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ABSTRACT  
   

Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an 

electric system. The sequence of the electric power train with the FC system is intended 

to achieve both better fuel economies than the conventional vehicles and higher 

performance. Current hybrids use regenerative braking technology, which converts the 

vehicles kinetic energy into electric energy instead of wasting it.  A hybrid vehicle is 

much more fuel efficient than conventional Internal Combustion (IC) engine and has less 

environmental impact. 

    The new hybrid vehicle technology with it’s advanced with configurations (i.e.  

Mechanical intricacy, advanced driving modes etc) inflict an intrusion with the existing 

Thermal Management System (TMS) of the conventional vehicles. This leaves for the 

opportunity for now thermal management issues which needed to be addressed. Till date, 

there has not been complete literature on thermal management issued of FC vehicles. The 

primary focus of this dissertation is on providing better cooling strategy for the advanced 

power trains. One of the cooling strategies discussed here is the thermo-electric modules.  

        The 3D Thermal modeling of the FC stack utilizes a Finite Differencing heat 

approach method augmented with empirical boundary conditions is employed to develop 

3D thermal model for the integration of thermoelectric modules with Proton Exchange 

Membrane fuel cell stack. Hardware-in-Loop was designed under pre-defined drive cycle 

to obtain fuel cell performance parameters along with anode and cathode gas flow-rates 

and surface temperatures. The FC model, combined  experimental  and  finite 

differencing  nodal  net  work  simulation  modeling  approach which implemented heat 

generation across the stack to depict the chemical composition process. The structural 
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and temporal temperature contours obtained from this model are in compliance with the 

actual recordings obtained from the infrared detector and thermocouples. The  

Thermography  detectors  were  set-up through  dual  band thermography  to  neutralize  

the  emissivity  and  to  give several  dynamic  ranges  to achieve accurate temperature 

measurements. The thermocouples network was installed to provide a reference signal. 

     The model is harmonized with thermo-electric modules with a modeling strategy, 

which enables optimize better temporal profile across the stack. This study presents the 

improvement of a 3D thermal model for proton exchange membrane fuel cell stack along 

with the interfaced thermo-electric module. The model provided a virtual environment 

using a model-based design approach to assist the design engineers to manipulate the 

design correction earlier in the process and eliminate the need for costly and time 

consuming prototypes. 
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CHAPTER ONE 
 

1. INTRODUCTION 
 
 

1.1 Proton Exchange Membrane Fuel cell (PEMFC) technology 
 
PEM fuel cells are the most promising of various existing fuel cell systems because of 

simplicity of its design and low temperature operations. The attractiveness of this fuel 

cell system has increased significantly within the past five years because of reduced use 

of the active catalyst materials, improved conductivity, water permeability, and better 

thermal stability. PEMFC operate on pure hydrogen have several of attributes which 

makes them an attractive alternative to replace internal combustion(IC) engines. Some of 

the advantages are high efficiency, faster start up, zero emission and low costs. Another 

important asset of FCs that they are extensible and could be stacked until the desired 

power output is reached. As the FCs operates so quietly that they lessen noise and air 

pollution. Furthermore, the waste heat from a fuel cell could possibly used to provide hot 

water or space heating for an office or hotel. 

In a PEMFC, hydrogen gas flows to the anode. There, with the help of the catalyst, the 

molecules are broken down into protons (hydrogen ions) and electrons. The positively 

charged protons go through the porous membrane and migrate toward the cathode as 

illustrated in Figure.1. On a stack level, this flow can be used to power electric 

applications. At the cathode, the hydrogen protons, the electrons from the external circuit 

and oxygen from the air combine to form water. The reaction is exothermic, which means 

that it generates lot of heat. 
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Figure1: PEM working principle 

PEMFC operates at a temperature of about 80⁰ C in which fusion of hydrogen and Air to 

produce Electric current and water. Along with this a lot of heat is also produced.  This 

temperature is dictated by the polymer membrane which is Nafion. These membranes 

exhibit proton conductivity only in the hydrated form. This emphasizes that the waste 

heat needs to be removed so that the membranes don’t dehydrate. The thermal and water 

management issues are due to the operating temperature < 90 oC, with air at the cathode 

at relatively lower pressure. [1] Thermal management of the heat produced in the cells is 

a major challenge. This suggests that thermal heat and water produced need to be 

managed efficiently to maintain the performance and efficiency of the fuel cell system. 

1.2 Motivation 

Among various fuel cell types, proton exchange membrane fuel cells (PEMFCs) are the 

most promising for automotive applications due to their higher power density and lower 

operating temperature. It is expected to play a key role in future automotive technology. 

Thermal management is vital for both conventional vehicles and the hybrid vehicles, as it 

defines vehicle’s overall performance. Generally, thermal modeling assists in analyzing 

thermal loads on under-hood  components  for  better  thermal  packaging  in  addition  to  

the  utilization strategies of Automotive parts.  This leads to exhaust emissions reduction 



    3 

and better thermal efficiency. Furthermore, these improvements will result in weight and 

cost reduction in addition to devising new control strategies. The hybrid vehicles modules 

add more complexity to the vehicle Thermal Management System (TMS).  However, 

establishing high-quality TMS for the hybrid vehicle is still a dispute due to fact that the 

advanced power-trains are still an additive to the architecture of the current vehicles. [2] 

The primary objective of this study is to predict the thermal temperature distribution of a 

PEM fuel cell at varying loads to identify thermal interaction of the cells. This thermal 

distribution is optimized using a thermo-electric module. As the future world is of FCV’s 

& hybrid vehicles, packaging and thermal prediction of fuel cell plays a major role in the 

efficient design of any power train. 

1.3 Problem Statement 

Predicting the thermal behavior of each and every component in a fuel cell system by 

giving their exact boundary conditions using analysis software and verify the results 

obtained experimentally with Infrared (IR) Camera. The interaction of heat generated in a 

fuel cell on other components is also studied. It is our prime concern to know how the 

thermal management is achieved in FCV’s & HEV’s. As an advancement, the TMS could 

be   integrated with is devised in today’s world so that we can efficiently design in FCVs. 

1.4 Approach 

An integrated experimental and finite differencing simulation modeling approach is 

adopted using thermography detectors, to achieve accurate temperature measurements. 

This was attained through 2D spatial and transient temperature profiles to obtain the 

boundary conditions of the FC stack. The actual boundary conditions were then set up 

through finite difference nodal network simulation  code  for  solving  refined 
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thermal/fluid  systems  with  slightest user interaction(RadTherm),  to  develop  3D  

Thermal model. The primary analysis focused on Nexa 1.2 KW FC system to study the 

critical thermal management issue. A comprehensive testing practice was implemented in 

order to evaluate the thermal performance of the FC stack under different load conditions 

while overseeing the thermal performance.  

The mode we adopted was compiling each and every component of a fuel cell using 

conventional CAD package (solid works). The next step involved meshing the model 

using a powerful tool named ANSA was employed. This procedure is critical, to  break  

down  the  surfaces  of  the model  into  finite  elements  to  improve  the  accuracy  of  

the  model  for  better thermal analysis. Furthermore, the entire FC stack component was 

imported in to analysis software called Radtherm, the perform thermal analysis could be 

performed by applying both front & back boundary conditions along with the material 

properties for each component depending on their function. The next step of the analysis 

implicates the comparison between the Radtherm results with results obtained from Infra-

red (IR) Camera data. As an extension of the procedure, the 3D model was incorporated 

with thermo-electric modules to optimize the thermal performance of the FC stack. The 

results of which are discussed in the future sections. Based on the current drawn, flow 

rates of hydrogen and air, of the anode and cathode are calculated respectively. But the 

maximum flow rates for hydrogen and air is given based on the Stoich on the anode and 

cathode respectively. 
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CHAPTER TWO 

2.  LITERATURE REVIEW 

2.1 Existing Literature 

There has been an intensive research conducted in order to improve the performance of 

the PEM Fuel Cells. The existing or published literature discussed the TMS of the vehicle 

through thermal modeling automotive vehicle subsystems. However, such approaches 

required thorough computations combined with sever assumptions to simplify the model 

and reduce the data content. For instance, Setareh et al. [3] developed a 3D numerical 

thermal model to analyze the heat transfer and predict the temperature distribution in air-

cooled PEMFCs. The Air-cooled FC system served two purposes, the cooling function 

and cathode flow which reduced the overall cost of auxiliary systems. The prime 

objective of this paper was to develop a 3D thermal model of an air-cooled PEMFC stack 

which helps to determine the temperature distribution and heat transfer coefficients. This 

3-D model could be used for design of cooling devices for PEMFC systems and was 

testified here for an air-cooled FC stack.  

