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ABSTRACT

Spin-orbit interactions are important in determining nuclear structure. They lead

to a shift in the energy levels in the nuclear shell model, which could explain the

sequence of magic numbers in nuclei. Also in nucleon-nucleon scattering, the large

nucleon polarization observed perpendicular to the plane of scattering needs to be

explained by adding the spin-orbit interactions in the potential. Their effects change

the equation of state and other properties of nuclear matter. Therefore, the simulation

of spin-orbit interactions is necessary in nuclear matter.

The auxiliary field diffusion Monte Carlo is an effective and accurate method

for calculating the ground state and low-lying exited states in nuclei and nuclear

matter. It has successfully employed the Argonne v6’ two-body potential to calculate

the equation of state in nuclear matter, and has been applied to light nuclei with

reasonable agreement with experimental results. However, the spin-orbit interactions

were not included in the previous simulations, because the isospin-dependent spin-

orbit potential is difficult in the quantum Monte Carlo method. This work develops a

new method using extra auxiliary fields to break up the interactions between nucleons,

so that the spin-orbit interaction with isospin can be included in the Hamiltonian,

and ground-state energy and other properties can be obtained.
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Chapter 1

INTRODUCTION

1.1 Background

Nuclear interactions between protons and neutrons play an important role in nu-

clear matter studies, such as nuclei structure and neutron star structure [1][2][3]. The

study of nuclei structure[4] shows that the stable nuclei lie along the magic num-

bers line, and could be explained well by shell model[5]. There are many nuclei far

from stability. They are usually not found on the earth, but make a big contribution

to the universe. These unstable nuclei with large neutron excess could decay back

to the stable nuclei, and the boundary of instability where extra neutrons are no

longer bound is called the neutron drip line[6]. These neutron-rich nuclei have many

more neutrons than protons, so the boundary force is very weak. This makes their

half-life very short and hard or impossible to determine in experiments[7]. Similarly,

a large ratio of neutrons over protons exists in neutron stars. We can learn some

internal properties of neutron stars by observing the neutrinos[8], but the matter in-

side neutron stars is very difficult to reach by present observations. By solving the

Schrödinger equation using realistic 2- and 3-body interactions[9] in neutron matter,

we can predict the equation of state and the mass density inside neutron stars[10].

Therefore, the simulations of the Schrödinger equation using realistic interactions is

very important in nuclear physics.

Among kinds of ab initio methods for nuclear structures[11], Quantum Chromo-

dynamics (QCD) could present a fundamental approach via lattice[12], but QCD

calculations can only be applied to limited number of nucleons. To date, only limited
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data on the two-body interaction has been predicted. For low-energy nuclear inter-

actions, phenomenological potentials are typically employed for accurate calculations

such as the Faddeev-Yakubovsky equation for A=4[13], variational calculations for

the Schrödinger equation in A=6 nuclei[14][15], etc. Those potentials are in non-

relativistic quantum system, so they are only dependent on positions and spinors

of nucleons. The phenomenological potentials are obtained by fitting experimental

scattering data, and can describe light nuclei very well [16][17][18][19][20].

In recent decades, many theoretical nuclear calculations have used phenomeno-

logical potentials to calculate the equation of state of nuclear matter. Green’s func-

tion Monte Carlo[21][22] gives an accurate result for neutron matter [23][24][25] and

nuclei[26], but can only be applied to systems with the number of nucleons up to

A=12, for systems with protons and neutrons, and A=14 for pure neutron systems.

The no-core shell model can extend the number of nucleons up to A=40, but it needs

a truncated basis and soft potentials. The Fermi hypernetted chain method is based

on integral-equation techniques, but it makes uncontrolled approximations, and the

variational ansatz used is limited by the integral equation methods. We use auxiliary

field diffusion Monte Carlo[27][28][29] because it is efficient and can be applied to

larger nuclei than the Green’s function Monte Carlo. When the number of nucleons

increases, the auxiliary field diffusion Monte Carlo scales polynomially in the particle

number, which is much better than the exponential scaling in the Green’s function

Monte Carlo. Also, the simulation results of auxiliary field Monte Carlo for light

nuclei agree with the Green’s function Monte Carlo results very well when the same

interactions are used.

Auxiliary field diffusion Monte Carlo has been successfully applied to a phe-

nomenological potential called Argonne v6’ with nuclear matter[30]. However, the

spin-orbit interactions[31][32][33][34] were dropped. The spin-orbit interactions are
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very important in giving the correct energy level orderings in the shell model of nu-

clei. They are the interactions between total spin of two nucleons and relative orbital

angular momentum of two nucleons. Deep inside of nuclei, the spin-orbit interactions

of a single nucleon might be partially cancelled by two nucleons with spins in opposite

directions. But at the surface, there are spin-orbit interactions for a single nucleon

since there is no cancellation. These interactions make the energy levels split and lead

to the magic numbers of nuclei. Also in nucleon-nucleon scattering, the large nucleon

polarizations observed perpendicular to the plane of scattering[35] needs to be ex-

plained by adding the spin-orbit in the potentials. Therefore, to fully understand the

structures of nuclear matter[36][37], it’s necessary to include spin-orbit interactions

in the phenomenological potentials.

The spin-orbit interactions have been estimated by some other theoretical meth-

ods like chiral effective field theory[34]. In chiral perturbation theory, the spin-orbit

strength was generated by iterated one-pion exchange at saturation density [38][39],

and agreed with the empirical value used in the shell model. In this work, we are

going to evaluate the spin-orbit interactions in auxiliary field diffusion Monte Carlo

at zero temperature to establish a more accurate equation of state of nuclear matter.

The method can then be applied to neutron-rich nuclei as well as other more stable

nuclei to obtain a general method to calculate nuclear structure from a realistic nu-

clear Hamiltonian.

1.2 Outline

The following chapters will describe in detail how to include spin-orbit interactions

in the phenomenological Hamiltonian to calculate the equation of state in nuclear
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matter. The results will be compared with those from Hamiltonians without spin-

orbit interactions, so that we can see clearly the differences the spin-orbit interactions

make for the equation of state for high-density nuclear matter.

In chapter 2, we introduce the specific phenomenological Hamiltonian[40] we are

using, and why we chose that Hamiltonian. A plot of the potential terms and the

format of the operator dependence will be presented. We point out why we need to

include the spin-orbit interactions in the potential. The relative importance of the

spin-orbit interaction can be seen directly from figure 2.1.

In chapter 3, we introduce the auxiliary field diffusion Monte Carlo method, and

describe how to use it to solve the Argonne v6’ potential. The results of Argonne

v6’ in the auxiliary field diffusion Monte Carlo done by S. Fantoni, S. Gandolfi, F.

Pederiva and K.E. Schmidt[30] are shown at the end of this chapter.

In chapter 4, we include spin-orbit interactions in our Hamiltonian for neutron

and nuclear matter. The spin-orbit interaction is important in obtaining the correct

nuclear structure, and difficult to simulate. In this chapter, we first show how other

people have calculated the spin-orbit interaction contribution in neutron matter[41],

and why it has not been included previously in nuclear matter. We then show how we

add the spin-orbit interactions in our auxiliary field diffusion Monte Carlo calculation

of nuclear matter.

In chapters 5 and 6, the detailed method and results with the spin-orbit inter-

actions are presented. The spin-orbit interaction without isospin is calculated, and

the equation of state is shown in chapter 5. The spin-orbit interaction with isospin

has been calculated in the two-nucleon system. The results are showed in chapter 6.

They are checked by the Lanczos method, which is described in Appendix A.
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Chapter 2

HAMILTONIAN

The phenomenological nucleon-nucleon(NN) potential is obtained by fitting ex-

perimental scattering data. Before 1993, a variety of potential models fit a subset of

the nucleon-nucleon scattering data to obtain various potentials like Argoone v4[42],

Urbana v14[43], Bonn potential[44][45], Paris potential[46], Reid potential[47], etc. In

1993 the Nijmegen group analysed all np and pp scattering data below 350 MeV[48].

The potentials which fit the Nijmegen data[49] with χ2/Ndata ∼ 1 are called modern

NN potentials[50].

In 1995, the Argonne group published a new NN modern potential by fitting all

the Nijmegen np and pn scattering database, low-energy nn scattering parameters,

and the deuteron binding energy. This potential is called Argonne v18[51]. It has

been successfully applied to nuclear matter and light nuclei, and gives accurate results

[52][53][54]. We will use Argonne v18 as the potential that all our interactions are

based on in this work.

The Argonne v18 potential is then used in a many-body Hamiltonian with the

form

H =
∑
i

−h̄2

2mi

∇2
i +

∑
i<j

Vij +
∑
i<j<k

Vijk (2.1)

It’s a non-relativistic Hamiltonian including a kinetic energy operator, a two-body

potential obtaining the corrected Vij which is, or is based on, Argonne v18, and a

three-body potential Vijk. The three-body potential is necessary for obtaining the

correct triton binding energy and the correct structure in heavier nuclei. The largest

part of the three-body interaction has been included in the auxiliary field diffusion
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Monte Carlo(AFDMC) method, and the remaining part can often be added pertur-

batively. The most important part of the Hamiltonian neglected in AFDMC is the

spin-orbit interactions in the two-body potential. In later chapters, we will use the

kinetic energy operator and two-body potential only to calculate the ground-state

energy, and compare the results of the two-body potential with or without spin-orbit

interactions. However, we will still give a brief introduction of the three-body po-

tential at the end of this chapter. These can be turned on to give a more complete

interaction.

2.1 Argonne v18 Two-Body Potential

The Argonne v18 potential is composed of an electromagnetic(EM) interaction, a

one-pion-exchange(OPE), and short-range phenomenology. The OPE and short-range

phenomenological parts are combined as strong interactions. Since they are much

stronger than the EM part, I will discuss the OPE and short-range phenomenological

parts first.

vij = vπij + vRij . (2.2)

Here i, j are the nucleons, vπij is the OPE potential, and vRij is the short-range phe-

nomenological potential. OPE is considered as meson exchanges between nucleons. It

has a charge-dependency structure due to the difference in the charged- and neutral-

pion masses. It is written as:

vπ(pp) = f 2
ppvπ(mπo),

vπ(np) = fppfnnvπ(mπo) + (−)T+12f 2
c vπ(mπ±),

vπ(nn) = f 2
nnvπ(mπo).

(2.3)
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The partial-waves fpp, fnn, and fc are found to have very little difference, and are

chosen to be a fixed value f 2 = 0.075 [55]. T is the isospin and

vπ(m) = (
m

ms

)2 1

3
mc2[Yµ(r)~σi · ~σj + Tµ(r)Sij], (2.4)

where Yµ(r) and Tµ(r) are the Yukawa and tensor functions:

Yµ(r) =
e−µr

µr
(1− e−cr2

),

Tµ(r) = (1 +
3

µr
+

3

(µr)2
)
e−µr

µr
(1− e−cr2

)2,

(2.5)

with µ = mc/h̄. ms is a scaling mass to make the coupling constant dimensionless.

The Gaussian factors cut off the one-pion exchange at short distances.

The short-range phenomenological part consists of central, L2, tensor, spin-orbit,

and quadratic spin-orbit terms. All the parameters in this part are fit to all the

Nijmegen scattering data.

In auxiliary field diffusion Monte Carlo, we usually write the two-body potential

vij in the operator form.

vij =
∑
p=1,18

vp(rij)O
p
ij, (2.6)

where Op
ij are the 18 operators given below, and vp(rij) are the corresponding coeffi-

cients for each operator. The first eight operators are the most important. They give

the most contribution on fitting S-wave and P-wave NN scattering data.

Op=1,8
ij = [1, ~σi · ~σj, Sij, ~L · ~S]⊗ [1, ~τi · ~τj]. (2.7)

Sij is the tensor operator,

Sij = 3(~σi · r̂ij)(~σj · r̂ij)− ~σi · ~σj, (2.8)

~L is the relative angular momentum of two nucleons,

~L =
1

2h̄
(~ri − ~rj)× (~pi − ~pj), (2.9)
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and ~S is the total spin of two nucleons,

~S =
1

2
(~σi + ~σj). (2.10)

The next six operators in Argonne v18 could give a better description on fitting

P-wave and D-wave NN scattering data[43]. But the effect is relatively small.

