
A Cross-Layer Power Analysis and Profiling of Wireless Video Sensor Node

Platform Applications

by

Tejas Shah

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved May 2014 by the
Graduate Supervisory Committee:

Martin Reisslein, Chair
Jennifer Kitchen
Michael McGarry

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

Wireless video sensor networks has been examined and evaluated for wide range

of applications comprising of video surveillance, video tracking, computer vision, re-

mote live video and control. The reason behind importance of sensor nodes is its ease

of implementation, ability to operate in adverse environments, easy to troubleshoot,

repair and the high performance level. The biggest challenges with the architec-

tural design of wireless video sensor networks are power consumption, node failure,

throughput, durability and scalability. The whole project here is to create a gateway

node to integrate between ”Internet of things” framework and wireless sensor net-

work. Our Flexi-Wireless Video Sensor Node Platform (WVSNP) is a low cost, low

power and compatible with traditional sensor network where the main focus was on

maximizing throughput or minimizing node deployment. My task here in this project

was to address the challenges of video power consumption for wireless video sensor

nodes. While addressing the challenges, I performed analysis of predicting the nodes

durability when it is battery operated and to choose appropriate design parameters.

I created a small optimized image to boot up Wandboard DUAL/QUAD board, cap-

ture videos in small/big chunks from the board. The power analysis was performed

for only capturing scenarios, playback of reference videos and, live capturing and real-

time playing of videos on WVSNP player. Each sensor node in sensor network are

battery operated and runs without human intervention. Thus to predict nodes dura-

bility, for different video size and format, I have collected power consumption results

and based on this I have provided some recommendation of HW/SW architecture.

i

TABLE OF CONTENTS

Page

LIST OF FIGURES . iii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORKS . 4

3 DIFFERENCES BETWEEN FLEXI-WVSNP AND EXISTING WVSNPs 7

4 CHALLENGES WITH WIRELESS VIDEO SENSOR NODE 9

5 CHALLENGES TACKLED DURING THESIS . 12

6 TEST BED . 14

7 DATA COLLECTION METHODOLOGIES . 18

8 DATA REPRESENTATION . 23

9 RECOMMENDATION . 65

10 CONCLUSION AND FUTURE WORK . 70

REFERENCES . 72

ii

LIST OF FIGURES

Figure Page

8.1 Power Measurement Setup . 23

8.2 Wandboard Boot Time . 24

8.3 HLS vs WVSNP (2sec) . 25

8.4 HLS vs WVSNP (5sec) . 26

8.5 HLS vs WVSNP (10sec) . 26

8.6 USBcam Current vs CSIcam Current (10min) . 27

8.7 USBcam Current vs CSIcam Current (2sec) . 27

8.8 USBcam Current vs CSIcam Current (5sec) . 28

8.9 USBcam Current vs CSIcam Current (10sec) . 28

8.10 Current Consumption Comparison of Video Capturing through CSI-

cam Using Hardware and Software H264 (2sec) . 30

8.11 Current Consumption Comparison of Video Capturing through CSI-

cam Using Hardware and Software H264 (5sec) . 30

8.12 Current Consumption Comparison of Video Capturing through CSI-

cam Using Hardware and Software H264 (10sec) . 31

8.13 Current Consumption Comparison of Video Capturing through CSI-

cam Using Hardware and Software H264 (10min) . 31

8.14 Current Consumption Comparison of Video Capturing through USB-

cam Using Hardware and Software H264 (2sec) . 32

8.15 Current Consumption Comparison of Video Capturing through USB-

cam Using Hardware and Software H264 (5sec) . 33

8.16 Current Consumption Comparison of Video Capturing through USB-

cam Using Hardware and Software H264 (10sec) . 33

iii

Figure Page

8.17 Current Consumption Comparison of Video Capturing through USB-

cam Using Hardware and Software H264 (10min) . 33

8.18 Current Consumption Comparison of Video Encoded Using Hardware

H264 and Captured Using CSI and USBcam (2sec) 35

8.19 Current Consumption Comparison of Video Encoded Using Hardware

H264 and Captured Using CSI and USBcam (5sec) 35

8.20 Current Consumption Comparison of Video Encoded Using Hardware

H264 and Captured Using CSI and USBcam (10sec) 36

8.21 Current Consumption Comparison of Video Encoded Using Hardware

H264 and Captured Using CSI and USBcam (10min) 36

8.22 Current Consumption Comparison of Video Encoded Using Software

H264 and Captured Using CSI and USBcam (2sec) 37

8.23 Current Consumption Comparison of Video Encoded Using Software

H264 and Captured Using CSI and USBcam (5sec) 37

8.24 Current Consumption Comparison of Video Encoded Using Software

H264 and Captured Using CSI and USBcam (10sec) 38

8.25 Current Consumption Comparison of Video Encoded Using Software

H264 and Captured Using CSI and USBcam (10min) 38

8.26 Current Consumption Comparison of Capturing Video through Hard-

ware and Software avi Encoder (2sec) . 39

8.27 Current Consumption Comparison of Capturing Video through Hard-

ware and Software avi Encoder (5sec) . 40

8.28 Current Consumption Comparison of Capturing Video through Hard-

ware and Software avi Encoder (10sec) . 40

iv

Figure Page

8.29 Current Consumption Comparison of Capturing Video through Hard-

ware and Software mpeg4 Encoder (2sec) . 41

8.30 Current Consumption Comparison of Capturing Video through Hard-

ware and Software mpeg4 Encoder (5sec) . 41

8.31 Current Consumption Comparison of Capturing Video through Hard-

ware and Software mpeg4 Encoder (10sec) . 42

8.32 Current Consumption Comparison of Capturing Video through Hard-

ware and Software avi Encoder (2sec) . 43

8.33 Current Consumption Comparison of Capturing Video through Hard-

ware and Software mpeg4 Encoder (2sec) . 44

8.34 Current Consumption of Playback of WVSNP and HLS Videos on Mac

(2sec, Ethernet) . 45

8.35 Current Consumption of Playback of WVSNP and HLS Videos on Mac

(5sec, Ethernet) . 45

8.36 Current Consumption of Playback of WVSNP and HLS Videos on Mac

(10sec, Ethernet) . 46

8.37 Current Consumption of Playback of Progressive WVSNP Video on

Mac (Ethernet) . 46

8.38 Current Consumption of Playback of WVSNP and HLS Video on Win-

dows (2sec, Ethernet) . 47

8.39 Current Consumption of Playback of WVSNP and HLS Video on Win-

dows (5sec, Ethernet) . 47

8.40 Current Consumption of Playback of WVSNP and HLS Video on Win-

dows (10sec, Ethernet) . 48

v

Figure Page

8.41 Current Consumption of Playback of Progressive WVSNP Video on

Windows (Ethernet) . 48

8.42 Current Consumption of Playback of WVSNP and HLS Video on Mac

(2sec, Wifi) . 49

8.43 Current Consumption of Playback of WVSNP and HLS Video on Mac

(5sec, Wifi) . 49

8.44 Current Consumption of Playback of WVSNP and HLS Video on Mac

(10sec, Wifi) . 50

8.45 Current Consumption of Playback of Full WVSNP and 10sec Seg-

mented WVSNP Video on Mac (Wifi) . 50

8.46 Current Consumption of Playback of WVSNP and HLS Video on Win-

dows (2sec, Wifi) . 51

8.47 Current Consumption of Playback of WVSNP and HLS Video on Win-

dows (5sec, Wifi) . 51

8.48 Current Consumption of Playback of WVSNP and HLS Video on Win-

dows (10sec, Wifi) . 52

8.49 Current Consumption of Playback of Progressive WVSNP Video on

Windows (Wifi) . 52

8.50 Current Consumption of Live Capturing + Real-Time Playing of WVSNP

and HLS Video on Windows (Ethernet) . 53

8.51 Current Consumption of Live-Capturing + Real-Time Playing of WVSNP

and HLS Video on Mac (Ethernet) . 54

8.52 Current Consumption of Live Capturing + Real-Time Playing of WVSNP

and HLS Video on Windows with Trendline (Ethernet) 55

vi

Figure Page

8.53 Current Consumption of Live-Capturing + Real-Time Playing of WVSNP

and HLS Video on Mac with Trendline (Ethernet) 55

8.54 Current Consumption of Live-Capturing + Real-Time Playing of WVSNP

and HLS Video on Windows (Wifi) . 56

8.55 Current Consumption of Live-Capturing + Real-Time Playing of WVSNP

and HLS Video on Mac (Wifi) . 56

8.56 Current Consumption of Playbacking HLS and WVSNP BIG Videos

on Ubuntu (2sec) . 57

8.57 Current Consumption of Playbacking HLS and WVSNP BIG Videos

on Ubuntu (5sec) . 58

8.58 Current Consumption of Playbacking HLS and WVSNP BIG Videos

on Ubuntu (10sec) . 58

8.59 Current Consumption of Playbacking HLS and WVSNP SMALL Videos

on Ubuntu (2sec) . 59

8.60 Current Consumption of Playbacking HLS and WVSNP SMALL Videos

on Ubuntu (5sec) . 59

8.61 Current Consumption of Playbacking HLS and WVSNP SMALL Videos

on Ubuntu (10sec) . 60

8.62 Current Consumption of Live Capturing and Real-Time playing of BIG

WVSNP and HLS Videos on Ubuntu (2sec) . 61

8.63 Current Consumption of Live Capturing and Real-Time Playing of

SMALL WVSNP and HLS Video on Ubuntu (2sec) 62

8.64 Current Consumption of Live Capturing and Real-Time Playing of

SMALL WVSNP and HLS Videos on Ubuntu (5sec) 62

vii

Figure Page

8.65 Current Consumption of Live Capturing and Real-Time Playing of BIG

WVSNP Video and SMALL WVSNP Video (2sec) 63

8.66 Current Consumption of Playbacking HLS Video on Ubuntu and Play-

backing HLS Video on Windows (5sec) . 63

8.67 Current Consumption Comparison of Playbacking WVSNP Video and

MPEG-DASH Video(10sec) . 64

viii

Chapter 1

INTRODUCTION

Wireless sensor networks have received a noteworthy interest from the re-

search community in recent years due to its ability to capture video at distributed

video sensor nodes and transmitting the video through multiple wireless hops to sink

nodes [2, 5, 24, 33, 43, 46, 49]. Wireless sensor network is a collection of nodes

where each node consists of a radio transceiver with an antenna, a microcontroller to

interface with sensors and a battery or another energy source. Wireless video sen-

sor network has been used in broad field of applications such as video surveillance

[21, 29, 47], video tracking [7, 10], remote live video and control [16, 28] and com-

puter vision [8, 12]. There are some features of wireless video sensor networks where

lot of research has been done such as multisensor image fusion [6, 34], image and

video compression techniques [27, 38], lightweight operating system and middleware

[9, 13, 30] and resource allocation strategies [19, 20, 37, 43]. A wireless video sensor

node platform is a sensor platform that considers video as a basic element just as a

data sources such as heart monitoring machine inside a human body connected wired

or wirelessly to the network within the ”Internet of Things” framework. There are

some resource constraints that come with wireless sensor node design such as power

consumption, throughput, cost and node failure. Power consumption is an important

factor to ensure that the node remains for long life time. Power consumption of a

sensor node depends on wide range of device choices such as power source type, com-

ponent selection(camera, segment length, video resolution, codec, container), network

management algorithms etc. Thus to ensure that sensor node survives for long time,

it has to provide most of power modes (On, Ready, Doze, Sleep, Idle, Hibernate) if

1

not all of them. Second important resource constraint is throughput of the sensor

node. The throughput of a node is defined as number of video frames per second

received by the sink node from the source node [43]. Third important resource con-

straint is reliability of data. The reliability of data through sensor nodes needs to be

ensured or network might not provide data in time needed in some applications such

as video tracking. The networks ability to deal effectively with node failure, making

sure that data is delivered in time will ensure reliability of data transfer through the

sensor network.