A 3-dimensional flow simulation was created by S. Shimpalee and S. Dutta [4] to study 

the numerical analysis of the flow channel. This numerical model assumes steady state 

and multiphase behavior of the flow channels. The Important finding of this paper is that 

the performance of fuel cell not only depends on inlet set-up conditions like membrane 

thickness, inlet flow rate, cell voltage but also temperature variation inside the fuel cell 

model. Nguyen et al. [5] proposed a two- dimensional model with steady-state, two-

dimensional heat and mass-transfer. The model was used to gauge the effectiveness of 

various humidification strategies.  
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The results confer that the anode gas stream must be humidified before letting into the 

fuel cell as the back diffusion of water is insufficient to maintain the membrane hydrated. 

This enables us to study the operating criterion on performance of the fuel cell to model 

cell design for a specific utilization to regulate a fuel cell.  

Matian et al. [6] developed a computational model of the PEM fuel cell to study the heat 

generated and distribution of heat of the surface of the model using thermal imaging 

cameras.  Two models, single-cell and two-cell stacks, with a focus on temperature 

divergence on the external and internal surfaces of the stack under different loads were 

studied. The Validated results showed that the temperature distribution in a stack is 

influenced by stack composition and drawn power density. Hence, there becomes a very 

high implication for better thermal management in FC stacks with large number of cells.  

 

Figure 2: Thermal Imaging Camera Technique [6] 

Alejandro et al. [7] provided key inputs to develop powerful model and validate the 

obtained results through a dynamic system (1.2 KW NEXA) which is very commonly 

used by research groups. The model proposed semi-empirical formulation, theoretical and 

experimental data combined together. The main contribution of this model is unique way 
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of obtaining polarization curves experimentally, and modification of the thermal 

equations for an air cooled stack and modeling of flooding event in the FC stack. The 

heat distribution on the surface of the stack is very difficult to measure experimentally 

because of complexity of heat and water interaction. [8] Design consideration for PEM 

FC is a key factor while taking into account catalyst particles, GDL (gas diffusion layers) 

and bipolar plates, to integration of the fuel cell stack with various external subsystems.  

Djilali et al. [9] analyzed the fundamental modeling of specific transport phenomena 

encountered in component Layers of MEA. The MEA consists of a proton exchange 

membrane sandwiched between catalyst and GDL. Moreover, discussed the integration of 

some of PEM FC models into multi-dimensional CFD codes and illustrated their 

application in plate and frame unit cells. Sharifi et al. [10] analyzed the performance of a 

fuel cell as a function of voltage – load current characteristics. In this regard, two 

complete fuel cell models under steady-state and dynamic conditions were proposed. The 

steady-state electrochemical model for PEM fuel cells was presented. Transient 

phenomenon in this paper combines together simultaneously three prominent dynamic 

aspects like temperature changes, Fluid flow and pressure changes through channels of 

double layers. Yi Zong et al. [11] proposed a non-isothermal and non-isobaric model with 

non-uniform stack temperature. The model consisted several parts like mass balance, 

energy balance, pressure drop and cell output voltage. The mass balancing equations are 

used to calculate the energy balance equation and Newton–Raphson method is applied to 

calculate the local current density. Based on the simulation on both anode and cathode, it 

was found that anode and cathode should supply with humidified fuel, to prevent the 
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membrane from dehydrating. Also, it was found that the flow pressure increases the 

performance of the FC.  

Bao et al. [12] established a one-dimensional, steady state, isothermal FC model that 

focused on design methodology and analysis of water and thermal management of the 

FC. More recently, Cao et al. [13] developed a three dimensional two phases, non-

isothermal model of the PEMFC to perceive the interaction between water and heat 

transport, fluid flow of the model, electrochemical reaction and heat transfer process. 

Musio et al. [14] established a modeling approach which was implemented in Matlab-

Simulink context. The stack model was set up based on elementary equations for fluid 

dynamics, thermal dynamics and kinetic behavior of the system. A thermal control model 

for the system was progressed for an air cooling system which enabled in differentiating 

various heat removal strategies. Finite differencing (FD) have been used to understand 

the heat transfer mechanism. For instance, Mayyas et al. [15] associated a 3D model 

using FC heat transfer technique correlated with experimental boundary conditions for 

hybrid power train containing battery pack and power electronics. The model predicted 

the spatial and temporal temperature portrait in accord with the actual vehicle conditions. 

Similar, approach is used in this study, but in this case the subject of study 3D fuel cell 

model.  

2.2 Apparatus used 

NEXA 1.2 KW fuel cell System 

The Nexa FC system provides simulated non-regulated output voltage of the fuel cell 

system to 24/48 V DC voltage and enables battery hybridization. The Nexa OSC software 

provides overall efficient control of the Nexa1200 system. The entire data from all 
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attached components could be centrally parameterized and controlled. Figure 3 shows the 

image of the fuel cell system. 

 

Figure 3: 1.2 KW NEXA fuel cell 

The NEXA 1.2 KW fuel cell has FC GEN 1020 (BALLARD) stack stationed in it. This 

stack has been engineered to integrate advanced open cathode technology where the inlet 

air is inherited from the atmosphere. The state of the art technology has instilled with a 

self humidifying MEA (membrane electrode assemblies).This expedites the water piled 

up during the reaction, to evaporate amidst the cooling air and is blown out by means of 

the air duct at tail of the system [16]. The primary advantage of the FC gen 1020 is that it 

could be scaled from 300 W to 3 KW easily and also integrated with other application 

user. The stack is placed in tilted position to facilitate the air inlet and cooling the system. 

The NEXA system has maximum power capacity of 1200 W and current of 52 A. The 

investigated FC stack is packed with 36 cells. 
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Figure 4: FC gen-1020 stack 

Moreover, the FC has an in-built new software experimentation and data acquisition 

measurements. This provides a consistent status of the system with flow rates, current 

and power drawn. Figure 5 shoes the data acquisition window. 

 

Figure 5: NEXA data acquisition Window 

 
PXI 1071Controller 

PXI 1071 Controller is a state of the art measurement based platform advanced by 

National Instruments (NI). This has an in-built X series data acquisition capable of 

providing 16 analog inputs and 2 output signals. This typically controls the load profile 
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drawn out the FC system based on the loaded input signals created through the artificial 

drive cycles.   

 

Figure 6: NI PXI controller 

The controller is capable of dedicated bandwidth of up to 1 GB/s per-slot x4 PCI 

Express), while the total system bandwidth of about 3 GB/s. The controller uses two Data 

acquisition systems namely the PXIe-6341 and PXI- 6722 controllers. The PXIe-6341 

was used to communicate with the e-load to draw the load current. 

DC Electronic load: 
 
The DC e-load used here is the AMREL PEL 300-60-60. This is a programmable real 

time DC load which is an important criterion to be met for. The power capacity here is 

around 300 W. The power is drawn out by the FC as per the load requirements as 

dynamically controlled by the PXI controller.  

