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ABSTRACT

The increasing number of continually connected mobile persons has created an envi-

ronment conducive to real time user data gathering for many uses both public and

private in nature. Publicly, one can envision no longer requiring a census to determine

the demographic composition of the country and its sub regions. The information

provided is vastly more up to date than that of a census and allows civil authorities

to be more agile and preemptive with planning. Privately, advertisers take advan-

tage of a persons stated opinions, demographics, and contextual (where and when)

information in order to formulate and present pertinent offers.

Regardless of its use this information can be sensitive in nature and should therefore

be under the control of the user. Currently, a user has little say in the manner that

their information is processed once it has been released. An ad-hoc approach is

currently in use, where the location based service providers each maintain their own

policy over personal information usage.

In order to allow more user control over their personal information while still pro-

viding for targeted advertising, a systematic approach to the release of the infor-

mation is needed. It is for that reason we propose a User-Centric Context Aware

Spatiotemporal Anonymization framework. At its core the framework will unify the

current spatiotemporal anonymization with that of traditional anonymization so that

user specified anonymization requirement is met or exceeded while allowing for more

demographic information to be released.
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Chapter 1

INTRODUCTION

As of 2013 the number of adults in the United States with mobile phones hit 91% [15].

The capabilities of many of these devices go beyond phone calls. They are in fact a

launching point for many different services including navigation, shopping, and social

media. Each of these services requires differing types and amount of information

that is as accurate as possible in order to provide a useful result. Navigation for

example would require Global Positioning System GPS coordinates. While a social

media application requires information such as name, gender, and age. However as

the mobile platform has developed, services that require both navigation-esque and

social media-esque information have begun to emerge.

Regardless of the information required by the service, privacy remains a concern of

the mobile user. In Location-based Services LBS such as navigation the privacy con-

cern is regarding a user’s physical location at a given time. Release of this information

allows an attacker to determine movement patterns of an user. Possibly leading to a

determination of said user’s home address, place of employment, establishments fre-

quented, and typical routes taken. In Social media-esque NLBSservices the privacy

concern is release of demographic information intrinsic to but not directly identifying

an user such as age, gender, ethnicity, and country of origin. This information can be

combined with other publicly available data sets in a linking attack eroding the user’s

privacy [8]. Mitigating the risk of releasing information related to but not directly

identifying an user while providing accurate information for services has borne the

research area of k-Anonymity.
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Conceptually k-Anonymity is hiding a user in a crowd of k-1 other individuals

that are indistinguishable from said user. It utilizes generalization and suppression

of quasi-identifiers to accomplish this end. Generalization decreases the accuracy of

quasi-identifiers while suppression removes outliers from a the crowd. Quasi-identifiers

are pieces of information which by themselves reveal little to nothing about a user

but when coupled with other sources of information may reveal unexpected and/or

private data of a user. Due to the nature of their required user information LBS and

NLBS differ in their quasi-identifiers. LBS k-Anonymity focuses on spatiotemporal

quasi-identifiers. While NLBS k-Anonymity handles demographic quasi-identifiers.

Originally NLBS k-Anonymization was designed for the release of user data from

large databases. Later k-Anonymization was adapted for use in LBS by viewing the

spatiotemporal point of a user a quasi-identifier. NLBS k-Anonymization is designed

to handle relatively static data and produce an absolute minimal generalized data set

for the entire initial set. In this paradigm an the initial user data set is considered

complete and a minimal generalization is determined using the full information avail-

able. On the other hand LBS k-Anonymization is designed to process dynamic data

and produce an absolute minimal generalized data set at a given instance. The initial

user data set is incomplete and a minimal generalized data set is sought for every

new piece of user data. In addition to these differences NLBS and LBS operate on

different concepts of generalization; NLBS uses a fixed tree structure for generalizing

quasi-identifiers while LBS utilizes a fixed function for generalizing quasi-identifiers.

Given these differences between LBS and NLBS k-Anonymization providing user pri-

vacy for services which require both spatiotemporal and demographic information is

a difficult task.

2



NLBS k-Anonymization uses a tree structure for anonymization where the leafs rep-

resent no generalization and the root is full generalization. With this structure there

is only a single path of generalization for each leaf. While LBS uses a fixed search

function where a single spatiotemporal point represents no generalization. The full

generalization is represented by a maximum sized spatiotemporal region. The search

function will yield different results for different initial user data sets. Therefore there

exists many possible generalization paths for any given spatiotemporal point. In ad-

dition to these different generalization mechanisms NLBS and LBS k-Anonymization

also differ in speed goals due to the nature of their use. Many LBS have a tight time

limit to produce a result. For example in navigation a user reasonably expects their

directions to match their current location which would not be possible if the LBS took

longer than a few seconds to operate. NLBS is not expected to operate in a manner

of seconds as the datasets they handle are large and timeliness of their resultant does

not affect the use of the service. As NLBS was initially formulated to release data to

researchers a day or longer of operating time is not unreasonable.

Achieving k-Anonymization for services with both LBS and NBLS user data re-

quires features of both their respective k-Anonymization techniques. Neither LBS

nor NBLS k-Anonymization is suitable for handling types of user information that

the other handles. NBLS k-Anonymization will generally yield an over generalized

spatiotemporal region. While LBS k-Anonymization requires a well-ordered set in

order to generalize and user demographic generalization is a tree i.e. partial ordering.

In this thesis we present a k-anonymization approach that is independent from the

underlying generalization structure. The approach uses a concept of similarity and

difference in order to provide a minimal k-Anonymization for both NLBS and LBS

3



types of quasi-identifiers. It operates in an LBS environment with time constraints

and incomplete a priori knowledge of the user set. The resultant anonymized data

set can be used by both advertising services and governmental agencies to best react

to the composition of people in a given spatiotemporal area. We have implemented a

prototype anonymization service as part of this research as well as simulated various

user population compositions, sizes, and rates of movement.

The remainder of the thesis is structured as follows. Chapter 2 covers NLBS and

LBS k-Anonymization background information and illustrates the need of a differ-

ent approach with an example. Chapter 3 overviews the general framework of our

approach and describes the anonymization service. Chapter 4 discusses the imple-

mentation details and generation of simulated user traces. Chapter 5 covers the

evaluation of our approaches performance and discussion of limitations. Chapter 6

concludes the thesis and presents possible future directions of this work.
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Chapter 2

BACKGROUND

The related works in spatiotemporal k-anonymity have focused on expanding, read

generalizing, initial coordinates into a larger and larger spatiotemporal regions until

some criteria are met while not degrading the QoS. Please note that the expansion

pattern is not fixed in most cases, an initial spatiotemporal point may expand into any

number of generalized results. Conversely k anonymity as presented in [8; 5; 22; 25?

; 3; 24; 2] uses a fixed anonymization structure.

2.1 NBLS k-Anonymization

Releasing truthful information for ”circulation or research” [8] is the primary fo-

cus of NLBS k-Anonymization techniques. These techniques take in complete user

data sets then transforms them into k-anonymous data sets via generalization and/or

suppression.

2.1.1 Definitions

Definition 1 (k-anonymity). Let T (A1, . . . , Am) be a table, and QI be a quasi-

identifier associated with it. T is said to satisfy k-anonymity with respect to QI iff

each sequence of values in T[QI] appears at least with k occurrences in T[QI].

As discussed previously generalization utilizes a tree structure to replace exact

values of an quasi-identifier with more general versions. Suppression on the other

hand will remove outliers from the original data set. Generalization may or may not

be combined with suppression while suppression is normally paired with generalization

5



Gender1= {not released}

Gender0= {female,male}

not released

male female

Figure 2.1: Gender DGH and VGH

Race1= {not released}

Race0= {asian,black,. . . ,white}

not released

white black native asian islander

Figure 2.2: Race DGH and VGH

as pure suppressive approaches have ”limited applicability” [8]. Figures 2.1.1 through

2.1.1 show example generalization hierarchies.

The Domain Generalization Hierarchy (DGH) is well-ordered set representing the

levels of generalization possible for a given domain. While the Value Generalization

Hierarchy (VGH) is a partially ordered set where all paths from root to a leaf have

the same number of intermediate nodes. The VGH contains the actual values a quasi-

identifier may assume at any given level. This representation works well for quasi-

identifiers with no order amongst ungeneralized values. Take gender for example,

though each sex may have their own views of superiority, there is no way to say male

comes before female and vice versa. A lattice is used to represent more than one

Origin2= {world}

Origin1= {africa,. . . ,south america}

Origin0= { afghanistan,. . . ,zimbabwe}

world

north america

antigua&barbuda . . . united states

. . .

Figure 2.3: Origin DGH and VGH
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quasi-identifier where every point is a composed of all quasi-identifiers and between

adjacent nodes only a single component is changed. I.E. when a node is a single

hop away all of its components will match the source node with the exception of a

single component and the difference between the source node and destination node

component is a single level of said components own DGH.

Name Gender Race Origin Content

Mike male white United States Cm

France female black Haiti Cf

Eusebio male white Mexico Ce

Tosh female native United States Ct

Nesto female asian Mexico Cn

Table 2.1: NBLS Raw User Information

Name Gender Race Origin Content

Mike male not released north america Cm

France female not released north america Cf

Eusebio male not released north america Ce

Tosh female not released north america Ct

Nesto female not released north america Cn

Table 2.2: NLBS k-Anonymized k=2

An example of an NLBS k-Anonymized user data can be seen in tables 2.2 and 2.3

for k=2 and k=4 respectively. Given the user information in table 2.1 an anonymiza-

tion service begins at the leafs of the VGH for each of quasi-identifiers in table 2.1

and traverses towards the root node until a generalization near the original leafs is

located. As these algorithms function on entire data sets the generalization is applied

7



Name Gender Race Origin Content

Mike not released not released north america Cm

France not released not released north america Cf

Eusebio not released not released north america Ce

Tosh not released not released north america Ct

Nesto not released not released north america Cn

Table 2.3: NLBS k-Anonymized k=4

to all user’s regardless of necessity. For k = 2 a generalized resultant satisfying the

k requirement is at Origin1, Race1, Gender0. Increasing the k requirement tends to

reduce the amount of useful information that can be released as is shown in the table

2.3 which has a generalization located at Origin1, Race1, Gender1. Table 2.2 releases

gender and some origin information while Table 2.3 shows only origin information.

Please note that items such as Name are considered direct identifiers, reveal the user

directly, and would either be removed or replaced before releasing the k-anonymous

table. As discussed above the generalization is applied to the entire data set this

results in Mike and Eusebio race being not released for k = 2 even though no gener-

alization was required as they shared the same race. The race was withheld due to

France, Tosh, and Nesto requiring a generalization of race to meet the k requirement.

2.2 LBS k-Anonymization

The general framework of LBS k-anonymization systems is shown in Figure 2.2.

The framework states a mobile user has a secure connection with a trusted Anonymiza-

tion Service that acts as a proxy in communicating over an insecure channel with the

semi-trusted Location Based Service.

8



Figure 2.4: General Framework

An example workflow is also shown in Figure 2.2. The Mobile User sends their

coordinates, k requirement, and query to the Anonymization Service over a secure

connection. The Anonymization Service then anonymizes the Mobile Users coordi-

nates into a region that encompass at least k -1 other users and forwards anonymized

query to the LBS provider. The LBS provider processes the anonymized query and

returns the candidate results to the Anonymization Service. At this point the can-

didate results are either filtered at the Anonymization Service and the actual results

are sent over the secure connection to the Mobile User, or the full candidate results

are forwarded to the Mobile User and the Mobile Users device is responsible for

determining the actual result of the query.

2.2.1 Definitions

Definition 2 (Coordinate). Pair of x,y values. Normally latitude and longitude

values but this is not required as long as the x and y domains are well-ordered.

Definition 3 (Spatial Region). Spatial area with clearly defined edges, i.e. a coor-

dinate is either inside or outside the region

Definition 4 (Degraded Quality of Service (QoS)). Degraded QoS signifies an in-

9



crease in response time up to no response at all and/or a decrease in accuracy up to

completely inaccurate results.

Definition 5 (Maximal Bounding Region (mbr)). Total spatial area a Spatial Region

may occupy, area is defined in the geometric sense.

Definition 6 (Spatial LBS k-anonymity). Let R be a Spatial Region. Let U be the

set of distinct users within R. R is said to satisfy Spatial LBS k-anonymity iff |U | ≥ k.