Flexi-WVSNP design is a video sensor node and the three core components

of this design are 1) Dual WiFi-Zigbee radio for video streaming 2) Middleware for

controlling dual radio and 3) Hardware-Software module architecture. Flexi-WVSNP

is a gateway node between sensor network and ”internet of things” framework. This

sensor platform is designed to be low-power, low-cost and compatible with the existing

wireless sensor network. Current video delivery architecture, eg: transmitting the

video over Real-Time Streaming Protocol(RTSP) are not adaptable with the wireless

sensor networks while the ”internet of things” framework requires different approaches

to be able to integrate with the wireless sensor networks. There are some approaches

that will be able to connect internet of things and wireless sensor networks: 1) Make

video acquisition and delivery universal by using HTTP segmented video streaming

approaches. 2) Lower the cost of platform by using open-source tools and open it for

further research. 3) Make use of highly portable HW/SW architecture to benefit from

changing off-the-shelf components.4) For fast application re-purposing use flexible

power source. 5) For sensor network management, data-fusion and transmission use

our low coupling but highly cohesive dual wireless radio approach. The paper is

organized as follows: In section II, I talk about existing approaches on measuring

power consumption, throughput, and cost of node. The difference between flexi-wvsnp

2

and existing wvsnp is described in section III and in section IV; I talk about challenges

with wireless video sensor nodes. Challenges that I had to deal with in thesis are

described in section V. Test-bed description and data collection methodologies are

described in section VI and VII respectively. Data representation is presented in

VIII, recommendations from the data presented in IX and conclusion and future

works are provided in X.

3

Chapter 2

RELATED WORKS

There are some existing papers that have performed power measurement and

some talks about power measurement and management in sensor networks. Here I

will talk about the methods that I reviewed for performing power measurement and

then talk about my work which is first of a kind to focus on video power on sensor

nodes.

In [22], they have surveyed different approaches to measure the energy in

wireless communication devices and have also provided analysis of each approaches by

providing their advantages and disadvantages. Energy consumption of any electrical

device is calculated by the product of current (I), voltage (V) and time (t). To

calculate energy, voltage and time can be calculated directly, but there is no way

direct way to calculate current. Therefore in this paper they have surveyed different

current measuring techniques and then they have made recommendation on which

technique to use according to the requirements. Here are the approaches: 1) Shunt

resistor: Resistor is placed in series in the electric circuit. The current draw is same

across the whole circuit and therefore the current draw across the resistor is just V/R.

The advantage of using shunt resistor is that it is the easiest method to use. If the

voltage over the resistor is too large, it might cause malfunctioning of the device.

To avoid this side effect, voltage across the resistor has to be low and thereby the

resistor value has to be low. The major disadvantage of this approach is its inability

to measure high dynamical signals. If the current has high dynamic range, then the

accuracy for low current will be insufficient. 2) Voltage to Frequency Conversion:

This method is an extension to shunt resistor method. The goal of this method is to

4

extend the dynamic range of shunt resistor to improve the accuracy for low current.

In this method, shunt resistor is connected to a new block ”voltage to frequency

conversion”. The current can be measured here with high dynamics, in other words

low current can be measured with high accuracy as well as high current. The main

advantage of this method is that it provides with high dynamics. 3) Inductor: The

current measurement using inductor method comes from current clamps used in heavy

engineering. Voltage is induced in the inductor by the the electric field around the

electric line. By sampling the induced voltage, current can be determined. The

disadvantage of this method is that this method requires calibration after the energy

of an electrical device is measured. And secondly, although inductor method supports

high sampling rate, it would be less beneficial as it is highly susceptible to noise. 4)

Coulomb Counter: There are two capacitors in this method which are charged and

discharged in turn. When a capacitor is discharged, the discharge current provides

the energy. Since the capacity of both capacitors is known, time required to discharge

the capacitor implies current. The disadvantage of this method is that, low current

results in low frequency and thus low temporal resolution. The temporal resolution

for coulomb counter method depends on current draw and since the current draw is

not constant, the temporal resolution is also not constant.

In [32], the authors have presented a low-cost experiment for performing

power measurements for wireless sensor networks and they have also provided the

calibration and validation of this experiment. In this setup, clamp-on current probe

is used to collect current measurements but they have also shown the shunt resistor

technique. The current probe is clamped around the power supply. Here, power

supply and the output voltage through the current probe are sampled and this is

the linear function of current through the clamp. The biggest drawback of current

probe method is that the results obtained using this method are very low-profile.

5

In [23], the authors have presented Sensor Node Management Device(SNMD) which

they have used in their WSN testbed to perform energy measurement of the sensor

nodes. SNMD used here is not to monitor actual deployed sensor network as it uses

a wire-based infrastructure which is only available in test bed infrastructures. SNMD

helps protocol and network evaluation in estimating and enhancing the network and

node’s lifetime. In this approach also shunt resistor method is used to collect current

measurement and thereby calculates energy consumption. In [26], a scalable power

observation tool (SPOT) is presented to measure the energy and power consumption

of sensor node over four decades of dynamic range or temporal resolution of microsec-

onds. In this method also shunt resistor is used to perform current measurement. In

[18], Avrora simulation tool is used to see if energy measurement can be measured

accurately in wireless sensor network and then the results obtained from the tool are

compared with the results obtained from experiment using SANDbed.

6

Chapter 3

DIFFERENCES BETWEEN FLEXI-WVSNP AND EXISTING WVSNPS

There are some difference between existing WVSNPs and flexi-WVSNP that I

will talk about in this section. Flexi-WVSNP design is not a platform rather it is

a video sensor node which can stream video using both WiFi and Zigbee [43]. This

dual-radio system is capable of reconciling with other zigbee sensors and it grants a

gateway access for sensor to internet thru WiFi. The existing sensor platform design

are either targeted for vast applications making it a general purpose architectures, or

they are targeted for a specific narrow applications. The general purpose application

platform design tries to cover all peripherals as well as pcb modules that might be

needed for an application [43]. These type of platform design usually experiences a

high power consumption, lot of under-utilized modules and huge cost of manufacturing

them. The narrow application platform designs provides with high performance when

used for application for which the platform is designed for but on other side since they

are targeted for specific application, it makes them over-customized [43]. Hardware

modules in narrow application platform design are quite dependent on each other

to meet timing and cost constraints of the main application. Therefore hardware

design will be inflexible most of time and would require re-design for any change in

application load or onsite requirements. Since software modules are dependent on

each other, they wouldn’t be reusable for any change in other software or hardware

modules [43].

Flexi-WVSNP design attempts to engage hardware and software design but

on the other side tries to keep them away to avoid binding as in narrow application

platform designs. This design is not targeted for any specific application, rather it

7

is very adaptable and cost flexible to be able to cover a low surveillance system to

remote monitoring system [43]. The general WVSNP architecture works on the facts

that 1) no need of speculating any application and 2) removes the need of designing

the complete WVSNP initially. Hardware and semiconductor keeps on evolving with

new research and therefore power reduction depends on these important elements

added for a precise application. These evolution in hardware and semiconductor

processes drives the design of flexi-WVSNP. Due to evolution in semiconductor pro-

cesses, processor selection is the most important initial selection. SoC modules should

be such that they can be controlled without needing any support of other modules

of SoC from active state to power off. SoC should also have hardware accelerators

which are needed for video capture, encoding and streaming. If any other capabilities

are needed, they can be fulfilled by using flexible connections. In my case I am us-

ing iMX6 Solollite, Wandboard dual/quad boards which has low power capabilities,

modules that can be controlled from active state to power off and wandboard boards

do have hardware accelerators for video capturing, encoding and streaming. Besides

hardware, another important factor that motivates flexi-design is software architec-

ture. The software now-a-days is changing continuously while open source software is

advancing at an exponential rate. Therefore if flexi-design were to be tied to a current

hardware and software architecture, then this would fail to comply with adaptability

required to achieve low power and cost for WVSNP.

8

Chapter 4

CHALLENGES WITH WIRELESS VIDEO SENSOR NODE

There are some challenges that has to be dealt with when video is introduced

into wireless sensor node. In [41], the authors talk about issues and contingency with

wireless video sensor node and then they discuss the key research issues with video

sensor network such as camera coverage, network architecture and data processing

and communication of low-power video. Here are the issues discussed in the paper:

1) Emergency Saving Control Strategy- Video sensor nodes are used in environment

complicated applications where battery change is not possible and the power con-

sumption of these node is higher than the traditional sensor. Therefore the biggest

question is how to conserve the limited battery energy to try and extend the nodes

lifetime. 2) Network Architecture of Video Sensor Nodes- Traditional sensor networks

based on cluster structure are not capable of processing image and media data, plus

processing and transmission of data from the network will consume lot of network

resources. Therefore the authors are proposing to use isomorphic or heterogeneous

video sensor nodes to build network that will be able to perform powerful functions

and also provide with excellent performance. 3) Real-time transmission- There are

some requirements in delay and synchronization of video data transmission. Cur-

rently the processing capacity of video sensor nodes is limited as well as broadband

resources. They are proposing to do research to design a reliable transport protocol

to be able to use in video sensor node and also conserve energy and can extend the

life of network. 4) Collaborative Processing Technology of Video Sensor Nodes- The

coordination of sensor nodes is necessary for high consistency. The perception and

communication range of single sensor is limited as well as a single node cannot pro-

9

cess large data. Therefore there is lot of collaboration needed. 5) Storage and Search

of Video Information- Video sensor nodes capture lots of visual information in the

environment and therefore the data is very large. How to store the large amount of

data and how to search for the interested information. 6) Deployment and Coverage

of Video Sensor Nodes- The traditional sensor networks deployment and coverage are

based on directional perception model which doesn’t apply to the video sensor nodes

which already has directional perception. They are proposing for a new directional

perception model upon which a new video sensor network is designed to be able to

save energy as well as do reliable monitoring.

In [44], the authors are analyzing how the algorithm designed for traditional

sensor networks behave in the video sensor networks. They are analyzing the algo-

rithm that integrates the coverage and routing problem. Their results suggest that

the sensor network doesn’t provide expected results in coverage of monitoring areas

because of the way camera captures the data. They have discussed the difference

between traditional network and video sensor network that leads to such a result

and have also given some ideas on how to design protocols for video sensor networks.

They have analyzed a situation in which camera nodes focus on one plane and their

results shows that the application aware routing protocol behaves very differently in

video sensor network than the traditional network due to the unpredictable focus of

the camera.

