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ABSTRACT  
   

Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer 

goods and medical devices because of the unique changes in material properties that 

occur when synthesized on the nanoscale. Although many definitions for nanoparticle 

exist, from the perspective of size, nanoparticle is defined as particles with diameters less 

than 100 nm in any external dimension. Examples of their use include titanium dioxide 

added as a pigment in products intended to be ingested by humans, silicon dioxide NPs 

are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as 

vectors for drug delivery or contrast agents for specialized medical imaging. Although the 

intended use of these NPs is often to improve human health, it has come to the attention 

of investigators that NPs can have unintended or even detrimental effects on the 

organism. This work describes one such unintended effect of NP exposure from the 

perspective of exposure via the oral route. First, this Dissertation will explain an event 

referred to as brush border disruption that occurred after nanoparticles interacted with 

an in vitro model of the human intestinal epithelium. Second, this Dissertation will 

identify and characterize several consumer goods that were shown to contain titanium 

dioxide that are intended to be ingested.  Third, this Dissertation shows that 

sedimentation due to gravity does not artifactually result in disruption of brush borders 

as a consequence of exposure to food grade titanium dioxide in vitro.  Finally, this 

Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after 

exposure to an in vitro brush border expressing model of the human placenta.  Together, 

these data suggest that brush border disruption is not an artifact of the material/cell 

culture model, but instead represents a bona fide biological response as a result of 

exposure to nanomaterial. 
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CHAPTER 1 

INTRODUCTION 

Overview 
 Engineered nanoparticles (NP; < 100 nm) offer unique advantages in consumer 

goods and medicine compared to their bulk (> 100 nm) counterparts due to the material 

properties that change when synthesized on the nanoscale.  Although NPs are used in 

consumer goods including human foods and in medicine, there exists little information 

about their potential side effects.  From the standpoint of exposure, and because of their 

small size, NPs have the potential to interact with cells individually and organized as 

tissue in fundamentally different ways than their bulk counterparts.  This dissertation 

describes one such side effect referred to as brush border disruption within the context 

of exposure via the oral route.  Chapter 1 provides the reader with the information 

necessary to understand the experimental Chapters 2-5 in context; Chapter 2 describes 

the human intestinal cell lines used for the majority of experiments necessary to 

complete this Dissertation. Chapter 2 further describes the molecular architecture of the 

brush border cytoskeleton, and concludes with analytical methods necessary to conduct 

studies related to NP exposure within the context of brush border disruption.  Chapter 3 

describes methods used in order to isolate NP directly from consumer goods intended to 

be ingested.  Chapter 4 reveals an effect of exposure to food grade TiO2, and shows 

disruption of the intestinal brush border independent of sedimentation in vitro.  Chapter 

5 characterizes the effects of exposure to α-Fe2O3 NPs and shows brush border 

disruption in a cell culture model of the human placenta.  Chapter 6 provides a 

conclusion to this Dissertation and suggests that NP exposure at the intestinal 

epithelium may elicit similar effects compared to enteropathic bacteria.  
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The Definition of Nanomaterial 
 
 At present the term “nano” can be inappropriately broad and can elicit a positive 

or negative connotation depending on the context.  Encyclopedia Brittanica (Schrödinger, 

2009) defines nanoparticle (nano·par·ti·cle) as: “a microscopic particle whose size is 

measured in nanometers.”  Nanometer is a unit of length in the metric system whose SI 

symbol is “nm” whereby 1 nm is equivalent to 1x10-9 meters.  Put simply, 1 nm is 

equivalent to one billionth of a meter.  To put this small size into context, it is known that 

the human fingernail on average grows at a rate of 1 nm/s (Initiative, 2006), the 

diameter of deoxyribonucleic acid (DNA) is 2.5 nm, and a piece of paper is 100,000 nm 

thick (Initiative, 2006).  Arguably the most widely used definition of NP is any particle 

with external dimensions between 1- and 100 nm (Dunphy Guzman, Taylor, & Banfield, 

2006; Roco, 2007) 

 Particle size is not the only criterion that defines the word “nanoparticle.”   

Auffan and coworkers (2009) argue that the change in physico-chemical properties that 

occur only below a specified size are the cause of toxicity, whereas particles above the 20-

30 nm threshold typically behave similar to larger (i.e., bulk) particles of identical 

chemical composition.  Using a variety of examples the authors illustrate that inorganic 

metal and metal oxide NPs (e.g., gold, titanium dioxide, alumina oxide, etc.) below 20-30 

nm in diameter have novel material properties that could negatively affect biological 

systems (Auffan et al., 2009).  Although there is relevance to the definition set forth by 

Auffan et al., (2009) other (Kreyling, Semmler-Behnke, & Chaudhry, 2010) argue that 

volume specific surface area should be the defining criterion.  The authors put forth the 

definition in part because of the fact that many small particle tend to aggregate or 

agglomerate due to their high surface free-energy.  These aggregated/agglomerated 

materials contain a collection of particles that can have heterogeneous sizes.  Although 
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this collection of material as an agglomerate/aggregate is usually in the micrometer (µm; 

1x10-6 m) range, primary particles can undergo desorption from the agglomerate over 

time (Auffan et al., 2009) and interfere with normal biochemical processes. 

 Although these definitions are pleasing to the physical chemist, the biologist 

might not see the need for such specific definitions.  Rather, early studies related to 

toxicology of NPs have shown that the principal issue related to the detrimental effects of 

the material is the inability of the body to clear the material from the tissue.  This is best 

exemplified in the case of carbon or asbestos exposure within the mining community 

(Oberdörster, Stone, & Donaldson, 2007).  As miners were chronically exposed to the 

material, the immune system was unable to clear the inorganic material, but still 

produced effects associated with disease (i.e., inflammation, fibrosis, etc.).  This in turn 

led to detrimental effects to the body over the long term.  Therefore, from a purely 

biological perspective, surface reactivity, the ability to act as a catalyst, and 

paramagnetism are irrelevant if the body has no means to remove the material from site 

of exposure.  Therefore, this dissertation has opted to define nanoparticle based on sizes 

that are most readily internalized by the cell culture models employed in this work.  

Loosely speaking, and as defined in this dissertation, nanoparticles are <100 nm in 

diameter, whereas bulk particles are >100 nm in diameter. 

 Finally, some investigators elect to define the word nanoparticle based on the 

peculiar notion that biomolecules are nanoparticles.  For example, some define lipid-

based delivery vehicles used as vectors for small molecule drugs or DNA/RNA as 

nanoparticles.  Although these vesicles can be made ≤100 nm in diameter, they are 

composed largely of organic material that the body can breakdown.  Furthermore, their 

particokinetics are dictated largely by diffusional forces and Browian motion (Einstein, 

1956).  In the case of inorganic metal and metal oxide nanoparticles, many additional 
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physical forces contribute to particokinetics during in vitro and in vivo exposure 

assessment (Teeguarden, Hinderliter, Orr, Thrall, & Pounds, 2007).   In the case of 

inorganic metal and metal oxide nanoparticles, not only do the cells within the body have 

few defenses against excess metal as nanoparticles, but biological identity can be 

conferred to inorganic nanoparticles due to their high surface free-energy.  Indeed, the 

concept of the nanoparticle corona (Lundqvist et al., 2008; Monopoli, Åberg, Salvati, & 

Dawson, 2012) which will be described in Chapter 6 of this dissertation, further 

underscores the complexity of inorganic nanoparticles and the importance of defining 

“nano” based on the biologists view within the context of exposure assessment. 

The Uses of Nanomaterial 
  
 As illustrated in Chapter 2 of this dissertation, it is coming to the attention of 

investigators that consumer goods contain nanoparticles.  The most widely cited example 

detailing the physico-chemical parameters of TiO2 isolated directly from consumer goods 

came from a study conducted in the Westerhoff laboratory (Weir, Westerhoff, Fabricius, 

Hristovski, & von Goetz, 2012).  The study (Weir et al., 2012) showed that a number of 

foods contained nanoparticles as TiO2, and Monte Carlo simulations were conducted in 

order to determine the amount of titanium (Ti) ingested.  These analyses indicated that 

children in the US are the highest consumers of food grade Ti at concentrations between 

1-2 mg/kg body weight/day.  However, because of its high refractive index and texture 

modifying properties TiO2 is commonly added to products such as milk, toothpaste, and 

candies including chewing gum (Weir et al., 2012).  TiO2 was approved as a color 

additive for use in human food products by the Food and Drug Administration in 1966 

with the stipulation that it not to exceed 1% by weight.  TiO2 as a food grade additive has 

the European Union Classification # E171.  Color and texture are not the only reasons 

nanoparticles are used to modify human foods.  Because of its abundance (10% of the 
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earth’s crust) and chemical properties silicon dioxide (SiO2) NPs have found use in a 

plethora of food products (Chaudhry et al., 2008; Tiede et al., 2008).  SiO2 was 

categorized as E551, and is commonly used as an anticaking agent.  Recent studies have 

found silver NPs on the surface of pears (Z. Zhang, Kong, Vardhanabhuti, Mustapha, & 

Lin, 2012).  Silver is a known antibacterial agent used in a number of consumer products 

(Rai, Yadav, & Gade, 2009). 

 Aside from human foods there are a number of medically relevant uses for 

engineered NPs.  Cadmium/telluride NPs encapsulated by a zinc sulfide shell and further 

decorated with capping ligands have unique optical properties.  These so called quantum 

dots have a number of advantages over organic fluorophores including increased 

brightness and lengthened fluorescent “on” states (Leutwyler, Bürgi, & Burgl, 1996; 

Michalet et al., 2005).  Furthermore, the emission profile of the NP semiconductors can 

be tailored based on the diameter of the NP.  Smaller quantum dot nanocrystals emit 

blue light, while larger quantum dots emit red light.  Because of their small size, and 

resistance to photobleaching these NPs offer unique advantages over traditional organic 

fluorophores.  Quantum dots are not the only exciting imaging advancement that can be 

achieved when certain materials are synthesizes on the nanoscale.  Iron oxide 

nanoparticle crystals (i.e., γ-Fe2O3, Fe3O4) undergo a change in magnetism when 

synthesized below 20 nm in diameter (Ajay Kumar Gupta & Gupta, 2005).  This change 

in magnetism to superparamagnetism results in NPs that can be used for magnetic 

resonance imaging (MRI; Ajay Kumar Gupta & Gupta, 2005).  However, their larger 

counterparts offer little use for MRI.   

 NPs can also be used for tumor therapy.  As the diameter of the particle is made 

smaller, there is an increase in the surface-area-to-volume ratio.  On the nanoscale this 

results in a large number of atoms on the surface of the particle.  Investigators have 
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exploited the fact that the surface atoms can be further chemically modified, a process 

referred to as functionalization, to permit attachment of a wide variety of bioactive 

compounds.  Modifications to the particle surface results in covalent attachment of a 

range of chemical moieties from simple amine and carboxyl groups to change the surface 

charge, to antibodies, or even lipid-based varieties (Han, Ghosh, & Rotello, 2007; Lu, 

Salabas, & Schüth, 2007), and by no means is this list comprehensive.  Because of the 

ability to functionalize the surface of nanoparticles with various chemical moieties, it is 

possible to attach small molecule chemotherapeutic drugs to locally deliver drugs to 

tumors.  Specificity of the treatment is one central barrier to chemotherapeutic agents.  

Therefore, the ability to couple antibodies in addition to chemotherapeutic drugs to the 

surface of the nanoparticle permits localized treatment of cancerous cells while 

minimizing off-target effects due to the high degree of specificity antibodies endow.   

 In addition to their use as vectors for delivery, investigators have further taken 

advantage of the inherent changes in material properties that occur when the material is 

synthesized on the nanoscale.  As indicated in the preceding text, iron oxide NPs can 

undergo a change to superparamagnetism when synthesized below 20 nm in diameter.  

If an alternating magnetic field is applied to these superparamagnetic iron oxide 

nanoparticles (SPIONs), under the right conditions these changes in magnetic field 

produce local heating of the SPIONs.  Localized heating of tissue (i.e., thermal ablation) 

can result in tissue death, which adds a synergistic component;  Tissue imaging through 

MRI, specificity through surface functionalized antibodies, local drug delivery, and 

thermal ablation indeed provide a multi-faceted approach to tumor treatment.  In 

addition to SPIONs, gold NPs offer similar advantages because of the material properties 

on the nanoscale.  Gold NPs can be pulsed with a tuned two-photon laser in the near 

infrared region to produce localized hyperthermia (Terentyuk et al., 2009).  The 
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advantage of this system is the fact that near infrared light is much less phototoxic 

compared to the visible wavelengths of light necessary to normally heat gold NPs.  

Furthermore, the two photon pulse permits deep penetration compared to conventional 

lasers.  In addition, short laser pulses result in vaporization of a thin layer of the NP.  

This in turn imparts mechanical force on the surrounding tissue which acts analogous to 

an explosion in the immediate vicinity of the vaporized NP.  These phototherapy 

approaches are only made possible because of the absorption of light resulting in surface 

surface plasmon resonance and tunability of gold NPs (X. Huang, Jain, El-Sayed, & El-

Sayed, 2007, 2008).  

 By no means should the aforementioned list of NP uses be considered exhaustive.  

Iron NPs have been used to remediate groundwater contaminated with arsenic and 

chlorinated species (Cundy, Hopkinson, & Whitby, 2008). TiO2 nanotubes have been 

employed to split water into hydrogen and oxygen (Lin, Lu, Hsieh, & Chien, 2009).  Gold 

NPs have been used to produce colormetric reactions capable of detecting elements such 

as lead (Z. Wang, Lee, & Lu, 2008), and silver NPs have been applied to wound dressings 

in order to promote anti-microbial effects (Maneerung, Tokura, & Rujiravanit, 2008).  

Because of their uses in consumer goods, in medicine, and in the environment, it appears 

that NPs have become an integral part of our economy. 

Routes of Nanomaterial Exposure in the Human Body  
  
 It has become clear that NPs are ingrained in our society because of the 

multifaceted benefits of their production and use.  However, due to their small size, 

reactivity, and surface-area-to-volume ratio, a number of unintended and off-target side 

effects of NP exposure have been documented.  Before the effects of NP exposure 

observed as studies in this dissertation are shown, it is necessary to describe first the 

principal routes of NP exposure in humans.  As detailed in the proceeding text, the four 
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major routes of exposure are: Inhalation, dermal, direct injection, and oral.  Inhalation, 

dermal and direct injection will be discussed briefly, whereas the focus of the text will be 

exposure via the oral route.  Although some consider ocular exposure a portal for NP 

entry, these discussions can be found elsewhere (Warheit, Sayes, Reed, & Swain, 2008). 

 Arguably the most widely studies route of NP exposure is inhalation.  This is 

largely due to the causal role of particle and fiber dust that was found to affect the 

mining community and elicit disease (Donaldson, Murphy, Schinwald, Duffin, & Poland, 

2011; Oberdörster et al., 2007).  Studies have shown also that burning wood releases NPs 

that can be inhaled by humans and affect the lung (Lipsky & Robinson, 2006).  More 

recently, it has come to the attention of scientific community that burning diesel or 

combustion-based gas products results in the release of ultrafine (10 Å - 10 nm) particles 

(Donaldson et al., 2005; Oberdörster & Utell, 2002).  Once these particles are introduced 

to lung tissue, the body initiates an immune response.  Long term and repeated exposure 

to certain types of micro- and nano-scale particles can result in tissue fibrosis or even 

lung cancers (Davis et al., 1986; Hodgson & Darnton, 2000; Selikoff, Churg, & 

Hammond, 1964).  As a consequence of these studies there has been a shift from 

assessing the effects of exposure after a clear link to toxicity has been made, to 

employing small animal and cell culture models in order to determine if NPs could result 

in toxicity (Donaldson & Seaton, 2012).  Although the body has evolved several defenses 

to deny access to the lung, high concentrations, the size of the particle or fiber, and 

duration of exposure play a role in actual concentrations that reach the lung. 

 Dermal application represents another major route of NP exposure.  Due to its 

ability to refract light in the ultraviolet range, TiO2 has found use as a physical barrier in 

sunscreens (Abbott & Maynard, 2010; Crosera et al., 2009).  Moreover, when TiO2 is 

synthesized on the nanoscale and subsequently applied to skin, the whiteness of the 
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material diminishes and the application appears natural (i.e., not white, but skin-tone).  

The use of TiO2 NPs in sunscreen is further underscored by the fact that surface 

modifications can make the NPs hydrophobic.  Altering the wetting properties of the 

material makes the sunscreen “water-proof,” and not easily removed from skin.  These 

properties of TiO2 that only occur when synthesized as NPs have made TiO2 NPs a major 

additive to sunscreens and cosmetics (Sadrieh et al., 2010).  Zinc oxide and alumina 

oxide are applied also to various cosmetics and health and beauty products (Nohynek, 

Dufour, & Roberts, 2008). 

 As indicated in the preceding text, one major use of NPs can be in diagnostics and 

medicine.  When used for potential therapeutic intervention, the NPs are directly 

injected to the site of interest.  This includes intravenous, intraperitoneal, intracranial, 

etc., and can result in higher NP concentrations at the injection site compared to other 

exposure routes.  Although injection of NPs in humans as a route of NP exposure is 

limited to clinical trials, the possibility exists that NPs will be injected as therapeutic 

options for human disease or diagnosis in the future.  Furthermore, injection of NPs as a 

route of exposure in small animal studies has been widely adopted (Semmler‐Behnke et 

al., 2008; Takeda et al., 2009; Yamashita et al., 2011).  Therefore, inject of NPs as a route 

of exposure must be considered also. 

 Although there is a considerable body of literature related to inhalation, dermal, 

and direct injection as exposure routes, relatively less is known regarding exposure to 

NPs via the oral route.  This comes as a surprise given the fact that NPs are additives in 

human foods (Weir et al., 2012) or even in drink supplements (R.B. Reed et al., 2014).  

However, there has recently been a paradigm shift from studying NPs purchased from 

chemical companies to employing food grade or even NPs isolated directly from 

foodstuffs (Athinarayanan, Periasamy, Alsaif, Al-Warthan, & Alshatwi, 2014; J. J. Faust, 
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Doudrick, Yang, Westerhoff, & Capco, 2014).  This is due to the fact that semi-conductor 

type NPs or those used in cosmetics are unlikely to be intentionally ingested by humans.  

In order to understand the potential sites of exposure, the proceeding text will briefly 

outline the anatomical features of the alimentary tract and describe how foodstuffs 

which can contain NPs are taken into the body. 

The Passage of Foodstuffs through the Alimentary Tract 
 
 Mastication begins as the teeth physically sheer and grind foodstuffs into small 

pieces.  This is done in order to create a bolus that is fragmented and lubricated with 

saliva for swallowing. The bolus is passed from the oral cavity to the esophagus and into 

the stomach, where fragmentation completes and digestion ensues.  The initial stage of 

digestion is accomplished by muscular contractions in the stomach in concert with the 

low pH environment of the stomach to produce chyme.  Chyme is passed from the 

stomach into the duodenum of the small intestine where pancreatic enzymes and 

bicarbonate, and bile from the liver mix with chyme to neutralize pH, digest complex 

macromolecules, and emulsify fat.  The small intestine has a number of anatomical 

features that give rise to additional surface area.  First, the gut is thrown into folds 

known as plicae; second, mound-like structures known as villi decorate the plicae; third 

the epithelial cells that line the luminal region of the villi contain an apical cell 

specialization known as microvilli.  These cells are endowed with 1,000 to 3,000 

microvilli depending on the anatomical position of the cells within the gastrointestinal 

(GI) tract.  Microvilli in quantities as great at 1,000-3,000 microvilli per cell are referred 

to as brush borders. Cells containing brush borders exist in the small and large intestine, 

in the kidney proximal tubule, and in the placental syncytiotrophoblast.  The tiers of 

anatomical features that create surface area greatly aid in nutrient absorption.  The bolus 

proceeds through the jejunum and ileum of the small intestine with aid from 
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longitudinal and circular contractions of the muscle lining the gut, an event referred to as 

peristalsis.  Absorption is completed as the bolus passes into the large intestine where 

water is reabsorbed.  Feces are excreted from the body via defecation through the anal 

canal.  The regional architecture of the GI tract is based on similar functional layers from 

the esophagus to the anus, and a detailed histological plan can be found elsewhere 

(Young, Woodford, & O'Dowd, 2013).  However, it should be noted that the luminal 

regions of the GI tract are most likely to come in contact with inorganic NPs as part of 

foodstuffs since the epithelia that line the lumen are responsible for protection, secretion 

and absorption. 

 In particular, the main function of the small intestine is nutrient absorption.  

Although a number of physical barriers exist in the human body to prohibit direct 

contact between the cells within the epithelium and chyme, the epithelium of the small 

intestine is most likely to encounter the majority of ingested NPs within foodstuffs.  This 

is because nutrient digestion is completed and absorption begins in the duodenum as 

enzymes breakdown complex macromolecules into smaller parts only after the stomach 

has liquefied the bolus.  Further, peristalsis churns chyme in an effort to maximize the 

amount of chyme that comes in contact with the absorptive epithelium.  These concerted 

events, coupled with the small size of NPs, and the fact that the epithelium is a gateway 

to the body makes the absorptive epithelium of the small intestine a fascinating model 

that has been employed by investigators in order to determine if engineered NPs elicit 

toxic events in this cell system.  

Disruption of the Intestinal Brush Border as a Consequence of NP Exposure 
 

The remainder of this dissertation focuses on an event referred to as brush 

border disruption.  The first study to describe brush border disruption was by Koeneman 

and cowrokers (2010).  This event was identified after exposure to TiO2 NPs (Koeneman 
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et al., 2010), but has been shown also to be a consequence of exposure to iron oxide NPs 

(Madhavi Kalive, Wen Zhang, Yongsheng Chen, & David G Capco, 2012; W. Zhang, 

Kalive, Capco, & Chen, 2010).  Brush border disruption is defined as a loss and/or 

reorganization of the brush border microvilli.  Under normal conditions brush border 

microvilli are well ordered, standing straight off the surface of the cells, and dense in 

number.  However, the study by Koeneman et al., (2010) revealed a change in the normal 

structure of the microvilli such that exposure to TiO2 NPs resulted in a loss in the total 

number of microvilli, and an altered surface morphology.  Since microvilli exist to 

provide additional cell surface area, a reduction in the total number and organization of 

brush border microvilli could result in malnutrition or diarrhea. 

The goal of this dissertation was to identify whether or not disruption of the 

brush border was an artifact of in vitro exposure.  That is, because human tissue is 

difficult and costly to procure, investigators have turned to immortalized cell lines that 

can be grown in culture.  These cell lines retain many of the morphological and 

biochemical features of cells within the body, but offer a simple system as a first step in 

identifying whether or not NPs affect the normal engineering of human cells.   Although 

cell culture has revolutionized cell biology, many investigators have not used comparable 

cell lines, and analytical techniques necessary to detail interactions of NPs in cell culture 

models of the gut.  Therefore, Chapter 2 of this dissertation describes the Caco-2 BBe1 

cell line and provides several hypotheses regarding possible mechanisms that might 

account for brush border disruption as a consequence of NP exposure.  The brush border 

cytoskeleton that permits the normal number and morphology of microvilli is described 

in detail.  In addition, procedures are outlined for the normal growth of the cell line and 

methods to image the cells using scanning and transmission electron microscopy.  One 

main barrier that exists is employing material that is relevant for in vitro studies.  
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Therefore, Chapter 3 identifies several sources that can be used to isolate food grade 

TiO2 and provides a simple method to separate bulk (> 100 nm) from nanoparticles (< 

100 nm) in complex mixtures of TiO2.  Furthermore, at least one criticism of employing 

cell culture is the fact that a number of physical forces exist in the body that are difficult 

to recreate during in vitro analysis.  Chapter 4 utilizes relevant food grade sources of 

TiO2, and provides evidence that brush border disruption is not an event dependent on 

sedimentation of agglomerated food grade TiO2 due to in vitro analysis.  Although brush 

border disruption occurs in human intestinal cells, do other brush border expressing 

models result in similar finding in vitro?  Chapter 5 describes size-dependent effects of 3 

different diameters of a model iron oxide (α-Fe2O3) NP, and shows that brush border 

disruption is not an event exclusive to human intestinal cells.  Chapter 6 concludes this 

work by discussing the significance of these findings and outlines future perspectives. 
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CHAPTER 2 

ENGINEERED NANOPARTICLES INDUCED BRUSH BORDER DISRUPTION IN A 

HUMAN MODEL OF THE INTESTINAL EPITHELIUM 

Nanomaterials and Exposure to the Human Body 

This chapter defines engineered nanomaterials as nanoparticles (NPs) 

deliberately constructed to exploit the unique characteristics of the material on the 

nanoscale (10-9 m in diameter), and not those NPs that exists due to natural 

environmental processes.  Further, a nanoparticle is defined within this chapter as 

materials that have a diameter of 1-100 nm in any external dimension (Dunphy Guzman 

et al., 2006; Foss Hansen, Larsen, Olsen, & Baun, 2007).  In this chapter this definition 

includes NP agglomerates as the state of agglomeration can change depending on the 

location in the human body, and since the surface free-energy of individual NPs may still 

exist.  Engineered NPs can take on a variety of geometries, crystal structures, or 

elemental composition(s) depending on their intended use.  The excitement these NPs 

encourage is highlighted by the fact that the physico-chemical parameters can be tailored 

if the surface of the nanomaterials is chemically functionalized through conjugation 

chemistry.  That is, a number of physical interactions (e.g. covalent or noncovalent 

bonding) can be exploited at the NP surface to chemically “tailor” NPs.  Examples for the 

use of engineered NPs include drug delivery (Arruebo, Fernández-Pacheco, Ibarra, & 

Santamaría, 2007), tissue contrast enhancement for MRI (Mahmoudi, Sant, Wang, 

Laurent, & Sen, 2011; Oh & Park, 2011), wavelength specific probes for fluorescence 

imaging (Howarth, Takao, Hayashi, & Ting, 2005; Resch-Genger, Grabolle, Cavaliere-

Jaricot, Nitschke, & Nann, 2008), cancer targeting (Gao, Cui, Levenson, Chung, & Nie, 

2004) and ablation (H.-C. Huang, Rege, & Heys, 2010), environmental remediation of 

toxic compounds (Sylvester, Westerhoff, Möller, Badruzzaman, & Boyd, 2007), and this 
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list is by no means comprehensive.  It is thus increasingly acknowledged that engineered 

NPs are an integral part of medical diagnostics, treatments, and consumer goods now 

and in the future. 

While NPs have summoned considerable excitement within the scientific 

community because of the aforementioned characteristics, concern has been raised since 

some NPs act as a double-edged sword.  Arguably the most widely known example of 

such a double-edged sword effect was exacted by the nanofiber, asbestos.  Because of the 

material properties inherent to this nanofiber included tensile strength, and resistance to 

damage, it was ubiquitously used as components of construction materials.   However, 

those human subjects chronically exposed to the nanofiber asbestos acquired respiratory 

pathologies such as mesothelioma. As a consequence of the aforementioned aftermath of 

human exposure to NPs, investigators have begun to characterize potential health-

related effects of engineered NPs in a variety of in vitro cell culture models (Donaldson 

and Seaton, 2012).  In such models, investigators employ cell systems that mimic the 

major site of tissue exposure for a given potential route of exposure, and this has lead to 

a number of insights concerning NPs in cell biology and medicine. 

Due to the small size, three predominant routes by which NPs can intentionally 

or unintentionally enter the human body exist:  These include inhalation, dermal, and 

exposure via the oral route.  Concerning the latter, a great number of investigations have 

focused on understanding the uptake and subsequent transport of NPs through the 

gastrointestinal tract to improve bioavailability of pharmacological drugs, whereas few 

have investigated exposure in an effort to understand the response of individual cells in 

their social context. The remainder of this work will not address systemic transport of 

NPs from the gastrointestinal tract as systemic transport is beyond the scope of this 

chapter.  Rather this work will flush out some of the unintended health effects NPs 
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provoke as ingested components of consumer goods or as part of a medical application 

with a focus on TiO2 NPs.  First, there is an extensive body of work, at the ultrastructural, 

biochemical, and molecular levels that set the foundation for understanding of effects of 

NPs on the cells of the gastrointestinal tract, and specifically, on the absorptive 

enterocytes that pass nutrients into the body.  These components will be briefly reviewed 

as they provide key markers of assessing both gross and subtle effects of nanomaterials 

taken in by the oral route.  Second, this chapter will describe an emerging nanotoxicity 

research paradigm; NP-induced brush border disruption.  Finally, this chapter provides 

a detailed methods section which lays the basic framework for handling the principle 

model cell culture system for the absorptive cells of the gut including; a) proper cell 

culture and technique, and; b) scanning electron microscopy for the human brush border 

expressing cell line, Caco-2 BBe1.  Inappropriate application of these techniques have 

resulted in several inconsistencies in results reported in the literature and have begun to 

confound the understanding of the system.  

The Molecular Components of the Cytoskeletal Apparatus of the Intestinal 

Brush Border 

Intestinal microvilli and the brush border. 

When specimens are transversely sectioned through the long axis of the polarized 

enterocyte as part of the gut epithelium, the so-called microvilli appears as thin, “finger-

like” projections emanating from the apical cell surface.  While several different 

eukaryotic cells types assemble microvilli on their apical surface only those cells of the 

digestive tract and the kidney proximal tubule contain such an abundance of microvilli 

that early morphologists referred to these regions as brush borders (or striated borders).  

This cell specialization has captured the attention of investigators for decades, and its 

importance is underscored by the morphological and function redundancy found in 
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mammals including humans, to simple invertebrates such as the fruit fly, Drosophila 

(Figure 1).   

Depending on the location within the gut, the dimensions of microvilli can vary 

since an increase in the length and number of microvilli results in increased cell surface 

area.  For example, absorptive cells of the small intestine have microvilli with a length of 

approximately 1-2 µm and a diameter of 100 nm.  In contrast, those cells of the colon 

have fewer microvilli per cell, and the length of each microvillus is around 500-1,000 nm.  

Further, within the Crypts of the small intestine exist undifferentiated cells that contain a 

sparse number of microvilli at the cellular apex (TM Mukherjee & Williams, 1967).  In 

light of the fact that microvilli on their luminal/apical surface contain integral 

membrane proteins responsible for absorption of complex macromolecules (e.g., 

carbohydrates, peptides, etc.) it is not surprising that the small intestine, acting as the 

principal site of nutrient absorption contains cells with a robust number of microvilli, 

while the colon functioning to reabsorb water contains relatively fewer. The story related 

to the morphometry of microvilli is complicated by the fact that dietary changes can 

result in a decreased length of the microvilli (Misch, Giebel, & Faust, 1980), and that 

some molecular components of the microvilli continuously undergo states of assembly 

and disassembly (Stidwill, Wysolmerski, & Burgess, 1984).  Since microvilli increase the 

cell surface area, it can be deduced that the cells of the small intestine have a greater 

surface area than cells of the large intestine.  These facts indicate that studies related to 

NP-induced brush border disruption are complicated by both the anatomical location 

within the gastrointestinal tract, and the cell type employed, since these regions are 

variable.   

