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ABSTRACT 

The subject of this thesis is distribution level load management using a pricing 

signal in a smart grid infrastructure. The project relates to energy management in a spe-

cialized distribution system known as the Future Renewable Electric Energy Delivery 

and Management (FREEDM) system. Energy management through demand response is 

one of the key applications of smart grid. Demand response today is envisioned as a me-

thod in which the price could be communicated to the consumers and they may shift their 

loads from high price periods to the low price periods. The development and deployment 

of the FREEDM system necessitates controls of energy and power at the point of end use. 

In this thesis, the main objective is to develop the control model of the Energy 

Management System (EMS). The energy and power management in the FREEDM sys-

tem is digitally controlled therefore all signals containing system states are discrete. The 

EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown 

of power and energy control devices such as EMS components may result in energy con-

sumption error. This leads to one of the main focuses of the thesis which is to identify 

and study component failures of the designed control system.  Moreover, H-infinity ro-

bust control method is applied to ensure effectiveness of the control architecture.  A focus 

of the study is cyber security attack, specifically bad data detection in price. Test cases 

are used to illustrate the performance of the EMS control design, the effect of failure 

modes and the application of robust control technique. 

The EMS was represented by a linear z-domain model. The transfer function be-

tween the pricing signal and the demand response was designed and used as a test bed. 

EMS potential failure modes were identified and studied. Three bad data detection me-
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thodologies were implemented and a voting policy was used to declare bad data. The 

running mean and standard deviation analysis method proves to be the best method to 

detect bad data. An H-infinity robust control technique was applied for the first time to 

design discrete EMS controller for the FREEDM system. 
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CHAPTER 1  

A STUDY OF ENERGY MANAGEMENT IN POWER DISTRIBUTION SYS-

TEMS 

1.1 Scope and objectives of this research 

This research is in the area of electric power distribution engineering. The project 

relates to energy management in a specialized distribution system known as the Future 

Renewable Electric Energy Delivery and Management (FREEDM) system. The 

FREEDM system is a solid state based electric power distribution system, and the solid-

state components of the system are used for control, interruption (protection), and renew-

able resource integration. A main feature of the FREEDM system is the utilization of a 

solid-state transformer.   

The main objective of the present research is to study the credible failure modes 

in the energy management of the FREEDM system. The scope of the study is to assess 

the system assuming interactions between Energy Management Systems (EMSs), e.g. 

what happens when control of EMS # 1 competes with control of EMS # 2.  A further 

scope of study is to design the discrete price-demand model of the EMS and ensure the 

effectiveness of the control algorithms using the H-infinity robust control MATLAB 

tools.  

Overall, this reach is a component of the FREEDM design, which will yield a re-

liable power distribution system and lead to its effective utilization. A focus of the study 

is cyber security, specifically bad data detection and failure of the cited control systems. 
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1.2 Introduction to the FREEDM system  

The FREEDM System Center was founded by the National Science Foundation in 

2009 to promote innovation technologies in power distribution. The universities partici-

pating in the FREEDM Systems Centre include North Carolina State University, Arizona 

State University, Missouri Science & Technology University, Florida State University 

and Florida Agricultural and Mechanical University.  The FREEDM system [1-4] is a 

solid state controlled power distribution system, which includes a solid-state transformer, 

fault isolation devices, distributed energy storage and distributed renewable energy gen-

eration.  Some of the envisioned goals of FREEDM system are to implement intelligent 

energy management, a plug -and -play interface for connecting devices and intelligent 

control of distributed resources. Fig. 1.1 shows the proposed FREEDM system with the 

help of a single line diagram. The papers on FREEDM controls [5-7] discuss in detail the 

development of the smart grid cyber-physical systems.  

This thesis contributes to the FREEDM systems research on power engineering 

system modeling and control by examining control of EMSs, interactions between them 

and failure modes. 

1.3 Theory of z-transforms 

In continuous systems, inputs and outputs are related by differential equations and 

Laplace transform techniques are used to solve those differential equations. The z-

transform is the discrete-time equivalent of the Laplace transform for continuous signals. 

The z-transform appears to provide the most direct method for the analysis and synthesis 

of sampled-data systems. The literature of the z-transform is voluminous and nearly all 
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the papers [8-12] in the field of sampled-data systems have utilized the z-transform, either 

directly or in some modified form. 

The energy and power management in FREEDM system is digitally controlled 

therefore all signals containing system states are discrete. Discrete signal analysis is con- 

 

Fig. 1.1 Single line diagram of the FREEDM system (taken from [3]) 

veniently studied using the z-transform. The delay between updates of control signal 

DLMP (Distribution locational Marginal Price) is assumed in the modeling of the EMS. 

Assuming this delay as sample periods, EMS is modeled as a discrete closed loop transfer 

function in the z-domain.  

Consider a function f (t) defined for t ≥ 0 that is sampled at times t = T, 2T, 

3T… where T is the sampling period. The one sided z-transform is defined as 

0

)()()}({
k

kzkTfzFkTfZ  (1.1) 
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where k = sample number. The properties of z-transforms are described in classic text-

books and some of the basic properties are mentioned in the Table 1.1 

Table 1.1 Basic properties of the z-transform 

 Sequence Time domain z-transform 

1. Impulse δ(t) 1 

2. Unit step  
1z

z
 

3. Ramp T 2)1(z

Tz
 

4. Time delay  )(zFz a  

5. Exponential  atez

z
 

 

In automatic control theory, the stability of a system may be assessed in several 

ways.  For purposes of this application, namely in energy management, a stable system is 

a system such that for every bounded input, there is a bounded output.  This is also 

termed ‘bounded input – bounded output stable’.  The stability of a discrete system can 

be assessed using the pole-zero map of the z-domain transfer function. The zeroes and 

poles of a generic and illustrative z- domain transfer function )(zSys  are depicted in Fig. 