Definition 7 (Spatiotemporal LBS k-anonymity). Let R be a Spatial Region. Let

t1 and t2 be instances in time s.t. t1t2. Let U be the set of distinct users within R

during the interval [t1, t2]. R is said to satisfy Spatial-Temporal LBS k-anonymity

|U | ≥ k.

Definition 8 (Location l-diversity [4]). Let R be a Spatial Region. Let L be a set

of distinct addressable locations that are within the bounds of R. R is said to satisfy

Location l-diversity iff |L| ≥ l.

Definition 9 (LBS (k,T)-Anonymity [19]). Let R be a Spatial Region. Let t be an

instant in time s.t. t current time. Let Q be a set of distinct queries released during

the interval [t, current time] that have spatial regions which overlap with R. R is said

to satisfy LBS (k,T)-Anonymity iff |Q| ≥ k.

Definition 10 (Extended Spatial-Temporal k-anonymity). Place holder see com-

ments for original definition

Definition 11 (Reciprocity [14]). Let R be a Spatial Region. Let U be the set of

distinct users contained within the bounds of R. Let I be the user issuing the query.

R is said to satisfy Reciprocity iff I ∈ U , |U | ≥ k, and every member of U modifies

their query region to match R.

10



2.2.2 Related LBS K-anonymization

The anonymization algorithm takes a users coordinate as focus and expands into

the surrounding spatial area until the users criteria have been met, replace the users

identifier with a pseudonym, and replace the original coordinate with the expanded

Spatial Region. The region is most often rectangular [4; 13; 19; 11; 10] or circular

[14] in shape. Other shapes are not explicitly disallowed however they have not

been thoroughly explored. The temporal anonymization is normally a side effect of

processing the user’s spatial generalization, I.E. waiting on additional users to fulfill

the k requirement. Please note that this is contrary to the NLBS approach as a

single user’s anonymization is the focus, once we are able to anonymize that user we

will leave the other user’s not in k group as they are until another new user pops

into existence at which the process repeats with that new user as the focus. While

in NLBS the focus is on anonymizing every user. Please note peer-to-peer based

anonymization approaches such as Mobihide [12] exist, however we use a trusted

third party anonymizer and therefore will not explore p2p approaches.

Adaptive-Interval Cloaking

Adaptive-Interval Cloaking [13] is based upon Quadtree algorithms and provides both

spatial and temporal anonymity based upon the Definition 6 and Definition 7 re-

spectively. Spatial anonymization takes the region surrounding the original query

coordinates and sub divides it to the point where the next subdivision would cause

the region to no longer satisfy Definition 6. Temporal anonymization takes the region

surrounding the original query coordinates and subdivides it to a system specified size

at which point the algorithm will hold the query until the region satisfies Definition 7.

The k used is a system specified and system wide value. User positions are assumed
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known at all times to the system.

PrivacyGrid

PrivacyGrid [4; 9] is based upon Grid and utilizes two different approaches, Top-down

and Bottom-up algorithms. It provides spatial anonymity based upon the Definition

6, Definition 7, and Definition 8. The Top-down approach begins with the largest

possible region permitted by the users mbr and opportunistically erodes the edges of

the region until the next erosion iteration would cause the region to no longer satisfy

Definition 6. The Bottom-up approach begins with users original cell in the grid and

opportunistically expands an edge of the region into the surrounding area until the

region satisfies Definition 6. The k, l, and mbr values used are on a per message basis,

user positions are assumed known at all times to the system. Regarding the temporal

aspect, the algorithm does not go into detail on the use of the allowed delay, and for

that reason it is not included in this description.

CliqueCloak

CliqueCloak [11] is based upon clique identification within a graph and provides both

spatial and temporal anonymity as defined in Definition 6 and Definition 7. Temporal

and Spatial anonymization take place concurrently, the original query coordinate is

added into a graph data structure with other queries from distinct users within the

mbr are checked to see if they form a clique with original query and if the distinct

users k values are less than or equal to the original queries k value. If they do not form

a clique, or if the clique size does not satisfy Definition 6, the query is maintained in

the graph until its allowed delay value has expired at which time it is removed from

the graph. The k, mbr, and allowed delay are on a per message basis. User positions

are not assumed known to the system, they are gleaned from the users queries and
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remain valid until the query is issued or until the allowed delay has expired.

A pitfall with this approach is the formation of the clique, if a message with a large

k value arrives prior to a series of messages with smaller k values, the message with

the large k value may not be anonymized. For example 1st msg.k=3 and msg.delay=4

arrives at time T=0. Then at T=1 two messages come in with msg.k=2 and msg.delay

=2. The messages that arrived at T=1 would anonymized with each other, while the

message that came in at T=0 would not be anonymized even though there were

enough users present at T=1 to anonymize it.

LBSKT

LBSKT [3] [19] provides both spatial and temporal anonymity as defined by Definition

9. Temporal and Spatial anonymization take place concurrently, the original query

coordinates are added into a corresponding cell within a system maintained grid data

structure. A region is initialized at this cell and expands until the region satisfies

Definition 9. User positions are not assumed known, only their last anonymized querys

Spatial Region is known. The k, and T values are designed on a per message basis,

however implementation has been done on a system wide k and T value. Another

note on implementation is that this system was built upon PrivacyGrid [4].

2.3 Unaddressed in Current Techniques

The approaches of the related works in NLBS and LBS k-Anonymization have

identified non-ordered quasi-identifiers such as gender, race, and origin, and ordered

quasi-identifiers such as coordinates and time, respectively. However, neither is ca-

pable of handling the other’s quasi-identifiers elegantly.
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Figure 2.5: Coordinate DGH and VGH

In the case of NLBS k-Anonymity systems tackling the ordered quasi-identifier of

coordinates there will be an excessive loss of data accuracy. This loss is due to the

tree based generalization mechanism. For example if we use the x component of the

coordinates, the DGH and VGH in Figure 2.3, and the data set in Table 2.4 we will

generate the k-anonymous X of 0-3. This is an unnecessary full generalization while

an LBS centric system would produce an X of 2-3. Less accurate location data leads

increased processing time for the LBS provider, anonymization service, and increased

data transfer overall.

Name X Content

Mike 1 Cm

France 2 Cf

Table 2.4: NBLS Raw User Location Information

The issue of excessive loss of accuracy is not an issue of the chosen DGH or VGH.

It results from the tree based structure of the VGH, namely for any VGH on a well

ordered set there exists edges between generalization ”buckets” and elements falling

into said edges will require greater traversal up the VGH. In the above example the

edges are 1 and 2.
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Figure 2.6: User locations

Regarding LBS k-Anonymization of NLBS quasi-identifiers, it is not possible. These

approaches take advantage of the ordering of their domains to yield k-anonymous

data sets. Determining which of the following integers:{0,1,5} is closer to 2 is simple,

however if the domain was race this task becomes impossible. For example with

the given information which of the following races:{black,white} is closer to asian.

Answering this question is not possible as there is no ordering amongst the elements

of the race domain.

If the only quasi-identifier taken into account is the spatiotemporal point of the

user as is the case for the current LBS k-anonymization schemes they do not address

the possible loss of privacy when additional sensitive attributes are present. Take

for example the grid shown in Figure 2.6 that shows the location of the five users

presented earlier. The combined data set, location and demographic, is shown in

Table 2.5 and the query point is represented by the black dot in Figure 2.6

LBS k-anonymization approaches with k=4 would favor the blue enclosed region

shown in Figure 2.6 resulting in the set of queries shown in Table 2.6 to be forwarded

to LBS provider. Please note the missing user Nesto, the nature of this type of
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Name X Y Gender Race Origin Content

Mike 1 1 male white United States Cm

France 2 1 female black Haiti Cf

Eusebio 1 2 male white Mexico Ce

Tosh 2 2 female native United States Ct

Nesto 0 1 female asian Mexico Cn

Table 2.5: Combined Raw User Location Information

anonymization does not necessitate that every element be present in resultant set. It

only requires that the initiator user be present in any generated k-anonymous sets.

The released table complies with Definition 6 however it does not satisfy Definition 1

, as such the probability of linking the released information to the raw data in Table

2.5 is greater than 1
k
. Please note that row rearrangement has not been preformed to

maintain clarity of example.

Name X1 X2 Y1 Y2 Gender Race Origin Content

PseudonymMike 1 2 1 2 male white United States Cm

PseudonymFrance 1 2 1 2 female black Haiti Cf

PseudonymEusebio 1 2 1 2 male white Mexico Ce

PseudonymTosh 1 2 1 2 female native United States Ct

Table 2.6: LBS k-anonymous resultant, k=4

In this situation, due to the extra quasi-identifiers being released, the actual prob-

ability is 1
1

that an attacker can link the user to query. In this attack scenario, the

attacker is aware of all the users in this section of the grid, and is knowledgeable about

their Gender, Race, Origin. However once the attacker obtains the service request

data set, Table 2.6, they are able to link the query with the actual user thanks to
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Name X1 X2 Y1 Y2 Gender Race Origin Content

PseudonymMike 0 3 0 3 not released not released north america Cm

PseudonymFrance 0 3 0 3 not released not released north america Cf

PseudonymEusebio 0 3 0 3 not released not released north america Ce

PseudonymTosh 0 3 0 3 not released not released north america Ct

PseudonymNesto 0 3 0 3 not released not released north america Cn

Table 2.7: NLBS k-anonymous resultant, k=4

the aforementioned attributes, even though the table has had all direct identifiers re-

moved and the spatiotemporal region has been anonymized. Essentially the attacker

is able to map the pseudonym’d user to actual user.

NLBS k-anonymization approaches with k=4, the coordinate generalization scheme

in Figure 2.3, and the each columns respective scheme presented earlier in this chapter

would favor the green enclosed region shown in Figure 2.6 resulting in the set of queries

shown in Table 2.7 to be forwarded to LBS provider. The released table complies with

both definitions 6 and 1 , as such the probability of linking the released information

to the raw data in Table 2.5 is 1
k
. Please note that row rearrangement has not been

preformed to maintain clarity of example.

The extra location quasi-identifier did not affect the probability of a linking attack

as occurred in the LBS case. However, the extra location information is off little to no

use. It is fully generalized, increasing processing time throughout the anonymization

service and LBS provider. At this level of accuracy the presence of location data is a

moot point at best and a waste of processing power at worst.
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Chapter 3

FRAMEWORK FOR K-ANONYMOUS M-COMMERCE

The approach taken marries NLBS k-Anonymity and LBS k-Anonymity in the LBS

environment that meets or exceeds the cloaked users’ anonymization policies. This

marriage allows for handling of both location and demographic quasi-identifiers. The

necessity to include more quasi-identifier types than the current LBS k-anonymization

approaches results from the nature of M-Commerce, Targeted Advertising, and future

context sensitive LBS providers. In these domains the service providers require more

information than location in order to function. The extra required quasi-identifiers

such as gender, age, and ethnicity may used in a linking attack to erode the privacy

of a user.

As discussed previously each anonymization domain handles different types of

quasi-identifiers. NLBS uses a tree structure for generalization that is geared for

quasi-identifier domains with no ordering. While LBS leverages the well-ordered na-

ture of location information for generalization. Essentially NLBS will always follow

the same generalization path for a given value while LBS can yield many different

generalization paths for a given value. In addition to this the NLBS k-anonymization

normally is solving the problem of finding a single generalization scheme that satisfies

the k requirement for every member of a data set. LBS on the other hand locates a

generalization scheme that satisfies k for a subset of the original data set at a time.

18



Start

NLBS

LBS

End

People First

Start

LBS

NLBS

End

Places First

Start

LBS NLBS

End

Concurrent

Start

LBS/NLBS

End

Unified

Figure 3.1: Combination Possibilities

3.1 Anonymization Service

Minimal generalization is the primary concern of the anonymization service. Rapid

processing is a close secondary concern. As the data becomes less accurate the LBS

provider is burdened and the amount of post filtering of the LBS providers resultant

is increased. The rate of anonymization directly affects the types of services that

end-users can utilize. Targeted advertising in M-commerce is highly dependent upon

the end-user’s current environment. Small changes in location, occurring in a manner

of seconds, may greatly affect the ad content.