 

Figure 7: AMREL DC e-load 

Thermal Imaging Camera 
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Thermal Imaging is proved to be an effective technique for diagnosis of operating fuel 

cells and fuel cell stacks.  In this case, we use T620 FLIR camera for imaging purpose.  

Figure 6 shows the thermal camera. It can be used to identify variety of phenomena that 

are associated with non-uniform generation of heat. [17] 

 

Figure 8: Thermal imaging Camera 

The specifications of the IR camera are illustrated in table 1. The camera also comes with 

a FLIR Viewer app to import thermal images from the camera, add more box areas and 

fine-tune images. Furthermore, this also enables us to generate detailed reports of the 

images obtained.  

Model Name T620 FLIR 

Camera Resolution 307,200 pixels (640 × 480) 

Field Of View (FOV)  IR FOV 

Temperature range -40 to 650°C 

Spectral Range 7.5–14 µm 

Data Plotting Software Examin IR 1.40.2 

Thermal sensitivity < 0.04 °C at 30°C 

Frame Rate  30Hz 
 

Table 1: IR camera specifications. 

Thermo-couples (K-series) 
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The thermocouple is very widely used component for measuring temperature across any 

part or area. In case we have used the K-type as they possess the widest operating 

temperature range. Moreover, they work for all applications as they are very stable and 

possess high corrosion resistance. 

 

Figure 9: K-type Thermocouple 
 
The two K type thermocouple network (one at the center and another towards the 

periphery) was instilled on the surface of the FC stack to record the temperature variation 

for each artificially induced drive patterns.   

Software set up and driving Cycle 
 
The concept of performing HiL configuration and modeling were accomplished using 

MATLAB/SIMULINK©.  This is an advanced software platform developed by Math 

works. [18] This enables to provide block diagrams for several mathematical operations 

for simulation programs. This is one of the most efficient methods to drive the Matlab 

program. It’s widely used for testing purposes for dynamic modeling.  

The inputs to the SIMULINK models are given in form of standard pre-defined cycles. 

These drive cycles were established by different counties based on the road conditions to 

that particular region and standard drive profile. The drive cycles were used to judge the 

several vehicle performances such as the fuel economy & consumption, emissions etc 

[19]. Three driving cycle patterns based on the US Environmental Protection Agency 

(EPA) [20] were used. These were formulated to by the agency to various types of 
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automotive systems. These drive patterns are used all over the world for testing the 

vehicle parameters. 

The features of the driving cycles are discussed in table 2. 

Driving Cycle Features 

Federal Urban Driving Schedule 

(FUDS) or 

Urban Dynamometer Driving Schedule 

(UDDS) 

 Symbolises the driving profile of a 

city. 

 Maximum speed limited to 55mph 

 

Federal Highway Driving Schedule 

(FHDS) 

 This is highway fuel economy test 

 Represents a highway drive scheme 

 Maximum speed limited to 60 mph 

 

 

US06 driving schedule 

 Also known as supplemental FTP 

(Federal Test Procedure) 

 This is a more aggressive 

representation of city driving profile 

 The Maximum speed goes up to 

almost 70mph 

 

Acceleration Test 

 Custom made test which runs for 100 

seconds and draws maximum current 

from the FC system. 

 

Table 2: Driving cycle specification 
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CHAPTER THREE 

3. METHODOLOGY 

  3.1 Experimental Set up 

This section provides the fundamental procedures and mechanisms required to establish a 

prototype and attain the required boundary conditions from an operating Fuel cell system 

(FC). This empirical work helps to get stack temperature, stack voltage, flow rates, net 

power and temperature distribution on the surface of the stack. 

The experimental set up consists of NEXA 1.2 KW fuel cell (Heliocentris), PXI 8102 

controller, AMREL DC electronic load and IR Forward looking infrared (FLIR) camera. 

The NEXA 1.2 KW fuel cell has FC GEN 1020 (BALLARD) stack stationed in it, as 

illustrated in figure10. This stack has been engineered to integrate advanced open cathode 

technology where the inlet air is inherited from the atmosphere. The state of the art 

technology has instilled with a self humidifying MEA (membrane electrode 

assemblies).This expedites the water piled up during the reaction, to evaporate amidst the 

cooling air and is blown out by means of the air duct at tail of the system. The stack is 

placed in tilted position to facilitate the air inlet and cooling the system. The NEXA 

system has maximum power capacity of 1200 W and current of 52 A. The investigated 

FC stack is packed with 36 cells.  

The PXI 8102 Controller function as hardware-in- loop, which infers input from 

simulated FCV model. The entire FCV consisting of FC system is advanced using 

Simulink (MATLAB). The inputs for the Simulink model are the devised standard drive 

cycles. The PXI controller simulates the drive cycles through the AMREL DC electronic 

load, which extorts current from the FC system, based on the input signals. AMREL 300 
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W PEL series 300-60-60 DC electronic load is used as a power plunge for the FC power. 

This is a manikin load which systemizes the power drawn from the fuel cell. This load 

draws from the FC based on the drive cycle signals sent from 8102 PXI controller. 

 

Figure 10: Schematic of the experimental set-up 
 
The Fuel cell is connected to 3650-S DC power supply manufactured by Power Designs 

Inc. The power supply initiates the fuel cell system at the beginning of operation. 

3.2 Experimental operation 

The thermal performance of the 1.2 KW FC systems is surveyed under several transitory 

conditions for different power requirements, operating under different standard and user 

defined drive cycles. The entire FCV consisting of FC system is advanced using 
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Simulink. The inputs for the Simulink model are the devised standard drive cycles. The 

input signals for the Simulink model includes three standard drive cycles Federal Urban 

Driving Schedule (FUDS), Federal Highway Driving Schedule (FHDS), US-06 

(Aggressive urban) and Acceleration Driving Test (ADS). This mix of city, highway and 

aggressive driving patterns replicate a real-world driving condition. The speed profiles 

are fed to the Simulink model in real-time. The model and based on the torque command 

will dictate the power demand in real-time to force the DC power supply draw the 

necessary current from the fuel cell. These scenarios are more practical approach in 

studying the performance and analyzing the behavior of the fuel cell in HiL 

configuration.  

The FC current, Flow rates and voltage are obtained for each standard drive cycle. The 

electric current and voltage of the fuel cell is scripted at one Hz based off the drive cycle 

with an in-built data acquisition system. The DAQ keeps a log of FC stack voltage, load 

current, FC temperature, operating pressure and ambient temperature at one Hz through 

various drive cycles.  

The structural and terrestrial temperature contour for FC stack is documented for various 

drive schedules using an infrared detector. A FLIR T620 focal plane array FPA Thermal 

Imaging IR Camera was placed in front of the FC stack at a distance of about 1 m to 

capture the 2D superficial temperatures in real-time. The camera is also equipped with 

Examin IR 1.40.2 real-time image/data logging and plotting software as already 

discussed in the Apparatus used section [17]. The thermocouple network was positioned 

to detect the temperature divergence on the surface of stack. The thermocouples are 



    18 

critical as they complete the closed loop feedback system, transmitting signals to PXI 

controller. 

The FC system assessment began at 23 ⁰C, in a sequential manner with FHDS cycle 

simulated first, followed by FUDS, US-06 and at last ADS. This systematic approach of 

drive cycle simulation helps us to study the fuel cell in steady state condition in more 

meticulous manner. Federal Highway Drive Schedule (FHDS) and Federal Urban Drive 

Schedules (FUDS) represent drive cycles used by U.S. Environmental Protection Agency 

to validate that light duty vehicles fulfill the federal emissions and fuel economy 

standards as already discussed in the previous sections. This helps to study the rapid 

heating of the surface mount on FC stack at extreme loading conditions. 

3.3 3D Model analysis 
 
It is always a general practice to build a 3-D model of any prototype to analyze the 

problems in design process. In this manner we avoid any expensive prototype build up. 