One of the approaches, which is found to be suitable in Flexi-WVSNP is to

reply on duty cycling and dual-radio as a means to fit video acquisition into power

saving algorithms of sensor networks. Since the video is big and there are issues with

storing it as described in [41], we decided to explore segmented videos to fit in video

sensor networks. The existing segmented protocols like HLS and MPEG-DASH are

neither power friendly nor sensor friendly, therefore we have an alternative to these

10

protocols, WVSNP-DASH that we are trying to explore if it can help to lower the

power consumption. There are two video representations (BIG and SMALL) that we

have for WVSNP DASH. BIG and SMALL video segments can be 2 sec, 5sec and 10sec

long. Similar to HLS and MPEG-DASH where during the streaming if the buffering

time of segment is large, then the next video segments will be streamed at lower

bit-rate, in WVSNP-DASH the streaming segments are switched between BIG and

SMALL video segments. HLS segments can only be encoded in h264 as iPhone can

only play h264 encoded videos and MPEG- DASH segments can be encoded only in

h264 and webm, while for WVSNP-DASH it can be encoded in h264, webm, ogg and

any other encoders. Several earlier node designs in literature have generally focused on

novel protocols, better buffer algorithm, better compression schemes. In this thesis an

exhaustive empirical evaluation shows that a lot of design parameters can be identified

throughout the architecture design, by observing different stages of the segmented

video capture and, storage and transmission flow. This enables architecture fine

tuning parameters ranging from discoveries of avoidable power consumption waste

points in the flow, better choice of tools and libraries to use, video encoder parameters

and other transcoding elements like muxers, SW only versus HW accelerators, etc.

This thesis reveals many of these in chapter 6 and summarizes them as shown in

figure 3 to 67.

11

Chapter 5

CHALLENGES TACKLED DURING THESIS

There were many challenges I faced during the thesis, but during the course of

finding solutions to these challenges I read and learned lot of new concepts from my

research online and also by talking to my advisor. Some of the challenges includes

booting bootloader and kernel successfully, setting up proper NFS and boot parame-

ters to avoid errors while mounting the file-system, getting gstreamer to capture video

from USB camera and segmenting to obtain HLS segments.. I started working with

beagleboard at first by using demo bootloader (uboot), kernel (uImage) and rootfs.

After succeeding in this process, I cross-compiled uboot and uImage using source code

and compiler from linux-linaro and replaced this new files with the default files on

the sd-card. While playing around with the board, I broke the board, therefore from

here, instead of using the real board I started emulating the beagleboard board using

QEMU. To emulate beagleboard, a hardware pack is required which contains uboot,

kernel and rootfs packed together in a file. After initial success in booting the default

hardware pack, I changed uboot source code by changing uboot prompt for a start.

This compilation failed, but after failed attempt of help from linux-linaro and forum

onlines, I started using yocto. Yocto project provides a wide range of hardware and

device emulation through QEMU (a quick emulator to emulate hardware board and

devices). Yocto project also provides with source code for uboot and kernel just as

linux-linaro does. Just as linux-linaro, initial boot worked properly for yocto also,

but after changing the source code, compilation failed for yocto also. I encountered

same error in yocto also and failed in resolving errors here also due to lack of sup-

port. During this time, I came across Freescale’s iMX6 board (Sololite,duallite for

12

smart devices), which were capable of performing what was required for my thesis.

Therefore I started using these boards with LTIB (Linux Target Image Builder) which

also provides source code for uboot and kernel and is also compilation tool just as

linux-linaro and yocto for preparing binary file.

With the setup described above, sdcard needs to be removed every-time there

is a change in bootloader or kernel source code or if for ex: a video file captured from

USB camera connected to the board is saved on the rootfs. To avoid this problem,

I used NFS/TFTP. By starting NFS/TFTP server and with board connected to

internet via ethernet cable, board doesn’t get uboot and kernel from the sd-card

instead it gets from the server, and rootfs is also mounted from the server itself. Since

rootfs is mounted from the server, it is also accessible from the laptop and thus any

file saved during board run is accessible instantaneously without removing the sdcard.

To avoid errors while kernel tries to mount rootfs, boot parameters have to be set

perfectly as given. The board(iMX6 Sololite) doesn’t come with a in-built camera,

therefore I had to use a USB camera to perform video capturing from the board.

Since the board didn’t had camera, the boards default kernel configuration didn’t

had camera plugins selected for the camera. The biggest challenge here was to figure

out which plugins I need for camera to work and also want the plugins to successfully

be compiled. After posting question on Freescale’s open source community and with

some back-and-forth emails, I was successfully able to install gstreameer with all

dependencies and was able to also get camera capturing the video.

13

Chapter 6

TEST BED

This section describes how the reference video and segments were generated,

parameters of reference videos, codecs used to encode those videos and the test cases

that were used to measure the power consumption, computation speed and through-

put. All the results were conducted using ASU reference video(without any video).

The videos shows people walking by at different places on ASU campus. It was

encoded into two video options: The first video option is ”BIG” video where the

resolution of the video is 640 x 360, bitrate of 500 kbps and framerate of 30 fps, and

the second video option is ”SMALL” video where the resolution of the video is 320 x

180, bitrate of 150 kbps and framerate of 15 fps. Now, these videos were segmented

into MPEG2 TS for HLS and MP4 for WVSNP-DASH player. Each video files (HLS

and MP4) were created by segmenting the orginal video into 2, 5 and 10sec segments

using ffmpeg. Besides this, MPEG-DASH stream with ISOBMF files were created

using MP4Box from ”BIG” video option. For MPEG-DASH, video segments in size

of 5se, 10sec and 15sc are available. To obtain power consumption result, tests were

performed on different platforms as below:

• Windows 7 64 bit, Macbook Air Mid 2012 with i5-3427U 1.8 GHz processor

and 4 GB RAM : Google Chrome (version 32) was used for WVSNP playback.

While for HLS, JWPlayer 6 with the HLSProvider plugin running was used for

playback and MPEG-DASH was played back on DASH-JS player- both were

ran on same Google Chrome.

14

• Ubuntu 13.10 64 bit, Dell OptiPlex 360 with Intel Core2Duo E7300 2.66GHz

processor and 2 GB RAM : Google Chrome (version 32) was used for WVSNP

playback. While for HLS, JWPlayer 6 with the HLSProvider plugin running

was used for playback and MPEG-DASH was played back on DASH-JS player-

both were ran on same Google Chrome.

The power consumption results were performed on server side using Wandboard-

quad board which runs mongoose server and serves all players and videos. The results

were performed for VOD (playback) with different segment size(2sec, 5sec and 10sec),

codecs using the BIG video and SMALL video option for HLS, WVSNP and MPEG-

DASH of videos served with mongoose webserver running on Wandboard-quad board.

For MPEG-DASH playback, there is 15sec segment files also available besides the

above mentioned segment files. The above results were taken with board and client

(laptop) connected to the router under WiFi and therent connection. Here are the

comparison graphs presented in the next chapter with consumption results taken for

above defined different scenarios.

• WVSNP vs HLS Playback (2sec, 5sec, 10sec) with Ethernet connection on Mac

• WVSNP vs HLS Playback (2sec, 5sec, 10sec) with Ethernet connection on Win-

dows

• WVSNP vs HLS Playback (2sec, 5sec, 10sec) with Wifi connection on Mac

• WVSNP vs HLS Playback (2sec, 5sec, 10sec) with Wifi connection on Windows

• WVSNP vs HLS Playback (2sec, 5sec, 10sec) with Wifi connection on Ubuntu

using BIG and SMALL video option

• MPEG-DASH (10sec) with Wifi connection on Ubuntu

15

After VOD measurements, LIVE capturing and real-time playing measure-

ments were performed on quad core board. LIVE video was captured with different

segment size with H264 encoding using the BIG video and SMALL video option of

WVSNP and HLS. USB webcam was used for live-capturing by putting it in front

of monitor running ASU reference video in loop. The camera is enabled for captur-

ing using ffmpeg which encodes the video using x264enc(H264) software encoder and

segments the captured stream on-the-way. For HLS, ffmpeg performed segmentation

and it also creates m3u8 file using HLS muxer. While for WVSNP, instead of using

ffmpeg segmenter, ffmpeg command is ran in a unix script loop for each segment

(i.e. camera shuts down after each segment is captured and is turned on again for

the next segment to be captured). This is necessary for WVSNP because WVSNP-

DASH player requires each file in the WVSNP syntax file to be final, which current

version of ffmpeg segmenter is not providing this. Although the power consumption

of WVSNP is lower than HLS as will be shown in the next section, the results could

be much better since ffmpeg keeps on turning on and off camera in case of WVSNP,

while for HLS it is a capturing continously. Here are the test cases for LIVE case:

• WVSNP vs HLS LIVE (2sec, 5sec, 10sec) under Ethernet connection on Mac

• WVSNP vs HLS LIVE (2sec, 5sec, 10sec) under Etherent connection on Win-

dows

• WVSNP vs HLS LIVE (2sec, 5sec, 10sec) under Wifi connection on Mac

• WVSNP vs HLS LIVE (2sec, 5sec, 10sec) under Wifi connection on Windows

• WVSNP vs HLS LIVE (2sec, 5sec) under Wifi connection on Ubuntu

Besides these results on quad core board, some other results were performed

on Wandboard-dual board. All power consumption results were performed while cap-

16

turing the video with different cameras(USB and CSI camera) facing monitor running

BIG reference video using dual board of different segment size (2sec, 5sec and 10sec)

and encoding those segments with different codecs. A comparison is made between

HLS and WVSNP with HLS using MPEG2 container and WVSNP using MP4 con-

tainer. Since ffmpeg currently doesn’t support hardware encoder for iMX6 processors,

results were only taken using software encoder. Nextly, a comparison between USB

camera and CSI camera is shown by capturing WVSNP videos with ffmpeg com-

mands using these two camera with H264(libx264) encoding. Next, WVSNP videos

were captured using CSI and USB camera with gstreamer commands and encoded

using hardware and software H264 encoder. Based on this, different comparisons

were made with CSI and USB camera and, hardware and software H264 encoder.

Next, WVSNP videos were captured using USB camera and CSI camera with videos

encoded using hardware and software MPEG4 and, hardware and software Jpeg en-

coder. Different comparisons plots were created such as comparison between software

and hardware encoder on same camera, a comparison between same encoders on

different cameras.

17

Chapter 7

DATA COLLECTION METHODOLOGIES

There are several software tools that can help to measure the power consump-

tion on board(iMX6 sololite, wandboard-dual) and mobile PC under ubuntu. For

the tools to work on mobile PC, it requires the device running on the battery. One

of the tools, that performs power consumption on mobile PC is called PowerTOP

[45]. PowerTOP is a linux tool which helps to diagnose problems with power con-

sumption and power management [45]. Besides this diagnostic tool, powertop also

has an interactive mode through which user can observe different power management

settings that were not enabled for this linux distribution. If powertop is summoned

without any arguments, it starts by default in interactive mode. After invoking, it

reports which components are expected to be consuming more power, from software

applications to active peripherals in the system. There are several options available

to run powertop, but one of the important one is ”calibrate mode”. Powertop can

track the power consumption and system activity of the device, when the device is

running on a battery. It starts reporting the power estimates after getting enough

measurements [45]. To get authentic measurements, calibrate mode can be used to

enable the calibration cycle. The calibrate cycle will go through USB activities and

workloads. The drawback of this tool is that it only shows power consumption after

it takes five minutes of measurements.

