
Planning Challenges in Human-Robot Teaming

by

Kartik Talamadupula

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved November 2014 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
Chitta Baral
Huan Liu

Matthias Scheutz
David E. Smith

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

As robotic technology and its various uses grow steadily more complex and ubiqui-

tous, humans are coming into increasing contact with robotic agents. A large portion

of such contact is cooperative interaction, where both humans and robots are required

to work on the same application towards achieving common goals. These application

scenarios are characterized by a need to leverage the strengths of each agent as part

of a unified team to reach those common goals. To ensure that the robotic agent

is truly a contributing team-member, it must exhibit some degree of autonomy in

achieving goals that have been delegated to it. Indeed, a significant portion of the

utility of such human-robot teams derives from the delegation of goals to the robot,

and autonomy on the part of the robot in achieving those goals. In order to be con-

sidered truly autonomous, the robot must be able to make its own plans to achieve

the goals assigned to it, with only minimal direction and assistance from the human.

Automated planning provides the solution to this problem – indeed, one of the

main motivations that underpinned the beginnings of the field of automated planning

was to provide planning support for Shakey the robot with the STRIPS system. For

long, however, automated planners suffered from scalability issues that precluded

their application to real world, real time robotic systems. Recent decades have seen a

gradual abeyance of those issues, and fast planning systems are now the norm rather

than the exception. However, some of these advances in speedup and scalability have

been achieved by ignoring or abstracting out challenges that real world integrated

robotic systems must confront.

In this work, the problem of planning for human-hobot teaming is introduced. The

central idea – the use of automated planning systems as mediators in such human-

robot teaming scenarios – and the main challenges inspired from real world scenarios

that must be addressed in order to make such planning seamless are presented: (i)

i

Goals which can be specified or changed at execution time, after the planning process

has completed; (ii) Worlds and scenarios where the state changes dynamically while a

previous plan is executing; (iii) Models that are incomplete and can be changed during

execution; and (iv) Information about the human agent’s plan and intentions that

can be used for coordination. These challenges are compounded by the fact that the

human-robot team must execute in an open world, rife with dynamic events and other

agents; and in a manner that encourages the exchange of information between the

human and the robot. As an answer to these challenges, implemented solutions and

a fielded prototype that combines all of those solutions into one planning system are

discussed. Results from running this prototype in real world scenarios are presented,

and extensions to some of the solutions are offered as appropriate.

ii

For my parents –

Without you, there is nothing.

iii

ACKNOWLEDGEMENTS

There are many individuals, communities, and entities that deserve heartfelt

thanks and appreciation for their contributions towards the completion of this disser-

tation. Of these, some are mentioned by name, while some are recognized as part of a

larger community. However, of all things stated in this document from this point on,

none are more true than the fact that I express my deepest gratitude to all of those

– mentioned and unmentioned – who assisted in the conduct of this work. Foremost,

I must thank my advisor, mentor, and teacher above all, Subbarao Kambhampati;

Rao. This work has benefited immensely from his central and towering presence in

its direction, vision, and inspiration. Apart from the work itself, Rao helped shape –

more than anyone else, and by a far measure – my person in this world of research

and academia. For all his generous and sincere help, I will forever be indebted.

At various stages through this long journey, my colleagues and friends at the

Yochan research group have stepped up to offer advice, help, guidance, and col-

laboration that moved the wheels of this dissertation. William Cushing, my first

introduction to the world of planning, and J. Benton, my first and most selfless

mentor; a steady and reassuring presence in the new and intimidating world of

research. My colleagues, collaborators and co-authors, who have numbered many

in the time spent here: Sungwook Yoon, Menkes van den Briel, Aravind Kalava-

gattu, Raju Balakrishnan, Tuan Nguyen, Yuheng Hu, Lydia Manikonda, Tathagata

Chakraborti, Srijith Ravikumar, Anupam Khulbe, Ravi Gummadi, Manikandan Vi-

jayakumar, Rohit Raghunathan, Preet Inder Singh, Sumbhav Sethia, Paul Reesman,

Vignesh Narayanan, Yu Zhang, Hankz-Hankui Zhuo, and Sushovan De. Many others

too at ASU have provided valuable research insights – Huan Liu and the DMML lab,

and Chitta Baral and the BioAI research lab.