Furthermore, this would enable us to makes any design refinement. Therefore, this 

enables us to shorten the design time and cut down unnecessary expenses. [21] 

Generally there are four steps for a thermal model to be developed  

 Generate the surface and mesh them 

 Define the material properties and boundary conditions 

 Perform the analysis 

 Post process the results 

The FC model was created in solid works as per the measured dimensions. This was 

typically duplicating a single cell into as many as 36 cells. Once the surface geometry 
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was created, the parallel flow field was constructed across the model as shown in 

Figure11.  

 

Figure 11: 3D FC model with flow pattern 

  This surface geometry forms the base for thermal model. [22] So it becomes prime 

importance to construct the model carefully without any unconnected vertices or irregular 

shape. The 3 D model is required to be meshed with a precise quality to perform accurate 

thermal analysis in the Finite Differencing Code (FDC).  

3.4 Meshing Criteria 

Meshing is a process of discretizing a surface into several smooth surface polygons. This 

could be used for variety of applications. The surface Finite differencing purposes, 

triangles and rectangles are preferred. But the volumes are subdivided into tetrahedral 

and hexahedral.  
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The mesh generation for thermal model is critical task, which requires modeling expertise 

and high quality tool. [23] This is not a liner process. Mesh creation begins with the 

existing model to produce quality thermal model. The 3D model of the complete FC 

stack is required to broken down to FE model to improve the precision of the analysis. 

The mesh size is always a question for ages, the smaller the mesh, better the mesh. But 

there is a problem of solve times. The aspect ratio i.e. length to width is always < 4.0, to 

guarantee for even lateral flows between the connected vertices as illustrated in Figure12.  

 

Figure12: Aspect ratio of Meshes 

The triangles and quad elements (5-25 mm or larger) were used to resolver thermal 

spatial geometry and gives very good convergence criteria. Also the surface is broken 

into several parts and materials with a thickness ratio less than or equal to 0.5mm. The 

quad elements are best suited for thermal analysis. Besides this triangles can also be 

performed for all curvature parts and profiles. But the important point to be noted is the 

vertices must be connected for face to face conduction. It also required making sure that 

the vertices are connected properly. This is to make sure that there is proper conduction 

as shown in figure 13. 



    21 

 

Figure 13- Conduction problem (Unconnected vertices)  

 Meanwhile, the war page of the planar measurement should not exceed 4-5 degrees as 

shown in figure14 [24]. Some of the other criteria to be carefully noted are the 

connectivity, overlapping and penetration for the radiation elements.  

 

Figure 14: War page- Planar measurement 

As an overall process, quality, size and Skewdness of meshes of the 3D part are critical 

part in simulating the three dimensional models in the FDC thermal solver. FDC 

corresponds to give better results with respect to the quality of the meshed. This is due to 

the fact that FDC assumes a centroid based calculation for the thermal analysis as shown 

in Figure 15. To add to this, proper meshing depends on the complexity of the model 

under study.  The density of the elements in terms of giving fine or course meshes 

depends on the level of thermal analysis. [25]  
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Figure 15: Centroid based calculation 

Using ANSA meshing tool from Beta systems; the CAD geometry of the complete fuel 

cell model was meshed, cleaned, repaired; and imported into RadTherm software 

(Thermoanalytics Inc).  Nevertheless, to make easy the process and reduce the simulation 

time of the FE model for a complete FC, the stack was the main point of consideration.   

Figure 16(a, b) illustrates the complete FE model of the complete FC and FC stack.  

 

 

Figure16: FE model of (a) complete FC (b) stack 
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3.5 Simulation Tool 

One  of  the  most  current  thermal  simulation  tools  based  on FDC-Radtherm  was  

used  for  thermal  modeling and analysis. This software package has an optimized 

thermal solver to provide 3-D thermal model the user interaction and also an image 

viewer (wireframe and animated thermal display).  

The software has the competence to resolve to the steady state and transitory heat 

approach. Radtherm can import element, alter the geometry properties of elements or 

group. More importantly, the solver is capable of breaking each part of element into 

thermal nodes. In FDC, the generated 3D model is designated with the attributes for each 

of elements or cluster having same thermal attributes with thickness, emissivity, flow 

rates, direction of flow contrast to time curves. The FDC splits the elements with same 

properties into thermal nodes. The total radiation exchange between two surfaces which 

are assigned to different thermal nodes i and j is calculated using the equation (1) 

                                                   Qij =Bij Ai εi σi (T
4

i −T4
j)   - (1)   [26-27] 

            Where Q- net radiation heat exchange in Watt 

     Bij - energy emitted from surface i and absorbed at surface j both directly and by 

reflection 

A- area in m2 

                     εi - emissivity, 

                    σi - Stefan–Boltzmann constant in Wm2K−4 

                   Ti, Tj - temperature of objects i and j respectively in Kelvin. 

One of the key factor and advantage of the existent solver is its ability to create thermal 

nodes while replicating fluid streams. Though, the solver calculates the temperature 
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nodes based on practical mode, the theoretical way of calculating node temperature is by 

an energy balancing equation given by Equation (2) 

                                                ∑Q∗= m.Cp (dT/dt) - (2)   [28]. 

         Where Q is heat rate in joules, m is mass in kg,  

                    Cp is the specific heat,  

                     T is the temperature in K.  

Following, the solver calculates the viewing factors by iteratively distributing the objects 

as it is linked by the thermal nodes. The obtained image has each pixel loaded with some 

data, adding up all pixels corresponds to same thermal node. [29] This is the prime reason 

why the FE mesh produced is to be concurred with the solver which chooses the centroid 

of each element at which the view factor is calculated. It is to be noted that the 

convergence factor defines the temperature difference for thermal node of the present and 

following iteration in this case the solver utilizes 0.01 to 0.001 ⁰C subjective. 

Additionally, the multi-layer surfaces are denoted by a grid of nodes spatially well 

defines within the same layer. Figure 17 illustrates the graphical user interface for 

RadTherm solver. 

The most key factor of this solver is that it allows us to establish the thermal nodes and 

fluid streams which are the most important criteria for any thermal model. Because of the 

fact that the solver does not conjoin the fluid streams in one bounding part, a necessary 

breakdown for parts simulating them precisely. [25] 



    25 

 

Figure17: RadTherm Graphical User Interface 

Material properties, surface conditions, initial temperature were established for each cell 

and also other parts of the system. Fluid streams for inlet hydrogen, intake air, stack 

cooling fan speed were assigned and ringed with its connected geometrical parts.  

3.6 Current, Voltage, Flow rate analysis 

The FC current, Flow rates and voltage are obtained for each standard drive cycle. The 

electric current and voltage of the fuel cell is scripted for every second of the drive cycle 

with the in-built data acquisition system (commercial name DAQ). [30] The DAQ keeps 

a log of FC voltage, FC current FC temperature, Operating pressure, ambient temperature 

and system current for each second of operation through various drive cycles. It is noted 

that there is always static current of 1.43 A drawn from the FC stack, this is the current 
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derived by the electronic components of the FC system for its manipulation.  But the 

maximum flow rates for hydrogen and air is given based on the Stoich on the anode and 

cathode respectively. 