One of the other approach is measuring process/device power consumption

using ”powerstat” tool [17]. This tool monitors the system for 10 sec and keeps on

doing it, until it captures 48 samples in around 480 sec. While it is collecting data,

it provides with the following output fetched from the kernel: time- time it started

18

monitoring, user- shows the cpu usage of processes started by current user, nice- if

a applications is running while powerstat is running and requires lot of cpu time ,

then this value shows up, sys- shows the cpu usage by kernel, idle- the time cpu is in

low power mode or idle state, IO (IO wait)- after cpu sends a signal to a hardware

to ask if something needs to done, cpu waits for the hardware to reply given that

cpu has nothing else to do , run- shows current running process, ctxt/s (context

switch)- shows the number of times cpu paused and resumed running processes per

second, IRQ/s- IRQ is the signal used by hardware devices to talk with the CPU to

get the work done. IRQ per second here shows the number of irq request received

from the hardware, fork- a fork is a method used by currently running process in

which it makes a copy of itself (this shows the number of process forked), exec- it is

function of kernel which replaces the current running processes with the new one(if

the number here says 10, then 10 processes are changed with the new ones in this

particular period), exit- the process terminates by itself after completing its jobv and

lets the kernel know by this command (the number here shows the processes that

exited during this time) and watts- shows the power [17]. The last value ”watt” is

the most important information and it shows the current power consumption rate

(energy unit per second) [17]. After collecting all the samples, it shows ”average”,

”minimum” and maximum” value of each above mentioned field and at the very end

shows the ”average” power consumption plus the standard deviation.

Another alternative is PowerAPI which is a software library to monitor the

energy consumed by the processes [3, 35, 36]. This approach doesn’t require any kind

of external arrangement to measure the energy consumption whereas the above two

software tools requires the device under test to be operating with battery connected

to be able to measure any power or energy [3]. This is fully software-based approach

wherein the energy analytical models outlines the consumption of different hardware

19

components such as CPU, memory to make an estimate. In PowerAPI, each module

in their architecture corresponds to measuring unit for each hardware unit. The

objective of PowerAPI is to present simple and efficient way to measure the energy

consumption of the device [3, 35, 36]. It is very simple because user just has to provide

the process name that needs to be monitored and refresh period (every how many

seconds the results should be displayed). It is also very efficient because user can

select which modules they want in their library to be able to monitor corresoponding

hardware device [3, 35, 36].

Here are some techniques that have been used to measure power consumption

on embedded boards. In the first technique, they talk about power management in the

linux kernel [14]. The presentation describes building blocks of power management

on embedded boards and have shown, how each building blocks can be used to man-

age power. The building blocks are: suspend and resume, CPUidle, Runtime power

management and, frequency and voltage scaling. The suspend operation will take the

system into the lowest power state being supported by the board [14]. Arm archi-

tecture has a assembly code included in the kernel which implements CPU specific

”suspend and resume”. The ”enter-state” function calls CPU specfic suspend-ops

functions for any kind of power management application and it also executes sus-

pend and resume functions for the device. And, userspace can be used to start the

execution of this function. Runtime power managment means that all hardware com-

ponents are turned off which will not be used in the near future from the perspective

of userspace. CPUidle puts the idle CPU into low-power states. Current CPUs have

several sleep states giving different power savings according to the wakeup latencies.

To manage idle, CPU has a feature named ”dynamic tick” feature, which allows to

remove periodic ticks to save power and also to know when the next event is listed for

smarter sleeps. Frequency and voltage scaling building block can be set using cpufreq

20

kernel infrastructure. CPUfreq drivers allows cpu to be set to one frequency. To offer

dynamic frequency scaling, cpufreq core needs to tell the drivers of target frequency.

Now, to decide which frequency to set within the cpufreq policy, cpufreq governors

are used. The cpufreq governors are performance, powersave, ondemand, conserva-

tive and userspace. Performance sets frequency to highest frequency and Powersave

sets frequency to lowest frequency among the borders of scaling-min and scaling-high

frequency. Userpace governor allows the user to set the frequency of the cpu, while

Ondemand sets the frequency depending on the current usage. Conservative gov-

ernor sets the frequency of the cpu just as Ondemand, except that the behavior of

conservative governor is different. In case of conservative, the frequency increases or

decreases gradually depending upon the load rather than increasing to highest value

when there is any kind of load. Another method used to measure power consumption

is using scripts. These scripts contains commands to measure power and then records

them into files [1].

For measuring power on wandboard-dual board, I am using Pico Oscilloscope,

current clamp and oscilloscope probe. Pico oscilloscope captures the data and shows

it on picoscope software on the laptop. I choose using Pico oscilloscope instead of

traditional oscilloscope, because it is cost-effective, it is very small, light weight and

very reliable. Initially, I tried measuring current by connecting a breadboard wire

from the probe to test points on the board while having connected current probe

around the breadboard but this didn’t work because test points weren’t working to

measure current. In second case, breadboard wire was connected from probe to the

test point(only measuring voltage) andy by putting current clamp around the power

cord. Current measurements were not accurate in this case because of insulation of

power cord. So, I stripped the Vin(5V) of the power cord and connected a breadboard

wire in between. I placed current clamp around this newly added breadboard wire,

21

therefore when I plug power cord and start the board it gives the current measurement

for the board. This method of measuring current can be dangerous because it might

burn the board if there is any loose contact, but it is very reliable method with the

tools I have.

If I had time, then instead of stripping the wire and adding a breadboard

wire, I would have used Aim TTI’s Aim I-prober 520, a new type of current probe.

This current probe can measure the current in pcb track. It can also work with any

oscilloscope capable of displaying current from DC to 5 MHz and 10mA to 20A. This

current probe uses a small fluxgate magnetometer which allows to measure field at a

very precise point. Fluxgate magnetometer allows field and thereby current flowing

in the track to be displayed. This probe would allow me to avoid all the hassle I went

through for measuring the current by stripping wires and adding a peeled breadboard

wire.

22

Chapter 8

DATA REPRESENTATION

In this section, I will show the power consumption results performed for different

scenarioes as discussed in chapter6(Test Bed). Before going into results, here is a

figure showing the setup used to perform power consumption results.

Figure 8.1: Power Measurement Setup

The three main components of measuring power consumption are the oscil-

loscope, current clamp and oscilloscope probe as shown in the picture. One side of

each probe and clamp are connected to the oscilloscope to measure current and volt-

age and in turn, oscilloscope is connected to laptop to view the current and voltage

measurements and save it on the laptop. To measure current, clamp is placed around

the wire connected to the board for powering it up, while voltage is measured by

connecting probe to the 5V jack on the board.

23

From the boot time until a video capture is complete, there are four stages.

All measurements that will be presented in this section are captured with these four

stages. Here is a power measurement figure showing all the four stages for a measure-

ment using wandboard-dual.

Figure 8.2: Wandboard Boot Time

The first stage is pre-boot time: during this time the board could be in idle

state as in here or could be in shut-down. The second stage is boot-time: at six

seconds, the board boot-up starts by pressing the ”Reset” button on the board and

this process takes 28 seconds to complete. The third stage is idle time: during this

stage, the board is booted up waiting in idle state at login window to be operated.

And, the final stage is video capture time: at 45 seconds, the video capture is started

either by running a script or by running a command from Putty screen. After looking

at the current consumption of the board at boot-up time for each measurement, I

have made an assumption that the pre-boot time, boot-time and idle time will remain

same, while the video capture time will be different in each measurement. Therefore

from here on, in each measurement result, the video capture current consumption will

be showed.

24

First, here is a current consumption comparison of capturing videos in 2sec,

5sec and 10sec segments for HLS and WVSNP. These video capturing were performed

on USB camera facing a monitor running BIG reference video using ffmpeg commands

and encoding was performed in H264 using libx264 encoder. There are some differ-

ences between HLS and WVSNP: 1) In HLS, as the video segments are being created,

an extended M3U(.m3u8) playlist file is created which contains the metadata of the

video segments created. While in WVSNP, no playlist file is created or required, mak-

ing it hassle free to play segments. 2) In HLS, all the video segments are dependent

on the first video segment. Now, if the first segment is missing, all video segments

after that are unplayable. While, in WVSNP, all video segments are independent

of each other. Therefore WVSNP segments are playable even though when some

video segments in between are corrupted or missing. 3) HLS only supports MPEG2-

Part1 transport stream container, while WVSNP supports all containers such as mp4,

webm, MPEG2 etc. Here mp4 container was only used for WVSNP video storage, but

for future work other containers should be tried for WVSNP videos because power

consumption and size of the segments with other containers might be lesser than mp4

container.

Figure 8.3: HLS vs WVSNP (2sec)

25

Figure 8.4: HLS vs WVSNP (5sec)

Figure 8.5: HLS vs WVSNP (10sec)

The first 10 sec of all the above plots shows the idle-time and then capturing

of the video starts at 1 minute. The current consumption of capturing a WVSNP

video is lesser than capturing a HLS video is visible easily for 2sec and 10sec case,

while for 5sec the current consumption is same for half time of the capture and then

HLS starts performing little bit better than WVSNP.

Now lets look at the current consumption of capturing WVSNP video using

CSI camera and USB camera. The WVSNP videos were captured in 2sec, 5sec, 10sec

segments and 10min(full) using CSI and USB camera facing a monitor running BIG

reference video. These videos were captured using ffmpeg commands and encoding

26

was performed in H264 using libx264 encoder. Below are the plots showing current

comparison between two cameras:

Figure 8.6: USBcam Current vs CSIcam Current (10min)

Figure 8.7: USBcam Current vs CSIcam Current (2sec)

27

Figure 8.8: USBcam Current vs CSIcam Current (5sec)

Figure 8.9: USBcam Current vs CSIcam Current (10sec)

The ”logitech” webcam was used as USB camera and it connects to the

wandboard-dual board through USB peripherial and ”wandcam” camera was used as

CSI(camera serial interface) camera, which connects to the board via flex cable. The

expected result here is that CSI camera will consume lesser current than USB camera.

Since the USB/UVC stack has many components, the raw data collected by USB

camera has to pass through all components which increases the processing time and

besides this there is a software hand-off of raw data on the board for video encoding

to software/hardware encoder which increases the current consumption. While CSI

stack is smaller, therefore the raw data travels faster for video encoding, plus there

28

is no data hand-off required like USB camera since there is already a direct path

created on board to send data from camera module to the encoders. It can be seen

from above plots that video captured using CSI camera has current consumption lesser

than that of usb camera as expected. The most substantial difference between current

consumption can be noted for the comparison plot of 10min and 2sec case. There is

no evident difference between plots of current consumption comparison of segmented

video and full video in this case because ffmpeg has a capability of segmenting the

videos while the capturing is happening without turning off the camera. Besides this,

there are lots of peaks and valleys in segmented video capture plots because of turing

ON/OFF of the camera as here, while the plots of full video are expected to not have

many peaks and valleys, but here they are present. The difference in overall graph of

current consumption comparison between hardware and software encoder will become

very evident in gstreamer video capturing because gstreamer doesn’t have capability

of segmenting a video while it is being captured. Thus, a loop capture is used wherein

gstreamer command turns ON the camera, captures the video for 2sec,5sec or 10sec

segments and turns OFF the camera again and keeps on repeating the capture.

The following results are current consumption comparison of capturing video

encoded by software and hardware H264 through USB camera and CSI camera. The

first set is a comparison of video capturing through CSI camera using hardware and

software H264 encoder. The capturing is performed using gstreamer commands and

encoding is performed using x264enc(software encoder) and vpu encoder (codec=6,

hardware encoder).

