑒−2𝜉 + cos 2𝜂 (3.18.2) 

 

𝛷E = 𝑒2𝜉 cos 2𝜂 (3.18.3) 

 

𝛷F = 𝑒−2𝜉 cos 2𝜂 (3.18.4) 

 

𝛷I = 𝜉 (3.18.5) 
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This leaves us with the general solution of stress function in the form of  

𝛷 = A[𝑒2𝜉 + cos 2𝜂] + B[𝑒−2𝜉 + cos 2𝜂] + E[𝑒2𝜉 cos 2𝜂]

+ F[𝑒−2𝜉 cos 2𝜂] + I𝜉 

(3.19) 

 

Using the Boundary Conditions from equation (3.16.1) through equation (3.16.5) 

coefficients for the equation (3.19) were evaluated as follows 

 

A = −4 sinh(2𝜉𝑒) cosh(2𝜉1) (3.20.1) 

 

𝐵 = 4 sinh(2𝜉𝑒) cosh(2𝜉1) (3.20.2) 

 

𝐸 = 2 sinh(2𝜉𝑒) 𝑒4𝜉𝑒(cosh(2𝜉𝑒) + cosh(2𝜉1)) − 4𝑠𝑖𝑛ℎ2(2𝜉𝑒)𝑒2𝜉𝑒 (3.20.3) 

 

𝐹 = −2 sinh(2𝜉𝑒)[cosh(2𝜉𝑒) + cosh(2𝜉1) + 2 sinh(2𝜉𝑒) 𝑒−2𝜉𝑒] (3.20.4) 
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𝐼 = 2 sinh(2𝜉𝑒) (3.20.5) 

 

 

 

Thus using these coefficients, we get Stress Function 𝛷 as  

 

𝛷 = −4 sinh(2𝜉𝑒) cosh(2𝜉1) [𝑒2𝜉 + cos 2𝜂]

+ 4 sinh(2𝜉𝑒) cosh(2𝜉1) [𝑒−2𝜉 + cos 2𝜂]

+ 2 sinh(2𝜉𝑒) 𝑒4𝜉𝑒(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑠𝑖𝑛ℎ2(2𝜉𝑒)𝑒2𝜉𝑒[𝑒2𝜉 cos 2𝜂]

− 2 sinh(2𝜉𝑒)[cosh(2𝜉𝑒) + cosh(2𝜉1)

+ 2 sinh(2𝜉𝑒) 𝑒−2𝜉𝑒] [𝑒−2𝜉 cos 2𝜂] + 2 sinh(2𝜉𝑒) 𝜉 

(3.21) 

 

Using this solution for Stress Function in equation (3.8.1), (3.8.2), (3.8.3) 𝜎𝜉𝜉 , 

𝜎𝜂𝜂, 𝜎𝜉𝜂 are evaluated as shown below 
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𝜎𝜉𝜉 =
1

(cosh 2𝜉 − cos 2𝜂)
[{2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}4𝑒2𝜉 cos 2𝜂

− {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}4𝑒−2𝜉 cos 2𝜂]

+
sinh 2𝜉

(cosh 2𝜉 − cos 2𝜂)2
[8 sinh(2𝜉𝑒) cosh(2𝜉1)(𝑒2𝜉

+ 𝑒−2𝜉)

+ {2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒2𝜉 cos 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒−2𝜉 cos 2𝜂 + 2 sinh(2𝜉𝑒)]

−
sin 2𝜂

(cosh 2𝜉 − cos 2𝜂)2
[−{2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒)

+ cosh(2𝜉1)) − 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒2𝜉 sin 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒−2𝜉 sin 2𝜂] + 𝑃(𝜉, 𝜂) 

(3.22.1) 
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𝜎𝜂𝜂

=
1

(cosh 2𝜉 − cos 2𝜂)
[16sinh(2𝜉𝑒) cosh(2𝜉1)𝑒−2𝜉(𝑒4𝜉 − 1)

+ {2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}4𝑒2𝜉 cos 2𝜂

− {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}4𝑒−2𝜉 cos 2𝜂]

+
sin 2𝜂

(cosh 2𝜉 − cos 2𝜂)2
[8 sinh(2𝜉𝑒) cosh(2𝜉1)(𝑒2𝜉 + 𝑒−2𝜉)

