
Test Algebra for Concurrent Combinatorial Testing

by

Guanqiu Qi

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved October 2014 by the
Graduate Supervisory Committee:

Wei-Tek Tsai, Chair
Hasan Davulcu

Hessam Sarjoughian
Hongyu Yu

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in com-

binatorial testing for SaaS (Software-as-a-Service) applications. In the context of

cloud computing, SaaS is a new software delivery model, in which mission-critical

applications are composed, deployed, and executed on cloud platforms. Testing SaaS

applications is challenging because new applications need to be tested once they are

composed, and prior to their deployment. A composition of components providing

services yields a configuration providing a SaaS application. While individual com-

ponents in the configuration may have been thoroughly tested, faults still arise due

to interactions among the components composed, making the configuration faulty.

When there are k components, combinatorial testing algorithms can be used to iden-

tify faulty interactions for t or fewer components, for some threshold 2 ≤ t ≤ k on

the size of interactions considered. In general these methods do not identify specific

faults, but rather indicate the presence or absence of some fault. To identify specific

faults, an adaptive testing regime repeatedly constructs and tests configurations in

order to determine, for each interaction of interest, whether it is faulty or not. In

order to perform such testing in a loosely coupled distributed environment such as

the cloud, it is imperative that testing results can be combined from many differ-

ent servers. The TA defines rules to permit results to be combined, and to identify

the faulty interactions. Using the TA, configurations can be tested concurrently on

different servers and in any order. The results, using the TA, remain the same.

i

Dedicated to my grandparents, Amy, and Lin

ii

ACKNOWLEDGEMENTS

I wish to express my great thanks to all the people who gave me tremendous support

and help during my Ph.D. study.

First and foremost, I am heartily thankful to my advisor, Professor Wei-Tek Tsai.

This dissertation would not have been possible without his guidance. From him,

I learned how to find high-impact problems, conduct rigorous research, and make

effective presentations. Dr.Tsai’s brilliance makes my research much more enjoyable.

His persistence and dedication encourage me to go through many obstacles. For me,

Dr.Tsai is not just an advisor in research, but also whole life advisor. He gives me

many advises in multiple aspects, especially on how to move beyond my comfort zone

to reach my full potential. I would benefit from all these for my whole career.

I also thank my other dissertation committee members, Dr.Hasan Davulcu, Dr.

Hessam Sarjoughian and Dr.Hongyu Yu, for their constructive suggestions for my dis-

sertation and invaluable help for my career. Their suggestions make my dissertation

more complete and accurate. Their recommendations open up many opportunities

for my career.

Then, I would like to express my deep appreciation and gratitude to those collab-

orators for helping me finish my dissertation. Professor Charles Colbourn of Arizona

State University formulated Test Algebra (TA). Professor Jie Luo of Beihang Univer-

sity provided TA proofs including various laws in TA. Professor Wenjun Wu and Chao

Jin of Beihang University provided TA MapReduce simulation.

Then, many thanks to Dr.Yinong Chen for his continuous helps. He not only

provided me teaching assistant position during my whole Ph.D. study, but also gave

me precious suggestions on my research.

Furthermore, I am proud to be a member of ASU-SRLab. I benefit a lot from

the discussions with all of the SRLabers, Dr. Qihong Shao, Wu Li, Xin Sun, Peide

iii

Zhong, Le Xu, Yu Huang, and Jay Elston. Especially, thanks to Dr. Qihong Shao

for her guidance and help in the beginning of my research. Their consistent supports

in the past six years and a half help me handle all difficulties in my research and life.

Finally, I would like thank Amy for her support and encouragement. Without

her consistent financial support, I could not finish my Ph.D. study. Also I would like

to thank my grandparents and Lin for their deepest love, faith, understanding, and

confidence in me. Without their consistent mentally supports, I could not finish my

PhD study. This dissertation is dedicated to all of them.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 5

2.1 Software Testing . 5

2.2 Cloud Testing . 6

2.3 Combinatorial Designs . 8

2.3.1 Latin Square . 8

2.3.2 Orthogonal Array . 8

2.3.3 Covering Array . 9

2.4 Combinatorial Testing . 10

2.4.1 Covering Array for Testing . 12

2.4.2 Automatic Efficient Test Generator. 13

2.4.3 In-Parameter-Order . 14

2.4.4 Genetic Algorithm . 15

2.4.5 Backtracking Algorithm . 16

2.4.6 Fault Detection . 16

2.5 Adaptive Reasoning Algorithm . 17

2.5.1 Other Related Topics and Proposal Motivation 18

3 TEST ALGEBRA FOR CONCURRENT COMBINATORIAL TESTING 19

3.1 Test Algebra . 19

3.1.1 Learning from Previous Test Results . 20

3.1.2 Changing Test Result Status . 23

v

CHAPTER Page

3.1.3 Matrix Representation . 23

3.1.4 Relationship Between Configuration and Its Interactions 25

3.1.5 Merging Concurrent Testing Results . 26

3.1.6 Distributive Rule . 30

3.1.7 Relationship Among Different Type Configurations 30

3.1.8 Measurements . 35

3.1.9 Incremental Development . 36

3.2 Conclusion . 37

4 CONCURRENT TEST ALGEBRA EXECUTION WITH COMBINA-

TORIAL TESTING . 38

4.1 TA Analysis Framework . 38

4.1.1 The Role of N in Concurrent Combinatorial Testing 44

4.1.2 Modified Testing Process . 45

4.2 TA Analysis Algorithm. 46

4.2.1 Search Process and Algorithm . 46

4.2.2 Algorithm Time Complexity Analysis . 49

4.3 TA Analysis Process and Related Considerations 49

4.3.1 Analysis Process . 49

4.3.2 Adjustment in Analyzing . 50

4.4 Test Database Design . 52

4.4.1 X and F Table Design . 52

4.4.2 P Table Design. 52

4.4.3 N and U Table Design . 54

4.5 Experiment . 54

vi

CHAPTER Page

4.5.1 Simulation . 54

4.5.2 Parallel Computing for TA Analysis . 57

4.5.3 Discussion . 58

4.6 Conclusion . 59

5 TEST ALGEBRA EXECUTION IN A CLOUD ENVIRONMENT 63

5.1 TA Concurrent Execution and Analysis . 63

5.1.1 TA Concurrent Execution . 63

5.1.2 NU Configuration . 66

5.1.3 NU Configuration Selection Algorithms . 67

5.1.4 Analysis Process of NU and U Configurations 69

5.1.5 On-demand Interaction Testing with PTR 70

5.2 TA Experiments . 74

5.2.1 TA MapReduce Experiment Flow Chart 74

5.2.2 Different Configuration Numbers of TA Experiments 75

5.2.3 Different Speedup Strategy for TA Experiments 76

5.2.4 Different Fault Rates for TA Experiments 77

5.2.5 Explanation on Simulated Data . 80

5.2.6 Simulation with Different Clusters . 81

5.2.7 Simulation using 37-node Cluster with Differen Map Slots . . 81

5.3 Conclusion . 82

6 TAAS (TESTING-AS-A-SERVICE) DESIGN FOR COMBINATORIAL

TESTING . 85

6.1 TaaS Introduction . 85

6.1.1 TaaS Definition . 85

vii

CHAPTER Page

6.1.2 Three Generations of TaaS . 87

6.2 TaaS Design with TA and AR . 88

6.3 TaaS as SaaS . 93

6.3.1 GUIs . 94

6.3.2 Workflows . 95

6.3.3 Services . 96

6.3.4 Runtime Composition, Execution and Scalability 96

6.4 Experimental Results . 98

6.5 Conclusion . 100

7 INTEGRATED FAULT DETECTION AND TEST ALGEBRA FOR

COMBINATORIAL TESTING IN TAAS (TESTING-AS-A-SERVICE) . 103

7.1 Framework . 103

7.1.1 TA and AR Relationship . 103

7.1.2 Integrated Process . 107

7.1.3 Framework Illustration . 109

7.2 Experiments and Results . 112

7.2.1 Experiment Setup . 112

7.2.2 Experiment Results . 115

7.2.3 Measurements . 117

7.3 Conclusion . 120

8 CONCLUSION . 125

REFERENCES . 127

APPENDIX

A THE PROOFS OF TA DEFINED OPERATIONS . 132

viii

CHAPTER Page

A.1 COMMUTATIVITY OF ⊗ . 133

A.2 ASSOCIATIVITY OF ⊗ . 133

A.3 COMMUTATIVITY OF ⊕ . 134

A.4 ASSOCIATIVITY OF ⊕ . 134

A.5 DISTRIBUTIVITY OF ⊗ OVER ⊕ . 135

BIOGRAPHICAL . 138

ix

LIST OF TABLES

Table Page

3.1 QR Code Generator Components . 34

3.2 Entrez Gene to KEGG Pathway Components . 34

3.3 Gene Annotation Pipeline Components . 35

4.1 The Number of T-way Configurations from 2-way to 6-way. 55

4.2 The Initial Setting Ups of Infeasible Configurations 55

4.3 The Initial Setting Ups of Faulty Configurations . 56

4.4 The Initial Setting Ups of Irrelevant Configurations 56

4.5 The Different Initial P-table Settings . 57

4.6 The Different Initial U-table Settings . 58

4.7 The Related and Reduced Configurations with Different Settings 59

4.8 Scalability Prediction of TA Analysis . 60

5.1 Explanations of Each Parameter in Simulation . 80

6.1 SaaS and TaaS Comparison . 101

6.2 The Initial Settings of Configurations . 102

7.1 6-Component Example Initial Settings . 110

7.2 Related Configurations Eliminated by TA . 110

7.3 Increased Configurations by Adding New Component 111

7.4 Related Configurations Eliminated by TA . 111

7.5 Related Configurations Eliminated by TA . 112

7.6 Initial 210 Components Experiment Setups . 115

7.7 Initial 220 Components Experiment Setups . 115

7.8 Initial 230 Components Experiment Setups . 116

7.9 Initial 240 Components Experiment Setups . 116

7.10 Initial 250 Components Experiment Setups . 117

x

Table Page

7.11 Test Configurations # of Identifying Faults in 2-way to 6-way Config-

urations . 120

7.12 Percentage of Test Configurations Over 2-way to 6-way Configurations . 121

7.13 F Configurations Deduction by TA . 121

7.14 X Configurations Deduction by TA . 122

7.15 Computation Steps of TA Analysis . 122

7.16 TA Deduction Rate . 122

7.17 Configurations Eliminated by AR & TA . 123

7.18 Configurations Need to Be Tested . 123

xi

LIST OF FIGURES

Figure Page

2.1 Latin Square Example . 9

2.2 Orthogonal Array Example . 10

2.3 CA and MCA Examples . 11

2.4 Classification Scheme for Combination Strategies Grindal et al. (2005a) 11

2.5 AETG Example Cohen et al. (1994) . 14

2.6 IPO Example Lei (2005) . 15

3.1 3-way Interaction Operation Table . 24

3.2 The Number of Configurations . 32

4.1 The Relationship Between TA and Combinatorial Testing 38

4.2 Concurrent TA Analysis Design . 39

4.3 The Simulation Results . 61

4.4 The Simulation Results of TA Time Efficiency . 62

5.1 Relationship Between TA and AR . 63

5.2 Test Results Shared by TA and AR . 65

5.3 NU Configuration Selection Process . 66

5.4 Using Hamming Distance to Select NU Configuration 69

5.5 Five Trials with Different PF . 75

5.6 TA MapReduce Experiment Flow Chart . 76

5.7 TA Efficiency on Hadoop . 77

5.8 Running Time with Different Strategies on Hadoop 78

5.9 TA Efficiency with Different Strategies on Hadoop . 78

5.10 TA Efficiency with Different Fault Rates on Hadoop 79

5.11 Running Time with Different Fault Rates on Hadoop 79

5.12 Running Time of TA Implementation on Hadoop Using Different Clusters 81

xii

Table Page

5.13 Configuration Reduction Ratio Using TA Implementation on Hadoop

Using Different Clusters . 82

5.14 Running Time of TA Implementation on Hadoop Using 37-node Cluster

with Different Map Slots . 83

5.15 Configuration Reduction Ratio Using TA Implementation on Hadoop

Using 37-node Cluster with Different Map Slots . 83

6.1 Taas Design for Combinatorial Testing Using TA and AR 89

6.2 TaaS Infrastructure . 94

6.3 Database Integration . 97

6.4 The Number of Virtual Machines of Each Attempt 99

6.5 Average Computation Time of Each Virtual Machine of Each Attempt. 100

7.1 TaaS Testing Framework for Processing N and U Configurations 104

7.2 The Flowchart of AR and TA Analysis . 109

7.3 The Number of Components in TaaS Simulation . 113

7.4 The Integrated Process . 114

7.5 AR Test Configurations to Identify All T-way Faults (2 ≤ T ≤ 5). 120

7.6 Total Workloads and Testing Workloads Saved . 123

7.7 Configuration Deduction Rate . 124

xiii

Chapter 1

INTRODUCTION

Cloud computing plays an important role today, as a new computing infrastructure to

enable rapid delivery of computing resources as a utility in a dynamic, scalable, and

visualized manner. Software-as-a-Service (SaaS), as a part of cloud computing among

Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS), is a new software

delivery model designed for Internet-based services. One single code is designed to

run for different tenants. SaaS provides frequent upgrades to minimize customer

disruption and enhance satisfaction. For maintenance, fixing one problem for one

tenant also fixes it for all other tenants.

SaaS supports customization: Tenant applications are formed by composing com-

ponents in the SaaS database Tsai et al. (2010b); Bai et al. (2011); Tsai et al. (2011)

such as GUI, workflow, service, and data components. SaaS supports multi-tenancy

architecture (MTA): One code base is used to develop multiple tenant applications,

so that each tenant application is a customization of the base code Tsai et al. (2010a).

SaaS often also supports scalability, as it can supply additional computing resources

when the workload is heavy.

Once tenant applications are composed, they need to be tested. However, a SaaS

system can have millions of components, and hundreds of thousands of tenant appli-

cations. New tenant applications are added continuously, while other tenant appli-

cations are running on the SaaS platform. New tenant applications can cause new

components to be added to the SaaS system.

Combinatorial testing Bryce et al. (2010) is a popular testing technique to test a

component-based application. It tests interactions among components in the config-

1

uration, assuming that each component has been tested individually. A t-way inter-

action is one that involves t components, and t-way coverage in a test suite means

that every t-way interaction appears in at least one test configuration. Traditional

combinatorial testing techniques focus on tests to detect the presence of faults, but

fault location is an active research area. Each configuration needs to be tested, as

each configuration represents a tenant application. Traditional combinatorial testing

methods, such as AETG Cohen et al. (1997), can reveal the existence of faults by

using few test cases to support t-way coverage for t ≥ 2. But knowing the existence of

a fault does not indicate which t-way interactions are faulty. When the problem size

is small, an engineer can identify faults by knowing which test configurations contain

a fault. However, when the problem is large, it difficult or even impossible to identify

faults if the test suite only ensures t-way coverage.

The movement to Big Data and cloud computing can make hundreds of thousands

of processors available. Potentially a large number of processors with distributed

databases can be used to perform large-scale combinatorial testing. Indeed, these

provide significant computing power that was not available before; for example, they

support concurrent and asynchronous computing mechanisms such as MapReduce,

automated redundancy and recovery management, automated resource provisioning,

and automated migration for scalability. One simple way to perform combinatorial

testing in a cloud environment is:

1. Partition the testing tasks;

2. Allocate these testing tasks to different processors in the cloud platform for test

execution;

3. Collect results from the processors.

2

However, this is not efficient. While computing and storage resources have increased

significantly, the number of combinations to be considered is still too high. Testing

all of the combinations in a SaaS system with millions of components can consume

all the resources of a cloud platform. Two ways to improve this approach are both

based on learning from previous test results:

• Devise a mechanism to merge test results quickly, and detect any inconsistency

in testing;

• Eliminate as many configurations as possible from future testing using existing

testing results.

With cloud computing, test results may arrive asynchronously and autonomously.

This necessitates a new testing framework. This paper proposes a new algebraic sys-

tem, TA Tsai et al. (2013a), to facilitate concurrent combinatorial testing. The key

feature of TA is that the algebraic rules follow the combinatorial structure, and thus

can track the test results obtained. The TA can then be used to determine whether

a tenant application is faulty, and which interactions need to be tested. The TA is

an algebraic system in which elements and operations are formally defined. Each

element represents a unique component in the SaaS system, and a set of components

represents a tenant application. Assuming each component has been tested by de-

velopers, testing a tenant application is equivalent to ensuring that there is no t-way

interaction faults for t ≥ 2 among the elements in a set.

The TA uses the principle that if a t-way interaction is faulty, every (t + 1)-way

interaction that contains the t-way interaction as a subset is necessarily faulty. The

TA provides guidance for the testing process based on test results so far. Each new

test result may indicate if additional tests are needed to test a specific configuration.

The TA is an algebraic system, primarily intended to track the test results without

3

knowing how these results were obtained. Specifically, it does not record the execution

sequence of previously executed test cases. Because of this, it is possible to allocate

different configurations to different processors for execution in parallel or in any order,

and the test results are merged following the TA rules. The execution order and the

merge order do not affect the merged results if the merging follows the TA operation

rules.

4

Chapter 2

RELATED WORK

2.1 Software Testing

Software testing is an essential activity in software development to ensure the

correctness of program, or software quality Zhang et al. (2014). In general, testing is

often an after-thought for a new technology, and it was not considered beforehand.

Software testing uses different test cases to detect potential software bugs that cannot

be identified during software development. Many testing methods have been proposed

and used to increase the quality and reliability of software and systems Zhang et al.

(2014); Mathur (2013). For example, black-box testing tests the functionality of an

application without knowing its internal structures or workings Wikipedia (2014c) and

white-box testing tests internal structures or workings of an application Wikipedia

(2014g). Conventional software testing already faces significant complexity issues

as number of data, paths, combinations, and permutations that are already large

(exponential).

One main challenge of software testing is to represent the variability in an ex-

pressive and practical way. Domain-specific languages, feature diagrams, and other

modeling techniques are used to express variability Sinnema and Deelstra (2007).

Another challenge is to generate test cases automatically using a description of

the variability to reveal faults effectively. Testing all combinations of inputs and/or

configurations is infeasible in general Kaner et al. (1999); Muller and Friedenberg

(2007). The number of defects in a software product can be large, and defects occur-

ring infrequently are difficult to find. Testing regimes balance the needs to generate

5

tests quickly, to employ as few tests as possible, and to represent as many of the

potential faults in tests as possible.

Determining the presence of faults caused by a small number of interacting ele-

ments has been extensively studied in component-based software testing. When in-

teractions are to be examined, testing involves a combination-based strategy Grindal

et al. (2005a). Random testing (see Arcuri and Briand (2012), for example) selects

each test configuration (i.e., one choice for each component) randomly without refer-

ence to earlier selections. Adaptive random testing (ART) algorithms generate test

suites use restricted random testing Huang et al. (2012) generate tests that are as

”different” as possible from one another. Adaptive distance-based testing typically

uses Hamming distance and uncovered combinations distance to generate combina-

torial testing test suites. Parameters are ordered at random during the process of

generating the next test case. Each parameter is assigned to a maximal value of the

distance against the previously generated test cases Bryce et al. (2011).

2.2 Cloud Testing

Cloud computing plays an important role today. Many traditional softwares are

hosted in cloud. The traditional software design has been changed, according to the

new features of cloud.

• Multi-tenancy architecture: The software is designed to support multiple

tenants to process their requirements at the same time. Each tenant shares the

data, configuration, user management, and so on. Significant trade-offs exist

between customization capability, security, and performance;

• Sub-tenancy architecture: It is another significant levels of complexity as

tenant applications need to act as the SaaS infrastructure. Tenant application

6

allows its own sub-tenant to develop applications. New issues includes sharing

and security control, such as information flow;

• Adaptive architecture and design: Self-describing, self-adaptive, and tenant-

aware units that can be migrated to any processors, also extend the design all

the way to storage and network.

Cloud also introduces new testing issues. Not only new designs of cloud software

need to be tested, but also testing tenant applications needs to involve SaaS infras-

tructure and as SaaS/PaaS often provides automated provisioning, scheduling, and

built-in fault-tolerant computing including migration. Test engines need to monitor

all changes in tenant application, such as increased/decreased resource, process relo-

cation, and automated recovery. And additional resources may be needed to perform

similar relocation to ensure testing completeness. Even running the same experiments

in the same infrastructure may produce different performance and behaviors.

SaaS testing is a new research topic Tsai et al. (2010b); Gao et al. (2011b); Tsai

et al. (2012). It is concerned with identifying those interactions that are faulty includ-

ing their numbers and locations. Furthermore, the number and location of faults may

change as new components are added to the SaaS database. Using policies and meta-

data, test cases can be generated to test SaaS applications. Testing can be embedded

in the cloud platform in which tenant applications are run Tsai et al. (2010b). Gao

proposed a framework for testing cloud applications Gao et al. (2011b), and proposed

a measure for testing scalability. Another scalability measure was proposed in Tsai

et al. (2012).

7

2.3 Combinatorial Designs

The concepts of combinatorial objects are not new to testing. The use of orthog-

onal arrays in statistically designed experiments are discussed Hedayat et al. (1999).

Then the ideas are extended to different areas, including software testing. The com-

binatorial test suites are represented abstractly in mathematical and algorithmic way.

A small number of test suites that covers many combinations of parameters is gen-

erated for the System Under Test (SUT). The following combinatorial designs are

used.

2.3.1 Latin Square

A Latin square is an n*n array filled with n different symbols, each occurring

exactly once in each row and exactly once in each column Wikipedia (2014e). One

classic computable formula for the number of L(n) of n*n array is
∏n

k=1(k!)
n
k ≥

L(n) ≥ (n!)2n

nn2 van Lint and Wilson (1992). Figure 2.1 shows the 7*7 Latin square.

Orthogonal Latin squares were used for testing compilers Mandl (1985). Orthogonal

Latin squares were also used in the testing of network interfaces Williams and Probert

(1996).

2.3.2 Orthogonal Array

An Orthogonal Array (OA) is an n*k matrix with run size n, factor number k,

and strength t that is denoted by (n, si, t). Each column i has exactly si symbols,

1 ≤ i ≤ k. In every n*k sub-array, each ordered combination of symbols from the

t columns appears equally often in the rows Zhang et al. (2014). An OA is simple

if it does not contain any repeated rows Wikipedia (2014f). An example of a 2-(4,

5, 1) orthogonal array with a strength 2, and 4 level design of index 1 with 16 runs

8

Figure 2.1: Latin Square Example

is shown in Figure 2.2 Wikipedia (2014f). An even distribution of all the pairwise

combinations of values can be got in any two columns in the array. Orthogonal Array

Testing System (OATS), that contains Robust Testing concept, uses orthogonal arrays

to generate test suites for a software system Brownlie et al. (1992).