 

Figure 18: Fluid streams across the FC stack 

 The maximum Flow of hydrogen (anode) is given by, 

Anode Stoich =1.1, Maximum current FC= 52 A  

7 SCCM of Hydrogen produce 1 A current 

 So the maximum Flow= 52*1.1*7 = 400.4 SCCM = .4004 L/min per cell 

 The maximum Flow of air (cathode) is given by, 

   Cathode Stoich = 5, Maximum current FC= 52 A 

  16.66 SCCM of Air produces 1 A current  

  So the maximum Flow rate= 52 *5*16.66 =4331.6 SCCM = 4.331 L/min per cell 

 1000 SCCM= 1 Liter 

The Fluid nodes were initiated to link the fluid stream inlet to split into the channels for 

each cell as illustrated in Figure 18.  
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The cooling fan mechanism determines the corresponding cooling and inlet air mass flow 

rate; with the intake air quality is combined with the chamber surrounding. Similarly, 

fluid nodes were created for air inlet to connect the model front side with ambient air 

through the cells, in a way to fabricate forced convective heat transfer between the stack 

flow field and the ambient air. The created fluid node is linked with every cell in 36 cells 

stack, to replicate the fluid inside the stack. A temperature curve obtained from two pre-

existed thermocouples discussed earlier is also designated to a fluid node within each 

cell. The solver is run for each drive cycle in order of sequence, to replicate the heat 

transfer for the FC components. The simulated results are compared with the thermal 

images obtained from the Exam IR (FLIR camera software). This helps to analyze and 

study the hotspots and thermal maps on the surface of the stack. The following section 

talks about the temperature measurements. 

3.7 Temperature Measurements 

There are two temperature measurements devices used namely IR camera and 

thermocouples. The Infrared detector is a non-contact temperature measurement feature. 

This is actually based on radiation\emissivity which makes this as a time responsive tool. 

Moreover, this is a high durability and non-contamination. [31] This also accommodates 

all materials since the all of them emit or conduct heat. The structural and terrestrial 

temperature contour for FC stack is documented for various drive profiles using a thermal 

camera. 
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IR Camera

 

Figure19: IR camera set up 

There are several criteria’s which needs to be fulfilled for effective use of the thermal 

camera. For example, the thermal detector needs to be insulated from any external forces 

like the dust or any other particles which might disturb between the space between the 

camera and the target source. [32] The target source should always be in the FoV (Field 

of View) of the camera to avoid any hindering object which might cause temperature 

interpretation. It is also necessary to understand that the target should be twice bigger 

than the area of interest or study. But the range of the IR cameras is subject to operating 

temperatures which may cause an improper temperature measurement if it’s exceeding. 

[33]Another important factor is to note the emissivity of the target source [34, 35]. The 

emissivity of the measurement depends on the surface of the target. Typically the 

emissivity of components was either measured or obtained from the manufacturer’s data. 

In case of calibrating the IR detector, the black body method was used to obtain accurate 

temperature data. 
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Figure 20: Calibration using black body method [22] 

In this case, the thermography camera was employed using a dual band to neutralize the 

emissivity for various dynamic ranges to obtain accurate surface temperature of the FC 

stack and its components. The FLIR T620 used in this scenario is a cooled infrared 

detector which easily measures the temperature of the hotter parts of the target (FC 

stack). The specifications of the camera were already discussed in the second chapter. 

The surface temperature of the FC stack was captured over for all 4 standard and artificial 

cycles with the speed variations from 10 mph to 80 mph. 

 

Figure 21: Thermocouple positions on the FC stack 
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Additionally, a thermocouple networks are installed at two different locations on the 

surface of the stack to provide a reference signal and temperature at particular locations. 

Figure 21 illustrates the discrete positions at which the thermocouples where slotted for 

temperature measurements. The thermocouple network is positioned to detect the 

temperature divergence on the surface of stack. The thermocouples are critical as they 

complete the closed loop feedback system, transmitting signals to PXI controller. In each 

experiment as pre test practice, the ambient temperature was measured for preparing the 

surface of the part for the test. Moreover, there is another thermocouple which is just left 

in free space to measure the ambient or room temperature. The thermocouple are attached 

are carefully attached to the surface of the stack using a thermal tape. This tape acts as a 

coupler which fills the gap between the surfaces without conducting heat. 
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CHAPTER 4 
 

THERMOELECTRIC MODULES 
 
4.1 Introduction 
 
A Thermoelectric cooler, TEC, operates on the Peltier principle. This principle is the 

presence of heating or cooling at an electrified junction of two dissimilar conductors [36]. 

In the work described here, Peltier cooling is utilizes as a mechanism to control the 

incoming air temperature. The Thermoelectric coolers (TEC or Peltier) has a capability to 

create a temperature differential on each side of the module. [37] One side becomes hot 

and the other side gets cold. Thus, this shows that it could be either warm or cool 

something, based on the operation required. [38] This temperature differential can be 

used effectively to generate electricity. The rate that the Peltier heat is liberated or 

rejected at the junction (QP) is given by: 

                                                              QP= άIT 

Where, I is the current through the junction and T is the temperature in Kelvin. 

The TEC works very well as long as the heat is removed from the hot side. Once the 

device is switched ON the hot side heats up quickly. If the heat is not removed from hot 

side quickly, the device reaches static and does nothing. Some of the TEC models and 

heat sinks are illustrated in figure 21. 
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Figure 22: Thermoelectric models and heat sinks [36] 

The thermoelectric module consists of p-type and n-type semiconductors elements which 

are heavily doped with electrical current carriers. These elements are connected 

electrically in series but thermally connected in parallel. These charge carriers are affixed 

on each side of the elements i.e. one covers the hot and the other covers cold side. [36] 

The thermoelectric devices offer several advantages over other technologies, the major 

advantage being the absence of moving parts, low maintenance and high reliability. The 

absence of working fluids, dangerous leakages and low noise makes it perfectly suitable 

for our application purpose. A special aspect of TE conversion is that the energy flow is 

reversible. So instance, if the load resistance is pulled out and a DC power supply was 

substituted the TE modules can draw heat from the heat source. In our configuration, the 

energy conversion strategy is conjured using electrical power to pump heat and produce 

cooling. This unique character distinguishes this from many other conversion devices. 

Any Thermoelectric module can apply for both modes for operation by optimizing them 

for specific purpose. 
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4.2 Working Principle 

The TEC is considered as an exceptional cooling technique enforced to thermal operation 

in PEMFC to cool the bipolar plates [25]. The FC model is compounded with a custom-

made thermoelectric cooling system. The system consists of an air duct with internal fins 

extruding towards the center, and thermoelectric modules mounted on the outside of the 

duct. As electrical current flows through the thermoelectric module, the current-induced 

phonon transport in the “π-junctions” in the module allows for heat to be removed from 

one surface (the cold-side) of the TE module, and ejected through the other (the hot side). 

The hot-side of TE module in this system is attached with fan to allow removal of heat 

ejected from the module, while its cold-side is mounted on the outside of the cooling duct 

to allow removal of heat from the fins as illustrated in Fig. 11.   

 

Figure 23: Thermo electric Module with fins 

As the incoming air flows through the fins, it cools down by losing heat to the fins. Since 

the duct with internal fins is an integral part of the thermoelectric cooling system, the 

design and selection are very important. The system also includes an air temperature 

sensor and a temperature control loop to ensure the optimal air temperature is maintained. 
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This model is specifically tested for the Acceleration Drive Schedule (ADS), as this drive 

cycle manifests greater thermal signature.  
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CHAPTER 5 
 

RESULTS & DISCUSSIONS 
 
5.1 Model Validation 
 
In order to verify the complete 3D thermal model of the Fuel cell, the outcome of the 

model runs for each standard drive cycle was retrieved and validated with the outcome 

for a real test run. Thus, the transient and a spatial temperature plots for the FC stack 

obtained and compared with the actual temperature curves. In Addition to this, the 

incident, outgoing and net heat rates through conduction, convection and radiation for the 

elements were used. This was performed to evaluate the efficiency of the air cooled 

system of the FC stack. The front and back temperatures of the FC stack were studied to 

understand the effect of heat generation the chemical reactions and its effect on cell 

degradation. Furthermore, the thermal performance of the FC stack with and with 

Thermo-electric modules under the standard and artificial drive cyclic loading was 

analyzed.  