Outside of the academic and research world at ASU, there are many that have

iv

had a defining influence on this work. Matthias Scheutz, committee member and

collaborator on a significant portion of my work, out of whose direction and vision

the challenge of planning for human-robot teaming was born. Paul Schermerhorn,

Gordon Briggs, and Rehj Cantrell, who were invaluable collaborators who brought

their considerable expertise to bear. David E. Smith, a constant source of inspiration,

who helped me realize that the work I am doing can have an impact on the world

around. Minh Do, for constant encouragement and the Gift of Sapa. To IBM and IBM

Research, in India and in the United States, I am thankful for providing opportunities

time and again; in particular, Biplav Srivastava. Pat Langley was a fount of kind

words, perspective, and astute suggestions. Across the oceans, as collaborators and

colleagues, Robert Mattmueller, Patrick Eyerich, Malte Helmert from Freiburg; and

Carmel Domshlak, Erez Karpas, and Michael Katz from Israel – thank you for putting

up with a “robot guy” in the world of classical planning. Mausam was a constant

source of encouragement, ideas, and two World Cup links. Wheeler Ruml and his

students, Jordan Thayer, Ethan Burns, and Sofia Lemons, who were kind enough to

concede that planning wasn’t just a search problem.

I would be completely remiss if I left out the various friends and extended family

who have provided an invaluable foil to my time here. I must also thank the collection

of diverse individuals and entities that make up Arizona State University. Of these,

some can be named and thanked: the CIDSE front office and the advising center.

And last, thank you to Tempe and Arizona State – I came to you a decade ago,

merely a confused teenager looking for the next step; I take my leave now, a man

with a plan.

Above all, this work is for and with limitless thanks to Bhavana, whose one justified

complaint was that she never knew what I worked on. Here it is now, an entire

dissertation ahead to read.

v

TABLE OF CONTENTS TABLE OF CONTENTSTABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions of the Thesis . 5