2.3.3 Covering Array

A Covering Array (CA) is an n*k array with run size n, factor number k, and

strength t denoted by (n, di, t) that is similar as OA. Exactly di symbols are in

each column i, 1 ≤ i ≤ k. Each ordered combination of symbols from the t columns

appears at least once in every n*k sub-array Zhang et al. (2014). For example, a CA

with notation (9, 24, 3) is shown in Figure 2.3 (a) Ahmed and Zamli (2011). There

are four parameters and each one has two values that are represented in nine rows. A

mixed level covering array (MCA) denoted by (n, t, k, (v1, ..., vk)) is also an n*k array

in which the entries of the ith column arise from an alphabet of size vi; in addition,

choosing any t distinct columns i1, ..., it, every t-tuple containing, for 1 ≤ j ≤ t, one

of the vij entries of column ij, appears in columns i1, ..., it, in at least one of the N

rows Colbourn et al. (2006). Figure 2.3 (b) represents a MCA with notation (12, 3,

9

Figure 2.2: Orthogonal Array Example

23, 31) Ahmed and Zamli (2011). There are four parameters having three values and

five parameters having four values to cover 4-way interactions that are represented in

12 rows.

2.4 Combinatorial Testing

A large number of components are used in software development. Faults often

arise from unexpected interactions among the components during software execution

Zhang et al. (2014). Combinatorial Testing (CT) is type of software testing methods

in revealing these faults. It tests all possible discrete combinations of input parameters

Wikipedia (2014a). CT can detect failures triggered by interactions of parameters

10

Figure 2.3: CA and MCA Examples

Figure 2.4: Classification Scheme for Combination Strategies Grindal et al. (2005a)

with a covering array test suite generated by some sampling mechanisms. Different

CT strategies are shown in Figure 2.4. There are two main types of CT strategies.

One is deterministic and the other one is non-deterministic.

As the number of possible combinations is too large, CT needs to use a relatively

small number of test suites to cover as many combinations of parameters or conditions

as possible. Test coverage measures the amount of testing performed by a set of test

and is used to evaluate the efficiency of testing methods.

test coverage = number of coverage items exercised
total number of coverage items

∗ 100%

Existing CT methods focus on test coverage and try to use the minimum test

cases to reach the highest test coverage. The well-known CT algorithms are briefly

11

discussed in the following paragraphs.

2.4.1 Covering Array for Testing

A CA of strength t is a collection of tests so that every t-way interaction is covered

by at least one of the tests. CAs reveal faults that arise from improper interaction of

t or fewer elements Porter et al. (2007). The strength of CA is important for testing.

The strength t is the set of (Pi, ti), Pi is a set of parameters, and ti is a covering

strength on Pi, for 1 ≤ i ≤ l Zhang et al. (2014). (Pi, ti) covers all ti-way combinations

of Pi. When the strength increases, the number of test cases may increase rapidly

and the testing will be more complete Zhang et al. (2014). There are numerous

computational and mathematical approaches for construction of CAs with few tests

Colbourn (2011); Kuliamin and Petukhov (2011).

If a t-way interaction causes a fault, executing a test that contains that t-way

interaction must reveal the presence of at least one faulty interaction. CAs strive

to certify the absence of faults, and are not directed toward finding faults that are

present. Executing each test of a CA, certain interactions are then known not to be

faulty, while others appear only in tests that reveal faults, and hence may be faulty. At

this point, a classification tree analysis builds decision trees for characterizing possible

sets of faults. This classification analysis is then used either to permit a system

developer to focus on a small collection of possible faults, or to design additional

tests to further restrict the set of possible faults. In Yilmaz et al. (2004), empirical

results demonstrate the effectiveness of this strategy at limiting the possible faulty

interactions to a manageable number.

12

2.4.2 Automatic Efficient Test Generator

Combinatorial interaction testing (CIT) ensures that every interaction among t

or fewer elements is tested, for a specified strength t. Among the early methods,

Automatic Efficient Test Generator (AETG) Cohen et al. (1997, 1996a) popularized

greedy one-test-at-a-time methods for constructing such test suites. In the literature,

the test suite is usually called a covering array, defined as follows. Suppose that there

are k configurable elements, numbered from 1 to k. Suppose that for element c, there

are vc valid options. A t-way interaction is a selection of t of the k configurable

elements, and a valid option for each. A test selects a valid option for every element,

and it covers a t-way interaction if, when one restricts the attention to the t selected

elements, each has the same option in the interaction as it does in the test.

For example, there are 13 components and each component has 3 options (marked

as 1, 2, and 3). It would have 313 = 1,594,323 test cases. All pairwise interactions

can be checked with the 19 test cases shown in Figure 2.5 Cohen et al. (1994). This

is a reduction of more than 99.999% from the 1,594,323 tests required for exhaustive

testing.

Another way to evaluate combination strategies is on the basis of achieved code

coverage of the generated test suites Grindal et al. (2005a). Test suites generated

by AETG for 2-wise coverage reached over 90% block coverage Cohen et al. (1996b).

AETG reached 93% block coverage with 47 test cases, compared with 85% block

coverage for a restricted version of Base Choice (BC) using 72 test cases Burr and

Young (1998).

13

Figure 2.5: AETG Example Cohen et al. (1994)

2.4.3 In-Parameter-Order

The in-parameter-order (IPO), as one greedy strategy of generating CAs, was

proposed by Lei and Tai to extend CA in parameter order for combinatorial testing

Lei and Tai (1998); Zhang et al. (2014). The extension process starts from a pairwise

test set generated for the first two parameters. It gradually extends a small CA to

a large CA by adding one additional parameters each time. When an additional

parameter is added, the existing pairwise test set extends in horizontal and vertical

direction respectively Lei and Tai (1998).

• Horizontal extension: Add a new column, when a new parameter is added.

• Vertical extension: Add new rows to cover those uncovered combinations by

horizontal extension.

The extension process repeats until all parameters are covered.

For instance, a system has three parameters A, B, and C Lei (2005).

14

Figure 2.6: IPO Example Lei (2005)

• Parameter A has values A1 and A2;

• Parameter B has values B1 and B2;

• Parameter C has values C1, C2, and C3.

The IPO extension process is shown in Figure 2.6. When parameter C is added, a

new column is added for the extension of parameter C. After that, two rows are added

according to the extension of parameter C.

The time complexity of IPO is superior to the time complexity of AETG Grindal

et al. (2005a). IPO has a time complexity of O(v3N2 log(N)) and AETG has a time

complexity of O(v4N2 log(N)), where N is the number of parameters, each of which

has v values Tai and Lei (2002).

2.4.4 Genetic Algorithm

A genetic algorithm (GA) is a search heuristic that mimics the process of natural

selection Wikipedia (2014d). GA is best defined as a pollution based search algorithm

based loosely on concepts from biologic evolution Rajappa et al. (2008). GA is an

iterative algorithm that is used to find CAs. In each iteration, it involves inheritance,

mutation, selection, and crossover. A chromosome as a candidate solution that is

distinct pairwise interaction covered by its configuration is evaluated by GA Ghazi

15

and Ahmed (2003). The basic AETG is extended with GA. The uncovered new t-way

combinations are covered by AETG-GA. In each generation, the best chromosomes

are kept and survive to the next generation Shiba et al. (2004).

2.4.5 Backtracking Algorithm

Backtracking algorithm is used to finding solutions of constraint satisfaction prob-

lems and is often implemented by a search tree. It extends a partial solution by

choosing values for variables incrementally until all constraint are satisfied Zhang

et al. (2014). It abandons each partial solution as soon as it determines that the

partial solution cannot possibly be completed to a valid solution Wikipedia (2014b).

Unlike brute force, backtracking checks candidate solutions, if any constraint is vio-

lated, when a variable is assigned Zhang et al. (2014).

2.4.6 Fault Detection

There are conflicting claims in the literature concerning the effectiveness of ran-

dom, anti-random, and combinatorial interaction test suites at finding faults. Ac-

cording to Huang et al. (2012), ART-based tests cover all t-way interactions more

quickly than randomly chosen tests. At the same time they often detect more failures

earlier and with fewer test cases. According to Cohen et al. (1997); Dalal et al. (1999);

Yilmaz et al. (2004), combinatorial interaction testing yields small test suites with

high code coverage and good fault detection ability. In CIT, construction of the best

test suite Grindal et al. (2005b); Nie and Leung (2011) can be costly; even a solution

with a small number of tests that guarantees complete coverage of t-way interactions

may be difficult to produce. This has led to the frequent use of random testing Arcuri

et al. (2010); Duran and Ntafos (1984).

Schroeder et al. Schroeder et al. (2004) compare the fault detection effectiveness of

16

combinatorial interaction test suites with equally-sized random test suites. Their re-

sults indicate that there is no significant difference in the fault detection effectiveness.

Dalal and Mallows Dalal and Mallows (1998) also indicate that no matter the input

size is, the numbers of interactions covered in same-sized random and combinatorial

interaction test suites are similar in many cases. However, Bryce and Colbourn Bryce

and Colbourn (2007, pear) observe that these comparisons used covering arrays that,

while the best known at the time, are far from the smallest ones available. Repeat-

ing the determination of fault detection times using the smaller arrays now known

changes the conclusion completely. Indeed for the situations examined in Dalal and

Mallows (1998); Schroeder et al. (2004), improving the size of the covering array used

results in the random method covering a much smaller fraction of the possible faults.

Moreover, covering arrays generated by a one-test-at-a-time method produced the

best rate of fault detection.

2.5 Adaptive Reasoning Algorithm

The Adaptive Reasoning (AR) algorithm is a strategy to detect faults in SaaS Tsai

et al. (2013b). The algorithm uses earlier test results to generate new test cases to

detect faults in tenant applications. It uses three principles:

• Principle 1: When a tenant configuration fails a test, there is at least one

faulty interaction covered by the tenant configuration.

• Principle 2: When a tenant application passes a test, there is no faulty inter-

action covered by the tenant configuration.

• Principle 3: Whenever a configuration covers one or more faulty interactions,

it is faulty.

17

2.5.1 Other Related Topics and Proposal Motivation

Test results are used to isolate the faulty combinations that cause the software

under test to fail. Effective classification can increase efficiency Shakya et al. (2012):

The faulty combinations in scenarios where failures are not commonly observed are

classified. Test augmentation and feature selection can be used to enhance classifica-

tion.

ACTS (Advanced Combinatorial Testing System), a combinatorial test generation

research tool, supports t-way combinatorial test generation with several advanced

features such as mixed-strength test generation and constraint handling Yu et al.

(2013); Borazjany et al. (2012).

Existing CT methods use different strategies to generate test cases and only iden-

tify faulty configurations, but do not exploit the faulty root of each configuration.

Our methods do not rely on whether random, anti-random, combinatorial interac-

tion, or another type of combination-based test suite generation is used. We focus on

the task of large-scale distributed testing, analyzing, merging and maintaining test

results in order to reduce the amount of testing needed.

18

Chapter 3

TEST ALGEBRA FOR CONCURRENT COMBINATORIAL TESTING

3.1 Test Algebra

Let C be a finite set of components. A configuration is a subset T ⊆ C. One is

concerned with determining the operational status of configurations. To do this, one

can execute certain tests; every test is a configuration, but there may be restrictions

on which configurations can be used as tests. If a certain test can be executed, its

execution results in an outcome of passed (operational) or failed (faulty).

When a test execution yields a passing result, all configurations that are subsets

of the test are operational. However, when a test execution yields a faulty result, one

only knows that at least one subset causes the fault, but it is unclear which of these

subsets caused the failure. Among a set of configurations that may be responsible

for faults, the objective is to determine, which cause faults and which do not. To do

this, one must identify the set of candidates to be faulty. Because faults are expected

to arise from an interaction among relatively few components, one considers t-way

interactions. The t-way interactions are It = {U ⊆ C : |U | = t}. Hence the goal is

to select tests, so that from the execution results of these tests, one can ascertain the

status of all t-way interactions for some fixed small value of t.

Because interactions and configurations are represented as subsets, one can use

set-theoretic operations such as union, and their associated algebraic properties such

as commutativity, associativity, and self-absorption. The structure of subsets and

supersets also plays a key role.

To permit this classification, one can use a valuation function V , so that for every

19

subset S of components, V (S) indicates the current knowledge about the operational

status consistent with the components in S. The focus is on determining V (S) when-

ever S is an interaction in I1 ∪ · · · ∪ It. These interactions can have one of five

states.

• Infeasible (X): For certain interactions, it may happen that no feasible test

is permitted to contain this interaction. For example, it may be infeasible to

select two GUI components in one configuration such that one says the wall is

GREEN but the other says RED.

• Faulty (F): If the interaction has been found to be faulty.

• Operational (P): If an interaction has appeared in a test whose execution gave

an operational result, the interaction cannot be faulty.

• Irrelevant (N): For some feasible interactions, it may be the case that cer-

tain interactions are not expected to arise, so while it is possible to run a test

containing the interaction, there is no requirement to do so.

• Unknown (U): If none of these occurs then the status of the interaction is

required but not currently known.

Any given stage of testing, an interaction has one of the five possible status in-

dicators. These five status indicators are ordered by X ≻ F ≻ P ≻ N ≻ U under a

relation ≻, and it has a natural interpretation to be explained in a moment.

3.1.1 Learning from Previous Test Results

The motivation for developing an algebra is to automate the deduction of the

status of an interaction from the status of tests and other interactions, particularly

in combining the status of two interactions. Specifically, one is often interested in

20

determining V (T1 ∪ T2) from V (T1) and V (T2). To do this, a binary operation ⊗ on

{X, F, P, N, U} can be defined, with operation table as follows:

⊗ X F P N U

X X X X X X

F X F F F F

P X F U N U

N X F N N N

U X F U N U

The binary operation ⊗ is commutative and associative (see the appendix for

proofs):

V (T1)⊗ V (T2) = V (T2)⊗ V (T1),

V (T1)⊗ (V (T2)⊗ V (T3)) = (V (T1)⊗ V (T2))⊗ V (T3).

Using the definition of ⊗, V (T1 ∪ T2) ≽ V (T1)⊗ V (T2). It follows that

1. Every superset of an infeasible interaction is infeasible.

2. Every superset of a failed interaction is failed or infeasible.

3. Every superset of an irrelevant interaction is irrelevant, failed, passed, or infea-

sible.

A set S is an X-implicant if V (S) = X but whenever S ′ ⊂ S, V (S ′) ≺ X. The

X-implicants provide a compact representation for all interactions that are infeasible.

Indeed for any interaction T that contains an X-implicant, V (T) = X. Furthermore,

a set S is an F-implicant if V (S) = F but whenever S ′ ⊂ S, V (S ′) ≺ F. For any

interaction T that contains an F-implicant, V (T) ≽ F. In the same way, a set S is

an N-implicant if V (S) = N but whenever S ′ ⊂ S, V (S ′) = U. For any interaction T

that contains an N-implicant, V (T) ≽ N. An analogous statement holds for passed

21

interactions, but here the implication is for subsets. A set S is a P-implicant if

V (S) = P but whenever S ′ ⊃ S, V (S ′) ≽ F. For any interaction T that is contained

in a P-implicant, V (T) = P.

Implicants are defined with respect to the current knowledge about the status of

interactions. When a t-way interaction is known to be infeasible, failed, or irrelevant,

it must contain an X-, F-, or N-implicant. By repeatedly proceeding from t-way to

(t + 1)-way interactions, then, one avoids the need for any tests for (t + 1)-way in-

teractions that contain any infeasible, failed, or irrelevant t-way interaction. Hence

testing typically proceeds by determining the status of the 1-way interactions, then

proceeding to 2-way, 3-way, and so on. The operation ⊗ is useful in determining

the implied status of (t + 1)-way interactions from the computed results for t-way

interactions, by examining unions of the t-way and smaller interactions and deter-

mining implications of the rule that V (T1 ∪ T2) ≽ V (T1) ⊗ V (T2). Moreover, when

adding further interactions to consider, all interactions previously tested that passed

are contained in a P-implicant, and every (t+1) interaction contained in one of these

interactions can be assigned status P.

For example, suppose that V (a, b) = P and V (a, e) = X. Then V (a, b, e) ≽

V (a, b)⊗ V (a, e) = X.

The valuation of the 3-way interaction (a, b, c) can often be inferred from valua-

tions 2-way interactions (a, b), (a, c), (b, c). If any contained 2-way interaction has

value F, the valuation of (a, b, c) is F, without further testing needed. But if all values

of the contained 2-way interactions are P, then (a, b, c) either has valuation X or N, or

it needs to be tested (its valuation is currently U).

22

3.1.2 Changing Test Result Status

The status of a configuration is determined by the status of all interactions that

it covers.

1. If an interaction has status X (F), the configuration has status X (F).

2. If all interactions have status P, the configuration has status P.

3. If some interactions still have status U, further tests are needed.

It is important to determine when an interaction with status U can be deduced to

have status F or P instead. It can never obtain status X or N once having had status

U.

To change U to P: An interaction is assigned status P if and only if it is a subset

of a test that leads to proper operation.

To change U to F: Consider the candidate T , one can conclude that V (T) = F if

there is a test containing T that yields a failed result, but for every other candidate

interaction T ′ that appears in this test, V (T ′) = P. In other words, the only possible

explanation for the failure is the failure of T .

3.1.3 Matrix Representation

Suppose that each individual component passed the testing. Then the operation

table starts from 2-way interactions, then enlarges to t-way interactions step by step.

During the procedure, many test results can be deduced from the existing results

following TA rules. For example, all possible configurations of (a, b, c, d, e, f) can

be expressed in the form of matrix, or operation table. First, we show the operation

table for 2-way interactions. The entries in the operation table are symmetric and

those on the main diagonal are not necessary. So only half of the entries are shown.

23

Figure 3.1: 3-way Interaction Operation Table

As shown in Figure 3.1, 3-way interactions can be composed by using 2-way in-

teractions and components. Thus, following the TA implication rules, the 3-way

interaction operation table is composed based on the results of 2-way combinations.

Here, (a, b, c, d, e, f) has more 3-way interactions than 2-way interactions. As seen

in Figure 3.1, a 3-way interaction can be obtained through different combination-

s of 2-way interactions and components. For example, {a, b, c} = {a} ∪ {b, c} =

{b} ∪ {a, c} = {c} ∪ {a, b} = {a, b} ∪ {a, c} = {a, b} ∪ {b, c} = {a, c} ∪ {b, c}.

24

V (a)⊗V (b, c) = V (c)⊗V (a, b) = V (a, b)⊗V (b, c) = P⊗P = U. But V (b)⊗V (a, c) =

V (a, b)⊗ V (a, c) = V (b, c)⊗ V (a, c) = P⊗ F = F. As the TA defines the order of the

five status indicators, the result is the highest obtained. So V (a, b, c) = F.

⊗ a b c d e f

a P F N X U

b P X N F

c F P P

d F X

e U

f

3.1.4 Relationship Between Configuration and Its Interactions

One configuration contains many different interactions. The status of one configu-

ration is composed by merging tests results of all its interactions. The status of T can

be defined as V (T) =
⊙

I⊆T V (I), where I is an interaction covered by configuration

T and ⊙ is defined as

⊙ X F P N U

X X X X X X

F X F F F F

P X F P U U

N X F U U U

U X F U U U

That is

1. If any interaction covered by configuration T has a status X, then V (T) =

X; (Otherwise, at least one interaction of configuration T is allowed by the

specification, it cannot say that T is infeasible.)

25

2. If any interaction covered by configuration T has a status F and no one is

infeasible, then V (T) = F;

3. If all interactions of configuration T are irrelevant or unknown, then V (T) = U;

4. If some interactions covered by configuration T have status P, the other ones

have status N or U, and no one is infeasible or failed, then V (T) = U, so further

testing is needed to determine the status of configuration T ;

5. All interactions covered by configuration T have status P, then V (T) = P.

For example, suppose that configuration T has three interactions I1, I2, I3. Ac-

cording to T = (I1, I2, I3), combinations of interaction test results can be used to

determine the configuration test result. Based on the TA associative rules,

V (T) = V (I1)⊙V (I2)⊙V (I3)⊙V (I1, I2)⊙V (I2, I3)⊙V (I1, I3)⊙V (I1, I2, I3)

= (V (I1)⊙ V (I2)⊙ V (I3))⊙ (V (I1, I2)⊙ V (I2, I3)⊙ V (I1, I3))⊙ V (I1, I2, I3)

= (V (I1)⊙ V (I2)⊙ V (I3))⊙ (V (I1, I2)⊙ V (I2, I3))⊙ (V (I1, I3)⊙ V (I1, I2, I3))

= (V (I1)⊙ V (I2))⊙ (V (I3)⊙ V (I1, I2))⊙ (V (I2, I3)⊙ V (I1, I3))⊙ V (I1, I2, I3)

=

3.1.5 Merging Concurrent Testing Results

One way to achieve efficient testing is to allocate (overlapping or non-overlapping)

tenant applications into different clusters; each cluster is sent to a different set of

servers for execution. Once each cluster completes, test results can be merged. The

testing results of a specific interaction T in different servers should satisfy:

• If V (T) = U in one cluster, then in other clusters, the same V (T) can be either

F, P, N, or U.

26

• If V (T) = N in one cluster, then in other clusters, the same V (T) can be either

F, P, N, or U.

• If V (T) = P in one cluster, then the same V (T) can be either P, N, or U in all

clusters;

• If V (T) = F in one cluster, then in other clusters, the same V (T) can be F, N,

or U.

• If V (T) = X in one cluster, then in other clusters, the same V (T) can be X only.

If these constraints are satisfied, testing results can be merged. Otherwise, there must

be an error in the results. To represent this situation, a new status indicator, error

(E), is introduced with E ≻ X. We define a binary operation ⊕ on {E, X, F, P, N, U},

with operation table:

⊕ E X F P N U

E E E E E E E

X E X E E E E

F E E F E F F

P E E E P P P

N E E F P N U

U E E F P U U

Operation ⊕ is also commutative and associative; see the appendix for proofs.

Using ⊕, merging two testing results from two different servers can be defined as

Vmerged(T) = Vcluster1(T) ⊕ Vcluster2(T). The merge can be performed in any order

due to the commutativity and associativity of ⊕. If the constraints of the merge

are satisfied and V (T) = X, F, or P, the results can only be changed when there

are errors in testing. When V (T) = E, the testing environment must be corrected

and tests executed again after fixing the error(s) in testing. For example, when

27

Vcluster1(a, c, e) = X and Vcluster2(a, c, e) = F, Vmerged(a, c, e) = X ⊕ F = E. The error

with the tests for interaction (a, c, e) must be fixed.

Using associativity of ⊕,

V1(T)⊕ V2(T)⊕ V3(T)

= (V1(T)⊕ V2(T))⊕ V3(T)

= V1(T)⊕ (V2(T)⊕ V3(T))

= V1(T)⊕ V2(T)⊕ V3(T)⊕ V3(T)

= (V1(T)⊕ V2(T))⊕ (V2(T)⊕ V3(T))

= ((V1(T)⊕ V2(T))⊕ V2(T))⊕ V3(T)

= (V3(T)⊕ V2(T))⊕ (V3(T)⊕ V1(T))

Thus one can partition the configurations into overlapping sets for different server-

s. Conventional cloud computing operations such as MapReduce require that data

should not overlap. In TA, this is not a concern.

There are six components T1, T2, T3, T4, T5, T6. They have the following relation-

ships. T1 = T2 ∪ T3, T2 = T4 ∪ T6, T3 = T4 ∪ T5.