Op=9,14
ij = [L2

ij, L
2
ij(~σi · ~σj), (~L · ~S)2]⊗ [1, ~τi · ~τj]. (2.11)

The last four operators break charge independence, and are written as:

Op=15,18
ij = Tij, (~σi · ~σj)Tij, SijTij, τ zi + τ zj . (2.12)

where Tij is the isotensor,

Tij = 3τ zi τ
z
j − ~τi · ~τj. (2.13)

The above 18 operators are the full Argonne v18(AV18) potential. There are other

truncated formats of Argonne potentials, written as Argonne vn’[37]. Here ‘n’ refers

the number of the operators in the potential, n is smaller than 18. The prime symbol

means that the n operators are not simply truncated from AV18, but are formed

from re-generated fitting data, and so their coefficients are not the same as the one

in AV18. Typical calculations are done with a simplified potential, preferably v8’ or

v6’, and the remaining contributions calculated perturbatively.

In previous auxiliary field diffusion Monte Carlo, people have used Argonne v6’

to calculate the equation state of nuclear matter and light nuclei [26][56][57]. They

dropped the spin-orbit operator ~L · ~S and spin-orbit-isospin operator ~L · ~S(~τi · ~τj).

These two operators make the wave function very difficult to diffuse with our basis.

In chapter 3, we will explain why the spin-orbit interactions are difficult in Monte

Carlo simulations.

In this work, we will add the spin-orbit operator ~L · ~S and spin-orbit-isospin

operator ~L · ~S(~τi · ~τj) to our Hamiltonian. In chapter 4, we will introduce a new

8



method to propagate these two operators. The potential we are using is Argonne v8’.

It has the same format as in equation 2.7, but different vp(rij) from those in equation

2.6. The following figure is the plot of vp(rij) versus the two-nucleon distance rij. In

this figure, we can see that at short range, the spin-orbit interactions has much larger

coefficient than other non-central potentials. The spin-orbit interaction is expected

to change the nuclear matter result by 5 to 10 percent and its perturbative evaluation

can not be done at first order, and while the spin-orbit operator includes an additional

factor of rij from the ~L = ~rij × ~pij operator, it is still important to include this part

in the two-body potential.

9
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Figure 2.1: 8 Components of AV8’.

2.2 Urbana and Illinois Three-Body Potential

The three-nucleon interactions(TNI) potentials are obtained from two-pion and

three-pion exchange and a phenomenological short-range repulsion is fit to the triton

and other light nuclei using Green’s function Monte Carlo[58][59][60]. They have

to be employed with the two-body potentials. The combination of Argonne v18

and Illinois three-body potential(AV18/IL2)[61] has been applied in Green’s function

Monte Carlo and gives very good results in light nuclei[62][63][64][65][66][67]. Another

useful three-body potential is the Urbana potential[68], which shares the same form

as the Illinois potential.

Vijk = APW2π O2π,PW
ijk + ASW2π O2π,SW

ijk + A4R3π O
3π,4R
ijk + ARO

R
ijk (2.14)
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The Urbana three-body potential only contains the first and last terms, while the Illi-

nois three-body potential contains all four terms. The A factors are parameters, and

the O are three-body spin-isospin operators. The first two terms are the operators

for two-pion exchange in the P-wave and S-wave. The third term is three-pion ex-

change and the last one is a phenomenological short range repulsion. Three nucleons

potentials must be applied to get accurate equation of state and nuclear structure,

but their inclusion must currently be done using an approximate three-body interac-

tion and the difference with the full three-body interaction calculated perturbatively.

Since this does not affect the inclusion of spin-orbit interactions, and the inclusion

of any three-body interaction will slow the computations, we do not include them in

this work.
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Chapter 3

AUXILIARY FIELD DIFFUSION MONTE CARLO

Based on the nucleon-nucleon scattering data and light nuclei spectra, the struc-

ture of nuclei has been studied by ab inito methods, such as effective field theory[69][70],

no-core shell model, coupled-cluster and Green’s function Monte carlo[71]. Though

these methods often choose different Hamiltonians and basis sets, the giant integrals

and sums of the many-body Schrödinger equation[72] make it difficult to apply them

to large system with many nucleons. In 1999, Schmidt and Fantoni developed the

auxiliary field diffusion Monte Carlo[27] for use with the Argonne potentials. By

introducing an auxiliary field, this method could separate the spin-isospin interac-

tions between two nucleons, and make the calculations much more efficient for the

many-nucleon systems.

In this chapter, we will describe how to write the Hamiltonian as a propagator

using the auxiliary field diffusion Monte Carlo method, and how to propagate the trial

wave function to the ground state. In section 3.1, we will show that the general diffu-

sion Monte Carlo method[73][74][75] can be formalized in the same way as auxiliary

field diffusion Monte Carlo. In section 3.2, we will describe auxiliary field diffusion

Monte Carlo in detail by employing a Hubbard-Stratonovich transformation[76]. We

use this transformation to separate the interactions between two nucleons in Argonne

v6’. Then we will add importance sampling[77] to the diffusion process. In section

3.3, the form of the trial wave function will be presented. In section 3.4, we will

describe how to use the fixed-phase approximation[78][79][80] to control the fermion

sign problem. In section 3.5, we will show the results of auxiliary filed diffusion

Monte Carlo for Argonne v6’ done by S. Fantoni, S. Gandolfi, F. Pederiva and K.E.
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Schmidt[30].

3.1 Diffusion Monte Carlo

We start by describing diffusion Monte Carlo with a central potential. A gen-

eral diffusion process is employed in both diffusion Monte Carlo and auxiliary field

diffusion Monte Carlo. After describing the diffusion process for a central potential,

we will discuss how to use the auxiliary field diffusion Monte Carlo to deal with the

spin-isospin dependence of our specific Hamiltonian with Argonne v6’.

In diffusion Monte Carlo, we start from Schrödinger equation in imaginary time

τ = it, and a trial wave function ΨT .

− ∂

∂τ
|Ψ(τ)〉 = Ĥ|Ψ(τ)〉, (3.1)

|Ψ(0)〉 = |ΨT 〉. (3.2)

The trial wave function ΨT should not be orthogonal to the ground-state wave func-

tion Ψ0. Writing it as a linear combination of eigenstates ψi of the Hamiltonian.

|ΨT 〉 =
∑
i

ci|ψi〉, (3.3)

where

Ĥ|ψi〉 = εi|ψi〉. (3.4)

From the Schrödinger equation, we have

|Ψ(τ)〉 = e−(Ĥ−ET )τ |ΨT 〉. (3.5)

When τ →∞, only the smallest eigenvalue ε0 survives, and |Ψ(τ →∞)〉 converges to

the ground-state wave function. Here we use a trial energy ET to keep 〈ΨT |ΨT (τ →

∞)〉 constant.
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In the diffusion process, we usually propagate by a small time ∆t in each step.

After each ∆t, the wave function has been propagated to a new distribution, which is

closer to the ground-state wave function. After many steps of ∆t, the wave function

|Ψ(τ →∞〉) converges to the ground-state wave function. Therefore, we estimate the

ground-state energy as:

〈H〉 =
〈ΨT |H|Ψ(τ →∞)〉
〈ΨT |Ψ(τ →∞)〉

. (3.6)

Up to now we have not chosen any particular Hamiltonian. Now let us use this

method to solve for the ground state of a Hamiltonian with kinetic energy and a

central potential. The wave function only depends on positions, and the Hamiltonian

is

H =
A∑
i=1

p2
i

2m
+ v(R), (3.7)

and R represents the 3A coordinates of the A particles. From Equation (3.5), after a

small time step ∆t, we have

〈R|Ψ(t+ ∆t)〉 =

∫
dR′〈R|e−(

∑
i

p2i
2m

+v(R)−ET )∆t|R′〉〈R′|Ψ(t)〉. (3.8)

For small ∆t, we can approximate the exponential by e−
(v(R)−ET )∆t

2 e−
∑
i

p2i∆t

2m e−
(v(R′)−ET )∆t

2 .

For the kinetic energy part, by using a Fourier transform, we have:

〈R|e−
∑
i

p2i∆t

2m |R′〉 =

∫
d3Ak

(2π)3A
ei
~k·~Re−

h̄2k2∆t
2m e−i

~k· ~R′ , (3.9)

which gives the free-particle Green’s function

〈R|e−
∑
i

p2i∆t

2m |R′〉 = G0(R,R′,∆t) = (
m

2πh̄2∆t
)

3A
2 e−

m(R−R′)2

2h̄2∆t . (3.10)

Then we have the wave propagation function as

Ψ(R,∆t) =

∫
dR′G(R,R′,∆t)ΨT (R′), (3.11)
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where the whole Green’s function is

G(R,R′,∆t) = e−
(v(R)−ET )∆t

2 G0(R,R′,∆t)e−
(v(R′)−ET )∆t

2 . (3.12)

In diffusion Monte Carlo, the kinetic energy part is non-local and the Gaussian

changes the wave function to a new distribution as in diffusion, so it is called the

diffusion part. The potential is local and be interpreted as a weight for the Monte

Carlo sampling of the new distribution, so it is often called the branching part.

3.2 Auxiliary Field Diffusion Monte Carlo

In the central potential example in section 3.1, the wave function 〈R|Ψ(t)〉 only

depends on position. Each nucleon could be diffused independently, with different

weights. In diffusion Monte Carlo, we usually use the term ‘walker’ to indicate a

sample of these nucleons. Each walker consists of the 3A position coordinates of the

A particle. Those walkers are propagated by e−(Ĥ−ET )t from any initial distribution

to the ground state of the Hamiltonian. After each step of propagation, a walker

diffuses to a new position and gets a new weight. This weight is sampled to give zero,

one, or more new walkers.

In nuclear matter, there are spin and isospin interactions between the nucleons.

These interactions make the possible number of spin-isospin states increase exponen-

tially with the increase of the number of nucleons. All of their possible states are

kept with coefficients in Green’s function Monte Carlo, which makes it difficult to

apply Green’s function Monte Carlo to more than A=12. To solve this problem, aux-

iliary field diffusion Monte Carlo introduces a single spinor to describe each nucleon

and then the computational scaling is reduced from exponential to polynomial. This
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makes it possible to calculate heavier nuclei.

3.2.1 General Form

From section 3.1, we know that the general diffusion of state with time step ∆t

is:

|Ψ(t+ ∆t)〉 = e−(Ĥ−ET )∆t|Ψ(t)〉, (3.13)

where e−(Ĥ−ET )∆t is the propagator. In the central potential example, the propagator

could be written as:

〈R|e−(Ĥ−ET )∆t|R′〉 = G(R,R′,∆t). (3.14)

The Green’s function in equation 3.14 is a Gaussian distribution, multiplied by the

exponential of the potential times time step. The right hand side of equation 3.14

could be interpreted as a propagator sampled from Gaussian distribution. So equation

3.14 could be written in a more general form:

e−(Ĥ−ET )∆t =

∫
dXP (X)T (X), (3.15)

where P(X) is a Gaussian distribution, T(X) is a walker translation operator. Though

P(X) could be other distributions for other propagator forms, it is a Gaussian distri-

bution in this work.

In the Argonne two-body potential, there are a central potential and potentials

with spin/isospin operators. The central force only depends on positions, and the

spin/isospin operators will rotate the spinor of each nucleon. So we use the basis

|RS〉 for each walker. ‘R’ stands for 3-dimension positions. ‘S’ stands for 4 spinors,

which are given by the amplitude to be in p ↑, p ↓, n ↑ and n ↓. Then the state is a
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linear combination of the walkers.

|Ψ(t)〉 =
∑
i

wi|RiSi〉, (3.16)

where i is a label for the walker state, wi is the weight for each walker. After one

time step, the new state is:

|Ψ(t+ ∆t)〉 =
∑
i

wi

∫
dXP (X)T (X)|RiSi〉 (3.17)

However, this integral is not efficiently sampled, since the result will have large

variance. To reduce the variance, we add importance sampling |ΨI〉. Then the left-

hand side of equation 3.17 becomes |ΨIΨ(t+ ∆t)〉, where

〈RS|ΨIΨ(t)〉 = 〈ΨI |RS〉〈RS|Ψ(t)〉 (3.18)

The right-hand side of equation 3.17 needs to be multiplied by the ratio 〈ΨI |R′S′〉
〈ΨI |RS〉

,

where the |R′S ′〉 is the new state after one time step propagation. The 〈ΨI |RS〉 in

the denominator divides out importance function in |ΨIΨ(t)〉 and the 〈ΨI |R′S ′〉 in

the numerator then produces the similar term for |ΨIΨ(t+ ∆t)〉 So the propagation

with importance sampling becomes:

|ΨIΨ(t+ ∆t)〉 =
∑
i

wi

∫
dX
〈ΨI |R′iS ′i〉
〈ΨI |RiSi〉

P (X)T (X)|RiSi〉. (3.19)

The equation 3.19 propagates the walkers for small time step with importance

sampling. Our walkers |RiSi〉 are diffused to the new state |R′iS ′i〉 by the operator

T(X). X are sampled from the normalized distribution P (X) 〈ΨI |T (X)|RiSi〉
〈ΨI |RiSi〉

. The weight

of the propagation for each walker is wi
〈ΨI |R′S′〉
〈ΨI |RS〉

. The normalization is calculated as

N =

∫
dXP (X)

〈ΨI |T (X)|RiSi〉
〈ΨI |RiSi〉

=
〈ΨI |e−(Ĥ−ET )∆t|RiSi〉

〈ΨI |RiSi〉

= e−(EL(Ri,Si)−ET )∆t.