29

Figure 8.10: Current Consumption Comparison of Video Capturing through CSI-
cam Using Hardware and Software H264 (2sec)

Figure 8.11: Current Consumption Comparison of Video Capturing through CSI-
cam Using Hardware and Software H264 (5sec)

30

Figure 8.12: Current Consumption Comparison of Video Capturing through CSI-
cam Using Hardware and Software H264 (10sec)

Figure 8.13: Current Consumption Comparison of Video Capturing through CSI-
cam Using Hardware and Software H264 (10min)

The plot shows that the current consumption of video captured using hard-

ware encoder is lesser than the software encoder in all 4 cases. It can be seen from the

current consumption plots of segmented video captures that there are lots of highly

significant peaks and valleys. These are due to the turning ON/OFF of the camera

as mentioned before. While for full video, there are less significant peaks and valleys

which are not due to any camera turning ON/OFF, they would be due to the pro-

cessing of the data. Another important factor to note here is that, the gap between

the current consumption of video encoded through hardware and software encoder

31

gets bigger with increasing segment size. As soon as the segment size increases,

the processing in a loop increases making the hardware encoder more efficient and

thereby making it less current consuming. While for software encoder, as soon as

the processing in a loop increases, the average current consumption also increases.

Hardware encoding is performed on dedicated processor such as GPU for processing

video data while software encoder uses board’s CPU and therefore the load on CPU

is higher when using software encoder and in turn makes current consumption higher

than hardware encoder. Dedicated processors are more efficient because they rely on

accelerated, per-function instruction which are job-specific. GPU are highly parallel

by definition and video encoding gets benifited a lot by parallelization. Therefore sig-

nificant difference in current consumption can be seen between hardware and software

encoder.

The second set of results are the comparison of video capturing through USB

camera and encoding using hardware and software H264 encoder. The capturing

is performed using gstreamer commands through USB camera which is placed fac-

ing a monitor playing BIG reference video. The video encoding is performed using

x264enc(software encoder) and vpu encoder (codec=6, hardware encoder).

Figure 8.14: Current Consumption Comparison of Video Capturing through USB-
cam Using Hardware and Software H264 (2sec)

32

Figure 8.15: Current Consumption Comparison of Video Capturing through USB-
cam Using Hardware and Software H264 (5sec)

Figure 8.16: Current Consumption Comparison of Video Capturing through USB-
cam Using Hardware and Software H264 (10sec)

Figure 8.17: Current Consumption Comparison of Video Capturing through USB-
cam Using Hardware and Software H264 (10min)

33

Since USB cameras are power hungry, a upward shift in the current consump-

tion plots can be seen in all of the cases here compared to the CSI camera plots. There

is some kind of compression technique applied to the raw data while going through

the USB stack, due to which there is no apparent difference seen between the current

consumed by hardware or software encoding . The current consumed by USB camera

is such that it is shielding the efficiency of hardware encoding. The plot shows that

the current consumption of video capturing using USB camera and encoding with

hardware encoder is lower compared to encoding with software encoder for 2sec, 5sec

and 10min case. For 10sec, the current consumption of hardware encoder is higher

initially and then lowers down from half way till the end. Another important factor

to note is that the difference in current consumption is very substantial for 10min

case (current consumped by hardware encoder is considerably lower than software

encoder) , while for segmented video capture the difference in current consumption

of hardware and software encoder is very less as mentioned above.

The third set is the current consumption comparison of video captured using

CSI and USB camera and encoded by hardware H264 encoder. The capturing is

performed using gstreamer commands through CSI and USB cameras, placed in-

front of monitor running BIG referenc video. The video is encoded using vpu encoder

with codec = 6.

34

Figure 8.18: Current Consumption Comparison of Video Encoded Using Hardware
H264 and Captured Using CSI and USBcam (2sec)

Figure 8.19: Current Consumption Comparison of Video Encoded Using Hardware
H264 and Captured Using CSI and USBcam (5sec)

35

Figure 8.20: Current Consumption Comparison of Video Encoded Using Hardware
H264 and Captured Using CSI and USBcam (10sec)

Figure 8.21: Current Consumption Comparison of Video Encoded Using Hardware
H264 and Captured Using CSI and USBcam (10min)

It is very clear from the above plots that video captured using CSI camera

and encoded with hardware encoder consumes very less power compared to video

captured using USB camera also encoded with hardware encoder. It can be seen that

the current consumption of video encoded with hardware encoder is getting more

efficient(i.e. it is consuming less current as the segment size increases) and this gap

is most apparent for the full video case. As mentioned earlier, USB camera does a

software hand-off of raw data to hardware encoder, while CSI camera has a direct

36

path to the hardware encoder and therefore there is a big gap in the average current

consumption.

The last set of data here is the current consumption comparison of video

captured using CSI and USB camera and encoded by software H264 encoder. The

capturing is performed using gstreamer commands through CSI and USB cameras,

placed in-front of monitor running BIG reference video. The video is encoded using

x264 encoder.

Figure 8.22: Current Consumption Comparison of Video Encoded Using Software
H264 and Captured Using CSI and USBcam (2sec)

Figure 8.23: Current Consumption Comparison of Video Encoded Using Software
H264 and Captured Using CSI and USBcam (5sec)

37

Figure 8.24: Current Consumption Comparison of Video Encoded Using Software
H264 and Captured Using CSI and USBcam (10sec)

Figure 8.25: Current Consumption Comparison of Video Encoded Using Software
H264 and Captured Using CSI and USBcam (10min)

The above graphs shows that the current consumption of video capturing

through CSI camera is less current consuming than USB camera. The current con-

sumption graph of video capturing through USB camera with software encoding

hasn’t shifted a bit from the graph with hardware encoding, while the graph of CSI

camera has shifted upwards by 1mA. As mentioned earlier, USB camera has do a soft-

ware hand-off and is very power hungry, therefore the efficiency of hardware encoder

38

is not visible and the average consumption is similar. For CSI camera, the raw data

from CSI camera does a hardware hand-off to the software encoder on the board, but

it is not that efficient as hardware encoding.

.

After different comparisons with H264 encoders, there were some results

collected with other encoders. The next set of results are the comparison of cur-

rent consumption of capturing video through jpeg and mpeg4 hardware and software

encoder using USB and CSI camera. The first encoder is a avi (Audio Video Inter-

leaved) encoder. The videos were captured using gstreamer command and encoded

using jpegenc(software encoder) and vpuenc(codec=0, hardware encoder).

Figure 8.26: Current Consumption Comparison of Capturing Video through Hard-
ware and Software avi Encoder (2sec)

39

Figure 8.27: Current Consumption Comparison of Capturing Video through Hard-
ware and Software avi Encoder (5sec)

Figure 8.28: Current Consumption Comparison of Capturing Video through Hard-
ware and Software avi Encoder (10sec)

The current consumption of video captured through hardware encoder is

expected to be lower than that of software encoder because hardware-based encoders

have dedicated,limited-purpose processors such as GPU to run a specific algorithms

while the general-purpose processors which runs software encoders are designed to

perform several other functions. Here for avi encoder, the video encoded by hardware

encoder consumes more current compared to software encoder. The results are not as

expected because the encoding performed by hardware avi encoder is not as efficient

as it is with software encoder. The second encoder for current consumption

40

comparison between hardware encoder and software encoder is mpeg4. The videos

were captured using ffmpeg commands and encoded with mpeg4(software encoder)

and vpuenc(codec=12, hardware encoder).

Figure 8.29: Current Consumption Comparison of Capturing Video through Hard-
ware and Software mpeg4 Encoder (2sec)

Figure 8.30: Current Consumption Comparison of Capturing Video through Hard-
ware and Software mpeg4 Encoder (5sec)

41

Figure 8.31: Current Consumption Comparison of Capturing Video through Hard-
ware and Software mpeg4 Encoder (10sec)

The current consumption of hardware mpeg4 encoder is higher than software

mpeg4 encoder just as above with avi encoder. The results of both encoders are not

good as were with H264, where video encoded by hardware encoder consumed lesser

current than software encoder in all different scenarios. For future work, there is

retrospect required on why hardware encoders with USB cameras are not performing

efficiently. The comparison between hardware and software encoder was also per-

formed with CSI camera but for 2sec segments only, to see if encoders behave the

same as with USB camera. Here is the comparison of hardware vs software encoder

for avi.

42

Figure 8.32: Current Consumption Comparison of Capturing Video through Hard-
ware and Software avi Encoder (2sec)

The current consumption of hardware encoder is lower compared to software

encoder for avi, and the results are very encouraging compared to the results obtained

with USB camera. Although the hardware encoder has out performed the software

encoder, the gap between the current consumption of these encoders with CSI camera

capture is not substantial as it was with H264 encoder. It should be noted that these

results have shifted 2mA below the results of USB camera. One of the reason, this

results looks better is due to the use of CSI camera. Since the CSI camera’s stack is

smaller and there is a direct path from camera module to the GPU , the data gets

faster for the processing. Secondly, the software encoding of CSI raw data hasn’t

changed a bit except for shifting downward, while hardware encoding of CSI raw

data is very efficient than hardware encoding of USB raw data. These are the two

reasons for good results. The second encoder for comparison of hardware and software

encoder is mpeg4.

43

Figure 8.33: Current Consumption Comparison of Capturing Video through Hard-
ware and Software mpeg4 Encoder (2sec)

The current consumption of capturing video with CSI camera and encoding

with hardware encoder is lower than that of with software encoder for mpeg4 case.

Just as for avi case, here also the software encoding of CSI raw data is very similar

to USB raw data, except that this has shifted down. While the current consumption

graph of hardware encoding of CSI raw data is very suppressed and efficient com-

pared to the graph of hardware encoding of USB raw data. Here also, the current

consumption has shifted down by more than 2mA.

The next set of results are the playback of HLS and WVSNP videos under

different browsers and different network scenarios on JWplayer and WVSNP player.

As mentioned in the TEST BED section, before taking results, a reference video was

created and then these videos were transcoded into HLS and WVSNP videos. The

first set of results are playback of WVSNP and HLS videos on Mac. On Mac systems,

by default Safari web-browser uses HLS and so when playback is performed of HLS

videos on WVSNP player, the web-browser starts using native HLS and since it is

properitary I don’t know what processing is happening at the backend. Therefore

for fair comparison, HLS is played on JWplayer6 on Chrome web-browser on Mac.

WVSNP videos were played on WVSNP player on chrome web-browser. For LIVE

44

capturing and real-time playing to work, the client and board needs to be connected.

Since DHCP would provide different IP address everytime the board tries to connect

after a reboot, a router with a static IP is set. And a board is also set with a static

IP address. In the first case, board is connected to the router via ethernet and client

is connected via wifi to the router.

Figure 8.34: Current Consumption of Playback of WVSNP and HLS Videos on Mac
(2sec, Ethernet)

Figure 8.35: Current Consumption of Playback of WVSNP and HLS Videos on Mac
(5sec, Ethernet)

45

Figure 8.36: Current Consumption of Playback of WVSNP and HLS Videos on Mac
(10sec, Ethernet)

Figure 8.37: Current Consumption of Playback of Progressive WVSNP Video on
Mac (Ethernet)

The current consumption of WVSNP is higher than HLS during the first five

minutes of the plot, because WVSNP buffers all the segments while it is playing.