• V (T1) = V (T2 ∪ T3) = V (T2) ⊗ V (T3) = (V (T4) ⊗ V (T6)) ⊗ (V (T4) ⊗ V (T5))

= (V (T4)⊗ V (T4))⊗ (V (T6)⊗ V (T5)) = V (T4)⊗ V (T6)⊗ V (T5)

• V1(T1)⊕V2(T1) = V1(T2∪T3)⊕V2(T2∪T3) = (V1(T2)⊗V1(T3))⊕(V2(T2)⊗V2(T3))

• Vx = V1(T1)⊕ V3(T1) = Vy = V1(T1)⊕ V2(T1)

In last paragraph, it uses ⊙ to analyze the relationship between configuration and

its interactions. For example, configuration T has four interactions I1, I2, I3, I4.

Three servers (server1, server2, server3) are used to test these interactions. Test

workloads may be assigned to different servers. The returned test results may be

28

overlapping.

Server1 Server2 Server3

I1 assigned assigned

I2 assigned assigned

I3 assigned assigned

I4 assigned assigned assigned

I1, I2, I3, and I4 have 2, 2, 2, and 3 test results from different servers respectively.

Total 24 possible combinations of interaction test results can be used to finalize con-

figuration test result through dot operation defined by TA. During using ⊙ operation,

⊕ can also be used to merge results from different servers. The following results can

be derived according to ⊕ and ⊙ rules.

V (T) = Vs1(I1)⊙ Vs2(I2)⊙ Vs1(I3)⊙ Vs1(I4)

= Vs1(I1)⊙ Vs3(I2)⊙ Vs2(I3)⊙ Vs1(I4)

= Vs2(I1)⊙ Vs3(I2)⊙ Vs2(I3)⊙ Vs2(I4)

= Vs2(I1)⊙ Vs3(I2)⊙ Vs1(I3)⊙ Vs3(I4)

= (Vs1(I1)⊕ Vs2(I1))⊙ Vs3(I2)⊙ Vs2(I3)⊙ Vs1(I4)

= (Vs1(I1) ⊕ Vs2(I1)) ⊙ (Vs2(I2) ⊕ Vs3(I2)) ⊙ Vs2(I3) ⊙ Vs1(I4) = (Vs1(I1) ⊕

Vs2(I1))⊙ (Vs2(I2)⊕Vs3(I2))⊙ (Vs1(I3)⊕Vs2(I3))⊙ (Vs1(I4)⊕Vs2(I4)⊕Vs3(I4))

=

29

3.1.6 Distributive Rule

To examine the distributivity of ⊗ over ⊕, the definition of ⊗ is extended to

support E:

⊗ E X F P N U

E E E E E E E

X E X X X X X

F E X F F F F

P E X F U N U

N E X F N N N

U E X F U N U

In general, the distributivity of ⊗ over ⊕ does not hold. Instead, V (T1)⊗(V1(T2)⊕

V2(T2)) ≽ (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)).

Equality holds when V1(T2) ⊕ V2(T2) is not E (this distributivity of ⊗ over ⊕ is

proved in appendix). This can be used to further merge concurrent testing results.

For example, test result of configuration (a, b, c) is infeasible that is merged by three

test results from Server1, Server2, and Server3. Similarly, configuration (b, c, d) has

status P that is merged by two test results from Server1 and Server2. Configuration

(a, b, c, d) contains configuration (a, b, c), (b, c, d), and other configurations. The test

result for configuration (a, b, c, d) can be obtained by merging test results of all of these

configurations. Since V (a, b, c) = X, no matter what status of other configuration is,

configuration (a, b, c, d) always has infeasible status.

3.1.7 Relationship Among Different Type Configurations

This paragraph explores the relationship among different type configurations. The

definition of each factor:

30

• Component: E

• Options of Each Component: K

• Configuration: G

• Infeasible Configuration: X

• Faulty Configuration: F

• Operational Configuration: P

• Irrelevant Configuration: N

• Unknown Configuration: U

• Repeating Counted Configuration: R

The total number of configurations (G) is (2K)E. TA is only used to analyze t-way

configurations for 2 ≤ t ≤ 6 in this paper. The following equations show the number

of each type configuration.

• Number of Configurations (NC):∑6
m=2 C

m
E Km, m ∈ Z

• Number of Infeasible Configurations (NXC):∑6
m=2[Xm(1 +

∑6−m
n=1 Cn

E−m)]−RX , m ∈ Z, n ∈ Z

• Number of Faulty Configurations (NFC):∑6
m=2[Fm(1 +

∑6−m
n=1 Cn

E−m)]−RF , m ∈ Z, n ∈ Z

• Number of Operational Configurations (NPC):∑6
m=2 Pm, m ∈ Z

31

Figure 3.2: The Number of Configurations

• Number of Irrelevant Configurations (NNC):∑6
m=2 Nm, m ∈ Z

• Number of Unknown Configurations (NUC):∑6
m=2 Um = NUC = NC −NXC −NFC −NPC −NNC, m ∈ Z, n ∈ Z

The relationships among different type configuration are shown in Figure 5.1. The

rectangle is the the number of configurations. Infeasible, faulty, operational, and irrel-

evant configuration is represented by red, yellow, blue, and purple circle respectively.

The remain grey part of rectangle represent unknown configurations. The size of each

circle corresponds to the number of related configurations. Operational and irrelevant

configurations have larger number than infeasible and faulty configurations.

Since infeasible, faulty, and irrelevant configurations can be used to reduce the TA

analysis workloads, it gets the following conclusions.

• If the number of infeasible (X) configurations is large or increases, more related

infeasible configurations will be eliminated for testing consideration.

• If the number of faulty (F) configurations is large or increases, more related

faulty configurations will be eliminated for testing consideration.

32

• If the number of irrelevant (N) configurations is large or increases, more related

irrelevant configurations will be eliminated for testing consideration.

Those infeasible, faulty, and irrelevant configurations can be used to eliminate

candidate testing configurations. Oppositely, operational configurations do not work

for eliminating candidate testing configurations. The operational configurations can

be used as subsets of other candidate configurations. Their operational results can

be reused in TA analysis. So maximizing the infeasible, faulty, and irrelevant config-

urations as the initial settings is a good way to eliminate related configurations in

testing consideration and increase the testing efficiency. However, the meta infeasible

and faulty configurations must be got though testing, so it is difficult to maximize

infeasible and faulty configurations at the beginning of testing. But according to the

relationships among different components, it is easy to maximize irrelevant configu-

rations in a short time.

myexperiment.org showed that a lot of N can be generated or the number of N can

be very large. So large, N table may not be necessary, anything not in X, F, P, U tables

can be considered as in the N table.

While the number of possible combinations of software published at myexperi-

ment.org is large, but most of these combinations are N (irrelevant) and thus do not

need to be tested. The following examples illustrate this point.

• QR code (matrix code) generator

This workflow uses the QR code service provided by the ChemTools project.

It has four components (shown in Table 3.1), the total number of possible

combinations is 16. The total number of actual combinations is 2. Actual

combinations are only 12.5% of possible combinations. In this example, 12.5%

of possible combinations needs to be analyzed. The other 87.5% of possible

33

Table 3.1: QR Code Generator Components

Type Number

1 Input 1

2 QR code 1

3 Output 2

Table 3.2: Entrez Gene to KEGG Pathway Components

Type Number

1 Input 2

2 Add, split 2

3 Gene 3

4 Merge 2

5 Output 2

combinations are irrelevant that can be excluded from TA analysis.

• Entrez Gene to KEGG Pathway

This workflow takes in Entrez gene ids then adds the string ncbi-geneid: to the

start of each gene id. These gene IDs are then cross-referenced to KEGG gene

IDs. Each KEGG gene ID is then sent to the KEGG pathway database and

its relevant pathways returned. It has eleven components (shown in Table 3.2),

and the total number of possible combinations is 2048. The total number of

actual combinations is one. Actual combinations are only 0.0488% of possible

combinations.

• Gene annotation pipeline for graves disease scenarios illustrates the feasibility

of combinatorial testing for large component size

This is a revised workflow for the Graves disease scenario gene annotation

34

Table 3.3: Gene Annotation Pipeline Components

Type Number

1 Input 1

2 Get data 13

3 Get string and diagram 2

4 Remove and clean data 4

5 Calculation 5

6 Other 1

7 Output 12

pipeline used in the myGrid project. The workflow had to be re-written due to

the loss of the services invoked in the original workflow. It has 48 components

(shown in Table 3.3), and the total number of possible combinations is 248.

The total number of actual combinations is 19. Actual combinations are only

6.75 ∗ 10−12% of possible combinations. Almost all possible combinations are

irrelevant that can be excluded from TA analysis.

3.1.8 Measurements

• Related Configurations (RC):

For example, if the status of a configuration C = (C1, C2, C3) is known, sig-

nificant information is about those configuration D that contain C as a sub-

configuration.

– Related Configurations or RC(t, C) = the set of configurations that have

t elements with C as a sub-configuration.

– Cumulative Related Configurations or CRC(w,C) = Union(RC(t, C)) for

any t ≤ w, w is the total number of related configurations.

35

– CRC(w,C) ≥ RC(t, C), if w ≥ t.

• Reduction Ratio (RR):

– If the number of configurations needs to be tested after TA analysis is NC.

RR = NC/total number of configurations.

– X, F, N can reduce the number of configurations that need to be tested by

generating CRC(6, sum(X, F, N)). NC = CRC(6, sum(X, F, N)), and it is

computed by the following TA analysis algorithm:

∗ Starting from 2-way configurations, the simulation goes through each

2-way configuration, eliminate those initial X, F, P, and N 2-way con-

figurations, and identify those needs to be tested. For those needs to

be test, obtain the simulated test results.

∗ Once completing the 2-way configurations, all the tables are updated,

and start identifying those 3-way configurations that need to be tested

using the TA rules.

∗ Once completing the 3-way configurations, all the tables are updated,

and the process repeats for 4-way configurations to 6-way configura-

tions.

This can be done by TA computation, but TA analysis followed by testing,

followed by TA analysis, from t = 2 to t = 6.

– Parallel computing can be used to increase the speedup of TA analysis and

enhance the efficiency of TA analysis.

3.1.9 Incremental Development

Starting from a small SaaS, or a small subset of a SaaS, testing the tenant appli-

cations, and gradually develop the X, F, P, and U table incrementally.

36

• When a new component arrives without any association with any tenant, all

configurations with any components will be marked N.

• When a new component arrives and associated with a set of tenant applications,

all configurations of this component with any 2-way to 6-way configurations will

be marked as U, and sent to testing and TA analysis.

• TA will analyze if any of these new tenant applications need not be tested (if

any of them contains any X, F, or N).

• When a tenant application is tested, all 2-way, 3-way,.. 6-way configurations

with any new components will be marked P.

• If the tenant application is faulty, the faulty interaction must be identified, one

possible algorithm is to use AR algorithm to do so.

3.2 Conclusion

This paper proposes TA to address SaaS combinatorial testing. The TA provides

a foundation for concurrent combinatorial testing. The TA has two operations and

test results can have five states with a priority. By using the TA operations, many

combinatorial tests can be eliminated as the TA identifies those interactions that

need not be tested. Also the TA defines operation rules to merge test results done by

different processors, so that combinatorial tests can be done in a concurrent manner.

The TA rules ensure that either merged results are consistent or a testing error has

been detected so that retest is needed. In this way, large-scale combinatorial testing

can be carried out in a cloud platform with a large number of processors to perform

test execution in parallel to identify faulty interactions.

37

Chapter 4

CONCURRENT TEST ALGEBRA EXECUTION WITH COMBINATORIAL

TESTING

4.1 TA Analysis Framework

Figure 4.1 shows the relationship between TA and combinatorial testing. Com-

binatorial testing can use AETG, AR, or IPO Calvagna and Gargantini (2009) to

identify P and F configurations, and even fault locations. The identified configura-

tions and fault locations are saved as test results for future use. TA automatically

detects X or F configurations using existing X or F results. All X and F configurations

are eliminated from testing considerations. In combinatorial testing, test workloads

of those X and F candidate configurations are reduced by TA analysis. Similarly, those

N configurations can also be eliminated from considerations.

Figure 4.2 shows the concurrent design for TA analysis. There are many candidate

components for tenants to pick up to compose their own applications. The composed

applications of different tenants will be assigned to different clusters for analysis.

TA

Analysis

Combinatorial

Testing

Interaction (X, F, P, N, U)

Configuration (X, F, P, N, U)

Eliminate configurations from

testing considerations

(1) Identify pass/fault

configurations

(2) Identify fault location

Automated detection of X

or F configurations using

existing test results

AR

AETG

IPO

Figure 4.1: The Relationship Between TA and Combinatorial Testing

38

Figure 4.2: Concurrent TA Analysis Design

Each cluster has multiple servers to handle TA tasks in parallel.

The two-level architecture not only automatically balances the workloads across

multiple clusters and servers, but also scales up with increasing loads with automated

expansion. This is similar to the scalability architecture commonly used in SaaS Tsai

et al. (2012).

• Allocate by tenants at the first level: The tenants will be clustered based on the

similarity measured by configurations. Two tenants are similar to each other if

two share many components. similar tenants are grouped and assigned to the

same cluster.

• Allocate by configurations at second level: The configurations of each tenant

assigned to one cluster will be assigned to the same or different server in each

cluster for analyzing.

Concurrent algorithm is proposed to solve the distribution and collection of testing

39

workloads.

Algorithm 1 Concurrent for TA Analysis
Input:

Candidate test configuration ci, map cluster pi,

Output:

Reduce testing result ri, testing result of test case tri,

1: pi = (id n,
∑

ci of one candidate test set)

2: for all pi do

3: return tri

4: end for

5: ri = (n,
∑

ci, tri)

6: for all pi do

7: return ri

8: end for

The high level load balancer allocates testing and TA analysis tasks to different

clusters, and each cluster has its own local load balancer and it will dispatch testing

and TA analysis tasks to different servers within the cluster. All clusters share a

global database, and each sever within a cluster shares a local database for efficient

processing.

Test scripts and databases can be stored at the global database as well as at local

databases within clusters. As TA rules automatically detect test result consistency,

thus any temporary inconsistency between local database with the global database

can be resolved quickly once communicated.

The finished test results will be saved as PTR (Previous Test Result) and shared.

Before saving, all test results must be verified by the test oracle to check the correct-

ness. Only the correct test results will be saved in test database. Same configurations

40

may be analyzed in different clusters. In this case, if one cluster gets test result of

any configuration first, it can be shared and reused by others. For example, cluster1

gets that configuration (a, b) fails in combinatorial testing first. cluster2 and cluster3

can reuse the shared faulty result of configuration (a, b).

The following example illustrates the testing process of fifteen configurations. All

feasible configurations should be tested. For simplicity, assume that only configu-

ration (c, d, f) is faulty, and only configuration (c, d, e) is infeasible, and all other

configurations are operational. The existing test results of configurations can be used

to analyze test results of candidate configurations for reducing test workloads.

Example 1: If one assigns 1-10 configurations into Server1, 6-15 configurations

41

into Server2, and 1-5, 11-15 configurations into Server3.

Server1 Server2 Server3 Merged Results

(a,b,c,d) P P P

(a,b,c,e) P P P

(a,b,c,f) P P P

(a,b,d,e) P P P

(a,b,d,f) P P P

(a,b,e,f) P P P

(a,c,d,e) X X X

(a,c,d,f) F F F

(a,c,e,f) P P P

(a,d,e,f) P P P

(b,c,d,e) X X X

(b,c,d,f) F F F

(b,c,e,f) P P P

(b,d,e,f) P P P

(c,d,e,f) X X X

Example 2: If one assigns configurations 1, 3, 5, 7, 9, 11, 13, 15 into Server1, con-

figurations 2, 4, 6, 8, 10, 12, 14 into Server2, and 4-11 configurations into Server3.

If Server1 and Server3 do their own testing first, Server2 can reuse test results of

interactions from them to eliminate interactions that need to be tested. For exam-

ple, when testing 2-way interactions of configuration (b, c, d, f) in Server2, it can

reuse the test results of (b, c), (b, d) of configuration (b, c, d, e) from Server3, (b, f)

of configuration (a, b, c, f) from Server1. They are all passed, and it can reuse the

test results of (b, c, d) of configuration (a, b, c, d) from Server1, (b, c, f) of configura-

tion (a, b, c, f) from Server1, (b, d, f) of configuration (a, b, d, f) from Server1, and

42

(c, d, f) of configuration (a, c, d, f) from Server3. Because (c, d, f) is faulty, it can

deduce that 4-way configuration (b, c, d, f) is also faulty. For the sets of configuration

that are overlapping, their returned test results from different servers are the same.

The merged results of these results also stay the same.

Server1 Server2 Server3 Merged Results

(a,b,c,d) P P

(a,b,c,e) P P

(a,b,c,f) P P

(a,b,d,e) P P P

(a,b,d,f) P P P

(a,b,e,f) P P P

(a,c,d,e) X X X

(a,c,d,f) F F F

(a,c,e,f) P P P

(a,d,e,f) P P P

(b,c,d,e) X X X

(b,c,d,f) F F

(b,c,e,f) P P

(b,d,e,f) P P

(c,d,e,f) X X

If Server1 and Server3 do their own testing first, Server2 can reuse test results

of interactions from them to eliminate interactions that need to be tested. For ex-

ample, when testing 2-way interactions of configuration (b, c, d, f) in Server2, it can

reuse the test results of (b, c), (b, d) of configuration (b, c, d, e) from Server3, (b, f)

of configuration (a, b, c, f) from Server1. They are all passed, and it can reuse the

test results of (b, c, d) of configuration (a, b, c, d) from Server1, (b, c, f) of configura-

43

tion (a, b, c, f) from Server1, (b, d, f) of configuration (a, b, d, f) from Server1, and

(c, d, f) of configuration (a, c, d, f) from Server3. Because (c, d, f) is faulty, it can

deduce that 4-way interaction (b, c, d, f) is also faulty. For the sets of configuration

that are overlapping, their returned test results from different servers are the same.

The merged results of these results also stay the same.

The returned merged results from these two examples are same. Analyzing the

returned results, it can get the following results:

• All 2-way interactions: All of them pass the testing.

• All 3-way interactions: Except interaction (c, d, e) and (c, d, f), all the left

3-way interactions pass the testing.

• All 4-ways interactions: The 4-way interactions that contain (c, d, e) and

(c, d, f), such as (a, c, d, e), (a, c, d, f), (b, c, d, e), (b, c, d, f), and (c, d, e, f), do

not pass the testing. All the left 4-way interactions pass the testing.

• All fifteen configurations: Configurations (a, c, d, e), (a, c, d, f), (b, c, d, e),

(b, c, d, f), and (c, d, e, f) do not pass the testing. All the left configurations

pass the testing.

4.1.1 The Role of N in Concurrent Combinatorial Testing

Not only interactions, sets of configurations, CS1, CS2, . . . , CSK can be allocat-

ed to different processors (or clusters) for testing, and the test results can then be

merged. The sets can be non-overlapping or overlapping, and the merge process can

be arbitrary. For example, say the result of CSi is RCSi, the merge process can

be (· · · ((((RCS1 + RCS2) + RCS3) + RCS4) + · · · + RCSK), or (· · · ((((RCSK +

RCSk−1) + RCSk−2) + · · · + RCS1), or any other sequence that includes all RCSi,

44

for i = 1 to K. This is true because RCS is simply a set of V (Tj) for any interaction

Tj in the configuration CSi. If an algorithm such as AR is used, any P results reduce

the number of tests needed for t-way interaction testing. Any F result in TA is use-

ful to use 2-way, 3-way, and (t − 1)-way interaction testing results to reduce testing

effort for t-way interaction testing. Thus, both P and F results are useful in reducing

testing effort. The N results are also useful, and any configuration that is marked as N

means that it is not necessary to perform testing, and this can reduce the number of

configurations and interactions to test. This is particularly useful when the number

of configurations is large, as the set of configurations can be divided into different

(not necessarily non-overlapping) sets, one for each server or cluster of servers. In

this way, any N results help in divide-and-conquer approach to address large combi-

natorial testing. For example, if a SaaS system has 1M tenant applications, but the

SaaS platform has over 10, 000 processors, then each processor needs to handle only

1M
10K

= 100 tenant applications. Each server can divide this testing process again,

performing testing 10 times, each testing 10 tenants with test results stored in the

database. In this way, large-scale combinatorial testing can be performed.

4.1.2 Modified Testing Process

Perform 2-way interaction testing first. Before going on to 3-way interaction

testing, use the results of 2-way testing to eliminate cases. The testing process stops

when finishing testing all t-way interactions. The analysis of t-way interactions is

based on the PTRs of all (t − i)-way interactions for 1 ≤ i < t. The superset of

infeasible, irrelevant, and faulty test cases do not need to be tested. The test results

of the superset can be obtained by TA operations and must be infeasible, irrelevant,

or faulty. But the superset of test cases with unknown indicator must be tested. In

this way, a large repeating testing workload can be reduced.

45

For n components, all t-way interactions for t ≥ 2 are composed by 2-way, 3-way,

..., t-way interactions. In n components combinatorial testing, the number of 2-way

interactions is equal to Cn
2 . In general, the number of t-way interactions is equal to

Cn
t . More interactions are treated when Cn

t > Cn
t−1, which happens when t ≤ n

2
. The

total number of interactions examined is
∑t

i=2C
n
i .

4.2 TA Analysis Algorithm

4.2.1 Search Process and Algorithm

For new candidate testing configurations, the testing process as follows:

1. Search in F-table

For n-way candidate configuration, search in related F-table from 2-way to

n-way to check whether it contains any F interactions. If yes, candidate con-

figuration is faulty and can be eliminated from testing. Otherwise, search in

P-table to find which test results can be reused.

• Best condition: For a n-way candidate configuration, related 2-way faulty

interaction is found in F-table. Stop searching in F-table and return F as

the test result of candidate configuration.

• Worst condition: All related interactions of n-way candidate configuration

are searched in F-table, but none is found in F-table. The n-way candidate

configuration cannot be eliminated from the TA analysis.

2. Search in P-table

For n-way candidate configuration, search all its related interactions from n-way

to 2-way interaction P-table. All found interactions can be excluded from the

candidate testing list. Only those missing interactions need to be tested.

46

Algorithm 2 F-table Search Algorithm
Input:

F-table, n-way candidate configuration (n ≤ 6)

Output:

Test results of candidate configuration

1: Calculate all related interactions of n-way candidate configurations

2: Search related interactions from 2-way to n-way interaction F-table

3: for (i=2; i<=n; ++) do

4: Traverse i-way’s F-table to search related interactions

5: if any interactions are found then

6: Return faulty result

7: Stop

8: end if

9: end for

• Best condition: For an n-way candidate configuration, all related interac-

tions are found in P-table, thus the configuration is operational.

• Worst condition: Any related interactions cannot be found in P-table, and

thus related interactions need to be tested.

Example 1: Search configuration (a,b,d,f). Search the related interaction of

configuration (a,b,d,f) in F-table. Find interaction (d,f) is faulty. So V (a, b, d, f) = F .