(3.20)
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The local energy EL(Ri, Si) is calculated as:

EL(Ri, Si) =
〈ΨI |H|RiSi〉
〈ΨI |RiSi〉

. (3.21)

So after every small time step propagation, we need to sample the normalized X dis-

tribution and include the normalization in the weight.

3.2.2 Application to Argonne v6’

The Argonne v6’ potential consists of 6 operators. The Hamiltonian is

H =
A∑
i=1

p2
i

2m
+
∑
i<j

6∑
p=1

vp(rij)O
p
ij, (3.22)

with the 6 operators

1, ~τi · ~τj, ~σi · ~σj, (~σi · ~σj)(~τi · ~τj), Sij, Sij(~τi · ~τj), (3.23)

where the first one is central force, Sij is tensor, Sij = 3~σi · r̂ij~σj · r̂ij − ~σi · ~σj.

The equation 3.19 could not be directly applied to operators like ~σi · ~σj. Because in

equation 3.19, the T(X) must change one walker |RiSi〉 into a single new one |R′iS ′i〉.

The operator ~σi·~σj will change |RiSi〉 into a linear combination of new |R′iS ′i〉. To write

the propagator in the form of equation 3.19, the auxiliary field diffusion Monte Carlo

method employs a Hubbard-Stratonovich transformation to break up the interactions,

so that the propagator is linear in the particle spinors and give a single walker from a

single sample of X. The main idea is that, we write the potentials in quadratic forms

first, and then use Hubbard-Stratonovich transformation to linearise the operators

with exponentials in the propagator.

Take ~σi · ~σj for example. Write it in the three components of Pauli operators,∑
ij

vσ(rij)~σi · ~σj =
1

2

A∑
ij

σixBijσjx +
1

2

A∑
ij

σiyBijσjy +
1

2

A∑
ij

σizBijσjz, (3.24)
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where Bii = 0, Bij = vσ(rij) for i 6= j, Bij is real and symmetric. The eigenvectors

and eigenvalues of Bij can be calculated by numerically diagonalizing the matrix Bij.

We write ∑
j

Bijψ
(n)
j = λnψ

(n)
i ,

∑
j

ψ
(n)
j ψ

(m)
j = δnm.

(3.25)

The Bij matrix is then

Bij =
∑
n

ψ
(n)
i λnψ

(n)
j . (3.26)

The the first term in equation 3.24 becomes:

1

2

A∑
ij

σixBijσjx =
1

2

∑
n

λn(Onx)
2, (3.27)

Onx =
A∑
i=1

ψ
(n)
i σix. (3.28)

Therefore, the spin operator term could be written as a sum of squares of operators.

∑
ij

vσ(rij)~σi · ~σj =
1

2

∑
n

λn(Onx)
2 +

1

2

∑
n

λn(Ony)
2 +

1

2

∑
n

λn(Onz)
2, (3.29)

where

Onx =
A∑
i=1

ψ
(n)
i σix,

Ony =
A∑
i=1

ψ
(n)
i σiy,

Onz =
A∑
i=1

ψ
(n)
i σiz.

(3.30)

In order to write the whole Hamiltonian in quadratic forms, we re-organize the

spin-isospin potentials in three parts: spin part, including spin and tensor operators;
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isospin operator; and spin-isospin part, including spin-isospin operators and tensor-

isospin operators.

H =
∑
iα

p2
iα

2m
+
∑
i<j

vc(rij) +
∑
i<j,γ

vτ (rij)τiγτjγ

+
∑
i<j,αβ

{vσr(rijδαβ) + vt(rij)[3α̂ · r̂ijβ̂ · r̂ij − δαβ]}σiασjβ

+
∑

i<j,αβγ

{vστ (rij)δσβ + vtτ (rij)[3α̂ · r̂ijβ̂ · r̂ij − δαβ]}[σiατiγ][σjβτjγ].

(3.31)

α, β, γ are summed over the x, y, z components. The superscripts c, τ, σ, t are nota-

tions for the central force, isospin, spin, and tensor parts. α̂, β̂ are unit vectors. For

the last three terms in equation 3.31, we could use the technique described above for

~σi · ~σj to rewrite them in quadratic forms. First, we determine the matrices which

correspond to nucleon i and j interacting,

Cτ
ij = vτ (rij),

Cσ
iα,jβ = vσ(rij)δαβ + vt(rij)[3α̂ · r̂ijβ̂ · r̂ij − δαβ],

Cστ
iα,jβ = vστ (rij)δαβ + vtτ (rij)[3α̂ · r̂ijβ̂ · r̂ij − δαβ].

(3.32)

Then we calculate the eigenvectors and eigenvalues for the Cij matrices.∑
j

Cτ
ijψ

τ(n)
j = λτnψ

τ(n)
i ,

∑
jβ

Cσ
iα,jβψ

σ(n)
jβ = λσnψ

σ(n)
iα ,

∑
jβ

Cστ
iα,jβψ

σ(n)
jβ = λστn ψ

στ(n)
iα .

(3.33)

Therefore, the Hamiltonian could be written as,

H =
∑
iα

p2
iα

2m
+
∑
i<j

vc(rij) +
1

2

A∑
n=1

3∑
α=1

λτn(Oτ
nα)2

+
1

2

3A∑
n=1

λσn(Oσ
n)2 +

1

2

3A∑
n=1

3∑
α=1

λστn (Oστ
nα)2,

(3.34)
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where

Oτ
nα =

∑
i

ψ
τ(n)
i τiα,

Oσ
n =

∑
iα

ψ
σ(n)
iα σiα,

Oστ
nβ =

∑
iα

ψ
στ(n)
iα σiατiβ.

(3.35)

We will now use the Hubbard-Stratonovich transformation to linearise the opera-

tors in equation 3.34, so that they can propagate the state as in equation 3.19. The

Hubbard-Stratonovich transformation is the operator identity:

e
O2

2 =
1√
2π

∫ ∞
−∞

dxe−
x2

2 exO (3.36)

The x in equation 3.36 is called the auxiliary field. By introducing this field, the

operator O2 are linearised. The distribution of the auxiliary field is a Gaussian

distribution since the left-hand side has the operators squared in the exponent. After

using importance sampling, the distribution of x will correspond to a shifted Gaussian,

which we will explain later.

Then the quadratic operators in equation 3.34 could be used in equation 3.36.

Take 1
2

∑
λσn(Oσ

n)2 for example.

e−
1
2

∑3A
n=1 λ

σ
n(Oσn)2∆t =

∫
dx

1

(2π)3A/2
e−

1
2

∑3A
n=1 x

2
ne−i

∑3A
n=1 xn

√
λn∆tOσn . (3.37)

Equation 3.37 has the same form as equation 3.17. By using auxiliary field xn, the

quadratic operators 1
2

∑
λσn(Oσ

n)2 could be linearised. So can the other spin-isospin

operators in equation 3.34. Therefore, our walkers can now be propagated from one

walker state to a single new one. That is, after sampling the xn values, the right hand

side of equation 3.37 rotates and scales the spinors for each particle in the walkers.

We also could include importance sampling in Hubbard-Stratonovich transforma-

tion. We keep taking 1
2

∑
λσn(Oσ

n)2 as example. From section 3.2.1, we know that
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adding importance sampling is equivalent to including the ratio of new importance

functions in the propagation. Also, the sampling needs to be normalized. If we nor-

malize the importance sampling with the whole Hamiltonian like in equation 3.20,

the normalization gives an extral weight e−(EL(Ri,Si)−ET )∆t. Then, to include the im-

portance sampling in the auxiliary field, we could expand the propagator in equation

3.37 with the normalized sampling, and truncate the expansion to order ∆t2. We find

that the sampling becomes a shifted Gaussian:

xn = χn − i
√
λn∆t〈Oσ

n〉, (3.38)

where the χn is a Gaussian distribution. This is how the Argonne v6’ potential

has been applied to auxiliary field diffusion Monte Carlo. Let us sum up the whole

process: first, we rewrite the Hamiltonian as a sum of squared operators. Then we in-

troduce an auxiliary field with the Hubbard-Stratonovich transformation to linearize

the operators in the exponential of the propagator; with this form, the propagation

scales with polynomial order in the particle number. By adding importance sampling,

the auxiliary field became a shifted Gaussian. Finally, our wave function could be

propagated by the linearised operators with the shifted Gaussian. And the weight of

the new walker is the normalization factor.

3.3 Trial Wave Function

The trial wave function that we are using for nuclear matter is the product of the

Jastrow function and a Slater determinant.

ΨT (R, S) = ΦS(R)ΦA(R, S) (3.39)

ΦS(R) is the symmetric Jastrow function depending on the distance between nu-
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cleons. It has a form as

ΦS(R) =
∏
i<j

fJ(rij). (3.40)

The function fJ(rij) is the central function calculated in the single-operator chain

approximation of the Fermi Hypernetted Chain(FHNC/SOC). The Jastrow function

only reduces the variance of the ground-state energy, without changing the phase of

the wave function.

ΦA(R, S) is the antisymmetric Slater determinant of single nucleon. For nuclear

matter, we use free-particle orbitals in a periodic box with side L. So the wave vectors

are:

~k =
2π

L
(nx, ny, nz). (3.41)

The spatial part of the single-particle orbital are plane waves ei
~k·~r. The spinor part is

expressed in a basis of proton-up, proton-down, neutron-up, neutron-down, written

as |p ↑, p ↓, n ↑, n ↓〉. So the element in the Slater determinant is:

φij = 〈~ri~si|φj〉, (3.42)

and the 〈~ri~si|φj〉 are one of the four orbitals

〈~ri, ~si|φj〉 = ei
~kj ·~riδsi,p↑, e

i~kj ·~riδsi,p↓, e
i~kj ·~riδsi,n↑, or e

i~kj ·~riδsi,n↓. (3.43)

This is the trial wave function that we are using in auxiliary field diffusion Monte

Carlo. We also use this trial wave function as the importance function. By sampling

the shifted Gaussian xn, the Hamiltonian with Argonne v6’ could propagate the po-

sitions and spinors of walkers separately to a new state, and we then calculate the

mixed-energy expected value of Hamiltonian with that state as in equation 3.6.
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3.4 Fixed-Phase Approximation

The simulations of fermions always encounter the Fermi sign problem. The fixed-

phase approximation was developed to constrain the wave function of electrons in

magnetic field, to get an upper bound to the ground-state energy.

In nuclear matter, the wave function is complex. The fixed-phase approximation

is developed to constrain the phase of the propagated wave function to be the same

as the phase of the trial wave function. That is, after propagation we take the real

part of the weight. The fixed-phase approximation is usually used in Fermi system.

3.5 Result of Argonne v6’ in AFDMC

Based on the Hamiltonian introduced in chapter 2, and auxiliary field diffusion

Monte Carlo described in chapter 3, the ground-state energy of nuclear matter at

low energy could be calculated and the equation of state(EOS)[81] could be obtained.

The EOS in nuclear matter[82][83] can be applied to nuclei[84][85], neutron stars[2],

heavy-ion collision[7][86], and astronuclear physics[87][88]. In this section, we will

show the result of Argonne v6’ in nuclear matter.

We calculate the ground-state energy for 28 nucleons, which is the first closed shell.

There are 14 protons and 14 neutrons. The density is from 0.08fm−3 to 0.48fm−3.

The results of ground-state energy at each density are listed with error bars in table

3.1.