1.1.1 Open World Goals . 5

1.1.2 Changing Worlds . 7

1.1.3 Evolving Models . 9

1.1.4 Coordination Through Plan & Intent Recognition 10

1.1.5 Broader Contributions & Implications . 11

2 RELATED WORK . 15

2.1 Human-Robot Teaming. 15

2.2 Open World Goals . 18

2.3 Changing Worlds . 19

2.4 Coordination Using Mental Models . 22

3 OPEN WORLD GOALS . 23

3.1 Conditional Goals . 25

3.2 Open World Quantified Goals . 31

3.3 Implementation . 37

3.4 Empirical Evaluation . 40

3.5 Limitations . 45

4 CHANGING WORLDS . 46

4.1 The Replanning Problem . 48

4.2 Replanning Constraints . 52

vi

CHAPTER Page

4.2.1 Replanning as Restart . 53

4.2.2 Replanning to Reduce Computation . 53

4.2.3 Replanning for Multi-Agent Scenarios . 56

4.3 Solution Techniques . 58

4.3.1 T1: Classical Planning . 58

4.3.2 T2: Specialized Replanning Techniques . 58

4.3.3 T3: Partial Satisfaction Planning . 59

4.4 Empirical Evaluation . 65

4.4.1 Results . 67

4.5 Limitations . 72

5 EVOLVING MODELS . 75

5.1 Updates to the Robot’s Model . 76

5.1.1 Describing Model Updates . 78

5.1.2 Approaches . 80

5.2 Implementation . 82

5.3 Empirical Evaluation . 84

5.3.1 Application Task: Updates from Natural Language 84

5.4 Lower Level Action Sequencing . 87

5.5 Limitations . 90

6 COORDINATION THROUGH PLAN & INTENT RECOGNITION 92

6.1 Motivation . 93

6.2 Belief Modeling . 95

6.3 Using Automated Planning . 98

6.3.1 Mapping Beliefs into a Planning Problem . 99

vii

CHAPTER Page

6.3.2 Coordination Using Plans . 100

6.3.3 Plan Recognition . 101

6.4 Implementation . 106

6.5 Empirical Evaluation . 108

6.5.1 Simulation Runs . 109

6.5.2 Plan Recognition . 110

6.6 Limitations . 112

7 FIELDED PROTOTYPE . 114

7.1 A Motivating Example . 115

7.2 Planning System . 118

7.2.1 Partial Satisfaction Planning . 120

7.3 Integrated Architecture . 122

7.3.1 DIARC Control Architecture . 122

7.3.2 Integrating the Planner into DIARC . 125

7.4 Deployment . 126

8 CONCLUSION . 127

8.1 Summary of Contributions . 127

8.2 Future Work. 130

8.3 Broader Implications . 131

REFERENCES . 133

viii

LIST OF TABLES

Table Page

3.1 OWQG Evaluation: Deadline 100 Time Units . 43

3.2 OWQG Evaluation: Deadline 200 Time Units . 44

6.1 Coordination: Robot Performance . 109

ix

LIST OF FIGURES

Figure Page

2.1 HRT Roles . 16

3.1 Conditional Goals: Methods . 29

3.2 Algorithm: Best Beneficial Plan . 38

3.3 OWQG Evaluation: Scenario Map . 41

3.4 Pioneer P3-AT Robot . 42

4.1 Replanning Model . 49

4.2 Action And Causal Similarity: Example . 54

4.3 Action And Causal Similarity: Compilation . 63

4.4 Evaluation: Replan Time . 69

4.5 Evaluation: Plan Size . 69

4.6 Evaluation: Set Difference . 70

4.7 Evaluation: Symmetric Difference . 71

4.8 Evaluation: Commitment Violations . 72

5.1 Integrated System Schematic . 85

5.2 Lower Level Action Sequencing: Example . 89

6.1 Model Updates: Scenario Map . 94

6.2 Plan Recognition Framework. 105

6.3 Plan Recognition: Case 1. 111

6.4 Plan Recognition: Case 2. 111

7.1 HRT Interactions . 115

7.2 DIARC Schematic . 124

7.3 Sapa Replan And ADE Interaction . 124

x

Chapter 1

INTRODUCTION

One of the earliest motivations for Artificial Intelligence (AI) as a field of study was

to provide autonomous control to robotic agents that carry out useful service tasks.

The concept of teaming between humans and robots is central to many of these ap-

plications – the notion of robotic agents that support a human agent’s goals while

executing autonomously is a recurring theme in AI. Over the past decade, the fields

of robotics and Human-Robot Interaction (HRI) have exhibited tremendous progress,

both within the laboratory as well as out in the real world. Such progress has nat-

urally made the issue of teaming between humans and robotic agents an inevitable

reality. Teaming is beneficial to all parties involved: humans can delegate both me-

nial and dangerous tasks to robotic agents, while the robots themselves can benefit

from the vast store of untapped information that humans carry in their heads. This

symbiotic relationship (Rosenthal et al., 2010) renders human-robot teams invalu-

able in applications ranging from military combat to urban reconnaissance (Murphy,

2004), household management (Cirillo et al., 2010) and even space missions (Knight

et al., 2001). However, it is still the case that humans and robots operate with com-

pletely different models and representations of the same world (and scenario). The

human-robot team may share common goals, but the individual agents’ means of

achieving those goals, and reasoning about the world in which they must achieve

them, differ greatly. If robots are to form effective teams with humans, they must

function as other humans do in human-human teams. Bridging this chasm between

the agents – while keeping an eye on progress towards the ultimate fulfillment of the

scenario objectives – requires a mediatory mechanism on the robot that can generate

1

autonomous behaviors while taking into account the various changes thrown up by a

dynamic world.