Example 2: Search configuration (a,b,e,f). Search the related interactions of

configuration (a,b,e,f) in F-table. No one can be found. Then search all related inter-

actions in P-table. 3-way interaction (a,b,e), (a,b,f), and (b,e,f) are found in 3-way

P-table. As TA proved, V (a, b, e, f) = V (a, b, e)
⊗

V (a, b, f) = V (a, b, e)
⊗

V (b, e, f)

= V (a, b, f)
⊗

V (b, e, f). Since all 3-way interactions of (a,b,e,f) can be found in

47

Algorithm 3 Configuration P-table Search Algorithm
Input:

P-table, n-way candidate configuration (n ≤ 6)

Output:

Non-found interaction

1: Calculate all related interactions of n-way candidate configuration from n-way to

2-way

2: Put all related interactions into different lists according to component number

3: Search interactions from n-way to 2-way interaction P-table

4: for (i=n; i<2; −−) do

5: Traverse i-ways P-table to search for i-way interaction of candidate configura-

tion

6: if any interactions are found then

7: Delete the found interactions from the list

8: if the list is empty then

9: Return empty list

10: Stop

11: end if

12: end if

13: Return list

14: end for

48

P-table, there is no need to search and test all its 2-way interactions. All 2-way in-

teractions are operational. Only interaction (a,b,e,f) is not covered. So the testing

workloads of configuration (a,b,e,f) are reduced to test interaction (a,b,e,f) only to

finalize the test result of configuration (a,b,e,f).

4.2.2 Algorithm Time Complexity Analysis

No matter F-table or P-table, the worst condition is that all stored results are

traversed. Testing all configurations from 2-way to 6-way can cover almost all pos-

sible configurations. For n components, the number of all possible configurations is

C2
n+C3

n+C4
n+C5

n+C6
n with time complexity O(n6).

4.3 TA Analysis Process and Related Considerations

4.3.1 Analysis Process

1. 2-way TA analysis:

(a) Use proposed search algorithms and distribute candidate configurations

into different processors for execution. Different distribution methods can

be used, such as based on the similarity among different configurations,

the usage of different configurations, or the mixed methods;

(b) Use P2 (P table for 2-way interactions) to reduce testing effort. A P2 con-

figuration will not be N, and will not be X2 (X table for 2-way interactions),

but maybe X3 (X table for 3-way interactions).

(c) Complete testing all 2-way configurations (thus some N configurations may

be around), and store all the results at P2, F2, N2, and X3 tables.

2. 3-way TA analysis using 2-way data:

49

(a) Eliminate those 3-ways configurations that have X2, F2, and N2 2-way

configurations. Those 3-ways interactions are sent to X3, F3, N3 tables.

(b) Divide the P2 configurations into different sets of configurations, and send

to different processors for analyzing.

(c) Use P2 (2-way P interaction) to reduce testing effort.

(d) Complete testing all feasible 3-way configurations.

3. 4-way TA analysis using 2-way and 3-way data:

(a) Eliminate those 4-ways configurations that have X2, F2, and N2 2-way

configurations, and X3, F3, and N3 3-way configurations. Those 4-ways

interactions are sent to X4, F4, N4 tables.

(b) Divide the P2 and P3 configurations into different sets of configurations,

and send to different processors for analyzing.

(c) Use P2 and P3 (3-way P interaction) to reduce testing effort.

(d) Complete testing all feasible 4-way configurations.

The above steps can be repeated for 5-way, and 6-way TA analysis.

4.3.2 Adjustment in Analyzing

All the possible configurations can be divided into different sets for different pro-

cessors for analyzing. For simplicity, it is better to assign a set of related configura-

tions to the same server. If X and F configurations are found, the related configurations

can be easily eliminated in one server. There is no need to coordinate the results a-

mong different servers. Otherwise, the coordination cost is high. For example, set1

is allocated to processor1 for analysis. processor1 will select configurations or tenant

50

applications in set1 for analyzing, If everything is great, i.e., all P, the test results are

great, the analyzing process can stop. Otherwise, it requires further testing.

Lots of bugs exist in the candidate interactions. It is different to know the distri-

butions of bugs. The bugs may not be evenly assign to different servers. Stop testing

if the fault rate is high. The F test results can be used to deduce other F interactions

by TA saving significant effort.

Multiple ways allocate configurations to processors, such as:

• Tenant membership: Configurations of one tenant application are assigned to

one server as much as possible. It reduces the coordination costs of configuration

test results among different servers.

• Functionality information: Tenant applications, that implement the same

or similar functions, often share same and closely-related configurations. Clus-

tering these tenant applications based on functionality also increases the test

efficiency.

• Random: Randomly assign candidate configurations to different clusters. Load

balancing may not be considered in assigning process and some configurations

may be tested by multiple processors for redundant testing.

• P/F configuration allocation: Allocate P/F configurations to processors at

local cache. Each processor can use the assigned P/F configurations to analyze

candidate configurations.

51

4.4 Test Database Design

4.4.1 X and F Table Design

When one X or F interaction is saved in databases, test results of related configu-

rations can be deduced. The saved test results are shared to all servers.

The test results tables correspond to the n-way interactions that have their own

tables. If too many results are saved in one table, the table will be split for efficiency.

The usage of each interaction decides the storage position of test result. The test

results of frequently used interactions are saved in the top of data table.

4.4.2 P Table Design

Different from X and F interactions, the P test results can be reused to reduce test

workloads and increase the testing efficiency, but they cannot eliminate the untested

configurations from testing considerations. The P-table can follow the same design as

X-table and F-table such as placing high priority items on the top, and priority can

be adjusted dynamically. The usage ranking mechanism and data migration rules can

also be used. The difference is that all P interactions must be saved in corresponding

data table.

However, TA operation rules for P are different from operation rules for X or F.

Specifically, the n-way (n ≥ 3) configurations contain 2-way interactions. For any op-

erational n-way (n ≥ 3) configurations, all their sub-interactions (2-way interactions)

must be operational.

Unlike X-table or F-table, P-table stores all P interactions without any omitting.

So another difference is that relationships exist and can be traced among different n-

way interaction table. For example, (a, b, c) ≻ (a, b)(b, c) or (a, c)(b, c). If (a, b, c) = P,

(a, b), (a, c), and (b, c) in 2-way interaction table have connections with (a, b, c) in 3-

52

way interaction table.

A (n+1)-way configuration contains n-way configurations. The existing test re-

sults of n-way configurations can be used to reduce the testing workloads of (n-1)-way

configuration. In this paper, TA build 2-way P-table first, then 3-way, 4-way, 5-way,

until 6-way.

Testing n-way configuration includes testing all its sub-configurations and itself.

For candidate n-way configuration, TA searches existing test results from n-way to

2-way P-table. If n-way interaction of candidate configuration can be found in n-way

P-table, stop searching and use the found operational result. Otherwise, search (n-1)-

way P-table to find all existing test results of its sub-interactions. If all its (n-1)-way

interactions are found in P-table, stop searching and only n-way interaction itself

needs to be tested to finalize its test result. If not, only the non-found interactions

need to be tested. For non-found interactions, repeat the previous procedures from

(n-2)-way to 2-way P-table.

The following two examples show the search process. Suppose configuration

(a,b,c,d,e) has never been tested before.

• Configuration (a,b,c,d,e) has five 4-way sub-interactions (a,b,c,d), (a,b,c,e),

(a,b,d,e), (a,c,d,e), and (b,c,d,e). If these five interactions are found in P-table,

only interaction (a,b,c,d,e) itself needs to be tested to finalize the test result.

• If four of its 4-way sub-interactions (a,b,c,d), (a,b,c,e), (a,b,d,e), and (a,c,d,e)

are found in P-table, only interaction (b,c,d,e) needs to be tested. Repeat the

same process in searching sub-interaction of interaction (b,c,d,e) in P-table. The

similar process will be repeated until all its saved sub-interactions are found in

P-table. Only non-found sub-interactions and interaction (a,b,c,d,e) itself need

to be tested to finalize the test result.

53

4.4.3 N and U Table Design

In these two tables, test results of saved interactions may be changed by testing

or TA analysis. Except adding new results, the deletion of existing test results often

happens in N-table and U-table. Decreasing the data movement costs needs to con-

sider in data table design. When one of N or U interactions changes its status, the

previous saved status is deleted and empty space is left in test database. It is not good

to move saved data forward to fill the empty spaces immediately. The system allows

test database has a ceratin number of empty spaces. When empty spaces reaches the

threshold,the system moves saved data forward to fill the empty space. There is a

tradeoff between system efficiency and data movement costs for choosing reasonable

threshold.

4.5 Experiment

The authors have performed experimentation using simulation data and data from

published eScience software. The authors are developing a SaaS using the published

software in an eScience website (myexperiment.org) with software contributed by

scientists worldwide. Each software with its components in the myexperiment.org

can be treated as a tenant application, a collection of software can be incorporated

as a SaaS system.

4.5.1 Simulation

Numerous simulations have been performed, and this section provides one example

with 25 components, and each component has two options. The total number of test

configurations is 250 (approximately 1.13 ∗ 1015). The experiments are done for t-way

configurations for 2 ≤ t ≤ 6. All simulations are run on Intel Core 2 Quad CPU

54

Table 4.1: The Number of T-way Configurations from 2-way to 6-way

Range Size

2-way configurations 1,200

3-way configurations 18,400

4-way configurations 202,400

5-way configurations 1,700,160

6-way configurations 11,334,400

Configurations from 2-way to 6-way 13,256,560

Table 4.2: The Initial Setting Ups of Infeasible Configurations

Range Initial Infeasible

Configuration Size

Related Infeasible

Configuration Size

2-way configurations 10 10

3-way configurations 100 560

4-way configurations 1,000 15,520

5-way configurations 10,000 286,080

6-way configurations 100,000 3,280,400

2.40GHz machine. The numbers of t-way configurations for this example are listed

in Table 4.1:

The following three tables list the initial infeasible (Table 4.2), faulty (Table 4.3),

and irrelevant (Table 4.4) configurations. Table 4.2 and 4.3 also listed the related in-

feasible and faulty configuration after. For example, if (A,B) is infeasible, (A,B,C)

and (A,B,D) are all infeasible. Other than infeasible, faulty, and irrelevant configu-

rations, the rest of configurations are either operational or unknown.

The irrelevant configurations are stored in the N-table. The initial N-table con-

tains:

55

Table 4.3: The Initial Setting Ups of Faulty Configurations

Range Initial Faulty Config-

uration Size

Related Faulty Con-

figuration Size

2-way configurations 25 25

3-way configurations 8 1,158

4-way configurations 0 25,652

5-way configurations 0 361,592

6-way configurations 1 3,640,561

Table 4.4: The Initial Setting Ups of Irrelevant Configurations

Range Size

All 2-way configurations 20

All 3-way configurations 200

All 4-way configurations 2,000

All 5-way configurations 20,000

All 6-way configurations 200,000

TA is then used to identify those configurations that need to be tested by first

eliminating those configurations that have been identified to be X, F, or N. Other

than infeasible, faulty, and irrelevant configurations, the candidate configurations are

operational or unknown. The following attempts change the ratio of initial operational

and unknown configurations to find the relationship between initial P-table and TA

efficiency.

Table 4.5, 4.6 show the input to the simulation with different percentages of con-

figurations, specifically 5%, 10%, 20%, 30%, 40%, and 50% of configurations have

status of P (operational) in Table 4.5, and Table 4.6 show the corresponding data for

U (unknown) configurations from 5% to 50% of initial configurations are operational

56

Table 4.5: The Different Initial P-table Settings

Range Size

Percentage 5% 10% 20% 30% 40% 50%

2-way con-

figurations

57 115 229 344 458 573

3-way con-

figurations

824 1,648 3,296 4,945 6,593 8,241

4-way con-

figurations

7,961 15,923 31,846 47,768 63,691 79,614

5-way con-

figurations

51,624 103,249 206,498 309,746 412,995 516,244

6-way con-

figurations

210,672 421,344 842,688 1,264,032 1,685,376 2,106,720

(P).

Table 4.7 shows the results of simulation, the data demonstrated that consistently

the TA has eliminated 97.982% of configurations from testing consideration.

4.5.2 Parallel Computing for TA Analysis

The workloads with different initial settings of P-table from 5% to 50% of the

candidate testing configurations are evenly assigned to different number of PoDs

(Portal on Demand). It compares the results of one, four, eight, and sixteen PoDs.

Figure 4.4 shows the simulation results. Horizontal axis is the percentage of the

candidate testing configurations as the initial P-table settings. Vertical axis it the

TA analysis time and the unit of time is hour. According to the increasing of initial

P-table size, the TA analysis time decreases. Due to the four cores of machine, the

57

Table 4.6: The Different Initial U-table Settings

Range Size

Percentage 5% 10% 20% 30% 40% 50%

2-way con-

figurations

1,088 1,030 916 801 687 572

3-way con-

figurations

15,658 14,834 13,186 11,537 9,889 8,241

4-way con-

figurations

151,267 143,305 127,382 111,460 95,539 79,614

5-way con-

figurations

980,864 929,239 825,990 722,742 619,493 516,244

6-way con-

figurations

4,002,767 3,792,095 3,370,751 2,949,407 2,528,063 2,106,719

result of four PoDs is the best in this simulation. The coordination time among

different PoDs affects TA analysis efficiency. The more PoDs are used, the more

coordination time is. So the results of eight and sixteen PoDs are worse than four

PoDs. Comparing single PoD, assigning workloads to multiple PoDs is a good way

to increase TA analysis efficiency.

4.5.3 Discussion

A small SaaS may contain thousand of components and may take a long time for

testing. Assuming a small SaaS has only one hundred elements, the total number of

combinations is 2100. To complete testing of the combinatorial testing of these com-

binations will take 5 days for a PC. However, if the number of components increases

to 120, it will take 20 processors 3 hours to complete. If the number components

58

Table 4.7: The Related and Reduced Configurations with Different Settings

5% 10% 20% 30% 40% 50%

Involved Con-

figurations (a)

2.55*108 2.41*108 2.15*108 1.88*108 1.61*108 1.34*108

Reduced Con-

figurations (b)

2.50*108 2.37*108 2.11*108 1.84*108 1.58*108 1.32*108

Configurations

to be tested

(c)

5.15*106 4.88*106 4.34*106 3.80*106 3.25*106 2.71*106

Reduced

Workloads

Percentage

(b/a)

97.982% 97.982% 97.982% 97.982% 97.982% 97.982%

become 150, 20-processors will take years to complete. Thus, eliminating the number

of tests will be essential.

4.6 Conclusion

This paper proposes TA to address SaaS combinatorial testing. The TA provides

a foundation for concurrent combinatorial testing. The TA has two operations and

test results can have five states with a priority. By using the TA operations, many

combinatorial tests can be eliminated as the TA identifies those interactions that

need not be tested. Also the TA defines operation rules to merge test results done by

different processors, so that combinatorial tests can be done in a concurrent manner.

The TA rules ensure that either merged results are consistent or a testing error has

been detected so that retest is needed. In this way, large-scale combinatorial testing

59

Table 4.8: Scalability Prediction of TA Analysis

Data Size Experiment Environment Time Feasibility

2100 Single PC 5 days Feasible

2100 20 machines (small cloud) 3 hours Feasible

2120 Single PC 14,364 years Infeasible

2120 20 machines (small cloud) 359 years Infeasible

2150 Single PC 1.54 ∗ 1013 years Infeasible

2150 20 machines (small cloud) 3.86 ∗ 1011 years Infeasible

2200 Single PC 1.74 ∗ 1028 years Infeasible

2200 20 machines (small cloud) 4.34 ∗ 1026 years Infeasible

can be carried out in a cloud platform with a large number of processors to perform

test execution in parallel to identify faulty interactions.

60

2500000

3000000

3500000

4000000

4500000

5000000

5500000

0% 10% 20% 30% 40% 50% 60%

120000000

140000000

160000000

180000000

200000000

220000000

240000000

260000000

0% 10% 20% 30% 40% 50% 60%

96.00%

96.50%

97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

0% 10% 20% 30% 40% 50% 60%

(a) Number of Candidate Configurations

(b) Number of Related Configurations

(c) Percentage of Reduced Workloads

Figure 4.3: The Simulation Results
61

0

20

40

60

80

100

120

140

0% 10% 20% 30% 40% 50% 60%

1 PoD

4 PoDs

8 PoDs

16 PoDs

Figure 4.4: The Simulation Results of TA Time Efficiency

62

Chapter 5

TEST ALGEBRA EXECUTION IN A CLOUD ENVIRONMENT

5.1 TA Concurrent Execution and Analysis

5.1.1 TA Concurrent Execution

Figure 5.1 shows the relationship between TA and AR. The test database that

contains X, F, P, N, U tables is shared to TA and AR. TA and AR can do concurrent

execution on their test workloads.

As mentioned, AR needs multiple configurations to test to determine the status

of interactions. Sometimes AR needs to test thousands of configurations before it

can determine the faulty interactions. In AR it is the P that is useful as it can

eliminate many candidates from testing. A Pass in AR will result in all of sub-

configurations to pass. But in TA X and F are useful as it can eliminate, one X

or F can eliminate many configurations. Thus, the strategy is to wait until sufficient

ARTA

Concurrent TA

Execution

Concurrent AR

Execution

Test

Database

... ...

U

U

…

N-->U

N

N

N

…

Irrelevant

Configurations Unknown

ConfigurationsNew

Configuration

U

N

U

U N P F X

X

X

F

F

P

P

N

N

U

U

...

U-table N-table P-table F-table X-table

Figure 5.1: Relationship Between TA and AR

63

number of configurations (classified as U) to test, given a PTR (Previous Test Results).

Run until any interactions have been identified as X or F, then run TA. Similarly,

irrelevant configurations can also be eliminated from testing consideration. So only

U configurations need to be tested.

New U configurations are put into candidate-configuration set. There are two

types of new configurations:

1. Totally new configurations (it has not been tested, even though its sub-configurations

may have been tested before.)

2. N configurations change to U configurations (also, some sub-configurations may

have been tested before.)

Figure 5.2 shows that TA and AR share the same test database that includes X, F,

N, P, and U tables. When new configurations come, they are added into U configuration

set as candidate testing configurations. (type 1) Parts of N configurations change their

statuses to NU (this is a new status and will be discussed soon) and are treated as

U configurations. The NU and U configurations will be evaluated by TA and AR to

identify faulty interactions using existing test results:

1. Run TA to check whether existing test results can be used to determine if the

new configuration is valid. If yes, change status of new configurations from U

to X or F only. It cannot be P as this is a new configuration and thus it must

be tested.

2. Otherwise, wait for a sufficient number of configurations need to be tested to

run AR to test new configurations. The explored test results are saved in test

databases.

64

 Figure 5.2: Test Results Shared by TA and AR

• If test result of new configuration is F or X, its faulty or infeasible interaction

will be identified by AR.

• As most configurations will be N, even if AR runs all the U configurations,

no faulty interactions have been identified. In this case, it is not productive

to perform TA as TA needs X or F to eliminate configurations from testing.

If so, we have two choices:

– Stop testing (including both AR and TA) as no new information is

available for further computation.

– Or, convert some N configurations into U. These N configurations need

not be tested, but they were tested to identify faulty interactions.

They are labeled as NU (as they are actually N, but treated as U), and

run AR with both NU and U configurations. Different algorithms can

be developed to identify those N configurations to be re-labeled as NU

so that these NU can be tested.

65

 Figure 5.3: NU Configuration Selection Process

3. Change interaction that changes from N or U to F or X, if AR is successful in

identifying them, run TA to eliminate all related configurations from testing

consideration.

5.1.2 NU Configuration

As NU configurations are added into testing consideration, the number of N con-

figurations and the number of U configurations change.

• Number of N configurations (N’): N’ = N - NU

• Number of U configurations (U’): U’ = U + NU

The total number of N’ and U’ equals to the total number of N and U. The only change

is the number of NU in N and U configuration sets.

66

5.1.3 NU Configuration Selection Algorithms

Random Algorithm

Random algorithm shown in Algorithm I that select configurations randomly from

N configuration set and change the selected configuration to NU. Random selection

algorithm cannot involve X, F, P, and U sets.

Algorithm 4 Random Algorithm
Input:

Irrelevant set of configurations

Output:

Selected configurations

1: for int i = 0; i 6 m; i++ do

2: Randomly select one configuration out of irrelevant set

3: Change the status of selected configuration from N to NU and return it

4: end for

Hamming Distance Algorithm

• Definition: The Hamming distance d(x, y) between two vectors x, y ∈ F (n) is

the number of coefficient in which they differ where n is the number of compo-

nents. For example:

– F (3)((a, b, c), (a, b, d)) = 1

– F (4)((a, b, c, d), (e, f, c, d)) = 2

• Nearest Neighbour: Given a code C ∈ F (n) and a vector y ∈ F (n), then

x ∈ C is a nearest neighbour to y if d(x, y) = min(d(z, y)|z ∈ C). A vector

67

might have more than one nearest neighbour, so a nearest neighbour is not

always unique.

Find those N configurations that have minimum Hamming distance between existing

F configurations, and then change their statuses to NU. The actual conditions may

have different minimum Hamming distance. Using minimum Hamming distance to

find those N configurations closely related to F configurations increases possibility to

find those potential faulty configurations in N set.

It uses two examples to show how to use Hamming distance to select NU configu-

rations from N configurations.

• It sets one as the default minimum Hamming distance. Select all configurations

in N set that have one Hamming distance between selected faulty configuration.

Change the statues of these selected configurations from N to NU. Suppose 3-way

interaction (a, b, c) is faulty. (a, b, d) is one Hamming distance away between

interaction (a, b, c), so it can be selected as NU.

• Figure 5.4 shows the process of finding all mutations from F interaction. Suppose

2-way interaction (a1, b1) is faulty. 4-way interaction (a1, b1, c1, d1) is also

faulty. Each component in 4-way interaction has three options. One can have

the following.

– Mutation in faulty interaction: (a2, b1, c1, d1), (a3, b1, c1, d1), (a1, b2, c1,

d1), (a1, b3, c1, d1), ... Only faulty combination part of 4-way interaction

mutates and the remaining part keeps same. The minimum Hamming

distance is one.

– Mutation in both faulty and non-faulty interaction: (a2, b1, c2, d1), (a3, b1,

c2, d1), (a1, b2, c1, d2), (a1, b3, c1, d2), ... The minimum Hamming distance

is two.

68

Figure 5.4: Using Hamming Distance to Select NU Configuration

Mixed Strategy

The two algorithms proposed earlier can be used together. In other words, some

random configurations will be used together with Hamming distance algorithm from

faulty interactions with various Hamming distances, say from one to three. As often

combinatorial testing has low failure rate, using the random algorithm will result in

status of P often, and thus speed up the AR algorithm. If the Hamming distance algo-

rithms can detect some X or F interactions, it will help TA to eliminate configurations

from testing.

5.1.4 Analysis Process of NU and U Configurations

NU configuration selection process shown in Figure 5.3:

1. Use random algorithm or Hamming-distance method to select candidate con-

figurations from N configurations into the initial set of NU configuration.

2. Use TA to analyze the selected NU configurations.

3. If they do not pass TA analysis, they must be X or F, and they will be removed

from the set of NU configurations.