From the results, we can see that there is a minimum energy in nuclear matter

as a function of density. But this equilibrium point is not at saturation density

ρ0 = 0.16(fm−3) calculated from the semi-empirical mass formula. That is because we
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Table 3.1: AFDMC in v6’

ρ(fm−3) mean value(MeV) error bar(MeV)

0.08 -7.31 0.16

0.16 -11.97 0.24

0.24 -15.02 0.32

0.32 -15.62 0.46

0.40 -13.01 1.15

0.48 -10.99 1.14
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Figure 3.1: AFDMC in v6’

have not included three-body potential. So after solving the spin-orbit interactions,

the three-body potential needs to be included too[89]. We plot the ground-state

energy against density in figure 3.1. It shows that as the density increases, the

variance increases as well.
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Chapter 4

SPIN-ORBIT INTERACTIONS

In the last chapter, we showed how previous work used the auxiliary field dif-

fusion Monte Carlo method to obtain equation of state of nuclear matter with the

Hamiltonian for Argonne v6’. However, those results did not include the spin-orbit

interactions. Because in nuclear matter, there are isospin-dependent spin-orbit inter-

actions, which are different in isosinglet and isotriplet states. The isospin operators

will rotate the isospin of the two nucleons subject to the spin-orbit interactions, and

make the integral scaling increase exponentially with the number of nucleons, unless

a linearization can be performed in the propagation exponent. That is the difficult

part to calculate spin-orbit interactions in nuclear matter, because there are effec-

tively three operators, momentum along with 2 spin/isospin operators, so that it can

not be written as sum of squares as before. In this chapter, we will use a second

auxiliary field to linearize the interactions between nucleons, so that we can calculate

the spin-orbit interactions in nuclear matter.

Before we introduce the spin-orbit interactions in nuclear matter, we would like to

introduce the spin-orbit interactions in neutron matter as done by other researchers

[90][91]. The spin-orbit interaction in neutron matter is easier to calculate than in

nuclear matter. This is because it can be written as squares of operators. Pairs

of neutrons are always in triplets in neutron matter, and their form does not bring

exponential scaling to method, so the spin-orbit interactions could be simulated with

the same complexity as Argonne v6’. But this work is meaningful because we can see

how the spin-orbit interaction can change the ground-state energy in neutron matter.

In section 4.1, we will describe the spin-orbit interactions in neutron matter as
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done in reference[91]. Then we will present a new method called pair-wise propaga-

tion to calculate the spin-orbit interaction in neutron matter. This new method is

a different linearization in contrast to the method previously used. It uses a pair-

wise propagation break up. The reason that we developed this pair-wise propagation

is that we could extend this new propagation method to the interactions between

nucleons in nuclear matter. In section 4.2, we will show how we use this pair-wise

propagation with a second auxiliary field to calculate the spin-orbit with isospin in-

teractions in nuclear matter.

4.1 Spin-Orbit Interactions in Neutron Matter

Simulation of neutron matter is important to the study of the equation of state and

other properties of neutron stars. Green’s function Monte Carlo[92] has been used

to calculate small neutron drops bound in external potential wells[94][95] because

they are small enough to be calculated and give some idea of the equation of state.

Auxiliary field diffusion Monte Carlo gives good agreement with Green’s function

Monte Carlo with energies within 2% for an 8-neutron drop[96]. However, in both

calculations the difference of the energies of different spin states of 7-neutron drops

shows that the spin-orbit interactions must be included.

The potential used previously is Argonne v8’. From section 3.2.2, we know that

the Hamiltonian needs to be written as the sum of squares for the auxiliary field

method to be applied. So the main idea to solve the spin-orbit interaction is to

combine these spin/isospin parts with the momentum operator, and write the various

parts as sum of squares of operators. Based on this idea, we developed the pair-wise

propagation for the spin-orbit interactions and kinetic energy.
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The Hamiltonian with Argonne v8’ has the same form as equation 3.20, but the

coefficients vp(rij) are different, since the potential is refit and truncated.

H =
A∑
i=1

p2
i

2m
+
∑
i<j

8∑
p=1

vp(rij)O
p
ij, (4.1)

where the 8 operators Op
ij are:

1, ~τi · ~τj, ~σi · ~σj, (~σi · ~σj)(~τi · ~τj), Sij, Sij(~τi · ~τj), ~L · ~S, ~L · ~S(~τi · ~τj). (4.2)

The first 6 operators in equation 4.2 have already been written as sum of squares as

in equation 3.34, except central force, which is trivially included. Now we need to

write the two spin-orbit terms ~L · ~S and ~L · ~S(~τi · ~τj) as sums of squares too. These

two operators have a momentum part, so we combine these two operators with the

kinetic energy part and call this part of Hamiltonian Hr, written as follows.

Hr =
∑
i

p2
i

2m
+
∑
i<j

vls(rij)~Lij · ~Sij +
∑
i<j

vlsτ (rij)~Lij · ~Sij(~τi · ~τj). (4.3)

The kinetic energy can be separated into the center-of-mass and relative pieces.

∑
i

p2
i

2m
=

P 2

2mA
+
∑
i<j

p2
ij

1
2
mA

. (4.4)

The center of mass piece P 2

2mA
can be dropped in our case, since our wave functions

are eigenvalues of ~P with eigenvalue zero. Also, for the other two terms in equation

4.3, we have:

~Lij =
1

h̄
(~ri − ~rj)× ~pij, (4.5)

where we define the angular momentum to be unitless and

~pij =
1

2
(~pi − ~pj), (4.6)

and ~Sij is the total spin of two nucleons.

~Sij =
1

2
(~σi + ~σj). (4.7)
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The Hamiltonian Hr becomes:

Hr =
∑
i<j

p2
ij

1
2
mA

+
∑
i<j

1

2h̄
{[(~ri − ~rj)× ~pij] · (~σi + ~σj)}[vls(rij) + ~τi · ~τjvlsτ (rij)]

=
∑
i<j

{
p2
ij

1
2
mA

+ ~pij ·
1

2h̄
[(~σi + ~σj)× ~rij][vls(rij) + ~τi · ~τjvlsτ (rij)]

}
.

(4.8)

The ~τi · ~τj is one in neutron matter, so we can combine the vls and vlsτ as a single

potential:

v′ls(rij) = vls(rij) + vlsτ (rij), (4.9)

and write the equation 4.8 in a quadratic form as the following:

Hr =
∑
i<j

2

mA

(
~pij +

mA

8h̄
[(~σi + ~σj)× ~rij]v′ls(rij)

)2

−
∑
i<j

mA

32h̄2 [(~σi + ~σj)× ~rij]2(v′ls(rij))
2.

(4.10)

We have written all the operators for neutron matter in equation 4.1 as the sum of

squares. Now we can use a Hubbard-Stratonovich transformation to linearise these

operators in the propagator exponent. The first six operators in equation 4.2 are

linearised as before. So we only need to deal with the new Hr.

For the right-hand side of equation 4.10, the second term is called a counter term.

It is a local potential and has the same form as the first six operators in equation 4.2.

So we combine them together and operate on the wave functions exactly as we did

with Argonne v6’ for these terms. We write:

vcounter = −
∑
i<j

mA

32h̄2 [(~σi + ~σj)× ~rij]2(v′ls(rij))
2. (4.11)

For the first term on the right-hand side of equation 4.10, after application of the

Hubbard-Stratonovich transformation, the momentum part and spin part will act

separately in the exponent, so that the position basis |R〉 and spin basis |S〉 propa-

gate independently. In the pair-wise propagation, instead of a Hubbard-Stratonovich
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breakup for the full Hamiltonian, we break up the pair-wise parts separately. That

is, the positions of a pair of nucleons will be translated by the momentum operator

~pij simultaneously. And the spinors of that pair will be rotated by the spin operator

~Sij in a correlated way.

We first write Hr as a propagator in the form of equation 3.37:

e−Hr∆t =
∏
i<j

1

(2π)
3
2

∫
d3xije

−
|~xij |

2

2 e−
i
h̄

√
4h̄2∆t
mA (~pij+mA

8h̄
[(~σi+~σj)×~rij ](v′ls(rij)))·~xij

· e
mA∆t
32h̄2 [(~σi+~σj)×~rij ]2(v′ls(rij))

2

.

(4.12)

The counter terms in the propagator do not depend on the momentum operator. It

could be moved out of the integral, and combined with the rest of the potential. The

~xij is the introduced auxiliary field. From the previous chapter, we know that it can

be sampled in with the importance sampling form:

~xij = ~χij − i
√
λij∆t〈 ~Oij〉. (4.13)

~χij is a Gaussian distribution with unit variance. From equation 4.12, we can see

that in our case,

λij =
4

mA
, (4.14)

~Oij = ~pij +
mA

8h̄
[(~σi + ~σj)× ~rij]v′ls(rij). (4.15)

Substituting equation 4.14 and 4.15 into equation 4.13, the auxiliary field ~xijα be-

comes:

~xij = ~χij −
√

4∆t

mA
〈~pij〉 − i

√
mA∆t

16h̄2 〈(~σi + ~σj)× ~rij〉v′ls(rij). (4.16)

We will use this shifted Gaussian to propagate our walkers |RS〉 in the pair-wise

method. First, we propagate the momentum operator e−
i
h̄

√
4∆th̄2

mA
~pij ·~xij . Since e−

i
h̄
~pij ·~a

will translate |~Rij〉 by ~a. We have

~R′ij = ~Rij + ~xij

√
4∆th̄2

mA
. (4.17)
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Substituting (4.16) in to (4.17), and using the fixed-phase approximation, we have

~R′ij =~Rij + ~χij

√
4∆th̄2

mA
− 4∆th̄

mA
〈~pij〉

− Re

[
i
∆t

2
〈(~σi + ~σj)× ~rij〉v′ls(rij)

]
.

(4.18)

Let us use a simpler notation for the new relative coordinate of the pairs.

~Rdiff = ~χij

√
4∆th̄2

mA
− 4∆th̄

mA
〈~pij〉 − Re

[
i
∆t

2
〈(~σi + ~σj)× ~rij〉v′ls(rij)

]
. (4.19)

Then for particle i and j in the pair, their positions will be translated as:

~R′i = ~Ri +
1

2
~Rdiff ,

~R′j = ~Rj −
1

2
~Rdiff .

(4.20)

Next we propagate with the spin operator e
−i
√
mA∆t
16h̄2 [(~σi+~σj)×~rij ]·~xijv′ls(rij). The spin

operators ~σi × ~rij and ~σj × ~rij will rotate the spinors |si〉 and |sj〉 simultaneously.

|s′i〉 = e
−i
√
mA∆t
16h̄2 [~σi×~rij ]·~xijv′ls(rij)|si〉, (4.21)

|s′j〉 = e
−i
√
mA∆t
16h̄2 [~σj×~rij ]·~xijv′ls(rij)|sj〉. (4.22)

Thus, we have used the Hubbard-Stratonovich method to linearise the spin-orbit

propagators. The pair-wise propagation has been employed because we combined

the spin-orbit with momentum operator, and the counter terms are easily included

with the v6’ potential part. The pair-wise propagation is equivalent to single-particle

propagation, since it is simply a different linearization method.

4.2 Spin-Orbit Interactions in Nuclear Matter

In this section, we will calculate the spin-orbit interactions in nuclear matter. The

Hamiltonian we are using is the same as for neutron matter in last section. The only
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difference is that the isospin operator in ~L · ~S(~τi · ~τj) is not constant. It will rotate

the isospin states of the nucleons correlated with the spin-orbit interactions. This

makes it difficult to propagate ~L · ~S(~τi · ~τj) in nuclear matter, because there is now a

3-operator product to linearize.

The Hamiltonian is the same as equation 4.1. It could be written in a more specific

way as the following.

H =
∑
i

p2
i

2m
+
∑
i<j

vc(rij) +
∑
i<j,αβ

{vσ(rij)δαβ + vt(rij)[3α̂ · r̂ijβ̂ · r̂ij − δαβ]}σiασjβ

+
∑

i<j,αβγ

{vστ(rij)δαβ + vtτ (rij)}[3α̂ · r̂ijβ̂ · r̂ij − δαβ][σiατiγ][σjβτjγ]

+
∑
i<j,γ

vτ (rij)τiγτjγ +
∑
i<j

1

2h̄
{[(~ri − ~rj)× ~pij] · (~σi + ~σj)}[vls(rij) + ~τi · ~τjvlsτ (rij)].

(4.23)

The first six spin, isospin operators are treated as previously. We write the momentum-

dependent terms as Hr, which only contains the spin-orbit interactions and kinetic

energy.

Hr =
∑
i<j

{
p2
ij

1
2
mA

+ ~pij ·
1

2h̄
[(~σi + ~σj)× ~rij][vls(rij) + ~τi · ~τjvlsτ (rij)]

}
. (4.24)

This is the same as equation 4.8, except that now there is a ~τi ·~τj interaction combined

with the in spin-orbit-isospin terms, which we must break up. We rewrite Hr as sum of

three parts, which correspond to the three components of the isospin operator. The

separation of the three components should reduce the variance since these isospin

components commute and the commutator terms from the breakup are zero.