5.2 FC simulation results 
 
Following to a lucrative retrieval of the boundary conditions with the help of the 

available data from the test run, the fuel cell model was run for each of the driving cycles 

applied in the test (FHDS, FUDS, US-06 and ADS), while the time duration for enforcing 

the thermal solution was set with respect to the time limit of the drive cycle being 

simulated with 1min time step size. The thermal performance of the fuel cell was 

observed under transient and steady state conditions by positioning two locations on the 

surfaces of the FC stack (one cell in the middle and another at corner of the FC stack).  
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Figure 24: Net heat flux as predicted by Thermal camera  

As the IR detector provides the 2D spatial and transitory surface temperature contours, a 

contrasting comparison was performed with the net heat flux as predicted by the thermal 

model. Figure 24 and Figure 25 illustrates the net heat flux across the FC stack as 

predicted during FHDS by the thermal camera and thermal model respectively.  
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Figure 25: Net heat flux as predicted by 3D Thermal model 

It is evident from the image that middle of the FC stack is more heated up than the sides 

or edges of the stack. This suggests that the heat gradient is more towards the center of 

the stack. Moreover, the cells away from the center are better capable of transmitting the 

heat to atmosphere by conduction, convection and radiation. Further, the cells at the 

middle of stack experiences similar load fluctuations and radiate same heat as the edge 

cells. This shows the chance of heat transfer to the neighboring cells is almost due the 

fact that there is no temperature variation. To retrieve a better picture of the heat fluxes 

through the stack, figure 26 displays the cells heat propagation at the end of US06 drive 

cycle test as predicted by the thermal model. 
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Figure 26: Heat flux for standalone FC stack for US06 cycle 

Figure 27 illustrates a 2D thermal image obtained with the T620 Flir thermal camera 

illustrating the temperature profile across the FC stack at the beginning and end of the 

ADS tests. At the beginning of the test, the cells are colder as shown in (a) image. 

Towards the end of the test, cells much hotter as seen from (b). This is due to the fact the 

ADS draws maximum load current at an instant and sustains them for almost the entire 

period of 12 minutes. As given in Table 1, the cells at the inner region (temperature 

sensing 1) showed slightly higher temperature compared to that at the outer region 

(temperature at position 2) of the FC stack. Conjointly, Figure 28 exhibits the FC stack 

heat distribution and surface temperatures at various durations (0, 4, 8 and 12 minutes) 

under the FUDS driving test schedule.  Even though the FUDS test lasted for 22 minutes, 

for our convenience the entire boundary conditions were shrunk to simulate for 12 
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minutes using the 3D thermal model. Such interpretation of the heat distribution helps 

understanding the thermal loads on the FC stack under implicit conditions, which can be 

used to assist the fabricator to establish a potent FC stack Thermal Management. 

Furthermore, it enables us to recuperate the stack packaging composition and identify 

packaging limitation at an early stage of design process. It is also noted that the 

temperature gradient of the stack is towards the center as already discussed in earlier 

chapters. 

 

Figure 27: 2D thermal images showing temperature profile across the PEMFC stack (a) 

at the beginning and (b) at the end of 12 min. 
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Statistic Image 

Temperature 

sensing 1 

Temperature 

sensing 2 

Mean Temperature (start of test) 26.68 27.66 27.67 

Mean Temperature (end of test) 27.34 31.21 30.53 

Table 3: Temperature values across the thermal images 

 

Figure 28: Heat distributions and surface temperature for the PEMFC stack under the 

FUDS driving test schedule for various duration. 

Comprehending the transient thermal performance of the cells enables us to devise the 

cooling technique to control the operating temperature. This is primarily to prevent the 

FC from overheating, thereby maintain the overall operation and accuracy of the stack. 

To round up the physics of the cell and characterize the net heat rates by three modes i.e. 

conduction, convection & radiation, two positions are selected on the stack. These two 

positions include one at the center and other towards the edge from one side as illustrated 

in figure 29 highlighted with blue color. 
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Figure 29: Pre-selected cell location 

Both the surface temperature obtained from thermocouples and thermal model was 

plotted in contrast with actual temperatures recorded by the infrared detector of the 

complete stack as shown in figure 30 and figure 31 for ADS and FUDS test respectively. 

The main purpose of specific drive scheme (FUDS and ADS) under study was because 

these tow driving schedules show critical current flows on the FC stack. This shows that 

the FUDS replicated thermal characteristics of the cells under the transitory current 

fluctuations. On the other hand, the ADS represent very high steady state current flows of 

the stack cells. As detailed in figure 31, the model anticipated an exponential increase in 

the typical cells surface temperature of around 1⁰C from the initial start temperature, in 

contrast to an increase of about 2⁰C recorded by the IR thermal camera , under the FUDS 

drive cycle test which lasted for around 22 minutes. In the case of ADS test, the model 
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predicted an increase of surface temperature for the stack cells of about 2.2 ⁰C in contrast 

to an increase of about 3.7 ⁰C as noted by IR detector which lasted around for around 3 

minutes depicted in figure 30. One important point to be noted is the variations in 

temperature in the profile by the model and actual surface temperature as measured by 

the thermocouples and the IR camera. These variations could be caused by three 

important factors: 

 The typical surface temperatures as predicted by the IR camera were for the 

complete Fuel cell including the wires, interconnectors, insulations etc.  

 Secondly, the model deals the FC stack as an assembly, even though the stack is a 

collection of 36 cells. Thus the model is equipped to extract the thermal attributes 

of each individual cells rather than the model as an entire assembly and plot the 

mean temperature of each cell. The same analogy was used for the two 

preselected cells which were taken into account to be compared with the surface 

temperature provided by the IR camera. 

 The heat transfer by convection for the centre cell is low as compared to the cell 

towards the edge. The chances to remove heat by conduction and radiation are 

much less due less room to dissipate and heat transfer is done only through 

neighboring cells which can be seen in the temperature measurements by the 
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thermocouples. 

 

Figure 30: Surface Temperatures for the pre-selected battery cells for ADS test 

 

Figure 31: Surface Temperatures for the pre-selected battery cells for FUDS test 
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Similarly, the Net Heat exchange Rates (NHR) between two cells were evaluated to know 

about thermal action of various cells at different locations on the stack. This was done for 

the two pre-selected cells on the FC stack as displayed in Figures 32a and 32b. The figure 

illustrates the conductive, convective and radiative heat exchange rates for the pre-

selected positions on the FC stack. This was performed to study the effect of packing and 

cooling strategies on the thermal attributed of the cells under transitory and steady state 

loading conditions. As the figure illustrates, the pre-selected location at the center has the 

outgoing net heat rate of about (0.006 W) approximately by convection and incident heat 

rate by conduction an average of (0.001W) approximately. While the radiation heat 

transfer rate to the surrounding environment was around 0 W through the test process. 

The net heat rate exchange between the two cell positions in the radiation mode, the cell 

at the corner and at the middle is almost same, wavering around 0 to 0.001 W.  Usually, 

the heat exchange rate through radiation is lesser than compared to the one at the corner, 

but in this case there is connective heat transfer acting through surface of the stack. This 

is due the cooling fan behind, which actually draws the atmospheric air required to carry 

out the chemical process. The important aspect to note is that the pre-selected cells show 

variable NHR during the first 12 minutes of the artificial driving cycle and after 12 

minutes it showed a steady NHR for rest of the ADS test.  
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Figure 32: Net heat exchange rate by conduction, convection and radiation by 

temperature sensing at positions (a) 1 and (b) 2 

The results obtained above can be used to contrive new thermal control scheme for 

employing new cooling pattern for perfect operation of stack under different various 
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patterns and environmental conditions. As a consequence, this model created a virtual 

environment which helps the design engineers to modify the design earlier in the 

development proceeds with less time, cost and effort. Furthermore, the Fuel cell is a 

proficient model in predicting the net heat exchange rates for geometrical parts and 

replicating the heat transmission into/out of the different modules.  