1.2, 
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Fig. 1.2 Example of a pole-zero plots in the z-domain 

As shown in Fig. 1.2, the unit circle is the stability boundary for sampled discrete 

systems. For the system to be stable, the poles must be inside the unit circle. Poles in the 

z-plane that are close to the unit circle will produce slowly decaying oscillations just like 

poles in the s-plane do when they are close to the imaginary-axis. Input-output stability 

described here refers to bounded input-bounded output (BIBO) stability. Basic automatic 

control textbooks and papers describe properties of BIBO systems [13-15]. 

The relationship of z-transform to Laplace transform is explained by bilinear 

transform [16-18]. The bilinear transform is a transformation which maps the complex s-

plane,  
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)1(

)1(2

zT

z
s  (1.3) 

sT

sT
z

2

2
 (1.4) 

where  is the numerical integration step size. The foregoing is a bilinear mapping or 

transformation: the left half plane in the s-domain is mapped into the interior of the unit 

circle in the z-domain; and the unit circle in the z-domain maps to the imaginary axis in 

the s-domain. 

For the purpose of thesis, this bilinear transformation is used to convert the dis-

crete system to continuous system. This helps in using standard Laplace methods, specif-

ically while synthesizing controller during H-infinity robust design.   

1.4 Energy management system  

An EMS refers to a computer control algorithm used to monitor and control the 

energy leading to effective utilization of energy. The constant increase in load demand 

necessitates intelligent and efficient management of energy. The main functions of an 

EMS are to manage energy consumption, load dispatch and store energy. Energy man-

agement through Demand Response (DR) is one of the key applications of Smart Grid. 

Demand response is the management of load consumption of customer in response to 

supply conditions of smart grids, for example, during the peak hours or in response to 

electricity price the consumers reduce their electricity usage or storage of energy during 

light load or low price. The development and deployment of the FREEDM system neces-

sitates controls of energy and power at the point of end use. The main focus is the utiliza-

tion of a DLMP suitably modified for distribution systems to make the FREEDM system 
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operationally feasible. Recent papers provide a detailed discussion on optimal control of 

power management in FREEDM systems [19-20]. 

This thesis presents the response of EMSs assuming possible interactions between 

them, where the input control signal is DLMP. The main focus is to identify and study 

various component failures of the designed control system.  

1.5 Measures of performance of discrete systems 

Integral Squared Error 

In the design of a control system, the performance specifications to be satisfied 

may be given in terms of a performance index which is a number that indicates the good-

ness of system performance. Integral Squared Error (ISE) is a good measure of system 

performance formed by integrating the square of the system error over a fixed interval of 

time, 

0

2 )( dtteISE . (1.5) 

Using integral squared error, the impact of EMS component failures can be analyzed ef-

fectively. The change in the response due to failure can be assessed by comparing ISE 

with and without failure.  

Overshoot, pole-zero map and settling time 

The failure in the system will inherently change the transfer function between the 

various input and output port. The impulse response of the system can be assessed in 

terms of overshoot and settling time. This change in overshoot and settling time is one of 

the ways to assess the impact of failure on the system. Also, since the transfer function 

between the various points within the system changes, the pole-zero map will also 
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change. This change in map can be used to assess the stability of the system when a par-

ticular failure occurs. If the pole is outside the unit circle then the system is unstable (in 

the sense of ‘bounded input, bounded output’). Fig. 1.3 depicts an example of pole-zero 

plots for the closed loop response of 4 exemplary energy management systems on a 

FREEDM feeder.  The failure of a sensor in one EMS system results in the shift of a pole 

and zero as shown.  The poles need to lie inside the unit circle for bounded input – 

bounded output stability.  

 

Fig. 1.3 Example of a pole-zero plots in the z-domain 

1.6 Attacks on power grid/cyber tampering 

The communication networks play an important role in smart grid, as the intelli-

gence of smart grid is built based on information transferred across the power grid. Ac-

cordingly, these communication links are vulnerable to cyber-attacks and hence, its secu-

rity is extremely important. Cyber security is currently one of the significant challenges 
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to achieve objectives of the smart grid. Estimation of cyber-attack impacts requires prop-

er assessment and deeper understanding of the communication model design. The level of 

risk from cyber-attack at energy management system and other control systems used in 

the electrical grid is uncertain. Some of the potential attacks include manipulation of 

DLMP and incorrect exchange of vital information, for example, faulty signal injection 

leading to breaker trip [21]. As cyber-tampering can disrupt the accuracy of billing in-

formation, a well-structured cyber-defense mechanism is required to validate the availa-

bility and integrity of metering data for a customer billing center.   

A recent paper [22] on cyber- tampering addresses the issue of cyber-attack using 

data validation framework to verify home energy meters in a secondary network with 

real-time measurements from feeder remote terminal units in primary network using on-

line data validation. Discussing the paper in brief, the types of attacks are classified into 

three types: 

Type 1- Individual attack: This attack is related to individual customer i.e. single meter 

Type 2- Collusive attack: This attack deals with multiple meters, where a customer frau-

dulently lowers his electricity reading while increasing others. 