Hr =
∑
i<j

3∑
α=1

{
p2
ij

3
2
mA

+ ~pij ·
1

2h̄
[(~σi + ~σj)× ~rij][

1

3
vls(rij) + τiατjαv

lsτ (rij)]

}
. (4.25)
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As we did in last section, the equation above can be rewritten as:

(4.26)

Hr =
∑
i<j

3∑
α=1

2

3mA

(
~pij +

3mA

8h̄
[(~σi + ~σj)× ~rij][

1

3
vls(rij) + τiατjαvlsτ (rij)]

)2

−
∑
i<j

3∑
α=1

3mA

32h̄2 [(~σi + ~σj)× ~rij]2[
1

3
vls(rij) + τiατjαvlsτ (rij)]

2,

where the counter term becomes:

vcounter = −
∑
i<j

3∑
α=1

3mA

32h̄2 [(~σi + ~σj)× ~rij]2[
1

3
vls(rij) + τiατjαv

lsτ (rij)]
2. (4.27)

Hr now is a sum of squares of operators, so we can apply the Hubbard-Stratonovich

transformation. The propagator becomes:

e−Hr∆t =
∏
α,i<j

1

(2π)
3
2

∫
d3xijαe−

|xijα|
2

2 e
3mA∆t

32h̄2 [(~σi+~σj)×~rij ]2[ 1
3
vls(rij)+τiατjαvlsτ (rij)]

2

· e−
i
h̄

√
4∆th̄2

3mA (~pij+ 3mA
8h̄

[(~σi+~σj)×~rij ][ 1
3
vls(rij)+τiατjαvlsτ (rij)])·~xijα .

(4.28)

The vcounter in propagator 4.28 does not depend on the momentum operator. It can

be moved out of the integral, and combined with the rest of the potential. ~xijα is our

first auxiliary field. Again, it can be sampled with importance sampling from

~xijα = ~χijα − i
√
λijα∆t〈 ~Oijα〉. (4.29)

In this section, the values of λijα and ~Oijα are:

λijα =
4

3mA
, (4.30)

~Oijα = ~pij +
3mA

8h̄
[(~σi + ~σj)× ~rij][

1

3
vls(rij) + τiατjαv

lsτ (rij)]. (4.31)

So our first auxiliary field xijα is

~xijα =~χijα − i
√

4∆t

3mA
〈~pijα〉 − i

√
3mA∆t

16h̄2 〈(~σi + ~σj)× ~rij〉

· [1
3
vls(rij) + 〈τiατjα〉vlsτ (rij)].

(4.32)
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Now we will use ~Oijα to simplify the right-hand side of equation 4.28. There are

three terms in ~Oijα: momentum, spin, and spin-isospin. The momentum and spin

operators can be propagated by first auxiliary field ~xijα as in last section, while the

spin-isospin terms need to be broken up. This is the difficult part of the simulation

of nuclear matter. Because we use the walker basis |RS〉, after propagation by one

time step, it will become a new state |R′S ′〉. But if there is product of spin operators

in the propagator, it will produce 4A spin basis states instead of 4A spin basis states

we are using now. Since the exponent is not linear in the i and j particle operators, to

solve this problem, we introduce a second auxiliary field to break up the spin-isospin

interaction in equation 4.28. But before that, we need to propagate the momentum

and spin operators in ~Oijα as we did in last section.

First, we propagate with the momentum operator e−
i
h̄

√
4∆th̄2

3mA
~pijα·~xijα . Similarly as

in equation 4.17, we have:

~R′ij = ~Rij + ~xijα

√
4∆th̄2

3mA
. (4.33)

Substituting (4.32) into (4.33), and using the fixed-phase approximation, we have

~R′ij =~Rij + ~χijα

√
4∆th̄2

3mA
− 4∆th̄

3mA
〈~pijα〉

− Re

[
i
∆t

2
〈(~σi + ~σj)× ~rij〉[

1

3
vls(rij) + 〈τiατjα〉vlsτ (rij)]

]
.

(4.34)

We define the ~Rdiff as

~Rdiff =~χijα

√
4∆th̄2

3mA
− 4∆th̄

3mA
〈~pijα〉

− Re

[
i
∆t

2
〈(~σi + ~σj)× ~rij〉[

1

3
vls(rij) + 〈τiατjα〉vlsτ (rij)]

]
.

(4.35)

Thus the translations of the positions of one pair can be written as:

~R′i = ~Ri +
1

2
~Rdiff ,

~R′j = ~Rj −
1

2
~Rdiff .

(4.36)
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Second, we propagate with the spin operator e
−i
√

3mA∆t
16h̄2 [(~σi+~σj)×~rij ]·~xijα 1

3
vls(rij). The

spin operators ~σi × ~rij and ~σj × ~rij rotate the spinors |si〉 and |sj〉 separately as in

last section.

|s′i〉 = e
−i
√

3mA∆t
16h̄2 [~σi×~rij ]·~xijα 1

3
vls(rij)|si〉, (4.37)

|s′j〉 = e
−i
√

3mA∆t
16h̄2 [~σj×~rij ]·~xijα 1

3
vls(rij)|sj〉. (4.38)

Lastly, we propagate the spin-isospin operator e
−i
√

3mA∆t
16h̄2 [(~σi+~σj)×~rij ]·~xijατiατjαvlsτ (rij),

which needs to break up with a second auxiliary field. To simplify the expression, we

rewrite the operator terms as

[(~σi + ~σj)× ~rij] · ~xijα = (~σi + ~σj) · (~rij × ~xijα), (4.39)

and define

γ = |~rij × ~xijα|

[
−i
√

3mA∆t

16h̄2 vlsτ (rij)

]
, (4.40)

γ̂ =
~rij × ~xijα
|~rij × ~xijα|

, (4.41)

σiγ = ~σi · γ̂, (4.42)

σjγ = ~σj · γ̂. (4.43)

So the spin-isospin operator becomes

eγτiατjα(σiγ+σjγ). (4.44)

Now we will rewrite the operator in 4.44 as a sum of squares, and apply a second

Hubbard-Stratonovich transformation to break up the τiατjα interactions.

γτiατjα(σiγ + σjγ) = γσiγτiατjα + γσjγτjατiα

= γ

[
(σiγτiα + τjα)2 + (i(σiγτiα − τjα))2

4

]
+ γ

[
(σjγτjα + τiα)2 + (i(σjγτjα − τiα))2

4

]
.

(4.45)
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Since the spin-isospin operators can all be written as a sum of squares, the propagator

in 4.44 we can apply the Hubbard-Stratonovich transformation again,

e
γ

[
(σiγτiα+τjα)2+(i(σiγτiα−τjα)2

4
+

(σjγτjα+τiα)2+(i(σjγτjα−τiα))2

4

]

=
1

(2π)2

∫
dy1dy2dy3dy4e−

y2
1+y2

2+y2
3+y2

4
2

· e
√

γ
2
{y1(σiγτiα+τjα)+iy2(σiγτiα−τjα)+y3(σjγτjα+τiα)+iy4(σjγτjα−τiα)}.

(4.46)

{y1, y2, y3, y4} are the second auxiliary fields. By using importance sampling, they

can be sampled as

y1 = χ1 −
√
γ

2
[〈σiγτiα〉+ 〈τjα〉] , (4.47)

y2 = χ2 − i
√
γ

2
[〈σiγτiα〉 − 〈τjα〉] , (4.48)

y3 = χ3 −
√
γ

2
[〈σjγτjα〉+ 〈τiα〉] , (4.49)

y4 = χ4 − i
√
γ

2
[〈σjγτjα〉 − 〈τiα〉] . (4.50)

Where χ1, χ2, χ3, and χ4 are sampled from Gaussian distributions with unit variance.

The coefficient γ is in order of
√

∆t, but it will not cause additional time step errors

because if we integrate the spin-isospin operators via importance sampling, we will

get the exact result of equation 4.44. So we can use the second auxiliary field to

evaluate the spin-isospin operators. Finally, we propagate the spin-isospin operators

as

|s′i〉 = e
√

γ
2

[(y1+iy2)σiγτiα+(y3−iy4)τiα]|si〉, (4.51)

|s′j〉 = e
√

γ
2

[(y1−iy2)τjα+(y3+iy4)σjγτjα]|sj〉. (4.52)

To complete the integration in equation 4.28, we also need to integrate the counter

terms of potential. Since the counter terms do not depend on momentum, we combine

them with the V6’ terms. The counter terms are:

Vcounter = −
∑
i<j

3∑
α=1

3mA

32h̄2 [(~σi + ~σj)× ~rij]2[
1

3
vls(rij) + τiατjαvlsτ (rij)]

2, (4.53)
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where

(4.54)
[(~σi + ~σj)× ~rij]2 = [~σi × ~rij + ~σj × ~rij] · [~σi × ~rij + ~σj × ~rij]

= (~σi × ~rij) · (~σi × ~rij) + (~σi × ~rij) · (~σj × ~rij)
+ (~σj × ~rij) · (~σi × ~rij) + (~σj × ~rij) · (~σj × ~rij),

since

(~σi × ~rij) · (~σi × ~rij) = (~σj × ~rij) · (~σj × ~rij) = 2r2, (4.55)

(~σi×~rij)·(~σj×~rij)+(~σj×~rij)·(~σi×~rij) =
4

3
r2~σi·~σj−

2r2

3
(3~σi·r̂ij ·~σj ·r̂ij−~σi·~σj), (4.56)

we have

[(~σi + ~σj)× ~rij]2 = 4r2 +
4

3
r2~σi · ~σj −

2r2

3
(3~σi · r̂ij · ~σj · r̂ij − ~σi · ~σj). (4.57)

Therefore,

Vcounter =−
∑
i<j

3∑
α=1

3mA

32h̄2 [4r2 +
4

3
r2~σi · ~σj −

2r2

3
(3~σi · r̂ij · ~σj · r̂ij − ~σi · ~σj)]

[
1

9
(vls)

2 + (vlsτ )
2 +

2

3
τiατjαvlsvlsτ ]

=−
∑
ij

3mA

32h̄2 [4r2 +
4

3
r2~σi · ~σj −

2r2

3
(3~σi · r̂ij · ~σj · r̂ij − ~σi · ~σj)]

[
1

3
(vls)

2 + 3(vlsτ )
2 +

2

3
~τi · ~τjvlsvlsτ ].

(4.58)

Now the potential counter terms contain only spin and isospin operators, so they are

combined with the first six spin isospin operators, giving

central:

−3mA

32h̄2 [4r2][
1

3
(vls)

2 + 3(vlsτ )
2], (4.59)

isospin:

−3mA

32h̄2 [4r2][
2

3
~τi · ~τjvlsvlsτ ], (4.60)

spin:

−3mA

32h̄2 [
4

3
r2~σi · ~σj −

2r2

3
(3~σi · r̂ij · ~σj · r̂ij − ~σi · ~σj)][

1

3
(vls)

2 + 3(vlsτ )
2], (4.61)
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spin-isospin:

−3mA

32h̄2 [
4

3
r2~σi · ~σj −

2r2

3
(3~σi · r̂ij · ~σj · r̂ij − ~σi · ~σj)][

2

3
~τi · ~τjvlsvlsτ ]. (4.62)

The above four counter term potentials and the propagator of equation 4.28 com-

pletes the propagation of Hamiltonian with Argonne v8’. Since they cancel, the

counter terms in above four potentials are not included for the calculation of local

energy.

In summary, we use Hubbard-Stratonovich transformation to linearize the opera-

tors in the Hamiltonian to form the propagator and use a local-energy weight in each

propagation. The spin-orbit interactions are combined with the momentum operator

in the propagator, leaving the counter terms which are combined with the v6 poten-

tial operators. We branch on the weight. Therefore the trial wave function can be

diffused to the ground-state wave function within the fixed-phase constraint.

4.3 Variance in Spin-Orbit Variables

By using the Hubbard-Stratonovich method twice, with a first and second aux-

iliary field, we can successfully include the spin-orbit with isospin interactions in

nuclear matter. Though the propagator in equation 4.46 for a second auxiliary field

is of order
√

∆t, there is no extra time step error after integration.