Consider the following motivating example:

A human commander is in a safe location and in remote contact with

an autonomous robot that is making its way through a damaged building

that is also on fire. The goal of the human-robot team is to look for

and report on any injured people that are found in the building, thus

facilitating their rescue. Although the robot is initially equipped with

a model of the domain, the model is – of necessity – incomplete. For

example, the commander may not be sure of the condition of various parts

of the building, and thus cannot completely describe the preconditions /

effects of even simple actions like pushing the door open. The initial

guidance from the commander is to find and report any injured people,

and get out of the building before it collapses. We note that neither the

human nor the robot know a priori the exact locations of the injured

people. We also note that the goal of reporting on injured people, and

that of getting out of the building, are conflicting. It is not always possible

for the human commander to specify the exact fashion in which to resolve

the trade-off. As the robot is making its way through the building, the

mission evolves, and the human commander might relay changes in the

world (e.g. a specific wing of the building has already collapsed), the goals

(e.g. the robot should also stop by at a rendezvous point at a certain

time), and even actions (e.g. new ways of prying open a damaged door,

that is not already present in the robots model, or changes to the level of

incompleteness in various actions). The robot needs to take these changes

into stride, while respecting its commitments to the team.

2

The level of autonomy that is desired of robotic agents involved in such teaming

scenarios with humans is often achievable only by integrating them with automated

planning systems – systems that can not only plan for initially specified goals, but also

updates to these goals as well as changes to the world and to the agent’s capabilities.

Predetermined scripts and contingency trees do not (and cannot) account for all

the possibilities that a real-world application scenario brings with it; instead, the

planning process must be as autonomous as possible, in addition to being able to

accept new input (both from the world and from other agents), and plan with that

new information.

The broad aim of this thesis is to understand the challenges faced by a planner

that guides a robot in such HRT scenarios, and to develop effective frameworks for

handling those challenges. Typical reactive robotic architectures are inadequate in

such scenarios since they come with hard-wired implicit goals. Instead, teaming

robots require more explicit planning components that can take new requirements

and directives into consideration. While there has been some work on deliberative

decision-making for human-robot teams, much of it focuses on automating either

path planning decisions (c.f. (Alami et al., 2006; Kulić and Croft, 2005)) or task-

assignment decisions (c.f. (Hoffman and Breazeal, 2010; Cirillo et al., 2009)) with

the human taking an operator role. Effective HRT, such as the one sketched in

the rescue scenario above, requires full-fledged action planning on the robot’s part –

involving sub-goaling, managing sensing actions, and replanning in the presence of

commitments. At the same time, the traditional planning frameworks are themselves

inadequate as they ignore the humans in the loop, and assume complete knowledge

of models and objectives. Finally, pure learning-based approaches that attempt to

first learn the complete models before using them are not well suited, as the robot

does not have the luxury of waiting until the models become complete.

3

Automated planning systems have been successfully employed in the guidance and

control of robotic agents from the very inception of both fields (Fikes, 1971; Fikes

and Nilsson, 1972). The idea that robotic agents need to be endowed with autonomy

is not new – from depictions in popular culture to actual deployed agents, robots

are assumed to be autonomous and independent in many crucial ways. However,

as highlighted above, it is the level and extent of this autonomy that is constantly

changing. Where Shakey, the first truly autonomous robot to be realized, had access

only to a minuscule set of actions, 1 the latest robotic agents can enact complex tasks

robustly, or interact with humans with a high degree of fidelity. As robots (and the

systems that control them) grow increasingly robust and easier to manage, the final

barrier remains natural, everyday interaction with humans. Central to progress on

this is the development of planning systems that lend themselves to features required

for enhanced HRT. Additionally, the scale-up that is required to support real world

applications and time windows has only happened in the past decade due to the use

of heuristic search methods for plan synthesis. Current planners still operate under

a number of restrictive assumptions though, with classical planners (Kambhampati

and Srivastava, 1995) being the fastest of the lot.