Type 3- Massive tampering attack: Extensive attack to manipulate energy usage of mul-

tiple metering devices. 

The online data validation framework described in the paper identifies potential 

cyber tampering based on three levels: 1) feeders; 2) subsystems; and 3) customers. The 

framework utilizes the existing data resources from feeder remote terminal units (FRTUs) 

and IP-based energy meters. Part (A) depicted in Fig. 1.4 is the evaluation to determine 
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availability and trust-ability of the FRTUs. The idea is to divide large systems into sever-

al sub-systems. Part (B) focuses on subsystem identification which involves detecting 

tampered meters based on the statistical results. The mismatch ratio for each subsystem is 

calculated to determine the extent of cyber-attack. Once tampered sub-system is identi-

fied, the framework collects the 24-hour load profile data of all the customers within the 

subsystem to further analyze the obtained results. This is implemented in part (C) which 

uses techniques such as fuzzy c-mean clustering based credibility score system and sup-

port vector machine. 

1.7 Organization of this thesis 

Chapter 1 discusses about the objectives of the thesis and the background of the 

FREEDM system. It also covers some fundamental concepts of z-transform, description 

of EMS, measures of performance criterion and a review on cyber-attack.  Chapter 2 is 

dedicated to the control architecture of the FREEDM system, the concept of demand re-

sponse, design of EMS model, description of the failure modes and bad data detection 

methodologies. Chapter 3 describes about the robust control problem formulation and its 

application in ensuring effectiveness of the EMS control algorithms. Chapter 4 illustrates 

single test bed and multi test bed models. Test cases are illustrated depending upon the 

type of operation or failure mode and the presence of robust control. Chapter 5 makes 

some conclusions about the study and recommendations for future work. The Appendix 

contains the pertinent MATLAB code and Simulink models along with relevant plots. 
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Fig. 1.4 Flow chart of the proposed framework 
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CHAPTER 2  

ENERGY MANAGEMENT CONTROL ARCHITECTURE: DESCRIPTION AND 

FAILURE MODES ANALSIS 

2.1 The FREEDM control architecture 

The FREEDM control architecture has several layers of control which are de-

picted in Fig. 2.1. The control schematic with detailed description of each level can be 

seen in Fig. 2.2. The notation ‘L1’ is the point of end use which consists of battery and 

controllable loads, Distributed Renewable Energy Resource (DRER) and Distributed 

Energy Storage Device (DESD) [23]. The notation ‘L2’ is the interface between the pri-

mary and the secondary distribution [23]. The controls of L2 are provided by a Solid 

State Transformers (SST), which regulates the AC/DC bus voltages [1]. It also provides 

power/frequency control and ensures the power quality and harmonics as per requirement 

[1]. The layer ‘L3’ is the primary distribution system which consists of two main con-

trols- Intelligent Energy Management (IEM) and Intelligent Fault Management (IFM) 

[1]. These controls are carried out by the use of Distributed Grid Intelligence (DGI) resid-

ing in each node of IEM and IFM. The IEMs make control decisions depending upon the 

local information and information received from other IEMs.  The layer L4 is the inter-

face between the primary distribution and the sub-transmission systems [23]. The layer 

L4 control coordinates multiple FREEDM systems from a major regional grid [1].  

2.2 Design of an EMS 

For the analysis in this thesis, the EMS is represented by a discrete z-domain 

transfer function. The basic configuration of an EMS consists of a forward controller, lo-

cal feedback gain and modeled system response as depicted in Fig. 2.3. The open loop  
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Fig. 2.1 Control schematic of the FREEDM system [1] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 FREEDM controls layered architecture [23] 
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and the closed loop systems are defined to be BIBO stable and accordingly, the poles and 

zeroes lie inside the unit circle. The DC gain of the open loop and closed loops are as de-

sired, e.g., 1.0. The model shown is for one distribution service. In general, there are 

many EMS such as this (e.g., ~40) in one distribution feeder as the estimated primary dis-

tribution service is 1.0 MW / 25 kW = 40 sites. The common signal source is the system 

wide DLMP.  The local controls are the charge / discharge of local storage and the power 

level control of controllable loads (e.g., on / off). 

Forward Controller

Local feedback gain

Modeled system 
response

System 
Pricing-LMP Local Demand

Fig. 2.3 Basic configuration of EMS local controller 

It is assumed that a number of local EMS controllers interact with each other de-

pending upon the distance between their locations. The more distance between the local 

controllers, the less interaction is observed between them. These interactions are modeled 

as discrete delay functions. For analysis purpose, the basic configuration of EMS with 

three such subsystems and interactions between them is modeled in Simulink 2013.  The 

schematic of the system with two controllers and interactions is depicted in Fig. 2.4. 
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Local controller #1

Delay
Interaction 2-1

Local controller #2

Delay
Interaction 1-2

System 
Pricing-LMP

Local Demand 
#1

Local Demand 
#2

 

Fig. 2.4 Interaction between 2 local controllers 

2.3 Failure modes 

A breakdown of power devices such as EMS components may result in 

a failure of distribution load or lead to error in demand response. So it needs to evaluate 

risks of component failures for power grid distribution operation. This thesis presents a 

little research of the impact on designed FREEDM control architecture when secondary 

devices fail to work. The main focus of the thesis is to identify and study various compo-

nent failures of the designed control system. In approximate order of likelihood, the cred-

ible failure modes are depicted in Fig. 2.5 and identified as:  

I. Loss of communication with the grid 

II. Loss of input control signal- DLMP 

III. Loss of digital controller in forward loop 

IV. Loss of local feedback gain controller 

V. Variation in local interaction – Modeled system response. 
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Forward Controller

Local feedback gain

Modeled system 
response

System 
Pricing-LMP Local Demand

 

Fig. 2.5 Failure of different EMS components 

The impact of these failures and the detection methodology is recognized by ob-

serving the change in transfer function between different points in the system, assessing 

the change in pole-zero locations, settling time, overshoot and using the difference in 

integral square error. 