Around the time the transmission electron microscope (TEM) became 

commercially available for biological samples, investigators captured the first detailed 
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glances of the brush border with high spatial resolution (Granger & Baker, 1950; Miller & 

Crane, 1961; TM Mukherjee & Williams, 1967; Palay & Karlin, 1959; Trier, 1963).  Later 

with improved technique in chemical fixation of biological samples McNabb and 

Sandborn (1964) described filamentous structures at the core of the microvilli.  In the 

early 1970 through the use of model organisms such as Xenopus, salamander, and 

chicken the formation and elongation of microvilli of the brush border was examined in 

detail, a process referred to as brush border morphogenesis. These model organisms 

were employed in part due to their ability to experimentally manipulate brush borders in 

vitro, and the gradual morphogenesis process unique to these models.  Further, the 

ability to decorate actin filaments with heavy meromyosin (or the S-1 subfragment) 

enabled investigators to begin to identify the polarity of actin filaments in a variety of cell 

types (Ishikawa, Bischoff, & Holtzer, 1969).  In a hallmark study, Tilney and Mooseker 

(1971) isolated brush borders and imaged decorated filamentous components of the 

microvilli with heavy meromyosin.  Biochemical analysis through the use of SDS-PAGE 

indicated that the most abundant protein of isolated brush borders migrated in a manner 

identical to purified chicken actin.  Together these data were the first to indicate 

unambiguously that actin is the major (i.e., the most abundant) cytoskeletal protein 

component of microvilli (Tilney & Mooseker, 1971).  These early studies spurred a flurry 

of subsequent investigations focused on identifying the molecular components 

underlying the process of brush border morphogenesis (Arpin & Friederich, 1992; 

Bretscher, 1983a; Coudrier, Kerjaschki, & Louvard, 1988; Hirokawa & Heuser, 1981; 

Mooseker, 1985; Shibayama, Carboni, & Mooseker, 1987), which has been the focus of 

exhaustive  reviews (Bement & Mooseker, 1996; Heintzelman & Mooseker, 1992).  

 

 



19 

 

The microvillar region. 

Anatomically the brush border is separated and historically defined as the 

microvilli and terminal web regions (Heintzelman and Mooseker, 1992; see Figure 2). 

Within the microvillus core exists ~20 actin filaments organized as parallel bundles in a 

hexagonal array that extend into, and are supported by, the terminal web region.  The 

electron-dense tip is the site where the addition of actin monomers to F-actin occurs, 

and these filaments were found to have uniform polarity with minus ends enmeshed 

within the terminal web (Begg, Rodewald, & Rebhun, 1978; Hirokawa & Heuser, 1981; 

Hirokawa, Tilney, Fujiwara, & Heuser, 1982).  There are a number of proteins that 

secure F-actin bundles to one another.  The first and most abundant is a 68-kDa protein 

known as fimbrin (Bretscher & Weber, 1980a), which is also referred to in the literature 

as plastin 1, I-plastin,or I-fimbrin.  The second most abundant protein that bundles F-

actin is the 95-kDa protein, villin which is stoichiometrically the minor to fimbrin 

(Bretscher & Weber, 1979).  Finally the 30-kDa splice variant of espin acts to further 

crosslink axial bundles (Bartles, Zheng, Li, Wierda, & Chen, 1998).  Each core bundle of 

actin filaments is laterally tethered in a helical arrangement to the plasma membrane by 

brush border myosin 1 (Myo1A), composed of a 110-kDa heavy chain and 4-5 calmodulin 

light chains (Garcia et al., 1989; Glenney Jr, Osborn, & Weber, 1982; Howe & Mooseker, 

1983).  Another protein that fastens the core bundle to the plasma membrane is the 80-

kDa protein ezrin (Bretscher, 1983b; Bretscher, Reczek, & Berryman, 1997), although 

this result has been questioned recently through the use of molecular modeling 

techniques (Brown & McKnight, 2010).  In cultured LLC-PK1 cells ezrin was found to 

interact with the Rho-GEF, PLEKHG6, to promote apical rearrangement of the actin 

cytoskeleton via Rho-G (D'Angelo et al., 2007).  Furthermore, in an impressive display of 

microscopy, Zwaenepoel and coworkers (2012) elucidated the role of novel ezrin-
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interacting partners of the Eps8 family responsible for proper brush border 

morphogenesis.  Through the use of a yeast two-hybrid screen the authors found the 

novel protein Esp8L1a that interacts with phosphorylated ezrin and is a component of 

the brush border in LLC-PK1 cells.  This novel component (Esp8L1a) of the porcine 

absorptive brush border was found to regulate microvilli length by capping F-actin at the 

plus tips (Zwaenepoel et al., 2012). 

The terminal web region. 

The terminal web is a support structure within which the F-actin core rootlets 

terminate (Figure 2).  Structurally it is composed of the non-erythroid spectrins, fodrin 

and TW260/240 (Glenney, Glenney, & Weber, 1983), and myosin II that link adjacent 

core bundles (Hirokawa, Cheney, & Willard, 1983; Hirokawa et al., 1982).  The actin 

bundles are further stabilized along the length of core filaments by tropomyosin 

(Mooseker, 1976).  Within this meshwork α-actinin, a 95-kDa structural protein, 

associates with the microvillar rootlets and circumferential actin band (Bretscher & 

Weber, 1978).  Beneath the interconnecting fine fibrils within the terminal web region is 

the intermediate filament network, which extends from intercellular junctions 

(Hirokawa et al., 1983; Hirokawa & Heuser, 1981; Hirokawa et al., 1982).  Through 

immunohistochemical analysis fimbrin has also been shown to interact with cytokeratin 

19, but not cytokeratin 8, in the terminal web (Grimm-Günter et al., 2009).  Further, in 

fimbrin knockout mouse model Grimm-Gunter et al., (2009) demonstrated a role for 

fimbrin in the terminal web.  Through the use of TEM the authors (Grimm-Gunter et al.) 

showed that these knockout mice have shorter microvilli with a disorganized and less 

densely packed terminal web region.  The organelle-free zone, a region occupied, and 

extended by the terminal web, was significantly shorter in fimbrin deficient mice.  For 

these reasons the authors suggest that fimbrin, aside from its classical role as a F-actin 
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bundling protein in the microvillus core, is an essential component of the terminal web 

that may act to stabilize the core actin rootlets to the intermediate filament network 

(Grimm-Günter et al., 2009).  In the differentiated enterocyte just beneath the 

intermediate filament network exists the microtubule network organized as parallel 

columns from the apical to the basolateral domain of the cell (Achler, Filmer, Merte, & 

Drenckhahn, 1989; Gilbert, Le Bivic, Quaroni, & Rodriguez-Boulan, 1991; Halbleib, Sääf, 

Brown, & Nelson, 2007).   

Molecular Targets Putatively Responsible for Brush Border Disruption 

Several, as of yet, putative targets for the NP-induced disruption of the brush 

border exist.  One mechanism is dependent on the inherent charge of the nanomaterial.  

The surface of any given nonfunctionalized (i.e., naked) NP contains large amounts of 

free energy due to the small size of the material. This free energy at the NP interface 

attracts oppositely charged components within its immediate environment.  When naked 

(i.e., nonfunctionalized) NPs are in solution, this region is referred to as the electric 

double layer, and when the solution contains an abundance of proteins these layers are 

referred to as the hard and soft coronas. These corona proteins bound to the NPs can 

elicit a number of biological responses (Monopoli et al., 2012) one of which is the ability 

of NPs to reorganize the lipid bilayer (B. Wang, Zhang, Bae, & Granick, 2008).  It is well 

known that under normal physiological conditions the concentration of intracellular-free 

calcium ([Ca2+]i) in intestinal cells is at least five orders of magnitude lower than that of 

the extracellular environment.  As a downstream consequence of a “leaky” plasma 

membrane a rapid increase in [Ca2+]i from the extracellular milieu could occur and 

activate the calcium-dependent protein, villin.  Villin is versatile protein that was 

identified as an exclusive protein in brush borders.  When [Ca2+]i levels are in the 

nanomolar concentrations, villin acts as a F-actin bundling protein.  However, should 
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the [Ca2+]i  concentrations reach the micro-to millimolar range villin converts to an F-

actin severing protein.  Further, under certain circumstances villin assumes the role of 

capping F-actin.  It was thus predicted by Koeneman and coworkers (2010) to be the 

causal agent responsible for the NP-induced brush border disruption accompanying 

exposure to a 70/30% (anatase/rutile) mixture of TiO2 NPs.  This prediction was based 

on the fact that a dose-dependent disruption of the microvilli was observed as well as a 

dose-dependent increase in [Ca2+]i.  This prediction may be corroborated in part by 

siRNA disruption of villin; employing an antisense approach the authors (De Beauregard 

et al.) permanently down-regulated villin and observed what was referred to as “limp” 

microvilli.  That is, the microvilli appeared to fall over and become parallel, and not 

perpendicular to the horizontal axis of the plasma membrane.  This limp morphology 

was rescued by cDNA encoding a partial sense villin RNA (De Beauregard, Pringault, 

Robine, & Louvard, 1995) indicating that villin could play a role in the disruption 

observed by Koeneman and coworkers (2010).  The report (Koeneman et al., 2010) was 

notable in that it was the first to indicate that TiO2 NPs, although classically considered 

to be relatively inert, have the ability to disrupt microvilli of the brush border after 

exposure to an in vitro model of the human intestine (the Caco-2 BBe1 cell model).  This 

work has since prompted subsequent investigations into the potential effects TiO2 NPs 

instigate after exposure in the Caco-2 cell model. 

Brush Border Disruption as a Result of Exposure to NPs in Consumer Goods 

There are number of benefits for the use of TiO2 NPs in medicine and consumer 

goods.  One example is the addition of TiO2 NPs in sun screens, in part due to the fact 

that TiO2 is highly reflective and acts as a protective physical barrier between human 

skin and the sun. However, under certain conditions ultraviolet light can interact with 

the TiO2 NP surface and results in photocatalytic production of oxygen radicals.  In an 
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effort to reduce the photocatalytic effects, TiO2 NPs that are components of sun screens 

can be encapsulated with aluminum oxide.  After the aluminum oxide encasing, the NPs 

can be further functionalized to improve hydrophobicity.  However, it has also become 

clear that NPs undergo changes thoughout, what is referred to as a “life cycle.”  The life 

cycle of NPs is defined as changes that can occur as the NP is modified by different 

conditions in the environment which can include different parts of the human body.  The 

life cycle begins at the time NPs are manufactured and can be altered by temperature, 

pH, and light among other things, as their local physical environment is altered - for 

example, NPs in pure neutral water (pH 7.2) do not behave the same as they would in the 

acid conditions in the stomach (pH ~1-4).  One study (Fisichella et al., 2012) set out to 

investigate the life cycle of functionalized TiO2 NPs that are components of these sun 

screens and subsequently the downstream effects in the Caco-2 cell model.  The authors 

treated the NPs with acid in an effort to mimic the effects of passage through the 

stomach as well as incubating replicate NPs in water while applying ultraviolet light, and 

assessed the physico-chemical changes accompanying these treatments.  The study 

found that gastric or environmental conditions degraded the hydrophobic 

polydimethylsiloxane (PDMS) surface modification such that these NPs became 

hydrophilic and agglomerated over time. After degradation of the PMDS organic layer, 

the authors claimed that theseTiO2 NPs are not taken up by Caco-2 cells, and further, 

that they do not disrupt the brush border of Caco-2 cells at a concentration of 100 µg/mL 

after a 72 hour exposure.  However, other studies have clearly shown that 

nonfunctionalized TiO2 NPs are internalized in the Caco-2 cell model, and this 

internalization was confirmed through the use of mass balance analysis (Koeneman et al., 

2010). Furthermore, recent studies suggest that a change in the NP life cycle from 

human skin to chlorine containing water sources such as swimming pools results in a 
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rapid degradation of the protective aluminum shell (Virkutyte, Al-Abed, & Dionysiou, 

2012).   

While the study by Koeneman and colleagues (2010) was the first, it is not the 

only study to indicate a disruption of the brush border as a result of NP exposure.  

Employing a model iron oxide NP (hematite; α-Fe2O3) first Zhang et al., (2010) and later 

Kalive et al., (2012) demonstrated a NP-induced disruption of the brush border in Caco-

2 cells.  The study by Zhang and coworkers (2010) suggested that the interaction 

between the NP surface and plasma membrane resulted in adsorption of hematite to the 

cell surface.  The authors hypothesized that movement of the brush border microvilli 

permitted access for the NPs to “wedge” between individual microvilli.  The authors 

proposed that this wedging caused the arrays of microvilli to whorl around a central 

point at their microvillar tips when viewed by scanning electron microscopy (SEM) after 

NP exposure (W. Zhang et al., 2010).  Although individual microvilli do not oscillate to 

move materials in the gut under normal conditions, they do contain a number of 

molecular motors that act to stabilize both the microvillar and terminal web regions.  

Studies have shown that injection of antibodies directed against myosin II in a brush 

border expressing porcine cell line (LLC-PK1) result in microvilli that apparently became 

limp (Temm-Grove, Helbing, Wiegand, Honer, & Jockusch, 1992).  Through DNA 

microarray analysis it was found by Kalive et al., (2012) that a number of genes 

responsible for the production of intermediate filament proteins, some of which are 

components of the terminal web, are upregulated. Further regarding the microvillar 

region it was found that the gene responsible for the production of the actin capping 

protein CapZ (typed in their publication as CAPZA) which is a known component of the 

plus tips of the microvilli was upregulated (Madhavi Kalive et al., 2012).  Data shown in 

Chapter 5 of this dissertation corroborate upregulation of CapZ as a result of NP 
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exposure, albeit in an established, brush border expressing model of the human placenta. 

Taken together these results suggest at least two independent mechanisms by which the 

NPs disrupt the archetypical organization of the brush border.  First, structural 

components integral to terminal web continuity are altered at the gene level as a result of 

NP exposure.  Since microvilli cannot exist without a supporting structure from which F-

actin bundles exert force to deform the apical plasma membrane, it can be predicted that 

gross changes in the organization and composition of the terminal web at the protein 

level result in brush border disruption. Second, actin capping at the plus tips of the 

microvilli could induce a retraction of the brush border since the individual actin 

filaments continuously undergo a state of flux with addition of monomers at their plus 

tips. 

More recently it has come to the attention of investigators that NPs are common 

additives to a number of ingested consumer goods (Weir et al., 2012).  The study by Weir 

et al., (2012) surveyed a number of food products and found P25 and E171 TiO2 NPs in 

food.  The latter is a pigment approved by the United State Food and Drug 

Administration in 1966 as a color additive for use in human food (FDA, 2010).  The 

authors (Weir et al., 2012) found that 36% of this pigment contained particles with one 

external dimension <100 nm in diameter. The study subsequently calculated dietary 

exposure and found that children under the age of 10 years in the United States and the 

United Kingdom are the greatest consumers of ingested TiO2 NPs at concentrations of 1-

2 mg TiO2 per kilogram of body weight per day and 2-3 mg TiO2 per kilogram of body 

weight per day, respectively (Weir et al., 2012).  These data highlight the need to assess 

the effects of food-grade NPs after exposure to models of the human gut, since studies 

indicate that TiO2 NPs disrupt the human enterocyte brush border, and that food-grade 

pigments are being consumed as NPs. 
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Procedures to Procure Differentiated Brush Borders Using the Caco- 2BBe1 

Cell Model. 

Introduction to cell culture and the Caco-2 BBe1 cell line. 

The procedures in the proceeding text describe routine maintenance of Caco-2 

BBe1 cells from the date they are purchased, through cell culture, and conclude with a 

protocol to procure publication quality scanning electron micrographs of brush borders.  

While these methods seem straightforward, it is advised that only those investigators 

that have experience with cell culture and cell biology attempt to employ this model for 

studies related to materials science and engineering of nanomaterials as slight deviations 

from routine electron microscopy protocols or careless culture technique result in brush 

borders that appear in poor health.  If untreated brush borders are in poor health then it 

becomes impossible to determine if NPs have an effect on the brush border.  As a 

consequence, investigators have questioned whether or not these control brush borders 

are representative, and some have begun to show unhealthy epithelia as control 

specimens, albeit employing unorthodox cell culture or electron microscopy techniques.  

These differences highlight the need to standardize protocols to obtain accurate and 

comparable results between investigators. 

In order to permit adequate resolution of brush borders and the subtle changes 

that may accompany brush border disruption, investigators commonly employ SEM and 

image at high magnification.  The field of view in a scanning electron micrograph at high 

magnification can be the diameter of the average Caco-2 BBe1 cell after the 17-21 days of 

differentiation.  Figure 3 is a representative scanning electron micrograph after the 17-21 

days of proper aseptic technique and culture conditions required to permit brush border 

morphogenesis.  When viewed as a scanning electron micrograph the apical surface of 

the Caco-2 BBe1 epithelium decorated with a well-ordered array of the finger-like 
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projections known as microvilli (Figure 3).  The micrograph (Figure 3 A) was captured at 

a magnification of 1,500x in an attempt to balance resolution of individual microvilli 

with the number of cells in the field of view.  At this magnification of 1,500x the 

intercellular borders become difficult to see.  However, the telltale sign of the cell to cell 

interface is the slight interdigitation of microvilli outlined by white arrows (Figure 3 A).  

The micrographs shows 3 different regions directly surrounded by the oval, square, and 

triangle in Figure 3 A corresponding to 3 different cells imaged as higher (5,000x) 

magnification views (Figure 3 B-D) to illustrate in detail the archetypical organization of 

the human enterocyte brush border (Caco-2 BBe1 epithelia).  It is important for the 

investigator to choose random areas when conducting morphometric analysis of brush 

borders.  Further, the investigator must choose at least 3 random 1 µm2 regions to count 

microvilli in order to procure statistical analysis from three independent experiments.  

Finally, if control specimens do not appear well organized as shown in Figure 3, the 

entire experiment must be culled from analysis as the result from the experimental 

exposure would be ambiguous. 

Details related to basic cell culture and aseptic technique are beyond the scope of 

this methods section.  However, it is highly recommended that the investigator practice 

cell culture techniques as described in the Freshney text (Freshney, 2005).  Historically, 

the parental Caco-2 cell line designated by American Type Culture Collection (ATCC) as 

HTB-37™ was employed to study the uptake and pharmacokinetics of novel drugs 

(Artursson, Palm, & Luthman, 2012; Hidalgo, Raub, & Borchardt, 1989); for the first 

time a simplified model of the human gastrointestinal tract could be grown in culture 

and used in high throughput to screen materials.  This cell line allured investigators as it 

could be propagated continuously in culture eliminating the expense and ethical 

concerns associated with procuring fresh human tissue.  Further, a large number of cells 
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can be grown for experimental analysis and used in standardized assays.  While HTB-

37™ sparked interest for its use as a predictor of small molecule transport, it was limited 

in that epithelia formed from this cell line were found to be relatively heterogeneous, and 

some cells within this epithelium did not produce brush borders at all.  In 1992 Peterson 

and Mooseker subcloned HTB-37™ and called these cell lines brush border expressing 1 

and 2 (BBe1 and BBe2). This was, in part, first due to a need for a human cell line that 

faithfully mimicked the in vivo brush borders at the morphological and biochemical 

levels.  And second, the need for an in vitro model that sustained gradual morphogenesis 

of the brush border in order to understand the molecular events accompanying brush 

border morphogenesis.  Since that time there have been numerous investigators that 

have employed the Caco-2 BBe1 cell system to exploit the archetypical organization of 

the brush border in vitro (Bement, Forscher, & Mooseker, 1993; J.J. Faust & Capco, 

2012; Halbleib et al., 2007; Koeneman et al., 2009; M. D. Peterson & Mooseker, 1993).   

One benefit of in vitro cell systems is that the investigator can screen various NP 

diameters, concentrations, physico-chemical parameters, etc., for those NPs that result 

in relatively few toxic effects.  For these reasons investigators have employed the Caco-2 

BBe1 cell model in order to understand the effects NPs elicit after exposure via the oral 

route.  The use of the Caco-2 cell model has been recommended by the International Life 

Science Institute Research Foundation/Risk Science Institute (ILSI RF/RSI) 

Nanomaterial Toxicity Screening Working Group as an attractive option to understand 

potential deleterious effects of NPs after exposure to the human gastrointestinal tract 

(Oberdörster et al., 2005),  However, recent studies indicate that care should be 

exercised concerning interpretation of experimental data procured from the use of Caco-

2 (HTB-37™) for the aforementioned reasons (J.J. Faust, Zhang, Koeneman, Chen, & 

Capco, 2012; Fisichella et al., 2012; Koeneman et al., 2010);  First, it is essential that 
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investigators clearly indicate which Caco-2 cell line was used during experimentation as 

many fail to report this critical piece of information;  Second, and most disconcerting are 

control images shown by some that are not comparable to a plethora of reports in the 

literature dating back to 1992.  Such results show the need for a standardize set of cell 

culture and microscopy preparation techniques, otherwise observations will become 

confounding. 

The following text describes routine maintenance of the commercially available 

Caco-2 BBe1 cell line (ATCC, CRL-2102™) starting from thawing frozen, token ampules, 

to establishing user stocks.  This methods section is concluded with a procedure that can 

be employed should the investigator wish to produce publication quality scanning 

electron micrographs of Caco-2 brush borders. 

Procedure for thawing Caco-2 BBe1 cells from frozen cryogenic 

ampules. 

1. Purchase 1-3 validated Caco-2 BBe1 cell lines from a geographically convenient cell 

repository at a low passage number.  It was found that the archetypical structure of the 

brush border remains consistent until passage number 68 (M. D. Peterson & Mooseker, 

1993). 

2. After placing the order for the cell line, begin by preparing sterile complete culture 

medium.  The medium of choice for Caco-2 BBe1 cells is Dulbecco’s Modification of 

Eagle’s Medium (DMEM; Cellgro, 10-013), supplemented with 10 µg/mL human 

transferrin (Invitrogen; 0030124SA), 10,000 I.U./mL penicillin, 10,000 µg/mL 

streptomycin and 25 µg/mL amphotericin (Cellgro; 30-004-CI), and 10% fetal bovine 

serum (Biosera; FBS2000).  Cellgro supplies their medium in volumes of 500- or 1000 

mL.  The Nalgene® plastic that contains the DMEM permits the additional volume of 

supplements.  The complete culture medium is inverted in the Nalgene® plastic 3-5 
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times to make the mixture uniform and subsequently apportioned (100 mL each) into 

125 mL Wheaton glass bottles.  Under no circumstances should the medium come in 

contact with the tops of Wheaton glass bottles as the medium may become contaminated.  

These sterile, pre-labeled 125 mL glass bottles can be stored at 4°C for up to 8 weeks.  

3.  Upon arrival of the cells immediately warm the complete culture medium to 37°C in a 

recirculating water bath.  This commonly takes 15 minutes to equilibrate the medium 

from 4° to 37°C.  Once equilibrated the closed bottle of complete culture medium is 

sprayed with 70% ethanol and placed on the grating of the air curtain to dry.  Proceed to 

the next step immediately. 

4. Remove the cryogenic ampule containing the cells from the packaging, ensure that the 

cap is tightly sealed, and begin to thaw the contents by gently swirling the frozen ampule 

in a pre-equilibrated (37°C) water bath.   Inspect the ampule and continue to thaw with 

swirling until there appears a piece of ice that approximates the diameter of a pen tip.  

This thawing process takes about 2 minutes and should not be prolonged.  It is advised 

that a trained member of the laboratory completes the thawing process.  Proceed to the 

next step immediately. 

5.  Sterilize the external surface of the ampule with 70% ethanol and it place on the 

grating of the air curtain.  Situate all necessary materials within the working area of the 

biological safety cabinet only after the 70% ethanol has air dried.  Proceed to the next 

step immediately. 

6.  Transfer 9 mL of pre-equilibrated (37°C) complete culture medium to a sterile 15 mL 

centrifuge tube, add the thawed cells, and centrifuge at 125 g for 5 minutes to pellet the 

cells.  Proceed to the next step immediately. 

7.  Aspirate the supernatant, gently resuspend the cells in 1 mL of complete culture 

medium, and transfer 1 mL into a T-75 culture vessel.  Add 9 mL of additional pre-
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equilibrated complete culture medium and gently rock the culture vessel five times to 

distribute the cells.  Label the culture vessel with the investigator’s name, the date, the 

cell type (Caco-2 BBe1), and the cell passage number.  Quickly inspect the culture with an 

inverted phase-contrast microscope.  The cells should appear as phase-bright spheres. 

Proceed to the next step immediately. 

8.  Transfer the culture vessels to a humidified cell culture incubator equilibrated to 

maintain a constant temperature of 37°C with an atmosphere of 5% CO2 in air.  The 

following day the cells should be inspected and the culture medium should be changed to 

remove nonviable cells. 

Procedure for feeding Caco-2 BBe1 cells. 

For routine maintenance, complete culture medium should be replenished every 3 days 

with 10 mL per T-75 culture vessel.  To remove cell culture medium aseptically, aspirate 

the old medium used by the cells and pipet fresh, pre-equilibrated, sterile medium. 

1.  Set the culture vessel and pre-equilibrated complete culture medium on the air grate 

of the biological safety cabinet while waiting for ethanol to dry from gloved hands, and 

the complete culture medium bottle.  This typically takes 2 minutes. 

2.  Aseptically aspirate the used cell culture medium, and pipet fresh, pre-equilibrated 

complete culture medium.  This typically takes 2 minutes. 

3.  Return the culture vessels to the cell culture incubator. 

The number of cells that occupy the percent area of the culture vessel surface is defined 

as the “percent confluence.”  In other words, if 80% of the culture vessel surface is 

occupied by cells, the culture is said to be 80% confluent.  Once 80% confluence is 

reached the cells should be subcultured to prevent cell differentiation due to 

overcrowding of the cells. 
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Procedure for subculturing Caco-2 BBe1 cells. 

1.  Place the following in a recirculating 37°C water bath for 15 minutes: Ca2+/Mg2+-free 

phosphate buffered saline (PBS; Cellgro, 20-031-CV), complete culture medium, and 

0.25% trypsin/2.21 mM EDTA in Hanks Balanced Salt Solution (Cellgro, 25-050-Cl). 

2.  Place all materials including the cell culture vessels in the hood as described in the 

paragraphs in the text above. 

3.  Aspirate the complete growth medium from the culture vessel.  Proceed to the next 

step immediately. 

4.  Rinse the cells once with Ca2+/Mg2+-free  PBS (3 mL per T-75).  Aspirate the PBS.  

Proceed to the next step immediately. 

5.  Apply 3 mL of 0.25% trypsin/2.21 mM EDTA in Hanks Balanced Salt Solution, and 

return the T-75 culture vessel to the cell culture incubator for 5 minutes.  Proceed to the 

next step immediately. 

6.  Pipet 3 mL of complete culture medium into the T-75 culture vessel to inactivate the 

trypsin, and transfer the entire volume (6 mL total) to a 15 mL centrifuge tube.  Proceed 

to the next step immediately. 

7.  Centrifuge at 150 g for 5 minutes to pellet the cells.  During this 5 minute wait, label 

new sterile culture vessels with the appropriate information, and add complete growth 

medium to the new culture vessel.  Proceed to the next step immediately. 

8.  Aspirate the supernatant to remove any residual trypsin, and resuspend the cell pellet 

in 1 mL of complete culture medium; gently mix to randomize the cells.  Transfer 100 µL 

of the suspension to the new culture vessel and gentle agitate to distribute the cells.  This 

results in a 1:10 dilution. 

9.  Return the cells to the cell culture incubator.  The cells will become adherent within 

12 hours and will require additional subculturing after approximately 1 week in culture. 
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Procedure for establishing Caco-2 BBe1 user stocks. 

The procedures described up to this point detail the routine culture of Caco-2 

cells starting from a newly purchased cell line.  This newly purchased cell line is hereafter 

referred to as the “token stock,” as it is the lowest passage, validated cell line.  There are 

4 stages of cell lines that should be maintained in a cell culture laboratory and those 

include, 1) token stocks, 2) seed stocks, 3) distribution stocks, and finally 4) user stocks.  

The fine details of each of these classifications are described in the Freshney text (2005).  

Under no circumstance should the casual user employ token, seed, or distribution stocks, 

as these are validated, and lowest in passage number required to maintain the cell line. 

1.  Acquire a new cell line (e.g., Caco-2 BBe1).  Only an experienced laboratory member 

should thaw and culture these cells as described in the aforementioned sections.  

2.  When this token stock is 80% confluent, use this culture to establish 3-5 additional 

stocks.  To do this subculture the cells as described in the text above in 3-5 different 

sterile culture vessels. 

3.  When these 3-5 stocks are 80% confluent freeze the cell line, thaw one vial, and 

subsequently validate the cell line as described in the Freshney text before creating seed 

stocks.   

4.  To create seed stocks, thaw 1-2 token freeze stocks and generate 10-20 cryogenic 

ampules.  Cryogenically preserve these ampoules. 

5.  Create distribution stocks by thawing seed stocks to generate 20-100 cryogenic 

ampules.  One of these seed ampules must be thawed and subsequently validated before 

user stocks are generated. 

6.  One seed stock ampules is given to each user in the laboratory and it is the 

responsibility of the user to generate additional backups as user stocks.  User stocks 

should be generated at 10-20 ampules, and only the user that made these ampules 
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should culture these cells.  User ampules are discarded according to institutional 

biosafety protocols after the user has left the laboratory.  

Cryogenically preserving Caco-2 BBe1 cells. 

There are a number of reasons why cell lines should be cryogenically preserved.  

For starters, after cells have been in culture for 2 months (approximately 10 subcultures) 

there is the potential of genetic drift and clone variation.  Furthermore, transformation, 

dedifferentiation, contamination/cross-contamination, and cost all corroborate the 

utility of maintaining cryopreserved stocks.   

As a basic outline for the procedure described in the text below the investigator 

will grow the cells to late log phase in the desired culture vessel, trypsinize the cells and 

centrifuge, and resuspend the entire cell volume in cryopreservation medium.  The cells 

are then immediately transferred to a cryogenic vial and heat is removed (i.e. the 

temperature is lowered) at 1°C per minute.  The cells are subsequently transferred to 

liquid nitrogen for long-term storage. 

1.  Only generate at maximum 10 late log phase cultures via aseptic technique at a time, 

as manipulating additional culture vessels at the same time is difficult, and will lead to 

errors. 

2.  Cryopreservation medium should be prepared the same day the cells are frozen.  

Cryopreservation medium contains 80% complete culture medium supplemented with 

additional FBS at 10% and DMSO at 10%.  Exercise caution as the addition of DMSO will 

result in an exothermic reaction, which raises the temperature beyond 37°C. This rise in 

temperature will result in reduced viability if the cells are exposed to this increased 

temperature.  DMSO should be cell culture tested, and can be purchased from sources 

such as ATCC, Sigma Aldrich, etc. 
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3.  Label the cryopreservation vials with a solvent-resistant marker and include the 

following information:  The investigators name, the date, the cell line, the passage 

number, and the surface area or type of culture vessel used to grow the cells. 

4.  Wash the cultures with PBS, trypsinize the cells, centrifuge the cells, and aspirate the 

supernatant as detailed in steps 1-8 of protocol 2.1.  Proceed to the next step 

immediately. 

5.  Quickly resuspend the cell pellet(s) in cryopreservation medium, and transfer the 

contents of the centrifuge tube(s) to its own cryogenic ampule (Corning, 2028).  