The problem lies in identifying the features that are essential when considering

planning support for joint HRT problems, and of providing a general framework for

such planning challenges. The teaming aspect of these problems arises from the fact

that the human and the robot are both acting towards achieving the same set of

shared goals, and the relationship between them can be defined in terms of known

modes of interactions in teams (e.g. peers, commander-subordinate, etc.). Though

there has been work in the past on the intersection of tasks involving humans, robots

1Shakey couldn’t even physically implement some of these actions, due to a lack of appropriate
effectors.

4

and planners, most of that work has concentrated on a system-centric view of the

interaction. Our focus in this work is instead on the larger problem of interaction

between the human and the robot, and on describing the planning challenges that

arise from such interaction. These challenges stem both from the long-term nature of

teaming tasks, and the open- world nature of the environment. The main problems

involve the ability to deal with incompletely specified models, uncertain objectives in

open and dynamically changing worlds, and the ability to handle continual updates

to the world, the objectives and even the domain models.

1.1 Contributions of the Thesis

In this section, the main contributions of this dissertation are presented. The

central theme that unites all of these contributions is the use of human-robot teaming

as a motivating application scenario to demonstrate the shortcomings of existing

classical planners and the classical planning paradigm.

1.1.1 Open World Goals

All human-robot teams are constituted in the service of specific goals – either at a

higher, abstract level (e.g. “humans must be rescued”) or a lower, more defined level

(e.g. “deliver medbox1 to room3”). It makes little sense then to assume that these

goals will remain static, or that they will all be specified up-front at the beginning of

each scenario. Instead, a flexible framework is required that is expressive enough to

denote most goals of interest, yet one that allows modifications (including addition

and deletion) to goals with relative ease. Additionally, the representation used by

these goals must be on a level that humans are comfortable with – too high and no

goals of relevance can be defined; too low and humans will fast lose track of what the

team is trying to achieve.

5

Human-robot teaming tasks present an additional critical challenge not handled

by current planning technology: open worlds. Simply put, an open world is one where

new objects, and facts about them, may be discovered at any time during execution.

Most human-robot teaming tasks involve open world scenarios and require the ability

to handle knowledge that may be counterfactual, and goals that may be contingent

on that knowledge. While the state-of-the-art planners are very efficient, they focus

mostly on closed worlds. Specifically, they expect full knowledge of the initial state,

and expect up-front specification of the goals. Adapting them to handle open worlds

presents many thorny challenges. Three tempting but ultimately flawed approaches

for making closed-world planners handle open worlds are: (i) blindly assuming that

the world is indeed closed; (ii) deliberately “closing” the world by acquiring all the

missing knowledge before planning; or (iii) accounting for all contingencies during

planning by developing conditional plans.

Assuming a closed-world will not only necessitate frequent replanning during ex-

ecution, but can also lead to highly suboptimal plans in the presence of conditional

goals (such a plan would, for example, direct the robot in the USAR scenario to make

a bee-line to the end of the corridor, merrily ignoring all the conditional reward op-

portunities of reporting on injured people whose existence is not known beforehand).

Acquiring full knowledge up-front would involve the robot doing a sensing sweep to

learn everything about its world before commencing the planning – a clearly infeasi-

ble task. After all, a robot cannot be simply commanded to “sense everything,” but

rather has to be directed to specific sensing tasks.

What is needed instead is both a framework for specifying conditional knowledge

and rewards, and an approach for using that knowledge to direct the robot in such a

way as to intelligently trade sensing costs and goal rewards. Accordingly, an approach

for representing and handling a class of conditional goals called open world quantified

6

goals (OWQGs) is proposed in Chapter 3. OWQGs provide a compact way of spec-

ifying conditional reward opportunities over an “open” set of objects. For instance,

using OWQGs, it can be specified that for a robot to report an injured human, it must

have found an injured human and that finding an injured human involves sensing. It

will be shown how OWQGs foreground the trade-off between sensing costs and goal

rewards. Discussion will also center around the issues involved in optimally selecting

the conditional rewards to pursue, and on describing the approximate “optimistic”

method that is used in the current approach.