2.4 Bad data detection 

The bad data here refers to wrong information injected in the DLMP or manipula-

tion in the DLMP as a result of cyber-attack. The one objective of the thesis is to detect 

this bad data and suggest corrective actions. Three methodologies are identified to detect 

bad data, they are as follows: 

I. Change in integral square error 

This is based on the concept of change in integral square error when a 

bad data is injected in the signal. Any drastic change in the DLMP signal will 

cause the ISE to increase constantly and reach a higher equilibrium point. If a 
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limit is set for change in value of ISE, any value above the limit will indicate 

the presence of bad data.  

II. Analysis of running average and standard deviation 

This method involves calculating the running average and standard 

deviation for every 100 samples. Fig. 2.6 describes the methodology to detect 

bad data. First the Running Average (RAVG) and the Running Standard Dev-

iation (RSD) of the signal is obtained for every 100 samples. Then Number of 

Standard Deviation (NSD) is assumed based upon the threshold required to 

declare bad data. RAVG is then compared with actual signal (DLMP) and the 

absolute difference is obtained. As shown in the Fig. 2.6, this value is then 

compared with the product of NSD and RSD and the difference is denoted by 

S. If S is positive, it can be declared that signal contains nominal data. If S 

goes below a certain negative value (threshold) then it can be declared that the 

DLMP signal contains bad data.  

Absolute 
value

| |

RAVG

Actual signal (DLMP)

NSD*RSD

S

 

Fig 2.6 Methodology schematic of running mean and standard deviation 
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III. Change in value of DLMP at different time step 

This method involves monitoring the value of DLMP signal at differ-

ent time steps, for e.g., every 100 samples. If a drastic change is observed in 

the signal, it can be used as one of the indications for the presence of bad data. 

Based on these methods a voting policy is used for declaration of the bad data. 

The analysis of running and mean standard deviation proves to be the best amongst the 

three followed by change in ISE and change in DLMP. 

 

2.5 Demand response to price 

Demand response today is envisioned as a method where, the price could be trans-

ferred to the consumers and they may shift their loads from high price periods to the 

low price periods in order to save their energy costs. The papers [24-30] present a de-

tailed literature review about demand response and its modeling. Demand response and 

consumers' participation in electricity markets are expected to play increasing roles in the 

modern smart grid environment [31]. This will also support the large scale integration of 

renewable energy generation. 

 Controlling electric loads to deliver power system services presents a number of 

interesting challenges. While direct load control of end-use loads has existed for decades, 

price driven response programs are only beginning to be explored at the distribution level 

[32].The distribution system utilizes a price signal as a means to control demand [32]. For 

the purpose of thesis, the EMS system designed represents the demand-side variability in 

response to the open-loop control signals (i.e. DLMP). In practical scenario, this allows 

customers to respond to fluctuations in electricity price. A generic non-linear relationship 
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between price and demand as depicted in Fig. 2.7 is used to create the reference demand 

signal as input to the controller. When price is between 0 – 0.2 $/kWH, the demand re-

sponse remains the same and thereafter, as price increases load consumption is reduced. 

 

Fig. 2.7 Generic non-linear curve of price vs. demand 
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CHAPTER 3  

A ROBUST CONTROL APPLICATION 

3.1 Robust control introduction and objectives 

Classical control analysis for single-input single-output (SISO) systems have the 

use of Bode plots, root locus techniques, Nyquist diagrams and simple time response 

analysis to judge system performance and stability margins. These techniques are usually 

not applicable for multiple-input multiple-output (MIMO) systems [33]. A MIMO system 

is said to have good robustness if the system has a large stability margin, good distur-

bance attenuation and low sensitivity. H-infinity control is one of the widely used me-

thods to assess system performance and robustness of MIMO systems. Robustness to pa-

rametric uncertainty is fundamental to successful control system design and as such it has 

been at the core of many design methods [34-37] developed over the decades. The main 

objective of the H-infinity robust controller is to compensate for the detrimental effects of 

the unusual disturbances. H-infinity controller can be designed using various techniques, 

but H-infinity loop shaping finds wide acceptance since the performance requisites can be 

incorporated in the design stage as performance weights [38].  

This thesis includes the application of H-infinity loop shaping control design to 

design a robust EMS controller for component failures and grid attacks. The controller is 

designed using the robust control toolbox of MATLAB, which automatically uses the H-

infinity algorithms to synthesize the controller.    

3.2 H-infinity control problem formulation 

Consider G(s) as the open loop transfer function of the plant and K(s) as the con-

troller transfer function, this will ensure the robustness and good performance of the 
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closed loop system. When H-infinity control approach is applied to a plant, additional 

frequency dependent weights are incorporated in the plant and are selected to meet stabil-

ity and performance requirements [38]. In the present research, the performance require-

ment is minimization of ISE and protection during failure modes. Fig. 3.1 represents the 

classic feedback structure where a linear plant model is augmented with weight functions 

Ws, Wks and Wt for loop shaping. 