Completely tighten the threading of the cryogenic ampule.  Proceed to the next step 

immediately. 

6.  Quickly place the cryogenic ampule(s) into a Nalgene® Mr. Frosty unit (Thermo 

Scientific, 5100-0001), gently tighten the lid of the Mr. Frosty unit, and place the entire 

unit into a -70°C freezer. 

7.  After 12 hours the cryogenic ampules are transferred to canes labeled for quick 

identification, and stored in a liquid nitrogen dewer.  After two days, thaw one cryogenic 

ampule and determine cellular viability by the trypan blue exclusion assay. 

Growing Caco-2 BBe1 Epithelia for Morphometric Analysis of Brush Borders, 

and a Protocol for Specimen Preparation for Scanning Electron Microscopy 

The following text provides a protocol to prepare Caco-2 BBe1 epithelia for 

scanning electron microscopy.  In this text the investigators employ a critical point drier 

to convert liquid CO2 to a gaseous state.  It is advised that the critical point drier, in the 

case described below, a Balzer CPD 020, contains a stirring apparatus to promote 

exchange between acetone and liquid CO2.  If the investigator does not have a Balzer 

CPD 020, the optimal chamber pressure, solvent exchanges, and times may need to be 

determined empirically.  It is equally important to grow the epithelium on a suitable 
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substrate.  Non-compliant materials such as glass typically result in epithelia whose 

junctions appear non-continuous.  Further, the extracellular matrix protein rat tail 

collagen I permits rapid cell adherence to the substrate, but other coating substrates 

(poly-D-lysine, fibronectin, etc) should be used with caution as Caco-2 BBe1 may not 

adhere to these proteins.  During this procedure heat is removed from the specimen 

chamber adiabatically and the specimens are slowly infiltrated with liquid CO2.  During 

the drying process the liquid is vented and vaporizes to its gaseous state.  Caution:  This 

amount of CO2 gas can result in asphyxiation if the surrounding area is not properly 

ventilated.  It is advised that the critical point drier has adequate ventilation aided by an 

exhaust system. 

1.   Caco-2 BBe1 cells are seeded at 2.35x105 cells/cm2 on 6.5 mm (0.33 cm2) Corning 

Transwell® inserts (Corning, 3495), and maintained for 17-21 days to promote 

differentiation of the epithelium (M. D. Peterson & Mooseker, 1993).  This cell system 

permits optimal differentiation of the epithelium as both the apical and basal 

compartments are bathed with 300 µL and 1 mL of complete culture medium, 

respectively.  The complete culture medium is replenished every 24-48 hours.  Any 

indication that the pH of the medium has changed results in brush borders that appear 

unhealthy (e.g. limp microvilli, few in numbers, etc.). 

2.  Only after 17-21 days of culture are the epithelia cytologically fixed.  The primary 

fixative of choice is electron microscopy grade glutaraldehyde (Electron Microscopy 

Sciences, 16020) made 2% in 100 mM sodium cacodylate buffer (pH 7.2).  Specimens are 

fixed for 2 hours at room temperature.  Proceed to the next step immediately. 

3.  The specimens are washed 10 times each for 10 minutes in 100 mM sodium 

cacodylate buffer (pH 7.2).  Copious amounts of buffer should be used during each 
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incubation, and the specimens should be agitated gently at room temperature.  Proceed 

to the next step immediately. 

4.  The epithelia are post-fixed in 1% OsO4 in sodium cacodylate buffer (pH 6.4) for 60 

minutes at room temperature.  During this time the specimens are protected from light.  

Proceed to the next step immediately. 

5.  The specimens are washed 10 times each for 10 minutes in Nanopure® water (18.2 

MΩ/cm) at room temperature with gentle agitation.  Proceed to the next step 

immediately. 

6.  The epithelia are dehydrated carefully by passing the specimens through an 

increasing graded ethanol series, and subsequently transitioning the specimens to 

acetone.  It is advisable to use 100% acetone that has been dried with molecular sieves 

for at least 2 days. Proceed to the next step immediately. 

7.  The only method that should be employed for drying specimens is with a critical point 

drier (e.g., Balzer CPD020), as all other methods will impart a number of structural 

artifacts.  Fill the CDP chamber with enough anhydrous acetone to cover the specimens.  

The specimens are contained in a compartmentalized mesh basket, or solvent resistant 

container that permits infiltration of liquid CO2 in exchange for acetone.  Seal the 

chamber.  Proceed to the next step immediately. 

8.  Cool the chamber to 4-6°C by turning on the non-filtered liquid CO2 cylinder to pass 

through the chamber walls.   Proceed to the next step immediately. 

9.  Slowly begin to fill the chamber with filtered liquid CO2.  The investigator will note a 

rise in the chamber pressure.  Rapidly adding liquid CO2 will artifactually fracture 

intracellular junctions as shown elsewhere (Passey et al., 2007), and as a consequence, 

the epithelium will appear disrupted when viewed with a scanning electron microscope.  

Under no circumstance should the pressure exceed 50 bars when changing the liquid 
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CO2 as intercellular junctions will fracture.  Turn on the stirring apparatus to mix the 

acetone and liquid CO2.  Wait 5 minutes for the acetone and the liquid CO2 to mix.   

Proceed to the next step immediately.   

10. Slowly vent the specimen chamber until the volume of the liquid mixture is just 

above the specimens.  Proceed to the next step immediately. 

11.  Slowly fill the chamber with liquid CO2.  Once the chamber is filled, allow 5 minutes 

to mix the liquids.  As indicated in step 9 the chamber pressure should not rapidly 

fluctuate.   Proceed to the next step immediately. 

12.  Repeat step 11 for a total of 9 times.  Proceed to the next step immediately. 

13.  Turn off the cooling and filling liquid CO2 cylinders, the stirring apparatus, and 

change the temperature controller to 45°C.  It takes about 5-7 minutes (Balzer CPD 020) 

for the specimen chamber to approach the critical pressure and temperature of CO2 as 

the temperature rises.  Proceed to the next step immediately. 

14.  After the specimens have transitioned through the critical point of CO2, and the 

temperature is above 42°C, slowly begin to outgas (vent) the gaseous CO2.  This should 

take approximately 5-10 minutes at a rate of 5-10 bars of pressure released per minute.  

Proceed to the next step immediately. 

15.  Mount the specimens on an aluminum stub, and sputter coat the specimens with 

approximately 5 nm of vaporized metal (e.g., Pd/Au).  After the specimens have been 

coated with metal they are stable for years when stored appropriately.  The stubs can be 

housed in a small stub holder, and this entire box is stored desiccated in a vacuum sealed 

chamber. 

Conclusions 

At present there is a paucity of data regarding our understanding of the events 

that mediate disruption of the brush border in vitro.  Several putative targets exist at a 
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mechanistic level, and these clues pave the way to identify a potentially unifying 

mechanism that accounts for the disruption of the brush border after exposure to 

engineered nanomaterials.  Since this nanotoxicity research paradigm is in its infancy it 

behooves investigators to adopt standardized cell models appropriate to the study of NP-

induced brush border disruption.  Indeed, accurate data that can be compared across 

laboratories encourages forward progress in the field. 

How can engineered NPs whose elemental composition is different result in 

morphologically similar changes (disruption) to the brush border?  Such a universal 

event after exposure to NPs suggests that a cellular response, and not necessarily an 

inherent physico-chemical property of the nanomaterial, may account for brush border 

disruption.  It was proposed by Zhang and coworkers (2010) that adsorption of NPs to 

the cell surface resulted in disruption of the brush border.  If this is the case it could be 

predicted that sedimentation of agglomerated NPs onto the cell surface exacerbates 

disruption of the brush border.  However, this hypothesis remains to be examined.  The 

next mechanistic clue is derived from scanning electron microscopy and microarray 

data; both published (Madhavi Kalive et al., 2012) and results shown in Chapter 5 

indicate that iron oxide (α-Fe2O3) nanoparticle exposure results in disruption of the 

brush border in Caco-2 and the b30 clone of BeWo, the latter is a human brush border 

expressing placenta cell model.  Further, at the mRNA level the gene responsible for the 

actin filament capping protein, CapZ is upregulated in both cell systems.  CapZ is a 

component of the plus tips of microvilli whose role is to “cap” the addition end of F-actin 

such that the filament cannot elongate.  Upregulation of CapZ might suggest that the 

protein acts to reabsorb microvilli since additional actin monomers necessary to 

maintain the elongated structure would be unable to nucleate at the plus ends.  Finally, it 

is intriguing to speculate that alterations in the terminal web account for a NP-induced 
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brush border disruption, as microarray data indicates changes to adhering junctions, 

which are known to be intimately connected with the terminal web. 
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Figure 1.  Transmission electron micrographs comparing the morphology of the brush 
border from intestinal cells of mouse and cells of the midgut from Drosophila.  (A)  The 
micrographs were transversely sectioned through the long axis of the polarized 
enterocyte.  Note the robust number of microvilli, each containing an electron-dense 
region at the apical tip of the microvillus.  Furthermore, the individual microvilli are of 
uniform length and diameter despite constant turnover of the proteins within each 
microvillus.  This indicates a high degree of organization and control of this cell 
specialization.  The black arrow points to the center of a single microvillus, while the 
white arrow points to the electron-dense terminal web region that supports the microvilli. 
The scale bar is 500 nm. (B)  In comparison to the mouse model, Drosophila cells of the 
midgut have a rounded curvature since undulating folds (i.e., plicae) do not exists in this 
model.  However, microvilli contain similar structural proteins within the microvillus 
indicating a somewhat universal blueprint across species.  The arrow (white) points to a 
single microvillus.  The scale bar is 500 nm. 
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Figure 2.  Graphical representation of the molecular components of the brush border.  
The diagram was adapted from many of the sources cited in the text, and does not 
account for scale/molar ratios of individual proteins. 
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Figure 3.  The differentiated Caco-2 BBe1 epithelium, shown as scanning electron 
micrographs demonstrates the classic archetypical organization of the brush border.  (A)  
The low magnification view (originally captured at 1,500x) demonstrates a great number 
of cells with well defined brush borders.  In this representative micrograph there are 
apparently 20+ cells within the field of view.  The white arrows outline a single cell which 
was identified by the interdigitation of microvilli near the region of the intercellular 
junctions.  The oval, rectangle and triangle serve as fiduciary markers for the high 
magnification views in B, C, and D. The scale bar is 10 μm. (B-D)  Higher magnification 
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views of 3 randomly chosen regions within the epithelium.  Note the consistency in 
number and structure of the brush borders from these regions.  The scale bar is 1 μm. 

 

 



45 

 

CHAPTER 3 

A FACILE METHOD FOR ISOLATING TITANIUM DIOXIDE NANOPARTICLES FROM 

FOOD AND PHARMACEUTICAL PRODUCTS: APPLICATION TO IN VITRO 

EXPOSURE ASSESSMENT 

Introduction 

 Mixtures of micro- and nano-scale particles are added to consumer goods as 

color and texture modifiers (Weir et al., 2012), to control moisture (Maynard, 2014), or 

even as antimicrobial agents (Z. Zhang et al., 2012).  In addition, human foodstuffs 

contain titanium dioxide (TiO2) because of its brilliant white color, silicon dioxide (SiO2) 

as an anticaking agent, and silver nanoparticles were found on fruit because of the 

antimicrobial properties of silver (Z. Zhang et al., 2012).  Although a number of 

definitions for the word nanoparticle exist including size (Dunphy Guzman et al., 2006; 

Oberdörster et al., 2005), and definitions based on surface area, this study defines 

nanoparticle as particles below 100 nm and microparticles above 100 nm in diameter.   

Recent studies have indicated the pervasiveness of TiO2 in human foodstuffs, and begun 

characterization of TiO2 additives (Tiede et al., 2008; Weir et al., 2012).  These studies 

have shown that TiO2 additives have a variety of micro and nano components as 

determined by passing the material through 0.45 µm filters and depending on the food 

product tested (Weir et al., 2012).  Although the intended use of the additive is benign, 

the fact that portions of these additives are nano-scale raises concern that this subset of 

nanomaterial in the additive could interact with the human gastrointestinal tract in 

fundamentally different ways compared to its micro counterpart.  Moreover, it is known 

that as the lifecycle of the material changes, so do the material properties. 

 Consequently, there has been a paradigm shift in exposure assessment from 

employing material purchased as TiO2 nanoparticles (Fisichella et al., 2012; Koeneman 
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et al., 2010), to employing TiO2 that is designated as food grade (E171 coded), or even 

isolated directly from human foodstuffs (Athinarayanan et al., 2014; R.B. Reed et al., 

2014).  E171 is a European Union designation for pigment grade TiO2 that is added to 

food.  Furthermore, food grade TiO2 (E171 coded) has been approved by the Food and 

Drug Administration with the stipulation that it have a high degree of purity and not 

exceed 1% by weight (Regulations, 2000).  Although studies have revealed non-lethal 

effects of TiO2 additives as micro- and nano-mixtures during in vitro exposure, they have 

ushered in the question: is the micro component of the additive, the nano component, or 

the mixture of micro and nanoparticles responsible for the observed effects?   

 As a means to this end, a number of analytical tools designed to separate particles 

based on defined criteria (e.g., size, charge, etc.) have been developed.  The “gold-

standard” method for particle separation is field flow fractionation (FFF), and this 

technique has been used in order to characterize the presence of nanoparticles in a 

number of human foods (Tiede et al., 2008).  Although FFF is potentially the best way to 

separate micro and nanoparticles, the method requires equipment that can be costly, 

may not be readily available, and requires a degree of technical skill associated with its 

operation.  An alternative method to separate micro from nanoparticles is filtration.  The 

advantage of filters is that they are cost effective, and easy to use.  However, filter pores 

are easily obstructed by particles, and collecting the micro fraction can be technically 

challenging.  For these reasons, this investigation defines a simple alternative 

methodology for separating micro and nanoparticles from mixtures of TiO2 additives 

intended for human ingestion based on sucrose step-gradient coupled with 

centrifugation. 
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Materials and Methods 

Titanium dioxide isolation.  

 Titanium dioxide was isolated from the following consumer products that are 

intended for human ingestion: gum products that had a candy coating, name brand and 

generic pills marketed as headache relief, name brand and generic pills marketed to 

relieve allergies.  TiO2 was isolated according to the protocol described by Weir et al., 

(2012) with slight modification.  For gum candy coatings, 2.5 servings were suspended in 

10 mL of sterile Nanopure™ water with gentle agitation for 10 minutes at room 

temperature.  The liquid containing TiO2 (hereafter referred to as total TiO2) was 

decanted into a separate 15 mL centrifuge tube, and the tube containing the gum base 

was discarded according to institutional guidelines.  Endotoxin/nuclease-free 

microcentrifuge tubes (VWR, 16466-030) were filled with 1.5 mL of total TiO2 isolate and 

centrifuged with a fixed-angle microcentrifuge (Ficher Scientific, Micro 14) at 14,000 g 

for 10 minutes.  This extensive centrifugation was necessary because of the sugars that 

were solubilized from the candy coating.  The translucent supernatant containing sugars, 

but devoid of TiO2 was decanted and the tube was brought to volume with sterile 

Nanopure™ water.  The pellet containing the TiO2 was re-suspended by sonication with 

a microprobe sonicator (Fisher Scientific, Sonic Dismembrator Model 100) for 10 

seconds at maximum output (29 watts RMS).  The liquid containing TiO2 was 

subsequently centrifuged at 14,000 g for 3 minutes to produce a TiO2 pellet.  The wash 

liquid was decanted, and the re-suspension step via sonication was repeated.  This 

washing process, starting with re-suspending the TiO2 pellet in sterile Nanopure™ water, 

and ending with centrifugation at 14,000 g for 3 minutes was repeated for a total of 5 

times.  Immediately following water washes, the TiO2 was washed with non-denatured 

absolute ethanol via the aforementioned wash procedure for a total of 5 times.  After the 
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final pelleting step, the ethanol was decanted and the microcentrifuge tube containing 

pellet was incubated in a drying oven at 68°C overnight to thoroughly dry the sample. 

 Concerning the samples with more complex components (i.e., over-the- counter 

drugs in the form of pills); 5 pills were applied to a 15 mL centrifuge tube containing 10 

mL of sterile Nanopure™ water and incubated for 1 hour with gentle agitation at 25°C.  

The liquid slurry was sonicated for 30 seconds at maximum output.  The slurry was 

centrifuged for 3 minutes at 125 g in order to remove the large debris.  The supernatant 

was collected, and 1.5 mL of supernatant was added to endotoxin/nuclease-free 

microcentrifuge tubes (VWR, 16466-030).  The entire wash and drying procedure 

described in the preceding paragraph for the total TiO2 isolate was conducted.  

Isolation of nano/micro enriched TiO2 fractions. 

 Ultrapure sucrose (Sigma Aldrich, S7903) solutions (50% m/v and a saturated 

solution) were made by overnight incubation at room temperature in sterile Nanopure™ 

water.  Sucrose step gradients were created by applying 250 µL of saturated sucrose to 

the bottom of a microcentrifuge tube (VWR, 16466-030) and carefully layering 500 µL of 

50% sucrose on top.   Immediately before use, dried TiO2 pellets were re-suspended in 

500 µL of sterile Nanopure™ water, and sonication with a microprobe sonicator (Fisher 

Scientific, Sonic Dismembrator Model 100) for 10 seconds at maximum output (29 watts 

RMS).  The 500 µL of TiO2 was carefully layered on top of the 50% sucrose solution, and 

the entire step gradient was centrifuged at 25°C for 3 minutes at 12,000 g.  After this 

centrifugation process, the centrifuge tube had a pellet and a turbid appearance in all 

sucrose and water layer(s). The top 2 layers (water through 50% sucrose) were carefully 

collected (1 mL total) and placed in a new microcentrifuge tube.  This new 

microcentrifuge tube is hereafter referred to as the nano tube. The microcentrifuge tube 

containing the pellet in saturated sucrose was set aside and hereafter referred to as the 
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micro tube.  Additional water (500 µL) was added to the nano tube, the tube was 

vortexed, and subsequently centrifuged at 14,000 g for 10 minutes at 25°C.  The washing 

and drying procedures described in the Titanium dioxide isolation section were 

conducted in order to obtain a nano-enriched fraction for later use. 

 The micro-enriched fraction was procured by gently inverting the micro tube to 

decant the saturated sucrose containing TiO2, and gently washing the sides of the micro 

tube, while remaining inverted, with sterile Nanopure™ water. The pellet was washed 

and dried according to the procedure described in the Titanium dioxide isolation section 

in order to obtain a micro-enriched fraction for later use. 

Transmission electron microscopy and primary particle analysis. 

 Total, micro, and nano isolates were re-suspended in sterile Nanopure™ water at 

a concentration of 10 ppm (i.e., 10 µg/mL) and drop-casted onto formvar-coated slot 

grids (Electron Microscopy Sciences, FF-2010-Cu).  The grids were air dried overnight 

and imaged with a Philips CM-12 TEM fitted with a Gatan 791 sidemount CCD at an 

accelerating voltage of 80 kV.  At least 10 images were collected per sample.  Images 

were analyzed with ImageJ (Rasband, 2008), and primary particle diameters were 

calculated by measuring the x,y diameter from each particle in the field of view.  The x,y 

diameters were averaged for each single particle in order to obtain an average particle 

diameter.  The sample primary particle diameter was determined by averaging 300 to 

750 particle averages. 

Cell culture and scanning electron microscopy of Caco-2BBe1 

epithelia.  

 The human brush border expressing cell line (Caco-2 BBe1; obtained from ATCC 

at passage number 47; CRL-2102) was maintained as described elsewhere (Koeneman et 

al., 2010; R. B. Reed et al., 2014).  Briefly, cells were grown for 19-21 days in order to 
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form a confluent epithelium.  The cell culture medium is DMEM (Cellgro, 10-013-CM) 

supplemented with 10 µg/mL of human transferrin (Invitrogen, 30124SA), 1% 

antibiotics (Cellgro, 30-004-CI), and 10% fetal bovine serum (Atlanta Biological, S-

11150).  Preliminary experiments were conducted in order to determine the minimum 

amount of time required for micro-enriched TiO2 isolate to settle and subsequently 

adhere to the epithelium as determined by scanning electron microscopy.  This time 

point (7 minutes) was used as a baseline for the remainder of the studies.  Epithelia were 

cultured in the inverted position by adding the epithelia growing on a substrate to the 

bottom of a 15 mL centrifuge tube.  Since the epithelium grows only on one side of the 

substrate, the epithelium can be inverted by tilting the centrifuge tube 90° while 

monitoring which side the epithelium is facing.  The centrifuge tube cap was fastened 

half way to permit gas exchange and returned to the cell culture incubator immediately 

after applying medium containing nano or micro TiO2 fractions. 

 Epithelia were washed once with phosphate-buffered saline (Cellgro, 21-030) in 

the inverted position, and cytologically fixed for 1 hour at 25°C.  The primary fixative is 

composed of the following reagents: 2% electron microscopy grade glutaraldehyde 

(Electron Microscopy Sciences, 16020), 1% electron microscopy grade formaldehyde 

(Electron Microscopy Sciences, 15712), 5 mM ethylene glycol tetraacetic acid (Sigma 

Aldrich, E0316), 5 mM MgCl2 (Sigma Aldrich, M2393), 100 mM KCl (Sigma Aldrich, 

P5405), and 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Sigma Aldrich, 

H3784), pH 7.2.  Only after the primary fixation step were the epithelia maintained in 

the upright position.  Immediately following primary fixation, the epithelia were washed 

10 times for 15 minutes each in copious amount of intracellular buffer (ICB).  ICB 

contains 5 mM ethylene glycol tetraacetic acid, 5 mM MgCl2, 100 mM KCl, and 20 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 6.8).  The secondary fixative, 
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which was necessary to preserve the membranes in these biological samples, was 

electron microscopy grade osmium tetroxide (OsO4; Electron Microscopy Sciences, 

19150).  OsO4 was diluted in sterile Nanopure™ water to a final working concentration of 

1%.  The secondary fixative was applied immediately to the epithelia after the final ICB 

wash.  The epithelia were post fixed with 1% OsO4 for 45 minutes at 25°C in a well-

ventilated chemical hood.  Epithelia were washed with copious volumes of sterile 

Nanopure™ water 10 times for 15 minutes each.  Dehydration of the specimens, which is 

necessary to critical point dry the specimens was accomplished with a graded acetone 

series.  The specimens were dried through the CO2 critical point, and sputter coated with 

palladium/gold.  Scanning electron micrographs were collected on a JOEL JSM6300.  

Upright samples were conducted in parallel with no change in the orientation of the 

epithelia as described by Faust and coworkers (Chapter 4).  Neither air drying, nor 

drying with solvents circumvented artifacts associated with surface tension (Appendix, 

Supplemental Figure 1). 

Results 

Isolation and primary particle analysis of TiO2 from food grade (E171), 

chewing gum, and over-the-counter medicine. 

 Due to the fact that a number of consumer goods contain TiO2, and further, their 

particle diameters and physico-chemical parameters remain ill-defined this investigation 

isolated TiO2 from two categories of consumer goods that are intended to be ingested by 

humans.  This preliminary analysis of “total” TiO2 additive was necessary because studies 

have shown mixtures of micro- and nanoparticles in consumer goods intended for 

ingestion (Weir et al., 2012).  First, name-brand chewing gum that contained candy 

coatings was purchased from two independent grocery stores in the Phoenix area.  

Second, two types of over-the-counter medicine were purchased from two independent 
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grocery stores in the Phoenix area.  Both generic and name brand medicine were 

purchased.  The first product claimed to relieve headache and pain, while the second 

medicine claimed to relieve symptoms associated with allergies.  All of the 

aforementioned consumer goods (i.e., gum and over-the-counter medicine) listed TiO2 as 

an ingredient on the packaging label. 

 Immediately following the procedure described in detail in the materials and 

methods and supplement protocol 1, TiO2 was analyzed via TEM in order to determine 

primary particle diameters (Figure 4).  These primary particle diameters isolated from 

raw material are hereafter referred to as “total TiO2.”  As a control, this study analyzed 

one source of TiO2 purchased as food grade (E171 coded).  Food grade TiO2 appeared 

spherical, but contained also a number of particles with amorphous geometries (Figure 4 

A).  Food grade TiO2 had diameters from as small as 38 nm to as large as 239 nm.  The 

average primary particle diameter for food grade (E171) TiO2 was 103 ± 40 nm (mean ± 

SD).  TiO2 isolated from name-brand gum appeared spherical and of amorphous 

geometries (Figure 4 B), and had diameters from 21 nm to 295 nm.  The mean diameter 

after analyzing 493 particles was 122 ± 49 nm (Table 1).  The averageTiO2 isolated from 

name-brand medicine that was intended to treat allergies appeared spherical and 

contained a subset of particles of amorphous geometries (Figure 4 C).  These particles 

were as small as 39 nm and as large as 175 nm.  The average primary particle diameter 

determined from analyzing 344 particles was 94 ± 25 nm (Table 1).  Generic allergy relief 

medicine appeared spherical with a subset of particles of amorphous geometries (Figure 

4 D), and had diameters from 33 nm to 261 nm. The average primary particle diameter 

determined from analyzing 365 particles was 99 ± 40 nm (Table 1).  TEM analysis of 

TiO2 isolated from name-brand medicine that was marketed to relieve headache and 

pain appeared spherical, but contained also a fraction of particles with amorphous 



53 

 

geometries (Figure 4 E). The isolate had particle diameters from 44 nm to 259 nm.  The 

average primary particle diameter was 119 ± 39 nm (from 414 particles; Table 1).  TEM 

analysis of TiO2 isolated from generic medicine marketed to relieve headache and pain 

appeared spherical, but contained also a number of particles with amorphous geometries 

(Figure 4 F).  The particle diameters were as small as 46 nm and as large as 281 nm.  The 

average primary particle diameter was 109 ± 39 nm (Table 1).  Together, these data 

suggest that consumer goods intended for human ingestion contain polydispersed 

primary particle diameters composed of both micro and nano TiO2 components.  This 

mixture of small and large primary particle diameters (i.e., micro and nanoparticles) 

may have different physico-chemical parameters or alternatively might interact with cell 

systems differently. 

Separation of nano- and micro-enriched TiO2 fractions from select 

consumer goods intended for human ingestion. 

 Previous studies have begun characterization of TiO2 in consumer goods (Weir et 

al., 2012), and have further investigated the effects of isolated TiO2 from consumer goods 

(Chapter 4).  However, one central barrier that remains to be decoupled is what, if any, 

differences exist when nano and micro fractions of total TiO2 are separated and 

subsequently employed in downstream analysis.  In order to separate nano and micro 

components of total TiO2 isolated from consumer goods, this study first assessed the 

utility of filters with defined pore sizes.  Preliminary experiments employing 100 nm and 

200 nm pore sizes proved unsuccessful; The pores frequently blocked due to a barricade 

effect as has been noted elsewhere (Tiede et al., 2008).  Moreover, and although it was 

possible to obtain a dilute nano isolation, micro isolation proved unsuccessful as it was 

contaminated with many nanoparticles.  Therefore, this study employed a sucrose step-

gradient in order to fractionate total TiO2 into nano- and micro-enriched components 
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(described in detail in the material and methods).  This was possible because primary 

particle mass is dependent on particle diameter (i.e., size).  Small particles were slowed 

by the difference in density over the short term, whereas larger particles with a greater 

mass were less affected by changes in density over the short term.  

 In order to identify potential differences in particles diameters as a result of the 

aforementioned sucrose step-gradient procedure, primary particles were imaged via 

TEM and diameters were subsequently analyzed (Figure 5).  As a control, this study first 

employed one source of TiO2 purchased as food grade (E171 coded).  The micrograph 

(Figure 5 A) illustrates the geometry and diameters of micro-enriched fraction.  The 

particles appeared to be enriched with large (> 100 nm) particles that appeared similar 

in geometry as total E171 isolated.  More importantly, the primary particle diameter 

determined by analyzing 522 particles shifted to 122 ± 38 nm (Table 2).  The smallest 

particle was 38 nm and the largest was 264 nm in diameter.  The image shown as Figure 

5 B represents the nano-enriched fraction.  The particles appeared much smaller than 

the micro enriched fraction, and analysis of primary particle diameters indicated a shift 

to 77 ± 22 nm (571 particles analyzed; Table 2).  The smallest particle diameter was 24 

nm, whereas the largest particle was 186 nm.  These data suggest that this method may 

be applicable for enrichment of nano and micro TiO2 fractions isolated from consumer 

goods. 

 In order to determine whether this method is applicable to TiO2 isolated from 

consumer goods, this study employed the aforementioned sucrose step-gradient for TiO2 

isolated from gum, and two sources of TiO2 isolated from over-the-counter medicine 

marketed to relieve allergies.  Figure 5 C shows the morphology and diameters of the 

micro-enriched fraction isolated from chewing gum.  The average primary particle 

diameter determined from analyzing 472 particles was 146 ± 48 nm (Table 2).  The 
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smallest diameter was 49 nm, whereas the largest was 345 nm.  Analysis of nano-

enriched fractions via TEM indicated that the particles appeared similar in morphology, 

but diameters were smaller (Figure 2 D).  Furthermore, the average primary particle 

diameter (622 particles analyzed) was 95 ± 28 nm (Table 2).  The smallest particle was 

31 nm and the largest particle was 143 nm.   

 One question that remains unanswered for studies employing total TiO2 isolated 

from products intended for human ingestion (i.e., chewing gum) is whether the effects 

observed after exposure are due to the small diameter nanoparticles or alternatively from 

larger micro particles (Chapter 4).  One way to address this was to employ two different 

orientations with regard to gravity during exposure to the nano and micro-enriched 

fractions of TiO2 isolated from E171.   Then to monitor the time necessary for nano and 

micro-enriched fractions as parallel replicate samples to adhere to the surface of cells 

grown as epithelia in these 2 orientations.  The first orientation is upright whereas the 

second is inverted as described elsewhere (Cho, Zhang, & Xia, 2011).  In the upright 

configuration, and after preparing the samples for SEM, micro-enriched particles were 

found adhered to the surface of the epithelia after 7 minutes of exposure (Figure 6 A).  

The micrographs shows regions decorated with particles (pointed to by white arrows).  

However, exposure to the nano-enriched TiO2 as a parallel replicate resulted in fewer 

particles adhered to the cell surface (Figure 6 B). 

 An alternative epithelial orientation has been employed in order to mitigate the 

effects of sedimentation (Cho et al., 2011).  In order to investigate the contribution of 

TiO2 settling and subsequently adhering to the cell surface, the epithelia were inverted 

and exposed to nano- and micro-enriched fractions as replicate samples for 7 minutes.  

Under these conditions, relatively few particles from the micro-enriched fraction 

adhered to the cell surface (Figure 6 C).  However, when replicate samples were exposed 
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to the nano-enriched fraction, the surface appeared to contain many more adherent 

nanoparticles (pointed to by white arrows; Figure 6 D).  These data suggest that nano 

and micro particles may interact differently with cells over the short term, and further 

validate this method as a suitable separation protocol.  Attachment of TiO2 has been 

shown to be the first step involved in disruption of the intestinal brush border in vitro 

(Koeneman et al., 2010; R. B. Reed et al., 2014), and thus suggest that brush border 

disruption in vitro may be a consequence of the size of the TiO2 employed.   