4. Those that passed TA analysis can be used by AR for testing.

69

5. After AR testing, perform TA on those configurations that are in U or U + NU.

TA can be triggered by the following two ways:

• On-demand: run TA whenever AR detects a F or X.

• Batch: run TA when AR detect a certain number of F or X, or when both

U and NU have been tested completely, whatever criteria gets fulfilled. The

number can be determined experimentally.

As even just one new F or X is detected by AR, numerous configurations can be

removed from testing by TA, thus even with the batch mode, the number of X or F

detected need not be large.

In the integrated process, AR and TA analysis are activated by F configurations.

F configurations are identified by testing. When U configurations are tested and all

existing F configurations are analyzed, AR and TA analysis stop. No more related F

configurations can be identified by testing analysis. For eliminating more configura-

tions from testing considerations, it needs more F configurations to explore those N

configurations.

Some N configurations that are closely related to existing F configurations can be

converted into U, marked as NU, and treated as U. Test results of these NU configurations

can be finalized by testing. The identified faulty NU configurations are analyzed by

AR to identify the faulty root. Once the faulty root is identified, TA is activated to

analyze those U configurations and eliminate related F configurations. The details of

NU configurations analysis are shown in NU configurations processing algorithm.

5.1.5 On-demand Interaction Testing with PTR

The test result of interaction (a, b) is not known, i.e., U or NU. One configuration

is (c1, c2, ..., ck). Suppose a and b are c1 and c2 respectively. So choose c3,... to ck

70

Algorithm 5 NU Configurations Processing Algorithm
Input:

F, N, P, U configurations

Output:

deduced F configurations, updated U configurations

1: Run Hamming distance algorithm to find N configurations that are closely related

to F configurations

2: Mark the found N configurations as NU

3: Run test cases on NU configurations

4: if any NU configuration is faulty then

5: Run AR

6: Return identified F interaction

7: end if

8: while all related F configurations are eliminated based on existing test results

do

9: if F interaction exists && U configuration exists then

10: Run TA

11: Return identified F configurations & updated U configurations

12: end if

13: end while

71

from a P configuration in the PTR, make it cc1 (candidate configuration 1). Do that

cc2, cc3, ... and so on. Following this, choose as many configurations from the set of

P configuration. On-demand interaction testing process:

1. Run cc1, if it passes, interaction (a, b) pass. There is no need to run cc2, cc3,...

and so on. If cc1 fails, there are several possibilities:

(a) interaction (a, b) fails

(b) Or interaction (a, b, xxx) fails, for 3-way to 6-way, for example, 6-way will

be (a, b, c, d, e, f)

(c) Or interaction (a, yyyy) fails, from 2-way to 6-way, for example, 2-way will

be (a, c)

(d) Or interaction (b, zzzz) fails, from 2-way to 6-way, for example, 2-way will

be (b, c)

The above possibilities needs to be distinguished.

2. Run cc2, if it passes, interaction (a, b) passes, so choices will be the above b),

c), or d) only. If cc2 fails, it has similar cases as the above 4 possibilities. As

cc1, and cc2 are different, if cc1, and cc2 share interaction (a, b) only, then it can

conclude that interaction (a, b) fails now. Formally, common (cc1, cc2) = (a, b),

then V (a, b) = F. Stop as it can conclude (a, b) is F. Otherwise, it continues.

3. Run cc3, if it passes, interaction (a, b) is P. If cc3 also fails, it has similar cases

as case 2).

One can now run cc1, cc2, cc3,... to cck in this manner. And k can be pre-

determined. As each cci has same pf (probability of failure) and this is low, k should

be small. Furthermore, can run this sequentially. For example, pf = 0.1%, this means,

72

99.9% of time, cc1 will pass. If not, 99.9% of time, cc2 will pass, assuming that they

are independent.

It has (1 − pf)m where m is the number of cci that it tries to test for each

interaction (a, b). For 2-way (a, b), pf is low. For 3-way (a, b, c), pf is even lower. For

4-way (a, b, c, d), pf will be even lower, thus, m and k need be small.

Operation procedure (common(exp1, exp2) = common elements in both exp1 and

exp2)

1. Test cc1, if pass, return V (a, b) = P and stop (with probability of 1− pf).

2. Otherwise test cc2, if pass, return V (a, b) = P and stop (with probability of

pf ∗ (1 − pf)). If common(cc1, cc2) = (a, b), stop and return V (a, b) = F.

Otherwise it proceeds to test cc3.

3. Test cc3, if pass, return V (a, b) = P and stop (with probability of pf 2∗(1−pf)).

If common(cc2, cc3) = (a, b) or common (cc1, cc3) = (a, b), return F, and stop.

4. Otherwise test cc4, if pass, return V (a, b) = P and stop (with probability of

pf 3 ∗ (1 − pf)). If common(cc1, cc4) = (a, b) or common(cc2, cc4) = (a, b) or

common(cc3, cc4) = (a, b), return F, and stop.

5. It runs the the same procedure to test cc5 to whatever cck, until the m reaches

k. Or it can continue until k is 10 or 20. Most likely k should be less than 6.

For this reason, it is best to choose cci as separate as possible, for example, assuming

each configuration has m elements, it likes cci to share hopefully 2 common elements

only (assuming for 2-way interaction, for 3-way interaction, it likes to have hopefully

3 common elements only, and so on). If after say cc6, all of them return F from

testing, we have pf 6, very rare event that is very unlikely to happen. Assuming pf =

73

1%, that means 0.016. So, it has an optimistic algorithm that is likely to succeed to

perform on-demand testing.

The algorithm is adjustable, depending on pf value, one can increase m (or k).

For example, the larger pf, more testing will be needed. If one wants to have higher

confidence, increase m (or k), for example, put m to 30, in that case, the worst

case scenario will be pf 30, and yet it still cannot conclude if interaction (a, b) causes

the failure. Furthermore, construction of cci from PTR can be random too. So,

common(cci,ccj) may overlap more than (a, b), but as m is large, common(cci,ccj) =

(a, b) will eventually increase. If random selection, it can put m or k to be higher.

Figure 5.5 shows five trials with different pf 0.001, 0.00075, 0.0005, 0.00025, 0.0001.

The probability of reaching 30 failures in on-demand interaction testing is simulated.

The horizontal axis is the value of pf. The vertical axis is the simulated results

in logarithm value. The simulation process follows the formula iteration result =

pfn−1 ∗ (1−pf), n ∈ Z and n ≥ 1. After thirty times running, no matter what initial

pf is, iteration value approaches zero.

5.2 TA Experiments

5.2.1 TA MapReduce Experiment Flow Chart

Figure 5.6 shows how the TA MapReduce experiment goes. The whole experiment

executes on-demand TA analysis. Input and output of TA MapReduce experiment:

• Input: Configurations and seed faulty interactions

• Output: TA efficiency and running time

Experiment environment:

• Cluster: 50 nodes Hadoop cluster(each node has 8 processors)

74

th
e

 i
te

ra
ti

o
n

 v
a

lu
e

the value of pf

Figure 5.5: Five Trials with Different PF

• CPU Processor: Intel Xeon CPUE5520 2.27GHz

• Memory: 11G

• Operating System: CentOS release 6.3 (Final)

• Hadoop Version: 1.1.2

• HBase Version: 0.94.12

5.2.2 Different Configuration Numbers of TA Experiments

The first experiment is the effect of configuration number on TA efficiency. This

experiment proceeds without any speedup strategy. Figure 5.7 shows that TA has a

good performance on reducing test workloads. TA efficiency can also be improved a

little when the number of configurations grows. The default fault rate is 0.001 in this

experiment.

75

New configuration

Check whether it contains any faulty interactions

that are in existing f_table (HBase)
Yes

No

Put all its sub-configurations which are not covered by

p_table (HBase) into candidate set

Classify and store candidate configurations into different

candidate sets according to the number of components

PassTest selected candidate configurations

(simulation)

Fail

Get candidate configurations in

candidate set from 2-way to 6-way

Mark this

configuration as

faulty

Mark this

configuration as

operational

Write the test

results to HBase

Write the test

results to HBase

Run AR algorithm to identify the

faulty interaction

Check whether the interaction is

faulty

Yes No
Write it into f_table

(HBase)

Write it into p_table

(HBase)

TA

AR

Only all sub-

configurations

are operational

Put it into failed

configuration set

Put it into operational

configuration set

Test

Figure 5.6: TA MapReduce Experiment Flow Chart

5.2.3 Different Speedup Strategy for TA Experiments

This experiment speeds up TA process with four different strategies (fault rate:

0.001).

• No Strategy: Do not use any speedup strategy

• Bloom Filter: Use hash-map method to store the information of interactions

(Bit Storage)

• Table Splitting: Split F and P table into five tables respectively according to

way number of interactions (from 2-way to 6-way)

76

Figure 5.7: TA Efficiency on Hadoop

• Mixed Strategy: Use Bloom Filter and Table Splitting

Figure 5.8 compares the running time with different strategies. Bloom Filter does not

affect much on running time, while Table Splitting speeds up test process significant-

ly. Figure 5.9 shows the effect of different speedup strategies on TA efficiency. TA

efficiency varies a little bit when configuration number is small. When configuration

number increases, all strategies will have the same efficiency.

5.2.4 Different Fault Rates for TA Experiments

This experiment explores the effect of different fault rates on TA efficiency (con-

figuration number: 524228). Figure 5.10 shows TA efficiency is affected by different

fault rates. TA efficiency improves when the fault rate grows, as the fault rate can

enhance F-table checking process. Figure 5.11 shows the effect of different fault rate

on running time. Fault rate can decrease the running time, for the same reason.

77

Figure 5.8: Running Time with Different Strategies on Hadoop

Figure 5.9: TA Efficiency with Different Strategies on Hadoop

78

Figure 5.10: TA Efficiency with Different Fault Rates on Hadoop

Figure 5.11: Running Time with Different Fault Rates on Hadoop

79

Table 5.1: Explanations of Each Parameter in Simulation

Parameter Meaning Default

Value

COMPONENTS NUMBER The number of com-

ponents

1000

V ALUES NUMBER The values number for

each component

2

GUI PERCENT The percentage of

GUI components

40%

WORKFLOW PERCENT The percentage of

workflow components

30%

SERV ICE PERCENT The percentage of ser-

vice components

20%

DATAMODEL PERCENT The percentage of da-

ta model components

10%

TENANT APPLICATIONSNUMBERThe number of tenant

applications

512

COMPONENTS NUMBER IN APP The components num-

ber in one application

10

ERROR PROBABILITY The fault rate 0.001

5.2.5 Explanation on Simulated Data

Table 7.1 shows the parameters used. The total number of configurations equals

to the number of tenant applications powered by number of values and number of

components in applications.

80

Figure 5.12: Running Time of TA Implementation on Hadoop Using Different Clus-
ters

5.2.6 Simulation with Different Clusters

Figure 5.12 and 5.13 show the TA efficiency with different number of configura-

tions. The x-axis represents the number of configurations, and the y-axis presents the

TA efficiency. 97% of test cases can be reduced by TA algorithm. The improvement

depends upon the fault pattern and TA algorithm. Parallel implementation of TA

algorithm has no contribution to the TA efficiency, although it can greatly shorten

the execution time of TA processing.

5.2.7 Simulation using 37-node Cluster with Differen Map Slots

The experiments were done using 37-node cluster. Figure 5.14 and 5.15 show the

TA efficiency with different map slots on each machine. The x-axis represents the

number of configurations, and the y-axis presents the TA efficiency. The number of

map slots represents the number of map tasks each machine can process at same

81

Figure 5.13: Configuration Reduction Ratio Using TA Implementation on Hadoop
Using Different Clusters

time. Generally, more map slots are used, the less execution time is. But, more map

slots actually contributes almost nothing to the execution time. It is probably as the

limitation of HBase ability to handle the requests. Also, more map slots has nothing

to do with the TA reduction ratio as Figure 5.15 shows.

5.3 Conclusion

The TA defines five states of test results with a priority and three operations, pro-

vides a foundation for concurrent combinatorial testing. By using the TA operations,

many combinatorial tests can be eliminated as the TA identifies those interactions

that need not be tested. Also the TA defines operation rules to merge test results

done by different processors, so that combinatorial tests can be done in a concurrent

manner. The TA rules ensure that either merged results are consistent or a testing

failure has been detected so that retest is needed. TA and AR cooperates to ana-

82

Figure 5.14: Running Time of TA Implementation on Hadoop Using 37-node Cluster
with Different Map Slots

Figure 5.15: Configuration Reduction Ratio Using TA Implementation on Hadoop
Using 37-node Cluster with Different Map Slots

83

lyze candidate configurations for increasing testing efficiency. In this way, large-scale

combinatorial testing can be carried out in a cloud platform with a large number of

processors to perform test execution in parallel to identify faulty interactions.

84

Chapter 6

TAAS (TESTING-AS-A-SERVICE) DESIGN FOR COMBINATORIAL TESTING

6.1 TaaS Introduction

6.1.1 TaaS Definition

Several TaaS definitions are available Gao et al. (2011a); Riungu et al. (2010). It

often means that testing will be online, composable, Web-based, on demand, scal-

able, running in a virtualized and secure cloud environment with virtually unlimited

computing, storage and networking. This paper proposes a TaaS definition from two

perspectives: user’s point of view and cloud internal point of view.

From user’s point of view, TaaS provides the following four services.

Test Case and Script Development: Users can develop, debug, and evaluate test

cases/script online using automated tools in a collaborative manner. Test scripts

may even be developed by customizing/composing existing components following the

MTA approach.

Test Script Compilation and Deployment: Test scripts can be compiled and de-

ployed for execution in a cloud environment, and TaaS resource management can

allocate and reclaim resources to meet the changing workload.

Test Script Execution: Test can be executed in parallel or in a distributed manner,

and it can be triggered autonomously or on demand.

Test Result Evaluation: Cloud-based test database is built to support automat-

ed data saving, intelligent retrieval, concurrent transaction, parallel processing, and

timely analysis of huge test results.

85

From cloud internal point of view, TaaS may have the following features com-

mon to most cloud operations.

Decentralized Operations: Testing tasks may be executed in a parallel or a dis-

tributed manner, migrated to dynamic allocated resources, and performed in a re-

dundant manner, or embedded within other cloud operations.

Metadata-based Computing: Controller uses metadata to control test operations

such as time, frequency, multi-tasking, redundancy, parallel execution. TaaS metada-

ta may include information about test scripts, cases, environment, and results such

as index, location, and organization.

Data-centric Testing: Big Test handles large sets of input data and produces large

sets of test results. Techniques for Big Data storage, processing, and understanding

are key to TaaS. For examples, test data can be saved in in-memory databases,

classified by attributes (such as hot, warm, or cold), and analyzed in real-time.

Multi-tenancy Test Script Composition: Like tenant applications in a MTA SaaS

platform, test scripts in a TaaS system may share the same test script base.

Automated Test Redundancy Management and Recovery: Testing tasks can be

partitioned and sent to different processors for parallel and redundant processing.

Test and test results can be recovered in case of failures in a processor or in a cluster

due to automated redundancy management. Recovery can follow the metadata-based

approach.

Automated Test Scalability: When the SUT (System Under Test) scales up at

runtime in a cloud environment, TaaS also needs to scale up proportionally using

common cloud scalability mechanisms such as 2-level scalability architecture and s-

tateless service design Tsai et al. (2012).

86

6.1.2 Three Generations of TaaS

First Generation of TaaS: In this TaaS generation, conventional testing or

evaluation tools can be deployed to a cloud environment to provide an on-demand

services with scalable resources. The cloud infrastructure such as PaaS or IaaS will

manage resources by scheduling or deployment according to the testing workload dy-

namically. The testing software may take advantages of the resources and services

provided by a cloud environment such as automated triplicate storage and compu-

tation as each task in a cloud environment such as GAE is computed three times

and stored in different location for reliability. In this generation, a testing service is

an application running on top of a cloud environment, thus it does not control the

internal cloud scheduling or resource management. The testing software maybe the

same or a slightly modified version of the conventional testing software.

Second Generation of TaaS: In this generation, testing software is an integrat-

ed part of a cloud environment by being implemented as a SaaS running on top of

a PaaS. But a SaaS may have either full or limited control of cloud scheduling and

resource management. As a SaaS may be fully integrated with a PaaS, and thus it

may have an integrated scheduling and resource management capabilities, or a SaaS

may be just an application program running on top of an existing PaaS without any

control of scheduling or resource management in the PaaS.

A SaaS often provides customization, multi-tenancy (multiple software programs

share the same code base), and scalability, and thus a TaaS implemented as a SaaS

allows different testing services to be customized by different testing tenants, and

multiple testing services can share the same testing code, and testing services can be

scaled dynamically as controlled by TaaS.

If a TaaS is a SaaS fully integrated with PaaS, it will have significant control in

87

scheduling and resource management, and the TaaS can make intelligent decisions as

it will be able to assess the current cloud status.

If a TaaS is a SaaS application running on top of an existing PaaS, the TaaS cus-

tomization, multi-tenancy, scalability can still be done, except that as TaaS does not

manage resources directly, it needs to call the underlying PaaS to allocate resources,

but other applications may be running at the same time to compete for the shared

resources.

Third Generation of TaaS: In this generation, a TaaS is fully integrated in-

to SaaS and PaaS where testing-related activities are performed autonomously and

intelligently. For example, in a given SaaS, each tenant components will be test-

ed by associated testing software automatically whenever they are checked into the

SaaS database, and each time a tenant application is composed, the application is

automatically tested by the associated testing software.

TaaS may also be fully integrated with policy management in a cloud environment

where policies are enforced and evaluated at runtime to ensure various properties are

held during execution.

A TaaS is also fully integrated with various monitoring capabilities of SaaS and

PaaS, and a TaaS task may be composed, deployed, executed, scaled, and migrated

like a regular SaaS or PaaS task.

6.2 TaaS Design with TA and AR

This section presents a new TaaS design for combinatorial testing using TA and

AR. Figure 6.1 shows a TaaS design with six parts. There are SaaS components DB,

Test Processing, AR, TA, Test Database, and Recommendation system.

Part I SaaS Components DB: Each tenant application in SaaS has components

from four layers: GUIs, workflows, services, and data.

88

Figure 6.1: Taas Design for Combinatorial Testing Using TA and AR

Part II Test Processing: It uses the following components to process SaaS

combinatorial testing.

Test Workloads Dispatcher: All testing workloads are sent to test dispatchers.

Test dispatchers assign workloads to Test Engines according to the computation ca-

pacity of each Test Engine. The same workloads may be executed on different Test

Engines for redundant testing.

• Input: candidate configurations, the number of Test Engines, the computation

capacity of each engine; and

• Output: the amount of candidate configurations assigned to each Test Engine.

Test Engine: It runs different test cases to test the assigned workloads. Test

results are sent to Test Results Verifier.

• Input: the assigned candidate configurations, test cases; and

• Output: test results of the assigned candidate configurations.

89

Test Results Verifier: It verifies all returned test results. For the same configu-

ration, it may have different returned test results from different Test Engines. Test

Result Verifiers finalizes the correct test result based on the confidence of each test

result. Only those highly confident test results are saved in the Test Database and can

be shared with others. If test results verifier cannot verify the returned test results,

it requires Test Engines to retest these configurations.

• Input: test results from different Test Engines; and

• Output: finalized test results.

Monitor: It monitors the testing process. Test Workloads Dispatcher, Testing

Workloads, and their related Test Engines are monitored. Each Test Engine is mon-

itored during the testing process. Test Results Verifier is also monitored.

Part III AR Processing: It is used to figure out faulty configurations from the

candidate set rapidly based on the existing test results.

SUT: It is the candidate test set.

AR Workloads Dispatcher: It works similarly as the Test Workloads Dispatcher

of Test Processing. Different amount of candidate testing workloads are assigned to

different AR Analyzers based on the computation capacity.

AR Analyzer: It runs AR algorithm on candidate configurations based on the

existing test results. The analyzed test results are sent to the collector. It also

reanalyzes those returned incorrect test results that did not pass validation.

• Input: existing test results, candidate configurations; and

• Output: test results of assigned candidate configurations.

AR Results Collector: It collects all test results from different AR Analyzers.

90

Collector also sends those candidate configurations that cannot pass test results val-

idation to their related AR analyzers.

Validated AR Results: They save all validated AR results and send them to the

shared test database. The saved validated results are shared to all AR analyzers.

Monitor: It is similar as monitor of Test Processing. The process of AR Analysis

is monitored.

Part IV TA Processing: It analyzes test results by TA. Similar to AR Processing,

TA also has SUT, test dispatcher, and monitor. Their functions are same as the

corresponding parts in AR. The other parts of TA have their own features.

TA Analyzer: It runs TA to analyze the test results of candidate test set based

on the existing test results. Test results of those candidate configurations related to

existing X or F interactions can be finalized.

• Input: existing test results, candidate configurations; and

• Output: test results of candidate configurations, candidate interactions.

TA Results Merger: It merges the returned from different TA analyzers by three

defined operations. The merged test results are sent to test result verifier.

• Input: test results from different analyzers; and

• Output: merged test results.

TA Results Verifier: It verifies all returned test results. Usually test results with

high confidence are treated as correct test results. Those test results that cannot be

verified are sent back to TA analyzer for re-analyzing.

• Input: merged test results; and

• Output: verified test results, unverified test results.

91

Validated TA Results: They save and share all validated test results. The validated

test results are categorized according the number of components.

Part V Test Database: It not only saves test results from Testing Processing,

but also saves analyzed test results from AR and TA. Only validated test results can be

saved in Test Database. All saved test results are shared and can be reused. Different

from traditional databases, the saved test results are categorized by type and the

number of components. For instance, 2-way and 3-way F configurations are saved in

its own table respectively. Due to the large number of test results, only the roots

of X, and F configurations are saved in test database. For example, configuration (a,

b, c, d, e) is F and configuration (a, b, c) is the faulty root, so only configuration

(a, b, c) is saved in F data table. Test results of those configurations that contain

configuration (a, b, c) are automatically considered as fault.

Part VI Candidate Test Workloads Recommendation: It is used to fig-

ure out those priority configurations for testing. Based on the existing test results,

it recommends those potential faults in the candidate set. Those configurations in

candidate set that have one or two Hamming Distance between existing faulty con-

figurations are recommended for TA and AR. TA, AR and Recommendation system

communicate often. TA and AR send their analyzed test results to Recommendation

system. Recommendation system sends related candidate configurations to them.

Comparing TA and AR, the communication between Test Engine and Recommen-

dation system is one-way direction. Only Recommendation system sends candidate

configurations to Test Engine. The parent sets of faulty configurations found by AR

are recommended to Test Engine for testing.

Confidence: Confidence is used to measure the reliability of each configuration’s

test result. Confidence (C) is the ratio of the number of one type test result (T)

in all returned test results (AT) of one configuration. C(Ti) = Ti

AT
= Ti∑n

i=1 Ti
, and

92

∑n
i=1C(Ti) = 1, i is number of different types T. The confidence C(Ti) measures are

bounded by the interval [0,1].