However, since the shifted Gaussian sampling is not totally symmetric, there is

variance from sampling for the second auxiliary field. To reduce the variance, we

expand the propagator to develop correlated sampling to lower the variance. We
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rewrite the spin-isospin propagator in equation 4.46 as

1

(2π)2

∫
dy1dy2dy3dy4e−

y2
1+y2

2+y2
3+y2

4
2

· e
√

γ
2
{y1(σiγτiα+τjα)+iy2(σiγτiα−τjα)+y3(σjγτjα+τiα)+iy4(σjγτjα−τiα)},

(4.63)

where γ = |~rij × ~x|
[
−i
√

3mA∆t
16h̄2 vlsτ

]
. Then expand the integrand

e
√

γ
2
{y1(σiγτiα+τjα)+iy2(σiγτiα−τjα)+y3(σjγτjα+τiα)+iy4(σjγτjα−τiα)}

=1 +

√
γ

2
{y1(σiγτiα + τjα) + iy2(σiγτiα − τjα) + y3(σjγτjα + τiα) + iy4(σjγτjα − τiα)}

+
1

2
(
γ

2
) {y1(σiγτiα + τjα) + iy2(σiγτiα − τjα) + y3(σjγτjα + τiα) + iy4(σjγτjα − τiα)}2

+
1

6
(
γ

2
)

3
2 {y1(σiγτiα + τjα) + iy2(σiγτiα − τjα) + y3(σjγτjα + τiα) + iy4(σjγτjα − τiα)}3

+
1

24
(
γ

2
)2 {y1(σiγτiα + τjα) + iy2(σiγτiα − τjα) + y3(σjγτjα + τiα) + iy4(σjγτjα − τiα)}4

+ ... .

(4.64)

In equation 4.46, we wish to use correlated sampling to calculate the variance

from {y1, y2, y3, y4}, which is lower order than ∆t.

For the terms in
√

γ
2

and 1
6
(γ

2
)

3
2 , the variance from {+y1,+y2,+y3,+y4} can be

cancelled by also including {−y1,−y2,−y3,−y4}. So instead of one set of second

auxiliary fields, we use two sets, the initially sampled y and negative of y to cancel

the variance of order of (∆t)
1
4 and (∆t)

3
4 .

For the terms in 1
2
(γ

2
) and 1

24
(γ

2
)2, if the 1

2
(γ

2
) term’s variance is cancelled, the

1
24

(γ
2
)2 term’s variance is cancelled too. So we need to eliminate the variance in 1

2
(γ

2
)
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term. Expanding it,

1

2
(
γ

2
) {y1(σiγτiα + τjα) + iy2(σiγτiα − τjα) + y3(σjγτjα + τiα) + iy4(σjγτjα − τiα)}2

= 2(y2
1 − y2

2) + (y2
1 + y2

2)2σiγτiατjα + 2(y2
3 − y2

4) + (y2
3 + y2

4)2σjγτjατiα

+ 2y1y3(σiγτiα + τjα)(σjγτjα + τiα) + 2iy1y4(σiγτiα + τjα)(σjγτjα − τiα)

+ 2iy2y3(σiγτiα − τjα)(σjγτjα + τiα)− 2y2y4(σiγτiα − τjα)(σjγτjα − τiα).

(4.65)

Since γ ∼
√

∆t, any variance from formula 4.65 would increase the variance as

∆t → 0 faster than the signal, which goes like ∆t. All the terms on the right-hand

side of the equation should integrate to zero. One thing need to be paid attention to

is that there is the first auxiliary field ~xijα in the formula as well. From definitions

4.40 to 4.43:

γ = |~rij × ~xijα|

[
−i
√

3mA∆t

16h̄2 vlsτ (rij)

]
, (4.66)

γ̂ =
~rij × ~xijα
|~rij × ~xijα|

, (4.67)

σiγ = ~σi · γ̂, (4.68)

σjγ = ~σj · γ̂. (4.69)

We can see that when we change the sign of ~xijα, the sign of σiγ and σjγ also

changes. So we can use sets +~xijα and −~xijα instead of ~xijα. There are also other

ways, but the more correlations the sample sets of variables there are, the longer the

calculation time, so we want the smallest number of sets possible.

Now there are six terms left on the right-hand side of equation 4.65. We work on
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the following four terms first:

2y1y3(σiγτiα + τjα)(σjγτjα + τiα),

2iy1y4(σiγτiα + τjα)(σjγτjα − τiα),

2iy2y3(σiγτiα − τjα)(σjγτjα + τiα),

− 2y2y4(σiγτiα − τjα)(σjγτjα − τiα).

It is not difficult to see that if the sign of yiyj changes, where i = 1, 2, j = 3, 4,

the variance will be cancelled. So we use the following variables

+x +y1 +y2 +y3 +y4

+x +y1 +y2 −y3 −y4

+x −y1 −y2 −y3 −y4

+x −y1 −y2 +y3 +y4


, (4.70)

and 

−x +y1 +y2 +y3 +y4

−x +y1 +y2 −y3 −y4

−x −y1 −y2 −y3 −y4

−x −y1 −y2 +y3 +y4


. (4.71)

For the last two terms in equation 4.65: 2(y2
1 − y2

2) and 2(y2
3 − y2

4), the order of y1

and y2 needs to be exchanged to cancel the variance in the first term. So do the y3

and y4. Therefore, there are 16 sets of variables to cancel the variance in the second
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auxiliary field. They are 8 variables of

+x +y1 +y2 +y3 +y4

+x +y1 +y2 −y3 −y4

+x −y1 −y2 −y3 −y4

+x −y1 −y2 +y3 +y4

−x +y1 +y2 +y3 +y4

−x +y1 +y2 −y3 −y4

−x −y1 −y2 −y3 −y4

−x −y1 −y2 +y3 +y4



, (4.72)

and 8 variables of: 

+x +y2 +y1 +y4 +y3

+x +y2 +y1 −y4 −y3

+x −y2 −y1 −y4 −y3

+x −y2 −y1 +y4 +y3

−x +y2 +y1 +y4 +y3

−x +y2 +y1 −y4 −y3

−x −y2 −y1 −y4 −y3

−x −y2 −y1 +y4 +y3



. (4.73)

Now we plot some figures to show that 16 sets of variables can cancel all the

variance at orders lower than ∆t and it is the minimum number of sets of variables

needed. It is better to choose a simple system to check the variance. So we use 1

walker, 1 time-step propagation for 2 nucleons. If the variance in equation 4.64 could

all be cancelled, the weight of one time-step propagation should be linear with ∆t,

since our error terms are order of ∆t2. The weight of one time-step propagation is

the ratio of 〈ΨT |R′S ′〉 over 〈ΨT |RS〉, where |R′S ′〉 is a sampled propagation of |RS〉.

In the following figures we plot the weight versus time step for the 8 sets of
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variables, and the weight versus time step for the 16 sets of variables. From the

plotting we can see that, when we use 16 sets of variables, the line is linear. When

we use 8 sets of variables, the variance increases at order of
√

∆t with time step

decreases. So as expected from the mathematics, 16 sets of variables are necessary to

get a low-variance result using this method of ‘antithetic’ variables.
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Figure 4.1: Variances with Different Sets of Variables When Using the Method of
Antithetic Variables to Sample the Isospin-Dependent Spin-Orbit Interactions.
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Chapter 5

RESULTS WITH THE FIRST AUXILIARY FIELD

In chapter 4, an auxiliary field was introduced to deal with the spin-orbit inter-

actions in nuclear matter[97]. The spin-orbit interactions in Argonne v8’ have two

terms: spin-orbit without isospin ~L · ~S, and spin-orbit with isospin ~L · ~S(~τi ·~τj). These

two terms could be combined with kinetic energy, and re-written as sums of squares.

The ~L · ~S could have been broken up by the first auxiliary field in the same way as

Argonne v6’. But for the ~L · ~S(~τi · ~τi) term, since it is the product of three operators,

it needs a second auxiliary field to linearize the operators. In this chapter, we will

present the result of ~L · ~S with the first auxiliary field and the new pair-wise propa-

gator. The results of ~L · ~S(~τi ·~τi) using the additional auxiliary field will be presented

in next chapter.

From last chapter, we see that both the shifted Gaussian and the antithetic vari-

ables {±~xijα,±{y1, y2, y3, y4}} can be used for sampling. Either of them works for

spin-orbit without isospin, but for spin-orbit with isospin, we can only use the latter

one because of large time step errors. In this chapter, we will mainly use the anti-

thetic sampling.

5.1 Checking the Pair-Wise Propagation

In section 4.1, the pair-wise propagation was developed for ~L · ~S in Argonne v8’.

The previous simulations of Argonne v6’ used single-particle propagation. These two

methods are equivalent. Though the single-particle propagation could be used for ~L·~S
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as well, we developed pair-wise propagation because it is necessary for the ~L · ~S(~τi ·~τj)

term. We have used the two different propagation methods to simulate Argonne v6’.

The following tables show that the results from pair-wise propagation agrees within

error with single-particle propagation.

The test is for a 2-nucleon system with density ρ = 0.16fm−3, time step ∆t =

0.00001MeV −1.

(1) Checking the kinetic energy and central force.

Table 5.1: Pair-Wise Propagation for Central Force

mean value(MeV) error bar(MeV)

single-particle propagation -18.37 0.43

pair-wise propagation -18.92 0.61

(2) Checking the Hamiltonian with Argonne v6’.

Table 5.2: Pair-Wise Propagation for Argonne v6’

mean value(MeV) error bar(MeV)

single-particle propagation -14.93 0.64

pair-wise propagation -14.91 0.69

From above two tables, we can see that the results of single-particle propagation

agrees with the result of pair-wise propagation in Argonne v6’. It shows that we can

use the latter method instead.
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5.2 Checking the Spin-Orbit Propagator

From section 4.1, we know that the spin-orbit and kinetic energy part can be

written as:

e−Hr∆t =
∏

i<j,α=1,3

1

(2π)
3
2

∫
d3xijαe−

|~xijα|
2

2 e−
i
h̄

√
4h̄2∆t
mA (~pij+mA

8h̄
[(~σi+~σj)×~rij ](vls(rij)))·~xijα

· e
mA∆t
32h̄2 [(~σi+~σj)×~rij ]2(vls(rij))

2

.

(5.1)

In equation 5.1, there are two pieces: the propagator e−
i
h̄

√
4h̄2∆t
mA (~pij+mA

8h̄
[(~σi+~σj)×~rij ](vls(rij)))·~xij

changes the |RS〉 to |R′S ′〉, while the counter term e
mA∆t
32h̄2 [(~σi+~σj)×~rij ]2(vls(rij))

2

is com-

bined with Argonne v6’. These two pieces complete e−Hr∆t.

In order to test the propagator e−Hr∆t, we calculate the two pieces separately for

one time-step propagation. By setting the momentum ~pij equal to zero, we have the

mixed spin-orbit energy:

∏
i<j

1

(2π)
3
2

〈ΨT |
∫

d3xije
−
|~xij |

2

2 e−
i
h̄

√
4h̄2∆t
mA (mA8h̄

[(~σi+~σj)×~rij ](vls(rij)))·~xij |RS〉
〈ΨT |RS〉

. (5.2)

It should have the same value of mixed energy as the counter term in equation 5.1,

but with opposite sign. The mixed energy of counter term is:

〈ΨT |e
mA∆t
32h̄2 [(~σi+~σj)×~rij ]2(vls(rij))

2

|RS〉
〈ΨT |RS〉

. (5.3)

Equations 5.2 and 5.3 are different ways to calculate the spin-orbit mixed energy for

one time-step propagation. They should be the same value but opposite sign. We

checked this for 28 nucleons, including 14 protons and 14 neutrons. The number

28 is the first closed shell in the periodic box: 7 states of momentum(~k = {0, 0, 0},

~k = {±1, 0, 0}, ~k = {0,±1, 0}, ~k = {0, 0,±1}), 4 states of spinors(p ↑, p ↓, n ↑, n ↓).

We chose the density as ρ = 0.48fm−3; it is the highest density typically calculated
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in our equation of state. The results of formula 5.2 and 5.3 are as follows.

Table 5.3: Mixed Energy of Spin-Orbit

mixed energy mean value(MeV) error bar(MeV)

propagator in 5.2 487.83 0.55

counter term in 5.3 -488.03 0.46

So equations 5.2 and 5.3 agree within statistical errors.

5.3 Checking the Variance

In chapter 3, we saw when the propagation time t → ∞, the trial wave function

propagates to the ground-state wave function. The total t is divided into many small

time steps ∆t. For each time step, the Hamiltonian is separated as kinetic energy

and potential energy. The kinetic energy part diffuses the walkers, while the potential

energy part branches the spinors, and the change of weight is sampled by branching.

The kinetic energy does not commute with the potential, nor do the different spin

operators, so there is time step error for each time step. The error is of order of ∆t2.

Our desired result is the order ∆t.

To check that there are no variance terms of lower order in our simulation, for

each time step, we plot the ratio of new wave function over old wave function versus

∆t. It should be a linear line, since our result is in order of ∆t.

We first check one component in equation 5.1. The y-axis in figure 5.1 is the ratio

of new wave function over old wave function, and the x-axis is the time step. We

could see that the ratio is linear, as we expected.
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Figure 5.1: Variance Time Step Check for One Component of the Spin-Orbit Prop-
agator. Linear Behavior Shows the Variance Terms Have Been Removed.