Discussion 

 The major finding in the present investigation was that it was possible to separate 

micro (>100 nm in diameter) from nanoparticles (<100 nm in diameter) in 

polydispersed sources of TiO2 to produce micro- or nano-enriched fractions.  This was 

first demonstrated for TiO2 purchased as food grade (E171 coded), and subsequently 

confirmed for TiO2 isolated directly from consumer goods intended to be ingested by 

humans (i.e., the candy coating of chewing gum, and over-the-counter medicine).  

Although a number of techniques exist to separate nano and micro components from 

consumer goods and foodstuffs (Kammer, Legros, Hofmann, Larsen, & Loeschner, 2011; 

Singh, Stephan, Westerhoff, Carlander, & Duncan, 2014; Tiede et al., 2008), many of 

these techniques are contingent upon equipment that may not be readily available to the 

investigator.  Therefore, this study utilized equipment and reagents that are readily 

available in most scientific laboratories.  The crux of this method was separation due to 

differences in TiO2 particle sedimentation as particles passed through a sucrose step-

gradient during centrifugation.   

This study chose to use sugar (sucrose) to impede the rate of travel of small 

compared to larger particle during centrifugation because the candy coating of chewing 

gum consists largely of sugar and TiO2.  Since it is known that the physico-chemical 
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parameters of particles change depending on the solutions they are in, it might be 

necessary in future studies to identify “natural” solutions employed for the step-gradient 

based on the product the particles are isolated from.  For example, it is known that TiO2 

is added to milk in order to improve color (Hallagan, Allen, & Borzelleca, 1995).  It is a 

fact that one major component of milk is protein.  Therefore, the investigator might 

establish a density gradient with the protein casein or albumin in order to permit a more 

“natural” separation.  This is further exemplified by the fact that the electric double layer 

of the particles attracts components from its surrounding environment via van der Waals 

forces.  For solutions rich in proteins, as is the case for many in vitro toxicity studies, 

particles become decorated by these proteins to make a corona (Monopoli et al., 2011).  

The corona can subsequently assign biological identity to the particles (Monopoli et al., 

2012), and thus underscore the importance of employing the correct solution for the 

step-gradient for in vitro toxicity studies. 

The physico-chemical differences between micro and nano components of the 

total isolated TiO2 were not the only differences that were shown in this study.  In this 

study we employed identical mass concentration as a dosemetric to illustrate the 

difference in particle adhesion when the cells in the epithelia were exposed to nano- or 

micro-enriched TiO2 in the upright configuration and compared these results to the 

inverted configuration (Figure 6).  This study showed apparently a greater concentration 

of micro-enriched particles decorating the surface of the epithelium in the upright, but 

not the inverted configuration, after as early as 7 minutes of exposure (Figure 6 A C).  

Exactly the opposite trend was observed for epithelia exposed to the nano-enriched TiO2 

(Figure 6 B D).  Previous studies have shown that the density of the material can 

drastically affect the actual concentration the cells are exposed to (Cho et al., 2011).  

Further, recent studies have shed light on a non-lethal, but important effect of exposure 
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to food grade TiO2 or supplements containing a variety of nanoparticles in a human in 

vitro model of the intestinal epithelium (R.B. Reed et al., 2014).  That is, exposure to 

TiO2 purchased as food grade (E171 coded) or isolated from chewing gum resulted in a 

loss of microvilli from the surface of the cells in both the upright and inverted 

configuration and during conditions of microgravity (Chapter 4).  This suggested that the 

loss of microvilli was not absolutely dependent on sedimentation of the material, which 

is in agreement with the present findings.  Collectively, these data suggest that this 

method offers a simple tool that can be used in order to identify changes in physico-

chemical parameters or toxicity assessment from TiO2 particles isolated from consumer 

goods.  
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Figure 4.  Primary particle analysis from a variety of TiO2 isolated from products intended 
for ingestion reveal heterogeneous mixtures of micro and nanoparticles.  (A)  TiO2 
purchased as food grade (E171 coded) has a mixture of particles sizes.  (B)  TiO2 
isolated from gum similarly has a heterogeneous mixture of primary particles.  (C-D)  
TiO2 isolated from name-brand and generic allergy medicine has a variety of primary 
particles in the bulk and nano-scale.  (E-F) TiO2 isolated from name-brand and generic 
headache medicine has a variety of primary particles in the micro- and nano-scale. The 
scale bar in the lower right corner of each micrograph is 100 nm.  All of the images were 
originally captured at 60,000x magnification. 
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Figure 5.  Primary particle analysis via TEM reveals a difference in size between nano- 
and micro-enriched fractions after the sucrose step-gradient centrifugation procedure.  
(A)  Micro-enriched food grade TiO2 purchased as E171 appear large compared to (B) 
the nano-enriched fraction.  (C)  Utilizing the same procedure on TiO2 isolated from gum 
revealed a large, micro-enriched fraction, and (D) a small, nano-enriched fraction.  The 
scale bar in the lower right corner of each micrograph is 100 nm.  All of the images were 
originally captured at 60,000x magnification.  
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Figure 6.  Exposure to nano- or micro-enriched fractions of TiO2 prepared from E171 
results in changes in particle adhesion after exposure to an in vitro cell model of the 
human intestine.  (A)  Epithelia exposed to 1 µg/mL of micro-enriched TiO2 in the upright 
configuration resulted in a large number of particles (white arrows) decorating the 
surface of the epithelium after 7 minutes of exposure.  (B)  However, exposing replicate 
samples to the nano-enriched TiO2 fraction at a concentration of 1 µg/mL for 7 minutes 
in the upright configuration resulted in few particles adhered to the epithelial surface.  (C)  
Inverting the epithelium and subsequently exposing the cells to micro-enriched TiO2 
fraction at 1 µg/mL for 7 minutes resulted in few particles adhered to the epithelial 
surface.  (D)  However, exposing replicate samples in the inverted configuration to nano-
enriched TiO2 fraction at 1 µg/mL for 7 minutes resulted in relatively more particles 
adhered to the epithelial surface. 
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Table 1.  Primary particle analysis of total TiO2 isolated from a number of sources.  The 
table indicates thatTiO2 additives isolated from products intended for ingestion are 
mixtures of micro- and nanoparticles.  
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Table 2.  Primary particle analysis from two sources of TiO2 demonstrates that this 
procedure can produce nano- and micro-enriched fractions.   
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CHAPTER 4 
FOOD GRADE TITANIUM DIOXIDE DISRUPTS INTESTINAL BRUSH BORDER 

MICROVILLI IN VITRO INDEPENDENT OF SEDIMENTATION 

Introduction 

 TiO2 has found use as a color additive in human food products because of its 

brilliant white color, and as a texture modifier in foods, which is used in a wide variety of 

confectionary foods, toothpastes and other ingestible products.  “E” numbers are codes 

for substances that can be used as food additives in the European Union, and similar 

coding exists in other countries; food grade TiO2 is coded as E171.  In the United States, 

the Food and Drug Administration approved the use of TiO2 in 1966 as a human food 

additive with the stipulation that TiO2 is not to exceed 1% by weight (Regulations, 2000).  

While TiO2 has been approved, the study by Weir et al., (2012) showed that 

approximately 38% of TiO2 in one food grade (E171 coded) source had at least one 

external dimension that was < 100 nm, which was consistent with the size distribution 

observed in several food samples containing TiO2, including confectionary products (e.g., 

chewing gum) or toothpastes (Weir et al., 2012).  These data indicate that a subset of 

TiO2 approved as additives in human food products is within the accepted definition of 

nanomaterial (Dunphy Guzman et al., 2006), yet little information on the toxicity of food 

grade TiO2 has been published since these definitions for nanotechnology have been 

established. 

 Although there is clearly a beneficial niche for the use of TiO2 as a food additive, it 

is coming to the attention of investigators that although not immediately damaging to an 

epithelium, TiO2 NPs elicit subtle effects on cells within an epithelium (Koeneman et al., 

2010).  An epithelium has a barrier function that partitions parts of the body and even 

separates the body from the external environment.  The study by Koeneman and 
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coworkers (2010) indicated that exposure to a 70/30 percent mixture of rutile/anatase 

TiO2 NPs result in what appeared to be a dose-dependent disruption of the brush border, 

an anatomical feature that exists on the epithelial surface of absorptive cells of the 

intestine.  These data have been corroborated by a number of brush border expressing 

cell models with another widely employed model NP, α-Fe2O3 (M. Kalive et al., 2012; W. 

Zhang et al., 2010).  Although the entire picture has yet to be painted, the role of many 

molecular components of the brush border composed of individual microvilli have been 

elucidated (Mooseker, 1985).  Briefly, the brush border has been partitioned into two 

regions that make up the apical portion of the enterocyte in the epithelium:  The 

microvilli and terminal web domains.  Within the microvilli domain, the single 

microvillus has 20-30 actin filaments organized as parallel bundles in a hexagonal array 

(Bretscher, 1983a).  Each actin filament is fastened to the other by fimbrin, villin, and 

espin (Bretscher & Weber, 1980a, 1980b; Grimm-Günter et al., 2009).  The entire 

microvillus core is laterally tethered in a helical arrangement to the overlying plasma 

membrane by brush border myosin I (Howe & Mooseker, 1983).  The microvilli are 

rooted in the terminal web which is composed of a number of intermediate filaments and 

structural proteins (Hirokawa et al., 1983; Hirokawa & Heuser, 1981). 

The study by Zhang and colleagues (2010) postulated that adsorption of NPs to 

the cell surface results in disruption of the brush border.  In line with this view, at least 

one criticism of the in vitro culture model is the fact that as NPs agglomerate over time 

sedimentation ensues and effectively increases the concentration of NPs at the bottom of 

the culture dish that the cells would otherwise not be exposed to (Cho et al., 2011).  This 

increase in NP concentration at the apical surface of the cell could result in artifactual 

disruption of the brush border.  Therefore, the current study was conducted in order to 

determine if exposure to food grade TiO2 (labeled as E171 compliant by the distributor) 
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as well as TiO2 isolated from the candy coating of gum (hereafter referred to as gum-

TiO2) resulted in brush border disruption, and if this disruption was a result of 

sedimentation.   In this study it was hypothesized that brush border disruption occurs as 

a result of exposure to food grade TiO2 and that brush border disruption is an event 

independent of sedimentation.  If TiO2 disrupts the brush border, then changes will 

occur as a result of exposure to food grade TiO2 as measured by an alteration in the 

archetypical organization of the brush border as well as a reduction in the total number 

of microvilli.  Furthermore if brush border disruption is independent of sedimentation 

then removing the effects of sedimentation due to gravity should result in disruption of 

the brush border as measured by an alteration in the archetypical organization of the 

brush border as well as a reduction in the total number of microvilli. 

Materials and Methods 

TiO2 isolated from candy coatings, and preparation of culture 

medium containing TiO2.  

E171 is a European Union designation for a white food color additive that is 

known elsewhere by other designations (CI 77891, Pigment White 6). For this research, a 

sample was obtained from a large commercial supplier in China which listed the material 

as complying with E171 requirements (referred to in this study as food grade TiO2). Food 

grade TiO2 was suspended in sterile Nanopure™ water (Barnstead; 18.2 MΩ) at a 

concentration of 1 mg/mL.  TiO2 were also isolated from gum (referred to in this study as 

gum-TiO2) as described by Weir et al., (2012).  Briefly, 3 servings of gum were added to 5 

mL of sterile Nanopure™ water (Barnstead; 18.2 MΩ) and allowed to dissolve for 10 

minutes.  In order to determine the total Ti content in food grade TiO2 and gum-TiO2, 

approximately 0.03g of each was digested in HNO3 and HF (4:1 v/v) using microwave 

digestion according to Standard Method 3030G (APHA et al., 2005).  Element 
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concentrations including Ti, P, Si, and Al were measured using XSERIE-2 ICP-MS 

(Thermo Scientific, USA). The total amount of Ti from this stock concentration was 

determined by ICP-MS before the samples were used in any other experiment.  Before 

the TiO2 was resuspended in cell culture medium, the TiO2 was sonicated with a Fisher 

Scientific model 100 probe sonic dismembrator at the maximum setting of 28 watts 

(RMS) for no less than 2 minutes.  The TiO2 was diluted to the final working 

concentration and sonicated a second time with a Fisher Scientific model 100 probe 

sonic dismembrator at the maximum setting of 28 watts (RMS) for no less than 2 

minutes.  In this study, concentrations are shown as mass/mL.   It should be noted, 

however, that the cell culture device has a growth surface area of 3.5 cm2 and the 

epithelium forms a confluent layer across this growth area.   Consequently, when 1 mL of 

culture medium containing 350 ng TiO2 is placed above this growth area the 

concentration is 350 ng/mL which is equal to 100 ng/cm2  of TiO2 available to the 

epithelia. 

XPS. 

Surface elemental composition and chemical state were analyzed using X-ray 

photoelectron spectroscopy (XPS) performed on an ESCALAB 220i-XL (Vacuum 

Generators, USA) with a monochromatic Al Kα source at hν = 1486 eV, a base pressure = 

7 × 10-10 mbar, and a spot analysis size of 500 µm. Food grade TiO2 was prepared by 

pressing the powder into a disk on clean indium foil.  Gum-TiO2 was prepared by drop 

casting the isolated suspension onto SiO2.  Peak fit was done manually using CasaXPS on 

the basis of the theoretical atomic percentages calculated from the wide scan.  The 

estimated depth of analysis is approximately 2.87 nm as determined from the inelastic 

mean free path of electron scattering for TiO2 (Tanuma, Powell, & Penn, 1994).  The 

adventitious carbon peak was used for calibration.   
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XRD. 

The crystal structure was determined using powder X-ray diffraction (XRD) on a 

D5000 (Siemens, USA) with a CuK source and an aluminum holder.  Each sample was 

scanned from 2θ = 20° to 60° to detect the characteristic TiO2 peaks.  The XRD spectrum 

was used to calculate the lower bound of the crystallites using Scherrer’s Equation 

(Patterson, 1939).  Surface elemental composition and chemical state were analyzed 

using X-ray photoelectron spectroscopy (XPS) performed on a ESCALAB 220i-XL 

(Vacuum Generators, USA) with a monochromatic Al Kα source at h = 1486 eV and a 

base pressure = 7 × 10-10 mbar.  XPS spectra were calibrated using the O 1s peak for TiO2 

at 530.1 eV.  

TEM and primary particle diameter analysis. 

Food grade- and gum-TiO2 samples were diluted to 1 µg/mL in Nanopure™ water 

(Barnstead; 18.2 MΩ) and sonicated with a Fisher Scientific model 100 probe sonic 

dismembrator at the maximum setting of 28 watts (RMS) for no less than 2 minutes.  

Small (10 µL) drops containing the titanium dioxide were placed on Parafilm.  Formvar-

coated copper grids were inverted and immediately placed on top of the drops for 10 

seconds.  The excess liquid was wicked away with Whatman No. 5 filter paper, and the 

grids were placed in a grid holder over night to dry before imaging with a Philips CM-12 

TEM.  Images were captured by randomly focusing on 5 different squares within the 

mesh of 3 different grids.  Each of the micrographs (15 in total) were analyzed with 

ImageJ by measuring the x and y axis of the TiO2 and averaging the diameter from every 

particle within the field of view.  In total 100 particles were averaged, and the data was 

found to be consistent with those results reported elsewhere (Weir et al., 2012). 
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Dynamic Light Scattering. 

 Samples were prepared for phase analysis light scattering (ZetaPALS, 

Brookhaven Instruments Corporation, U.S.) to determine the hydrolyzed diameters of 

particles by application of 10 mg/L TiO2 samples in Nanopure™ water and bath 

sonicating for 30 minutes.  The aforementioned protocol was employed also to analyze 

particles in the presence of cell culture medium containing serum.  Preliminary 

experiments indicated that there was no significant change in hydrodynamic diameter 

for either of the sonication methods employed in the present investigation (i.e., bath 

sonication for 30 min compared to probe sonication for no less than 3 min).   

Zeta Potential Analysis. 

 In order to determine the zeta potential, the electrode was stabilized in 100 mM 

potassium nitrate at room temperature 24 hours prior to measurement.  The samples 

were prepared by adding 0.03 g of food grade TiO2 or gum-TiO2 to 50 mL of 10 mM 

potassium nitrate (Sigma-Aldrich, U.S.) solution, which was mixed for 24 hrs.  After this 

time period, the samples were bath sonicated for 30 min immediately before zeta 

potential measurements. 

Cell culture. 

This study exploits the use of the extensively characterized Caco-2BBe1 human 

derived cell system. When grown appropriately, this cell system exhibits a faithful 

representation of the in vivo structural characteristics (M. Peterson & Mooseker, 1992), 

and mirror differentiation of the brush border at the molecular level (M. D. Peterson & 

Mooseker, 1993).  Furthermore, Caco-2 has been recommended by the International Life 

Sciences Institute Research/Risk Science Institute (Oberdörster et al., 2005).  The 

human, brush border expressing cell line, Caco-2BBe1, was cultured according to the 

protocol established elsewhere (M. Peterson & Mooseker, 1992).  Briefly, Caco-2BBe1 cells 
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were purchased from ATCC (Manassas, VA; CRL-2102) at passage number 47 and 

discarded at passage 67.  The cell culture medium is Dulbecco’s modification of Eagle’s 

medium (DMEM; Cellgro; 10-017-CM) supplemented with 10 µg/mL of human 

transferrin (Invitrogen; 0030124SA), 10,000 I.U./mL penicillin, 10,000 µg/mL 

streptomycin and 25 µg/mL amphotericin (Cellgro; 30-004-CI), as well as 10% fetal 

bovine serum (Biosera; FBS2000).  The cell culture medium was replenished every 48 

hours, and culture vessels containing the cells were housed in a humified incubator 

calibrated to maintain an atmosphere of 5% CO2 at 37°C.  The experiments were 

conducted only after the cells were aseptically maintained as confluent epithelia for 19-21 

days (M. D. Peterson & Mooseker, 1993), where replicate samples had an electrical 

resistance of at least 250 Ω/cm2 and ZO-1 is apically localized. 

Electron microscopy. 

Preparation of Caco-2BBe1 epithelia for electron microscopy was conducted 

according to a detailed protocol presented in Chapter 2.  Briefly, specimens were grown 

for 19-21 days, the experiment conducted, and the specimens were fixed for 1 hour at 

room temperature in 2% glutaraldehyde made in 100 mM sodium cacodylate buffer (pH 

7.2).  The specimens were washed and post-fixed for 1 hour at room temperature in 1% 

OsO4 made in 100 mM sodium cacodylate buffer (pH 7.2).  The specimens were 

dehydrated, and either critical point dried and sputter coated, or infiltrated with Spurr’s 

resin.  Images were procured with either an XL-30 ESEM coupled with EDX analytical 

software, or a JOEL JSM-6300 equipped with an IXRF digital imaging system.  TEM 

micrographs were procured with a Phillips CM-12 fitted with a Gatan 791 CCD camera.  

The images shown are representative micrographs from 5 randomly chosen cells of 3 

independent experiments. 
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Procedure for the inversion of specimens to remove the effects of 

sedimentation of TiO2 on the surface of the epithelium. 

The human, brush border expressing cell line, Caco-2BBe1, was cultured according 

to the protocol described the in the Cell culture section.  After the 19-21 days necessary to 

permit differentiation of the epithelia the epithelia were transferred to 15 mL conical 

centrifuge tubes (VWR; 89039-664) containing no culture medium, the side facing the 

epithelia were labeled, and 5 mL of medium was added to the centrifuge tubes while the 

epithelia remained inverted.  The specimens were returned to the cell culture incubator 

with the cap of the 15 mL centrifuge tube tightened half way to permit exchange of gas.  

At the indicated time points the specimens were removed and maintained in the inverted 

position, the cell culture medium was aspirated with the epithelia remaining inverted, 

and the cytological fixative was added while the specimens were inverted.  Only after 1 

hour of fixation were the specimens handled in any other orientation.  

Videomicroscopy. 

Caco-2BBe1 epithelia were cultured on µ-Dish35 mm, high glass bottom Grid-50 dishes 

(Ibidi; 81148) according to the aforementioned cell culture protocol.  Prior to 

examination, medium containing the food grade TiO2 was prepared according to the 

method of Koeneman and coworkers (2010).  Briefly, concentrated, TiO2 stocks (no less 

than 500 mg/L) were thoroughly sonicated with a Fisher Scientific model 100 probe 

sonic dismembrator at the maximum setting of 28 watts (RMS) for no less than 2 

minutes.  This TiO2 suspension was subsequently dosed at a working concentration of 1 

µg/cm2 of surface area (i.e., 3.5 µg/mL), sonicated a second time, and bath applied to the 

epithelia.  Immediately following exposure to this TiO2 -containing medium the cells 

were images with a Nikon Eclipse TE300 inverted microscope equipped with a stage 

warmer and a Hamamatsu Orca CCD camera.  For experiments conducted without cells, 
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the TiO2 were applied at a 1 µg/cm2 (3.5 µg/mL) concentration to a gridded glass bottom 

dish that contained 50 µg/cm2 collagen I.  The TiO2 were visualized by micropipetting 

the appropriate stock TiO2 volume corresponding to 1 µg/cm2 to the center of the field of 

view while imaging live.  The cell culture medium was washed 2 times with Nanopure™ 

water (Barnstead; 18.2 MΩ), a still frame corresponding to the same region was captured, 

and the water was decanted and allowed to air dry overnight.  The following day (12 

hours later) the surrounding region that was imaged live was scored with a diamond-

tipped glass cutter, immobilized on an aluminum stub, and sputter coated with gold.  

The same region that was imaged with the phase contrast microscope live was imaged 

with an FEI XL-30 ESEM equipped with EDX elemental analysis. 

Procedure for culturing Caco-2BBe1 epithelia under conditions of 

microgravity. 

The human, brush border expressing cell line, Caco-2BBe1, was cultured according 

to the protocol described the in the Cell culture section.  The epithelia were cultured 19-

21 days to permit differentiation of the epithelia and subsequently transferred to 

disposable rotary cell culture vessels (Synthecon; D-410), and microgravity was engaged 

through the use of a microgravity bioreactor (Synthecon; RCCS-4) with the controller set 

to 24.3 RPM.  After microgravity was obtained, as evidenced by “floating” epithelia in the 

center of the disc, the NP-containing medium was perfused into the chamber and 

permitted culture for 24 hours in a cell culture incubator.  The specimens were fixed 

while maintaining microgravity for 1 hour at room temperature prior to removing the 

epithelia from the disc. 

Data analysis. 

In this manuscript an experiment is defined as at least replicate samples for each 

treatment with the respective controls conducted on three different days (i.e. at least 
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technical duplicate with 3 biological replicates).  The number of microvilli and the 

organization of the brush border were analyzed by randomly imaging at least 3 

micrographs from each replicate sample.  Random 1 µm2 squares were generated 

through the use of Powerpoint and the number of microvilli within the 1 µm2 squares 

were counted from at least 3 random squares in a single micrograph.  The three to five 

regions were averaged, and the data from the three experiments were compiled to 

generate an average.  Error was determined with Excel and shown as standard error of 

the means.  Multiple comparisons were accomplished via one-way ANOVA with either 

Dunn’s or Tukey posttests. Data were considered significant if P<0.05.  If untreated 

specimens appeared in poor health, the entire experiment, including those epithelia 

exposed to the TiO2 was culled from analysis. 

Results 

Material characterization. 

Thorough characterization of the two TiO2 samples was conducted to provide 

information on their size, morphology, and chemical composition, for which little 

information exists in open peer-reviewed literature on food grade TiO2.  TEM analysis 

revealed that food grade- and gum-TiO2 are colloidal-scale and have spherical to a 

slightly longer aspect ratio geometry (Figures 7 A and B).  The primary particle diameters 

for food grade- and gum-TiO2 were 122 ± 48 and 141 ± 56 nm in any external dimension, 

respectively.  There were a range of primary particle diameters (longest dimension) from 

51- to 290 nm, and 48.5- to 305 nm for food grade- and gum-TiO2, respectively.  The 

food grade- and gum-TiO2 samples contained 23% and 23% of nano-scale particles upon 

the size distributions with a confidence level of 95%, respectively, based on counting 100 

particles sampled from a total of 10,000 particles.  Separate phase analysis light 

scattering for food grade TiO2 and gum-TiO2 conducted on an ultrapure water solution 
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containing TiO2 at a concentration of 10 mg/L indicated the mean ( standard deviation) 

hydrodynamic diameter was 2209 nm (polydispersity = 0.1300.013) and 25010 

(polydispersity = 0.1650.014), respectively.  In additional, light scanning for food grade 

TiO2and gum-TiO2 was conducted in serum-containing cell culture medium.  When the 

samples were bath sonicated for 30 minutes prior to measurements the hydrodynamic 

diameters were 336  6nm (polydispersity = 0.1640.0058), and 365 ± 5 nm 

(polydispersity = 0.1620.0048) for food grade TiO2 and gum-TiO2, respectively. These 

results suggest that many of the primary TiO2 particles were aggregated together, 

although primary particles < 100 nm were clearly present. 

Figure 8 shows the XRD spectra for food grade- and gum-TiO2.  Food grade- and 

the gum-TiO2 consisted of anatase crystal structure only and not rutile or brookite.  For 

the gum-TiO2, there is a reflection not associated with anatase at 44.6° that is 

presumably from the 200 reflection from the aluminum sample holder (theoretically at 

44.8°).  XRD spectra indicated that the lower bound of the food grade TiO2 and gum-

TiO2 size was 36 and 26 nm, respectively, which is in good agreement with the TEM 

results (i.e., Figure 7). 

Figure 9 shows the XPS spectrum for the O 1s spectral line for (a) food grade- and 

(b) the gum-TiO2. For food grade TiO2, the O 1s (532 eV) was shifted negatively, 

indicating O bonding on the surface.  The large peak (2) was TiO2 (530.1 eV) and the 

smaller peak (1) was presumably phosphate on the basis of the K 2p spectra (i.e., 

Appendix, Supplemental Figure 2) and the wide scan (i.e., Appendix, Supplemental 

Figure 3). For the K 2p spectra, the K 2p3/2 line (294 eV) was shifted negatively to 293 eV, 

which is in agreement with referenced K3PO4 binding energies (Shih, Yung, & Chin, 

1998).  For the wide scan, K is present and if it is assumed that the phosphate was in the 
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form of K3PO4, then there would theoretically be an atomic percentage of K of 9.6%, 

which was in good agreement with the measured K amount of 10.8%.  

For the gum-TiO2, the O 1s was also shifted negatively, indicating bond formation. 

Similar to food grade TiO2, there is a peak at 529.8 (peak 5) for TiO2 and at 530.3 eV 

(peak 4), which was presumably a calcium phosphate compound on the basis of 

reference binding energies (Demri & Muster, 1995) and the wide scan (i.e., Appendix, 

Supplemental Figure 4) that showed the presence of Ca.  Assuming the compound was 

Ca3(PO4)2, the theoretical atomic percentage of Ca would be 1.2%, which was in good 

agreement with the measured value of 1.8% in the wide scan. Peak 1 at 533.4 eV, Peak 2 

at 532.7 eV, and Peak 3 at 531.4 eV are carboxyl (COOH; Weng et al., 1995), phenol (C-O; 

Jouan et al., 1993), and carbonyl groups (C=O; Gardner, Singamsetty, Booth, He, & 

Pittman, 1995), respectively, as confirmed by referenced data and the C 1s spectra 

(Appendix, Supplemental Figure 5). The C 1s spectra has four peaks that correspond to 

(1) carboxyl (289.4 eV; Clark & Thomas, 1978), (2) carbonyl (288.1 eV; Delpeux et al., 

1998), (3) phenol (286.3 eV; Delpeux et al., 1998), and (4) sp2 C-C (284.8 eV; Bachman & 

Vasile, 1989). These bonds and their atomic ratios matched those found in the O 1s 

spectra, thus confirming the identification of the surface contamination remaining on 

the TiO2 gum coating. 

In order to provide information on the surface charge characteristics of the TiO2 

samples, zeta potential analysis (Figure 10) demonstrated that both the food grade TiO2 

and gum-TiO2 samples had a negative surface charge above pH = 4.  This was found to 

be a result of the phosphate and oxygenated functional groups found on the surface of 

the food grade TiO2 and gum-TiO2, respectively.  For the food grade TiO2, the iso-electric 

point (IEP) pH was at approximately 3.3.  The gum TiO2 pHIEP was not observed at the 
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pH range examined (~3–8.5), and at neutral pH, its zeta potential was significantly more 

negative (-46 mV) compared to the food grade TiO2 (-19 mV).   

Food grade TiO2 disrupts the normal arrangement of constituent 

microvilli of the Caco-2BBe1 brush border. 

Under optimal conditions differentiated Caco-2BBe1 epithelia were shown to 

faithfully mimic the in vivo epithelium in the mucosal layer of the human enterocyte 

brush border (M. Peterson & Mooseker, 1992; M. D. Peterson, Bement, & Mooseker, 

1993; M. D. Peterson & Mooseker, 1993) when grown in cell culture.  The organization of 

the brush border microvilli gives the apical surface of these cells an archetypical 

structure (Heintzelman & Mooseker, 1992; Hirokawa et al., 1982; Mooseker, 1985; TM 

Mukherjee & Staehelin, 1971).  Deviations from this archetypical structure can be easily 

detected in specimen exposed to experimental treatments when examined by scanning 

electron microscopy (SEM).  This study exploits the archetypical structure of the brush 

border as an assay that is sensitive to changes in the normal organization of the brush 

border.  Food grade TiO2 could be applied to this cell system to test if the brush border is 

disrupted.   

In order to test if food grade TiO2 disrupt the normal arrangement of microvilli a 

SEM approach was employed.  A representative, untreated Caco-2BBe1 cell in a 

differentiated epithelium is viewed from above the apical cell surface (Figure 11 A).  At 

this magnification (imaged at 10,000x), used in order to permit adequate detail, one cell 

occupied the field of view (Figure 11 A-D are shown at the same magnification). This 

region represents the surface that would face the lumen of the gut and had initial 

interaction with the TiO2.   At the 10,000x magnification the structure observed are the 

tops of the many brush border microvilli.  These microvilli stand straight off the surface 

of the cell, a condition referred to as erect (Figure 11 A; De Beauregard et al., 1995) and 
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had 43±7 microvilli/μm2 (Figure 11 F).   This number of microvilli in untreated 

specimens is so great that no relief (i.e. the plasma membrane between the bases of 

adjacent microvilli) can be seen.  In contrast, gum-TiO2 (white arrows) appeared to 

decorate the surface of the epithelium and resulted in disruption of the brush border 

(Figure 11 B – D).  Indeed, it was found that exposing Caco-2BBe1 epithelia to 350 ng/mL 

(i.e., 100 ng/cm2) of gum-TiO2 (white arrows) for 24 hours produced brush borders 

whose constituent microvilli appeared limp and fewer in number (Figure 11 B).  