+ {2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒2𝜉 cos 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒−2𝜉 cos 2𝜂 + 2 sinh(2𝜉𝑒)]

−
sinh 2𝜉

(cosh 2𝜉 − cos 2𝜂)2
[−{2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒2𝜉 sin 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒−2𝜉 sin 2𝜂] + 𝑃(𝜉, 𝜂) 

(3.22.2) 
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𝜎𝜉𝜂

= −
1

(cosh 2𝜉 − cos 2𝜂)
[−{2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒)

+ cosh(2𝜉1)) − 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}4𝑒2𝜉 cos 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}4𝑒−2𝜉 cos 2𝜂]

+
sin 2𝜂

(cosh 2𝜉 − cos 2𝜂)2
[−{2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒2𝜉 sin 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒−2𝜉 sin 2𝜂]

+
sinh 2𝜉

(cosh 2𝜉 − cos 2𝜂)2
[8 sinh(2𝜉𝑒) cosh(2𝜉1)(𝑒2𝜉 + 𝑒−2𝜉)

+ {2 𝑒4𝜉𝑒sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 4𝑒2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒2𝜉 cos 2𝜂

+ {2 sinh(2𝜉𝑒)(cosh(2𝜉𝑒) + cosh(2𝜉1))

− 2𝑒−2𝜉𝑒𝑠𝑖𝑛ℎ2(2𝜉𝑒)}2𝑒−2𝜉 cos 2𝜂 + 2 sinh(2𝜉𝑒)] 

(3.22.3) 

 

Using these components of stresses, we can evaluate Principal Plane Stress 

around the crack by using Von Misses Stress formulation. 
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𝜎 = √𝜎𝜉𝜉
2 + 𝜎𝜂𝜂

2 − 𝜎𝜉𝜉𝜎𝜂𝜂 + 3𝜎𝜉𝜂
2 

(3.23) 

We define dimensionless form of these stress equation for convenience using 

following evaluation 

 

𝜎𝜉𝜉̅̅ ̅̅ =
𝜎𝜉𝜉

∆𝑃
=

𝜎𝜉𝜉

𝑃𝑒 − 𝑃𝑤
 

(3.24.1) 

 

𝜎𝜂𝜂̅̅ ̅̅̅ =
𝜎𝜂𝜂

∆𝑃
=

𝜎𝜂𝜂

𝑃𝑒 − 𝑃𝑤
 

(3.24.2) 

 

𝜎𝜉𝜂̅̅ ̅̅ =
 𝜎𝜉𝜉

∆𝑃
=

 𝜎𝜉𝜉

𝑃𝑒 − 𝑃𝑤
 

(3.24.3) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In dimensionless units, crack length of unit dimension is considered, with well 

opening at 0 and Crack tip at +/- 0.5 as shown in Figure (4.1). 

 

Figure 4.1 General View of the Fracture Domain as Used in Plots 

Dimensionless stress values are evaluated using equations (3.24.1), (3.24.2), and 

(3.24.3) and are plotted for the better understanding of the stress distribution.  

 

Figure 4.2 Normal Stress (𝜎𝜉𝜉̅̅ ̅̅ ) Distribution for Half Crack Length With ξ1 = 0.001, ξe = 

5, Cfd = 5 

ξ1 to ξe 



  40 

 

Figure 4.3 Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) Distribution for Half Crack Length With ξ1 = 0.001,  

ξe = 5, Cfd = 5 

 

Figure 4.4 Zoom in View of Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) Distribution for Half Crack Length 

With ξ1 = 0.001, ξe = 5, Cfd = 5 

Figure 4.4 

 

Figure (4.4) ξ1 to ξe 
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It is clearly evident from Figure (4.2) & (4.3) that maximum stress appears on the 

fracture boundary. Stress values are almost linear and very low in the region away from 

the fracture surface. Since fracture closure is directly related to the stress acting on the 

fracture surface, we will focus on stress values at the fracture boundary i.e. at ξ= ξ1. 