While in HLS, it buffers some segments while it is playing the video, then it stops

buffering and then starts again. But after the WVSNP buffering is complete, it is

consuming lesser current than HLS in all three cases. The last plot shows the current

consumption comparison of progressive(i.e. it is a playback of direct 10 minute video)

WVSNP video and 10 sec segmented video. It can be seen from this graph that

46

progressive download video consumes more current than segmented video and other

segmented videos results also does better than progressive download video. The

next set of results are playback on WVSNP and HLS videos on Windows. As above,

board is connected to the router via ethernet and client is connected via wifi to the

router.

Figure 8.38: Current Consumption of Playback of WVSNP and HLS Video on
Windows (2sec, Ethernet)

Figure 8.39: Current Consumption of Playback of WVSNP and HLS Video on
Windows (5sec, Ethernet)

47

Figure 8.40: Current Consumption of Playback of WVSNP and HLS Video on
Windows (10sec, Ethernet)

Figure 8.41: Current Consumption of Playback of Progressive WVSNP Video on
Windows (Ethernet)

As above, the current consumption of WVSNP is higher than HLS during the

first few minutes of the capture because WVSNP buffers all the segments during that

time and then the current consumption reduces below HLS. For HLS, all segments

are not buffered as WVSNP, here some initial segments are buffered, then it stops

buffering and resumes it again after some pause. The current consumption graph for

WVSNP and HLS are very close compared to the Mac. The last plot is the current

consumption comparison of progressive download and WVSNP 10 second playback.

48

It can be seen that the current consumption of progressive download is higher than

WVSNP segment videos playback as above. The next set of results are playback

on WVSNP and HLS videos on Mac, but this time board and client both are connected

to the router via wifi.

Figure 8.42: Current Consumption of Playback of WVSNP and HLS Video on Mac
(2sec, Wifi)

Figure 8.43: Current Consumption of Playback of WVSNP and HLS Video on Mac
(5sec, Wifi)

49

Figure 8.44: Current Consumption of Playback of WVSNP and HLS Video on Mac
(10sec, Wifi)

Figure 8.45: Current Consumption of Playback of Full WVSNP and 10sec Seg-
mented WVSNP Video on Mac (Wifi)

The current consumption of playing WVSNP video is lower over the whole

capture than HLS in both 2sec and 5sec case, while in the 10sec case, the current

consumption is higher only during the buffering time and then current consumption

is again lower than HLS. And, last plot is comparison of progressive download and

WVSNP 10 second playback on Mac. Again, the current consumption of segment

video playback is higher during the buffering time and then the consumption remains

lower than progressive download.

50

The last set of results are playback of WVSNP and HLS videos on Windows and here

board and client like above are connected to the router via wifi.

Figure 8.46: Current Consumption of Playback of WVSNP and HLS Video on
Windows (2sec, Wifi)

Figure 8.47: Current Consumption of Playback of WVSNP and HLS Video on
Windows (5sec, Wifi)

51

Figure 8.48: Current Consumption of Playback of WVSNP and HLS Video on
Windows (10sec, Wifi)

Figure 8.49: Current Consumption of Playback of Progressive WVSNP Video on
Windows (Wifi)

The current consumption of WVSNP is little bit higher than HLS in 2sec

and 5sec, but the graph follows very closely to HLS over the capture. While in 10sec

case, the current consumption is only higher during buffering time and then again

it is lower than HLS over the capture. And the last plot shows the comparison of

WVSNP progressive download and WVSNP 10 seconds playback on Windows.The

current consumption of WVSNP 10 second segments playback is lower than progres-

sive download over the capture.

52

Here are the results of live capturing plus real-time playing of WVSNP and

HLS videos on Windows and Mac. In the first case, the board is connected to the

router through ethernet and client is connected through WifI to the router. For

live-capturing plus real-time playing case, the results were taken for 5sec case only.

The encoding is done using ffmpeg libraries and as before in playback, HLS videos

are played back on Jwplayer and WVSNP videos are played on WVSNP player. The

LIVE capturing is performed by placing USB camera in front of a monitor continously

running a BIG reference video.

Figure 8.50: Current Consumption of Live Capturing + Real-Time Playing of
WVSNP and HLS Video on Windows (Ethernet)

53

Figure 8.51: Current Consumption of Live-Capturing + Real-Time Playing of
WVSNP and HLS Video on Mac (Ethernet)

Before WVSNP player starts playing back the videos, it waits for three seg-

ments to be ready. While playing back the videos, player keeps on playing the video

until the next video segments get before the last segment is completed playing. If the

current segment is completed and next one is not eady yet, then player waits again

for three segments before resuming playback again. For HLS playback, the JWPlayer

starts playback as soon the first segment is ready and in case if again the segments

are not ready, it buffers one segment and resumes playback again. In case of HLS,

the video encoding was fast enough to have videos ready before the current segment

completed playing, therefore the live-capturing and real-time playing gets completed

almost on time. While for WVSNP case, due to slow encoding, next segments are

never ready, therefore the player keeps on pausing to get three segments before start-

ing playback again. Another important factor to note here is that, although WVSNP

and HLS are using ffmpeg libraries, HLS is using ffmpeg’s capabilities of segmenting

the video while capturing is on. For WVSNP, ffmpeg loop capture is used wherein

the each time the camera is turned ON, capturing performed and again the camera

is turned OFF. Due to loop capture, plenty of time is wasted in turning ON/OFF

54

of the camera. The current consumption of live-capturing and real-time playing of

WVSNP and HLS videos on Windows and Mac are almost same. It is very hard to

see from these plots if WVSNP current consumption is higher or lower than HLS,

therefore here are those two plots again with trendline, and this time the plot only

shows the comparison until HLS capture.

Figure 8.52: Current Consumption of Live Capturing + Real-Time Playing of
WVSNP and HLS Video on Windows with Trendline (Ethernet)

Figure 8.53: Current Consumption of Live-Capturing + Real-Time Playing of
WVSNP and HLS Video on Mac with Trendline (Ethernet)

It is now very clear from this graph that the current consumption of WVSNP

live-capturing plus real-time playing on Windows and Mac is lower than HLS.

After live-capturing plus real-time playing in ethernet connection case, here are the

55

results of live-capturing plus real-time playing of WVSNP and HLS videos on Win-

dows and Mac for Wifi connection case. The encoding is done using ffmpeg libraries

and, board and client are connected to the router via wifi.

Figure 8.54: Current Consumption of Live-Capturing + Real-Time Playing of
WVSNP and HLS Video on Windows (Wifi)

Figure 8.55: Current Consumption of Live-Capturing + Real-Time Playing of
WVSNP and HLS Video on Mac (Wifi)

The results are very clear for wifi connection case compared to ethernet case above.

Here, the current consumption of live-capturing and real-time playing of HLS videos

is higher than WVSNP videos over the capture.

56

After playback and, live-capturing and real-time playing on Windows and

Mac, here are some results performed on Ubuntu. All of the results performed until

now were all with BIG video option, so in ubuntu for both playback and, live capturing

and real-time playing, results were performed with BIG and SMALL video option.

The difference between SMALL and BIG video option is in the resolution, frames per

second and bitrate. It is expected that videos of SMALL option will consume less

current when playing back or live capturing. For all ubuntu tests, board and the client

are connected to the router via Wifi connection. The WVSNP videos were played on

WVSNP player on chrome web-browser and HLS videos were played on JwPlayer6 on

chrome web-browser. First, here are the current consumption comparison of playing

back a WVSNP and HLS video of BIG option.

Figure 8.56: Current Consumption of Playbacking HLS and WVSNP BIG Videos
on Ubuntu (2sec)

57

Figure 8.57: Current Consumption of Playbacking HLS and WVSNP BIG Videos
on Ubuntu (5sec)

Figure 8.58: Current Consumption of Playbacking HLS and WVSNP BIG Videos
on Ubuntu (10sec)

As for the playback case for Windows and Mac, here for Ubuntu also, WVSNP

current consumption is higher at the beginning since it buffers all the segments while

playing it. The current consumption of WVSNP is very high compared to HLS for

5sec and 10sec case. While for 2sec, the current consumption of WVSNP is higher

than HLS at the start and then it reduces down below the current consumption of

HLS. Since Ubuntu operating system is very power consuming, it has impacted a lot

on WVSNP videos. The WVSNP player is required to be more efficient for playback

58

on Ubuntu to reduce the current consumption. Now, here are the graphs of playing

back WVSNP and HLS of SMALL option.

Figure 8.59: Current Consumption of Playbacking HLS and WVSNP SMALL
Videos on Ubuntu (2sec)

Figure 8.60: Current Consumption of Playbacking HLS and WVSNP SMALL
Videos on Ubuntu (5sec)

59

Figure 8.61: Current Consumption of Playbacking HLS and WVSNP SMALL
Videos on Ubuntu (10sec)

The results with SMALL option were better than BIG option for all segment

option. For 5sec and 10sec case, the current consumption of WVSNP is lower than

HLS over the whole capture. While for 2sec, WVSNP consumes more at the start

and then starts consuming less than HLS by the end of the capture just as for BIG

2sec playback.

Here are some live capturing results that were performed for both BIG and

SMALL video option. The first set are the live capturing and real-time playing of

BIG option. The capturing is performed using ffmpeg commands and encoding is

done through H264 encoder.

60

Figure 8.62: Current Consumption of Live Capturing and Real-Time playing of
BIG WVSNP and HLS Videos on Ubuntu (2sec)

The current consumption of HLS is higher than WVSNP for the capture.

It can be noted that HLS completes both live capturing and real-time playing much

faster than WVSNP. As described earlier, ffmpeg commands were used for live cap-

turing, but here ffmpeg’s capabilities of segmenting videos while capturing were used

to avoid turning ON/OFF of the camera for every segment. Secondly, JwPlayer is

used for real-time playing the HLS videos. The player starts playback as soon as the

first segment is available, and if during the playback, next segment is not ready yet,

it will wait for it to be ready and then resumes it again. For WVSNP, ffmpeg loop

capture is used, therefore camera is turned ON/OFF for each segment capture. Since

camera is turned ON/OFF for each capture, it takes extra time to get segment ready

for playback. Secondly, WVSNP player is designed to wait for 3 segments before a

playback can start. If the player completes playing the current segment before the

next segment is ready, the player again waits for 3 segments to be ready, before re-

suming the playback. This is the second reason, WVSNP has taken way more time

than HLS to complete. Now, here is the live capturing and real-time playing of

WVSNP and HLS videos of SMALL option.

61

Figure 8.63: Current Consumption of Live Capturing and Real-Time Playing of
SMALL WVSNP and HLS Video on Ubuntu (2sec)

Figure 8.64: Current Consumption of Live Capturing and Real-Time Playing of
SMALL WVSNP and HLS Videos on Ubuntu (5sec)

First, live capturing and real-time playing of WVSNP video with SMALL

option completes earlier than WVSNP video with BIG option. Since the resolution

and frames per second of WVSNP videos are lower with SMALL option, the encoding

became faster and therefore it completed little earlier. Here also, the current con-

sumption of WVSNP is lower than HLS in both 2sec and 5sec cases. Now, lets

look at the comparison of live capturing and real-time playing of WVSNP video of

BIG option with WVSNP video of SMALL option and HLS video of BIG option with

HLS video of SMALL option.