1.1.2 Changing Worlds

Planning for HRT requires handling dynamic objectives and environments. Such

tasks are characterized by the presence of highly complex, incomplete, and sometimes

inaccurate specifications of the world state, the problem objectives and even the model

of the domain dynamics. These discrepancies may come up due to factors like plan

executives, or other agents that are executing their own plans in the world. Due to

this divergence, even the most sophisticated planning algorithms will eventually fail

unless they offer some kind of support for replanning. These dynamic scenarios are

non- trivial to handle even when planning for a single agent, but the introduction of

multiple agents introduces further complications. All these agents necessarily operate

in the same world, and the decisions made and actions taken by an agent may change

that world for all the other agents as well. Moreover, the various agents’ published

plans may introduce commitments between them, due to shared resources, goals or

circumstances.

For example, in a human-robot teaming scenario, the goals assigned by the com-

mander are commitments that the robotic agent must uphold. Additionally, if the

agent tells the human that it is executing a specific plan, or achieving a specific goal,

7

then it cannot simply change the execution of that plan or the pursuit of that goal

(respectively) without first informing the human that it is breaking the commitment.

These inter-agent commitments may evolve as the world itself changes, and may in

turn affect the robotic agent’s internal planning process.

Given the importance of replanning in dealing with all these issues, one might

assume that the single-agent planning community has studied the issues involved in

depth. Unfortunately, most previous work in the single-agent planning community

has looked upon replanning as a technique whose goal is to reduce the computational

effort required in coming up with a new plan, given changes to the world. The focus

in such work is to use the technique of minimally perturbing the current plan struc-

ture as a solution to the replanning problem. However, neither reducing replanning

computation nor focusing on minimal perturbation are appropriate techniques for

intra-agent replanning in the context of multi-agent scenarios.

In Chapter 4, an argument is provided for a better, more general model of the re-

planning problem as applicable to planning problems that involve the plans and goals

of multiple agents, such as human-robot teaming. This model considers the central

components of a planning problem – the initial state, the set of goals to be achieved,

and the plan that does that, along with constraints imposed by the execution of that

plan in the world – in creating the new plan. These replanning constraints take the

form of commitments for an agent, either to an earlier plan and its constituent actions,

or to other agents in its world. It is shown that this general commitment sensitive

planning architecture subsumes past replanning techniques that are only interested

in minimal perturbation. It is also shown that partial satisfaction planning (PSP)

techniques provide a good substrate for this general model of replanning.

8

1.1.3 Evolving Models

As automated planning systems move into the realm of human-robot teaming

tasks, a recurring issue is that of incompletely specified domain theories. These

shortcomings manifest themselves as reduced robustness in plans that are synthesized,

and subsequent failures during execution in the world. It may be the case in many

scenarios that though plan synthesis is performed using a nominal domain model,

there are domain experts who specify changes to the specific problem instance and

sometimes the domain model itself during the planning process. Quite often it is

useful to take this new information into account, since it may help prevent grievous

execution failures when the plan is put into action. Additionally, new information

about the domain or the problem may open up new ways of achieving the goals

specified, thus resulting in better plan quality as well as more robust plans.

More generally, it may be the case in many HRT scenarios that though plan

synthesis is performed using a nominal domain model, there are domain experts who

specify changes to the specific problem instance and sometimes the domain model

itself during the planning process. Quite often it is useful to take this new information

into account, since it may help prevent grievous execution failures when the plan is

put into action. Additionally, new information about the domain or the problem

may open up new ways of achieving the goals specified, thus resulting in better plan

quality as well as more robust plans.

To handle such information, two things are of essence: first, a semantics is needed

for specifying such updates and integrating them into the knowledge base of the

planner that is guiding the agent. Subsequent to this, the problem changes to one

of reasoning about the changes and their effect on the current plan’s validity and

metrics. In Chapter 5, the problem of updates to a domain model while a plan is

9

actively executing in the world is presented. Based on prior experience in providing

planning support to a robotic agent in a search and rescue scenario, the nature of

the updates that need to be supported are described, and the components of such an

update are demonstrated.