3.1.1 Possible NLBS/LBS k-Anonymization Combinations

Due to the various types of quasi-identifier domains and existence of approaches to

handle each class of domain there are four combinations possible as shown in Figure

3.1. We will describe each in the following sections.
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Unified

The first combination merges NLBS and LBS k-anonymization concepts into a single

algorithm. The initial data set is transformed into an k-anonymous one by a single

unified approach. Further discussion located in Algorithm and Data Structures.

People First

In this combination the data set is first sent through an NLBS based k-anonymization

approach then those results are fed to an LBS based k-anonymization scheme to

produce a k-anonymous resultant. However, the intermediate table produced by the

NLBS approach is not closed under subset. Without closure under subset there is no

guarantee the LBS k-anonymization resultant will still be k-anonymous with respect

to the NLBS quasi-identifiers. As the NLBS k-anonymization will not take location

into account, it will produce an anonymous data set containing every user present

regardless of their proximity to each other. When this data set is processed by the

LBS k-anonymization approach k users in the resultant will be selected to minimize

the spatial area needed to encompass them. The k users selected are a subset of the

NLBS k-anonymous data set. We will prove the non-closure by assuming closure and

providing a counter example where the above described process produces a data set

that is not k-anonymous.

Take the data set from Table 2.5 and produce a NLBS k-anonymous data set with

k=2 and the VGHs from Figures 2.1.1, 2.1.1, and 2.1.1. Please see Table 3.1 for

the resulting data set. Now assuming our focus is Nesto when we produce the LBS

k-anonymous data set we will group Mike with Nesto as he is closer than any other

user. As can be seen in table the resultant is LBS k-anonymous but it is not NLBS

k-anonymous as it does not satisfy Definition 1. Namely, they are distinguished by
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gender.

Name X Y Gender Race Origin Content

Mike 1 1 male not released north america Cm

France 2 1 female not released north america Cf

Eusebio 1 2 male not released north america Ce

Tosh 2 2 female not released north america Ct

Nesto 0 1 female not released north america Cn

Table 3.1: NLBS k-Anonymized k=2

Name X1 X2 Y1 Y2 Gender Race Origin Content

Mike 0 1 1 1 male not released north america Cm

Nesto 0 1 1 1 female not released north america Cn

Table 3.2: LBS k-Anonymized k=2 Unsuccessful

Places First

Contrasting People First ; An LBS k-anonymous data set is generated then input to an

LBS k-anonymization algorithm to produce an LBS/NLBS k-anonymous resultant.

This approach was pursued initially but due to poor performance exploration was

discontinued.

Separate But Equal

Finally in this combination LBS and NLBS approaches are run in parallel and their

results are then joined in the relational algebra sense to produce a k-anonymous data

set. Exploration of this approach has been slated for future work.
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3.1.2 Algorithm and Data Structures

Among the aforementioned combinations we focus on Unified for the reasons pre-

sented in the preceding section. As previously stated this is a novel approach unifying

the concepts from both LBS and NLBS k-anonymization. Like LBS it operates with

a single user focus resulting in a set of anonymized messages containing the original

user and at least k-1 other users. The resultant is constructed by gathering a group

of users message’s with the minimal amount of difference. The group’s generalization

is applied by looking at the overall messages quasi-identifier extremities and locating

a suitable generalization with regards to those two values.

Definition 12 (Difference). Measurement of generalization required to make entities

indistinguishable by their quasi-identifiers.

The pseudo-code for this approach is located in Algorithm 1. It is composed of

several sub-algorithms, presented in the order they appear in Algorithm 1, and oper-

ates on messages structured as below. Where M is set of incoming messages to the

anonymization service; mM is a message in M ; ID is a unique identifier; {x, y} is the

originating point of the message; QIx is a quasi-identifier; t is the allowed amount

of delay; k is required number of indistinguishable users for any resultant containing

this message; C is content of message.

mM ∈M : 〈ID, {x, y}, {QI0, QI1, ..., QIn−1}, t, k, C〉

The algorithm maintains Qm and UNANONYMIZED. Qm is a queue of incom-

ing messages that have yet to be processed. As a queue it is FIFO with the ordering

based upon arrival time to the anonymization service. UNANONYMIZED is a
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fully connected graph structure containing messages which have been unsuccessfully

processed. The edges represent the difference between the messages they connect.

The algorithm first checks for a message in Qm then selects the oldest message for

processing, lines 1 and 2 respectively. Line 4 ensures the message originated from a

location managed this anonymization service. Line 5 generates an interim fully con-

nected graph structure Gt that is a clone of UNANONYMIZED with the message

included. Line 6 is an optimization that prevents processing a message if it’s k require-

ment is unsatisfiable. In this event the message is added to UNANONYMIZED.

Lines 6 through 18 repeatedly generate a candidate set of messages from Gt, unify

the k policy of generated set, and remove messages with stricter k requirements than

the generated set can satisfy from Gt until either a suitable set is found or finding

one becomes impossible. A suitable set is found when the generated set’s cardinal-

ity is ≥ the unified k while impossibility condition is triggered when the number of

messages in Gt falls below the unified k requirement. Line 19 branches on the suc-

cess of Lines 6 through 18. If it was unsuccessful the message is incorporated into

UNANONYMIZED then returns null. If it was successfully the candidate set along

with the message are generalized then returned.

Calculating the difference between messages is performed by the Calculate Differ-

ence Algorithm 2. It is essentially a weighted euclidean distance formula, where each

quasi-identifier in has an associated weight ω(Di) and difference function d(pi, qi, Di).

Please see Algorithm 3 and Algorithm 4 for the weight and difference function re-

spectively.

The weights given to a quasi-identifier domain depend on type and represent the

inverse of the maximal change required for any two values to become indistinguishable.
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Algorithm 1 LIVE

1: if Qm 6= ∅ then

2: m0 ← Pop first message of Qm

3: m0 ← Append r,c to m0 where r = row(m0.y) and c = column(m0.x)

4: returnable← ∅

5: if m0.coordinates ∈ REGION then

6: Add m0 into Gw

7: for all mi ∈ UNANONYMIZED do

8: if (m0.mbr ≥ |m0.c−mi.c|)&(m0.mbr ≥ |m0.r −mi.r|) then

9: if (mi.mbr ≥ |m0.c−mi.c|) & (mi.mbr ≥ |m0.r −mi.r|) then

10: d← calculate difference(m0,mi)

11: Add edge (m0,mi) with weight d to Gw

12: Add m into UNANONYMIZED

13: if Gw(m0).edges >= (m0.k − 1) then

14: clique← get k clique(Gw,m0)

15: if clique 6= ∅ then

16: returnable← apply generalization(clique, k)

17: for all mi ∈ clique do

18: Remove mi from Gw

19: Remove mi from UNANONYMIZED

return returnable

Algorithm 2 Calculate Difference

calculate difference(p, q) =

√
n∑
i=1

ω(Di)2d(pi, qi, Di)2
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In other words the percentage of accuracy lost for each generalization increase.

As shown in Algorithm 3 a finite well-ordered set such as latitude or age uses

1
|D|−1 . The cardinality of the domain represents the total number of elements that

can included while generalizing. We remove one from the total to compensate for the

initial value. The inverse is used as it is the percentage of generalization or inaccuracy

that each additional element adds when included in the result.

Algorithm 3 Weight

ω(D) =



1
|D|−1 if D is finite well-ordered set

1
ht(D)

if |D| > 1 & D is finite hierarchical (partially ordered) set

1 if D is finite unordered set

The finite hierarchical set shown in Algorithm 3 has a total number of generalization

steps equal to the height of the VGH or DGH. Illustrating this is the Gender domain

shown in Figure 2.1.1, there is only a single generalization step for the leaves male

and female in the VGH and there is only a single step in the DGH. This results from

the from definition of Domain Hierarchies in [8].

Contrary to the hierarchical and well-ordered sets the size of the unordered domain

has no bearing on the generalization level. In this case the amount of information

lost is completely dependent upon the two users being compared as a user is unable

to lose information that they never had in the first place. The unordered set views

the percentage of inaccuracy increased per element removed. As it is removal being

measured the initial values may be removed, hence no need to deduct one. While
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this type of domain has not been explored as of yet it does extend the expression

capabilities of k-anonymization. Take for example the multiracial individuals shown

in Table 3.3 and the race hierarchies in Figure 2.1.1. Currently the leaves of the VGH

are single elements and not sets, therefore there is no specified manner to generalize

in these situations. An approach to accommodate these data types is presented later

this section.

Name Gender Race Origin Content

Mike male {white} United States Cm

France female {black,white} Haiti Cf

Eusebio male {white} Mexico Ce

Tosh female {native,white,asian} United States Ct

Nesto female {white,asian} Mexico Cn

Table 3.3: Multiracial Modified NBLS Raw User Information

The Difference algorithm 4 determines the number of generalization steps required

to make a pair of quasi-identifier elements from the same domain indistinguishable.

The inner working of the algorithm are dependent upon the type of domain being

operated on.

Algorithm 4 Difference

d(p, q,D) =



index(p)− index(q) if D is finite well-ordered set & p,q non-set elements

ht(LCA(p, q)) if |D| > 1 & D is finite hierarchical

(partially ordered) set & p,q non-set elements

1− |p∩q||p∪q| if D is finite unordered set
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In the case of finite well-ordered sets we take the difference of the index or ordinal

value of p and q. As the set is well-ordered the amount of generalization required

to make p and q indistinguishable is equal to the number of items between p and

q. Conceptually we are increasing the interval size until enough users fall within it’s

boundaries. For example in Figure 2.6 the domain for the quasi-identifier X is the

set {0,1,2,3}. Nesto, Eusebio, and France are located at 0, 1, and 2 respectively. The

difference between Nesto and Eusebio is 1 while between Nesto and France it is 2.

If we were to want a k = 2 with respect to the X axis and Nesto as the initiator an

anonymized value of 0-1 or 0-2 would satisfy the requirement as both have at least

two users whose x point fall within the boundaries of the anonymized interval.

As described in [8] the minimal number of generalizations needed to be preformed

on a pair of leaves p and q in a VGH is the height of the lowest common ancestor

of p and q. For example in Figure 2.1.1 the LCA(antigua&barbuda, unitedstates) is

north america with a height of one. Hence antiqua&barbuda and the united states

become indistinguishable at one step of generalization.

The unordered set works in an opposite conceptual manner to both hierarchical

and well-ordered sets. The other types view generalization as the inclusion of extra

elements in the anonymized resultant. Well-ordered will grow the interval size while

traversal up a tree in the hierarchal set will increase the number of leaves. Unordered

sets on the other hand will remove elements from their initial sets in order to produce

the k-anonymous result. The intersection of the initial sets gives the overlapping

values which can be release without distinguishing either original set. For example

using Table 3.3 as a source set, k = 2, ignoring direct identifiers, and the quasi-

identifier of race we can produce the NLBS k-anonymous Table 3.4. This table shows
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more racial information than that of Table 2.2.

Name Gender Race Origin Content

Mike male {white} north america Cm

France female {white} north america Cf

Eusebio male {white} north america Ce

Tosh female {white} north america Ct

Nesto female {white} north america Cn

Table 3.4: Multiracial Modified NBLS k=2

The amount of information lost is equal to one minus the percentage of remaining

diversity of the resultant set. The quantity |p∩q|
|p∪q| shows the remaining diversity per-

centage. |p ∩ q| is a count of the releasable elements while |p ∪ q| is the maximum

number of elements available for release. The amount of information loss in unordered

domains is respective to the sets being compared and not to the domain itself.

The actual search for the k clique is performed by algorithm an A* based approach.

As A* is geared for path finding in graphs it works on the concept of a source and

goal vertex. Though it appears that we have all the components save for a terminal

or goal vertex we do not. The former we have as m however we do not have a goal

vertex. Therefore we defined goal vertex conditions, namely we know we have arrived

at a goal vertex when we have reached our required k size. With both the source

vertex and terminating conditions present the algorithm then searches through the

possible set of members of the k clique by adding a single member at a time to the

initial set containing m.
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The additional members loosely come from the original graph G, however the A*

algorithm is not directly searching G it is in fact exploring many derivatives of G.

At any given step in the process the next possible member to the clique is dependent

both upon existence of arcs between all members of the current clique elements and

the possible member as well as the policy constraints on the resulting clique.