62

Figure 8.65: Current Consumption of Live Capturing and Real-Time Playing of
BIG WVSNP Video and SMALL WVSNP Video (2sec)

Figure 8.66: Current Consumption of Playbacking HLS Video on Ubuntu and Play-
backing HLS Video on Windows (5sec)

The current consumption of WVSNP video with BIG option is higher than

WVSNP video with SMALL option as expected and same follows for HLS. It can be

seen from the WVSNP comparison plot, that SMALL option videos completes earlier

than BIG optionas talked before. For HLS, SMALL video option completes just a

second earlier than BIG option, but there is a substantial difference in the current

consumption.

The last result shows the current consumption comparison of playing back

a 10sec segments of MPEG-DASH with WVSNP 10 sec segments on Ubuntu. Here,

63

MPEG-DASH videos were played on DASH player on chrome and WVSNP videos

on WVSNP player also on chrome. Currently, since live capturing is not working for

MPEG-DASH, only playback results are shown.

Figure 8.67: Current Consumption Comparison of Playbacking WVSNP Video and
MPEG-DASH Video(10sec)

The current consumption of playing BIG WVSNP video is higher than BIG

MPEG-DASH videos. For MPEG-DASH, mp4box is used to create videos, while

for WVSNP ffmpeg was used to create videos. This would be one of the reasons of

MPEG-DASH performing better than WVSNP over the whole capture.

The results shown here were taken under same setup but at different times

and different temperature. Some of the results were taken in lab environment where

the temperature is same over the whole day and some were taken by me at my home

where temperature is different depending upon time of the day. To ensure reliability

of the data, I took same result at lab and then repeated it at home at different times

of the day. All the results of the test performed were found to be same. This shows

that there is no impact of temperature or time of the day on the device and thereby

the obtained results. For a next step, I will be taking one of the best result from

above and use a more sensitive current clamp to perform measurement at different

times of the day to ensure the accuracy of the measurement.

64

Chapter 9

RECOMMENDATION

There are some recommendations that I would like to make based upon the

research work I performed.

• Currently, gstreamer is capable of capturing video encoded with both software

encoder and hardware encoder, while ffmpeg is only capable of capturing video

encoded with software encoder. Ffmpeg has a capability of segmenting the

videos while it is being captured without any loops and scripts, while gstreamer

requires scripts to capture in segments. Furthermore, gstreamer is not as power

efficient as ffmpeg while capturing the videos. Since ffmpeg is very beneficial,

there is some research required in creating a wrapprer for ffmpeg which would

make it possible to grab data encoded by hardware encoder through ffmpeg

also.

• The results for hardware and software encoder comparison for avi and mpeg4

with video captured using USB camera were not as expected. The power con-

sumption of encoding video using software jpeg and mpeg4 encoders through

USB camera is somehow performing better than power consumption of encod-

ing video using hardware jpeg and mpeg4 encoders. Therefore, there is a need

to look at the code of mpeg4 and avi software encoders to figure out problems

and make it more efficient.

• The live capturing and real-time playing of HLS completes way before WVSNP

completes. These happens mainly due to the two reasons: 1) Since ffmpeg seg-

menter is used for HLS capture, but ffmpeg loop capture is used for WVSNP

65

capture. 2) The player used for HLS playback buffers only one segment and

starts playback. In case, if the playback picks up with live-capture, the HLS

player only buffers 1 segment and resumes again. While WVSNP player buffers

for 3 segments and therefore, if playback picks up with the live-capturing here,

the WVSNP player buffers next 3 segments before resuming again. Therefore

there is a need for a standalone capture application created, which will speed

up video capture file preparation during capture. So a 10 minute live video cap-

ture doesn’t take 15 minutes to capture and playback. These lost compuation

time can be used for Live capture Parallelization, threaded capturing and file

preparation, HW capture.

• It is recommended to use WVSNP than HLS because it consumes lesser current

for all cases for live capturing and real-time playing and playback. Besides this,

HLS is limited to only one container (MPEG2-TS), while WVSNP videos can

be encapsulated into MP4, AVI, MPEG2-TS and others. WVSNP is easier

to implement for server node and different OSes as it is playable on different

browsers(Chrome, Windows Internet Explorer, Firefox), while HLS is either

playable on Safari or on Chrome. WVSNP is backward compatible, while HLS

might not work with older version of browsers. And lastly, WVSNP doesn’t

require any type of browser modification.

• The current consumption of USB camera is higher than CSI camera for any

hardware or software encoders. Since USB camera stack is big, the data goes

through lots of block and it also has a software hand-off of the data on the

board. While CSI camera’s stack is smaller and it has a direct path from the

camera module on the board to the encoders. Therefore, CSI camera is highly

recommended camera.

66

• There are two types of CSI(camera serial interface) camera’s available(Parallel,Serial).

Here, serial camera was used for measurements. Some power consumption re-

sults are required to be taken with parallel camera to draw a comparison be-

tween them. This comparison will make it clear on which camera is efficient

among CSI camera’s.

• The measurements were performed with three different segment length(2sec,

5sec and 10sec). Based on the results, 10sec segment is the recommended seg-

ment length. Since there is lots of fluctuations in the bandwidth, and with

this if small segment sizes are used, there will be lots of flickering seen in the

playback. Flickering occurs because adaptation of increase or decrease in video

quality is never smooth due to the small segment size. With bigger segment

size, if the video quality or segment length changes, adaptation will be smooth

before the next segment is played. And, with bigger segment size, the coding

efficiency also increases. Therefore 10sec is a recommended segment size.

• Progressive download consumes more power than segmented videos playback.

Therefore segmented videos are recommended to be used than using a big video.

Here is the reasoning: A progressive is a big file in a node. Now this big file

needs more energy to just open it before reading. While WVSNP requests

HTTP server to send small segments. These segments are not required to be

open, they just need to be sent. With progressive download, the file is opened

and a small portion of a file(byte-by-byte) is sent. Now, if more portion(bytes)

are required, the files has be opened over and over again and has to seek the

position it was at some known point in the file. Therefore this opening and

closing of big files and remembering the position of known point in the file

consumes power.

67

• There are some implications with using BIG and SMALL video option. The

difference between BIG and SMALL option is in the resolution, framerate and

bitrate of the video. It is recommended to use BIG video option for better

quality if the bandwidth is high, while SMALL video option is better for use if

the bandwdith is lower.

• There are some segment length effects on LIVE and VOD. With the increase in

the segment length, the number of segments also decreases and due to this the

current consumption graph starts to settle down at a value although there are

peaks and valleys here also. With smaller segment size, the number of segments

are higher and therefore if a segment is played, the current consumption rises

but even before it settles, the segment is completed playing and so graph goes

down and this keeps on repeating till the end. While in case of LIVE video,

with the increase in segment size, HLS current consumption doesn’t changes,

but WVSNP current consumption gets little bit higher.

• There are many effects of BIG and SMALL video option on LIVE and VOD. In

case of VOD, with BIG option the current consumption of WVSNP is higher

than HLS with a huge gap between them. Now with SMALL video option the

current consumption of both WVSNP and HLS has shifted down and the gap

has been reduced to micro amps. And, the current consumption of WVSNP

has been lower than HLS with SMALL video option. In case of LIVE, with

BIG video option HLS completes very early than WVSNP and the current

consumption of both are higher. With SMALL video option, HLS completes

at the same time while WVSNP completes earlier than before since with lower

video quality the encoding and playback got easier to cope with.

68

• Since LIVE capturing is not possible with MPEG-DASH for rightnow, there is

only a comparison made between MPEG-DASH, WVSNP and HLS with play-

back of 10sec segments. And this result shows that MPEG-DASH outperforms

both WVSNP and HLS. The results to look at will be the live-capturing of

WVSNP, HLS and MPEG-DASH.

69

Chapter 10

CONCLUSION AND FUTURE WORK

The power analysis was performed to predict the node’s durability when it

is battery operated and based on this, some recommendations were provided. To

perform power analysis, I created a small optimized image to boot the Wandboard

DUAL/QUAD board and perform capture and playbacks. There are three types of

measurement taken where some were taken with Wandboard dual board and some

with quad board. First, playbacks were performed of WVSNP and HLS and MPEG-

DASH using quad board which runs a moongoose webserver and it serves all players

and videos. The playback results were taken when board connects to a router via

Ethernet or Wifi connection. Second, live-capturing and real-time playing of WVSNP

and HLS videos were performed for BIG and SMALL video option also using quad

board. And, finally there were some results performed that were only capture, and

these were performed on dual board. The results where videos were captured were

performed using gstreamer or ffmpeg commands. Based on this results, here are some

recommendations: 1) It is recommended to use ffmpeg instead of gstreamer since it

is power efficient. A wrapper is required so that ffmpeg would be able to encode raw

data using hardware encoder. 2) After performing results with USB and CSI camera,

I found that CSI camera should be used, because the capturing is very efficient and

besides that camera module on the board has a direct path to the GPU for process-

ing. 3) After comparing both hardware and software H264, it is highly beneficial to

use hardware H264, since it suppresses the current consumption manifold. 4) Full

video(without segments) as well as video in segments were played back and based on

that it is recommended to use segments because progressive download consumes very

70

high power compared to segment playback. 5) And lastly, BIG and SMALL video

options are both important as they provide a adaptive streaming options in case of

LIVE capture and VOD. If network bandwidth is high, it is still recommended to

use SMALL video option, since it consumes lesser power and it would avoid buffering

issues.

Although the power consumption obtained with serial CSI camera were ex-

ceptionally good, I would like to look at the results obtained with parallel CSI camera,

since it might be even more efficient. Secondly, I have used H264 encoder for encod-

ing the videos for both HLS and WVSNP and the encoding has been better than

other encoders, but it would be very interesting to see if the newer version i.e. H265

encoder is suitable for WVSNP power requirements.

An exciting future research direction is to examine visual wireless sensor net-

works in combination with modern access networks, such as fiber-wireless networks

[4, 11, 25, 31, 48]. Importantly, in the context of embedding of visual sensor net-

works in access networks, and the larger Internet of Things, it will be important to

carefully consider the characteristics of the video traffic [39, 42]. Quality of service

mechanisms will likely be needed to ensure timely delivery of the video data over the

multiple networks hops [40, 15].

71

REFERENCES

[1] “Android power management on i.mx6dq/dl”, https://community.freescale.
com/docs/DOC-93884/version/1 (2012).

[2] Akyildiz, I. F., T. Melodia and K. R. Chowdhury, “A survey on wireless multi-
media sensor networks”, Computer networks 51, 4, 921–960 (2007).

[3] Aurlien Bourdon, R. R., Adel Noureddine and L. Seinturier, “Powerapi: A soft-
ware library to monitor the energy consumed at the process-level”, (2012).

[4] Aurzada, F., M. Levesque, M. Maier and M. Reisslein, “Fiwi access networks
based on next-generation pon and gigabit-class wlan technologies: A capacity
and delay analysis”, (2013).

[5] Bachir, A., M. Dohler, T. Watteyne and K. Leung, “Mac essentials for wire-
less sensor networks”, Communications Surveys Tutorials, IEEE 12, 2, 222–248
(2010).

[6] Blum, R. S. and Z. Liu, Multi-sensor image fusion and its applications (CRC
press, 2005).