Next we check the three components of equation 5.1. The three α components in

5.1 are independent, so there should be no variance between them. The plot is shown

in figure 5.2.
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Figure 5.2: Same as Fig. 5.1 with Three Components of the Spin-Orbit Propagator.

The two figures above show that, for each time step propagation, there is no vari-

ance greater than order of ∆t.

5.4 Results of Spin-Orbit without Isospin

In this chapter, we include the ~L · ~S interaction in the Hamiltonian. It could

be combined with kinetic energy and sampled by auxiliary field with the Hubbard-

Stratonovich transformation. Thus we have calculated the first seven operators in

Argonne v8’; we call it v7 here. We still choose to calculate the 28 nucleons in nuclear

matter to simulate the ground-state energy. The results of v7 and the previous results

of v6 are listed in table 5.4.

The spin-orbit interaction is attractive force in nuclear matter, so it should de-

crease the ground-state energy. Table 5.4 shows that the ground-state energy in v7
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Table 5.4: AFDMC in v6 and v7

ρ(fm−3) AFDMC in v6 (MeV) AFDMC in v7(MeV)

0.08 -7.31 -8.3

0.16 -11.97 -14.80

0.24 -15.02 -17.62

0.32 -15.62 -17.50

0.40 -13.01 -15.67

0.48 -10.99 -12.12
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Figure 5.3: AFDMC in v7

is less than the one in v6, as we expected. In figure 5.3, we plot the ground state

energies in both v6 and v7. They behave in a similar way. The gap between two lines

is the effect of spin-orbit interaction without isospin in nuclear matter.
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Chapter 6

RESULTS WITH THE SECOND AUXILIARY FIELD

In previous chapters, the Hubbard-Stratonovich transformation has been em-

ployed twice, giving two auxiliary fields to break up the the product of three operators

~L · ~S(~τi ·~τj), without causing additional time step error, and controlling the variance.

In section 4.3, we showed how to use antithetic variables to eliminate variances of

order less than ∆t. So we use antithetic variables {±~xijα,±{y1, y2, y3, y4}} to sample

the auxiliary fields.

In this chapter, we will show the results for the ~L · ~S(~τi · ~τj) interaction, and com-

pare the results with some analytical results to show they are correctly calculated.

Though the variance is eliminated mathematically, there can be round-off error when

the time step is very small. All diffusion Monte Carlos require an extrapolation of

the time step ∆t→ 0 to get an accurate result. The initial work on this is complete.

After this has been done, we will use Lanczos algorithm to check the spin-orbit inter-

actions. The Lanczos algorithm developed for this is described in appendix A.

6.1 Checking the Spin-Orbit-Isospin Propagator

There are both first and second auxiliary fields in the spin-orbit with isospin

propagator. In section 5.2, the propagator has been checked by calculating the mixed

energy for one step of propagation. This method is used in this section as well. Since

the spin-orbit with isospin is product of three operators, they need to be checked step

by step.
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We first fix the first auxiliary field, and calculate the 〈ΨT |R
′S′〉

〈ΨT |RS〉
with Monte Carlo

analytically. The propagation equation is

eγσiγτiατjα+γσjγτjατiα

=
1

(2π)2

∫
dy1dy2dy3dy4e−

y2
1+y2

2+y2
3+y2

4
2

· e
√

γ
2
{y1(σiγτiα+τjα)+iy2(σiγτiα−τjα)+y3(σjγτjα+τiα)+iy4(σjγτjα−τiα)},

(6.1)

where γ = |~rij × ~x|
[
−i
√

3mA∆t
16h̄2 vlsτ

]
. We fixed ~xijα as [1, 1, 1]. The analytical result

can be calculated for two particles. The comparisons between the analytic and sim-

ulation results are as follows.

(1) Results of the second auxiliary field y1 with ~xijα fixed.

〈ΨT |e
γ
4

(σiγτiα+τjα)2 |RS〉
〈ΨT |RS〉

=
〈ΨT |

∫
dy1e−

y2
1
2 e
√

γ
2
y1(σiγτiα+τjα)|RS〉

〈ΨT |RS〉
. (6.2)

The analytical result of the left-hand side of equation 6.2 is calculated by using a

Taylor expansion for ∆t. The right-hand side is a statistical result by using Gaussian

sampling of y1 for the same |RS〉. The Monte Carlo result agreed with the analytical

result for a chosen ∆t = 1× 10−6MeV −1.

Analytical result: 0.999 327 10(MeV )

Monte Carlo result: 0.999 326 98(MeV )± 2.3× 10−7(MeV )

So the analytical result agrees with the Monte Carlo result.

(2) Results of the second auxiliary field y2 with ~xijα fixed. ∆t = 1× 10−6MeV −1.

〈ΨT |e−
γ
4

(σiγτiα−τjα)2|RS〉
〈ΨT |RS〉

=
〈ΨT |

∫
dy2e−

y2
2
2 e
√

γ
2
iy2(σiγτiα−τjα)|RS〉

〈ΨT |RS〉
. (6.3)

Analytical result: 0.999 328 30(MeV )

Monte Carlo result: 0.999 328 41(MeV )± 2.1× 10−7(MeV )

So the analytical result agrees with the Monte Carlo result.
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(3) Results of the second auxiliary field y1, y2 with ~xijα fixed. ∆t = 1× 10−6MeV −1.

〈ΨT |eγσiγτiατjα|RS〉
〈ΨT |RS〉

=
〈ΨT |

∫
dy1dy2e−

y2
1+y2

2
2 e
√

γ
2
{y1(σiγτiα+τjα)+iy2(σiγτiα−τjα)}|RS〉
〈ΨT |RS〉

.

(6.4)

Analytical result: 0.998 655 40(MeV )

Monte Carlo result: 0.998 655 52(MeV )± 2.7× 10−7(MeV )

So the analytical result agrees with the Monte Carlo result.

(4) Results of second auxiliary filed y1, y2, y3, y4 with ~xijα fixed. ∆t = 1× 10−6.

〈ΨT |eγ(σiγτiατjα+σjγτjατiα)|RS〉
〈ΨT |RS〉

=

∫
dy1dy2dy3dy4

· 〈ΨT |e−
y2
1+y2

2+y2
3+y2

4
2 e

√
γ
2
{y1(σiγτiα+τjα)+iy2(σiγτiα−τjα)+y3(σjγτjα+τiα)+iy4(σjγτjα−τiα)}|RS〉

〈ΨT |RS〉
.

(6.5)

Analytical result: 0.998 305 40(MeV )

Monte Carlo result: 0.998 305 54(MeV )± 6.8× 10−7(MeV )

So the analytical result agrees with the Monte Carlo result. Equation 6.5 has been

checked.

Now we use the method in section 5.2 to check the whole spin-orbit-isospin prop-

agator.

e−Hr∆t =
∏
α,i<j

1

(2π)
3
2

∫
d3xijαe−

|xijα|
2

2 e
3mA∆t

32h̄2 [(~σi+~σj)×~rij ]2[ 1
3
vls(rij)+τiατjαvlsτ (rij)]

2

· e−
i
h̄

√
4∆th̄2

3mA (~pij+ 3mA
8h̄

[(~σi+~σj)×~rij ][ 1
3
vls(rij)+τiατjαvlsτ (rij)])·~xijα .

(6.6)

In order to make sure the propagator in equation 6.6 is correct, we separate the

integrand into two pieces and calculate them separately for one time step. By setting
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the momentum ~pij equal to zero, the mixed spin-orbit-isospin energy is calculated as:

∏
α,i<j

1

(2π)
3
2

〈ΨT |
∫

d3xijαe−
|xijα|

2

2 e−
i
h̄

√
3mA∆t

16 ([(~σi+~σj)×~rij ][ 1
3
vls(rij)+τiατjαvlsτ (rij)])·~xijα |RS〉

〈ΨT |RS〉
.

(6.7)

It should have the same value of mixed energy of the counter term as in equation 6.6,

but with opposite sign. The mixed energy of counter term is:

〈ΨT |e
3mA∆t

32h̄2 [(~σi+~σj)×~rij ]2[ 1
3
vls(rij)+τiατjαvlsτ (rij)]

2

|RS〉
〈ΨT |RS〉

(6.8)

The mixed energy of equations 6.7 and 6.8 are calculated and compared. They should

agree within error bars. The two-nucleon results are listed, with ρ = 0.48fm−3,

∆t = 1 × 10−6MeV −1. In table 6.1, the mixed energy of propagator in 6.7 does

Table 6.1: Mixed Energy of Spin-Orbit-Isospin

mixed energy mean value(MeV) error bar(MeV)

propagator in 6.7 3.802 0.491

counter term in 6.8 -2.099 0.073

analytical result 2.089

not agree with the mixed energy of the counter term in 6.8. We also calculated the

analytical result of 6.7, which is 2.089(MeV ). The result of counter term agrees with

the analytical result, while the mixed energy of the spin-orbit-isospin term does not.

In the following contents, we will show more investigation about 3.802(MeV ) in table

6.1. So far, we have not found out any problems with the formula or algorithm. It

could be round-off errors since the time step is very small, and we are trying to use

time extrapolation to get reasonable results.

From the results of equations 6.2, 6.3, 6.4 and 6.5, we can see that the propagator

with the second auxiliary field should be correct. Then the whole propagator in

equation 6.6 needs to be checked. So we used Gaussian-Hermite sampling instead
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of Monte Carlo sampling. The Gaussian-Hermite sampling points and weights are

listed below. The results are converged. The result of Gaussian-Hermite calculation

Table 6.2: Gaussian-Hermite Sampling

sampling points sampling weights

−
√

3.0−
√

6.0 (3.0 +
√

6.0)/12.0√
3.0−

√
6.0 (3.0 +

√
6.0)/12.0

−
√

3.0 +
√

6.0 (3.0−
√

6.0)/12.0√
3.0 +

√
6.0 (3.0−

√
6.0)/12.0

of equation 6.6 is 2.089(MeV ), the same as the analytical result. Therefore the

propagation in equation 6.6 should be correct. Since the propagation depends on

the time step, we will plot how the mixed energy changes with the time step, and

how the ratio 〈ΨT |R
′S′〉

〈ΨT |RS〉
changes with the time step. Figure 6.1 shows that the mixed

spin-orbit-isospin energy changes a lot when time step changes. The ideal result of

figure 6.1 should be a constant. Figure 6.2 shows that there are additional errors in

the simulation of equation 6.6. We will check the variance in the next section.
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Figure 6.1: Mixed Energy of the Spin-Orbit-Isospin Interaction as Described in the Text.
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6.2 Checking the Variance

In last section, Figures 6.1 and 6.2 show that the statistical result of spin-orbit-

isospin propagator is not as good as other potential operators in Argonne v8’. By

using Gaussian-Hermite sampling, the result of equation 6.6 is the same as analytical

result, so the equation 6.6 proved to be correct. This indicates that additional variance

must be cancelled to obtain controlled variance in the Monte Carlo simulation. We

need to check the variance in equation 6.6 to see if this is the problem.

From section 4.3, we know that mathematically, the variance could be eliminated

by using the antithetic variables {±~xijα,±{y1, y2, y3, y4}}. The checking of variance

has been done in section 5.3 for the spin-orbit propagator. We will use the same

method to check the variance for spin-orbit with isospin interaction.

Similarly, the ratio of one time-step propagation 〈ΨT |R′S′〉
〈ΨT |RS〉

should be proportional

to the time step ∆t. We start from 1 walker, one component in equation 6.6, so there

is no statistical error, and the ratio should be a linear line with time step.

Here we would like to show that the variables in 4.72 and 4.73 did eliminate the

variance efficiently.

{{±~xijα,±{y1, y2, y3, y4}}, {±~xijα,±{y2, y1, y4, y3}}} (6.9)

If we use the the variables in 4.70 and 4.71 {±~xijα,±{y1, y2, y3, y4}}, the ratio in

figure 6.3 would become that shown in figure 6.4.

We will henceforth use the 16 sets of variables of equation 6.9. It is good to see

that in figure 6.3, the ratio of 〈ΨT |R
′S′〉

〈ΨT |RS〉
is a straight line. Figure 6.3 only checked

the α = 1 component in equation 6.6, that is, one component of τi · τj in spin-orbit-

isospin interaction. Now we check the three components of τi · τj in equation 6.6 with

1 walker.