For example, one test workload is processed on three virtual machines a, b, and c

respectively. Machine a, b, and c return m, n, and m as results respectively. Three

tests have two test results m and n. Two machines return m, about 66.6% of all

test results. Test result m that has higher confidence than result n is treated as the

verified test result. If test results cannot be finalized, those combinations must be

tested again, until the their test result can be finalized.

6.3 TaaS as SaaS

A TaaS can be implemented as a SaaS. Similar to other SaaS systems, a TaaS

database also has four layers: GUIs, workflows, services, and data. It also has three

important characteristics, customization, multi-tenancy, and scalability. TaaS allows

tenants to compose their TaaS applications using the existing testing services.

Figure 6.2 shows a TaaS infrastructure. It has two parts, one is the runtime

platform, the other one is the customization & runtime repositories. The Runtime

platform performs six functions.

• Scheduling: The order of TA analysis, AR analysis, and testing are scheduled

according to the existing test results. New verified test results are updated and

shared in a time manner.

• Provisioning: The computation resources are provided to the designated test

workloads on demand.

• Monitoring: All TaaS-related activities are monitored.

• Load Balancing: Test workloads are assigned to each server according its com-

putation capacity.

93

O
n

to
lo

g
y
 &

 L
in

k
e

d
 D

a
ta

Figure 6.2: TaaS Infrastructure

• Verification: All test results need to be validated, and only validated test results

are saved.

• Recommendation: The recommendation mechanism uses algorithms to analyze

candidate configurations. Then it recommends those selected candidate config-

urations for retesting.

The Customization & runtime repositories have TaaS four-layer model as tradi-

tional SaaS. Each layer provides different options for tenants to compose their own

TaaS applications. The ontology & Linked Data guides the TaaS composition process.

6.3.1 GUIs

Various TaaS templates are stored in the GUI repository, tenants can build their

own GUIs based on the templates. Tenants can customize the existing templates, such

as modifying text font and size. Commonly use operations of changing and configuring

GUI appearance, such as adding/editing/deleting icons, colors, fonts, titles in pages,

menus and page-section are available.

94

6.3.2 Workflows

Individual request: It involves testing single configurations. TA analyzes single

configurations first. If its test result can be determined from existing test results,

there is no need to do any testing. Otherwise, the configuration needs to be tested.

Group request: This involves testing of multiple configurations. The following

procedures shows the steps.

1. Partition the space: Due to heavy workloads, the workloads are partitioned and

assigned to different Test Engines for processing. One configuration may be as-

signed to multiple Test Engines for redundant testing. The partitioning process

intelligently adjusts the workloads according to the computation capacity of

each Test Engine.

2. Evaluation operations ⊗ and ⊙: The assigned workloads should be analyzed by

TA first. The test results are saved in the Test Database.

3. Merge operation ⊕: ⊕ operation is used to merge testing results from different

Test Engines.

4. Store consistent results: When it merges testing results from different Test

Engines. Reliability of these results is computed, and only highly confident

results are stored in the database.

5. Send for retesting: Those configurations with uncertain test results will be sent

back for further testing.

Select Candidate Configurations for Retesting: While a large number of configu-

rations needs to be tested, but the number of faulty configurations is only a small

percentage of configurations. It is difficult to find these faulty configurations. NU con-

figurations are added into testing consideration for increasing the chance of finding

95

faulty configurations. NU configurations are from N configurations, but are treated as

U configurations. Based on the existing F configurations, different algorithms such as

Random, Hamming Distance, and mixed strategies can be used to get NU configura-

tions from N configurations Wu et al. (2014).

6.3.3 Services

⊗ Operation Service: It is used to get the test result of V (T1 ∪ T2) from V (T1)

and V (T2).

⊙ Operation Service: Test result of one configuration can be composed by merg-

ing tests results of all its interactions, such as V (T) =
⊙

I⊆T V (I), where I is an

interaction covered by configuration T .

⊕ Operation Service: It merges testing results from different Test Engines.

Partition Service: It partitions test workloads and assigns them to different Test

Engines, according to the computation capacity of each Test Engine.

Adaptive Reliability Calculation of Configurations and Processors Service: It cal-

culates reliability of all returned test results. Similarly, those processors that always

return correct test results are treated as reliable processors. The test results from

reliable processors have higher reliability that others.

Hamming Distance Service: It gets those NU configurations from N configurations

by calculating Hamming distance based on F configurations. Usually NU configurations

have one or two Hamming distance from F configurations.

6.3.4 Runtime Composition, Execution and Scalability

Composition: Assuming the GUI layer has five components, each has three op-

tions, as GUI template1, GUI template2, GUI template3. The workflow layer has

three components, individual request, group request, and select candidate configura-

96

TA Processing

AR Processing

Test Processing

Metadata Cache

Shared Database

P Table

X Table

F Table

N Table U Table

Metadata Tables

Configuration Indexes

Figure 6.3: Database Integration

tion for retesting. The service layer has six components: ⊗, ⊙, ⊕, partition service,

adaptive reliability calculation, and Hamming distance. The data layer has five types

of data, X, F, P, N, and U.

Two tenants, Tenant1 and Tenant2, use these components to compose their

own applications. Tenant1 chooses GUI template1, text font2, text size2, indi-

vidual request, ⊗, ⊙, ⊕, F, P, and U. Tenant2 chooses GUI template3, text color2,

background color1, group request, select candidate configuration for retesting, ⊗, ⊙,

⊕, partition service, adaptive reliability calculation, all data types.

Tenant Application Execution: When a tenant request comes in, the TaaS

will see if the tenant application is in the memory. If it is, the tenant application

will be called. If the tenant application is not in the memory, the tenant application

metadata will be retrieved so that tenant application components can be retrieved

from the database, the tenant application will be composed, and then compiled, the

executable code will be deployed to a processor.

Assuming, three processors are available, Tenant1’s TaaS processes can be exe-

cuted in one machine. Tenant2’s TaaS processes group requests. More test workloads

and five test result statuses are involved in group requests. Partition service splits

the workloads into three parts. Each part is executed on different machines.

As same configurations may be tested by multiple processors, all returned test

97

results need to be checked by adaptive reliability calculation.

Scalability: The load balancer will assign different workloads to balance the

processors. Each processor has stateless servers. Workloads at processors can also

be migrated to another processor to resume computation. Furthermore, the shared

database allow each processor to access the data.

6.4 Experimental Results

A group of simulations have been performed, and this section provides one SaaS

example for testing. The SaaS has four layers, and each layer has five components, and

each component has two options as the initial settings. When the current workloads

are finished reaching to 20%, one new component is added to each layer until each

layer has ten components. The experiments are done for t-way configurations for

2 ≤ t ≤ 6.

The initial settings of infeasible, faulty, and irrelevant configurations are shown

in Table 6.2. The number of candidate configurations from five components to ten

components each layer are also shown in Table 6.2. When new components are added,

the infeasible, faulty, and irrelevant rate are 2%, 0.0003%, and 3% respectively. There

are total eight VMs with same computation capacity in this simulation. It supposes

that the maximum computation capacity of each VM is 50,000,000 configurations.

There two thresholds, thresholdmin is 20,000,000 configurations (20% of the maxi-

mum), and thresholdmax is 35,000,000 configurations (75% of the maximum). When

the workloads of each VM is greater than thresholdmax, new VM will be assigned.

When the workloads of each VM is less than thresholdmin, workloads of this VM will

be assigned to others, and this VM will stop working. It assumes that when 20% of

current workloads are finished, new component will be added to each layer until each

layer has ten components.

98

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

Number of Virtual

Machines

Figure 6.4: The Number of Virtual Machines of Each Attempt

There are six attempts in total from five components to ten components of each

layer. Figure 6.4 shows the number of VMs used in each attempt. When the number

of components in each layer increases, the trend is that more VMs are required to

process the workloads. From five components to seven components, only one VM

is used. The number of components in each layer increases to eight, nine, and ten,

the corresponding numbers of VMs are two, four, and eight respectively. Figure 6.5

shows the average computation time of each VM in each attempt. The computation

time is counted in seconds. Similarly, when the workloads increase, more execution

time of each VM spends. From six to seven components, there is one big gap between

the execution times of two VMs. Since only one VM is used to process six or seven

components, more workloads are added when six component increases to seven com-

ponents, more execution times are spent. When nine components increase to ten, the

average computation time slightly decreases. Since four more VMs are used when it

has ten components in each layer, the average workloads of each VM decreases and

its corresponding execution time also decreases.

Based on the proposed TaaS design, when workloads increase, the current work-

ing mechanism can be extended. More VMs are added, including test engines, TA

99

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1 2 3 4 5 6 7

Average Compuation

Time of Each Virtual

Machine

Figure 6.5: Average Computation Time of Each Virtual Machine of Each Attempt

Analyzers, AR Analyzers. TaaS scalability issues involving redundancy and recovery,

and data migration can be solved in the proposed design. The returned test results

from each VM can be shared to other VMs through the current test results sharing

mechanism.

6.5 Conclusion

This paper talks about TaaS architecture and design. New issues introduced by

cloud are discussed and three generations of TaaS are proposed. A TaaS framework

has been proposed. TaaS as one type of SaaS can be used to test SaaS. This paper

illustrates the process of using TaaS to test SaaS.

100

Table 6.1: SaaS and TaaS Comparison

SaaS TaaS

Automated

Provision-

ing

SaaS automatically adjusts

the computing resources fol-

lowing the change of work-

loads. It scales up with in-

creasing loads with automat-

ed expansion. Vice verse, it

scales down.

TaaS supports automat-

ed provisioning and de-

provisioning of computing

resources in a scalable cloud

test environment.

Migration Each unit of data can be

moved for scalability.

The migration process can be

monitored, traced, and test-

ed.

Automated

Load Bal-

ancing

It automatically balances the

workloads across multiple vir-

tual machines.

Balanced testing workload-

s are assigned to different

servers.

Composition The complicated services are

composed by basic functional

services.

Based on the candidate test

workloads, the specific TaaS

is also composed by basic

testing services.

Concurrent The workloads of SaaS can be

executed concurrently on dif-

ferent servers.

Testing workloads can be dis-

tributed to different server-

s and processed at the same

time.

Crash and

Recovery

When crash happens, SaaS

can be recovered from backup

copies on different servers.

TaaS uses backup copies to

recover from crash automat-

ically.

101

Table 6.2: The Initial Settings of Configurations

Size

w. X F N 5 Com 6 Com 7 Com 8 Com 9 Com 10 Com

2 5 15 20 760 1,104 1,512 1,984 2,520 3,120

3 50 5 200 9,120 16,192 26,208 39,680 57,120 79,040

4 500 0 2,000 77,520 1.70*105 3.28*105 5.75*105 9.42*105 1.46*106

5 5,000 0 2*104 4.96*105 1.36*106 3.14*106 6.44*106 1.21*107 2.11*107

6 5*104 1 2*105 2.48*106 8.61*106 2.41*107 5.80*107 1.25*108 2.46*108

102

Chapter 7

INTEGRATED FAULT DETECTION AND TEST ALGEBRA FOR

COMBINATORIAL TESTING IN TAAS (TESTING-AS-A-SERVICE)

7.1 Framework

7.1.1 TA and AR Relationship

Figure 4.1 shows the relationship between TA and AR Tsai et al. (2014). AR

identifies P and F configurations, as well as fault locations. TA detects X or F config-

urations using identified X or F configurations. AR prefers P, as if a configuration is

P, all the interactions (from 2-way to t-way) within the configuration have status of

P, and thus many interactions can be eliminated from consideration. But TA prefers

F and X as they can eliminate many configurations.

Figure 5.1 shows another relationship between TA and AR. The test database that

contains X, F, P, N, U tables is shared by both TA and AR, and they can do their own

tasks concurrently. Specifically, multiple AR tasks can be run at the same time with

multiple TA tasks to reduce the execution time.

An interesting scenario will happen when an X or F is identified, if there are few U

configurations available, AR will not be effective as it needs a collection of configura-

tions. One way to do this is to convert some N configurations into NU configuration,

and run AR on U and NU configurations Wu et al. (2014). In this case, it is possible

that a configuration is evaluated before it has been selected. Furthermore, multiple

strategies are available to identify those N for NU.

Figure 7.1 shows the procedures of processing N and U configurations. Once NU is

selected, U’ is the set after those NU configurations are removed from U. NU and U’

103

Figure 7.1: TaaS Testing Framework for Processing N and U Configurations

are used for analysis. During the process, N is continuously being updated whenever

new components are added (N is increased) and/or another NU selection is made (N is

decreased).

Multiple NU selection algorithms are available:

• Random Algorithm (NUr)

Random algorithm is easy to implement, but it does not use any existing test re-

sult for picking NU configurations. Thus, the configurations may not be optimal

for testing purpose.

• User-Hint Future Configuration (NUfc)

This is based on users input. In many cases, users know about their needs and

know those configurations that are useful. Users can also make their decisions

based on the existing test results. As this is a manual process, the quality of

this process highly dependent on the experience level of the involved users.

• Linkage/Weight (NUw)

Linkage/Weight method finds related configurations in N based on existing test

results. For example, configuration (a, b, d) may be selected if configuration

(a, b, c) has been found to be faulty as (a, b, d) is close to (a, b, c). The usage

104

of each configuration can be used to select NU configurations. For example,

if configurations (a, b, c), (b, c, d) are frequently used, configuration (a, b,

d) and (a, c, d) can be selected for NU as they are related to frequently used

configurations.

The NUw Linkage Algorithm is below used to find NUw configurations from N

configuration set.

Algorithm 6 NUw Linkage Algorithm
Input:

frequently used configurations

Output:

NUw configurations

1: Find the overlap among different configurations

2: if overlap is found then

3: Calculate the subsets of the overlap

4: Calculate the possible combinations of non-overlaps

5: Compose new configurations with subsets and non-overlaps combinations

6: end if

7: if the composed configuration is in N configuration set then

8: Return the composed configuration

9: end if

• Identify X/F (NUf) for AR and TA

Different from NUw, NUf is used to identify those potential candidate X/F

configurations in N. NUf configurations are closely related to existing X/F con-

figurations. It analyzes existing X/F configurations and finds those components

that are often in X/F configurations. Then it uses the components to compose

105

NUf configurations. The idea is that a configuration close to a faulty config-

uration may be faulty too as TA will be productive only if a F combination is

identified. Thus, from time to time, AR may choose to select a configuration

that is likely to fail to identify a faulty combination to enhance TA performance.

• Identify P (NUp) for AR

Similar as NUf , NUp is used to identify those potential candidate P by search-

ing those closely related to existing P configurations. It analyzes existing P

configurations and finds those components are often in those P configurations.

Then it uses the components to compose NUp configurations. The idea is that

a configuration close to a P configuration is likely to a P configuration too. In

AR algorithm, a P configuration is useful as it can eliminate many combination-

s from testing, and thus a version of AR seek to maximize the probability of

identifying P configuration before testing.

• The relationship between NU and N

In a CT project, it may have a large number of N configurations. In that

case, NU size will be much smaller than N size. The goal is to select those

NU configurations that can optimize the testing process. Sometimes it is for P

configurations (to optimize AR), and sometimes for F configurations (to optimize

TA). The relationships among NU and N are as follows: |NU| <<|N− NU| <|N|.

The best way to run AR is to eliminate as many X/F configurations first, and

this can be done by TA.

• The best way to run AR + TA together

AR may need X/F configurations to be identified by TA before testing, and

TA needs an X/F combinations to be identified to be productive. Thus these

106

two processes may need to wait for one another. The waiting time affects the

efficiency. As the problem size is large, it is possible to run AR and TA in

parallely working on different portions of the problem size. AR / TA performs

its own tasks concurrently, update the shared database, and merge results. The

TA rules guarantee that the merged results will be consistent.

7.1.2 Integrated Process

Based the previous discussion, the incremental and integrated process is proposed

as shown in Figure 7.2. In the framework, AR runs test configurations to find those

F configurations first. AR analysis stops until all F configurations are identified. The

identified analyzed F configurations are used by TA to eliminate those X, F, and N

configurations from candidate configuration set. TA analysis stops until all X, F, and

N configurations are eliminated. After candidate configuration set is analyzed by AR

and TA, new components are added. Then TA analyzes the candidate configuration

set with new components to eliminate those X, F, and N configurations according to

existing test results. After that, AR analyzes the candidate configuration set using

existing test results. The same analysis process is repeated until all 6-way interactions

are analyzed. The process stops when the number of N configurations equals to zero,

and all X and F configurations are identified.

Different number of U configurations are sent to each processor to do TA analysis

according to its computation capacity. When one processor finishes analyzing the

assigned U configurations, new U configurations will be assigned. New U configura-

tions are randomly picked from candidate configuration set. The finalized configura-

tions will be updated in test database. Those configurations that cannot be finalized

through testing analysis will be tested. The process stops until all U configurations

are finalized.

107

Algorithm 7 AR & TA Integrated Processing Algorithm
Input:

X, F, N, P, U configurations

Output:

deduced F configurations, updated U configurations

1: while N == 0 && all X, F configurations are identified && no new components

do

2: if F configuration exist then

3: Run AR

4: Return identified F interaction

5: end if

6: while all related X, F, and N configurations are eliminated based on existing

test results do

7: if F interaction | X configuration | N configuration exists && U configuration

exists then

8: Run TA

9: Return identified F configurations & updated U configurations

10: end if

11: Add new components

12: end while

13: end while

108

Figure 7.2: The Flowchart of AR and TA Analysis

The incremental process is proposed to emulate the SaaS tenant application de-

velopment process. After a SaaS system is deployed, new tenants can be added,

while other tenant applications are being executed at the same time. Each time a

new tenant is added, zero or more components will be added with at least one new

configuration.

It is possible to add components in a batch mode rather than on a continuous mode

to save the incremental computation. It is also possible to run a non-incremental

manner where all the components and all required configurations are known.

7.1.3 Framework Illustration

One example is used to illustrate the overall framework. There are six components

(a, b, c, d, e, f) and each component has two options. There are total 26 configurations.

Suppose 2-way combination (c, e) and 6-way combination (a, b, c, d, e, d) are faulty.

109

Table 7.1: 6-Component Example Initial Settings

Configurations # F # X # N # P #

2-way 15 1 0 3 2

3-way 20 0 0 5 3

4-way 15 0 0 0 2

5-way 6 0 1 0 1

6-way 1 1 0 0 0

Table 7.2: Related Configurations Eliminated by TA

F # X # N # Configurations Need to be Tested

2-way 1 0 3 9

3-way 4 0 5 8

4-way 6 0 0 7

5-way 4 1 0 0

6-way 1 0 0 0

The initial settings are shown in Table 7.1, involving X, N, and P configurations.

Step 1: AR analyzes the workloads, based on the initial settings. One test hits

6-way failure and four tests hit 2-way failures. AR stops until all F configurations are

identified.

Step 2: Based on the initial settings and the identified F configurations, TA ana-

lyzes the candidate set. Four F 3-way configurations, six F 4-way configurations, and

four F 5-way configurations are eliminated by TA as shown in Table 7.2. TA stops

until all related X, F, and N configurations are eliminated.

Step 3: One new component g is added and workloads increase. Suppose one F

5-way configuration, one F 6-way configuration, and two N 4-way configurations are

also added in the increased configurations. The increased number of configurations

110

Table 7.3: Increased Configurations by Adding New Component

Increased Configuration #

2-way 6

3-way 15

4-way 20

5-way 15

6-way 6

Table 7.4: Related Configurations Eliminated by TA

F # N # Configurations Need to Be Tested

2-way 0 0 6

3-way 1 0 14

4-way 4 2 14

5-way 6 0 9

6-way 0 0 6

are shown in Table 7.3.

Step 4: Based on the existing test results, TA analyzes the candidate configura-

tion set. One F 3-way configuration, four F 4-way configurations, and six F 5-way

configurations are eliminated as shown in Table 7.4. TA stops until all related X, F,

and N configurations are eliminated.

Step 5: Based on existing test results, AR analyzes those configurations in candi-

date configuration set. Four test cases hit 5-way failure and three test cases hit 6-way

failure. AR stops until all F configurations are identified.

Step 6: Based on the existing test results and the new identified F configurations,

TA analyzes the candidate configuration set. One F 5-way configuration and three F

6-way configurations are eliminated by TA as shown in Table 7.5. TA stops until all

111

Table 7.5: Related Configurations Eliminated by TA

F # Configurations Need to Be Tested

2-way 0 6

3-way 0 14

4-way 0 14

5-way 1 8

6-way 3 3

related X, F, and N configurations are eliminated.

Step 7: No more components are added. All X and F configurations are eliminated

from candidate configuration set. And no N configuration is in the candidate set. The

integrated process stops.

7.2 Experiments and Results

7.2.1 Experiment Setup

To evaluate the integrated process including its scalability, we performed extensive

simulations, this section provides five large experiments with 210, 220, 230, 240, and

250 components, and each component has two options. The corresponding number of

configurations are 22
10
= 21024 = 1.79*10308, 22

20
, 22

30
, 22

40
, and 22

50
, furthermore 22

10

≪ 22
20 ≪ 22

30 ≪ 22
40 ≪ 22

50
.

Tables 7.6 to 7.10 show the number of components and configurations. For exam-

ple, 250 components will have 2.83*1087 6-way configurations. Compare to previously

reported experiments Kuhn (2010); Kuhn et al. (2008); Wu et al. (2014), this may be

the largest experimentation size in CT known to the authors as 2014.

To visualize the growth of configurations, Figure 7.3 shows the increased workloads

when the number of components increases, each time the total number of configura-

112

Figure 7.3: The Number of Components in TaaS Simulation

tions increases exponentially. Based on the initial seeded faults, each configuration

from 2-way to 6-way (up to 2.83*1087) is analyzed.

Table 7.6, 7.7, 7.8, 7.9, 7.10 show the number of all involved configurations from

2-way to 6-way, initial setting of X, N, and P configurations respectively for 210, 220,

230, 240, and 250 components.

Note that F configurations have been set up for a challenging situation where few

faults are seeded for 3-way to 6-way interactions, and in some cases no fault is seeded,

especially in the light of the enormous size of t-way configurations in these systems.

For example, out of 2.45*1059, only one fault is seeded as a 6-way fault in 240 system.

In this case, AR will need to test many configurations to encounter a failure, and as few

F configurations are available, TA will not be efficient in eliminating configurations.

In the simulation, 500 candidate configurations are sent to each processor one

time. When 450 configurations are processed, another 500 candidate configurations

are added to each processor. Figure 7.4 shows the nature of concurrent AR and

TA tasks in the integrated process. At the beginning, only AR can execute as it

113

 Figure 7.4: The Integrated Process

needs to identify F or X first. When AR identifies a failure, the faulty interactions

can be quickly identified by reasoning, and once the faulty interaction is identified,

TA will initiate a new concurrent process to eliminate related faulty interactions

automatically. When AR detects the second failure and second fault interactions, TA

may not have completed its execution, and thus another TA process is initiated based

on the newly identified faulty interactions. In this way, numerous TA processes can

be executed at the same time with the AR process. Multiple AR processes can be

executed too, but each takes different configuration for testing. Each TA process will

stop when all related F configurations from 2-way to 6-way are identified. As all these

processes share the same database, any update done by any concurrent TA processes

will be available to the AR process immediately, TA rules ensures that any results

obtained by TA will be eventually consistent regardless if the same configuration may

be identified multiple times. For example, combination (a, b) is faulty, so is (c, d),

then configuration (a, b, c, d) will be identified by two TA processes, one from (a, b),

the other (c, d), but both processes will produce consistent results.