 

5.3 FC performance characteristics 

The drive cycle tests were conducted in order to obtain the thermal performance under 

controlled conditions such as load, temperature, current and voltage. In addition, the tests 

help arriving at the decisive boundary conditions for the FD duplication of the fuel cell 

model. The FC system is known to display thermal signature when it is operated under 

load. The results retrieved include: voltage, current, flow rates of hydrogen and air and 

actual surface temperature of the fuel cell as recorded by IR camera and the thermocouple 

as well. As already discussed, the flow rates of the Hydrogen and air depends on the load 

current and power drawn.  Figure 33 manifests the results encountered during the FUDS 

drive cycle, depicting that the fuel cell performance parameters (voltage, current and 

temperature) change significantly.  It has been noticed that the surface temperature of the 

fuel cell increases from 27.6 to 28.4 ⁰C during the FUDS test. 
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Figure 33: PEMFC stack temperature and performance characteristics under FUDS test. 

 

 

Figure 34: PEMFC stack temperature and performance characteristics under ADS test. 
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 Additionally, the acceleration driving schedule validates the steady state performance of 

the fuel cell system at peak power demands as illustrated in Figure 34. The test results 

represent the surface temperature and the current flow at different vehicle speed intervals. 

It is to be noted that the fuel cell experience a steep increase in the current drawn. 

5.4 Thermoelectric cooler  

This model is tested for the ADS, as this drive cycle manifests greater thermal signature. 

It is noted that the temperature on the surface of the stack is lowered after the application 

of the thermo-electric cooler [39]. Furthermore, the temperature of the incoming air is not 

reduced too much, as it affects the performance of the fuel cell. The TE model is tested 

for the ADS driving test, as this shows the maximum thermal signature. Figure 35 

demonstrates the application of thermoelectric modules to the model. The TE model is 

enforced in the differencing code simulator, the united effects of input heat to the hot side 

like the air flow and temperature, the output flow from the cold source, and the effective 

heat exchange competency of the sources can be comprehended in the single solver 

(RadTherm). There is a convective heat transfer due to the presence of the cooling fan 

behind the FC stack. This typically acts as a suction which pulls the atmospheric air 

through the thermoelectric modules which cools down the incoming air before hitting the 

stack cells. 

As the power is drawn from the FC system, the heat flux across the stack increases.  The 

incoming air passes through the aluminum fins in the duct. The fin is the cold junction of 

the TE module. The air is cooled by removing the heat and passed to the hot junction of 

the TE module, which is dissipated from the hot side. It is important that the air is not 

cooled too much; as it directly affects the performance of the FC system. The main 
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advantage of using a TE module is that, the above principle can be reversed such that the 

incoming air can be also heated up especially for cold start-up. The TE module can be 

optimized and interfaced with the control system of the FC. This enables for efficient 

cooling based on load requirements.  

 

Figure 35: Thermoelectric module showing (a) with fins (b) Heat flux at the end of the 

ADS driving test as anticipated by the model 

Figure 36 shows the average surface temperature across the FC stack with and without 

the TE modules, respectively. As the graph shows, the TE module enables to control the 

temperature across the stack within the operating range, such that the performance is 

unaffected. At around 2 minutes of operation, there is a sharp rise in current as per ADS 

driving test. The temperature of the incoming air on the cold side is reduced by heat 

removal. This maintains the temperature across the surface of the stack according to 

current drawn the stack, illustrating the control strategy instilled with the TE module. 
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The starting hot side is at 50 ⁰C for ambient temperature of 23 ⁰C is maintained. As the 

power drawn from the stack increases, the heat from inlet air passes to hot side from the 

cold side. The amount of heat load needed to remove and the desired cold‐side 

temperature, enables to determine input voltage. The interfaced module is capable of 

producing 10 ⁰C temperature difference (ΔT) when induced with open circuit voltage of 

3.3 V. It is also noted that the temperature on the cold side is decreased by around 3-4 ⁰C, 

this may be due to fact that there is a reduction in temperature on the hot-side [40]. 

 

Figure 36: Surface temperature curves of the model with and without thermoelectric 

module. 
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CHAPTER SIX 

6. CONCLUSION 

6.1 Conclusions 

The proposed work examined the augmentation of a comprehensive 3D thermal model 

for a PEM FC stack. An effective cooling strategy for automotive power trains with FC 

model was proposed, the temperatures was measured using thermocouples and thermal 

camera formed the base for thermal modeling. This involved distinctive procedure of 

extracting the boundary conditions, where a real time spatial and transient temperatures 

using the thermal camera. This procedure was performed during the standard driving 

cycles such FUDS, FHDS, etc., in excess to the custom made artificial cycle.  

The entire Model was forged and justified for system running in HiL under these 

different standard and custom driving schedules. The 3D thermal model is refined using a 

FDC integrated with experimentally extracted boundary conditions including electric 

current, power, flow rates and temperature curves. The spatial and temporal temperature 

profiles of the proposed model reconcile with that of the experimental data of the FC 

stack as provided by the control unit of the FC. The solutions obtained show that the 

model is capable of predicting the thermal behavior of the fuel cell under controlled 

scheme (load, power, temperature and environmental conditions).  

The FC stack were controlled in way that the current flows could be controlled in such a 

way that a realistic boundary conditions could be studied for net heat exchange rates by 

conduction, convection  and radiation for all drive patterns which enables to analyze the 

thermal loads on the packs. Furthermore, the model can be used to validate the thermal 

performance for any corrections for vehicle power train including: material replacement, 
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rerouting and thermal packaging, validating any other different cooling strategies, and/or 

other design modifications may be applied to the system. 

 
To extension for the cooling strategy, a scheme of simulation and optimization for a TE 

module has been contemplated based on the proposed modeling. The TE model of the 

inlet duct has been manifested and braced with the TE system model in FDC as a whole.  

 

6.2 Improvements  
 
This work enables us to develop extensive 3D simulation means for better thermal 

management for FC or hybrid powertrains. Almost all previous works concentrated on 

models which did not account for radiation heat transfer, which is the most important 

heat transfer mode in the power train system. In the addition to this, the thickness of the 

some larger components was actually ignored to trim the number of surfaces and make 

easier for the mesh generation process. A powerful meshing tool (ANSA) was used to 

construct a complete finite element model was generated to incorporate the parts with 

thermal conduction.  

A more realistic approach was used here as inclusive boundary conditions retrieved from 

the stand alone FC under different loading conditions with a varied range of driving 

patterns were implemented. This enabled us to evaluate the complete thermal 

performance of the power train module under various loading schemes. 

Application of the thermography technique using the IR FLIR camera focal array with 

very high resolution automated emissivity allowed us to validate the FC stack with non 

contact 2D spatial temperature measurement. This formed a primary verification of 

results obtained experimentally which could enabled the designer in lower down the 
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design time and cut the cost down. Ultimately this could reduce the necessity for crating 

expensive prototypes. Future research will focus on the effects on entire FC system to 

achieve optimized system modeling strategy. 

 

 
 



    54 

REFERENCES 
 

[1] Kandlikar S.G., & Lu Z., (2009). Fundamental Research Needs in Combined 
Water and Thermal Management within a Proton Exchange Membrane fuel cell 
stack under normal and cold-start conditions. J. Fuel Cell Science Technology, 6, 
044001-13. 
 

[2] Popovic, J., & Ferreira, J., (2005). An approach to Deal with Packaging in Power 
Electronics," Power Electronics- IEEE Transactions, 20(3), 550-557. 
 

[3] Shahsavari. S (2012). Thermal analysis of air-cooled PEM fuel cells. International 
Journal of Hydrogen Energy, 37, 18261-71. 
 