1.1.4 Coordination Through Plan & Intent Recognition

As robotic systems become more ubiquitous, the need for technologies to facilitate

successful coordination of behavior in human-robot teams becomes more important.

Specifically, robots that are designed to interact with humans in a manner that is as

natural and human-like as possible will require a variety of sophisticated cognitive

capabilities akin to those that human interaction partners possess. Performing mental

modeling, or the ability to reason about the mental states of another agent, is a

key cognitive capability needed to enable natural human-robot interaction. Human

teammates constantly use knowledge of their interaction partners’ belief states in

order to achieve successful joint behavior, and the process of ensuring that both

interaction partners have achieved common ground with regard to mutually held

beliefs and intentions is one that dominates much of task- based dialogue. However,

while establishing and maintaining common ground is essential for team coordination,

the process by which such information is utilized by each agent to coordinate behavior

is also important. A robot must be able to predict human behavior based on mutually

understood beliefs and intentions. In particular, this capability will often require

the ability to infer and predict plans of human interaction partners based on their

understood goals.

In Chapter 6, the focus of the discussion is shifted from the model of the robotic

agent to the model of the human agent who is part of the human-robot team. Auto-

mated planning is a natural way of generating plans for an agent given that agent’s

10

high-level model and goals. The plans thus generated can be thought of either as

directives to be executed in the world, or as the culmination of the agent’s delibera-

tive process. When an accurate representation of the agent’s beliefs about the world

(the model and the state) as well as the agent’s goals are available, an automated

planner can be used to project that information into a prediction of the agent’s future

plan. This prediction process can be thought of as a simple plan recognition process;

further in that chapter, the expansion of this process to include incomplete knowledge

of the goals of the agent being modeled will be discussed.

1.1.5 Broader Contributions & Implications

In addition to the main contributions described above, the work done as part of

this dissertation also resulted in some broader contributions to the community. Here,

some of those contributions are listed.

Applying Automated Planning to HRT

Most integrated systems that tried to control robotic agents in the past have relied

on scripts to inform the agent’s behavior in a dynamic world (Schank and Abelson,

1977). As the scenario being handled grows increasingly more complex, and the po-

tential for unforeseen events and faults increases, scripts tend to get larger, unwieldier,

and less able to deal with contingencies. Instead, a system that can exhibit robust

intelligence is the need of the hour; robust intelligence can be defined as the capacity

of a system to “ensure the reliable, long-term, fault-tolerant autonomy and survival

of the robot” (Scheutz et al., 2007a). Automated planning systems can adroitly gen-

erate such autonomous behaviors, and respond to unexpected events in the world

by generating new plans – all the while keeping the overall goals at the forefront of

the deliberative process. Recent advances in the field of automated planning have

11

focused variously on replanning when faced with execution failure and a world state

that differs from the planner’s expected state (Fox et al., 2006; Yoon et al., 2007; Ta-

lamadupula et al., 2013b), by generating an alternate path to the goals. Very recent

work has even focused on the possibility that the planner’s model may be incom-

pletely specified (Kambhampati, 2007), leading to a measure of robustness for plans

generated under various incomplete models (Nguyen et al., 2013) (see Section 1.1.5

for a continuation of this discussion).

Planning with Incompleteness

Although state-of-the-art automated planning systems have progressed significantly

in terms of scalability, efficiency, and representational capabilities, most of them still

model the world as closed and complete with respect to changes once the planning

process begins; that is, little attention is given to the fact that a problem may either

be incomplete, or may change, after planning has commenced or during execution.