[7] Bouaziz, S., M. Fan, A. Lambert, T. Maurin and R. Reynaud, “Picar: experimen-
tal platform for road tracking applications”, in “Intelligent Vehicles Symposium,
2003. Proceedings. IEEE”, pp. 495–499 (2003).

[8] Bramberger, M., R. Pflugfelder, B. Rinner, H. Schwabach and B. Strobl, “In-
telligent traffic video sensor: Architecture and applications”, in “Proceedings of
the Telecommunications and Mobile Computing Workshop”, (Citeseer, 2003).

[9] Campbell, J., P. B. Gibbons, S. Nath, P. Pillai, S. Seshan and R. Sukthankar,
“Irisnet: an internet-scale architecture for multimedia sensors”, in “Proceedings
of the 13th annual ACM international conference on Multimedia”, pp. 81–88
(ACM, 2005).

[10] Chen, P., S. Oh, M. Manzo, B. Sinopoli, C. Sharp, K. Whitehouse, O. Tolle,
J. Jeong, P. Dutta, J. Hui, S. Schaffert, S. Kim, J. Taneja, B. Zhu, T. Roosta,
M. Howard, D. Culler and S. Sastry, “Experiments in instrumenting wireless
sensor networks for real-time surveillance”, in “Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on”, pp. 3128–3133
(2006).

[11] Coimbra, J., G. Schütz and N. Correia, “A game-based algorithm for fair band-
width allocation in fibre-wireless access networks”, Optical Switching and Net-
working 10, 2, 149–162 (2013).

[12] DIAS, F., P. CHALIMBAUD, F. BERRY, J. SEROT and F. MARMOITON,
“Embedded Early Vision systems: implementation proposal and Hardware Ar-
chitecture”, (Cognitive System for interactive sensor(COGIS 2006), 2006).

72

https://community.freescale.com/docs/DOC-93884/version/1
https://community.freescale.com/docs/DOC-93884/version/1

[13] Dong, W., C. Chen, X. Liu and J. Bu, “Providing os support for wireless sensor
networks: challenges and approaches”, Communications Surveys & Tutorials,
IEEE 12, 4, 519–530 (2010).

[14] Electrons, F., “Power management”, http://free-electrons.com/doc/
power-management.pdf (2011).

[15] Fidler, M., “Survey of deterministic and stochastic service curve models in the
network calculus”, Communications Surveys & Tutorials, IEEE 12, 1, 59–86
(2010).

[16] Friedman, J., D. Lee, I. Tsigkogiannis, S. Wong, D. Chao, D. Levin, W. Kaiser
and M. Srivastava, “Ragobot: A new platform for wireless mobile sensor net-
works”, in “Proceedings of the First IEEE international conference on Dis-
tributed Computing in Sensor Systems”, pp. 412–412 (Springer-Verlag, 2005).

[17] Gayan, “Powerstat: Power consumption calculator for ubuntu linux”, http:
//www.hecticgeek.com/2012/02 (2012).

[18] Haas, C., J. Wilke and V. Stöhr, “Realistic simulation of energy consumption in
wireless sensor networks”, in “Wireless Sensor Networks”, pp. 82–97 (Springer,
2012).

[19] He, Z., Y. Liang, L. Chen, I. Ahmad and D. Wu, “Power-rate-distortion anal-
ysis for wireless video communication under energy constraints”, Circuits and
Systems for Video Technology, IEEE Transactions on 15, 5, 645–658 (2005).

[20] He, Z. and D. Wu, “Resource allocation and performance analysis of wireless
video sensors”, Circuits and Systems for Video Technology, IEEE Transactions
on 16, 5, 590–599 (2006).

[21] Hengstler, S., D. Prashanth, S. Fong and H. Aghajan, “Mesheye: A hybrid-
resolution smart camera mote for applications in distributed intelligent surveil-
lance”, in “Information Processing in Sensor Networks, 2007. IPSN 2007. 6th
International Symposium on”, pp. 360–369 (2007).

[22] Hergenroder, A. and J. Furthmuller, “On energy measurement methods in wire-
less networks”, in “Communications (ICC), 2012 IEEE International Conference
on”, pp. 6268–6272 (2012).

[23] Hergenroeder, A., J. Wilke and D. Meier, “Distributed energy measurements in
wsn testbeds with a sensor node management device (snmd)”, in “Architecture
of Computing Systems (ARCS), 2010 23rd International Conference on”, pp. 1–7
(2010).

[24] Hill, J. L., System architecture for wireless sensor networks, Ph.D. thesis, Uni-
versity of California (2003).

[25] Hossen, M. and M. Hanawa, “Network architecture and performance analysis
of multi-olt pon for ftth and wireless sensor networks”, Int. J. Wireless Mobile
Netw 3, 6, 1–15 (2011).

73

http://free-electrons.com/doc/power-management.pdf
http://free-electrons.com/doc/power-management.pdf
http://www.hecticgeek.com/2012/02
http://www.hecticgeek.com/2012/02

[26] Jiang, X., P. Dutta, D. Culler and I. Stoica, “Micro power meter for energy
monitoring of wireless sensor networks at scale”, in “Information Processing in
Sensor Networks, 2007. IPSN 2007. 6th International Symposium on”, pp. 186–
195 (2007).

[27] Karlsson, J., T. Wark, P. Valencia, M. Ung and P. Corke, “Demonstration of im-
age compression in a low-bandwidth wireless camera network”, in “Proceedings
of the 6th international conference on Information processing in sensor networks”,
pp. 557–558 (ACM, 2007).

[28] Kogut, G., M. Blackburn and H. Everett, “Using video sensor networks to com-
mand and control unmanned ground vehicles”, Tech. rep., DTIC Document
(2003).

[29] Kuo, C., C. C. Chen, W. C. Wang, Y. C. Hung, E. C. Lin, K. Lee and Y. Lin,
“Remote control based hybrid-structure robot design for home security applica-
tions”, in “Intelligent Robots and Systems, 2006 IEEE/RSJ International Con-
ference on”, pp. 4484–4489 (2006).

[30] Liu, H., T. Roeder, K. Walsh, R. Barr and E. G. Sirer, “Design and imple-
mentation of a single system image operating system for ad hoc networks”, in
“Proceedings of the 3rd international conference on Mobile systems, applications,
and services”, pp. 149–162 (ACM, 2005).

[31] Maier, M., N. Ghazisaidi and M. Reisslein, “The audacity of fiber-wireless (fiwi)
networks”, in “AccessNets”, pp. 16–35 (Springer, 2009).

[32] Milenkovic, A., M. Milenkovic, E. Jovanov, D. Hite and D. Raskovic, “An envi-
ronment for runtime power monitoring of wireless sensor network platforms”, in
“System Theory, 2005. SSST ’05. Proceedings of the Thirty-Seventh Southeast-
ern Symposium on”, pp. 406–410 (2005).

[33] Misra, S., M. Reisslein and G. Xue, “A survey of multimedia streaming in wireless
sensor networks”, Communications Surveys Tutorials, IEEE 10, 4, 18–39 (2008).

[34] Nakamura, E. F., A. A. Loureiro and A. C. Frery, “Information fusion for wire-
less sensor networks: Methods, models, and classifications”, ACM Computing
Surveys (CSUR) 39, 3, 9 (2007).

[35] Noureddine, A., A. Bourdon, R. Rouvoy and L. Seinturier, “A Preliminary Study
of the Impact of Software Engineering on GreenIT”, in “First International Work-
shop on Green and Sustainable Software”, pp. 21–27 (Zurich, Switzerland, 2012).

[36] Noureddine, A., A. Bourdon, R. Rouvoy and L. Seinturier, “Runtime monitoring
of software energy hotspots”, in “Proceedings of the 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering”, ASE 2012, pp. 160–169
(ACM, New York, NY, USA, 2012).

[37] Pudlewski, S. and T. Melodia, “A distortion-minimizing rate controller for wire-
less multimedia sensor networks”, Computer Communications 33, 12, 1380–1390
(2010).

74

[38] Rein, S. and M. Reisslein, “Low-memory wavelet transforms for wireless sensor
networks: a tutorial”, Communications Surveys & Tutorials, IEEE 13, 2, 291–
307 (2011).

[39] Reisslein, M., J. Lassetter, S. Ratnam, O. Lotfallah, F. Fitzek, S. Panchanathan
et al., “Traffic and quality characterization of scalable encoded video: a large-
scale trace-based study, part 1: overview and definitions”, Arizona state univer-
sity, dept. of electrical engineering, technical report (2003).

[40] Reisslein, M., K. W. Ross and S. Rajagopal, “Guaranteeing statistical qos to
regulated traffic: The multiple node case”, in “Decision and Control, 1998. Pro-
ceedings of the 37th IEEE Conference on”, vol. 1, pp. 531–538 (IEEE, 1998).

[41] Ren, X. and Z. Yang, “Research on the key issue in video sensor network”,
in “Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE
International Conference on”, vol. 7, pp. 423–426 (2010).

[42] Seeling, P. and M. Reisslein, “Video traffic characteristics of modern encoding
standards: H. 264/avc with svc and mvc extensions and h. 265/hevc”, The Sci-
entific World Journal 2014 (2014).

[43] Seema, A. and M. Reisslein, “Towards efficient wireless video sensor networks:
A survey of existing node architectures and proposal for a flexi-wvsnp design”,
Communications Surveys Tutorials, IEEE 13, 3, 462–486 (2011).

[44] Soro, S. and W. Heinzelman, “On the coverage problem in video-based wireless
sensor networks”, in “Broadband Networks, 2005. BroadNets 2005. 2nd Interna-
tional Conference on”, pp. 932–939 Vol. 2 (2005).

[45] Van De Ven, K. A., Arjan and A. Yates, “Power top”, (????).

[46] Vieira, M., C. Coelho, J. da Silva, D.C. and J. da Mata, “Survey on wireless
sensor network devices”, in “Emerging Technologies and Factory Automation,
2003. Proceedings. ETFA ’03. IEEE Conference”, vol. 1, pp. 537–544 vol.1 (2003).

[47] Yin, H., C. Lin, B. Sebastien and X. Chu, “A novel secure wireless video surveil-
lance system based on intel ixp425 network processor”, in “Proceedings of the
1st ACM Workshop on Wireless Multimedia Networking and Performance Mod-
eling”, WMuNeP ’05, pp. 62–69 (ACM, New York, NY, USA, 2005).

[48] Yu, X., Y. Zhao, L. Deng, X. Pang and I. Tafur Monroy, “Existing pon infrastruc-
ture supported hybrid fiber-wireless sensor networks”, in “National Fiber Optic
Engineers Conference”, pp. JTh2A–32 (Optical Society of America, 2012).

[49] Zhang, Q., W. Zhu and Y.-Q. Zhang, “End-to-end qos for video delivery over
wireless internet”, Proceedings of the IEEE 93, 1, 123–134 (2005).

75

	LIST OF FIGURES
	INTRODUCTION
	RELATED WORKS
	DIFFERENCES BETWEEN FLEXI-WVSNP AND EXISTING WVSNPs
	CHALLENGES WITH WIRELESS VIDEO SENSOR NODE
	CHALLENGES TACKLED DURING THESIS
	TEST BED
	DATA COLLECTION METHODOLOGIES
	DATA REPRESENTATION
	RECOMMENDATION
	CONCLUSION AND FUTURE WORK

	REFERENCES