K(s)

Wt

G(s)

Ws

Wks

r1

r2

r3

Reference(r)
Error(e)

Input(u)
Output(y)

 

Fig. 3.1 Classic feedback structure for robust control 

Basically, the weight functions are lead-lag compensators and can modify the fre-

quency response of the system as desired [38-39]. The parameters of the weight functions 

are to be varied so as to get the frequency response of the whole system within desired 

limits. Accordingly, these weight functions are the tuning parameters that are usually de-

termined using trial and error method [38]. A good starting point is to choose 

Aws

wMs
Ws

0

0/
 (3.1) 
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.constWks  (3.2) 

0

0 /

wAs

Mws
Wt

 (3.3) 

where A < 1 is the maximum allowed steady state offset,w0 is the desired bandwidth and 

M is the sensitivity peak (typically A = 0.01 and M = 2) [38]. 

The mixed sensitivity robust control problem is depicted in Fig. 3.2. Here, w is the 

vector of all disturbance signals, r is the cost signal consisting of all errors, v is the vector 

consisting of measurement variables and u is the vector of all control variables [38, 40]. 

The generalized plant P(s) is given as 

u

w

G

GW

W

GW

I

W

e

r

r

r

t

ks

ss

0

0

3

2

1

. 
(

(3.4) 

 

P(s)

K(s)

w

vu

r

 

Fig. 3.2 General robust control problem 
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The important part of H-infinity synthesis is the infinity norm, which measures 

the peak input/output gain of a given transfer function [41]. In the SISO case, this norm is 

just the peak gain over frequency [41]. In the MIMO case, it measures the peak 2-norm of 

the frequency response over frequency [41]. After obtaining the generalized plant P(s), 

the next objective of H-infinity control design is to find a controller K such that the H-

infinity norm of the closed loop system is minimized. This is done with the help of 

MATLAB robust control tool box. 

3.3 Design example 

Let the plant and nominal model be, 

)8.0)(9.0(

3
)(

zz
zG . (3.5) 

The robust control toolbox in MATLAB is provided in a simplified form for continuous 

system. Hence, this discrete plant model is converted into s-domain, which reduces the 

complexity of designing the controller in MATLAB. The weighing functions chosen sa-

tisfy the control specification for the desired sensitivity and response characteristic. Here, 

it can be taken as 

310

10

s

s
Ws  (3.6) 

1.constWks  (3.7) 

and 

0tW  (3.8) 
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The weighing functions defined are typical transfer functions used in robust control de-

sign. This produces the following controller, 

08803.21183.208161.706121.14182

13346.310219.208793.60524.23414
)(

2345

234

esesesess

eseseses
sK .        (3.9) 

The closed loop transfer function is then converted back to z-domain. The step response 

of the original plant (without controller), )(zG and closed loop system (with controller 

and unit feedback), CL is shown in Fig. 3.3 and Fig. 3.4 respectively. The application of 

H-infinity robust control significantly improves the step response of the system.  

 

Fig. 3.3 Step response of the plant ( )(zG ) 
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Fig. 3.4 Step response closed loop system (CL) 
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CHAPTER 4  

EMS DESIGN, FAILURE MODES AND CONTROL: ILLUSTRATIVE CASES 

4.1 Introduction to the test cases 

The preceding chapters presented the design of EMS model and the application of 

robust control for the FREEDM price based distribution system. In this chapter, five test 

cases are presented to illustrate the proposed control. In each case, ISE, overshoot and 

settling time are determined using a distribution level pricing signal as an input and a 

load control output signal. The single test bed model in the z-domain is shown in Fig. 4.1. 

As described in the second chapter, it consists of a forward controller and a feedback con-

troller which forms one EMS unit. The open loop and the closed loop systems are defined 

to be BIBO stable and accordingly, the poles and zeroes lie inside the unit circle. The DC 

gain of the open loop and closed loops are as desired, e.g., 1.0. The input price signal is a 

reference signal which is assumed as a unit step for experiment purpose. This price signal 

is then used to determine the reference demand which is based on the relationship be-

tween price and demand. 

 

Fig. 4.1 Single EMS unit test bed 
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 The multi test bed system consists of three such EMS units as depicted in Fig. 4.2. 

In this test bed, the three EMS units are assumed to have small amount of interaction in 

between them, e.g., the output of EMS unit 1 interacts with input of EMS unit 2 and vice 

versa. The interactions between EMS units depend upon the distance between them. The 

units closer to each other have stronger interaction and accordingly, the interaction re-

duces as distance between the units increases. These interactions are modeled as delay 

functions in z-domain, defined as 

2
)(

z

k
zd  

(4.1) 

where k is a constant dependent upon the distance between the EMS units. The distance 

dependent constants are defined by a matrix, 

15.025.0

5.015.0

25.05.01

10 4k
. 

 (4.2) 

The indicated transfer functions and time dynamics are presented only as representative 

of an energy managed system – of the type seen in FREEDM.  More complex EMSs are 

certainly possible.  The proposed method only relies on linearity of the EMS components.  

In (4.2), the diagonal elements correspond to the self-interaction of each unit with itself. 

Similarly, the non-diagonal elements such as, k (1, 2) corresponds to the interaction be-

tween the output of unit 1 and the input of unit 2. The value of k (1, 3) is lesser than k (1, 

2) because the distance between units 1 and 3 is more than between units 1 and 2. Accor-

dingly, the values of other non-diagonal elements are based upon the locations of the 

EMS units with respect to each other. 
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Fig. 4.2 Multi test bed – 3 EMS units 

 The list of test cases is described in Table 4.1. The test cases are categorized ac-

cording to the type of test bed, type of operation or mode and presence of robust control-

ler. 