Quantification of the number of microvilli shown in Figure 5 B indicated that the brush 

borders contained 25±6 microvilli/μm2 (n=9;  Figure 11 F).  Exposure to 3.5 μg/mL (i.e., 

1 μg/cm2) of gum-TiO2 (white arrows) more clearly illustrated the limpness of the 

microvilli (Figure 11 C).  These microvilli appeared to rest on one another to bolster the 

standing morphology of the microvilli (Figure 11 C).  Quantification of the microvilli after 

exposure to this concentration indicated that the brush borders had 18±4 microvilli/μm2 

(n=9; p < 0.001; Figure 11 F).  Exposure to 3.5 µg/mL (i.e. 10 μg/cm2) of gum-TiO2 

(white arrows) demonstrated brush borders whose apical surface appeared absent of 

microvilli in some regions, and whose apical membrane appeared decorated with 

membrane “blebs” (dotted white circles) of approximately 100 nm in diameter (Figure 11 

D).  Quantification of the number of microvilli shown in Figure 11 D indicated that the 

brush borders contained 12±5 microvilli/μm2 (n=9; p < 0.001; Figure 11 F).   

It is important to rule out the possibility that leeching of ions from the food grade 

or gum materials, or sequestration of serum components by the TiO2, resulted in 

disruption of the brush border.  In order to test this gum-TiO2 at a concentration of 35 

μg/mL (i.e., 10 μg/cm2) was applied to culture medium, the medium was sonicated, and 

the TiO2 were allowed to settle through sedimentation to the bottom of a conical tube.  

Once the TiO2 settled as evidenced by visual inspection the culture medium, the top 1/3 
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of the supernatant was employed as growth medium for epithelia and the following day 

the specimens were cytologically fixed and processed for SEM.  Through the use of single 

particle ICP-MS it was found that approximately 99.99% titanium settled, while 0.01% 

remained in the supernatant, and when this medium was applied to the epithelium 

(shown as the inset in Figure 11 D) SEM analysis indicated that the brush borders 

appeared well ordered and densely packed identical to untreated control microvilli.   Of 

note, the effect of the 350 ng/mL (i.e., 100 ng/cm2) of gum-TiO2 (white arrows) appeared 

to be a localized effect (Figure 11 E).  That is only those areas that were found to be in 

intimate contact with the agglomerated NPs (white arrows) showed regions devoid of 

microvilli (imaged at 4,300x in Figure 11 E).   Regions devoid of the TiO2 (outlined by the 

alternating dashed lines) had an erect, dense array of microvilli on the apical surface of 

the cell whereas regions with gum-TiO2 had limp and fewer microvilli surrounding the 

gum-TiO2.  The regions in Figure 5 pointed to by white arrows are presumed to be 

agglomerated gum-TiO2 as SEM coupled with energy dispersive x-ray spectroscopy 

showed round, electron-dense aggregated material (Figure 12 A) with identifying peaks 

corresponding to titanium and oxygen (Figure 12 B).  Analysis of particle diameters 

indicates that some TiO2 were NPs as the smallest particle measured was 20 nm whereas 

the largest was 291 nm in diameter after sputter coating. 

In light of the fact that the food grade- and gum-TiO2 are of the same crystal 

structure (anatase), and food grade TiO2 (E171 compliant) is a pigment for use in human 

foods, one might predict that exposure to food grade TiO2 results in a similar disruption 

of the Caco-2BBe1 brush border.  In order to test this possibility, a dose-response 

experiment was conducted.  Consistent with the results of Figure 11, Figure 13 indicates 

effacement of the brush border after the 24 hour exposure window.  It was found that 

untreated specimens had microvilli that appeared erect (Figure 13 A) with 43±7 
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microvilli/μm2 (Figure 13 F).  Similar to the results reported in Figure 11, exposure to 350 

ng/mL (i.e., 100 ng/cm2) of food grade TiO2 (white arrows) resulted in a slightly limp 

microvillar morphology (Figure 13 B) and brush borders contained 26±5 microvilli/μm2 

(Figure 13 F).  Exposure to 3.5 µg/mL (i.e., 1 μg/cm2) of E171 TiO2 (white arrows) 

produced brush border with individual microvilli apparently limp (Figure 13 C), and 

quantification of the number of microvilli indicated that there were 21±7 microvilli/μm2 

(Figure 7 F).  After exposure to 35 μg/mL (i.e. 10 μg/cm2) of food grade TiO2 (white 

arrows) microvilli appear tethered at the plus tips and laying perpendicular to the 

plasma membrane. This disrupted phenotype was prevented by permitting 

sedimentation of the food grade TiO2 to occur in vitro and subsequently culturing 

epithelia in the supernatant largely removed of the TiO2 (inset in Figure 13 D) as was 

done early with the gum-TiO2.  Finally, incubating 350 ng/mL (i.e., 100 ng/cm2) of food 

grade TiO2 (white arrows) appeared only to locally affect the normal arrangement of the 

microvilli (originally imaged at 4,300x), as those cells with agglomerated colloids at the 

cell surface showed a mildly limp/clustered morphology (Figure 13 E). 

Agglomerated TiO2 do not remain stationary at the surface of the 

epithelium. 

The presence of agglomerated TiO2 on the cell surface presents the possibility of a 

direct interaction between the agglomerates and the brush border.    In order to 

determine if there is a direct interaction between the agglomerates and the brush border 

a time-lapsed video microscopy approach was employed. This was possible because the 

agglomerated colloids were within the limit of resolution of light microscopy , but a large 

subset of the material maintained at least one or more external dimension < 100 nm in 

diameter as a characteristic of a NP (Dunphy Guzman et al., 2006).  When viewed with 

phase-contrast microscopy untreated specimens showed a typical honeycomb 
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arrangement of cells within the epithelium (Figure 14 A).  Upon careful inspection of 

those epithelia exposed to 3.5 µg/mL (i.e., 1 μg/cm2) food grade TiO2 there appeared to 

be phase-dense, granular material at the cell surface.  More importantly, Figure 14 B 

showed agglomerates (white arrows) decorated the apical surface of the epithelium and 

these agglomerates apparently moved position with respect to time (Figure 14 B); The 

black rectangle in Figure 14 B surrounds one such agglomerate collected as 4 still frames 

every 10 seconds.  The white arrow head points to the TiO2 agglomerate midpoint, and a 

white line was inscribed from the midpoint of the arrowhead to the fixed end of the 

micrograph.  Under these conditions the length of the fixed end of the micrograph to the 

midpoint of the arrowhead changed (shown in arbitrary units *; the scale bar is 20 µ in A 

– B) indicating movement of the putative TiO2 agglomerates.    

In order to assess if these phase-dense, granular material might be the TiO2 

agglomerates the TiO2 was applied to a glass bottom dish at 3.5 µg/mL (i.e., 1 μg/cm2) in 

the presence of cell culture medium, but devoid of cells.  This positive control for the 

agglomerated TiO2 demonstrated phase-dense, granular material moving at the bottom 

of the culture dish.  The white oval in Figure 14 C showed that the position of the 

agglomerated TiO2 changed with time.  Furthermore, and similar to the result described 

in Figure 14 B, the measuring device indicated that the length of the inscribed white line 

changed over time (Figure 14 C; shown in arbitrary units *; the scale bar in the still 

frames is 8 µm).  The same region shown in Figure 14 C was washed to remove any 

unbound TiO2 and a correlated light and SEM approach was employed in order to show 

the material in high magnification, as well as to conduct elemental analysis (Figure 14 D).  

From left to right, the first micrograph indicated that some TiO2 adhered to the collagen 

after washing the dish 3 times with deionized water.  The white arrow in each image 

points to the top portion of the “L” that was employed as a feducial marker.  The second 
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image showed that the specimen remained largely unchanged after processing the slide 

for SEM.  The third image is a higher magnification of the top portion of the “L” (white 

arrow).  The fourth image showed a high magnification view of the top of the “L” etched 

in the glass.  The white dashed box was the region used to determine elemental 

composition (data not shown).  It was found that this region contained peaks 

corresponding to titanium and oxygen as expected for TiO2.   What follows from these 

results is that after sedimentation the agglomerated TiO2 moved, potentially through 

Brownian motion (Cho et al., 2011).  Coupled the effects of sedimentation and movement 

might depress the microvilli and permit adsorption/effacement of the brush border. 

Disruption of the brush border is independent of sedimentation due 

to gravity. 

The clue that agglomerated TiO2 oscillated on the surface of the epithelium and 

that food grade TiO2 result in disruption of the brush border suggested that 

sedimentation due to gravity and consequently the mass of the agglomerated TiO2 may 

account for brush border disruption.  In order to test this prediction two alternative 

approaches to remove the effects of gravity and consequently the mass of the 

nanomaterial were employed; first by inverting the configuration of the epithelia during 

exposure to TiO2 illustrated in the cartoon, and second by culturing the epithelia in a 

microgravity bioreactor (Figure 15 A-B).  During inverted culture of untreated Caco-2BBe1 

epithelia the morphology and density of the microvilli was not found to be different than 

untreated specimens in the upright configuration (Figure 16 A). However, exposure to 

350 ng/mL (i.e., 100 ng/cm2) of food grade TiO2 (white arrows) while the epithelium was 

in the inverted configuration appeared to disrupt both the erect morphology of the 

microvilli and the total number of microvilli;  SEM analysis indicated that the microvilli 

were limp (Figure 16 B) and quantification of the number of microvilli indicated that 
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there was a significant reduction to a value of 23±6 microvilli/μm2.  Furthermore, the 

brush border effacement was confirmed during inverted exposure to food grade TiO2 at a 

concentration of 350 ng/mL (i.e., 100 ng/cm2; Figure 16 C, D).  That is, the microvilli 

appeared limp in regions decorated with agglomerated TiO2 (white arrows), and the 

number of the microvilli was significantly reduced to 27±8 microvilli/μm2.  The black 

arrows point to TiO2 settled at the inverted bottom of the centrifuge tube (Figure 15 B).  

No statistical difference in the number of microvilli was found after exposure to neither 

gum- TiO2 nor food grade TiO2 at any concentration or epithelial orientation.  These data 

were confirmed employing the microgravity bioreactor (Figure 15 C).  The white arrow in 

Figure 15 C points to the cell monolayer in microgravity at the center of the culture disc 

and this is the proper location for the cells to be exposed to microgravity (Schwarz and 

Wolf, 1991). 

Food grade TiO2 is internalized by cells of the Caco2BBe1 human 

intestinal model. 

Several lines of evidence indicate that internalization of NPs could play a role in 

actin remodeling at the apical surface of the cell (Madhavi Kalive et al., 2012; Koeneman 

et al., 2010; W. Zhang et al., 2010).  Remodeling of the actin cytoskeleton at the apical 

surface (i.e. the brush border) could result in disruption of the brush border, since 

microvilli would not exist if remodeling occurred.  In order to test if food grade TiO2 was 

internalized by the Caco-2BBe1 epithelia, a TEM approach was employed.  Under optimal 

conditions the brush border of differentiated Caco-2BBe1 epithelia demonstrated polarity 

with numerous brush border microvilli at the apical surface as an untreated control 

(Figure 17 A).  After a 24 hour treatment with either 350 ng/mL (i.e., 100 ng/cm2) of 

gum-TiO2 or 350 ng/mL food grade TiO2 (black arrows) two populations of nanomaterial 

existed (Figure 17 B - D).  There was a subset of agglomerated TiO2 enclosed by electron 
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dense vesicles as internalized material, and another fraction remained in an electron-

dense granular material “tangled” in the brush border at the cellular apex (Figure 17 B - 

D).  Analysis of the individual particle diameters within each of the micrographs 

indicated a range of sizes from as small as 58 nm to as large as 286 nm, indicating that a 

subset of the internalized particles were NPs. 

Discussion 

In the present investigation, it was found that food grade TiO2 disrupted the 

brush border after exposure to an in vitro model of the human intestine.  A significant 

fraction of this food grade TiO2 had dimensions of primary particles < 100 nm in its 

longest-axis length.   Specifically we addressed the hypothesis that exposure to food 

grade TiO2 results in brush border disruption and disruption due to TiO2 is an event 

independent of sedimentation in vitro.  The study by Cho et al., (2011) indicated that 

large and/or dense metal NPs have the potential to rest on top of the cells at the bottom 

of the culture dish, which could be due to the effects of NP agglomeration and 

subsequently sedimentation.  This settling out of solution after agglomeration could 

increase the concentration of NPs that the epithelium would otherwise not be exposed to.  

In the present investigation it was found that TiO2 purchased as food grade (E171 coded) 

as well as TiO2 isolated from the candy coating of gum were of similar physico-chemical 

characteristics.  These particles exposed to the epithelia at the lowest concentration of 

350 ng/mL (i.e., 100 ng/cm2) that elicited a cellular response when grown upright, also 

resulted in brush border disruption after removing the effects of TiO2 settling due to 

sedimentation.  This effect was first demonstrated when the substrate with the 

epithelium was inverted and exposed to TiO2 at a concentration of 350 ng/mL.  Under 

these conditions there was no statistical difference between those exposed to TiO2 in 

neither the upright nor the inverted configurations.  This result was confirmed by an 
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independent approach where epithelia were exposed to TiO2 under conditions of 

microgravity, indicating that sedimentation of agglomerated TiO2 does not account for 

disruption of the brush border.  Furthermore, results from control experiments indicate 

that it is unlikely that leeching of ions, or adsorption of serum components from/to TiO2 

resulted in brush border disruption as exposure to cell culture medium removed of the 

TiO2 resulted in brush borders that appeared healthy and morphologically similar to 

unexposed (control) brush borders.   

Studies have shown that exposure to α-Fe2O3 NPs at a concentration of 100 

µg/mL elicited an upregulation of the gene (CapZ) that encoded the actin capping 

protein CapZ in the Caco-2 cell model (Madhavi Kalive et al., 2012) and in a brush 

border expressing model of the human placenta Chapter 5.  As indicated in the 

Introduction, it is well known that elongation of filamentous actin (F-actin) coupled with 

the addition of actin bundling proteins to the core fine filaments permits the normal 

morphology of the microvillus.   Studies have also shown that polymerization of actin 

occurs at the most distal point of the microvillus tip in a region referred to as plus tips 

(Begg et al., 1978; Hirokawa & Heuser, 1981; Ishikawa et al., 1969; Tilney & Mooseker, 

1971).  Further, the addition of actin monomers to F-actin is known to be a dynamic and 

continuous process (Stidwill et al., 1984).  In the event that the actin capping protein, 

CapZ is translated from upregulated messenger RNA, CapZ could inhibit F-actin 

polymerization at the plus tips.  This hypothesis is corroborated by the constant turnover 

of the structural proteins, and addition of monomers at the plus tips;  Should CapZ 

protein cap F-actin plus tips there would be no regulated addition of monomers 

necessary to maintain the microvilli length.   

In vitro analysis necessitates the use of a physiological milieu containing serum 

proteins.  Commonly, investigators use serum at a 10% concentration in a liquid medium 
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formulated with the necessary salts, vitamins, minerals, etc., as a surrogate for a 

chemically defined culture medium in order to propagate cells in a culture dish.  When 

materials such as metal nanoparticles are applied to this medium, the proteins from the 

medium adsorb to the material surface.  Since some nanoparticles have a large surface-

area-to-volume ratio and consequently high surface free-energy a large number of 

proteins have been shown to decorate the material surface based on material surface 

chemistry (Lundqvist et al., 2008).  These decorated proteins bind with different 

affinities and are referred to as the “hard” and “soft” coronas (Milani, Baldelli Bombelli, 

Pitek, Dawson,   R dler, 2012).  Studies employing non-functionalized (i.e., pristine) 

silica nanoparticles clearly showed the effects of the NP corona (Lesniak et al., 2012).  In 

the study by Lesniak and coworkers (2012) pristine silica nanoparticles (50 nm in 

diameter) were exposed to A549 lung epithelia in serum free conditions for 1 hour and 

were found decorated with a variety of proteins after recovery of the nanomaterial from 

the cells.  Of note, the proteins spectrin and α-actinin had high spectral counts during 

mass spectrometry analysis, indicating a large number of these proteins were part of the 

NP corona (Lesniak et al., 2012).  Although purely speculative, one could hypothesize 

that a similar process may result in brush border disruption as was shown to be 

independent of sedimentation in the present investigation.  Both spectrin and α-actinin 

are necessary for the structural integrity of the terminal web and inter-microvillar 

rootlets.  If spectrin and α-actinin adsorbed to the NP corona with a higher affinity than 

serum components and/or the proteins that directly bind spectrin and α-actinin in the 

terminal web it could be predicted that particles, such as the TiO2 employed in the 

present investigation, sequester these structural components.  Sequestration of 

structural proteins necessary to maintain the erect morphology of microvilli could 

transiently disrupt the brush border since, as indicated in the preceding paragraph, 
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many of the proteins in the microvilli are constantly turned over, and retrograde actin 

flux coupled with monomer addition at the plus tips maintains the length of microvilli in 

a highly controlled manner.  Therefore, at present the possibility that the biological 

corona is in part responsible for brush border disruption cannot be excluded from the 

putative list of causal agents. 

 To date a number of studies using TiO2 NPs have been conducted in order to 

determine whole organism (in vivo) toxicity as a result of exposure to TiO2 and not the 

“subtle” effect of brush border disruption as a consequence of exposure to TiO2 from 

human food products as was found in the present investigation.  Studies conducted in 

the mouse model indicate a wide range of effects after intragastric administration of 

anatase TiO2 NPs (Duan et al., 2010).  The authors, employing concentrations of 0, 62.5, 

125 and 250 mg/kg body weight every other day, found significant loss in body weight at 

concentrations of 125, and 250 mg/kg TiO2 NPs exposure (Duan et al., 2010).  One 

possible explanation for the significant loss of body weight between control groups and 

those exposed to 125, and 250 mg/kg body weight of anatase TiO2 NPs is a disruption 

manifested as a retraction of the brush border.   If brush borders were disrupted in this 

system, there would be a net loss of surface area by which food stuffs could be absorbed.  

The decrease in surface area of the small intestine could result in malnutrition and 

decreased body weight.  However, when mice were dosed once by oral galvage according 

to the OECD protocol, acute toxicity was observed and resulted in an increase in body 

weight (J. Wang et al., 2007).  Further, studies employing the rat model indicate no 

change in body weight.  In the study (Warheit et al., 2007), the authors applied 175, 550, 

and 1750 mg/kg of ultrafine mixtures of TiO2 NPs (79% rutile 21% anatase) once  to a 

single fasted female (n=1) and investigated the effects 14 days after dosing according to 

the OECD protocol (Oecd, 1994).  Of note the authors dosed 3 rats as a single experiment 
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at concentrations of 5 g/kg body weight with the same material and found no change in 

body weight after 14 days (Warheit et al., 2007).  However, many of the in vivo studies 

have not directly addressed the “subtle,” non-lethal phenomenon of brush border 

disruption.  Therefore, at present there is evidence for and against in vivo brush border 

disruption, which appear to be dose- and species dependent. 

There are several in vivo studies indicating that TiO2 can translocate to the liver, 

kidney, and brain in rodents (Duan et al., 2010; Fröhlich & Roblegg, 2012; Hu et al., 

2010; Powell, Faria, Thomas-McKay, & Pele, 2010; J. Wang et al., 2007).  This fact 

implies that TiO2 was able to pass several of the physiological barriers that could 

otherwise sequester the material from direct interaction with the epithelium.  Perhaps 

the greatest physiological barrier that exists in mammals including rodents, but not the 

in vitro cell model employed in the present investigation, is mucus.  Mucus is secreted by 

Goblet cells that are interspersed within the in vivo mucosal layer.  Of their many 

functions, Goblet cells largely serve to lubricate and “protect” the enterocytes/brush 

borders from abrasion.  Furthermore, it is widely accepted that the entire mucosal layer 

is turned over every 4-5 days in mammals including rodents (van der Flier & Clevers, 

2009).  Therefore, if brush border disruption occurred in these systems, evidence for this 

event would be found shortly after administration of the TiO2 and is liable to present 

itself as a retraction/shortening of the microvilli.  Disruption of the brush border in vivo 

could appear as a retraction for a number of reasons;  In an attempt to investigate 

proteins necessary to maintain the archetypical structure of the microvillus, investigators 

have developed several knockout models for a number of structurally important brush 

border proteins in rodents (Ferrary et al., 1999; Grimm-Günter et al., 2009).  In spite of 

triple knockdown models, microvilli still appeared on the apical cell surface (Revenu et 

al., 2012).  These data potentially indicate that there is functional redundancy within the 
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in vivo system in rodents to maintain the erect microvilli morphology that may not exist 

in the Caco-2BBe1 human cell model since this cell system appears amenable to 

experimental manipulations that result in changes in the brush border (De Beauregard et 

al., 1995; M. D. Peterson & Mooseker, 1993). 

 These data indicate that food grade TiO2 apparently elicits a bona fide biological 

response and not simply a physical artifact as a consequence of in vitro exposure.  

Estimates based on in vitro exposure suggest that approximately 42% of microvilli are 

lost after exposure to food grade TiO2 at the lowest concentration of 350 ng/mL (i.e., 100 

ng/cm2), together these data indicate a need to:  1) identify the aforementioned putative 

effects of food grade TiO2 with the correct in vivo models that capture cells in their 

complex social context; 2) identify which physico-chemical parameters influence brush 

border disruption as the food grade TiO2 employed in this study were both anatase, and; 

3) identify biological mechanisms by which TiO2 disrupt the brush border since the loss 

of microvilli results in a decrease in the total surface area of the gut. 
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Figure 7.  Transmission electron micrographs of food grade TiO2 (A; identified as E171 
compliant) and, (B) gum-TiO2.  The scale bar in the lower left corner of the micrographs 
is 200 nm. 
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Figure 8.  XRD specta for food grade TiO2 (solid line) and gum-TiO2 (dashed line) 
samples, plus standard reflections for anatase (bottom). 

 

 

 

 

 

 

 

 

 



91 

 

 

Figure 9. XPS O 1s spectra of (A) food grade and (B) gum-TiO2. The inset table in (B) 
shows the theoretical atomic concentration taken from the XPS wide-scan (i.e., 
Supplemental Figure 3) and calculated with the assumption of Ca3(PO4)2 presence, and 
the fitted atomic concentration that is based on the O 1s XPS fittings shown in this figure 
(i.e., peaks 1, 2, 3, 4, and 5).  
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Figure 10. Zeta potential analysis for food grade TiO2 and gum-TiO2.  TiO2 samples were 
measured with respect to pH.  Both food grade TiO2 and gum-TiO2 have negative zeta 
potentials.  Note that the zeta potential of food grade TiO2 is less negative and 
consequently agglomerates faster in solution compared to the gum-TiO2 samples 
employed in this investigation. 
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Figure 11. Exposure to food grade TiO2 isolated from name-brand gum resulted in 
disruption of the brush border as evidenced by SEM.  (A)  Untreated, control specimens 
appeared well-organized and densely-packed with many brush border microvilli.  (B)  
Exposure to 350 ng/mL gum-TiO2 for 24 hours reduced the number of standing microvilli.  
The white arrows point to the TiO2.  (C)  Exposure to 3.5 µg/mL gum-TiO2 for 24 hours 
apparently caused the microvilli to go limp.  (D)  Exposure to 35 µg/mL gum-TiO2 for 24 
hours resulted in brush border microvilli that appeared retracted, and contained almost 
no erect microvilli.  The inset in D is a control specimen, whereby the TiO2 was applied 
to complete culture medium at a concentration of 35 µg/mL, the TiO2 was allowed to 
settle, and the top fraction was used to feed the epithelia.  This control specimen 
appeared identical to the untreated control. (E)  The low magnification micrograph 
showed that the effect of exposure to 350 ng/mL gum-TiO2 for 24 hours was localized to 
those cells that were in intimate contact with the TiO2.  Some regions within the 
micrograph showed signs of microvilli that may have been depressed by TiO2.  The 
alternating dashed line surrounds cells that had no material on the cell surface and 
consequently a developed brush border.  The white arrows point to gum-TiO2. (F)  The 
histogram shows the number of microvilli after the dose response experiment.  The data 
is shown as mean ± SEM, and significance (P < 0.05) was determined based on a one-
way ANOVA followed by Dunn’s posttest.  Characters represent significance where 
redundant characters indicate non-statistical differences. 
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Figure 12.  The material on the surface of the epithelia was TiO2 as determined by EDX 
analysis.  (A)  The micrograph shows a high magnification view of the material that 
decorated the epithelia.  The morphology of the material appears similar to the TEM 
micrographs shown in Figure 7.  The red box is the region of interest for EDX analysis.  
(B) EDX analysis indicated that the material was composed of titanium and oxygen.  The 
osmium peak was apparently due to the secondary fixative (OsO4) used for the 
underlying biological specimens (i.e., the brush border), and the Pd/Au was the material 
used to sputter coat the specimens. 
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Figure 13.  SEM analysis indicates that food grade (E171 compliant) TiO2 disrupted the 
brush border microvilli.  (A)  Untreated, control specimens retained a well-developed 
brush border after sustained culture.  Note that at least 2 edges of individual cells can be 
seen as identified by the slight interdigitation of microvilli between adjacent cells.  (B)  
Exposure to 350 ng/mL food grade TiO2 for 24 hours reduced the number of standing 
microvilli.  The white arrows point to the TiO2.  (C) Exposure to 3.5 µg/mL food grade 
TiO2 for 24 hours apparently caused the microvilli to go limp.  The white arrows point to 
the TiO2.  (D) Exposure to 35 µg/mL food grade TiO2 for 24 hours resulted in brush 
border microvilli that appeared limp/disorganized, and the plasma membrane of the cell 
was easily seen indicating a significant loss of microvilli.  The arrows point to the TiO2.  
The inset in D is a control specimen, whereby the TiO2 was applied to complete culture 
medium at a concentration of 35 µg/mL, the TiO2 was allowed to settle, and the top 
fraction was used to feed the epithelia.  This control specimen appeared identical to the 
untreated control.  (E)  The low magnification micrograph showed that the effect of 
exposure to 350 ng/mL food grade TiO2 for 24 hours was localized to those cells that 
were in intimate contact with the TiO2.  The white arrows point to the TiO2.  (F) The 
histogram shows the number of microvilli after the food grade TiO2 dose response 
experiment.  The data is shown as mean ± SEM. Significance (P < 0.05) was determined 
by a one-way ANOVA followed by Tukey posttest. Characters represent significance 
where redundant characters indicate non-statistical differences. 
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Figure 14.  Live cell imaging indicates that agglomerated TiO2 settles and moves with 
respect to time.  (A)  Untreated, control specimens show the typical honeycomb 
arrangement of phase-light junctions between cells.  No granular material is evident in 
the complete culture medium, or at the cell surface.  (B)  Application of 3.5 µg/mL food 
grade TiO2 resulted in granular material, pointed to by white arrows that appeared to 
oscillate on the surface of the epithelia.  The white circle shows one such event; (C)  The 
center of the putative TiO2 agglomerate changed position over time indicate by a change 
in arbitrary units from a fixed point at the edge of the micrograph.    Applying food grade 
TiO2 to a gridded Ibidi dish in the absence of cells indicated that the granular material 
shown in B was agglomerated TiO2.  (D)  The data shown in C were confirmed to be 
TiO2 through the use of SEM coupled with EDX analysis.  From left to right, the top of 
the “L” (white arrow) was employed as a feducial marker.  The first image corresponds to 
the TiO2 that adhered to the collagen after washing with deionized water to remove salts.  
The second image is the same “L,” but imaged with a SEM.  The third image is a higher 
magnification of the second.  The fourth image is further magnified and shows 
agglomerated TiO2.  The white arrow in each micrograph of C and D points to the top 
portion of the “L.”  The white dashed box is the region of interested employed for EDX 
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analysis.  EDX indicated that these regions contained peaks corresponding to titanium 
and oxygen. 
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Figure 15.   The cartoon and images illustrate the experimental design to remove the 
effects of sedimentation.  (A)  During exposure to TiO2 in the upright condition could 
permit sedimentation of the TiO2.  However, an alternative scenario exists whereby the 
epithelia are inverted and the TiO2 can no longer settle at the cell surface.  (B)  After 
culturing epithelia in the inverted position a thin, white line appeared at the bottom of the 
tube that housed the specimens.  The arrows point to the TiO2 that settled.  (C)  The 
microgravity bioreactor permitted conditions of microgravity thereby eliminating settling 
of the TiO2.  The white arrow points to an epithelium whose collagen-coated, PTFE 
membrane was excised from the plastic housing.  The central position of the substrate 
containing the epithelium indicates that it is in a state of microgravity. 
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Figure 16. Inverting the specimens to remove the effects of TiO2 settling indicate that 
sedimentation does not account for brush border disruption.  (A)  Untreated specimens, 
when grown upside-down retain a well developed, and densely packed brush border.  
(B)  Exposing the specimens to a concentration of 350 ng/mL gum-TiO2 while inverted 
resulted in disruption similar to that found during right side up culture.  The white arrows 
point to gum-TiO2.  (C)  Exposing the specimens to a concentration of 350 ng/mL food 
grade TiO2 while inverted resulted in disruption similar to that found during upright 
culture.  The white arrows point to gum-TiO2.  (D)  The histogram indicates that there is a 
significant reduction in the number of microvilli between untreated, and TiO2 treated 
specimens.  No statistical difference was observed between inverted and upright 
exposure to TiO2.  Characters represent significance where redundant characters 
indicate non-statistical differences. 
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Figure 17. TEM analysis indicates that the TiO2 was internalized as early as 1 day after 
exposure to 350 ng/mL of TiO2.  (A)  Untreated, control specimens showed apical 
differentiations (i.e., brush borders), an electron-dense terminal web region, and an 
organelle-free zone.  The microvilli appear numerous and well-ordered.  The black and 
white arrows point to the plasma membrane of the cell.  (B)  Exposure to 350 ng/mL 
gum-TiO2 after 1 day resulted in internalization of the TiO2, and limp microvilli.  The black 
arrow points to the electron-dense TiO2. (C)  Exposure to 350 ng/mL food grade TiO2 
after 1 day resulted in a subset of TiO2 found enmeshed within an amorphous network at 
the tops of some cells.  The microvilli were disorganized.  However, tight- and adherens 
junctions were seen (pointed to by the white arrows).  (D)  Exposure to 350 ng/mL food 
grade TiO2 after 1 day also showed that the TiO2 was internalized.  The black arrow 
points to the TiO2. 
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CHAPTER 5 
ALPHA-FE2O3 ELICITS DIAMETER-DEPENDENT EFFECTS DURING EXPOSURE 

TO AN IN VITRO MODEL OF THE HUMAN PLACENTA 

Introduction 

Ferric oxide nanoparticles (NPs) stand at the cornerstone of molecular imaging 

(Amstad, Textor, & Reimhult, 2011; Kievit & Zhang, 2011) water remediation (Guo, 

Stüben, & Berner, 2007; Westerhoff, Zhang, Crittenden, & Chen, 2008), and industry 

(Wu, Yin, Zhu, OuYang, & Xie, 2006; Zhou, Kotru, & Pandey, 2002) due to the unique 

physico-chemical properties on the nanoscale (10-9 m) compared to their bulk forms.  In 

this work NP is defined on the basis of material diameter.  Iron oxide NPs are commonly 

synthesized as crystals of α-Fe2O3, γ-Fe2O3, or Fe3O4 depending on their intended use.  

Furthermore, synthesis of small (e.g., <20nm in diameter) iron oxide NPs such as γ-

Fe2O3 result in production of superparamagnetic NPs, whereas those diameters 

synthesized >20nm are antiferromagnetic (Ajay Kumar Gupta & Gupta, 2005; A. K. 