An initial state is created in lines 5-11. The states maintain a spatial region defined

by lower and upper rows as well as columns of the messages present in the state, this

is initialized in line 5. Policy values of mbr and k are also set in line 5. As this is an

A* algorithm the associated g, h, f values are set in lines 6, 7, and 11 respectively.

Each state is also responsible for maintaining the members present in the k clique for

the state, as each additional member will signify a new state. The members present

set is initialized in line 8 to that of the source message m. The state is added to the

openlist structure of the A* in line 12 and as we do not have a goal state but rather

terminal conditions we will repeatedly loop through lines 14 - 44 until found which is

set to false in line 13 is set to true by the terminal conditions being met. Line 9 sets

the handle for the vertex representing the set of nodes in the candidate clique in the

states associated G.

The inner workings of the loop is an extension the A* algorithm. The lowest F

valued state is popped from the openlist, line 15. Then it is checked to see if it

satisfies the terminal conditions in line 16. The state’s h being 0 signifies that it is

already satisfied with the members present. If it meets the terminal conditions then

found is set to true, the nodes present in the clique managed by the state are returned

and then removed from the original graph G; lines 17 through 19 respectively. If not

then additional states are generated and checked.
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Algorithm get k clique: part 1

1: function get k clique(G, m) . A* search based approach

2: returnable← ∅

3: openlist← Empty priority queue

4: closedlist← ∅

5: initial state(state0,m)

6: state0.g ← 0

7: state0.h← H(G,m, state0.k − 1)

8: state0.nodes← {m}

9: state0.label← m

10: state0.G← G

11: state0.f ← state0.g + state0.h

12: Push state0 to openlist

13: found← false

14: while !found do

15: statec ← openlist.pop()

16: if statec.h == 0 & |statec.nodes| ≥ statec.k then

17: found← true

18: returnable← statec.nodes

19: Remove all statec.nodes from G

20: else

21: Add statec to closedlist

22: for all neighbor w of statec.label ∈ statec.G do

23: staten.nodes← statec.nodes ∪ w
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Algorithm get k clique: part 2

24: valid← enforcers statisfied(statec, staten, w)

25: if !(staten ∈ closedlist) & valid then

26: staten.G← getMergedCopy(statec.G, statec.label, w)

27: staten.label← min(statec.label, w)

28: staten.h← H(staten.G, staten.label, staten.k − |staten.nodes|)

29: staten.g ← statec.g + weight(Edge(statec.label, w) ∈ statec.G)

30: staten.f ← staten.g + staten.h

31: if !(staten.h < 0) then

32: if staten ∈ openlist then

33: if staten.g < openlist[staten].g then

34: Remove openlist[staten] from openlist

35: staten.parent← statec

36: Add staten to openlist

37: else

38: staten.parent← statec

39: Add staten to openlist

40: else

41: Add staten to closedlist

42: else

43: Add staten to closedlist

44: found← isEmpty(openlist)
return returnable

45: end function
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As this state does not satisfy the terminating conditions and it has been checked

already it is now added to the closed list; line 21. The additional states are generated

by looking to label/vertex and graph of this state and enumerating the neighbors of

the vertex in the graph; line 22. Each enumerated neighbor will first produce a state

shell that is used for comparison and policy enforcement; lines 23 trough 24. The

new state’s clique is the union of the preceding state’s clique and the enumerated

neighbor, line 23. As all messages have associated row and column data the spatial

region of the new state is updated in line 24. The new state’s k and mbr policies are

updated, checked against the new state, and checks resultant returned in line 24.

Line 25 ensures we are not rechecking a visited state and that new state is valid, if

not then the state is added to the closedlist else the new state is promoted from a shell

to a full state; lines 26 through 30. This entails generating a graph, label, h, g, and

f for the newly promoted state. Line 31 ensures only possibly satisfiable states are

added to the openlist. If the state is unsatisfiable then it is added to the closedlist;

line 41. The lines 32 through 41 update the openlist, by adding a new state, lines 38

- 39, or by replacing a state currently present, lines 34 - 36.

As get k clique algorithm is based upon A* we a need a heuristic or future cost

function (h), past path cost function (g), and the composite cost function (f). f is

the sum of the cost to our current state and the estimated cost from said point to

the goal state thus the equation f = g + h. The past path cost is initialized at 0 as

when we start we have yet to travel, and sums the edge weights present on the path

selected. gn = gn−1 + weight(Edge(gn−1.label, x) ∈ Gn−1) with g0 = 0 where Gn−1 is

the graph associated with staten−1.
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Algorithm initial state

1: function initial State(state, m)

2: state.rowlower ← m.row

3: state.rowupper ← m.row

4: state.collower ← m.col

5: state.colupper ← m.col

6: if (m.mbr == ∅)|(m.mbr < 0) then

7: m.mbr ←∞

8: state.mbr ← m.mbr

9: if (w.k == ∅)|(w.k < 0) then

10: w.k ← 0

11: state0.k ← m.k

12: end function

The initial state Algorithm initializes the state’s policy values based upon the

message m, lines 8 and 11. A sanity check is preformed on the mbr, lines 6-7, and k,

lines 9-10, policies. As the mbr is a constraint on the spatial region area we create

a boundary box around m using m’s row to set bottom and top edges, lines 2 and 3

respectively. Equivalently we set left and right edges using m’s column in lines 4-5.

The heuristic function presented in Algorithm 3 under estimates the cost from the

vertex in a given graph to the goal state. It sums the edge weights between the vertex

and the number of other vertices needed to reach the required k value as having a

group of size k is the goal state. The summation is done in ascending order of edge

weights, so the minimum weighted edges are included first as in an ideal situation

these would be the vertices selected for the group due to the minimal difference from

our current group. In addition to the summation the difference between the final or
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Algorithm 3 Heuristic

1: function H(G,vertex, required)

2: returnable← 0

3: nearest← List sorted in ascending weights order of neighbors of vertex ∈ G

4: if |nearest| ≥ required & |nearest| > 0 then

5: for all n = 0;n < required;n + + do

6: returnable+ = weight(Edge(vertex, nearest[n]))

7: returnable+ = weight(Edge(vertex, nearest[required − 1])) −

weight(Edge(vertex, nearest[0]))

8: else

9: returnable← −1

return returnable

10: end function

max edge weight and the initial or min edge weight is also included as we can infer

via the triangle inequality that between these two vertices there is an edge of at least

this length. In the event that the vertex does not have enough neighbors then −1 is

returned as a sentential value signifying that there is not a route from the vertex to

a satisfied state.

The enforcers satisfied function sets and checks the next state’s policies. The mbr

policy requires the row and column values for the new state to be set, lines 2-5. If

a policy field isn’t present or value is below zero, the policy is set it most lenient

settings for the user, lines 6-9. A value of infinite for mbr allows the full spatial

region to be explored; k of 0 requires no anonymity. The new state’s k policy should

be the maximum of preceding state’s k and enumerated neighbors k, line 10. While

the mbr policy should be the minimum of the preceding state’s mbr and enumerated
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Algorithm enforcers Satisfied

1: function enforcers Satisfied(statec,staten, w)

2: staten.rowlower ← min(statec.rowlower, w.row)

3: staten.rowupper ← max(statec.rowupper, w.row)

4: staten.collower ← min(statec.collower, w.col)

5: staten.colupper ← max(statec.colupper, w.col)

6: if (w.mbr == ∅)|(w.mbr < 0) then

7: w.mbr ←∞

8: if (w.k == ∅)|(w.k < 0) then

9: w.k ← 0

10: staten.k ← max(statec.k, w.k)

11: staten.mbr ← min(statec.mbr, w.mbr)

12: valid← staten.rowupper − staten.rowlower ≤ staten.mbr

13: valid← (staten.colupper − staten.collower ≤ staten.mbr) & valid

14: return valid

15: end function

neighbors mbr, line 11. The mbr constraint is now checked in lines 12 through 13. If

the difference between the upper and lower rows of the new states spatial region is

less than or equal the new state’s mbr and the same holds true for the columns then

this new state is a valid state.

Algorithm 3 creates a new graph derived from the G with vertex1 and vertex2

merged into a single vertex. The set edges of the new vertex are the intersection of

the sets of vertex1 neighbors and vertex2 neighbors. Edge weight is sum of weights

from corresponding edge in vertex1 neighbors and vertex2 neighbors. Line 4 ensures

that the created vertex has a predictable name for access later. Non-mutual adjacent
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Algorithm 3 get Merged Copy

1: function get Merged Copy(G,vertex1,vertex2)

2: Gr ← copy of G

3: Remove vertex1, vertex2, and all associated edges from Gr

4: Create min(vertex1, vertex2) in Gr

5: mutual← (neighbors of vertex1 ∈ G) ∩ (neighbors of vertex2 ∈ G)

6: mutual← mutual − {vertex1, vertex2}

7: for all v ∈ mutual do

8: w ← weight(Edge(vertex1, v) ∈ G) + weight(Edge(vertex2, v) ∈ G)

9: Add edge (min(vertex1, vertex2), v) with weight w in Gr
return Gr

10: end function

vertices are excluded as neighbors of the merged vertex because their inclusion would

violate the mbr policy of the non-mutual neighbor and that of vertex1 or vertex2.

Once the k-clique is found it is generalized via Algorithm which returns an anonymized

set mapped to their original messages. First an empty set Vi is created for each do-

main Di, lines 3-4. Messages are then iterated through and each of their domain

values are added to their corresponding set initialized above, lines 5-7. Next each set

Vi and its corresponding domain Di are fed to get generalization which produces a

minimal anonymized value Li for each Di given its associated Vi, lines 8-9. Then the

mapped table is constructed via iterating through the original messages and deriving

the anonymized version, lines 10-15. A new message mc is created, it’s identifiers set

to a suppressed version of the original message ms, it’s k is set, each domain value

mc.Di it’s respective anonymized version Li, and finally the new message is mapped

to the original, lines 11-15 respectively.
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Algorithm apply generalization

1: function apply Generalization(C,k)

2: returnable← deep copy of C

3: for all Di ∈ D do

4: Vi ← ∅

5: for all mc ∈ C do

6: for all Di ∈ D do

7: Vi ← mc.Di ∪ Vi

8: for all Di ∈ D do

9: Li ← get generalization(Vi, Di)

10: for all ms ∈ returnable do

11: mc ← Suppress direct identifiers of ms

12: mc.k ← k

13: for all Di ∈ D do

14: mc.Di ← Li

15: returnable← returnable ∪mc

return returnable

16: end function

The sub algorithm takes in a set of values V and a domain D then produces a

single value minimal generalization. As with other algorithms dependent upon the

domain it is essentially a piecewise function. Lines 3-12 handle well-ordered domains

such as latitude; Lines 13-20 operate on partially-ordered domains such as origin.

Currently unordered domains have not been explored, but intuitively it would be the

intersection of values in V .
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Algorithm get generalization

1: function get generalization(V,D)

2: returnable← ∅

3: if D is well-ordered set then emin ← V [0] emax ← V [0]

4: for all e ∈ V do

5: emin ← min(ordinal(emin, D), ordinal(e,D))

6: emax ← max(ordinal(emax, D), ordinal(e,D))

7: if ordinal(emin, D) 6= ordinal(emax, D) then

8: min← string(emin)

9: max← string(emax)

10: returnable← min + string(−) + max

11: else

12: returnable← string(emax)

13: if D is partially-ordered set then

14: returnable← ∅

15: for all e0 ∈ V do

16: for all e1 ∈ V do

17: if returnable == ∅ then

18: returnable← LCA(e0, e1, D)

19: returnable← LCA(LCA(e0, e1, D), returnable)

20: return returnable

21: end function
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As the well-ordered domains can contain elements of any type, we look at the ordinal

position of each value in V to determine the minimum and maximum values, read

lowest and highest ordinal, lines 4-6. If the values are different then the generalized

resultant should be the interval [minimum−maximum], else it is merely maximum.

Please note that interval is inclusive and the choice of maximum over minimum for

the else section is arbitrary.

The hierarchal or partially ordered domains are generalized by comparing every

value in V to every other value in V and determining the their overall lowest common

ancestor (LCA). This is a brute force approach, two values e0, e1 are chosen from V ,

LCA(e0, e1) is calculated and stored LCAp, line 18. Then two more values e0, e1 are

chosen from V and LCAp ← LCA(LCA(e0, e1), LCAp), repeat until e0 and e1 have

assumed all values in V .