4.2 Test case – A: Single test bed under normal operation with no robust control 

In this test case, the response of the system is observed with respect to a unit step 

as a reference input signal to the system. No robust controller is present in this test case. 

The step response of the system is observed in terms of overshoot, ISE and settling time. 

The ISE is calculated as depicted in Fig. 4.3, the model of test case – A. Fig. 4.4 and Fig. 

4.5 shows the step response and the ISE graph respectively. 
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Table 4.1 List of test cases 

Test Type of test bed Type of operation Robust control 

A Single test bed Normal operation No 

B Single test bed Feedback failure No 

C Single test bed Normal operation Yes 

D Single test bed Feedback failure Yes 

E Single test bed Cyber attack 

(Bad data detection) 

No 

 

 

 Fig. 4.3 Model of test case-A 

As seen in Fig. 4.4 and Fig. 4.5, the load initially responds to the price step and 

eventually settles to an equilibrium point and the ISE monotonically increases and settles 

at a value when equilibrium is reached. The result of the test case is the overshoot is 25.1 

kW, settling time is 2.61 seconds and ISE equilibrium point is 97 kW
2
-s. The following 

test cases will be observed in a similar manner with/without presence of feedback failure 

and robust control. 
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Fig. 4.4 Step response of test case-A 

 

Fig. 4.5 ISE graph test case-A  
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4.3 Test case – B: Single test bed with feedback failure and no robust control 

In this test case, the feeback transfer function is removed, i.e., feeback failure is 

simulated. Similar to test case – A, the model performance is observed in response to a 

reference unit step signal.  Fig. 4.6 shows the test case – B  model depicted feedback 

failure. Fig. 4.7 and Fig. 4.8 shows the step response and the ISE graph for the test case – 

B respectively. 

 

Fig. 4.6 Model of test case - B  

 

Fig. 4.7 Step response of test case - B 
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Fig. 4.8 ISE graph of test case – B 

The result of the test case is the overshoot is 39.7 kW, settling time is 0.73  

seconds and ISE equilibrium point is 300 kW
2
-s.  

4.4 Test case – C: Single test bed under normal operation with robust control 

This case is same as test case – A but with the presence of robust control. As 

described in chapter 3, H-infinity robust control technique is applied to find the controller 

K(z) for the single test bed system under normal operation. Let the forward tranfer 

function be defined as G(z), feedback transfer function be defined as H(z), then the 

system can be represented as, 

)()(1

)(
)(

zHzG

zG
zSys . (4.3) 

The schematic of the system with robust controller is as shown in Fig. 4.9. The schematic 

will be generic for all the following test cases where robust control is applied. 
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K(z) Sys(z)

Reference(r) Error(e)
Input(u)

Output(y)

 

Fig. 4.9 Schematic of system with robust controller 

 The robust control toolbox in MATLAB is provided in a simplified form for con-

tinuous system. Hence, this discrete plant model, Sys (z) is converted into s-domain, 

which reduces the complexity of designing the controller in MATLAB. The weighing 

functions chosen satisfy the control specification for the desired sensitivity and response 

characteristic. For all the test cases, it can be taken as 

310

10

s

s
Ws  (4.4) 

1.constWks  (4.5) 

and 

0tW . (4.6) 

The weighing functions defined are typical transfer functions used in robust control de-

sign. The robust control problem formulation in MATLAB for single test bed system 

produces the following controller, 

1477.61777.6

1527.413964.210223.408568.204362.5

19019.11684.6

1437.612617.11005.10638.90415.5

)(
234567

23456

ese

seseseseses

ese

sesesesese

sK . (4.7) 



 

34 

The closed loop transfer function representing Sys (z) and K (z) with unit feed-

back, as shown in the Fig. 4.9 is then converted back to z-domain. This z-domain system 

is represented in state space form in Simulink for simplicity purpose. The Simulink mod-

el of test case – C is as shown in the Fig. 4.10. Similar to previous test cases, the system 

performace is observed in response to a reference unit step signal. Fig. 4.11 and Fig. 4.12 

show the step response and the ISE graph for the test case – C respectively. 

 

Fig. 4.10 Model of test case – C  

  

Fig. 4.11 Step response of test case - C 
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Fig. 4.12 ISE graph of test case – C 

The result of the test case is the overshoot is 1 kW, settling time is 0.162  seconds 

and ISE equilibrium point is 0.06 kW
2
-s. 

4.5 Test case – D: Single test bed with feedback failure and robust control 

This test case corresponds to test case – B but with the presence of robust control. 

H-infinity robust control technique is applied to find the controller K(z) for the single test 

bed system with feedback failure. The difference between test case – C and test case – D  

is that the Sys(z) represents only the forward transfer function. The feedback trasnfer 

function is removed representing feedback failure. Hence, following the same steps as 

described in the previous test case, the robust control problem formulation in MATLAB 

produces the following controller, 

08141.514057.117077.113844.412085.1

12268.509722.207995.60416.13.168
)(

2345

234

eseseseses

eseseses
sK .     (4.8) 
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The Simulink model of test case – D is as shown in the Fig. 4.13. Similar to previous test 

cases, the system performace is observed in response to a reference unit step signal. Fig. 