Gupta, Naregalkar, Vaidya, & Gupta, 2007; Kievit & Zhang, 2011; Wahajuddin, 2012).  

This transition in diameter concomitant to a change in magnetism is underscored by the 

fact that these small diameters can be employed as a contrast agent during magnetic 

resonance imaging.  In water systems, α-Fe2O3 NPs serve as sorbents for groundwater 

remediation (Blowes, Ptacek, & Jambor, 1997).  Furthermore, in these water systems α-

Fe2O3 NPs were shown to be stable (He, Wan, & Tokunaga, 2008; W. Zhang, Crittenden, 

Li, & Chen, 2012; Y. Zhang, Chen, Westerhoff, Hristovski, & Crittenden, 2008).  This 

investigation employed a model iron oxide NP, α-Fe2O3, whose physico-chemical 

parameters are well defined in the literature (He et al., 2008), and whose primary 

particle diameter can be controlled during synthesis (W. Zhang, Hughes, & Chen, 2012; 

W. Zhang et al., 2010). Previous studies conducted in the Caco-2 cell model indicate that 
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adsorption of α-Fe2O3 NPs is diameter-dependent (W. Zhang et al., 2010).   For these 

reasons the effects of exposure to α-Fe2O3 were subsequently assessed after exposure to 

an in vitro model of human cytotrophoblasts, the cell barrier that interfaces maternal 

and fetal circulation in the placenta.   

In eutherian mammals including humans, development of the fetus occurs inside 

the uterus of the mother.  After fertilization the embryo hatches from a glycoprotein rich 

matrix known as the zona pellucida and implants into the endometrial stroma of the 

mother (Aplin, 1996).  The first primitive epithelium of the embryo is known as the 

trophectoderm and later differentiation of the tissues takes place to form a placenta.  The 

placenta parasitizes the circulatory system of the mother to supply the fetus with 

nutrients (Pijnenborg, 1990).  In humans the direct interface of the maternal blood 

supply with the embryo is a cell layer of cytotrophoblasts referred to as a 

syncytiotrophoblast.  This single cell layer is underlain by cytotrophoblasts, basement 

membrane, and fetal capillaries which provide for a number of essential functions 

required for normal pregnancy including: nutrient and metabolite transport, immune 

function, gas exchange, and clearance of fetal waste and toxins (B. F. King, 1992).  

Due to the ethical limitations surrounding the use of, and availability of human 

tissues, investigators have relied on immortalized cell lines in order to study in vitro 

events such as implantation (Denker, 1993; Grummer, Hohn, Mareel, & Denker, 1994; 

Hannan, Paiva, Dimitriadis, & Salamonsen, 2010; John, Linke, & Denker, 1993; Mardon, 

Grewal, & Mills, 2007), syncytialization (Wice, Menton, Geuze, & Schwartz, 1990), drug, 

nutrient, oxygen (Bode et al., 2006; Morck et al., 2010; Rytting & Audus, 2005, 2007), 

and NP transport (Cartwright et al., 2012; Kulvietis, Zalgeviciene, Didziapetriene, & 

Rotomskis, 2011).  The BeWo b30 cell line can be employed for these tasks and was 

subcloned from the parental cell line (b30 is hereafter referred to as BeWo; Pattillo & 
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Gey, 1968) to more closely resemble that of an in vivo trophoblast cell (van der Ende, du 

Maine, Schwartz, & Strous, 1990; van der Ende, du Maine, Simmons, Schwartz, & Strous, 

1987).  While a number of studies have employed the BeWo model to assess the toxicity 

and transport of a variety of NPs, to our knowledge there has yet to be a study assessing 

the potential effects of α-Fe2O3 NPs and a model for the human placenta (Menezes, 

Malek, & A Keelan, 2011; Pietroiusti, Campagnolo, & Fadeel, 2012; Saunders, 2009).  

Furthermore, the body of literature related to NP transport and toxicity during early fetal 

development remains ill-defined. 

In a seminal study by Semmler-Behnke, et al., (2007) it was shown that gold NPs 

can cross the placental barrier in rats after maternal intravenous or intratracheal 

administration and these NPs were found in fetal target organs (Semmler-Behnke et al., 

2007; Semmler‐Behnke et al., 2008). Studies conducted employing the mouse model 

through the combined use of inductively coupled plasma-mass spectroscopy (ICP-MS) 

and transmission electron microscopy (TEM) clearly demonstrated that NPs are found in 

the placenta, liver, and brain of developing pups after NP (SiO2/TiO2) administration 

through the maternal tail vein (Yamashita et al., 2011).  Subcutaneous injection of TiO2 

NPs has been shown to cross the placenta and damage the genital and nervous system of 

developing pups (Takeda et al., 2009). Furthermore, studies employing the BeWo cell 

model demonstrated that fluorescent polystyrene NPs cross the placenta in a diameter-

dependent fashion (Cartwright et al., 2012), NPs were able to induce DNA damage across 

BeWo epithelial barrier (Bhabra et al., 2009), and this was subsequently found to be 

dependent on the barrier thickness (Huppertz, 2011; Sood et al., 2011).  For these 

reasons this study assessed the effects of a well characterized NP, α-Fe2O3, in the BeWo 

cell model in order to define the potential toxicity of these NPs in an in vitro model of the 

human placenta. 
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In this study it was hypothesized that α-Fe2O3 NPs would have diameter-

dependent effects upon in vitro exposure to a model human placental epithelium.  If α-

Fe2O3 NPs have diameter-dependent effects on the epithelium, then a number of 

predictions follow; 1)  Transepithelial electrical resistance (TEER) as a monitor of 

epithelia intactness will report differences in epithelial integrity after exposure to NPs  of 

different diameters; 2)  Cellular viability as measured by Live/Dead® analysis and 

reactive oxygen species production will be directly influenced by  the diameter of the 

NPs; 3)  Junctional integrity of the epithelium will be directly influenced by the diameter 

of the NPs; 4) Morphological differences will accrue as a result of the diameter of the NP 

employed; 5)  Genotoxicity will be influenced by  the NP diameter.  

Materials and Methods 

Synthesis of α-Fe2O3 NPs. 

All α-Fe2O3 NPs were synthesized by Dr. Wen Zhang in the laboratory of Dr. Chen 

at Georgia Institute of Technology according to the method of Penners and Koopal 

(1986).  Briefly, 20 mM FeCl3 in 4 mM HCl solution was incubated at 100 ± 0.1oC in a 

forced-convection oven.  Different diameters of α-Fe2O3 NPs were obtained at different 

incubation times of approximately 30 min, 5 hrs, and 8 hrs for the three sizes (15, 50, 

and 78 nm) used in this study.  The suspension was centrifuged (Eppendorf centrifuge 

5430R, Germany) at 5000×g for 30 min, and the supernatant was discarded.  The 

concentrated α-Fe2O3 NPs were stored in deionized (DI) water (Millipore, >18.2 MΩ) at 

pH 4 ± 0.1 adjusted by hydrochloride acid.  

The morphology and particle diameters were examined with a Philips CM-12 TEM 

operating at an accelerating voltage of 80 kV. Hydrodynamic diameters of α-Fe2O3 NPs 

dispersed in DI water or culture media were determined by a dynamic light scattering 

(DLS) instrument (Malvern Instruments, Zetasizer Nano, ZS instrument). The 
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concentration of α-Fe2O3 NPs in suspension was determined by an Induced Coupled 

Plasma-Optical Emission Spectrometry (ICP-OES, Thermo iCAP 6300, USA).  The 

concentration of α-Fe2O3 NPs was expressed mg/L of ferric ion. 

Cell Culture. 

BeWo (b30) cells were obtained from Dr. Erik Rytting (UTMB, Galveston, TX), and 

used with permission from Dr. Alan Schwartz.  Cells were maintained in T-75 flasks 

(Corning, Manassas, VA) coated with 50 µg/mL human placenta collagen (Sigma Aldrich, 

St. Louis, MO) as described elsewhere (Bode et al., 2006).  Briefly, culture medium was 

replenished daily with DMEM:F-12 containing 1% antibiotics (10,000 IU/mL penicillin/ 

10,000 µg/mL streptomycin/ 25 µg/mL amphotericin B; Cellgro, Manassas, VA), and 

15% fetal bovine serum (Atlanta Biological, Lawrenceville, GA), and incubated in a 

humidified chamber of 5% CO2 in air at 37°C.  Upon 80% confluence, the cells were 

subcultured at a 1:10 dilution.  Subculturing was accomplished by briefly incubating the 

cells in Ca2+/Mg2+-free phosphate buffered saline (PBS), followed by a 5 minute 

incubation in 0.25% trypsin/2.21 mM EDTA in Hanks Balanced Salt Solution (Cellgro, 

Manassas, VA) until the cells were no longer adherent to the culture plastic as assessed 

by phase contrast microscopy.  The trypsin was neutralized, removed, and the cells were 

resuspended to the appropriate cell dilution. 

 NP-containing medium was prepared as described by Koeneman and coworkers 

(Koeneman et al., 2010).  Briefly, water-soluble α-Fe2O3 at a stock concentration of no 

less than 2000 mg/L was sonicated with a Fisher Scientific model 100 probe sonic 

dismembrator at the maximum setting of 28 watts (RMS) for no less than 2 minutes.  

After applying the NPs to the appropriate volume of medium required to obtain the final 

working concentration, a second round of sonication, prior to exposure to epithelia was 

performed according to the aforementioned settings.  All NP concentrations used in this 
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study were calibrated to equal the concentration employed during TEER analysis 

depending on the area of the culture vessel (i.e. 33 µg/mm2 = 100 µg/mL in a Transwell® 

insert). 

Transepithelial electrical resistance. 

 Cells were grown on collagen-coated, 0.4 µm pore, 6.5 mm Transwell® Inserts 

(Corning, Manassas, VA) and allowed to grow until an intact monolayer formed as 

described elsewhere (Cartwright  et al., 2012).  Typically the monolayer, and TEER is 

established 3 days post-seeding (Cartwright  et al., 2012) and this timepoint was used in 

all experiments reported in this study as “day 0,” and the values obtained were in 

agreement with recent reports (Li, van Ravenzwaay, Rietjens, & Louisse, 2013).  Before 

measurements were taken, the 24-well plate was set in the dark on an air curtain for 15 

minutes to equilibrate to room temperature. A thermometer was placed in blank well 

containing 1.5 mL of medium, and only after the medium was room temperature were 

the measurements taken.  Measurements were consistently taken in order.  Three 

different measurements were taken from each insert and averaged.  TEER 

measurements were conducted with an EVOM (World Precision Instruments, Inc., 

Sarasota, FL) and TPX2 “chopstick” electrodes (World Precision Instruments Inc., 

Sarasota, FL).  Resistance was assessed only after the electrode was calibrated with a 

CaliCell (World Precision Instruments, Inc., Sarasota, FL) to ensure accurate readings.  

Background resistance was measured by employing a blank inserts (n=3) with medium 

only and no cells.  TEER is calculated from the following equation:  

RTEER = [RC – RB] X A                                                                  (1)                                            

Where RTEER is the transepithelial electrical resistance represented in Ω cm2; RC is the 

resistance of the cells in Ω; RB is the resistance of the blank (Ω); and A is the surface area 

of the membrane insert (cm2).  There were several populations of “blanks” depending on 
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the experiment; however, control blanks are defined as inserts containing no cells bathed 

in 300 μL of medium in the apical chamber and 1 mL of medium in the basal chamber.  

For experiments assessing TEER for NP-treated epithelia, the blank is redefined as an 

insert containing no cells, but incubated with medium containing the total working 

concentration of the nanomaterial at a consistent volume in the apical chamber as 

described earlier in the text (i.e. 300 μL at x μg/mL NPs), and with 1 mL of medium 

containing no NPs in the basal chamber.  In each case, no fewer than 3 blank inserts 

were averaged to obtain the “blank” resistance required to calculate TEER values.  All 

TEER values were normalized to percent TEER based on the average percent of the 

epithelia for 3 consecutive days prior to NP application. NP containing medium was 

applied once at day 0 to the apical chamber alone.  Each insert received the same amount 

of medium;  The apical chamber contained 300 uL and the basal chamber contained 1 

mL of culture medium. Cell culture medium was replenished every 24 hours.  Each 

experiment was repeated at least 3 times where (n=3). 

ROS analysis. 

 BeWo cells were seeded on human placenta collagen-coated glass bottom dishes 

(Sigma Aldrich, St. Louis, MO; MatTek, Ashland, MA) and grown for 3 days 

corresponding to the maximal TEER as described in the sections in the above text (i.e. 

the “day 0” timepoint).  The cell permeate reactive oxygen species indicator, H2DCFDA 

(Molecular Probes; D-399) with aid from 0.02% Pluronic F-127, was bath-applied to the 

epithelia.  Once the reduced fluorescein derivative enters the cell, esterases can cleave 

acetate groups and the probe can be oxidized by ROS.  Upon oxidation H2DCFDA is 

converted to 2’,7’-dicholorofluorescein and exhibits a bright green fluorescence.  This 

cocktail was applied to epithelia for 30 minutes in a humified incubator, subsequently 

washed several times in pre-equilibrated Ca2+/Mg2+-containing PBS (37°C), and imaged 
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as detailed in the preceding text.  A positive control for reactive oxygen species was 

employed by applying 5 μM H2O2 in standard cell culture medium overnight (8 hrs) and 

later assessing fluorescent cells.  No fewer than 5 randomly chosen fields of view were 

imaged and the entire field of view scored for fluorescence in each specimen.  Each 

experiment was repeated 3 times where (n=3).  

Live/dead analysis. 

 The live/dead cytotoxicity assay (Molecular Probes; L-3224) was used to identify 

dead cells.  Briefly, the red-fluorescent ethidium homodimer-1 is excluded by intact cells 

indicative of cell viability.  However, when membrane integrity is compromised during 

cellular death, ethidium binds to nuclear DNA and undergoes an increase in intensity 

(40-fold increase in fluorescence; Gaugain et al., 1978).  Thus, cells that are dead have 

intense nuclear fluorescence.  To indentify dead cells in the epithelium, BeWo cells were 

seeded on human placenta collagen-coated glass bottom dishes (MatTek, Ashland, MA) 

until confluence.  Ethidium was made 10 μM in standard culture medium and the cells 

were incubated for 40 minutes in a humified chamber at 37°C.  The cells were 

subsequently washed in Ca2+/Mg2+-containing PBS to remove any unbound ethidium, 

standard culture medium was replaced, and the plates were immediately imaged in the 

dark on a Nikon Eclipse TE300 inverted microscope equipped with a stage warmer and a 

Hamamatsu Orca CCD camera.  Each experiment was repeated 3 times where (n=3). 

Transmission electron microscopy. 

 All reagents and materials were purchased from Electron Microscopy Sciences 

(Hatfield, PA) unless otherwise indicated.  In all cases describing cytological fixation, EM 

grade formaldehyde and glutaraldehyde were opened and used fresh from vials stored 

under N2 gas. Cells were seeded on collagen-coated aclar and cultured as described in the 

preceding text. To obtain resin-embedded monolayers, the cells were cytologically fixed 
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for 2 hours in sodium cacodylate buffer (pH 7.2)  made 2% with formaldehyde/2% 

glutaraldehyde.  The specimens were washed extensively to remove the excess fixative 

and subsequently post-fixed in 1% OsO4 for 1 hour in the dark at room temperature.  

After extensive washes in Nanopure™ water, the cells were incubated overnight in 0.5% 

uranyl acetate in Nanopure™ water at 4°C.  Specimens were dehydrated in an increasing 

graded series of ethanol and infiltrated with Spur’s embedding medium and polymerized 

overnight at 60°C.  Seventy nanometer sections (corresponding to silver interference 

patterns) were cut on a Leica Ultracut E equipped with a diamond knife (Diatome, 

Hatfield, PA), and collected on formvar-coated, carbon-stabilized copper grids.  The 

section-containing grids were stained with uranyl acetate and Sato’s lead citrate, allowed 

to air dry overnight, and imaged on a Phillips CM-12 TEM fitted with a Gatan 791 CCD 

camera. 

Scanning electron microscopy. 

 Poly-D-lysine -coated cover slips were purchased (BD Bioscience, San Jose, CA) 

and subsequently coated with human placenta collagen at 5 µg/cm2.  The cover slips 

were extensively washed in PBS and BeWo cells were seeded at 4x105 cells/mL.   

Epithelia were washed briefly with PBS and cytologically fixed for 30 minutes in 100 mM 

sodium cacodylate buffer (pH 7.2) made 2% formaldehyde/2% glutaraldehyde at room 

temperature.  Specimens were washed through several changes of sodium cacodylate 

buffer (pH 7.2) and post-fixed in 1% OsO4 for 60 minutes in the dark.  Following post-

fixation, the epithelia were washed with Nanopure™ water and dehydrated in an 

increasing graded ethanol series.  Samples were dried through the critical point of CO2 

(Balzers), mounted on aluminum stubs, and sputter coated with approximately 5 nm of 

palladium-gold in a vacuum (Technicks Hummer II).  Images were collected on a JOEL 
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JSM-6300 scanning electron microscopy equipped with an IXRF digital imaging system.  

Each experiment was repeated a minimum of 4 times (n=4) 

Cytochalasin D treatment to prevent actin-mediated endocytosis. 

Cytochalasin D binds to g-actin and prevents f-actin formation and subsequent 

actin-mediated endocytosis. Cytochalasin D was purchased from Sigma Aldrich and 

made 10 mM in cell culture tested dimethylsulfoxide (ATCC).  This stock dilution was 

stored at -20°C in 10 μL aliquots and thawed just prior to use.  Prior to NP treatment, a 

dose response analysis (unpublished data) for Cytochalasin D was conducted and it was 

found that application of 1 µM Cytochalasin D 30 minutes prior to, and during the 

duration of NP incubation (≥8 hours) resulted in a loss of f-actin, but maintained cellular 

viability.  The final working concentration of 1 µM was employed in all subsequent 

studies. 

Immunocytochemistry. 

 Unless otherwise stated, all reagents used for immunocytochemistry were 

purchased from Sigma Aldrich (St. Louis, MO).  Confluent epithelia were treated and 

maintained as replicate samples at their respective time points.  The epithelia were 

briefly washed in PBS equilibrated to 37°C, and subsequently cytologically fixed in 

100mM PBS made 2% with formaldehyde prepared fresh from paraformaldehyde for 30 

minutes at room temperature.  Epithelia were permeabilized with an intracellular buffer 

(ICB) made 2% with formaldehyde and 0.1% Triton X-100 for 30 minutes at room 

temperature in the dark.  ICB contains the following: 100 mM KCl, 5 mM MgCl2, and 20 

mM HEPES™ (pH 6.8).  The epithelia were washed 3 times for 15 minutes per wash in 

ICB made 1% with bovine serum albumin (ICB-BSA) at room temperature.  After this 

blocking step, the primary antibody (anti-ZO-1, Invitrogen ZO1-1A12; formerly from 

Zymed) was applied at a 1:500 dilution in an antibody dilution buffer (ICB modified to 



111 

 

contain 0.1% Tween-20 and 1% non-fat dry milk) and incubated overnight at 4°C.  The 

following day the epithelia were washed 3 times for 15 minutes each in ICB-BSA.  The 

fluorophore-conjugated secondary antibody used in this study, which permitted 

visualization of the primary antibody, was goat-anti-mouse Alexa-488.  The secondary 

antibody was used at a 1:500 dilution in antibody dilution buffer and incubated 

overnight at 4°C.  The following day the epithelia were washed 3 times for 15 minutes 

each in ICB.  Visualization of the nuclei was accomplished by employing DAPI 

(Molecular Probes) diluted in ICB for 15 minutes.  The cover slips were subsequently 

mounted on slides in drops of Vectashield (Vector Labs) and sealed with optically clear 

nail polish.  Images were collected with a Leica SP5 laser scanning confocal microscope 

housed in the W.M. Keck Bioimaging Facility at Arizona State University.  The images 

represent 0.4 µm optical Z-sections obtained through the entire volume of the cells for 

confocal analysis.  Optical sections were reconstructed using Leica Imaging Software to 

represent a maximum projection image.  The images shown are representative of 4 

independent experiments where n=3. 

Microarray analysis. 

mRNA isolation. 

 All plastic cultureware employed during microarray analysis was certified as 

“Nuclease-free.” Messenger RNA (message) was isolation by the Purelink® RNA method 

(Ambion) according to the manufacturer’s instructions.  Briefly, 3 confluent 60 mm2 

culture plates for each condition (i.e. untreated, 15 nm treated and 78 nm treated) for a 

total of 9 plates were washed in ice-cold PBS, scrapped, at the respective times, with a 

rubber policeman and collected in ice-cold PBS. PBS was removed, replaced with lysis 

buffer, and mechanically disrupted with 5 strokes of a Dounce homogenizer.  Message 
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was subsequently isolated on membranes and eluted into collection tubes through the 

use of TE buffer.  RNA was stored in a mechanical freezer at -80°C until use. 

aRNA amplification and microarray analysis. 

 Messenger RNA was thawed on ice and analyzed for total RNA content with a 

Nanodrop™ spectrophotometer. RNA was aliquotted into non-stick PCR tubes at a total 

concentration of 1000 ng per tube.  Reverse transcription “master mix” was prepared 

and DNA was transcribed in a hybridization oven at 42°C for 2 hours.  Complementary 

DNA (cDNA) was subsequently prepared at 16°C for 2 hours. The cDNA was purified and 

transcribed into amino allyl RNA.  The aRNA was purified and the yield was assessed.  

Depending on the specimen Alexa-fluor 555 or Alexa-fluor 647 was coupled to the aRNA, 

the former representing the untreated specimens, while the latter represents the NP-

treated specimens.  Dye-coupled aRNA was purified, fragmented and equal 

concentrations of untreated and treated aRNA was pooled.  The samples were 

subsequently hybridized on Agilent Human 4x44K arrays at 60°C for 16 hours, scanned, 

and analyzed with GeneSpring (Agilent Technologies, Inc., Santa Clara, CA).  Data 

represent biological replicates conducted on the same day.   

Q-PRC analysis. 

 The same mRNA that was employed for microarray analysis was used to confirm 

relative fold-changes for the CASP8 and TNFR12A genes.  Reverse transcription was 

accomplished with the qScript cDNA synthesis kit according to the manufacturer’s 

instructions (Quanta Biosciences, Gaithersburg, MD).  This cDNA was used as a 

template for quantative PCR analysis through the use of Brilliant III CYBR® Green 

(Agilent Technologies, Inc., Santa Clara, CA).  Briefly, equal amount of template were 

amplified and fluorescence was monitored and analyzed by the ΔΔCt method (Livak & 

Schmittgen 2001).  The housekeeping gene, TUBA1A, which encodes the protein α-
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tubulin, was used to normalize data.  The CASP8 amplicon was generated with primers 

corresponding to the forward: CAGTGAAGATCTGGCCTCCC and reverse: 

TGCGGAATGTAGTCCAGGCT sequences.  The TNFR12A gene product was amplified 

with forward AAGGAACTGCAGCATTTGCA and reverse CCTCTAGGAAGGAGGGCACC 

primers according to the manufacturer’s recommendations (Integrated DNA 

Technologies, San Diego, CA).  Data represent biological replicates conducted on the 

same day.  Error is shown as mean±SD.  

Data analysis. 

 In this manuscript an independent experiment is defined as 3 or more technical 

replicates conducted on the same day.  Unless otherwise stated, all data represent at least 

3 independent experiments conducted on different days.  Student’s t-test was performed 

through the use of GraphPad software and a p value of ≤0.05 was considered statistically 

significant.  Error was calculated in Excel and is shown as mean±SEM.  In some cases 

error bars appear smaller than the data point marker. All comparisons are made between 

untreated and NP-treated epithelia at their respective time points unless otherwise 

indicated. 

Microarray data was analyzed through the use of GeneSpring and the data 

appears as 3 biological replicates conducted on the same day.  Only those genes that 

whose change represented p ≤0.05 were considered for subsequent analysis.  

Quantitative PCR analysis was conducted on the same day as 3 technical replicates.  Both 

microarray and QPCR are shown as mean±SD. 
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Results 

Large, but not small, non-functionalized α-Fe2O3 NPs disrupt BeWo 

epithelial integrity. 

If a population of NPs exist that exhibit diameter-dependent effects, it is 

anticipated that gross alterations in epithelia integrity will occur after exposure to NPs of 

different diameters.  In order to test this, three different mean diameters of α-Fe2O3 NPs 

(small NPs defined as 15, and the large diameter NPs as 50, and 78 nm) were synthesized 

and subsequently employed, and each group displayed a narrow hydrodynamic diameter 

(Table 3).  Diameters were confirmed by transmission electron microscopy (TEM; Figure 

18) each exhibiting a homogenous, colloidal NP population for each diameter tested. The 

physicochemical parameters of these particles have been extensively characterized 

elsewhere (He et al., 2008; Madhavi Kalive et al., 2012; W. Zhang, J. Hughes, et al., 

2012; W. Zhang et al., 2010), but briefly, a change in ζ-potential from positive to net 

negative as a result of incubation in medium containing supplements (i.e., fetal bovine 

serum and antibiotics) was observed as might be expected due to NP adsorption of 

serum components and/or the ionic strength of the culture medium (Ehrenberg, 

Friedman, Finkelstein, Oberdörster, & McGrath, 2009; Kreuter, 1994; Maiorano et al., 

2010).   

 As predicted, application of different NP populations (i.e., the small diameter of 

15, and large diameters of 50, and 78 nm) resulted in significant changes in 

transepithelial electrical resistance (TEER) at a consistent mass concentration of 100 

µg/mL (i.e. 33 µg/mm2) for each diameter tested (Figure 19 A; see also Appendix, 

Supplemental Figure 1 A).  The mass concentration of 100 µg/mL was employed as a 

starting point since data concerning human exposure is limited and the effects of iron 

oxide NPs on the placenta are heretofore undefined (Menezes et al., 2011; Saunders, 
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2009).  Furthermore the concentration employed in this study is consistent with the 

concentrations employed in other studies (Buyukhatipoglu & Clyne, 2011; Madhavi 

Kalive et al., 2012), and during specialized imaging techniques (Mahmoudi et al., 2011; 

Mishra, Patel, & Tiwari, 2010).   It was found that the initial disruption (i.e., drop in 

TEER) occurred at 24 hours after applying the NP-containing medium to the apical 

chamber of the Transwell® insert for large, but not small NPs.  After 24 hours epithelia 

exposed to both large populations of NPs (i.e., 50, and 78 nm) continued to decrease in 

TEER until the 5 day endpoint.  At the 5 day endpoint TEER was nearly half its original 

value for the epithelia exposed to large NPs.  In contrast, it was found that both the 

untreated epithelia and those treated with 15 nm particles at a concentration of 100 

µg/mL maintained a high TEER throughout the experiment.  In order to determine if 

application of NPs results in a permanent decrease in TEER a wash experiment was 

performed and terminal data (5 day endpoint) were assessed.  It was found that 

untreated specimens had a significant, albeit modest increase in TEER at the 5 day 

endpoint. In this study, untreated was defined as those epithelia not exposed to 

nanomaterials at any time.  However, epithelia treated with 15- and 78-nm α-Fe2O3 NPs 

and washed before 12 hours resulted in no difference in TEER and a significant decrease 

in TEER, respectively (Figure 19 B).  In the histogram the grey and white bars 

correspond to the 12 hour TEER value (grey bars) and the 5 day TEER endpoint value 

(white bars). 

 The dosimetry necessary to disrupt epithelial integrity for large NPs was 

subsequently assessed by titering down the concentration of 78 nm particles (Figure 19 C, 

D).  It was found that exposure to 20-, but not 10 µg/mL concentrations of 78 nm NPs 

resulted in loss of TEER similar to the 100 µg/mL treated epithelia shown in Figure 19 A.  
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This no-loss in TEER scenario of exposure below a mass concentration of 10 µg/mL was 

confirmed for all other diameters of NPs (Figure 19 D; see also Supplemental Figure 1 B). 

Large diameter nanoparticles evoke increased reactive oxygen species 

(ROS) and cell death. 

In order to determine if the loss of epithelial integrity assessed as a change in 

TEER was due to cytotoxic mechanisms resulting in cell death, reactive oxygen species 

and subsequently cell death were investigated as a function of time.  Under normal 

conditions (<10 cell per 1.4x105 μm2) BeWo epithelia contained very few cells positive for 

reactive oxygen species as measured over the 1.4x105 μm2 field of view in phase contrast, 

epifluorescent overlay micrographs (Figure 20 A, all micrographs are representative of 

3.5x104 μm2).  BeWo epithelia were stimulated to produce reactive oxygen by the 

addition of 5 μM H2O2 overnight (8 hrs) supplemented into culture medium (Figure 20 

B).  Under these conditions, as a positive control for ROS, approximately 150 cells were 

positive for reactive oxygen species as measured by fluorescence of 2’,7’-

dicholorofluorescein and this accounted for the majority of the total cells (220 cells per 

1.4x105 μm2).  At both 1- and 3-days post treatment, the small diameter NP population 

(Figure 20 C, D) was not found to elicit large numbers of cells positive for ROS.  However, 

a statistically significant difference between untreated and the 15 nm, 100 μg/mL-treated 

epithelia 1 day after exposure was noted (Figure 20 I).  Further, both 50- and 78-nm 

diameter NPs at a concentration  of 100 μg/mL after 1- and 3-days in culture showed a 

significant increase in cells positive for ROS (Figure 20 E-I).   

 If large-diameter NPs result in an increase in ROS, it might be expected that cell 

death occurs subsequent to this event.  Cellular viability was assessed through the use of 

ethidium homodimer-1.  Ethidium is a cell-permeate probe, which upon nuclear-

membrane disruption intercalates into DNA.  Upon intercalation, ethidium undergoes a 
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40-fold increase in fluorescence, and this event can be monitored by an epifluorescent 

microscope.  In this figure, 1.4x105 μm2 was analyzed per micrograph, whereas 3.5x104 

μm2 was shown in order to permit adequate magnification. Under normal conditions, 

healthy BeWo epithelia at the 1 and 3 day time points analyzed as an area of 1.4x105 μm2 

had very few dead cells (1±1, 10±3, respectively; Figure 21 A, all micrographs shown are 

representative of 3.5x104 μm2).  Under conditions employed to assess maximal cell death, 

(a positive control for cellular death; saponin treatment), it was found that 217 ± 6 cells 

died (Figure 21 B).  Notable differences were found between the small (15 nm) and large 

(50 and 78 nm) NP treatments at a concentration of 100 μg/mL; there appeared to be a 

diameter-dependent increase in cell death (Figure 21).  After 1 and 3 days epithelia 

treated with 15 nm particles were not significantly different from untreated epithelia 

(Figure 21 C, I).  However, at both the 1 and 3 day time points it was found that epithelia 

treated with 50 nm particles contained significantly more dead cells than untreated 

epithelia (Figure 21 E-F, I).  Further, 78 nm treated epithelia also resulted in significantly 

more dead cells than untreated epithelia (Figure 21 G- I).   

Large (78 nm) diameter α-Fe2O3 NPs disrupt intercellular tight 

junctions. 