3.2 End-user

Privacy erosion, power consumption, and network data costs are concerns of the

end-user. The more information a user yields in exchange for a service the greater

the loss of privacy. As the end-user operates a mobile device power consumption of

processing large result sets from an LBS provider is detrimental to service adoption.

In addition to the power consumption, transferring large results sets incurs carrier

charges in most cases.

Each LBS provider maintains a unique policy of manging user data. Policies are

malleable to business interests and not user-centric. Monitoring the various terms and
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conditions an end-user’s data is subject to for changes is a difficult task. Specifying

their own policy and anonymizing their data reduces the privacy risk incurred by an

end user.

Battery life and data usage are concerns for the typical mobile end-user. Processing

and data usage increase with the size of the LBS anonymous query resultant. The size

of the query resultant increases as the generalization of query parameters increases.

Filtering the resultant at the anonymization service reduces both processing and data

usage at the end-user.

3.3 LBS Provider

LBS providers feature varied services dependent upon the user’s location. De-

tailing their inner workings is difficult due to the diversity of services offered and

their associated operating domains. In general LBS providers take a user’s GPS co-

ordinate, process it, and yield a result. The processing may range from querying a

database, Location Based Access Control enforcement. The results of processing may

be returned to the user, passed to another service, and/or simply stored.

In order for these systems to work with our or any Anonymization Service they

must be able to process anonymous queries. In a nut shell, instead of receiving

exact latitude longitude coordinates the LBS provider will receive a spatial region

containing the user’s location. The greater the area given to the provider the larger

the result and computer cycles consumed.

Thanks to the advertisement driven business model pushed forward by Google and

Android, user information is monetizable. As stated previously the LBS provider may

send the query containing user information to a third party service such as advertisers,
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over which the end user has no control of data usage, save for those protections

offered by impermanent terms and conditions of the LBS provider. Therefore the

LBS provider is considered Semi-Trusted.
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Chapter 4

IMPLEMENTATION

We have implemented our proof of concept Anonymization Service in Java. In order

to support the varied quasi-identifier domain types the Anonymization Service is

comprised of three packages: Anonymizer, Domains, and Enforcers. Please see Figure

4.1 for the dependencies amongst the components. Currently the service supports

both NLBS and LBS quasi-identifier domain types, namely: age, gender, origin, race,

latitude, and longitude. In addition to this the policy values of k and mbr are also

supported. The components are discussed in further detail below.

The Anonymizer uses Jgrapht [1] for pending message graph manipulation. As

messages arrive their difference to all other pending is calculated using the Domains

module. While searching for a suitable generalization group the Enforcers compo-

nent is used to determine next state validity and satisfaction. Once a group has

been discovered and the anonymized data determined the Anonymizer produces the

anonymous queries, maintains a mapping for to the original queries, and removes the

group from the pending messages graph. In addition, messages outside the spatial

region of the Anonymizer are filtered out prior to processing.

Anonymizer

calculate difference()

apply generalization()

get k clique()

H()

getMergedCopy()

Enforcers

enforcers satisfied()

initial state()

Domains

ω()

d()

get generalization()

Figure 4.1: Package Diagram
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The Domains handle the quasi-identifiers and use a different underlying data struc-

ture for each domain type. Partially ordered NLBS domains are represented by a hi-

erarchy backed by Jgrapht [1]. Well ordered LBS domains are Lists. The unordered

domain data would be managed by a SET type structure. This component generates

the difference measure for NLBS domains by looking for the LCA of the two corre-

sponding message components. LBS by getting the ordinal value difference between

the corresponding components. Unordered domains by comparing the intersection

and union of corresponding component. The weights are a function of the number of

possible generalization any initial value may yield. Please see algorithms 2 and 3 for

further details.

The Enforcers manage the k and mbr policies. k is understood to be required

size of anonymized group while mbr is a cap on the spatial area encompassing the

group. As new members are incorporated the groups policy values adjust such that

the combined group policy will satisfy all individual member policies. Intuitively

selecting the largest k and smallest mbr of the group accomplishes this goal.

As this implementation is focused on the Anonymization Service extension we

have a wrapper application that reads in user queries from a file and then calls the

Anonymization Service to process. The Anonymizer itself is headless and returns the

generalized queries mapped to the original to the wrapper application which in turn

writes them to a file. As is show in Figure 4 the queries are structured as name, age,

gender, race, origin, latitude, longitude, row, col, k, mbr, pseudonym, arrival time,

anon start, wait time. The fields of row, col, pseudonym, arrival time, anon time,

and wait time are added by the Anonymization Service and are not present in the

original query from the user. The Anon start field shows when the message began
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anonymization processing.

Figure 4.2: Incoming Queries

Figure 4.3: Outgoing Queries: part 1

Figure 4.4: Outgoing Queries: part 2

The generalized queries presented in Figures 4.3 and 4.4 follow the same message

structure as the originals but with different values representing the group instead

of the individual with the exception of name and pseudonym. The name receives

the originals pseudonym and the pseudonym value get ”:ALIAS” appended to it

signifying it is the anonymized version of the original message with the pseudonym

matching that which immediately precedes ”:ALIAS”. The fields released to an LBS

provider from the anonymized query are only name, age, gender, origin, latitude, and

longitude. These fields have had their original values replaced by the k-anonymous

equivalents for their grouping. The remaining fields are present for internal use and in

the event of a LBS provider returning a result, to link the anonymous query response

with the correct user.

Each query contains its own policy values that are parsed from the message by

the Anonymizer so there is no need to call the Anonymization Service with different

arguments per message. Global values such as spatial region boundaries and row/col
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Figure 4.5: Global Configuration

number are set in a configuration file. Figure 4.5 illustrates the mentioned configura-

tions. Changing these values while the Anonymization Service is running will cause

indeterminate errors as the user’s coming in after the changes will have a different spa-

tial domain than those already present. Privacy erosion may occur from improperly

formed k-anonymous groups as result of the old spatial domain users being combined

with users from the new spatial domain.
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Chapter 5

EVALUATION

We evaluated the performance of the Anonymization Service on simulated user data.

The data is based upon the Mill Avenue demographic data provided by the City

of Tempe in [20; 21] as well as movement traces generated by Thomas Brinkhoff’s

simulator [7; 6]. The box is a 64-bit Windows 7 Professional SP 1 Intel Core i7-2620M

@ 2.70 GHz with 4 GB of RAM.

A single large set of movement traces (100,000) was generated with Brinkhoff’s

simulator in sections of about 10,000 that were combined. Demographic data of

Mill Avenue district was then incorporated into the traces, yielding a large set of user

movement and demographic information. The policy values were normally distributed

with a standard deviation of one about three for k and 36 for mbr. The policy values

are modified at runtime by the addition of an test specific offset to the initial value.

A total of 49 tests were performed such that every value of kµ ∈ {3, 4, 5, 6, 7, 10} was

paired with every value of mbrµ ∈ {36, 72, 108, 144, 180, 216, 252}. The mean and

standard deviations are derived from the union of above stated test resultants. From

the combined data set we evaluate the affect of various policy pairings on time,Tables

A.5 and A.6, as well as information loss, Tables A.1, A.3, A.2, and A.4.

5.1 Affects of Policy on Time

The nature of LBS necessitates a rapid turnaround time from query to result,

we have settled on five seconds an allowable delay threshold. Figure 5.1 shows the

mean turnaround time for queries with the given k,mbr pair on a linear scale while
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Figure 5.1: Average Turnaround Time (sec)
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Figure 5.2: Log Average Turnaround Time (sec)
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Figure 5.3: Average Processing Time (ms)

Figure 5.2 is on a logarithmic scale. We observe in Figure 5.1 that turnaround time

grows exponentially longer as the mbr approaches its minimum value of 36. As the

k value increases we again see an exponential growth in turnaround time. Figure 5.2

illustrates that k values up to seven with the largest mbr and k up to five for the

smallest mbr meet the turnaround time QoS threshold of five seconds. We evaluate

the components, processing and waiting time, of turnaround time next to determine

the influence of each on the overall time taken.

5.1.1 Affects of Policy on Processing Time

Processing time, generating a generalization once enough users are present, is

dependent upon algorithm used for generalization. Figure 5.3 illustrates that k values

up to 11 with the largest mbr and k up to seven for the smallest mbr meet the

turnaround time QoS threshold of five seconds. The k value has greater influence

over the processing time than mbr ; processing time is exponentially related to k.

We can also see that on average in the worst case the processing time was under 40
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Figure 5.4: Average Wait Time (sec)

seconds while the turnaround time in an equivalent scenario is around 25,000 seconds.

Overall the contribution of processing time to turnaround is minuscule.

5.1.2 Affects of Policy on Waiting Time

Waiting time, waiting on enough users to be present for generalization, is de-

pendent upon the Anonymization Service’s environment, specially the rate at which

users fall into each other mbr. Figure 5.4 shows the mean wait time for queries with

the given k,mbr pair on a linear scale while Figure 5.5 is on a logarithmic scale. We

observe in Figure 5.4 that turnaround time grows exponentially longer as the mbr

approaches its minimum value of 36. As the k value increases we again see an ex-

ponential growth in wait time. Figure 5.5 illustrates that k values up to seven with

the largest mbr and k up to five for the smallest mbr meet the turnaround time

QoS threshold of five seconds. We can also see that on average in the worst case the

waiting time was around 25,000 seconds while the turnaround time in an equivalent

scenario is around 25,000 seconds. Waiting time has a major effect on the overall
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Figure 5.5: Log Average Wait Time (sec)

turnaround time.

5.2 Affects of Policy on Information Loss

In current LBS k-anonymous systems the information released to the LBS provider

is quasi-identifier of location. The proof of concept is capable of releasing location as

well as other demographic information. The graphs presented below show the amount

of information lost by generalization for the given k,mbr pairs. If all quasi-identifier

information except location is suppressed then information loss is .66. We observe in

Figure 5.6 that information loss grows to an asymptote exponentially as k increases

linearly. While information loss grows linearly as mbr grows linearly. As the user

is composition of differing quasi-identifiers types we will next examine the effects of

policy on NLBS and LBS.
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Figure 5.6: Average Overall Percent Generalized
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Figure 5.7: Average NLBS Percent Generalized
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5.2.1 Effects of Policy on NLBS Information Loss

The NLBS information of the user is composed of age, gender, origin, and race,

Figures 5.8 through 5.11 respectively. These graphs all grow exponentially to an

asymptote as k grows linearly and show no change as the mbr varies. The com-

bined effect is presented in Figure 5.7 that also follows this trend. This signifies that

demographic information preservation is not dependent upon the mbr policy.
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Figure 5.8: Average Age Percent Generalized

1
2

3
4

5
6

7
8

9
10

11
12

36

72

108

144

180

216

252

0

0.2

0.4

0.6

0.8

1

mbr

k

A
v

e
ra

g
e

 G
e

n
d

e
r 

G
e

n
e

ra
li

z
a

ti
o

n
 P

e
rc

e
n

ta
g

e

Figure 5.9: Average Gender Percent Generalized
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Figure 5.10: Average Origin Percent Generalized
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Figure 5.11: Average Race Percent Generalized
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Figure 5.12: Average LBS Percent Generalized

5.2.2 Effects of Policy on LBS Information Loss

The LBS information of the user is composed of latitude and longitude Figures

5.13 through 5.14 respectively. These graphs all grow exponentially to an asymptote

as k grows linearly and shows linear growth as the mbr grows. The combined effect

is presented in Figure 5.12 that also follows this trend. This signifies that location

information preservation is dependent upon both policy values. The mbr policy field

limits the maximum spatial area of a group hence the asymptotic nature with respect

to k, limiting the mbr value has a greater effect on the location information loss than

changes k.

5.3 Discussion

The approach suffers a performance hit as the number of waiting users increases;

primarily due to the underlying graph data structure. As the number of users waiting

increases the nodes present in the graph also increasing leading to processing overhead
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Figure 5.13: Average Latitude Percent Generalized
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Figure 5.14: Average Longitude Percent Generalized
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for the graph dependent operations throughout our algorithm. Implementing an

expire time for a message would help to solve this problem as well as communicating

the anonymization fail to the user. Along the performance limitations vein is the use

of A*, as in the worst case it will end up brute-forcing the solution.