 

Figure 4.5 Normal Stress (𝜎𝜉𝜉̅̅ ̅̅ ) at Crack Boundary for Entire Crack Length With 

ξ1 = 0.001, ξe = 5, Cfd = 5 
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Figure 4.6 Shear Stress (𝜎𝜉𝜂̅̅ ̅̅ ) at Crack Boundary for Entire Crack Length With 

ξ1 = 0.001, ξe = 5, Cfd = 5 

 

Figure 4.7 Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) at Crack Boundary for the Entire Crack Length With 

ξ1 = 0.001, ξe = 5, Cfd = 5 
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It is seen from the above plots that at the fracture boundary, there is very high 

hoop stress concentration at the fracture tip due to the high flux concentration caused by 

the pressure gradient singularity. 

Results are evaluated at the crack boundary to determine the effects caused by 

stresses to the fracture. Since results are symmetrical along X axis and beyond π/2 (point 

‘0’ on X axis) crack is assumed to open at the well interface, from here on results are 

plotted only for half crack length for ease. 

 

Figure 4.8 Normal Stress (𝜎𝜉𝜉̅̅ ̅̅ ) at Crack Boundary With ξ1 = 0.001, ξe = 5, Cfd = 5 
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It is seen that Normal stress 𝜎𝜉𝜉̅̅ ̅̅  generates negligible stress distribution along the 

fracture boundary but high stress concentration is observed at the tip.  

 

Figure 4.9 Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) at Crack Boundary With ξ1 = 0.001, ξe = 5, Cfd = 5 

 

When dimensionless normal stress 𝜎𝜂𝜂̅̅ ̅̅̅ (Hoop Stress) are plotted, it is seen that 

this normal stress also creates a very high concentration at the crack tip. Values of this 

normal stress in η direction are much higher than stresses in ξ direction. 

 



  45 

 

Figure 4.10 Shear Stress (𝜎𝜉𝜂̅̅ ̅̅ ) at Crack Boundary With ξ1 = 0.001, ξe = 5, Cfd = 5 

 

When shear stress is plotted along the boundary of the fracture, it is seen that 

shear stress does not vary much throughout the crack surface and thus does not have 

much effect on the stress concentration on the fracture. 

When both the normal stresses are compared with each other as shown in Figure 

(4.11) at the fracture boundary, it is seen that 𝜎𝜂𝜂̅̅ ̅̅̅ has extremely large value as compared 

to 𝜎𝜉𝜉̅̅ ̅̅ . This is caused due to ‘Hoop Stress Effect’. This is an indication that crack may 

fail if the hoop stress is very high. 
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Figure 4.11 Comparison of Normal Stresses 𝜎𝜉𝜉̅̅ ̅̅  and 𝜎𝜂𝜂̅̅ ̅̅̅ at Crack Boundary With 

ξ1 = 0.001, ξe = 5, Cfd = 5 

 

Figure 4.12 Von Mises Stress at Crack Boundary Showing Values From ξ1 to ξe, With 

ξ1 = 0.001, ξe = 5, Cfd = 5 
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Von Mises stress is plotted along with fracture boundary, which also indicates 

high stress concentration at the crack tip. These values are very critical to estimate 

whether the poroelastic soil medium around the well can withhold the stress generated 

due to the pressure induces force. 

 Different parameters affecting the high stress concentration are also studied. Plots 

are shown to study the effect of degeneration of the fracture, where ξ1 is reduced to 

simulate the condition in which the fracture width is reduced and assumed that the 

fracture lies completely on X axis.  

 

Figure 4.13 Comparison of Normal Stress (𝜎𝜉𝜉̅̅ ̅̅ ) at Crack Boundary With ξ1 = 0.01, 

ξ1 = 0.001 & ξ1 = 0.0001 
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Figure (4.13) indicates that as fracture is made thinner i.e. ξ1 is reduced further, 

Normal Stress concentration (𝜎𝜉𝜉̅̅ ̅̅ ) along the fracture reduces but higher stress 

concentration is seen at the crack tip.  