Epithelial leakiness, as evidenced by the decrease in TEER, suggested the 

possibility of disruption of intercellular junction integrity.  In order to test the prediction 

that the tight junctions, that must exist to maintain TEER, were disrupted as a result of 

NP exposure, a laser-scanning confocal approach was employed.  It is well accepted that 

the apical localization of the tight junction protein ZO-1 labels intercellular tight 

junctions as well as indicating terminal differentiation of the epithelium (Anderson et al., 

1989; W. M. Bement, P. Forscher, & M. S. Mooseker, 1993; Matter, Aijaz, Tsapara, & 

Balda, 2005).  Both the untreated and NP-treated specimens had a similar nuclear 
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organization as evidenced by emission of the nuclear probe 4',6-diamidino-2-

phenylindole (DAPI; Figure 22 A, D).  Analysis of the antibody to ZO-1 in untreated 

specimens demonstrated the conventional honeycomb arrangement of tight junctions 

surrounding each cell (Figure 22 B, C).  However, after a 24 hour exposure to α-Fe2O3 at 

a concentration of 100 μg/mL ZO-1 was disrupted with breaks in the continuous 

distribution of ZO-1 surrounding each cell (Figure 22 E, F).  In some areas indicated by 

the white arrows ZO-1 was found to be completely absent though underlying nuclei 

(blue) were seen (Figure 22 E, F).  It was found that the 15 nm-treated specimens were 

similar to the untreated, normal distribution of ZO-1 (Appendix, Supplemental Figure 7).   

The bulk of large (78nm) diameter α-Fe2O3 NPs internalize through 

actin-mediated endocytosis, and accumulate at different cellular planes of 

the z-axis as a function of time. 

Epithelial leakiness, as evidenced by a decrease in TEER, suggested the 

possibility of disruption of intercellular junction integrity.  In order to test this as well as 

to assess the intracellular NP localization a TEM approach was employed.  Untreated 

BeWo epithelia contained moderately polarized cells.  Each cell had an electron-dense 

cytoplasm with numerous membrane-bound vesicle and organelles (Figure 23 A).  After 

4 hours of incubation in NP-containing medium at a concentration of 100 µg/mL NPs 

were found internalizing apparently by a phagocytotic mechanism (Figure 23 B, C). 

Figure 23 B shows membrane invaginations (white arrows) engulfing agglomerated NPs, 

whereas Figure 23 C shows a similar event with NPs encapsulated in a vesicle (black 

arrows).  Later, at the 8 hour time point (Figure 23 D, E) NPs appeared to sediment and 

collect at the plasma membrane interface (Figure 23 D).  Further, at this time point NPs 

were found concentrated at the lateral margins between cells (Figure 23 E).  At the 16 

hour time point three distinct internalized populations of NPs were found (Figure 24);  



119 

 

That is, one population of large-diameter NPs was found enclosed within membrane 

bound vesicles (black arrows), another not membrane-bound (white arrows), and a third 

population seemed to be in a vesicle whose membrane appeared ruptured (white 

arrowheads; Figure 24). 

 If large-diameter NPs are internalized by an actin-based mechanism (i.e. 

phagocytosis, macropinocytosis), then inhibiting actin polymerization should result in 

loss or decrease of large-diameter NP internalization.  To test this prediction the fungal 

toxin Cytochalasin D, which is known to inhibit actin-mediated endocytosis (Silverstein, 

Steinman, & Cohn, 1977) was employed during NP treatment.  Figure 25 A illustrates a 

representative cell that was exposed to neither Cytochalasin D nor NPs.  Electron dense 

membranes are distinguishable, and the actin based projections known as microvilli are 

seen.  Figure 25 B indicated that NP agglomerates decorated the apical plasma 

membrane at 8 hours of NP incubation in combination with cytochalasin D incubation.  

However, after cytochalasin D inhibition there appeared to be a small amount of NPs 

inside the cell and it appeared as if these NPs were not surrounded by membrane (Figure 

25 C, black arrows).  At the 8 hour time point, and consistent with Figure 24 D, E, Figure 

25 D shows a number of NPs internalized in cells not treated with Cytochalasin D. 

Alpha-Fe2O3 NPs litter the apical brush-border and abolish the 

standing microvillar morphology. 

TEM analysis demonstrated that these NPs sediment to the epithelial surface in 

bulk over time in cell culture medium at the 8 hour time point.  If these large-diameter 

NPs result in effects that are deleterious to the cell, it might be expected that initial 

changes begin to occur at the cell-NP interface after NP touchdown.  Thus, scanning 

electron microscopy (SEM) was employed to elucidate potential surface changes at this 

essential biological interface.  In order to do this, a time-course experiment was 
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conducted with replicate samples at a concentration of 100 µg/mL using the 78 nm 

diameter as the model large NP.  The scanning electron micrographs in Figure 26, A-C 

illustrate the untreated brush-border at the apical surface of BeWo cells at 1, 3, and 5 

days respectively.  Untreated, healthy BeWo cells had approximately 9 microvilli per 

square micrometer, and the number of microvilli appeared to extend to and remain at 11 

microvilli per square micrometer over time (Figure 26 G).  In contrast, micrographs of 

NP- treated epithelia (Figure 26, D-F) demonstrate a near complete effacement of the 

brush-border organization over the same time course.  SEM analysis illustrated clusters 

of NPs littering the apical surface of BeWo epithelia (Figure 26, D-F, white arrow heads). 

After treatment with NPs, the total number of microvilli plummeted to fewer than 2 

microvilli per square micrometer (p<0.001; Figure 26 G).  Similar to the distribution of 

the untreated specimens, the number and morphology of the 15 nm treated specimens 

appeared to not be affected by exposure (Appendix, Supplemental Figure 8). 

Large (78nm), but not small (15nm), α-Fe2O3 NPs elicit cellular 

changes at the level of the gene. 

The experiments conducted in the aforementioned text indicate cellular changes 

as a result of NP exposure.  In order to investigate the potential that α-Fe2O3 NPs evoke a 

response in gene expression a genome-wide DNA microarray approach was employed.  

Through the use of Agilent human 44K arrays, it was found that epithelia treated with 78 

nm α-Fe2O3 at a mass concentration of 100 µg/mL for 72 hours resulted in statistically 

significant (p≤0.05) changes in 799 genes.  In contrast, epithelia treated with 15 nm α-

Fe2O3 at a mass concentration of 100  µg/mL for 72 hours were found to have no 

statistically significant changes (Figure 27).  In this study a fold-change cutoff of ±2.0 

was selected consistent with other reports (Mutch, Berger, Mansourian, Rytz, & Roberts, 

2002; Quackenbush, 2002).  Concerning the 78 nm NP exposure, of the 799 genes that 
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were changed it was found that 589 genes were up regulated, and 210 genes were down 

regulated.  Through the use of GeneSpring (Agilent) these numbers were narrowed and 

genes that potentially explain epithelial integrity were further interrogated.  Down 

regulated genes (Table 4) included 2 broad categories: “Tight junctions,” and “adherens 

junctions.”  It was found that claudin 19 was suppressed 4.82-fold, as well as a number of 

protocadherins which are known to be expressed during early development (Kokkinos, 

Murthi, Wafai, Thompson, & Newgreen, 2010; Rampon et al., 2008) had fold-changes 

ranged from -2 to -7.  Up regulated genes (Table 5) included those involved in actin-

binding (actin associated), the cytoskeleton, and apoptosis.  It was found that the 

expression of α-actinin 1 and 3 were enhanced by 2.10 and 2.80, respectively.  CapZ 

mRNA which encodes the actin filament capping protein was up regulated 5.80-fold.  

Three other actin associated genes were found up regulated from 3.65 – 4.62 and those 

include genes encoding dynamin, twinfilin, and  tropomyosin.  Gamma-actin was found 

up regulated 3.33-fold and Keratin 8 and 83 were 6.66 and 9.86-fold increased 

compared to untreated specimens, respectively.  Twelve genes were found up regulated 

and associated with apoptosis and those include:  Caspase 3 (2.80), caspase 8 (5.36), 

programmed cell death 6 (3.89), tumor necrosis factor (TNF) associated factor 2 (3.69), 

TNF receptor 5 (2.39), death associated protein (DAP; 4.59) TNF receptor 12A (2.88), 

foxo4 (4.16), heat shock protein 90 A (4.73) BCL2-like 1 (2.18) and death inducer-

obliterator 1(3.06).    

In keeping with the microarray analysis described in the preceding text, 

quantative-RT-PCR (QPCR) analysis demonstrated that CASP8, and TNFRSF12A, had 

similar expression (Figure 28).  
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Discussion 

The principal finding in this study is that the diameter of a nanomaterial (α-

Fe2O3) elicits differential effects ranging from lethal to almost no effect in an established 

model of the human placental epithelium based on the criteria described in the text 

below.  This investigation showed that the large α-Fe2O3 NP diameters tested (50, and 78 

nm) deleteriously affect this placental epithelium, while the small diameter NP (15 nm) 

exhibited relatively fewer effects in this model system within the context of points 1-4 

described in the text below.  This investigation clearly showed, through the use of four 

orthogonal techniques, that the epithelium was disrupted as a result of exposure to the 

large (78 nm), but not small (15 nm), α-Fe2O3 NP diameter:  1)  TEER measurements as 

an indication of epithelial integrity (Claude, 1978; Hidalgo et al., 1989; Koeneman et al., 

2009) indicated that large, but not small diameter α-Fe2O3 NPs disrupt the “intactness” 

of the epithelium; 2)  At the protein level through the use of antibodies directed against 

ZO-1 it was shown that these α-Fe2O3 NPs disrupted the normal arrangement of ZO-1 for 

large, but not small α-Fe2O3 NPs; 3) The microarray analysis indicated gross changes in 

gene expression for large, but not small NPs;  4) Finally, ultrastructural and 

morphological changes were observed after exposure to large, but not small α-Fe2O3 NPs.   

The trophoblast layer in eutherian mammals including humans forms the 

interface between the mother and the developing fetus (Saunders, 2009), and further 

acts as a selective physiological barrier (B. F. King, 1992).  The data presented in this 

report suggest that there are two routes acting in concert to disrupt the barrier function 

of the epithelium.  The first route of epithelial disruption can be attributed to a loss of 

the intercellular tight junctions.  In this study it was shown that as early as 12 hours in 

culture, TEER begins to drop and this drop does not appear to be recoverable after 

exposure to large NPs.  In addition, laser scanning confocal analysis demonstrated that 
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exposure to large, but not small NPs disrupted the normal arrangement of ZO-1, an 

established marker for tight junctions (Furuse et al., 1994; Stevenson, Siliciano, 

Mooseker, & Goodenough, 1986).  Ultrastructural analysis indicated that NPs 

accumulate in the lateral margins between cells.  Finally, at the mRNA level the claudin 

19 gene whose protein product is known to bind ZO-1 and permit tight junction assembly 

(Lee et al., 2006), was down regulated ~5 fold.  Debate has arisen within the scientific 

community as to the reliability of TEER measurements (Jovov, Wills, & Lewis, 1991; T. 

Mukherjee, Squillantea, Gillespieb, & Shao, 2004).  In particular, a number of factors are 

known to affect TEER measurements.  In this study, TEER was found to be similar in 

magnitude to those values reported elsewhere (Cartwright et al., 2012).  Further, in this 

study the temperature was controlled for by equilibrating the epithelia to room 

temperature before conducting the measurements (see the TEER subheading in the 

Methods section for the experimental details).  While much of this work was contingent 

on the interpretation of the TEER results, the orthogonal techniques of 

immunocytochemistry and TEM clearly supported these data.  Indeed, during the initial 

drop in TEER ZO-1 localization as an indicator of tight junctions was found to be 

disrupted after exposure to the large diameter NP (78 nm; Figure 22).  Furthermore, 

TEM analysis indicated that NP agglomerates (78 nm) were found distributed between 

the lateral margins of cells (Figure 23 D, E).  Since TEER is effectively a measure of the 

integrity of the tight junctions (Blume, Denker, Gieseler, & Kunze, 2010), and the 

orthogonal techniques indicated a disruption of the tight junctions during the time there 

was a drop in TEER, these data are well supported.  

An alternative route to disrupt the barrier function can be accredited to “holes” in 

the epithelium as a result of cell death.  This study tested if the diameter of the α-Fe2O3 

NP affects the viability of the epithelium and it was found that large, but not small α-
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Fe2O3 NPs induced cell death as measured by ethidium-homodimer nuclear fluorescence 

at both 1 and 3 days of NP exposure.    Cell death can be attributed to a number of 

mechanisms (Ellis, Yuan, & Horvitz, 1991), however evidence (described in the 

subsequent paragraph) was presented in this study to suggest that cell death is of the 

apoptosis variety.  Concerning apoptosis two signaling mechanisms by which the cell can 

commit suicide exist (Fulda & Debatin, 2006; J. C. Reed, 2000; Thorburn, 2004).  The 

extrinsic pathway can be stimulated by extracellular signaling ligands that bind to 

integral membrane death receptors (Nagata, 1997; Thorburn, 2004).  This ligand-

receptor interaction causes a conformational change in the protein and permits 

establishment of a molecular scaffold known as the death-inducing signaling complex 

(DISC; Thorburn, 2004).  Caspase 8 is a molecular component of the DISC and upon its 

release from the DISC has the potential to activate the executioner caspase, caspase 3 

(Fischer, Jänicke, & Schulze-Osthoff, 2003).   

Genome-wide analysis through the use of DNA microarray employed during this 

study indicated that epithelia exposed to large diameter NPs (78nm) at the same 

concentration and exposure duration as the 15nm specimens elicited a statistically 

significant (p≤0.05; n=3) increase in the expression of these pro-apoptotic genes.  

Indeed, this study showed that those molecular components at the mRNA level are up 

regulated corresponding to the extrinsic pathway of cell induced apoptosis (Table 5).  In 

addition, it was found that mRNA encoding two receptors of TNFα were up regulated as 

well as both caspase 8 and caspase 3.  In contrast, it was found that there were no 

statistically significant changes in gene expression after exposure to the 15nm α-Fe2O3 

NPs at a concentration of 100 μg/mL.   

The data presented in this report shows that there are notable changes in the 

number of cells positive for reactive oxygen species after treatment with these NPs at 
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both 1 and 3 days post exposure.  Moreover, it is a known phenomenon that NPs are able 

to “escape” endosomes (Verma & Stellacci, 2010).  The transmission electron 

micrographs shown in this study appear to contain some agglomerated intracellular NPs 

that have no indication of electron-dense membranes surrounding the NPs.  It is known 

that iron oxide NPs elicit the production of ROS and furthermore rupture of the 

lysosome as might be the case for the apparently non-membrane bound NPs found in 

this study (Buyukhatipoglu & Clyne, 2011).  This increase in intracellular ROS could 

“jumpstart” a signaling cascade for apoptosis.   

Apoptosis is not the only effect of NPs on cells.  Subtle effects of NPs on the 

biology of the cells and tissues have also been reported.  The first paper to describe what 

was then referred to as “subtle” effects of NP exposure demonstrated that NPs (a 70/30% 

mixture of rutile and anatase TiO2) efface the brush-border of intestinal enterocytes in 

vitro in a dose-dependent manner (J. J. Faust et al., 2012; Koeneman et al., 2010).  

Subsequent studies employing α-Fe2O3 NPs by Zhang et al (2010) and later Kalive et al 

(2012) at concentrations ranging from 1-300 µg/mL showed a similar microvillar 

disruption as a result of NP exposure (Madhavi Kalive et al., 2012; W. Zhang et al., 2010).  

In the present study a number of structural proteins related to actin bundling 

(tropomyosin and α-actinin) were found to be upregulated after exposure to large NPs.  

Furthermore the actin capping protein CapZ, which is a known constituent of the apical 

region of the microvillus in placental cells (Heintzelman, Hasson, & Mooseker, 1994), 

was found to have a 5-fold increase in mRNA expression in the present study.  This 

apical region referred to as the plus-tips of the microvillus appears in electron 

micrographs as an electron dense region and was shown to be the organization center 

from which microfilaments emanate during morphogenesis (Berryman, Gary, & 

Bretscher, 1995; Mooseker, 1985).  These data indicate a change in the normal actin-
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bundling properties of the trophoblast epithelium and suggest that at the mRNA level 

actin capping as a means to promote actin disassembly may be the mechanism driving 

the loss of microvilli in this cell system at the protein level. 
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Figure 18. TEM analysis of α-Fe2O3 NPs.  TEM demonstrates a narrow distribution of the 
primary particle diameter for the nanomaterial employed in this study.  (A) is the 15 nm 

NPs.  (B) is the 50nm diameter and (C) is the 78 nm diameter.  The scale bar is 100 nm. 
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Figure 19. TEER disruption is NP diameter- as well as concentration dependent.  (A)  
The graph illustrates the change in TEER after application of different diameters of α-
Fe2O3 at a concentration of 100 µg/mL.  Both 50- and 78 nm NP treated epithelia follow 
the same trend, whereas the 15nm diameter exposure followed the trend of the 
untreated specimens.  (B)  Epithelial exposure to large-diameter NPs do not recover at 
the 5 day endpoint.  The 12 hour TEER value is shown in grey and the 5 day endpoint 
value shown in white.  (C)  Application of 78 nm α-Fe2O3 at a mass concentration of 50- 
and 20 μg/mL appears to disrupt TEER.  (D)  Exposure to 10 µg/mL for all α-Fe2O3 
diameters tested results in no change compared to the untreated specimens.  As 
indicated in the Methods section, TEER levels off at its maximum value of 40 Ωcm2 3 
days after seeding BeWo cells.  The NPs were applied after this 3 day culture period 
which is denoted as t=0 in the graphs.  All experiments were conducted at least 3 
independent times where n=3; error bars appear smaller than the data point marker for 
some points. 
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Figure 20. ROS analysis indicates that larger diameter α-Fe2O3 result in significant 
increases in ROS.  At the one day time point the epithelia had few cells positive for ROS 
(green) for every 1.4x105 µm2 field of view that was observed (A).  A positive control for 
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ROS was conducted to illustrate high numbers of cells positive for reactive oxygen (B). 
After 1 day of exposure to the 15 nm NPs a statistically significant increase is ROS was 
observed (C) and this number of ROS positive cells appears to decrease at the 3 day 
endpoint (D).  (E)  After 1 day of exposure to the 50 nm NPs an increase in ROS was 
observed, and in contrast to the 15nm specimens, this statistically significant increase 
was observed after 3 days as well (F).  This increase in ROS at both 1, and 3 days was 
also observed for the 78 nm treated specimens (G.H).  (I)   Quantification of the cells 
positive for ROS is shown in the histogram.  In all cases data is shown as mean ± 
standard error and p<0.05 was considered significant.  Note that the histogram is shown 
as log-fold change on the y-axis.  The histogram represents 1.4x105 µm2 of epithelium 
while the micrographs are representative of 3.5x104 μm2 of the epithelium to permit 
adequate magnification.  The scale bar is 50 μm.  Light grey boxes indicate 1 day post-
exposure, while dark grey boxes indicate 3 days post-exposure.  The white arrows point 
to ROS puncta.  All comparisons are made between untreated and NP-treated epithelia 
at their respective time points.  All experiments were conducted at least 3 independent 
times. 
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Figure 21. Live/dead analysis of BeWo epithelia as assessed by phase contrast, 
fluorescence overlay micrographs indicate cell death after exposure to large-diameter α-
Fe2O3 NPs.  At one day healthy epithelia have about 1 dead cell (red) per 1.4x105 µm2 
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field of view was observed in both control specimens (A).  A positive control for cell 
death was conducted to illustrate eithidium fluorescence in the nuclear area of most cells 
in the epithelium (B). After 1 day and 3 days post-exposure to 15 nm NPs (C,D) there 
was no significant difference compared to controls (A).  (E)  After 1 day of exposure to 
the 50 nm NPs an increase in cell death was observed, and this number was consistent 
at the 3 day time point (F).  Furthermore those epithelia exposed to the 78 nm diameter 
NPs had a high number of dead cells.  (I)   Quantification of cell death is shown in this 
histogram.    In all cases data is shown as mean ± standard error and p<0.05 was 
considered significant.  Note that the histogram is shown as log-fold change on the y-
axis.  The histogram represents 1.4x105 µm2 of epithelium while the micrographs are 
representative of 3.5x104 μm2 of the epithelium to permit adequate magnification.  The 
scale bar is 50 μm. Light grey boxes indicate 1 day post-exposure, while dark grey 
boxes indicate 3 days post-exposure.  All comparisons are made between untreated and 
NP-treated epithelia at their respective time points.  All experiments were conducted at 
least 3 independent times. 
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Figure 22. Tight junctions, as measured by ZO-1 immunofluorescence, are perturbed in 
78nm treated specimens.  (A)  Untreated, healthy BeWo epithelia display the typical 
honeycomb arrangement of ZO-1 at the intercellular junctions and this appears 
contiguous across the epithelium.  (B) After a 24 hour exposure to 78 nm α-Fe2O3 at a 
concentration of 100 µg/mL tight junctions are disrupted.  The distribution of ZO-1 is non-
contiguous throughout the epithelium, and in some areas ZO-1 appears absent (white 
arrows).  All specimens were images through the entire z-axis at 0.5 µm increments, and 
shown are maximum projection images.  In both the untreated and NP-treated 
specimens, the epithelia were treated as replicate samples and grown for 3 days prior to 
NP exposure.  The scale bar is shown in F. 
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Figure 23. TEM analysis of intra- and extracellular NP localization in BeWo epithelia.  

(A) Numerous endocytotic, secretory granules and electron dense mitochondria can be 

seen in untreated BeWo epithelia.  (B)  After a single 4 hour exposure to the 78 nm α-

Fe2O3 NPs at 100 μg/mL these NPs can be seen in the extracellular space and beginning 

to endocytose via large membrane invaginations that surround agglomerated NPs. The 

white arrows point to large membrane protrusions surrounding NPs.  (C) At 4 hours the 

NPs appear to be contained in membrane-bound vesicles at the apical region of the cells.  
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The black arrows point to the electron-dense membrane surrounding the NPs.  (D)  After 

8 hours in culture NPs are seen in the lateral margins between two cells.  The white 

arrows point to the two different nuclei.  (E)  The micrograph represents a magnification 

of the region of interest shown as a white box in D.  NPs can clearly been seen as non-

membrane-bound and further interdigitating microvilli are present between the two cells.  

The black short arrows point to the membrane of the cell, while the long black arrows 

point to interdigitating microvilli.  The scale bars are shown at the lower right corner of 

each micrograph. 
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Figure 24. NPs represent at least 3 discrete “populations” of intracellular NPs.  After 16 
hours of exposure to 78 nm  α-Fe2O3 NPs appear as three discrete populations, that is, 
some NPs appear  clearly membrane-bound as indicated by black arrows.  The second 
population of NPs appear non-membrane-bound (white arrows).  The third group are in 
vesicles that may be rupturing (white arrowheads).  The scale bar is shown at the lower 
right corner of each micrograph (1 µm). 
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Figure 25. NP internalization is largely, but not completely, inhibited by disruption of 
actin-mediated endocytosis.  (A)  Untreated specimens have clearly distinguishable 
membrane-bound vesicles with apical microlli projections.  (B)  After treatment with 
cytochalasin D for one hour prior to, and during the duration of NP exposure (8 hrs) NP 
endocytosis appears to be disrupted.  Black arrows point to clearly identifiable cell 
membranes.  The nanoparticle agglomerates appear to decorate the apical surface of 
the cells.  (C)  Low concentrations of NPs appear internalized at this time point (8 hrs.).  
However, electron-dense membranes surrounding the NPs were not clearly observed.  
(D)  When the NPs are dosed without Cytochalasin D inhibition of actin, there appears 
many more  
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Figure 26. Scanning electron microscopy reveals the effects on the brush-border of 
BeWo cells.  (A-C)  In untreated cells, there are well developed microvilli on the apical 
surface at days 1, 3, and 5, respectively.  (D-F) However, after treatment with α-Fe2O3 

NPs, the apical brush-border is nearly abolished (p<0.001).  The arrowheads point to NP 
clusters. (G)  The histogram shown quantitation of microvilli.  The number of microvilli is 
significantly fewer as a result of NP exposure. Each image was taken at identical 
magnification and thus the scale bar in F (2 μm) can be compared across micrographs.  
Error bars represent mean ± standard error.  No fewer than 5 micrographs were scored 
representing 5 randomly chosen areas of 1 μm2 per micrograph in four independent 
experiments. 
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Figure 27. DNA microarray analysis indicates that exposure to 78 nm α-Fe2O3 evokes 
statistically significant changes at the level of the gene at 72 hours post-exposure.  (A)  
The volcano plot indicates that exposure to 15 nm α-Fe2O3 NPs only slightly changes the 
fold-expression of any number of 44,000 genes, none of which are statistically significant.  
(B)  Exposure to the 78 nm diameters results in a number of statistically significant 
(p≤0.05) changes in expression (red).  The experiment was conducted as biological 
triplicate on the same day. 
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Figure 28. QPCR analysis of cDNA employed during microarray analysis has a similar 
expression profile for TNFR12A and CASP8. Similar results to those obtained during 
microarray analysis show that 15 nm exposed specimens show modest changes in 
expression, whereas epithelia exposed to the 78 nm diameter have large changes in 
gene expression.  Error bars represent standard deviation.  Relative gene expression 
was normalized by the α-tubulin housekeeping gene TUBA1A and calculated by the 
ΔΔCt method. 
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Table 3. The physico-chemical characteristics of α-Fe2O3 NPs of the three diameters: 
15-, 50- and 78-nm.  The narrow polydispersive index of the nanomaterial indicates a 
homogenous diameter of NPs.  Zeta-potential measurements indicate uniformly stable, 
positively charged nanomaterial.  All measurements were conducted in culture medium 
containing serum. 
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Table 4.  Microarray analysis indicates that 78 nm α-Fe2O3 NPs elicit down regulation of 
mRNA encoding proteins responsible for intercellular junctions.  Exposure to 78 nm α-
Fe2O3 NPs at a concentration of 100 µg/mL results in down regulation of genes essential 
for junctional integrity at the 3 day time point. Claudin 19, a component of tight junctions 
is down regulated nearly 5-fold.  In addition, a number of protocadherins are down 
regulated ranging from 2 to 7-fold. All data shown represent specimens conducted as 
biolgical triplicate where p ≤0.05. 
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Table 5. Microarray analysis indicates that 78 nm α-Fe2O3 NPs up regulate gene 
involved in apoptosis, and actin bundling and organization.  Exposure to 78 nm α-Fe2O3 
NPs at a concentration of 100 µg/mL results in up regulation of genes essential for actin 
organization and bundling such as CapZ, γ-actin, among others.  Apoptosis appears to 
be the cause of cell death as initiator and executor caspases are upregulated as well as 
the receptors responsible for their activation. All data shown represent specimens 
conducted as biological triplicate where p ≤0.05. 
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CHAPTER 6 
CONCLUSIONS 

General 

This Dissertation described a novel nanotoxicology paradigm that is referred to 

as brush border disruption.  Brush border disruption was first noted in 2010, in the 

study published by Koeneman and coworkers as a reorganization and reduction in the 

total number of microvilli from the surface of human intestinal cell in vitro, and has 

since been shown to be independent of in vitro sedimentation (Chapter 4).  Further, this 

Dissertation shows that the correct analytical methods (Chapter 2 and 3) and brush 

border expressing cell line (Chapter 2) are necessary for proper interpretation of 

experimental results.  Indeed, this assertion is borne out from independent studies 

(Fisichella et al., 2012; Koeneman et al., 2010) that clearly show major differences in the 

techniques employed to investigate human intestinal brush border disruption as a 

consequence of TiO2 NP exposure.  This Dissertation suggests also that brush border 

disruption is not limited to models of the intestine, but occurs also in human placenta 

cells in vitro.  The subsequent paragraphs substantiate the former claims, provide 

additional insights into the putative mechanisms responsible for brush border disruption, 

and shed light on the relevance of brush border disruption within the context of disease. 

Brush Border Disruption as a Consequence of TiO2 NP Exposure:  The Need 
for the Appropriate Cell Lines and Analytical Techniques 
 
 At present it appears that the choice of brush border expressing cell models and 

subsequent analytical techniques are important for proper interpretation of 

experimental results.  Differences in cell lines and analytical techniques necessary to 

show brush border disruption as a consequence of NP exposure was identified first as a 

consequence of the study by Fishchella and coworkers (2012), but has since become 

more widespread (Aliaa Rasheed Al-Jubory, 2013).  The study (Fisichella et al., 2012) 
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was conducted in order to identify whether or not TiO2 NPs that are common 

components of sunscreens affect human intestinal cells in vitro while attempting to 

mimic the changes in physiological environment that the particles encounter (i.e., the 

“lifecycle”) prior to in vitro exposure.  Although the choice of material may be considered 

more relevant than TiO2 sources employed elsewhere, the study approached this 

biological problem (i.e., brush border disruption and exposure assessment) from a 

materials science perspective as will be described in the proceeding text.   

 The human intestinal cell line, Caco-2, was first established by Fogh and 

coworkers (Fogh, Fogh, & Orfeo, 1977) and deposed at American Type Culture Collection 

(ATCC) with the designation HTB-37™.  Subsequent studies showed that this cell line, 

when grown under the appropriate conditions, spontaneously differentiated into cell that 

maintained some of the in vivo morphological and biochemical features (Hidalgo et al., 

1989).  Most notably, HTB-37™ formed microvilli, junctions and contained enzymes that 

are found in normal tissue in the body.  However, since HTB-37™ was originally derived 

from a human colon adenocarcinoma, a number of differences from normal human 

intestinal absorptive cells were observed.  This led Peterson and Mooseker (M. Peterson 

& Mooseker, 1992) to further subclone the HTB-37™ cell line into two different 

monoclonal cell lines that were referred to as “brush border expressing” (BBe).  

Subcloning was conducted because the authors noted morphologically heterogenous 

brush borders, in addition to a number of biochemical differences related to brush 

border differentiation (M. Peterson & Mooseker, 1992; M. D. Peterson et al., 1993; M. D. 

Peterson & Mooseker, 1993).  The BBe1 subclone of HTB-37™ was deposited at ATCC 

with the designation CRL-2102™.  When grown correctly, the Caco-2 BBe1 and 2 cell 

lines develop a well-ordered array of microvilli, and demonstrate villin localization 

exclusively at the apical brush border (M. D. Peterson et al., 1993).  Since the 
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characteristics chosen by Peterson and Mooseker more closely resemble normal human 

intestinal cells, and permit a normal sequence of brush border morphogenesis, it appears 

as if the most appropriate choice of human intestinal cells that can be used to investigate 

in vitro brush border disruption as a consequence of NP exposure is Caco-2 BBe1.  

However, and despite offering these cautions to the scientific community (J.J. Faust, 

Zhang, Koeneman, Chen, & Capco, 2012), the use of HTB-37™ appears to be the favored 

choice by investigators within the nanotoxicology field (Aliaa Rasheed Al-Jubory, 2013; 

Fisichella et al., 2012).  