4.14 and Fig. 4.15 shows the step response and the ISE graph for the test case – D respec-

tively. 

 

Fig. 4.13 Model of test case – D  

 

Fig. 4.14 Step response of test case – D  
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Fig. 4.15 ISE graph of test case – D  

 The result of the test case is the overshoot is 1 kW, settling time is 0.261  seconds 

and ISE equilibrium point is 0.038 kW
2
-s. 

4.6 Test case E: Single test bed with cyber attack on the input side and no robust control 

(Bad data detection) 

This test case relates to the bad data detection in DLMP signal. The test bed is 

same as used in test case – A with bad data injected at the input side. The test bed is de-

picted in Fig. 4.16 consisting of a switch block to inject bad data in the input signal for 2 

seconds. As described in chapter 2, three methods are determined to detect bad data – 

change in ISE, running mean and standard deviation analysis and change in DLMP at dif-

ferent time steps. These methodologies are implemented and the output values are ob-

tained from the model test case as shown in Fig. 4.16. The simulation length is 20 
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seconds and from tenth to twelfth
 
second bad data is injected in the input signal, as shown 

in Fig. 4.17.  

 

 

Fig. 4.16 Model for test case – E  

 

Fig. 4.17 Input signal to test case – E  
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 In this test case, the response of the system is observed with respect to a unit step 

as a reference input signal to the system for the first 10 seconds. Then the input signal is 

changed to 5 units for 2 seconds simulating bad data injection. This input signal contain-

ing bad data is then sent to a MATLAB code which performs the running mean and stan-

dard deviation analysis. The MATLAB code schematic is as shown in Fig. 4.18. NSD is 

assumed to be 5 for experiment purpose and the sampling time is 0.01 sec, i.e., 100 sam-

ples per second. The quantities RAVG, RSD and the output data S are calculated for 

every 100 samples. As shown in Fig. 4.19, the change in ISE is evident when signal is 

switched to bad data.  

Absolute 
value

| |

RAVG

Actual signal (DLMP)

NSD*RSD

S

 

Fig. 4.18 Schematic of running mean and standard deviation method 

The value of S calculated from running mean and standard deviation analysis is -4 

at the 10
th

 second. It is observed that ISE monotonically increases initially and settles at a 

value of 97 kW
2
-s for the first 10 seconds. When bad data is injected, the ISE increases 

drastically and reaches an equilibrium point at 3400 kW
2
-s. Hence, the change in ISE is 

3303 kW
2
-s. 
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Fig. 4.19 ISE graph: Test case – E  

4.7 Summary of the test cases 

The test cases implemented the price controlled single EMS unit test bed for dif-

ferent combinations of mode of operation and presence of robust control. The value of 

overshoot, settling time and ISE is obtained for test cases A, B, C and D.  Table 4.2 

shows the summary of these parameters for the mentioned test cases.  

Table 4.2 Summary of test cases – A,B,C,D 

Robust control No  Yes 

Mode of  

operation 

Normal 

operation 

Feedback 

failure 

Normal 

operation 

Feedback 

failure 

Test cases A B C D 

ISE (kW
2
-s) 97 300 0.057 0.038 

Settling time (s) 2.61 0.73 0.162 0.261 

Overshoot (kW) 25.1 39.7 1 1 

 

The change in system performance due to feedback failure can be explained by 

comparing test case A (normal operation) and test case B (feedback failure). As seen in 
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Table 4.2, though there is a decrease in settling time, the overshoot has increased from 

25.1 kW to 39.7 kW. The feedback failure worsens the system and leads to more error in 

energy which is evident by the rise in equilibrium point of ISE from 97 kW
2
-s to 300 

kW
2
-s. The change in system performance due to presence of robust control can be ex-

plained by comparing test case A (no robust control) and test case C (robust control) or 

test case B (no robust control) and test case D (robust control). Comparing test case B 

and test case D, there is an improvement in settling time from 0.73 seconds to 0.261 

seconds and also the overshoot has decreased from 39.7 kW to 1 kW. Though there is a 

feedback failure, the robust controller enhances the system performance and  leads to 

very small amount of error in energy which is evident by the fall in equilibrium point of 

ISE from 300 kW
2
-s (test case – B) to 0.038 kW

2
-s (test case – D). 

For the test case – E, bad data detection methodologies are implemented with the 

help of a single test bed system. When bad data is injected, it is observed that the value of 

S is -4 units and the change in ISE is 3303 kW
2
-s. As explained in Chapter 2, negative 

value of S indicates bad data. If a threshold of -1 is set for change in value of S and a limit 

of 2000 kW
2
-s is set for change in value of ISE then it can be declared that the injected 

signal contains bad data. Moreover, monitoring the value of DLMP every 100 samples, it 

can be seen that at the tenth second, there is peak increase in DLMP which indicates the 

presence of bad data. The ISE after reaching a higher equilibrium point does not reset 

even if the data comes back to nominal value. Hence, the value of S provided by analysis 

of running mean and standard deviation proves to be the best measure to detect bad data 

amongst the three methods implemented in test case – E. . 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This thesis concerns study of credible failure modes of the price controlled EMS 

unit for the FREEDM primary distribution system. The control system was analyzed us-

ing a linear z-domain model. The transfer function between the pricing signal and the 

demand response was designed such that the open loop and the closed loop system are 

BIBO stable and the DC gain of the open loop and closed loops are as desired. Integral 

square error, overshoot and settling time were used as performance indices to evaluate the 

control system and the failure modes. The H-infinity robust control technique was ap-

plied to design a robust EMS controller for component failures and grid attacks. Three 

bad data detection methodologies were implemented and voting policy was used to dec-

lare bad data. Five scenarios demonstrated that the ISE, overshoot and settling time were 

impacted by the system failure and presence of robust controller. The feedback failure of 

the EMS unit leads to increase in the ISE equilibrium point and overshoot of the load 

output. Hence, it can be concluded that feedback failure worsens the system and leads to 

more error in energy. The presence of a robust controller leads to drastic decrease in the 

ISE equilibrium point and overshoot of the load output. Hence, robust control significant-

ly improves the system performance. The three bad data detection methodologies appear 

to be well suited to detect cyber-attack involving injection of false data in DLMP or con-

trol input signal. 