We implicitly trust the user and as such the Anonymization Service is vulnerable to

crafted message attacks possibly resulting in erosion of privacy and or denial of service.

If an attacker was to flood the Anonymization Service with messages with relatively

small k and large mbr they will deny the anonymization of legitimate request because

the Anonymization Service. If an attacker was to flood the service with messages with

demographic D and message Content C any resultant of the Anonymizer can be used

to infer more information about legitimate traffic than expected. This is possible as

the attacker can compare their input for a given time period with the anonymized

output of the Anonymization Service remove all those with C and infer what would

be required to make D match the demographic of the output of the Anonymization

Service.

Regardless of the pitfalls of the approach it is able to handle the combined nature of

M-Commerce Anonymization meeting time QoS while allowing for up to 80% privacy.

We attempted to use open source k-anonymization package Incognito described in

[16] but it failed to satisfactorily solve the problem. Failure due to processing time

or inability to handle quasi-identifiers with more than a single generalization path.
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Chapter 6

CONCLUSION

We have designed and implemented a proof concept Anonymization Service that uni-

fies traditionally disparate approaches for LBS and NLBS information in the LBS

domain. The Anonymization Service utilizes a generic approach towards generaliza-

tion that is not dependent upon the hierarchical structure of NLBS quasi-identifier

domains nor the well-ordered structure of LBS quasi-identifier domains. We used a

difference measure and single source clique generation to attain k-anonymity. Cur-

rently the Anonymization Service supports the NLBS quasi-identifiers of race, age,

gender,and origin; the LBS quasi-identifiers of longitude and latitude; the policy val-

ues of k and mbr. The increased expressive power of generic view of PII allows for

domains such race to be represented more accurately, as an individual may have more

than a single race in their immediate heritage. It also allows for the quasi-identifiers

regardless of expression; hierarchy, line, or set, to be processed simultaneously.

The generic view of personally identifiable information (PII) as quasi-identifiers as

well as the Anonymization Service required to process this view are our contributions.

Namely we have designed the following:

1. User-Centric Anonymization algorithm separated from the quasi-identifier do-

mains it handles

2. Difference measure as comparator of people

3. Set based quasi-identifier domains
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4. Methodologies for working with Set based quasi-identifier domains

5. Quasi-identifier Domain abstraction/interface

6. User policy unification technique

The implementation of some of the aforementioned designs requires submodules so

the implementation list below does not directly reflect the design list above.

1. User-Centric Anonymization algorithm separated from the quasi-identifier do-

mains it handles (Anonymizer)

2. Difference measure as comparator of people (Anonymizer)

3. Quasi-identifier Domain abstraction/interface (Domains)

4. User policy unification technique for k and mbr (Enforcers)

5. Jgrapht based Hierarchical or partially order quasi-identifier domain module.

(Domains)

6. List based well-ordered quasi-identifier domain module. (Domains)

6.1 Future work

Regarding future work, the unordered set can be implemented into the Anonymiza-

tion Service. A Framework for the handling for domains may be developed to support

the Anonymization Service in generalizing the varied domains and the LBS provider

process the anonymous queries composed of the varied domains. The current im-

plemented Anonymization Service can be extended to include LBS provider policy

constraints and l -diversity [18] and t-closeness [17] of query content. As the mbr
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policy has little influence on the amount of NLBS information lost a different time-

window approach may be taken that is presented in [19]. The approach increases the

diversity of users available by retaining a sliding history of users in a given region, the

increased diversity should give Anonymization Service more choices within the same

region and yield k-anonymous groups with less NLBS information loss.

Beyond performance improvements a distribution and lookup service for the various

Generalization Domains needs to implemented. Information required tends to be

service type specific so the number of Generalization domains is expected to grow

quite large. Aside from the Anonymization Service research needs to continue on the

how to best present the policy management to users, educating them on the expected

degradation of QoS given their selected policy values.
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APPENDIX A

DATA COLLECTED FROM EXPERIMENTATION ON SIMULATED USER
BASE
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mobihide [12]

Table A.1: Average NLBS Generalization Percentage

k mbr Gender Origin Race Age NLBS

1 36 0 0 0 0 0
1 72 0 0 0 0 0
1 108 0 0 0 0 0
1 144 0 0 0 0 0
1 180 0 0 0 0 0
1 216 0 0 0 0 0
1 252 0 0 0 0 0
2 36 0.493888996 0.602123812 0.510543971 0.083670074 0.422556713
2 72 0.496751733 0.603997764 0.511900635 0.083332129 0.423995565
2 108 0.504160878 0.607513322 0.514776281 0.084087181 0.427634415
2 144 0.495794393 0.609064532 0.512699757 0.084445505 0.425501047
2 180 0.501270498 0.611254 0.51289956 0.083613209 0.427259317
2 216 0.49970548 0.607994152 0.507301377 0.08363392 0.424658732
2 252 0.505938109 0.606273366 0.511334336 0.084112286 0.426914524
3 36 0.747693902 0.780715011 0.704879337 0.12487615 0.5895411
3 72 0.75149294 0.781563756 0.702294848 0.127406732 0.590689569
3 108 0.754621299 0.782584416 0.703353885 0.125354512 0.591478528
3 144 0.745835035 0.780147589 0.703348344 0.127073885 0.589101213
3 180 0.755825821 0.78419798 0.710146375 0.127419016 0.594397298
3 216 0.758615367 0.782143351 0.697633992 0.12633935 0.591183015
3 252 0.763678992 0.783166614 0.703915973 0.125930404 0.594172996
4 36 0.874408651 0.863855001 0.819491176 0.153787061 0.677885472
4 72 0.881070115 0.86130582 0.825193105 0.156256351 0.680956348
4 108 0.879739283 0.853532104 0.815824338 0.154541256 0.675909245
4 144 0.872680124 0.862702713 0.812250212 0.153683398 0.675329112
4 180 0.887461665 0.862284643 0.806430018 0.153247547 0.677355968
4 216 0.886194714 0.864255622 0.802000968 0.154449627 0.676725233
4 252 0.884609457 0.856342684 0.800011233 0.15352642 0.673622448
5 36 0.935055305 0.913516062 0.891950581 0.181861923 0.730595968
5 72 0.926387728 0.916399222 0.870275835 0.178914559 0.722994336
5 108 0.938130363 0.91135122 0.868398775 0.18263147 0.725127957
5 144 0.927611259 0.901643433 0.862902254 0.17483903 0.716748994
5 180 0.926928375 0.902709232 0.863695907 0.178806291 0.718034951
5 216 0.937969431 0.898626251 0.873641687 0.179278807 0.722379044
5 252 0.941698484 0.905740109 0.875890194 0.179876228 0.725801254
6 36 0.971963544 0.935874205 0.906523942 0.195815245 0.752544234
6 72 0.963284441 0.936720405 0.916721209 0.200067008 0.754198266
6 108 0.962212062 0.938200719 0.922278728 0.191245876 0.753484346
6 144 0.973938851 0.943944397 0.930931031 0.228160491 0.769243693
6 180 0.974223326 0.948361963 0.918386032 0.226329878 0.7668253

Continued on next page
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Table A.1 – Continued from previous page

k mbr Gender Origin Race Age NLBS

6 216 0.974677076 0.846983136 0.920152913 0.221673032 0.740871539
6 252 0.974919942 0.947068641 0.925416601 0.189126137 0.75913283
7 36 0.98624807 0.959078935 0.950426094 0.211227202 0.776745075
7 72 0.990130077 0.961961816 0.939647714 0.214700235 0.776609961
7 108 0.981181796 0.954894789 0.943771269 0.206414587 0.77156561
7 144 0.978286071 0.969164716 0.953713712 0.200253367 0.775354467
7 180 0.988707352 0.966339046 0.946567765 0.201762445 0.775844152
7 216 0.987200805 0.847266194 0.952533922 0.251402713 0.759600909
7 252 0.988179096 0.966912716 0.954485896 0.212697176 0.780568721
8 36 0.989310237 0.967420006 0.97500961 0.226941804 0.789670414
8 72 0.972440244 0.97900065 0.951234623 0.22669132 0.782341709
8 108 0.993114189 0.965959539 0.94305225 0.215730854 0.779464208
8 144 0.992521685 0.981723015 0.963122174 0.263360858 0.800181933
8 180 0.99242818 0.975227981 0.959362597 0.214308173 0.785331733
8 216 0.998763906 0.973062746 0.945481684 0.193980023 0.77782209
8 252 0.998148148 0.97549264 0.960600665 0.21850623 0.788186921
9 36 0.997470489 0.977146571 0.98777403 0.238346648 0.800184435
9 72 0.986918336 0.991525424 0.963836672 0.239382428 0.795415715
9 108 0.996551724 0.979177719 0.958222812 0.238256935 0.793052297
9 144 0.999533147 0.992063492 0.981064426 0.303834579 0.819123911
9 180 0.992927284 0.977803037 0.985412522 0.311755963 0.816974702
9 216 0.998756219 0.99063644 0.979336807 0.231170579 0.799975011
9 252 0.998347107 0.98953168 0.982691408 0.215140937 0.796427783
10 36 0.997356828 0.983700441 0.985903084 0.246182454 0.803285702
10 72 0.998392283 0.986334405 0.985530547 0.247604582 0.804465454
10 108 0.996363636 0.98 0.987272727 0.242256738 0.801473275
10 144 0.999271137 0.991618076 0.994169096 0.306602253 0.822915141
10 180 0.999174917 0.994636964 0.992574257 0.240078279 0.806616104
10 216 0.999019608 0.990196078 0.989215686 0.315435018 0.823466598
10 252 0.996726678 0.989770867 0.990180033 0.227680958 0.801089634
11 36 1 0.981632653 1 0.250969131 0.808150446
11 72 1 0.984962406 0.984962406 0.251445196 0.805342502
11 108 1 0.995867769 0.991735537 0.258565555 0.811542215
11 144 1 0.996774194 1 0.252034365 0.81220214
11 180 0.992125984 0.992125984 0.992125984 0.258576346 0.808738575
11 216 0.991150442 0.982300885 0.991150442 0.265486726 0.807522124
11 252 1 0.996268657 0.992537313 0.251856296 0.810165567
12 36 1 1 1 0.2860134 0.82150335
12 72 1 1 1 0.252261307 0.813065327
12 108 1 1 1 0.298157454 0.824539363
12 144 1 0.9375 1 0.239949749 0.794362437
12 180 1 1 1 0.257717157 0.814429289

Continued on next page
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Table A.1 – Continued from previous page

k mbr Gender Origin Race Age NLBS

12 216 1 1 1 0.24321608 0.81080402
12 252 1 1 1 0.270638909 0.817659727

Table A.2: Average STD of NLBS Generalization Per-
centage

k mbr Gender Origin Race Age NLBS

1 36 0 0 0 0 6.29E-16
1 72 0 0 0 0 6.30E-16
1 108 0 0 0 0 6.30E-16
1 144 0 0 0 0 6.29E-16
1 180 0 0 0 0 6.30E-16
1 216 0 0 0 0 6.31E-16
1 252 0 0 0 0 6.31E-16
2 36 0.499959537 0.392863972 0.499867678 0.078404718 0.144227903
2 72 0.499987785 0.393471838 0.499804963 0.077463929 0.143790331
2 108 0.499933982 0.392226635 0.499722908 0.077588807 0.144970911
2 144 0.499938882 0.391223936 0.499755859 0.07894809 0.146128812
2 180 0.499997522 0.39179699 0.499780379 0.078393062 0.146798634
2 216 0.49999698 0.391913579 0.499945247 0.07774391 0.148687942
2 252 0.499945812 0.391803053 0.499867387 0.078739465 0.150740119
3 36 0.434231024 0.29957524 0.45585525 0.087840234 0.118121697
3 72 0.432081899 0.300410314 0.457245346 0.08727228 0.118869844
3 108 0.430231986 0.302068188 0.456776561 0.08505019 0.119136515
3 144 0.435363313 0.305510494 0.456751332 0.086672851 0.123455048
3 180 0.429503585 0.300625776 0.453593266 0.086173058 0.123119112
3 216 0.427656383 0.301408911 0.459113374 0.08659315 0.125758227
3 252 0.423769889 0.302394918 0.456405595 0.086378171 0.126523495
4 36 0.331357916 0.238352696 0.384041066 0.089542341 0.096239235
4 72 0.322022646 0.23761377 0.378607507 0.089805839 0.092856598
4 108 0.324930887 0.246488493 0.38734144 0.088332348 0.097325386
4 144 0.333316153 0.241547278 0.390293564 0.08929902 0.098256831
4 180 0.314159655 0.239613699 0.395071837 0.088555564 0.097508958
4 216 0.315451007 0.239386821 0.397742782 0.08774691 0.101356739
4 252 0.318727036 0.246027065 0.399627549 0.088440369 0.104799312
5 36 0.246318863 0.192828476 0.307419983 0.092852646 0.075126193
5 72 0.258396246 0.18890261 0.334404697 0.094039465 0.07982684
5 108 0.240835548 0.19511258 0.337669374 0.092555036 0.077855439
5 144 0.255972051 0.207868413 0.34150829 0.086662698 0.084131746
5 180 0.257396993 0.20155078 0.342119897 0.090815846 0.084633976
5 216 0.240690785 0.210061444 0.332137427 0.088674044 0.084340724
5 252 0.234020692 0.205856378 0.328890313 0.089094666 0.084221529