 The choice of cell lines is not the only difference that has been noted in studies 

investigating brush border disruption.  Another difference results due analytical 

techniques employed to visualize NPs and microvilli.  Although “super-resolution” light 

microscopy techniques are becoming available, investigators have used electron 

microscopes in order to examine the fine detail of biological structures and NPs with 

high resolution.  Electron microscopy is conducted with the specimen in a vacuum and 

thus necessitates a number of procedural steps (described in Chapter 2) to permit high 

resolution visualization of the specimen in a near-native state.  For SEM this includes 

cytological fixation of the specimen, dehydration, drying, and coating of the specimen 

with metals.  Deviations from the procedure can result in a number of artifacts that 

severely cloud experimental interpretation.  For example, omitting the secondary fixative 

OsO4 will result in removal of the lipid-based membranes, drying the specimen in air will 

depress fine surface feature, and choosing to omit sputter coating can result in charge 

buildup and poor image quality due to lack of conductivity and fewer secondary electrons 

relative to metal coated specimens, respectively.  Thus if the investigator is interested in 

preserving near-native morphology of the sample as is necessary for brush border 
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analysis and procuring high quality images, procedures described in Chapter 2 are 

essential.   

 There are few very rare exceptions to the aforementioned microscopy preparation 

that deal with spectral analysis to confirm the presence of the NPs, particularly when NP 

used in the analysis are isolated directly from food.  This is due to the fact that inorganic 

NPs are often themselves metal.  For example, the study by Reed and coworkers (2014) 

analyzed the effects of exposure to 8 different drink supplements that claimed to contain 

NPs.  The NPs included the following elements: copper, gold, iridium, palladium, 

platinum, silica, silver and zinc.  The authors confirmed the existence of NPs and their 

elemental composition in the drink supplements, and subsequently exposed Caco-2 BBe1 

cells to the supplements containing NPs.   One drawback to the analysis was the fact that 

sputter coating with palladium and gold made it impossible to definitively show the 

elemental composition of surface agglomerated palladium and gold NPs, since the 

coating material was the same elemental composition as the NPs.  Furthermore, it is a 

fact that some of the surface agglomerated NPs could be washed away during 

dehydration and critical point drying.  For these reason, and from a purist materials 

standpoint, investigators have elected to forgo critical point drying and sputter coating 

specimens with metals in order to analyze the material composition through the use of 

energy dispersive x-ray spectroscopy.  Omitting these procedures permits materials 

analysis, but imparts artifacts that do not allow analysis of microvilli on the cell surface, 

as was shown in Appendix, Supplemental Figure 1.   Therefore, without the correct 

explanation for experimental results that apparently suffered from technical artifacts due 

to studies not recognizing the need to employ two or more independent methodologies 

for sample preparation under these very rare circumstances (Fisichella et al., 2012), it is 

impossible to make claims that NPs may or may not affect the brush border.  Further, 
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studies conducted in this Dissertation proved the elemental composition of iron oxide 

and titanium NPs can be identified since these elements were not used during specimen 

preparation.  Therefore, it behooves those investigators that wish to study changes that 

occur to brush border microvilli as a consequence of NP exposure to adopt methods that 

permit near-native organization of brush border microvilli.  Separately, if NPs employed 

for brush border disruption are made from elements that are used also in specimen 

preparation for SEM, the investigator can choose to modify the procedures described in 

Chapter 2 in order to analyze elemental composition at the expense of artifacts described 

in Appendix, Supplemental Figure 1 of this Dissertation. 

 Brush border disruption is not the only event where differences have been 

observed as a consequence of incorrect methodologies employed to analyze such events.  

Studies have claimed that environmentally degraded TiO2 NPs that are components of 

sunscreens are not internalized by Caco-2 cells (Fisichella et al., 2012) at concentrations 

as high as 100 µg/mL (i.e., 100 ppm).  This comes as a surprise given Chapter 4 and 5 

which clearly showed internalization of both TiO2 particles as well as iron oxide (i.e., α-

Fe2O3) NPs.  The surprise of this discrepancy is further underscored by the fact that food 

grade TiO2 particles, as shown in Chapter 4, were internalized at concentrations as low as 

350 ng/mL (i.e., 350 ppb) and shown elsewhere employing semiconductor-grade TiO2 

NPs (Aliaa R Al-Jubory & Handy, 2013; Koeneman et al., 2010).  Thus, in addition to the 

correct electron microscopy procedures it may be necessary for investigators to employ 

redundant methodologies to show the extent of particle internalization.  For example, 

and permitting feasibility, investigations should consider showing internalization via 

TEM analysis coupled with ICP-MS as replicate experiments.  As others have suggested 

this definitively indicates the presence of NPs in cells (Yamashita et al., 2011). 
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Consolidating Data from Brush Border Disruption in Intestinal and 
Placenta Models: The Putative Mechanism(s) Accounting for NP-Induced 
Brush Border Disruption 
 
 What mechanistic events account for brush border disruption? It is unlikely that 

a single mechanism exists to explain such an event.  Rather, data shown in this 

Dissertation suggest a multimodal response that culminates in a reorganization and 

subsequent loss of brush border microvilli in vitro.  Brush border disruption could result 

from either a change in cellular biochemistry as a cellular response to the material or 

alternatively could occur due to inherent physico-chemical properties of the material 

itself.  As will be described in the proceeding text, evidence exists that NPs could induce 

short-term changes in the architecture of microvilli or long term changes that are 

typified as a loss in the total number of microvilli. 

  It was shown in this Dissertation and elsewhere (Koeneman et al., 2010) that 

NPs decorate the free-surface of brush border expressing cells.  Furthermore, studies 

have shown that exposure to NPs results in changes in the level of [Ca2+]i (Gitrowski, Al-

Jubory, & Handy, 2014; Koeneman et al., 2010).  The most probably mechanism 

underlying the NP-induced increase in Ca2+ is the fact that NPs can reorganize lipid 

bilayers (B. Wang et al., 2008).  This in turn could lead to leaky membranes and Ca2+ 

influx from the extracellular environment.  It is known that the level of Ca2+ inside the 

cell is in the micro- or even nanomolar range, whereas extracellular Ca2+ is in the 

millimolar range.  Rapidly increasing the level of [Ca2+]i could result in activation of 

Ca2+-sensitive enzymes.  One such enzyme, Villin, is highly versatile and 

stoichiometrically the major bundling protein of the microvillus core.  In the nanomolar 

and micromolar range villin is an actin capping and bundling protein, respectively 

(Friederich, Pringault, Arpin, & Louvard, 1990).  However, in the millimolar range, 

which might occur due to NP-induced changes in Ca2+, villin severs actin bundles.  
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Severing of actin filaments over the short term results in microvilli that appear 

morphologically limp (De Beauregard et al., 1995) as was reported in this Dissertation.  

Thus, villin appears to be a good candidate responsible for brush border disruption via 

NP-induced changes in the level of [Ca2+]i.  This putative mechanism requires only that 

NPs decorate the surface of the cell, and could happen within minutes.  Such an event 

represents a short term mechanism that could be dependent on the physico-chemical 

parameters of NPs. 

Short term changes that are dependent on the physico-chemical parameters of 

the material may not be the only causal agents responsible for brush border disruption 

as a result of NP exposure. Chapters in this Dissertation clearly showed micrographs that 

illustrated NP internalization of food grade TiO2 and α-Fe2O3 in intestinal and placenta 

brush border expressing cell models, respectively.  Internalization by cells commonly 

results in reorganization of the cortical cytoskeleton.  This includes deformation of the 

plasma membrane, reorganization of the cortical actin network, and internalization of 

material.  Once NPs are internalized they are enclosed by plasma membrane in the form 

of membrane vesicles.   Membrane vesicles in the form of endosomes can fuse with 

lysosomes in an effort to digest the inorganic material.  High frequency of NP 

internalization alone could result in an imbalance in the normal cortical actin network.  

This is because the most abundant protein that composes the brush border cytoskeleton 

is actin (Mooseker, 1985; Tilney & Mooseker, 1971), and actin filaments are necessary for 

various forms of internalization (i.e., phagocytosis, pinocytosis, and receptor-mediated 

endocytosis) of material by the cell.  Furthermore, it is known that membranes from 

endocytosed material are recycled rather dynamically and continuously.  If less 

membrane was available to the brush border, the possibility exists that the cytoskeletal 

apparatus responsible for maintaining the length of the microvilli, could be affected as 
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well.  This hypothesis is supported by studies which clearly showed that the application 

of exogenous lipids results in longer microvilli (Margolis & Bergelson, 1979; Poole, 

Meder, Simons, & Müller, 2004).  These data suggest that an alternative mechanism that 

could account for brush border disruption is dependent on exclusively a change in the 

normal physiology of the cell through the concerted changes in the cortical cytoskeleton 

and endomembrane system. 

However, studies have reported also that NPs can escape membrane-bound 

vesicles (Verma & Stellacci, 2010).  NP escape is supported by investigations that have 

shown single or small agglomerated NPs within the cytoplasm of the cell Chapter 5.  

Moreover, NPs are known to attract proteins to their surface because of the electric 

double layer formed as a result of the inherent charge of some NPs.  Recent studies have 

shown that SiO2 NPs attract cytoskeletal or cytosolic proteins once internalized (Lesniak 

et al., 2012).  As described in Chapter 5, low and high affinity adsorption of proteins to 

the NP surface results in formation of the NP protein corona.  If internalized NPs are free 

floating in the cytoplasm and not confined in membrane vesicles, it is possible that the 

normal localization of protein(s) necessary to maintain the architecture of the brush 

border cytoskeleton could be compromised due to adsorption of proteins to the NP 

surface.  This in turn could lead to changes in the normal ratios of proteins necessary for 

the normal shape and length of microvilli.  This hypothesis is corroborated by studies 

that have shown that the brush border cytoskeleton is not as static as one might imagine 

(Stidwill et al., 1984).  Indeed, pulse-chase experiments revealed turnover of the 

individual proteins in the brush border on the order of hours to days (Stidwill et al., 

1984).  Furthermore, fluorescence recovery after photobleaching has shed light on 

proteins treadmilling within microvilli (Tyska & Mooseker, 2002).  These facts indicate 
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that one potential mechanism responsible for brush border disruption as a long term 

response could be sequestration of proteins via the NP corona.  

 It has been noted by others (Bement & Mooseker, 1996) that the brush border 

cytoskeleton is intimately interconnected with the zonula adherens.  In fact, studies that 

have investigated brush border morphogenesis point out microvilli elongation first at the 

cell periphery and later at interior regions.  Although it remains to be shown, one could 

envision formation of the terminal web first at the established cell-cell junctions as an 

anchoring point for terminal web assembly followed by slower polymerization of the 

interior voids to bridge adjacent adherens junctions.  This would create a contiguous 

terminal web region necessary for microvilli elongation over the entire surface of the cell.  

Chapter 5 of this Dissertation showed changes in barrier function of the epithelium due 

to the tight junctions after exposure to α-Fe2O3 NPs.  More importantly, α-Fe2O3 NPs 

were found between the lateral margins of two adjacent cells.  This wedging effect of the 

NPs between cells could permit disassembly of adherens junctions.  Since junctions are 

necessary for epithelial cell polarity in addition to a fortified terminal web capable of 

sustaining a brush border, changes in cell-cell junctions could account for disruption of 

the brush border due to NP exposure. 

 One major finding of Chapter 5 was that exposure to α-Fe2O3 NPs resulted in 

changes in gene expression.  The most intriguing finding related to brush border 

disruption was upregulation of the gene responsible for production of the actin capping 

protein, CapZ.  This was fascinating because early studies by Bretscher and Weber (1995) 

showed that CapZ is a component of the placenta brush border.  More recent studies 

conducted in the Tyska laboratory further showed that CapZ is a component of isolated 

intestinal brush borders via shotgun mass spectrometry analysis (McConnell, Benesh, 

Mao, Tabb, & Tyska, 2011).  In the event that mRNA is translated from upregulated 
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CAPZA gene uncontrolled filament capping at microvilli plus tips (i.e., barbed, plus ends) 

could ensue as a result of an increase in CapZ protein.  Increases in CapZ protein could 

fragment not only the actin filaments that give rise to long microvilli, but may begin 

disassembly of other actin-based structures.  Further, since the proteins that constitute 

brush border microvilli are dynamic and constantly turned over, the effects of CapZ may 

be potentiated by the normal treadmilling processes.  Although the aforementioned 

statements have yet to be shown, upregulation of CapZ may be a pivotal event involved 

in NP-induced brush border disruption.  Since gene transcription usually occurs on the 

order of hours to days, this putative mechanism may represent a long term effect of NP 

exposure.    

 One recent study has revealed the existence of intermicrovilli protocadherins as a 

means of organizing and imparting mechanical integrity to microvilli during brush 

border morphogenesis (Crawley et al., 2014).  The authors employed the Caco-2 BBe1 

cell model and analyzed the organization of brush border microvilli during the 20 days 

required for morphogenesis through the use of scanning electron microscopy.  The 

number of microvilli on the surface of the epithelia is consistent with results reported in 

this Dissertation and shown elsewhere (Koeneman et al., 2010; M. D. Peterson & 

Mooseker, 1993).  However, the authors (Crawley et al., 2014) serendipitously noted the 

existence of intermicrovillar connections when view in high magnification (their figure 1).  

They further employed quick freeze deep etch techniques followed by TEM of replicas to 

image the brush border cytoskeleton for both Caco-2 BBe1 and mouse small intestine as 

has been done elsewhere (Chandler & Sharp, 2014; Hirokawa & Heuser, 1981; Larabell & 

Chandler, 1988). Although this technique provides unparalleled views of the brush 

border cytoskeleton, it is difficult to definitively show the location of the intermicrovilli 

connections since the bird’s eye view shown (Crawley et al., 2014) might be 
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misinterpreted as intermediate filaments or myosin II that is known to interconnect 

microvilli at their bases.  For this reason the authors employed immuno-EM and showed 

colloidal gold localized at the tip regions of the microvilli.  Since the antibody was raised 

again protocadherin-24, and the secondary antibody conjugated to colloidal gold only 

interacted with the primary antibody, the authors definitively showed intermicrovilli 

protocadherins at the tips of adjacent microvilli.  At the time Chapter 5 of this 

Dissertation was published, the existence of protocadherins as intermicrovillar 

connections as a regulator of brush border morphogenesis was not known.  However, 

exposure to iron oxide NPs in the placenta model resulted in a number of protocadherins 

down regulated.  Since this new study (Crawley et al., 2014) revealed a role for 

protocadherins in brush border assembly, and microarray analysis of placenta extracts 

previously exposed to iron oxide NPs resulted in down regulation of protocadherins as 

shown in Chapter 5, the possibility exists that NPs may affect intermicrovillar 

protocadherins as a rapid short term change that results in brush border disruption. 

NP-Induced Brush Border Disruption May Occur In Vivo: Models 
Commonly Use as Surrogates for Humans  
 
 Studies conducted in this Dissertation focused on NP exposure utilizing cell 

culture models of the intestinal epithelium and the trophoblast layer in the placenta as 

first steps.  The choice of these cell systems were based on a number of criteria include 

cost relative to animals model, ethical concerns associated with animal euthanasia, 

availability of human tissue, and complexity of the experimental system.  However, to 

date, brush border disruption has not been shown using in vivo systems.  There exist a 

number of animal models that can be used in the laboratory in order to extrapolate 

effects that may occur in humans.  These models include simple worms and flies to mice, 

rats and pigs.   One in vivo model that has become an attractive option widely used in the 
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laboratory is the fruit fly Drosophila melanogaster (Drosophila).  The GI tract of 

Drosophila have similar anatomical features to humans including a gut associated 

immune system, a well ordered brush border expressing intestinal epithelium, stem cells 

capable of renewing the absorptive epithelium, and local changes in pH (Apidianakis & 

Rahme, 2011; van der Flier & Clevers, 2009).  Furthermore, Drosophila are inexpensive, 

reproduce rapidly, and have been used as a model of the brush border cytoskeleton 

(Morgan, Heintzelman, & Mooseker, 1995).  For these reasons Drosophila represented 

one option that could be used in order to determine if brush border disruption occurs in 

vivo.  However, the fatal flaw of employing Drosophila as a means to investigate in vivo 

brush border disruption as a consequence of NP exposure was the fact that Drosophila 

secretes a peritrophic membrane (PM) that encapsulates the bolus.  The PM is a highly 

ordered protein based structure composed of chitin, proteoglycans, and digestive 

enzymes (D. G. King, 1988).  Depending on the species, the PM is secreted either at the 

foregut or at the midgut.  The PM acts as a thick barrier between the bolus and the 

absorptive epithelium that is not found in humans.  Rather humans secrete mucus from 

from Brunner’s glands and goblet cells interspersed within the absorptive epithelium.   

These mucus secretions in humans are necessary to protect the epithelium from the low 

pH contents secreted from the stomach, but do not encapsulate the bolus as a highly 

ordered sieve as is the case for the PM.  In addition to mechanical protection, the PM 

acts to sequester bacteria and unwanted molecules from the adsorptive epithelium.  

Studies have shown that the pore size of the PM is at maximum 10 nm in diameter.  As a 

consequence, NPs that are commonly added to human foods, such as food grade TiO2, 

are omitted from direct interaction with the absorptive epithelium since the smallest NP 

is around 20 nm in diameter (Figure 29).   These data suggest two things related to NP-

induced brush border disruption; 1) it is essential that the NPs interact directly with the 



158 

 

brush border if brush border disruption is to occur; 2) leaching of ions from the NPs as 

was a control for studies conducted in Chapter 4 does not account for brush border 

disruption. 

 Although Drosophila does not permit studies related to brush border disruption, 

the fact that there are similar changes in pH to humans suggests that Drosophila may be 

a simple model that can be used in order to identify physico-chemical changes that occur 

as the material passes through the GI tract.  Studies conducted in this Dissertation show 

changes is zeta-potential as an effect of pH.  Moreover, gastric pH could result in changes 

in the agglomeration state of the material or surface etching.  Etching due to changes in 

pH could make primary particle diameter smaller.  Future investigations should consider 

exploiting the physiology of the GI tract of Drosophila in order to identify physico-

chemical changes during the life-cycle of the material. 

 Drosophila is not the only model organism that is used in the laboratory setting.  

Often investigators employ mice or rats in order to extrapolate to the human condition.  

In fact, studies that established the mechanisms responsible for brush border 

morphogenesis were conducted in model systems such as chicken (Chambers & Grey, 

1979), frog (Bonneville & Weinstock, 1970), and even salamander (Tilney & Cardell, 

1970).  In addition, investigators have developed established protocols to isolate intact 

brush borders from mouse and rat for experimental purposes.  Although mouse and rat 

could be the next logical candidates in order to investigate in vivo brush border 

disruption due to NP exposure, investigators have stated that human brush borders are 

fragile compared to avian models (Carboni et al., 1987).  The fragility of human brush 

borders suggests a change in the architecture of the brush border cytoskeleton in 

humans compared to avian models and rodents.  Although changes in the brush border 

cytoskeleton of humans compared to avian models and rodents remains ill-defined, the 
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fact that human brush borders are fragile suggests also that human brush borders might 

be sensitive to NP exposure.  However, it is known also that changes in diet affect the 

length of rodent brush border microvilli.  For example, microvilli are known to elongate 

during feeding conditions, and retract during fasting (Palay & Karlin, 1959).  

Furthermore, lectins were shown to result in elongation of rodent brush border 

microvilli (Hagen, Trier, & Dambrauskas, 1994).  Since these events have not been 

confirmed in humans, one might consider microvilli length as a defining criterion brush 

border disruption in rodents.  This is because of the durability of rodent brush borders 

compared to humans, and the fact that retraction of microvilli would result in a decrease 

in surface area.  One caveat to retraction as a criterion for change in rodents is the fact 

that the length of microvilli are known to be long in the small intestine (i.e., 

approximately 1 µm), but short (200-500 nm) in the large intestine.  Furthermore, the 

number of microvilli can vary depending on the degree of differentiation that occurs as 

enterocytes migrate from the crypts to the villi.  However, the change in normal length in 

the small intestine might be an indicator later disease.  

NP-Induced Brush Border Disruption Mimics the Effects of Exposure to 
Enteropathic Bacteria  
 
 There exist striking similarities between the effects observed after in vitro NP 

exposure compared to disease states associated with infection of enteropathic bacteria.  

For starter, once enteropathic bacteria infect host tissue, they actively attach to the 

intestinal epithelium, reorganize the actin cytoskeleton in the host cells, and 

consequently reduce the number of microvilli on the surface of the cell.  Moreover, acute 

(i.e., short term; hours) exposure to enteropathic bacteria results in leaky tight junctions.  

Finally, membrane vesicle shedding via microvilli which is known to occur in vivo 

(McConnell et al., 2009) in response to bacterial infection (Shifrin Jr et al., 2012), may 
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occur during in vitro exposure to NPs.  The proceeding text compare results observed in 

this Dissertation to results observed after exposure to enteropathic bacteria (i.e., E. Coli, 

C. Difficile, etc.).  

 The results described in this Dissertation highlight a novel nanotoxicology 

paradigm referred to as NP-induced brush border disruption.  Disruption is defined on 

the basis of a net loss and disordered array of brush border microvilli as a consequence 

of NP exposure.  However, for some time it has been known that the early events 

associate with infection of enteropathic microorganisms results in a large reduction in 

the number of microvilli on the surface of the cell (Celli, Deng, & Finlay, 2000; 

Manjarrez-Hernandez, Aitken, Baldwin, Williams, & Knutton, 1992).  Within the 

microbiology community the event of reducing the number of microvilli on the surface of 

the enterocytes as a consequence of bacterial infection is referred to as brush border 

effacement.  Effacement occurs after adherence of the bacteria, transfer of bacterial 

proteins into the host cell, and reorganization of the host brush border cytoskeleton.  

Furthermore, although there are subtle differences in the molecular strategies 

responsible for bacterial invasion, independent mechanisms culminate in activation of 

Rho GTPase-mediated actin reorganization. For enteropathic E. coli (EPEC) these events 

include attachment, effacement and intimate attachment.  In order for the bacterial cell 

to strongly attach to the enterocyte, the bacterium must inject Tir into the host cell.  

Injection of Tir into the enterocyte results in dimerization of Tir and  permits ligand 

receptor interaction between the bacterial intimin and now host Tir (Kenny et al., 1997).  

Signal transduction events by way of Fyn and Abl phosphorylation of Nck recruit N-

WASP and Arp 2/3 proteins required to reform the actin meshwork in the form of a 

pedestal.  During this process, the EPEC secreting proteins EspA and EspB are necessary 

for activation of signal transduction events in the host cell in order to efface microvilli.  
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Once secreted by the bacterium, these proteins active second messangers such as Ca2+ 

and IP3 though activation of phospholipase C (Kenny et al., 1997), which could lead to 

PKC activation.  The relevance of PKC activation as a causal agent for reorganization of 

microvilli remains to be elucidated.  However, there is a remarkable degree of similarity 

between scanning electron micrographs illustrating brush border effacement via 

enteropathic microorganisms (Dean, Maresca, Schüller, Phillips, & Kenny, 2006), and 

images shown of NP-induced brush border disruption shown in this Dissertation 

(Chapters 2-5). 

 Reducing the number of brush border microvilli on the apical surface of the cell is 

not the only similarity that may exists between these two models.  It has been shown that 

enteropathic bacterial infection results in leaky tight junctions.  Tight junctions exist as a 

molecular seal between the lumen and the underlying blood supply.  The loss of the tight 

junctions results in unregulated flux between the two separated compartments, which 

results in severe diarrhea.  Following EPEC infection, there is an immediate, albeit 

transient disruption of tight junctions as measured by decreases in TEER (Collington, 

Booth, & Knutton, 1998).  Moreover, studies have shown that occludins and claudins 

shift from the detergent resistance fraction to the soluble fraction when analyzed via 

Western Blott (Donnenberg, Kaper, & Finlay, 1997).  These data suggest that the tight 

junction proteins claudin and occludin are no longer attached to the cytoskeleton as part 

of their normal function.  How does EPEC-induced tight junction reorganization mimic 

effects observed in this dissertation?  Chapter 5 of this dissertation showed the apparent 

loss of tight junctions between placenta cells as measure via immunocytoshemical 

analysis of ZO-1 as a consequence of exposure to iron oxide NPs.  The apparent loss of 

epithelial integrity (ZO-1 label) was also confirmed via TEER.  Moreover, microarray 

data showed nearly a 5-fold decrease in CLDN19 expression, which encodes claudin-19.  
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Unpublished studies conducted employing the Caco-2 BBe1 cell model suggest that food 

grade TiO2 exposure also remodels junctions.  However, instead of decreases in TEER 

and the absence of tight junctions, under the aforementioned conditions junctions 

apparently undergo a remodeling that results in massive junction undulations as 

evidenced by immunolocalization of ZO-1 (Figure 30, A B) and surface views (Figure 30, 

C D).  This change in junctions as a response to food grade TiO2 further corresponds to a 

significant increase in resistance. 

 How does one consolidate apparently opposing results?  Studies have shown 

transient increases in TEER as a consequence of low levels of reactive oxygen species 

(Rao, 2007; Sheth, Seth, Thangavel, Basuroy, & Rao, 2004).  Food grade TiO2 was 

proven to be the anatase crystal structure as shown in Chapter 3.  One major difference 

between anatase and rutile TiO2 is the fact that anatase, has greater catalytic properties 

that result in the production of ROS and toxicity (Braydich-Stolle et al., 2009; Jiang et al., 

2008; Sayes et al., 2006).  Low levels of ROS production could be a mechanistic clue that 

accounts for junction undulation, which would result in tight junctions with more 

surface area compared to non-undulating junctions.  Furthermore, ROS indicators 

showed large increases in placenta cells after exposure to large iron oxide NPs.  These 

same indicators were unable to report ROS after exposure to food grade TiO2 after 

exposure to the Caco-2 BBe1 cell mode.  Taken together, these data suggest that low 

levels of ROS may reorganize junctions and increase TEER as an early mechanism to 

prevent free flow of ions, whereas high levels of ROS associated with exposure to large 

iron oxide NPs results in the loss of TEER and tight junctions.   

 Changes to the cytoskeleton may not be the only similarity between intestinal 

epithelia exposed to NPs and separately enteropathic bacteria.  Investigators have shown 

that membrane shedding through microvilli is dependent on MYO1A (McConnell & 
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Tyska, 2007).  However, the relevance of this event has only recently come to fruition.  A 

recent study showed that exposure to enteropathic bacteria resulted in membrane 

shedding from microvilli (McConnell et al., 2009).  It was further found that these 

membranes contained lysozyme and intestinal alkaline phosphatase, and actively 

attached to enteropathic bacteria in vivo.  The authors of the report (Shifrin Jr et al., 

2012) suggested that membrane shedding was a protective event that resulted in 

clearance of enteropathic bacteria from the gut.  Chapter 4 of this Dissertation showed 

electron-dense spherical material encompassing surface aggregated NPs that looked like 

vesicles. Moreover, surface views via SEM showed evidence of 100-200 nm vesicles 

intermingled within agglomerated TiO2.  Although these surface vesicles have yet to be 

characterized, the notably similarities between those observed after exposure to 

enteropathic bacteria and those found after exposure to NPs suggest that the cells within 

the epithelium actively secrete vesicle as a putative clearing mechanism.   

 Collectively these similarities suggest that the epithelium may use related 

mechanism in defense of exposure to NPs.  The fact that results described in this 

Dissertation mimic the early events of exposure to enteropathic bacteria open the door to 

studies where redundancies between these two systems can be noted.  Further, although 

the studies described in this Dissertation have not been proven in vivo the similarities 

noted suggest common clinical manifestations of disease.  

 

  



164 

 

 

Figure 29.  The peritrophic membrane in Drosophila  exclude food grade TiO from the 
brush border.  (A)  Untreated control brush borders isolated from Drosophila midgut 
epithelium reveal a thick, electron-dense peritrophic membrane that covers the brush 
border microvilli.  (B)  The peritrophic membrane excludes food grade TiO2 NPs from the 
brush border microvilli.  The black arrows point to the peritrophic membrane, while the 
black and white arrow points to the nanomaterial.  The scale bar in each micrograph is 
500 nm. 
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Figure 30.  Exposure to food grade TiO2 results in undulating tight junctions. (A)  Laser 
scanning confocal analysis of the normal honeycomb organization of the tight junctions.  
(B) Exposure to food grade (E171 coded) TiO2 results in undulations in tight junctions.  
(C)  Replicate untreated control samples were imaged with the scanning scope and the 
junctions, outlined by white arrows, appear linear, whereas (D) sampled exposed to food 
grade (E171 coded) undulate (white arrows).
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APPENDIX A 
 

SUPPLEMENTAL FIGURE 1 
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Supplemental Figure 1.  Improper drying results in sample artifacts.  (A)  Samples that 
are critical point dried retain the normal organization of the brush border, and permit 
analysis of microvilli. (B)  Samples dried with anhydrous acetone have brush borders 
whose microvilli are aggregated. (C)  Air dried samples appear completely depressed.  
Neither (B) nor (C) can be analyzed for alterations in the brush border microvilli due to 
NP exposure since the drying techniques impart structural artifacts.  Each image was 
originally captured at 5,000x and shown at the same magnification.  The scale bars in 
the lower right corner are 5 µm. 
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APPENDIX B 
 

SUPPLEMENTAL FIGURE 2 
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Supplemental Figure 2.  XPS K 2p spectra of gum-TiO2.  
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APPENDIX C 
 

SUPPLEMENTAL FIGURE 3 
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Supplemental Figure 3.  XPS wide scan for food grade TiO2. 
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APPENDIX D 
 

SUPPLEMENTAL FIGURE 4 
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Supplemental Figure 4.  XPS wide scan for gum-TiO2. 
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APPENDIX E 
 

SUPPLEMENTAL FIGURE 5 
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Supplemental Figure 5.  XPS C 1s spectra of gum-TiO2 
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APPENDIX F 
 

SUPPLEMENTAL FIGURE 6 
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Supplemental Figure 6.  Raw TEER values before percent normalization for epithelia 
exposed to NPs at concentrations of 100 µg/mL and 10 µg/mL.  The histograms indicate 
that exposure to large diameter NPs result in disruption of TEER (A)  The graph 
illustrates the change in TEER after application of different diameters of α-Fe2O3 at a 
concentration of 100 µg/mL.  Both 50- and 78 nm NP treated epithelia follow the same 
trend, whereas the 15nm diameter exposure followed the trend of the untreated 
specimens. (B)  Exposure to 10 µg/mL for all α-Fe2O3 diameters tested results in no 
change compared to the untreated specimens.  As indicated in the Methods section, 
TEER levels off at its maximum value of 40 Ωcm2 3 days after seeding BeWo cells.  The 
NPs were applied after this 3 day culture period which is denoted as t=0 in the graphs.  
All experiments were conducted at least 3 independent times where n=3. 
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APPENDIX G 
 

SUPPLEMENTAL FIGURE 7 
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Supplemental Figure 7.  Tight junctions, as measured by ZO-1 immunofluorescence, are 
unperturbed after exposure to 15 nm α-Fe2O3 NPs at a 100 µg/mL concentration at the 1 
day time point. 
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APPENDIX H 
 

SUPPLEMENTAL FIGURE 8 
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Supplemental Figure 8.   Morphological analysis of microvilli in 15 nm-treated specimens 
indicates no change in the number and structure of the microvilli.  After exposure to 15 
nm NPs the microvilli remain erect and appear to contain a similar number of microvilli 
compared to controls.  
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 