Furthermore, as the number of components increases, the number of F, X, N, and

P configurations also increases, and for the same number of components, the number

of X, N, and P configurations increases from 2-way to 6-way.

Another important consideration is that each initial F and X seeded are unique.

For example, if combination (a, b) is a seeded 2-way fault, then (a, b, c) cannot be

an initial 3-way fault for any component c, nor it can be a 3-way X combination. By

114

Table 7.6: Initial 210 Components Experiment Setups

Configs # F Configs by AR X Configs N Configs P Configs

2-way 523,776 10 524 348,311 149,276

3-way 5.35*108 2 5.35*105 3.51*108 1.49*108

4-way 2.73*1011 0 2.73*108 1.78*1011 7.70*1010

5-way 9.29*1013 0 9.29*1010 6.07*1013 2.61*1013

6-way 2.37*1016 1 2.37*1013 1.54*1016 6.64*1015

Table 7.7: Initial 220 Components Experiment Setups

Configs # F Configs by AR X Configs N Configs P Configs

2-way 5.50*1011 10,486 5.50*108 3.59*1011 1.55*1011

3-way 1.92*1017 4 1.92*1014 1.25*1017 5.51*1016

4-way 5.03*1022 1 5.03*1019 3.29*1022 1.41*1022

5-way 1.06*1028 1 1.06*1025 6.93*1027 2.97*1027

6-way 1.85*1033 1 1.85*1030 1.20*1033 5.20*1032

arranging the initial F and X seeded in this manner, these can be detected by AR only,

not by TA. Otherwise, if (a, b, c) is also seeded, TA will pick it up when it detects

that (a, b) is a F, and eliminated it automatically. Thus, the initial X and F seeded

have been carefully designed so that they can be detected by AR only to evaluate the

integrated process under a challenging situation.

All simulations are run on four Intel Xeon processor E7-4870 v2 (30M Cache, 2.30

GHz, 15 cores) machines. Then machines run for about a month on a dedicated mode

for the experiments.

7.2.2 Experiment Results

The following results are obtained:

115

Table 7.8: Initial 230 Components Experiment Setups

Configs # F Configs by AR X Configs N Configs P Configs

2-way 5.76*1017 1.07*107 5.76*1015 3.76*1017 1.62*1017

3-way 2.06*1026 10 2.06*1024 1.34*1026 5.81*1025

4-way 5.54*1034 2 5.54*1032 3.61*1034 1.56*1034

5-way 1.19*1043 2 1.19*1041 7.71*1042 3.34*1042

6-way 2.13*1051 1 2.13*1049 1.39*1051 6.02*1050

Table 7.9: Initial 240 Components Experiment Setups

Configs # F Configs by AR X Configs N Configs P Configs

2-way 6.04*1023 1.10*1010 6.04*1021 3.94*1023 1.70*1023

3-way 2.22*1035 23 2.22*1033 1.44*1035 6.32*1034

4-way 6.09*1046 4 6.09*1044 3.98*1046 1.71*1046

5-way 1.34*1058 2 1.34*1056 8.75*1057 3.75*1057

6-way 2.45*1069 1 2.45*1067 1.60*1069 6.93*1068

• Each experiment has been run 3 times, and all the results are presented with

the average of three runs;

• All 2-way to 6-way faults seeded have been identified by AR in all these exper-

iments;

• All the identified 2-way to 6-way faults have been used by TA to eliminate as

many corresponding configurations;

• All the experiments have been conducted using incremental process as stated

in Section 7.1 until there is no more N configurations, i.e., the system runs out

of new configuration for testing.

• Hundreds of thousand TA analysis run concurrently.

116

Table 7.10: Initial 250 Components Experiment Setups

Configs # F Configs by AR X Configs N Configs P Configs

2-way 6.34*1029 1.13*1013 6.34*1027 4.14*1029 1.78*1029

3-way 2.38*1044 35 2.38*1042 1.55*1044 6.67*1043

4-way 6.70*1058 5 6.70*1056 4.38*1058 1.88*1058

5-way 1.51*1073 3 1.51*1071 9.87*1072 4.23*1072

6-way 2.83*1087 1 2.83*1085 1.84*1087 8.04*1086

• Nc = Nxta + Nfar + Nfta + Nnta + Np + Nu. Nc is the total number of t-

way configurations (2 ≤ t ≤ 6). Nxta is the number of X t-way configurations

eliminated by TA. Nfar and Nfta are the number of F t-way configurations

identified by AR and eliminated by TA respectively. Nnta is the number of N t-

way configurations eliminated by TA.Np is the number of P t-way configurations.

Nu is the number of U t-way configurations.

Figure 7.5 shows the number of test configurations need to identify all t-way faults

(2 ≤ t ≤ 5) by AR. Note that these is different from those configurations eliminated

by TA. These initial seeded faults can be identified by AR only due to the unique

design described in the previous subsection. As few faults are seeded in 3-way to

6-way interactions, the numbers of test configurations needed for AR are large.

7.2.3 Measurements

Ntc: the number of t-way configurations needed to identify a t-way

fault, and versus the total number of t-way configurations. Table 7.11 and

Table 7.12 show the number of configurations from 2-way to 6-way in identifying

faults and the related percentage over corresponding configurations from 2-way to

6-way. For example, in the case 210 2-way interaction faults, AR needs to perform

117

2,340 tests on average to hit ten failures, and this is only 0.45% of all 2-way possible

configurations. While the number of configurations needed increases with increasing

components, but the percentage becomes smaller rapidly. In fact, only 2.54*10−67%

of 3-way configurations will be needed. If one compares the ratio but using the total

number of configurations (rather than 3-way configurations), the ratio will be even

smaller. In general, AR needs to perform a tiny fraction of the total number of t-way

configurations of 2 ≤ t ≤ 6.

Number of t-way interaction eliminated: TA eliminated any 2-way to 6-way

F configurations caused by seeded 2-way to 6-way faults, and this is shown in Table

7.13. For each fault identified, a huge number of configurations are eliminated on

average. For example, while only 2 faults are seeded in 3-way interactions in 230

system, 6.19*1024 configurations are eliminated by TA. This shows that while AR

needs to perform many tests to identify an interaction fault, but each interaction

fault identified can lead to significant reduction in overall test workloads. As the

number of components increases, the reduction is even more significant. The total

number of configurations eliminated by the integrated process are shown in Table

7.17. Similarly, the X configurations eliminated by TA and their ratio to the total

number t-way configurations are shown in Table 7.16.

Table 7.18 shows the number of configurations that need to be tested and the cor-

responding percentage of the total number of configurations, and the results showed

that consistently only about 1.6% of configuration need to be tested, or about 98.4%

of configurations do not needed to be tested.

An interesting question is about the consistency of 1.6% as similar results were

obtained using different parameters on smaller scale systems Tsai et al. (2014); Wu

et al. (2014). This percentage does not go down or up significantly regardless of the

experiment size.

118

Figure 7.6 shows the total workloads and testing workloads saved plotted using a

logarithmic graph. Based on the initial settings, the number of components from 210

to 250 have more 98.3% deduction rate that is shown in Figure 7.7.

Rec: the ratio of the eliminated configurations over total number of

configurations. Table 7.16 shows TA deduction efficiency. When the number of

components increases, the efficiency always keeps at the same level. The deduction

rate increases from 2-way configurations to 6-way configurations.

The deduction rate with N configurations is higher than the deduction rate without

N configurations. N configuration is one key factor to affect the TA efficiency. More N

configurations have, TA analysis is more efficient.

Computational complexity needed to eliminate those faulty t-way con-

figurations for 2 ≤ t ≤ 6: All related F or X configurations up to 6-way are

eliminated from testing considerations by TA analysis, according to the initial F or X

seeded interactions. Regardless of the initial F or X seeded interactions, the worst case

is that all the 2-way to 6-way configurations must be visited. For n components, the

number of all configurations from 2-way to 6-way is Cn
2 + Cn

3 + Cn
4 + Cn

5 + Cn
6 with

time complexity O(n6). All F and X configurations from 2-way to 6-way are identified

by TA within time complexity O(n6). While these numbers look large, but when

one compares them to the total number of possible configuration, these numbers are

actually small as O(n6) ≪ O(2n). When n increases, the percentage of n6 over 2n

decreases. limn→infty
n6

2n
= 0.

Table 7.15 shows all the computation steps that of TA performed in the simulation

to eliminate 2-way to 6-way configurations for 210 to 250 systems, as well as the ratio

of the computation steps over the total configuration. One can see that the ratio is

almost zero for all these systems, with the largest number being 4.35*10−275 and it

is close to zero already. As TA deals with configuration elimination, not components,

119

Figure 7.5: AR Test Configurations to Identify All T-way Faults (2 ≤ T ≤ 5)

Table 7.11: Test Configurations # of Identifying Faults in 2-way to 6-way Configu-
rations

Components 210 220 230 240 250

Test Configurations

2-way 2,340 4.39*106 6.67*109 9.10*1012 1.17*1016

3-way 1,334 5,816 24,370 82,156 1.66*105

4-way na 4,285 6,941 78,896 40,755

5-way na 12,138 19,871 57,666 38,376

thus TA needs to traverse a tiny fraction of the total number of configuration to cover

most 2-way to 6-way configurations.

7.3 Conclusion

With the arrival of cloud computing, the need to perform large CT to identify

faulty interactions and configurations, instead of just coverage, has also arrived. At

the same time, the cloud also provided significant computing resources including C-

PUs and storage that allow people to perform CT exercises that were not possible

before. This paper has proposed a TaaS framework that allows large CT exercis-

es to detect faulty interactions and configuration in SaaS. The proposed framework

combines faulty detection with asynchronous TA to eliminate related configurations

concurrently. The goal of this project is to demonstrate that it is possible to run large

CT with a huge number (250) of components with 22
50
of configurations. This may be

120

Table 7.12: Percentage of Test Configurations Over 2-way to 6-way Configurations

Components 210 220 230 240 250

Percentage (%)

2-way 0.45 0.000798 1.16*10−6 1.51*10−9 1.85*10−12

3-way 0.000249 3.03*10−12 1.18*10−20 3.70*10−29 6.97*10−38

4-way na 8.52*10−18 1.25*10−29 1.30*10−40 6.08*10−53

5-way na 1.15*10−22 1.67*10−37 4.30*10−52 2.54*10−67

Table 7.13: F Configurations Deduction by TA

Components 210 220 230 240 250

Deducted F

2-way 10 10,486 1.07*107 1.10*1010 1.13*1013

3-way 10,222 1.10*1010 1.15*1016 1.21*1022 1.27*1028

4-way 5.22*106 5.76*1015 6.19*1024 6.65*1033 7.14*1042

5-way 1.77*109 2.01*1021 2.22*1033 2.44*1045 2.68*1057

6-way 4.52*1011 5.27*1026 5.95*1041 6.70*1056 7.54*1071

the largest CT experiments known to the authors as 2014 with 2.45*1069 6-way con-

figurations alone. The combined process has been simulated using 60 CPUs that run

for almost a month on a dedicated mode with a large number of concurrent processes.

The process successfully eliminated about 98.4% of test configurations from testing

consideration consistent across these experiments. These exercises demonstrated that

the proposed TaaS framework can work on large project with large number of com-

ponents and configurations.

121

Table 7.14: X Configurations Deduction by TA

Components 210 220 230 240 250

Deducted X

2-way 524 5.50*108 5.76*1015 6.04*1021 6.34*1027

3-way 2.08*107 6.79*1015 6.59*1024 6.92*1033 7.85*1042

4-way 1.27*1010 2.32*1021 2.12*1033 2.27*1045 2.49*1057

5-way 4.44*1012 5.10*1026 5.31*1041 5.41*1056 5.97*1071

6-way 1.25*1015 9.79*1031 8.19*1049 9.26*1067 1.12*1086

Table 7.15: Computation Steps of TA Analysis

Compos 210 220 230 240 250

Configs 22
10

22
20

22
30

22
40

22
50

Steps 7.79*1030 5.54*1064 7.68*10100 8.68*10136 1.28*10173

Ratio 4.35*10−278 approx 0 approx 0 approx 0 approx 0

Table 7.16: TA Deduction Rate

Components 210 220 230 240 250

2-way 96.32% 96.32% 96.33% 96.33% 96.33%

3-way 97.44% 97.44% 97.45% 97.45% 97.45%

4-way 98.15% 98.15% 98.15% 98.16% 98.16%

5-way 98.31% 98.31% 98.32% 98.32% 98.33%

6-way 98.36% 98.37% 98.37% 98.37% 98.37%

122

Table 7.17: Configurations Eliminated by AR & TA

Number of

Components

Configurations

Eliminated

Percentage

210 2.33*1016 98.34%

220 1.82*1033 98.34%

230 2.10*1051 98.38%

240 2.41*1069 98.39%

250 2.78*1087 98.39%

Table 7.18: Configurations Need to Be Tested

Number of

Components

Configurations

Need to Be

Tested

Percentage

210 3.93*1014 1.66%

220 3.14*1031 1.66%

230 3.45*1049 1.62%

240 3.94*1067 1.61%

250 4.56*1085 1.61%

Figure 7.6: Total Workloads and Testing Workloads Saved

123

Figure 7.7: Configuration Deduction Rate

124

Chapter 8

CONCLUSION

With the arrival of cloud computing, the need to perform large CT to identify faulty

interactions and configurations, instead of just coverage, has also arrived. At the

same time, the cloud also provided significant computing resources including CPUs

and storage that allow people to perform CT exercises that were not possible before.

Existing CT methods mainly focus on test coverage. But high test coverage does

not equal to cover more possible combinations. Actually a large number of combi-

nations are not tested by existing CT methods. My thesis proposes an efficient way

TA to explore the untested combinations in combinatorial testing. TA is one test-

ing analysis method that analyzes existing test results to eliminate those infeasible,

faulty, and irrelevant configurations from testing consideration for increasing testing

efficiency. The proposed TA that defines five statuses X, F, P, N, U with a priority

and three operations ⊗, ⊙, and ⊕, is formalized by mathematic model and provides

a foundation for concurrent combinatorial testing. The commutativity and associa-

tivity of defined TA operations and the efficiency of TA are proved by mathematic

method. By using the TA operations, many combinatorial tests can be eliminated as

the TA identifies those interactions that need not be tested. Also TA defined operation

rules allow merging test results done by different processors, so that combinatorial

tests can be done in a concurrent manner. The TA rules ensure that either merged

results are consistent or a testing error has been detected so that retest is needed. In

this way, large scale combinatorial testing can be carried out in a cloud platform with

a large number of processors to perform test execution in parallel to identify faulty

interactions. Different simulations designed for TA rules also prove TA is an efficient

125

way to increase testing efficiency.

The faulty root of F configuration is helpful for TA analysis. AR analyzes the

faulty roots and the faulty roots are used by TA in analyzing candidate configura-

tions. AR and TA cooperate to analyze candidate configurations for increasing testing

efficiency. Based on AR and TA, a TaaS framework that allows large CT exercises

to detect faulty interactions and configuration in SaaS is proposed. The proposed

framework combines faulty detection with asynchronous TA to eliminate related con-

figurations concurrently. The combined process has been simulated on a dedicated

mode with a large number of concurrent processes in cloud environment. The process

successfully eliminated about 98.4% of test configurations from testing consideration

consistent across these experiments. These exercises demonstrated that the proposed

TaaS framework can work on large project with large number of components and

configurations.

126

REFERENCES

Ahmed, B. S. and K. Z. Zamli, “A Review of Covering Arrays and Their Application
to Software Testing”, Journal of Computer Science 7, 9, 1375–1385 (2011).

Arcuri, A. and L. Briand, “Formal Analysis of the Probability of Interaction Fault
Detection Using Random Testing”, IEEE Trans. Softw. Eng. 38, 5, 1088–1099
(2012).

Arcuri, A., M. Z. Iqbal and L. Briand, “Formal Analysis of the Effectiveness and
Predictability of Random Testing”, in “Proceedings of the 19th international sym-
posium on Software testing and analysis”, ISSTA ’10, pp. 219–230 (ACM, New
York, NY, USA, 2010).

Bai, X., M. Li, B. Chen, W.-T. Tsai and J. Gao, “Cloud Testing Tools”, in “Proceed-
ings of IEEE 6th International Symposium on Service Oriented System Engineering
(SOSE)”, pp. 1–12 (Irvine, CA, USA, 2011).

Borazjany, M., L. Yu, Y. Lei, R. Kacker and R. Kuhn, “Combinatorial Testing of Acts:
A Case Study”, in “Proceedings of 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST)”, pp. 591–600 (2012).

Brownlie, R., J. Prowse and M. S. Padke, “Robust Testing of AT&T PMX/StarMAIL
using OATS”, AT&T Technical Journal 7, 3, 41–47 (1992).

Bryce, R. C. and C. J. Colbourn, “One-test-at-a-time heuristic search for interaction
test suites”, in “Genetic and Evolutionary Computation Conference (GECCO),
Search-based Software Engineering track (SBSE)”, pp. 1082–1089 (2007).

Bryce, R. C. and C. J. Colbourn, “Expected time to detection of interaction faults”,
Journal of Combinatorial Mathematics and Combinatorial Computing (to appear).

Bryce, R. C., C. J. Colbourn and D. R. Kuhn, “Finding Interaction Faults Adaptively
Using Distance-Based Strategies”, in “Proceedings of the 2011 18th IEEE Inter-
national Conference and Workshops on Engineering of Computer-Based Systems”,
ECBS ’11, pp. 4–13 (IEEE Computer Society, Washington, DC, USA, 2011).

Bryce, R. C., Y. Lei, D. R. Kuhn and R. Kacker, “Combinatorial Testing”, Handbook
of Software Engineering Research and Productivity Technologies (2010).

Burr, K. and W. Young, “Combinatorial Test Techniques: Table-based Automation,
Test Generation and Code Coverage”, in “Proceedings of the Intl. Conf. on Software
Testing Analysis and Review”, pp. 503–513 (West, 1998).

Calvagna, A. and A. Gargantini, “IPO-s: Incremental Generation of Combinatorial
Interaction Test Data Based on Symmetries of Covering Arrays”, in “Proceedings
of the International Conference on Software Testing, Verification and Validation
Workshops, 2009. ICSTW ’09”, pp. 10–18 (2009).

127

Cohen, D., S. R. Dalal, M. L. Fredman and G. C. Patton, “The AETG System: An
Approach to Testing Based on Combinatorial Design”, Journal of IEEE Transac-
tions on Software Engineering 23, 437–444 (1997).

Cohen, D. M., S. R. Dalal, A. Kajla and G. C. Patton, “The Automatic Efficient
Test Generator (AETG) System”, in “Proceedings of International Conference on
Testing Computer Software”, (1994).

Cohen, D. M., S. R. Dalal, J. Parelius and G. C. Patton, “The Combinatorial Design
Approach to Automatic Test Generation”, IEEE Software 13, 5, 83–88 (1996a).

Cohen, D. M., S. R. Dalal, J. Parelius and G. C. Patton, “The Combinatorial Design
Approach to Automatic Test Generation”, IEEE Software 13, 5, 83–88 (1996b).

Colbourn, C. J., “Covering Arrays and Hash Families”, in “Information Security,
Coding Theory and Related Combinatorics”, edited by D. Crnkovic and V. D.
Tonchev, vol. 29 of NATO Science for Peace and Security Series - D: Information
and Communication Security (IOS Press, 2011).

Colbourn, C. J., S. S. Martirosyan, G. L. Mullen, D. Shasha, G. B. Sherwood and
J. L. Yucas, “Products of Mixed Covering Arrays of Strength Two”, Journal of
Combinatorial Designs 14, 14, 124C138 (2006).

Dalal, S. R., A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton and
B. M. Horowitz, “Model-based Testing in Practice”, in “Proceedings of the 21st
international conference on Software engineering”, ICSE ’99, pp. 285–294 (ACM,
New York, NY, USA, 1999).

Dalal, S. R. and C. L. Mallows, “Factor-covering Designs for Testing Software”,
Technometrics 40, 234–243 (1998).

Duran, J. W. and S. C. Ntafos, “An Evaluation of Random Testing”, IEEE Trans.
Softw. Eng. 10, 4, 438–444 (1984).

Gao, J., X. Bai and W. T. Tsai, “Cloud Testing-Issues, Challenges, Needs and Prac-
tice”, in “Software Engineering: An International Journal (SEIJ), IGI Global”,
vol. 1, pp. 9–23 (2011a).

Gao, J., X. Bai and W.-T. Tsai, “SaaS Performance and Scalability Evaluation in
Cloud”, in “Proceedings of The 6th IEEE International Symposium on Service
Oriented System Engineering”, SOSE ’11 (2011b).

Ghazi, S. and M. Ahmed, “Pair-wise Test Coverage Using Genetic Algorithms”, in
“Proceedings of 2003 Congress on Evolutionary Computation (CEC03)”, vol. 2,
pp. 1420–1424 (2003).

Grindal, M., J. Offutt and S. F. Andler, “Combination Testing Strategies: A Survey”,
Software Testing, Verification, and Reliability 15, 167–199 (2005a).

Grindal, M., J. Offutt and S. F. Andler, “Combination Testing Strategies: a Survey.”,
Softw. Test., Verif. Reliab. 15, 3, 167–199 (2005b).

128

Hedayat, A. S., N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and
Applications (Springer-Verlag, New York, 1999).

Huang, R., X. Xie, T. Y. Chen and Y. Lu, “Adaptive Random Test Case Generation
for Combinatorial Testing.”, in “COMPSAC”, pp. 52–61 (IEEE Computer Society,
2012).

Kaner, C., J. Falk and H. Q. Nguyen, Testing Computer Software, 2nd Edition (Wiley,
New York, NY, USA, 1999).

Kuhn, R., “Combinatorial Testing”, http://csrc.nist.gov/groups/SNS/acts/
documents/SP800-142-101006.pdf/ (2010).

Kuhn, R., Y. Lei and R. Kacker, “Practical combinatorial testing: Beyond pairwise”,
IT Professional 10, 3, 19–23 (2008).

Kuliamin, V. V. and A. A. Petukhov, “A Survey of Methods for Constructing Cov-
ering Arrays”, Journal of Program Computer Software 37, 3, 121–146 (2011).

Lei, J., “In-Parameter-Order: A Test Generation Strategy for Pairwise Testing”,
http://csrc.nist.gov/groups/SNS/acts/documents/ipo-nist.pdf/ (2005).

Lei, Y. and K.-C. Tai, “In-Parameter-Order: A Test Generation Strategy for Pairwise
Testing”, in “Proceedings of 3rd IEEE International Symposium on High-Assurance
Systems Engineering”, HASE ’98, pp. 254–261 (1998).

Mandl, R., “Orthogonal Latin Squares: An Application of Experiment Design to
Compiler Testing”, Communications of ACM 28, 10, 1054–1058 (1985).