Continued on next page
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Table A.2 – Continued from previous page

k mbr Gender Origin Race Age NLBS

6 36 0.164264163 0.168831346 0.289948425 0.093023341 0.062324932
6 72 0.185634923 0.168667871 0.275774739 0.092165754 0.063758592
6 108 0.188637268 0.166016848 0.266643131 0.089718732 0.064474732
6 144 0.141770014 0.144772862 0.224432173 0.07156474 0.05666156
6 180 0.140936711 0.135019263 0.238852447 0.071161645 0.057031818
6 216 0.139665781 0.136589578 0.236873268 0.071172293 0.055601981
6 252 0.138976738 0.136909479 0.231849567 0.071418766 0.057767597
7 36 0.114231724 0.136426364 0.216390885 0.090107704 0.051031576
7 72 0.08043713 0.132218463 0.237022653 0.090568085 0.05193208
7 108 0.135808735 0.143704004 0.230306275 0.087840671 0.054189224
7 144 0.11759354 0.102478827 0.179524591 0.068732772 0.045358296
7 180 0.090965555 0.107133228 0.191283543 0.066173256 0.043139484
7 216 0.096998671 0.107234463 0.182109834 0.071681622 0.048572944
7 252 0.092964731 0.106241442 0.178034214 0.066524035 0.044312567
8 36 0.082742913 0.123250215 0.155745408 0.093596827 0.041803316
8 72 0.159312328 0.099451175 0.214569609 0.090047916 0.054489066
8 108 0.06328785 0.125410695 0.224525156 0.08758222 0.047844186
8 144 0.059767653 0.080112018 0.160859621 0.065904665 0.036912009
8 180 0.060475549 0.092707675 0.167442871 0.064918896 0.037581206
8 216 0.017535551 0.096285522 0.188225583 0.064883776 0.039982574
8 252 0.021436735 0.092262404 0.163622608 0.06437068 0.036543825
9 36 0.035473329 0.104312052 0.077223769 0.085588906 0.030675744
9 72 0.109132281 0.045241857 0.173912955 0.096594439 0.040152052
9 108 0.04137931 0.099808244 0.195942208 0.095676792 0.04131766
9 144 0.012465948 0.035493143 0.10816863 0.065732807 0.023351211
9 180 0.059581561 0.082723601 0.097392453 0.060989429 0.027389251
9 216 0.020323551 0.054264545 0.114797536 0.059619423 0.028759724
9 252 0.023414357 0.040436793 0.104948735 0.057830998 0.028720768
10 36 0.051343797 0.088792478 0.117890599 0.086122006 0.031087411
10 72 0.040064102 0.081523303 0.119415612 0.082676277 0.029216422
10 108 0.060192529 0.09797959 0.112095001 0.08210199 0.032823601
10 144 0.01907617 0.045002493 0.053679162 0.043406695 0.016642994
10 180 0.020294346 0.036221498 0.060479167 0.04444942 0.015821227
10 216 0.022118655 0.048526936 0.072635084 0.042806572 0.02018784
10 252 0.040323028 0.049524216 0.069379766 0.044545739 0.0203557
11 36 0 0.094054846 0 0.093070062 0.023192918
11 72 0 0.085397118 0.121702361 0.088066517 0.028230332
11 108 0 0.045266327 0.090532654 0.089994272 0.026132452
11 144 0 0.040031205 0 0.082608999 0.020866786
11 180 0.088385608 0.06224956 0.088385608 0.082385024 0.031485405
11 216 0.093654914 0.092392093 0.093654914 0.088205552 0.036853117
11 252 0 0.04303195 0.0860639 0.080680546 0.032165321
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12 36 0 0 0 0.092669147 0.021479627
12 72 0 0 0 0.102856846 0.020953404
12 108 0 0 0 0.103866104 0.025485034
12 144 0 0.165359457 0 0.068152543 0.04148346
12 180 0 0 0 0.096012942 0.033783807
12 216 0 0 0 0.064556731 0.019583789
12 252 0 0 0 0.100014197 0.026502434

Table A.3: Average LBS Generalization Percentage

k mbr Latitude Longitude LBS Overall

1 36 0.002793296 0.003703704 0.0032485 0.001082833
1 72 0.002793296 0.003703704 0.0032485 0.001082833
1 108 0.002793296 0.003703704 0.0032485 0.001082833
1 144 0.002793296 0.003703704 0.0032485 0.001082833
1 180 0.002793296 0.003703704 0.0032485 0.001082833
1 216 0.002793296 0.003703704 0.0032485 0.001082833
1 252 0.002793296 0.003703704 0.0032485 0.001082833
2 36 0.044179411 0.051990198 0.048084805 0.297732744
2 72 0.085197454 0.107779185 0.096488319 0.314826483
2 108 0.128144811 0.155699124 0.141921968 0.332396933
2 144 0.167093188 0.216943497 0.192018342 0.347673478
2 180 0.199975641 0.259064179 0.22951991 0.361346181
2 216 0.243500424 0.277357023 0.260428724 0.369915396
2 252 0.281044047 0.279808209 0.280426128 0.378085059
3 36 0.060047472 0.070309353 0.065178413 0.414753538
3 72 0.116374541 0.150497975 0.133436258 0.438271798
3 108 0.178994412 0.218487653 0.198741032 0.460566029
3 144 0.229686846 0.309795796 0.269741321 0.482647916
3 180 0.277741323 0.382503617 0.33012247 0.506305689
3 216 0.347074843 0.411635493 0.379355168 0.520573733
3 252 0.418302121 0.416983088 0.417642604 0.535329532
4 36 0.068176977 0.079346798 0.073761888 0.476510944
4 72 0.133872889 0.171199608 0.152536248 0.504816315
4 108 0.208305226 0.255083913 0.231694569 0.527837687
4 144 0.266379127 0.362541082 0.314460105 0.555039443
4 180 0.323770585 0.459986624 0.391878605 0.582196847
4 216 0.407398871 0.499396759 0.453397815 0.60228276
4 252 0.495901162 0.502186517 0.49904384 0.615429579
5 36 0.072683008 0.086224564 0.079453786 0.513548574
5 72 0.144316073 0.191185788 0.167750931 0.537913201
5 108 0.225975636 0.27991296 0.252944298 0.567733404
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5 144 0.282534554 0.398098577 0.340316566 0.591271518
5 180 0.350403751 0.50247821 0.42644098 0.620836961
5 216 0.439773074 0.541407073 0.490590074 0.645116054
5 252 0.550022095 0.544650834 0.547336464 0.666312991
6 36 0.076574167 0.09000662 0.083290393 0.52945962
6 72 0.153441808 0.201062606 0.177252207 0.561882913
6 108 0.236745346 0.299676383 0.268210865 0.591726519
6 144 0.266389494 0.437538419 0.351963956 0.630150447
6 180 0.397987613 0.531673535 0.464830574 0.666160391
6 216 0.495090093 0.616008134 0.555549113 0.679097397
6 252 0.591442805 0.516434267 0.553938536 0.690734732
7 36 0.078805957 0.093481253 0.086143605 0.546544585
7 72 0.158782179 0.214482871 0.186632525 0.579950816
7 108 0.243727231 0.305184641 0.274455936 0.605862386
7 144 0.267708025 0.451801852 0.359754938 0.636821291
7 180 0.360566928 0.574081392 0.46732416 0.673004155
7 216 0.51443255 0.588970479 0.551701514 0.690301111
7 252 0.614737456 0.593654049 0.604195752 0.721777732
8 36 0.080890307 0.097297714 0.089094011 0.556144947
8 72 0.164212153 0.215501539 0.189856846 0.584846755
8 108 0.253596979 0.313274541 0.28343576 0.614121392
8 144 0.289192893 0.461465873 0.375329383 0.658564416
8 180 0.368984108 0.586513734 0.477748921 0.682804129
8 216 0.533516671 0.602100976 0.567808823 0.707817668
8 252 0.641328878 0.646261827 0.643795352 0.740056398
9 36 0.082156359 0.097858829 0.090007594 0.563458821
9 72 0.169279596 0.223956229 0.196617913 0.595816448
9 108 0.255178526 0.332841144 0.294009835 0.62670481
9 144 0.295852568 0.478713836 0.387283202 0.675177008
9 180 0.431370344 0.561018785 0.496194564 0.710047989
9 216 0.546412294 0.553997309 0.550204802 0.716718275
9 252 0.64521568 0.532429575 0.588822628 0.727226065
10 36 0.084180346 0.102264643 0.093222495 0.566597966
10 72 0.171203902 0.223490532 0.197347217 0.602092709
10 108 0.26111224 0.330572391 0.295842315 0.632929622
10 144 0.292829861 0.487112623 0.389971242 0.678600508
10 180 0.4521383 0.623288718 0.537713509 0.716981906
10 216 0.55334374 0.592509078 0.572926409 0.739953201
10 252 0.645335973 0.678008123 0.661672048 0.754617105
11 36 0.083741877 0.099168556 0.091455216 0.569252036
11 72 0.17244928 0.225814536 0.199131908 0.603272304
11 108 0.265363128 0.339087848 0.302225488 0.641769973
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11 144 0.341070463 0.455937873 0.398504168 0.674302816
11 180 0.426516518 0.594225722 0.51037112 0.709282756
11 216 0.539476937 0.655293346 0.597385142 0.737476463
11 252 0.639769032 0.681260365 0.660514698 0.760281944
12 36 0.081936685 0.088580247 0.085258466 0.576088389
12 72 0.174301676 0.239259259 0.206780468 0.610970374
12 108 0.255586592 0.328395062 0.291990827 0.647023185
12 144 0.333798883 0.450925926 0.392362404 0.660362426
12 180 0.464884278 0.552910053 0.508897165 0.712585248
12 216 0.530167598 0.705185185 0.617676391 0.746428144
12 252 0.640462889 0.705820106 0.673141497 0.769486984