One thing needs to be noticed is that, when we expanded the propagator in
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Figure 6.3: Same as Fig 6.2, Except Including Only 1 Component of the Propagator.
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equation 4.63, there is variance at the order of
√

∆t for the product of y1 and y2.

y1 and y2 are independent Gaussian variables, so this kind of variance could happen

between any other second auxiliary field variables. To avoid this problem, we calculate

the ratio of the three components in equation 6.6 separately, then multiply them as

the total ratio. The plot is in figure 6.5.
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Figure 6.5: Same as Fig 6.2, 3 Components of Isospin.

We plot figures 6.3 and 6.5 together on one figure as figure 6.6. It shows that both

of them are linear with time step; the difference is the slope. This makes sense; the

mixed energy of one component of spin-orbit-isospin interaction should be different

from the mixed energy of whole spin-orbit-isospin interaction.

The the mixed energy per 1 walker can be calculated. Because |R′S ′〉 = e−Hr∆t|RS〉,

and 〈ΨT |R′S′〉
〈ΨT |RS〉

is known, so the mixed energy per particle corresponding to the known

Hr is − 1
∆tA
〈ΨT (R′S′)

ΨT (RS)
〉(MeV ). We calculate the mixed energies for the two cases, and

plot the mixed energies against time step in figure 6.7
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The upper line in figure 6.7 is the mixed energy of ~L · ~S(~τi ·~τj), while the lower line

is the mixed energy of ~L · ~S(τiατjα). It is reasonable that the former one is higher than

the latter one. Both the two mixed energies should be constant in an ideal situation.

But in figure 6.7, they both show changes with the time step, indicating time step

errors. The behavior at small ∆t is from round-off error. Because they are directly

calculated from figure 6.6, there is no variance in figure 6.6, so the non-constant is not

caused by variance. Also, we only use one walker for the calculation, so there is no

statistical error either. Since the time step is very small, round-off error is possible.

Then we need to use more walkers to sample the mixed energies in figure 6.7.

The mean values of sampled results are plotted against time step in figure 6.8. The

lower line is the sampled mixed energy for one component in spin-orbit-isospin. It

behaves as a constant value in figure 6.8, which is expected. The upper line is the

sampled mixed energy for the whole spin-orbit-isospin. It changes a lot with the time

step, which is the same problem in figure 6.1, where the mixed energy of sampled

propagator does not agree with analytical result for ∆t = 1 × 10−6MeV −1 in table

6.1.

To investigate the problem, we separated the operators in equation 6.6, and

checked the one-step propagation for one walker. We did not find anything wrong

with the formula or algorithm for one walker. Though there might be round-off er-

rors in figure 6.7, which could be the reason causing the problem in figure 6.8. This

problem is not yet solved. Meanwhile, we will calculate the ground-state energy in

the same way as chapter 5 with the full Argonne v8’.
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6.3 Results of Spin-Orbit with Isospin

The problem of the mixed energy for the calculation of ~L · ~S(~τi ·~τj) in last section

could be caused by round-off errors. This requires additional research. In this section,

we will calculate the diffusion results for a two-nucleon system.

As introduced in chapter 3, we use ei
~k·~r for the space part of the orbitals for the

many-body trial wave functions. The momentum ~k is zero for two nucleons in their

ground state. In order to have a spin-orbit interaction for two nucleons, we set the

momentum in the orbitals to be as

~k1 = (0, 0, 0) , ~k2 = (1, 0, 0) . (6.10)

So the ground-state energy would be positive for the two-nucleon system in this case.

The ground-state energy of Argonne v8’ has been calculated and listed in table 6.3.

We also calculated the ground-state energy without spin-orbit interactions, written
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as v6, and the one including the spin-orbit without isospin interaction, written as

v7 in the table. The column v8 refers to the full Argonne v8’. The time step is

∆t = 1× 10−6MeV −1.

Table 6.3: Ground-State Energy for A=2

mean value (MeV) error (MeV)

v6 164.47 0.46

v7 160.21 0.74

v8 168.27 0.97

In table 6.3, the results of ‘v6’ and ‘v7’ look reasonable, because the spin-orbit

interactions are attractive forces, which will decrease the ground state energy. The

result including spin-orbit with isospin is much greater than the other two. So we

explored the time-step dependence of the energy. The time step is decreased to

1 × 10−7MeV −1. The results are plotted with error bars. In figure 6.9, the ground-

 156

 158

 160

 162

 164

 166

 168

 170

 0  2e-07  4e-07  6e-07  8e-07  1e-06  1.2e-06

E
n
e
rg

y
 [
M

e
V

]

time step [1/MeV]

AFDMC fit

Figure 6.9: Ground-State Energy with v8’.

63



state energy decreases when the time step is smaller. The large time step error must

be extrapolated out to get accurate results. The Lanczos method in Appendix A

can be employed to check the local energy for the two-nucleon system in periodic

boundary conditions.

6.4 Future Plan

The future plan of this work is to make sure the spin-orbit interactions in auxiliary

field Monte Carlo agrees with the Lanczos method for the two-nucleon system. Then

we can apply the method to the 28 nucleon system, and calculate the equation of

state in nuclear matter with the full Argonne v8’.

Once the Argonne v8’ is simulated, the three-body potential introduced in chapter

2 could be added in the Hamiltonian.
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Chapter 7

CONCLUSION

The spin-orbit interactions are important to include to investigate nuclear struc-

tures. They are difficult to calculate in auxiliary field diffusion Monte Carlo, since

the product of three operators will increase the scaling exponentially. In this work,

we employed the Hubbard-Stratonovich transformation twice to break up the inter-

actions between two nucleons, so the spin-orbit interactions can be calculated for the

Argonne v8’ potential.

Pair-wise propagation has been developed in this work to calculate the spin-orbit

interactions. To calculate the ~L · ~S and ~L · ~S(~τi ·~τj), we combined these two terms with

the kinetic energy as Hr, and used the first auxiliary field to linearize the operators

in Hr. Since the operators in Hr operate on pairs of nucleons independently, we

developed pair-wise propagation for the propagator with Hr, and diffused the walkers

to the new states with the weight of local energy. The pair-wise propagation is

equivalent to the previous single-particle propagation for the kinetic energy parts,

because they give the same distributions only sampled differently. We checked the

pair-wise propagation by comparing the results of pair-wise propagation and single-

particle propagation for different Hamiltonians. For each Hamiltonian, the results of

the two propagations agreed within error bars. Therefore, the pair-wise propagation

has been checked correctly and could be used to calculate the spin-orbit interactions.

We also developed the method of antithetic variables in this work to eliminate

the variance in the second auxiliary field. Previous AFDMC used shifted Gaussian

variables to calculate the Hamiltonian with Argonne v6’. Since there was only the

first auxiliary field in the calculation, the shifted Gaussian variables worked well in the
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truncated propagators with error terms of order ∆t2. However, when we calculated the

Hamiltonian with Argonne v8’ which includes the spin-orbit interactions, a second

auxiliary field was necessary to be employed, where the shifted Gaussian variables

caused variances which have the lower order than ∆t. To eliminate these variances,

we developed the antithetic variables to cancel the non-zero terms in the sums of the

second auxiliary field. By plotting the weight of one time-step propagation against

time step, we can show that the variances in the second auxiliary field have been

eliminated thoroughly by using the antithetic variables.

The spin-orbit without isospin interaction was calculated successfully in this work.

By combining this interaction with the kinetic energy, and using the antithetic vari-

ables, we calculated the ground state energies of symmetric nuclear matter in different

densities, and plotted the equation of state of symmetric nuclear matter. From the

figure 5.3 we can see that the spin-orbit without isospin interaction decreased the

ground state energies of the Hamiltonian with Argonne v6’ as expected, because

spin-orbit interactions are attractive forces. The decreased energy has been checked

by calculating the one time-step propagation differently, and proved to be correct.

With the inclusion of the isospin-dependent spin-orbit interaction, we can apply

the method to neutron-rich nuclei and see how the spin-orbit interaction changes the

energy levels in nuclei.
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APPENDIX A

LANCZOS MODEL
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The spin-orbit with isospin ~L · ~S(~τi · ~τj) in Argonne v8’ has never been calculated

in nuclear matter. This work is to use auxiliary field to simulate these interactions.

In order to make sure the calculations are correct, we will use the Lanczos model to

double-check the spin-orbit interactions.

The Lanczos model shares Hamiltonian and periodic boundary conditions with

auxiliary field Monte Carlo. We chose a full basis for two-nucleon wave functions, so

the simulation is the exact integral of Schroedinger equations. The Lanczos algorithm

has been checked by calculating the binding energy of the deuteron. The binding

energy of the deuteron in our simulation is 2.2 MeV, agreeing with the experimental

result. So the mathematics and algorithms of Lanczos model should be correct. Once

we have the result of spin-orbit interactions in auxiliary field Monte Carlo, we could

compare it with the one by using Lanczos. Now we will give a detailed introduction

to the Lanczos model.

The full basis of the wave function in two nucleons is as follows.

Fsss|↑↑〉,

Fsss|↓↓〉,

iGaas|↓↓〉,
1√
2
Fasa|↑↓ + ↓↑〉,

1√
2
iGsaa|↑↓ + ↓↑〉,

iGaas|↑↑〉.

(A.1)

The six basis elements are composed of two parts: positions and spinors. The position

part is written as F or G, where F refers to the real part of the wave function, G refers

to the imaginary part of the wave function. The subscript s and a refer to symmetric

and antisymmetric. Since the boundary condition is periodic, the coordinates used

are Cartesian coordinates. For each function, there are three subscripts for the three
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components of the Cartesian coordinates. Take iGaas|↓↓〉 for example. This basis is

the imaginary part, in which the wave function is antisymmetric in the x component,

antisymmetric in the y component, symmetric in the z component. The spinor part

is spin-down for both nucleons. We only have a spin part for the two-nucleon system

because the isopin in the deuteron is in the singlet state with value -3, while the spin

in the deuteron is in triplet states with value 1.

Now we calculate the Hamiltonian matrix with the basis A.1. Since the basis is

full basis in Cartesian space, we could use a Fourier transformation to calculate the

kinetic energy. For the potential energy, the Argoone v8’ in the deuteron has:

1 −→ 1,

~τi · ~τj −→ −3,

~σi · ~σj −→ 1,

(~τi · ~τj)(~σi · ~σj) −→ −3,

~S −→ 3~σi · r̂ij~σj · r̂ij − 1,

~S(~τi · ~τj) −→ −9~σi · r̂ij~σj · r̂ij + 3,

~L · ~S −→ ~L · ~S,

~L · ~S(~τi · ~τj) −→ −3~L · ~S.

(A.2)

The first six operators in A.2 do not need Fourier transformation, and only tensor

operators rotate the spinor. So we calculate these six operators first. In Cartesian

coordinates, we have:

~σi · r̂ij~σj · r̂ij = (σix
x

r
+ σiy

y

r
+ σiz

z

r
)(σjx

x

r
+ σjy

y

r
+ σjz

z

r
). (A.3)

Take the operator σixσjx
x2

r2 and basis iGaas|↓↓〉 for example. The σixσjx will rotate

the |↓↓〉 to |↑↑〉, and the x2

r2 does not change the symmetry of the wave function, so

iGaas|↓↓〉 becomes iGaas|↑↑〉 with coefficient x2

r2 . The matrix of the first six operators

in A.2 is as follows, with basis A.1.
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z2

r2
x2−y2

r2
2xy
r2

√
2xz
r2

√
2yz
r2 0

x2−y2

r2
z2

r2 0 −
√

2xz
r2

√
2yz
r2 −2xy

r2

2xy
r2 0 z2

r2 −
√

2yz
r2 −

√
2xz
r2

x2−y2

r2

√
2xz
r2 −

√
2xz
r2 −

√
2yz
r2

x2+y2−z2

r2 0 −
√

2yz
r2

√
yz

r2

√
yz

r2 −
√
xz
r2 0 x2+y2−z2

r2

√
xz
r2

0 −2xy
r2

x2−y2

r2 −
√

2yz
r2

√
2xz
r2

z2

r2


. (A.4)

Then we calculate the ~L · ~S terms.

~L · ~S =
1

2h̄
~pij · [(~σi + ~σj)× ~rij]

= −ih̄∇x[z(σiy + σjy)− y(σiz + σjz)]

− ih̄∇y[x(σiz + σjz)− z(σix + σjx)]

− ih̄∇z[y(σix + σjx)− x(σiy + σjy)].

(A.5)

There are three components in A.5. For each component, we calculate the spin part

as previously, then use Fourier transformation to calculate the derivatives with proper

symmetries. That is how we calculate the Hamiltonian in two-nucleon system. The

iteration in Lanczos converges quickly. So this is a good tool to double-check the

spin-orbit interactions in auxiliary field diffusion Monte Carlo.
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