[4] Shimpalee, S. & Dutta, S. (2000). Distribution in PEM fuel cells. Numerical Heat 
Transportation, 38, 111-28. 
 

[5] Nguyen, T., White R (1993) A water and heat management model for proton 
exchange membrane fuel cells. Journal of Electrochemical society, 140, 2178–
2186. 
 

[6] Matian, M. (2010). Application of thermal imaging to validate a heat transfer 
model for polymer electrolyte fuel cells. International Journal of Hydrogen 
Energy, 35(22), 12308-16. 
 

[7] Del Real, AJ. (2007). Development and experimental validation of a PEM fuel 
cell dynamic model. Journal of Power Sources, 173, 310-24. 
 

[8] Kandlikar, SG., & Lu, Z (2009). Thermal management issues in a PEMFC stack – 
A brief review of current status. Applied Thermal Engineering, 29, 1276-80. 
 

[9] Djilali, N. (2007). Computational modeling of polymer electrolyte membrane 
(PEM) fuel cells: Challenges and opportunities. Energy, 32, 269-80. 
 

[10] Sharifi, SM. (2010). Modelling and simulation of the steady-state and dynamic 
behavior of a PEM fuel cell. Energy, 35, 1633-46.  
 
 

http://65.54.113.26/Journal/5112/appl-therm-eng-applied-thermal-engineering
http://www.researchgate.net/journal/1751-4223_Energy


    55 

[11] Zong, Y. (2006). Water and thermal management in a single PEM fuel cell with 
non-uniform stack temperature. Journal of Power Sources, 161, 143-59. 
 

[12] Bao, C. (2006). Analysis of the water and thermal management in proton 
exchange membrane fuel cell systems. International Journal of Hydrogen Energy, 
29, 1040–57. 
 

[13] Cao, TF. (2013). Numerical investigation of the coupled water and thermal 
management in PEM fuel cell. Applied Energy, 112, 1115–25. 
 

[14] Musio, F. (2011). PEMFC system simulation in MATLAB-Simulink 
environment. International Journal for Hydrogen Energy, 36, 8045-52. 
 

[15] Mayyas, AR. (2011). Comprehensive thermal modeling of a power-split hybrid 
power train using battery cell model. Journal of Power Sources, 196, 6588–94. 
 

[16] Nexa 1200 User´s Manual (2014), Heliocentris Energy Systems. [ONLINE]   
Available http://www.heliocentris.com/; 2009. [Last Accessed 2014] 
 

[17] FLIR T620. Thermal Imaging Camera (2014). [ONLINE] Available: 
http://www.flir.com/; 2013. [Last Accessed 2014] 
 

[18] Math Works. Inc. MATLAB\SIMULINK. [ONLINE]. Available: 
http://www.mathworks com/. [Last Accessed 2014] 

     

[19] Goyal, G. (2014). "Model Based Automotive System Integration: Fuel Cell Vehicle 
Hardware-In-The-Loop," Dissertation, Arizona State University, Mesa. 
 

[20] Environmental Protection Agency, USA. (2013) Available:  
“http://www.epa.gov/” “Testing and Measurement Emissions”. [Last Accessed 
2014]. 
 

[21] Application series from Fluent (2003). Under Hood Thermal management. Fluent 
Inco. Available:  www.Fluent.com. [Last Accessed 2014]. 
 
 

http://www.sciencedirect.com/science/journal/03787753/161/1
http://www.sciencedirect.com/science/article/pii/S0360319905004003
http://www.heliocentris.com/
http://www.flir.com/uploadedFiles/Thermography_USA/Products/Product_Literature/flir-t620-datasheet.pdf


    56 

[22] Govindasamy,  V.P.M.,  (2004),  "Thermal  Modeling  and  Imaging  of  As-built  
Automotive Parts," Dissertation, University of Tennessee, Knoxville. 
 

[23] Johns, KR. (1995). A Methodology for Rapid Calculation of Computational 
Thermal Modes. SAE, 951012. 
 

[24] Schwenn, T. (2008). A Discretization Primer and Modeling Discussion, 
RadTherm Training, ThermoAnalytics Inc.  
 

[25] Mayyas, AR. (2010). Comprehensive Thermal Modelling of power split hybrid 
power-train and electronics. PhD dissertation, Clemson University. 
 

[26] Johnson, K. (1998). MuSES: A new heat and signature management design tool 
for virtual prototyping, Proceedings of Ninth Annual Ground Target Modeling 
and Validation Conference, Houghton, Michigan. 
 

[27] Curran, A. R. (1995). Automated radiation modeling for vehicle thermal 
management.  SAE International Congress & Exposition, Under hood Thermal 
Management Session, 950615. 
 

[28] Mayyas, AR. (2011). Comprehensive thermal modeling of a power-split hybrid 
power train using battery cell model. Journal of Power Sources, 196, 6588–94. 
 

[29] Valisetty, RR. (2004). Parallel MuSES for Infrared Signature Modeling of US 
Army Vehicles and Targets, Army Research Laboratory ARL-TR-328. 
 

[30] Van den Oosterkamp, PF. (2006). Critical issues in heat transfer for fuel cell 
systems; Energy conversation management, 47, 3552-3561.  
 

[31] Korukcu M. Ö., & Kilic, M., (2009). The usage of IR Thermography for the 
Temperature Measurements inside an Automobile Cabin. International 
Communications in Heat and Mass Transfer, 36(8), 872-877. 
 

[32] Eads, L.  (2000).Thermography. ASHRAE Journal, 42(3), 51-55. 
 



    57 

[33] Astarita, T. (2006). Infrared  thermography:  an optical  method  in  heat  transfer  
and  fluid  flow  visualization,  Optics  and  Lasers  in Engineering, 44, 261–281. 
 

[34] Chevrette, P. (1986). Calibration of Thermal Imagers, Proceedings of the SPIE. 
The International Society for Optical Engineering, 661, 372-382. 
 

[35] Smith, JA. (1999). Effect of Spatial Resolution on Thermal and Near-Infrared 
Sensing of Canopies," Optical Engineering, 38, 1413. 
 

[36] Rowe DM, (1995). CRC Handbook of Thermo electrics, CRC Press. 
 

[37] Chakib, A. (2011). Peltier Thermoelectric Modules Modeling and Evaluation. 
International Journal of Engineering, 5(1). 
 

[38] Zhang, R. (2012). Optimized Thermoelectric Module-Heat Sink Assemblies for 
Precision Temperature Control. Journal of Electronic Packaging. 134(2), 021007. 

 

[39] Camargo, JR. (2011). Principles of Direct Thermoelectric Conversion, InTech 
Europem.  
 

[40] Chen, M. (2010). System modeling and validation of a thermoelectric fluidic 
power source: Proton Exchange Membrane fuel cell and Thermoelectric 
Generator (PEMFC-TEG). Journal of Electronic Materials, 39, 1593-1600.  

 
 
 
 
 
 
 
 
 
 

 

 



    58 

APPENDIX  

A: FLOW RATE & MODEL PARAMETERS   
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This section discusses the flow rate and the model parameters on the FDC solver. Based 

on the current drawn, flow rates of hydrogen and air, of the anode and cathode are 

calculated respectively. Generally, in a FC stack supplied with pure hydrogen, the fuel 

consumption can be obtained by, 

                  mH2 = (1.05×10-8) (PS/VFC)          .........................                              (1)  

Where m H2, is the hydrogen mass flow rate (kg/s); VFC is the FC voltage (V) and PS is 

the stack electrical power (W), obtained from, 

                          PS = n. VFC. iFC                                                 ..........................                                (2) 

Where n is the number of cells used on the stack. 

The air mass flow rate (kg/s) can be obtained using the equation in 3,  

                  mair = (3.57×10-7) λ(PS/VFC)                       .........................                            (3) 

where, λ is the stoichiometric rate. 
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