The important outcomes and contributions of the research are as follows: 
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 The EMS was represented by a linear z-domain model. The transfer func-

tion between the pricing signal and the demand response was designed and 

used as a test bed. The parameters used were consistent with a FREEDM 

distribution system. 

 The H-infinity robust control technique was applied for the first time to 

the discrete EMS controller design in the FREEDM system. 

 EMS potential failure modes were identified and studied for the FREEDM 

system over a wide range of performance parameters which includes ISE, 

overshoot, settling time and pole-zero map.  

 Recent development of the smart grid involving cyber security for the 

FREEDM system is represented in this research. Representative cases in-

dicate methods for detection of cyber-attack (bad data detection). 

5.2 Future work 

Future work remains for the development and analysis of a price controlled energy 

management system at the distribution level. This includes: 

 analyzing the economic benefit of the robust control system 

 obtaining real transfer functions of the EMS components 

 examining the control system requirements in terms of gain margin, phase 

margin and desired bandwidth. 

Future implementations, possibly at the green energy hub at the FREEDM systems cen-

ter, could integrate software, hardware and communications into a single system.  Addi-

tional work to evaluate the practicality of these ideas includes: 

 Testing of the energy management on the full IEEE 34 bus test bed 
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 Utilization of a price profile from a real system, i.e., obtaining actual 

DLMP or LMP signals 

 Testing different robust control techniques to compare and obtain the best 

method to minimize error in energy consumption. 
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APPENDIX A 

MATLAB CODES AND SIMULINK BLOCK DIAGRAMS 
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A.1 Robust control design MATLAB code, e.g., test case – C  

 

% Generic Robust control design - e.g. test case C 

  

%Defining the subsystems 

s = tf('s'); 

ts=0.01; 

z = tf('z',ts);  

G = (z+5.498)/(z^3 + 2.6*z^2 + 2.25*z + 0.648); 

Gc = d2c(G); 

H = (2*z^2 - 2)/(-150*z^2 - 0.5*z - 21); 

Sysz = feedback(G,H); 

  

% Convert to s-domain 

Syss = d2c(Sysz);  

C = Sysz; 

  

%Define weights 

M  = 1.5; w0 = 10; A=1.e-4; 

Ws = (s/M+w0)/(s+w0*A); 

Wks=1; 

W3 = []; 

   

%Creating the generalized plant P 

P = augw(Syss,Ws,Wks,W3); 

  

% Specify parameters (typical values) 

nmeas = 1; nu = 1; gmn=0.5; gmx=20; tol = 0.001; 

  

% Determine controller 

[K,Cl,gopt] = hinfsyn(P,nmeas,nu,gmn,gmx,tol); 

[Kn,Kd] = ss2tf(K.a,K.b,K.c,K.d); 

Ks = tf(Kn,Kd); 

  

% Closed loop system in s-domain 

CLs = feedback(Syss*Ks,1); 

  

% Convert back to discrete 

CLz = c2d(CL,ts); 

  

% Determine state space of the system to be used in 

simulink 

[CLa,CLb,CLc,CLd] = ssdata(CLz);  
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A.2 Bad data detection – running mean and standard deviation analysis, e.g., test case – D  

 

%Bad data detection 

%datayout = DLMP Signal obtained from Simulink 

%find the running average over ns samples 

ns=100; 

for k=ns+1:2001; 

    summ=0; 

    for m=1:ns; 

        summ=summ+ dataout(k-m); 

    end; 

    rav(k)=summ/ns; 

end; 

%calc the running sd over ns samples 

for k=ns+1:2001; 

    summ=0; 

    for m=1:ns; 

        summ=summ+(dataout(k-m) - rav(k))^2; 

    end; 

    rsd(k)=sqrt(summ/ns); 

end; 

%now have s2, rav, rsd 

%create the vector bad, bad>0 --> good; bad < -1 --> 

bad data 

%nsd= the number of sd which is used to assess the bad 

data 

nsd=5; 

for k=ns+1:2001; 

    bad(k)=nsd*rsd(k)-abs(dataout(k)-rav(k)); 

end; 

x=-1; % Threshold value 

for k=ns+1:2001; 

    if bad(k) < x; 

        disp('Bad data detected'); 

        bad(k) % Bad data display 

        k      % Sample time display at which bad data 

is detected  

    end; 

end; 
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A.3 Results: Multi test bed case – 3 EMS units 

 

A.1 Multi test bed model – three EMS units 
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A.2 ISE graph: EMS unit 1 

 

A.3 ISE graph: EMS unit 2 
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A.4 ISE graph: EMS unit 3 

 

 

A.5 Step response: EMS unit 1 
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A.6 Step response: EMS unit 2 

 

A.7 Step response: EMS unit 3 
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