Mathur, A. P., Foundations of Software Testing, 2nd Edition (Pearson Education,
Upper Saddle River, New Jersey, 2013).

Muller, T. and D. Friedenberg, “Certified Tester Foundation Level Syllabus”, Journal
of International Software Testing Qualifications Board (2007).

Nie, C. and H. Leung, “A Survey of Combinatorial Testing”, ACM Comput. Surv.
43, 2, 11:1–11:29 (2011).

Porter, A. A., C. Yilmaz, A. M. Memon, D. C. Schmidt and B. Natarajan, “Skoll: A
Process and Infrastructure for Distributed Continuous Quality Assurance”, IEEE
Transactions on Software Engineering 33, 8, 510–525 (2007).

Rajappa, V., A. Birabar and S. panda, “Efficient Software Test Case Genera-
tion Using Genetic Algorithm Based Graph Theory”, www.cs.uofs.edu/~bi/
2008f-html/se516/peddachappali.ppt/ (2008).

Riungu, L. M., O. Taipale and K. Smolander, “Software testing as an online service:
Observations from practice”, in “Proceedings of ICST Workshops”, pp. 418–423
(2010).

129

Schroeder, P. J., P. Bolaki and V. Gopu, “Comparing the Fault Detection Effective-
ness of N-way and Random Test Suites”, in “Proceedings of the 2004 Internation-
al Symposium on Empirical Software Engineering”, ISESE ’04, pp. 49–59 (IEEE
Computer Society, Washington, DC, USA, 2004).

Shakya, K., T. Xie, N. Li, Y. Lei, R. Kacker and R. Kuhn, “Isolating Failure-Inducing
Combinations in Combinatorial Testing Using Test Augmentation and Classifica-
tion”, in “Proceedings of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation”, ICST ’12, pp. 620–623 (IEEE Computer So-
ciety, Washington, DC, USA, 2012).

Shiba, T., T. Tsuchiya and T. Kikuno, “Using Artificial Life Techniques to Generate
Test Cases for Combinatorial Testing”, in “Proceedings of the 28th Annual Inter-
national Conference on Computer Software and Applications (COMPSAC2004)”,
vol. 1, pp. 72–77 (2004).

Sinnema, M. and S. Deelstra, “Classifying Variability Modeling Techniques”, Inf.
Softw. Technol. 49, 7, 717–739 (2007).

Tai, K.-C. and Y. Lei, “A Test Generation Strategy for Pairwise Testing”, IEEE
Trans. Software Eng. 28, 1, 109–111 (2002).

Tsai, W.-T., C. Colbourn, J. Luo, G. Qi, Q. Li and X. Bai, “Test Algebra for Com-
binatorial Testing”, in “Proceedings of the 2013 8th International Workshop on
Automation of Software Test (AST)”, pp. 19–25 (2013a).

Tsai, W.-T., Y. Huang, X. Bai and J. Gao, “Scalable Architecture for SaaS”, in “Pro-
ceedings of 15th IEEE International Symposium on Object Component Service-
oriented Real-time Distributed Computing”, ISORC ’12 (2012).

Tsai, W.-T., Y. Huang and Q. Shao, “Testing the Scalability of SaaS Applications”,
in “Proceedings of IEEE International Conference on Service-Oriented Computing
and Applications (SOCA)”, pp. 1–4 (Irvine, CA, USA, 2011).

Tsai, W.-T., Y. Huang, Q. Shao and X. Bai, “Data Partitioning and Redundancy
Management for Robust Multi-Tenancy SaaS”, International Journal of Software
and Informatics (IJSI) 4, 3, 437–471 (2010a).

Tsai, W.-T., Q. Li, C. J. Colbourn and X. Bai, “Adaptive Fault Detection for Testing
Tenant Applications in Multi-Tenancy SaaS Systems”, in “Proceedings of IEEE
International Conference on Cloud Engineering (IC2E)”, (2013b).

Tsai, W.-T., J. Luo, G. Qi and W. Wu, “Concurrent Test Algebra Execution with
Combinatorial Testing”, in “Proceedings of 8th IEEE International Symposium on
Service-Oriented System Engineering (SOSE2014)”, (2014).

Tsai, W.-T., Q. Shao and W. Li, “OIC: Ontology-based Intelligent Customization
Framework for SaaS”, in “Proceedings of International Conference on Service Ori-
ented Computing and Applications(SOCA’10)”, (Perth, Australia, 2010b).

130

van Lint, J. H. and R. M. Wilson, A Course in Combinatorics (Cambridge University
Press, 1992).

Wikipedia, “All-pairs Testing”, http://en.wikipedia.org/wiki/All-pairs_
testing/ (2014a).

Wikipedia, “Backtracking”, http://en.wikipedia.org/wiki/Backtracking/
(2014b).

Wikipedia, “Black-box Testing”, http://en.wikipedia.org/wiki/Black-box_
testing/ (2014c).

Wikipedia, “Genetic Algorithm”, http://en.wikipedia.org/wiki/Genetic_
algorithm/ (2014d).

Wikipedia, “Latin Square”, http://en.wikipedia.org/wiki/Latin_square/
(2014e).

Wikipedia, “Orthogonal Array”, http://en.wikipedia.org/wiki/Orthogonal_
array/ (2014f).

Wikipedia, “White-box Testing”, http://en.wikipedia.org/wiki/White-box_
testing/ (2014g).

Williams, A. and R. Probert, “A Practical Strategy for Testing Pair-wise Coverage
of Network Interfaces”, in “Proceedings Seventh International Symposium on Soft-
ware Reliability Engineering”, pp. 246–254 (1996).

Wu, W., W.-T. Tsai, C. Jin, G. Qi and J. Luo, “Test-Algebra Execution in a Cloud
Environment”, in “Proceedings of 8th IEEE International Symposium on Service-
Oriented System Engineering (SOSE2014)”, (2014).

Yilmaz, C., M. B. Cohen and A. Porter, “Covering Arrays for Efficient Fault Char-
acterization in Complex Configuration Spaces”, in “Proceedings of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis”, ISSTA ’04,
pp. 45–54 (ACM, New York, NY, USA, 2004).

Yu, L., Y. Lei, R. Kacker and D. Kuhn, “ACTS: A Combinatorial Test Generation
Tool”, in “Proceedings of 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation (ICST)”, pp. 370–375 (2013).

Zhang, J., Z. Zhang and F. Ma, Automatic Generation of Combinatorial Test Data
(Springer, New York, 2014).

131

APPENDIX A

THE PROOFS OF TA DEFINED OPERATIONS

132

A.1 COMMUTATIVITY OF ⊗

The commutativity of binary operation ⊗.

V (T1)⊗ V (T2) = V (T2)⊗ V (T1).

Proof. Since the binary operation ⊗ is defined as

⊗ X F P N U
X X X X X X
F X F F F F
P X F U N U
N X F N N N
U X F U N U

Because the above matrix is symmetric on the main diagonal, the value of V (T1) ⊗
V (T2) is always the same as V (T2)⊗V (T1). Thus, the commutativity of ⊗ holds.

A.2 ASSOCIATIVITY OF ⊗

The associativity of binary operation ⊗.

V (T1)⊗ (V (T2)⊗ V (T3)) = (V (T1)⊗ V (T2))⊗ V (T3).

Proof. We will prove this property in the following cases.
(1) At least one of V (T1), V (T2), and V (T3) is X. Without loss of generality,

suppose that V (T1) = X, then according to the operation table of ⊗, V (T1)⊗(V (T2)⊗
V (T3)) = X⊗ (V (T2)⊗V (T3)) = X, (V (T1)⊗V (T2))⊗V (T3) = (X⊗V (T2))⊗V (T3) =
X⊗V (T3) = X. Thus, in this case, V (T1)⊗(V (T2)⊗V (T3)) = (V (T1)⊗V (T2))⊗V (T3).

(2) V (T1), V (T2), and V (T3) are not X and at least one of V (T1), V (T2), and
V (T3) is F. Without loss of generality, suppose that V (T1) = F, then according to
the operation table of ⊗, the value of V (T2) ⊗ V (T3) can only be F, N or U. So
V (T1) ⊗ (V (T2) ⊗ V (T3)) = F ⊗ (V (T2) ⊗ V (T3)) = F, (V (T1) ⊗ V (T2)) ⊗ V (T3) =
(F⊗ V (T2))⊗ V (T3) = F⊗ V (T3) = F. Thus, in this case, V (T1)⊗ (V (T2)⊗ V (T3)) =
(V (T1)⊗ V (T2))⊗ V (T3).

(3) V (T1), V (T2), and V (T3) are not X or F and at least one of V (T1), V (T2),
and V (T3) is N. Without loss of generality, suppose that V (T1) = N, then according
to the operation table of ⊗, the value of V (T2) ⊗ V (T3) can only be N or U. So
V (T1) ⊗ (V (T2) ⊗ V (T3)) = N ⊗ (V (T2) ⊗ V (T3)) = N, (V (T1) ⊗ V (T2)) ⊗ V (T3) =
(N⊗ V (T2))⊗ V (T3) = N⊗ V (T3) = N. Thus, in this case, V (T1)⊗ (V (T2)⊗ V (T3)) =
(V (T1)⊗ V (T2))⊗ V (T3).

(4) V (T1), V (T2), and V (T3) are not X, F or N. In this case, V (T1), V (T2), and
V (T3) can only be P or U. According to the operation table of ⊗, the value of
V (T1)⊗V (T2) and V (T2)⊗V (T3) are U. So V (T1)⊗(V (T2)⊗V (T3)) = V (T1)⊗U = U,
(V (T1)⊗V (T2))⊗V (T3) = U⊗V (T3) = U. Thus, in this case, V (T1)⊗(V (T2)⊗V (T3)) =
(V (T1)⊗ V (T2))⊗ V (T3).

133

A.3 COMMUTATIVITY OF ⊕

The commutativity of binary operation ⊕.

V1(T)⊕ V2(T) = V2(T)⊕ V1(T).

Proof. Since the binary operation ⊕ is defined as

⊕ E X F P N U
E E E E E E E
X E X E E E E
F E E F E F F
P E E E P P P
N E E F P N U
U E E F P U U

Because the above matrix is symmetric on the main diagonal, the value of V1(T) ⊕
V2(T) is always the same as V2(T)⊕V1(T). Thus, the commutativity of ⊗ holds.

A.4 ASSOCIATIVITY OF ⊕

The associativity of binary operation ⊕.

V1(T)⊕ (V2(T)⊕ V3(T)) = (V1(T)⊕ V2(T))⊕ V3(T).

Proof. We will prove this property in the following cases.
(1) One of V1(T), V2(T), and V3(T) is E. Without loss of generality, suppose that

V1(T) = E, then according to the operation table of ⊕, V1(T)⊕(V2(T)⊕V3(T)) = E⊗
(V2(T)⊕V3(T)) = E, (V1(T)⊕V2(T))⊕V3(T) = (E⊕V2(T))⊕V3(T) = E⊕V3(T) = E.
Thus, in this case, V1(T)⊕ (V2(T)⊕ V3(T)) = (V1(T)⊕ V2(T))⊕ V3(T).

(2) V1(T), V2(T), and V3(T) are not E, and there is a pair of V1(T), V2(T), and
V3(T) does not satisfy the constrains. Without loss of generality, suppose that V1(T)
and V2(T) does not satisfy the constrains, then according to the operation table of
⊕, V1(T) ⊕ V2(T) = E. So (V1(T) ⊕ V2(T)) ⊕ V3(T) = E ⊕ V3(T) = E. Since V1(T)
and V2(T) does not satisfy the constrains, there can be two cases: (a) one of them is
X and the other is not, or (b) one of them is P and the other is F.

(a) If V1(T) = X, then V2(T) ⊕ V3(T) cannot be X because V2(T) cannot be X.
Thus, V1(T)⊕ (V2(T)⊕ V3(T)) = E. If V2(T) = X, then V2(T)⊕ V3(T) ̸= X can only
be E or X. Since V1(T) cannot be X, V1(T)⊕ (V2(T)⊕ V3(T)) = E.

(b) If V1(T) = P and V2(T) = F, then V2(T) ⊕ V3(T) can only be E or F. Thus,
V1(T)⊕ (V2(T)⊕ V3(T)) = E. If V1(T) = F and V2(T) = P, then V2(T)⊕ V3(T) can
only be E or P. Thus, V1(T)⊕ (V2(T)⊕ V3(T)) = E.

Thus, in this case, V1(T)⊕ (V2(T)⊕ V3(T)) = (V1(T)⊕ V2(T))⊕ V3(T).
(3) V1(T), V2(T), and V3(T) are not E, and V1(T), V2(T), and V3(T) satisfy the

constrains.
(a) One of V1(T), V2(T), and V3(T) is X. Without loss of generality, suppose that

V1(T) = X, then V2(T) = V3(T) = X. So V1(T) ⊕ (V2(T) ⊕ V3(T)) = X ⊕ (X ⊕ X) =
X⊕ X = X and (V1(T)⊕ V2(T))⊕ V3(T) = (X⊕ X)⊕ X = X⊕ X = X.

134

(b) V1(T), V2(T), and V3(T) are not X, and one of V1(T), V2(T), and V3(T) is F.
Without loss of generality, suppose that V1(T) = F, then V2(T) and V3(T) can only be
F, N, or U. According to operation table of ⊕, V2(T)⊕V3(T) can only be F, N, or U, and
V1(T)⊕V2(T) can only be F. So V1(T)⊕ (V2(T)⊕V3(T)) = F⊕ (V2(T)⊕V3(T)) = F
and (V1(T)⊕ V2(T))⊕ V3(T) = F⊕ V3(T) = F.

(c) V1(T), V2(T), and V3(T) are not X or F, and one of V1(T), V2(T), and V3(T)
is P. Without loss of generality, suppose that V1(T) = P, then V2(T) and V3(T)
can only be P, N, or U. According to operation table of ⊕, V2(T) ⊕ V3(T) can only
be P, N, or U, and V1(T) ⊕ V2(T) can only be F. So V1(T) ⊕ (V2(T) ⊕ V3(T)) =
P⊕ (V2(T)⊕ V3(T)) = P and (V1(T)⊕ V2(T))⊕ V3(T) = P⊕ V3(T) = P.

(d) V1(T), V2(T), and V3(T) are not X, F or P, and one of V1(T), V2(T), and
V3(T) is U. Without loss of generality, suppose that V1(T) = U, then V2(T) and
V3(T) can only be N, or U. According to operation table of ⊕, V2(T) ⊕ V3(T) can
only be N, or U, and V1(T) ⊕ V2(T) can only be U. So V1(T) ⊕ (V2(T) ⊕ V3(T)) =
U⊕ (V2(T)⊕ V3(T)) = U and (V1(T)⊕ V2(T))⊕ V3(T) = U⊕ V3(T) = U.

(e) V1(T), V2(T), and V3(T) are N. V1(T) ⊕ (V2(T) ⊕ V3(T)) = N ⊕ (N ⊕ N) =
N⊕ N = N and (V1(T)⊕ V2(T))⊕ V3(T) = (N⊕ N)⊕ N = N⊕ N = N.

Thus, in this case, V1(T)⊕ (V2(T)⊕ V3(T)) = (V1(T)⊕ V2(T))⊕ V3(T).

A.5 DISTRIBUTIVITY OF ⊗ OVER ⊕

The distributivity of binary operation ⊗ over ⊕ supporting status E.

⊗ E X F P N U
E E E E E E E
X E X X X X X
F E X F F F F
P E X F U N U
N E X F N N N
U E X F U N U

V (T1)⊗ (V1(T2)⊕ V2(T2)) ≽ (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)).

Proof. We will prove this property in the following cases.
(1) V (T1) is E. According to the operation table of⊗, V (T1)⊗(V1(T2)⊕V2(T2)) = E,

V (T1) ⊗ V1(T2) = E, and V (T1) ⊗ V2(T2) = E. Thus, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) =
(V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)).

(2) V (T1) is not E and V1(T2) ⊕ V2(T2) is E. According to the operation table of
⊗, V (T1)⊗ (V1(T2)⊕ V2(T2)) = E.

a) If one of V1(T2) and V2(T2) is E, then according to the operation table of ⊗
and ⊕, (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = E. Thus, V (T1)⊗ (V1(T2)⊕ V2(T2)) =
(V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = E.

b) If V (T1) = X, and both V1(T2) and V2(T2) are not E, then according to the
operation table of ⊗, V (T1) ⊗ V1(T2) = X, and V (T1) ⊗ V2(T2) = X. According to
the operation table of ⊕, (V (T1) ⊗ V1(T2)) ⊕ (V (T1) ⊗ V2(T2)) = X. Thus, V (T1) ⊗
(V1(T2)⊕ V2(T2)) ≻ (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)).

c) If V (T1) is not X, one of V1(T2) and V2(T2) is X, then the other one is F,
P, N, or U. Without loss of generality, suppose that V1(T2) = X, according to the

135

operation table of ⊗, V (T1) ⊗ V1(T2) = X, and V (T1) ⊗ V2(T2) can be F, N, or U.
According to the operation table of ⊕, (V (T1) ⊗ V1(T2)) ⊕ (V (T1) ⊗ V2(T2)) = E.
Thus, V (T1)⊗ (V1(T2)⊕ V2(T2)) = (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = E.

d) If V (T1) = F, and both V1(T2) and V2(T2) are not E and X, According to the
operation table of ⊗, V (T1) ⊗ V1(T2) = F, and V (T1) ⊗ V2(T2) = F. According to
the operation table of ⊕, (V (T1) ⊗ V1(T2)) ⊕ (V (T1) ⊗ V2(T2)) = F. Thus, V (T1) ⊗
(V1(T2)⊕ V2(T2)) ≻ (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)).

e) If V (T1) is not X and F, one of V1(T2) and V2(T2) is F, then the other one is
P. Without loss of generality, suppose that V1(T2) = F and V2(T2) = P, according
to the operation table of ⊗, V (T1) ⊗ V1(T2) = F, and V (T1) ⊗ V2(T2) can be N, or
U. According to the operation table of ⊕, (V (T1) ⊗ V1(T2)) ⊕ (V (T1) ⊗ V2(T2)) = F.
Thus, V (T1)⊗ (V1(T2)⊕ V2(T2)) ≻ (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)).

(3) V (T1) is X and V1(T2) ⊕ V2(T2) is not E. According to the operation table
of ⊗, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) = X, V (T1) ⊗ V1(T2) = X and V (T1) ⊗ V2(T2) = X.
According to the operation table of ⊕, (V (T1)⊗V1(T2))⊕(V (T1)⊗V2(T2)) = X. Thus,
V (T1)⊗ (V1(T2)⊕ V2(T2)) = (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = X.

(4) V (T1) is not E and V1(T2)⊕V2(T2) = X. According to the operation table of ⊗,
V (T1)⊗ (V1(T2)⊕V2(T2)) = X. Since V1(T2)⊕V2(T2) = X, both V1(T2) and V2(T2) are
X. According to the operation table of ⊗, V (T1)⊗V1(T2) = X and V (T1)⊗V2(T2) = X.
According to the operation table of ⊕, (V (T1)⊗V1(T2))⊕(V (T1)⊗V2(T2)) = X. Thus,
V (T1)⊗ (V1(T2)⊕ V2(T2)) = (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = X.

(5) V (T1) is F and V1(T2)⊕V2(T2) is not E and X. According to the operation table
of ⊗, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) = F, V (T1) ⊗ V1(T2) = F and V (T1) ⊗ V2(T2) = F.
According to the operation table of ⊕, (V (T1)⊗V1(T2))⊕(V (T1)⊗V2(T2)) = F. Thus,
V (T1)⊗ (V1(T2)⊕ V2(T2)) = (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = F.

(6) V (T1) is not E and X and V1(T2)⊕V2(T2) is F. According to the operation table
of ⊗, V (T1)⊗ (V1(T2)⊕V2(T2)) = F. Since V1(T2)⊕V2(T2) = F, at least one of V1(T2)
and V2(T2) is F. Without loss of generality, suppose that V1(T2) = F, then according
to the operation table of ⊗, V (T1)⊗ V1(T2) = F and V (T1)⊗ V2(T2) can only be F, N
and U. According to the operation table of ⊕, (V (T1)⊗V1(T2))⊕(V (T1)⊗V2(T2)) = F.
Thus, V (T1)⊗ (V1(T2)⊕ V2(T2)) = (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = F.

(7) V (T1) is N and V1(T2)⊕ V2(T2) is not E, X and F. According to the operation
table of ⊗, V (T1)⊗(V1(T2)⊕V2(T2)) = N, V (T1)⊗V1(T2) = N and V (T1)⊗V2(T2) = N.
According to the operation table of ⊕, (V (T1)⊗V1(T2))⊕(V (T1)⊗V2(T2)) = N. Thus,
V (T1)⊗ (V1(T2)⊕ V2(T2)) = (V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = N.

(8) V (T1) is not E, X and F and V1(T2)⊕ V2(T2) is N. According to the operation
table of ⊗, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) = N. Since V1(T2) ⊕ V2(T2) = N, both V1(T2)
and V2(T2) are N. According to the operation table of ⊕, (V (T1)⊗V1(T2))⊕ (V (T1)⊗
V2(T2)) = N. Thus, V (T1)⊗(V1(T2)⊕V2(T2)) = (V (T1)⊗V1(T2))⊕(V (T1)⊗V2(T2)) = N.

(9) V (T1) is P or U, and V1(T2) ⊕ V2(T2) is not E, X, F and N. According to the
operation table of ⊗, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) = U. Since V1(T2) ⊕ V2(T2) is not
E, X, F and N, V1(T2) and V2(T2) can only be P, N or U, and at most one of them is
N. According to the operation table of ⊗, V (T1) ⊗ V1(T2) and V (T1) ⊗ V2(T2) can
only be N or U, and at most one of them is N. According to the operation table of
⊕, (V (T1) ⊗ V1(T2)) ⊕ (V (T1) ⊗ V2(T2)) = U. Thus, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) =
(V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = U.

(10) V (T1) is not E, X, F and N, and V1(T2) ⊕ V2(T2) is P or U. According to

136

the operation table of ⊗, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) = U. Since V1(T2) ⊕ V2(T2)
is P or U, V1(T2) and V2(T2) can only be P, N or U, and at most one of them is
N. According to the operation table of ⊗, V (T1) ⊗ V1(T2) and V (T1) ⊗ V2(T2) can
only be N or U, and at most one of them is N. According to the operation table of
⊕, (V (T1) ⊗ V1(T2)) ⊕ (V (T1) ⊗ V2(T2)) = U. Thus, V (T1) ⊗ (V1(T2) ⊕ V2(T2)) =
(V (T1)⊗ V1(T2))⊕ (V (T1)⊗ V2(T2)) = U.

137

BIOGRAPHICAL SKETCH

Guanqiu Qi was born in Nanjing, Jiangsu Province, People’s Republic of China.
He attended Nanjing University, where he earned the bachelor of science in computer
science in 2008.

Guanqiu further pursued his doctoral degree in the area of Software-as-a-Service
(SaaS) and Testing-as-a-Service (TaaS) at Arizona State University (ASU) under the
supervision of Professor Wei-Tek Tsai. He published 12 papers in top conferences
and journals.

138