 

Figure 4.14 Comparison of Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) at Crack Boundary With ξ1 = 0.01, 

ξ1 = 0.001 & ξ1 = 0.0001 

 

Figure (4.14) shows that as fracture is made thinner i.e. ξ1 is reduced further, 

Normal Stress concentration (𝜎𝜂𝜂̅̅ ̅̅̅) increases very drastically at the crack tip and 

eventually will reach infinity as ξ1 approaches 0.  
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Stress distribution for different values of fracture conductivity (Cfd) are also 

studied. When Cfd approached infinity, it indicates the maximum production that can be 

achieved through a wellbore for a given drawdown pressure.  

 

 

Figure 4.15 Comparison of Normal Stress (𝜎𝜉𝜉̅̅ ̅̅ ) With Cfd = 1, 2, 3, 5, 10 & 15, at Crack 

Boundary With ξ1 = 0.001 

 

It is seen from Figure (4.15) that as the Cfd values are increased, the stress 

distribution reduces along the fracture length but higher stress concentration are observed 

at the fracture tip for very high Cfd Values. 
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Figure 4.16 Comparison of Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) With Cfd = 1, 2, 3, 5, 10 & 15, at Crack 

Boundary With ξ1 = 0.001 

 

 It is seen from Figure (4.16) that, when the Cfd values are increased, stress 

distribution along the crack length decreases but at the crack tip high values of stresses 

are achieved. This is caused due to the pressure gradient singularity effect causing suction 

at the crack tip, thus increasing the flow production. 

Similarly stress distribution due to increasing outer boundary value is also studied 

for a constant Cfd value. 
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Figure 4.17 Comparison of Normal Stress (𝜎𝜉𝜉̅̅ ̅̅ ) With ξe =1, ξe =2, ξe =5 Increasing in the 

Direction of the Arrow Withξ1 = 0.001, Cfd = 5, at Crack Boundary 

 

Figure 4.18 Comparison of Normal Stress (𝜎𝜂𝜂̅̅ ̅̅̅) With ξe =1, ξe =2, ξe =5 Increasing in the 

Direction of the Arrow With ξ1 = 0.001, Cfd = 5, at Crack Boundary 
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From Figure (4.17) it is seen that as the far end boundary is increased even 

further, the normal stress distribution 𝜎𝜉𝜉̅̅ ̅̅  flattens out giving very low linearly distributed 

value of stress. 

From Figure (4.18), it is seen that for a constant fracture conductivity, stress 

distribution along the crack length decreases with increase in the far end boundary except 

for the crack tip where the stress values increases drastically showing almost singular 

behavior. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

(1) It is clearly seen from Figures (4.2) and (4.3) that there is high stress 

concentration at the fracture boundary due to the pressure induced flow. Figure 

(4.7) shows that even though there are low tensile stress values along the fracture, 

high stress concentration is seen at the crack tip, where pressure gradient 

singularity is found to be occurred by Chen et al (2014). This shows that pressure 

gradient singularity causes very high stress values even for finite conductivity of 

the fracture. This in turn affects the closure stresses.  

(2) Figure (4.8) & (4.10) indicates that there is almost negligible shear stress effect 

even along the fracture boundary. 

(3) Figure (4.11) shows that the normal stress in η direction is much higher than the 

normal stress in ξ direction, indicating that hoop stress effect due to the pressure 

gradient singularity at the crack tip is very prominent. Even though it has been 

shown by Warpinski et. al. (1998) that crack closure is a slow process, it 

ultimately stops the well production. So to encounter this loss in the production, 

stresses caused by fluid production needs to be considered in well stimulation 

approaches. 

(4) Figure (4.13) & (4.14) indicates that as the ellipse for the fracture is made thinner 

overlapping the X axis, hoop stress distribution along the crack decreases with 

less area covered, but the value of stress concentration at the crack tip increases 

drastically. 
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(5) Figure (4.15) & (4.16) shows that as the conductivity increases, the stress 

concentration at the tip also increases and the stress value at the crack tip becomes 

singular as conductivity approaches infinity. This is in accordance with the 

research shown by Chen et al (2014)  

(6) All this results indicates that there is certainly very high hoop stress concentration 

at the fracture tip caused due to the pressure induced flow. So further 

investigation needs to be done to reevaluate the Closure Stress Values considering 

the Stress effects due to fluid production. This will help in developing better 

proppants and injection techniques thus allowing more and prolonged production 

rate from the well.  
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