Table A.4: Average STD of LBS Generalization Percent-
age

k mbr Latitude Longitude LBS

1 36 2.36E-15 3.18E-15 0
1 72 2.37E-15 3.17E-15 0
1 108 2.36E-15 3.18E-15 0
1 144 2.36E-15 3.17E-15 0
1 180 2.37E-15 3.17E-15 0
1 216 2.36E-15 3.18E-15 0
1 252 2.37E-15 3.18E-15 0
2 36 0.029872769 0.040380919 0.216126451
2 72 0.058154164 0.080425915 0.214374919
2 108 0.087647776 0.114967493 0.213776471
2 144 0.115435818 0.156385702 0.213435266
2 180 0.143352764 0.184449644 0.212402757
2 216 0.173555566 0.196750373 0.213172638
2 252 0.199611685 0.199586712 0.214204675
3 36 0.026946938 0.039592989 0.176971476
3 72 0.053966169 0.077682756 0.176954218
3 108 0.080549079 0.110526731 0.175727251
3 144 0.105157284 0.148006958 0.179603015
3 180 0.135197137 0.170958679 0.17613253
3 216 0.163713361 0.18523251 0.178986108
3 252 0.185536445 0.189428563 0.176600442
4 36 0.023953953 0.037744439 0.144152269
4 72 0.048366956 0.071935502 0.137078878
4 108 0.070187114 0.100531525 0.142612197
4 144 0.092715396 0.130307802 0.141738341
4 180 0.122491008 0.143995236 0.139735294
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4 216 0.146561895 0.159903158 0.140012176
4 252 0.15784674 0.169058763 0.140792071
5 36 0.022082317 0.036702061 0.112178297
5 72 0.045595212 0.065600938 0.118272143
5 108 0.061255343 0.090356038 0.113459886
5 144 0.086068468 0.11304168 0.119903177
5 180 0.110282355 0.122973127 0.119163981
5 216 0.134295819 0.14337753 0.11634864
5 252 0.131150079 0.150881978 0.113700952
6 36 0.020232234 0.036108148 0.093197121
6 72 0.039038468 0.061394942 0.093897253
6 108 0.056660048 0.082478233 0.09450942
6 144 0.061048345 0.080000233 0.08036765
6 180 0.083926459 0.082118275 0.079201595
6 216 0.093495259 0.105401565 0.078268292
6 252 0.095400047 0.111453511 0.079213956
7 36 0.018954167 0.03371069 0.07640427
7 72 0.037823208 0.052475019 0.076462317
7 108 0.05209244 0.077304396 0.078869383
7 144 0.050467437 0.070701091 0.061779236
7 180 0.072973475 0.066376278 0.060558915
7 216 0.080158177 0.087584662 0.063644927
7 252 0.07313282 0.098590345 0.058140728
8 36 0.016963659 0.033235401 0.061455718
8 72 0.03265702 0.050935363 0.080065356
8 108 0.044223635 0.071633105 0.070794724
8 144 0.047750323 0.064442111 0.051051205
8 180 0.063098999 0.058942651 0.050910856
8 216 0.069705147 0.083132787 0.056543583
8 252 0.061580501 0.089622825 0.049735502
9 36 0.016010949 0.032332932 0.043856421
9 72 0.031618382 0.040419278 0.058644247
9 108 0.040700071 0.059781609 0.059094547
9 144 0.044477086 0.053391154 0.03202526
9 180 0.054863592 0.053195501 0.036634255
9 216 0.053230993 0.0661019 0.035833067
9 252 0.04226616 0.073033853 0.035603904
10 36 0.014607595 0.028280949 0.045866925
10 72 0.02816648 0.044627679 0.041308571
10 108 0.039530678 0.059659499 0.046008508
10 144 0.026959654 0.042268527 0.021480541
10 180 0.035403479 0.033531714 0.020972049
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10 216 0.043485771 0.047432957 0.024991763
10 252 0.037342133 0.055789477 0.02634867
11 36 0.014940282 0.029444483 0.03387408
11 72 0.027840176 0.043017423 0.042520415
11 108 0.033730503 0.054157389 0.034607713
11 144 0.05182558 0.067260299 0.023651753
11 180 0.068500035 0.06989317 0.041058177
11 216 0.062987855 0.095494629 0.046124053
11 252 0.065988077 0.112996498 0.031087909
12 36 0.016656 0.038622199 0.023167287
12 72 0.031730663 0.010102357 0.025714212
12 108 0.025230026 0.046929822 0.025966526
12 144 0.062911205 0.074114572 0.047170123
12 180 0.020518691 0.127989845 0.024003235
12 216 0.045365055 0.068916761 0.016139183
12 252 0.071896305 0.079727567 0.025003549

Table A.5: Average Generalization Time

k mbr Processing (ms) Wait (ms) Turnaround (ms)

1 36 0.253107961 0 0.253107961
1 72 0.385436745 0 0.385436745
1 108 0.436895769 0 0.436895769
1 144 0.384693978 0 0.384693978
1 180 0.457208173 0 0.457208173
1 216 0.414558428 0 0.414558428
1 252 0.363879184 0 0.363879184
2 36 1.034204001 71.10724862 73.17565662
2 72 0.889716226 17.65871035 19.4381428
2 108 0.808591556 8.136275565 9.753458678
2 144 0.817483352 5.249483993 6.884450698
2 180 0.766131847 3.166394478 4.698658173
2 216 0.668815354 2.005116006 3.342746714
2 252 0.600261504 1.503890122 2.70441313
3 36 2.622752842 491.2808451 499.1491037
3 72 1.777575999 101.591578 106.924306
3 108 1.640686197 44.02348792 48.94554651
3 144 1.388802097 29.65557278 33.82197908
3 180 1.25650545 16.1323912 19.90190755
3 216 1.129552899 8.883940829 12.27259953
3 252 0.942624115 6.311566594 9.139438941
4 36 7.861772195 2620.642722 2652.089811
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4 72 3.848735484 516.6523182 532.0472601
4 108 3.0873596 208.3178708 220.6673092
4 144 2.960779338 136.6210309 148.4641482
4 180 2.594377712 76.3349346 86.71244544
4 216 2.170910678 39.49565474 48.17929745
4 252 1.847057008 27.85817903 35.24640706
5 36 16.0008502 4975.206082 5055.210333
5 72 7.907684226 1277.363616 1316.902037
5 108 6.257659387 650.3863978 681.6746947
5 144 5.825741153 412.5298517 441.6585575
5 180 5.352661694 302.6469925 329.410301
5 216 3.803288726 240.6451942 259.6616378
5 252 3.44090965 165.691438 182.8959862
6 36 39.18439624 11154.63231 11389.73869
6 72 19.20963306 2784.659013 2899.916811
6 108 15.33742996 1309.012925 1401.037505
6 144 14.63355644 5876.529555 5964.330893
6 180 9.176394143 6799.997287 6855.055652
6 216 7.227602195 2913.260082 2956.625695
6 252 5.770132762 2749.907005 2784.527802
7 36 96.74495333 32772.83138 33450.04606
7 72 49.91560124 7349.667159 7699.076367
7 108 40.8062244 3455.635102 3741.278673
7 144 33.33202057 14442.40119 14675.72533
7 180 27.59577649 12782.33535 12975.50578
7 216 18.92090747 4463.778594 4596.224947
7 252 19.45608758 5422.949601 5559.142214
8 36 1679.925852 978787.1481 992226.5549
8 72 1075.761539 178784.0603 187390.1526
8 108 415.786874 51961.94497 55288.23996
8 144 353.4881488 52767.78538 55595.69057
8 180 175.6996125 30451.07756 31856.67446
8 216 172.4398466 14989.92252 16369.44129
8 252 109.9881292 12303.38375 13183.28878
9 36 4817.977849 1738493.364 1781855.165
9 72 2144.710324 294776.8116 314079.2045
9 108 1602.823674 98003.32918 112428.7422
9 144 1077.050626 139474.5241 149167.9797
9 180 669.4562534 87417.98251 93443.08879
9 216 572.4226274 47013.51342 52165.31707
9 252 317.8748272 33705.08005 36565.95349
10 36 18897.58767 3793792.293 3982768.17
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10 72 10043.95016 636542.3666 736981.8682
10 108 4996.109091 198419.7745 248380.8655
10 144 3661.336735 506316.7507 542930.1181
10 180 2422.682343 339446.67 363673.4934
10 216 2026.002941 114146.6961 134406.7255
10 252 1087.738134 95157.38789 106034.7692
11 36 25365.55102 7763448.502 8042469.563
11 72 22049.70677 1350612.286 1593159.06
11 108 14481.07438 386818.3719 546110.1901
11 144 13103.8129 299888.5097 444030.4516
11 180 8890.023622 129689.3228 227479.5827
11 216 8025.814159 87438.47788 175722.4336
11 252 4897.716418 43525.90299 97400.78358
12 36 30238.75 24700343.67 25063208.67
12 72 36885.2 5420809.4 5863431.8
12 108 34520.33333 2439758.167 2854002.167
12 144 26495.25 2649958.625 2967901.625
12 180 18687.14286 744434.1429 968679.8571
12 216 23167.2 1146606.2 1424612.6
12 252 10038 455945.7143 576401.7143

Table A.6: Average STD of Generalization Time

k mbr Processing (ms) Wait (ms) Turnaround (ms)

1 36 1.96358292 0 1.96358292
1 72 2.463672966 0 2.463672966
1 108 6.96407595 0 6.96407595
1 144 2.421065747 0 2.421065747
1 180 7.108534799 0 7.108534799
1 216 7.268984025 0 7.268984025
1 252 2.406638721 0 2.406638721
2 36 3.719487347 106.436722 106.7482519
2 72 3.617670752 38.30682441 38.94572032
2 108 3.515517126 18.12312065 19.27781484
2 144 3.497862692 24.22019289 25.17625774
2 180 3.359863544 7.323607987 9.666249746
2 216 3.188972511 14.06001368 15.72182836
2 252 3.000066184 10.36110726 12.51691764
3 36 5.46219861 486.1441511 486.8002156
3 72 4.91253134 129.1824712 129.9679495
3 108 10.81349658 65.21637617 80.74220577
3 144 4.426726486 59.85512829 61.6190609
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3 180 4.216029104 32.45819875 34.9785983
3 216 4.018292871 28.36477192 30.99786347
3 252 3.771688262 15.54458977 19.02016037
4 36 11.7555436 2327.472278 2332.448005
4 72 6.555696393 599.4091888 601.5902091
4 108 6.308084955 225.6348567 227.2933404
4 144 5.873725463 203.3397137 205.9155451
4 180 5.756364907 134.9288273 137.4534199
4 216 11.81120295 69.06033019 95.54402731
4 252 4.20078346 72.68672218 76.33237478
5 36 12.31947936 4315.015242 4324.069789
5 72 8.898819406 1079.287748 1086.781291
5 108 8.137525521 690.7118658 696.4748134
5 144 8.111839097 472.8618721 479.2947992
5 180 8.083011642 326.1629259 331.752818
5 216 6.302196817 327.2067377 333.594623
5 252 15.06562553 229.7100048 266.0554967
6 36 31.09592858 8984.498733 9009.984668
6 72 21.07827864 2262.475375 2286.991319
6 108 15.27196347 1171.855929 1194.29176
6 144 11.99042157 656.9965292 675.6293582
6 180 9.705807591 499.625851 519.853453
6 216 8.132141232 362.2641002 380.5120251
6 252 6.417586185 295.7670516 310.1288778
7 36 60.31352736 27180.85195 27243.94007
7 72 51.05633094 6101.114642 6183.678841
7 108 35.97479528 3146.282521 3225.490972
7 144 30.34159308 1361.950305 1438.86859
7 180 23.62277033 1069.752156 1142.724437
7 216 17.64579192 696.7556449 759.9480621
7 252 12.66920347 604.081029 646.98553
8 36 2520.530606 835532.1999 840801.0853
8 72 2312.331917 194882.4664 201478.2165
8 108 550.5228342 77121.66644 77440.79628
8 144 497.0280835 31968.31423 32575.5229
8 180 177.8764969 8664.327803 9172.366665
8 216 220.1135743 10028.40771 10757.50193
8 252 86.75150511 4429.54602 4667.988856
9 36 9633.880533 1912085.452 1933059.044
9 72 3699.209305 346174.2384 354408.1009
9 108 3025.122322 114117.0254 121594.4488
9 144 2093.647536 62072.29003 66146.8071
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9 180 919.4456501 24488.50235 27501.70007
9 216 721.7572108 19921.40098 22771.01697
9 252 345.8375576 8202.144088 10080.12948
10 36 123923.0019 3863270.83 4102400.798
10 72 22467.55516 663791.1865 745115.1621
10 108 8522.548716 246403.4048 270368.713
10 144 9148.616417 99927.8812 145813.5876
10 180 3544.093001 36047.32814 54862.67139
10 216 3363.052701 31102.2559 55598.35468
10 252 1347.924471 13173.60608 23868.37198
11 36 33546.34673 7731496.702 7806682.297
11 72 44791.72897 1369108.128 1619202.015
11 108 24451.48312 282780.2884 454708.8244
11 144 17737.90622 281910.0593 375078.964
11 180 16105.68095 197803.2417 295600.0617
11 216 11673.35685 96380.48262 199055.6448
11 252 6197.944965 53055.36202 101682.5357
12 36 26437.16622 11979934.03 12084523
12 72 29831.88041 2993636.811 3276795.37
12 108 40987.3182 825480.8954 1134758.627
12 144 25538.98752 1507622.305 1527478.561
12 180 24749.616 481461.4804 759188.3068
12 216 22273.11256 642202.1161 880196.8399
12 252 5972.794584 273960.1507 285853.991
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