As discussed previously, HRT tasks present a critical challenge not handled by

current planning technology: open worlds. While the state-of-the-art classical plan-

ners are very efficient, they focus mostly on closed worlds. Specifically, they expect

full knowledge of the initial state, and expect up-front specification of the goals of

the agent, respectively. Additionally, current planners also assume that the agent’s

action model is static and complete. Adapting them to handle open worlds presents

many problems. A critical challenge in doing this is the need to get by with less

than complete information about the preferences and world model of the agent –

something that most current planners assume at the outset. The absence of com-

plete models motivates a model-lite planning problem (Kambhampati, 2007), where

the planning model can exhibit varying degrees of incompleteness. The extent of the

planner’s contribution in the plan generation process depends on the level of detail

12

and completeness of its model. Given sufficiently detailed information on the form

of the incompleteness – for example, annotations on the incompleteness (Satia and

Lave Jr, 1973; Garland and Lesh, 2002) – the planner can use an array of increas-

ingly sophisticated techniques to generate plans that have a higher chance of success

in the world. These techniques include plan critiquing, subgoal generation, replan-

ning (Cushing and Kambhampati, 2005), robust planning (Nguyen et al., 2013), and

diverse planning (Nguyen et al., 2012).

Human-in-the-Loop Planning

In recent years, there has been increasing realization from within the automated

planning community that planning techniques are well-suited for applications where

humans and automated systems must work together. However, very little attention

has been focused on the challenges that existing planning techniques must negotiate in

order to be useful in such human-in-the-loop (HIL) planning scenarios. A large part of

this has been due to the absence of a unified consideration of this problem. One of the

academic contributions of this dissertation is thus to ground the challenges involved

in this larger problem by using human-robot teaming as a motivating application.

The consideration of human-robot teaming as a human-in-the-loop problem also

enables a separation of the high-level challenges that a planner must solve in such

scenarios in a more defined form. Specifically, the challenges are two-fold. First, the

planner must solve an interpretation problem in order to understand the objectives,

preferences, and actions of the human(s) in the scenario. Second, the planner must

solve the steering problem, and determine the best course of action (which may not

always be a full and complete plan) that will contribute to a good solution. In ad-

dition to the work on human-robot teaming presented here, this understanding has

been applied to the problem of crowdsourced planning. In that problem, the robotic

13

agent is replaced with a crowd of human workers, who must work with another human

agent called the requester in order to collaboratively produce a plan for a problem

specified by the requester. The planner must act as a mediator in such scenarios to

make the plan generation process more efficient; that is, in addition to scheduling

actions suggested by the crowd workers, the planner must now also interpret their

actions and throw out automated suggestions and alerts that may be used to steer

the crowd’s planning process. This problem, introduced in (Talamadupula et al.,

2013a) and detailed in (Talamadupula and Kambhampati, 2013), was used to con-

struct a working prototype of a crowdsourced planning system. This system, called

AI-MIX (Manikonda et al., 2014a), was demonstrated at the ICAPS 2014 conference’s

systems demonstration track, where it was awarded the best demo award (Manikonda

et al., 2014b).

The work that will be presented in the succeeding chapters has resulted in multiple

publications at conferences and workshops, and in journals (see References); and will

appear as a significant part of a tutorial entitled ‘Human-in-the-Loop Planning and

Decision Support’ at the AAAI 2015 conference.

14

Chapter 2

RELATED WORK

This chapter outlines work that is related to the human-robot teaming problem,

and to the automated planning challenges related to that problem.

2.1 Human-Robot Teaming

There has been a resurgent interest in robotic applications and Artificial Intelli-

gence systems that support them in the past decade. Vast hardware scale-ups as well

as widespread deployment in real world applications and products has meant that

a large amount of work – both past and present – is relevant to the human-robot

teaming problem. Perhaps the most relevant of all these is the work on symbiotic

human-robot interaction (Rosenthal et al., 2010), which considers the symbiotic rela-

tionship between a human and a robotic agent in a teaming scenario. This work has

been extended in many interesting directions – some of which find echo in this work

– including in modeling the availability and accuracy of humans who interact with

mobile robots (Rosenthal et al., 2011), seeking help from humans (Rosenthal and

Veloso, 2012; Rosenthal et al., 2012), using web interfaces to assign tasks to these

robots (Samadi et al., 2012; Kollar et al., 2012), dialog-based task management for

robots (Sun et al., 2013), and replanning based on dynamic information received from

the world (Coltin and Veloso, 2013).

There is also a large volume of work that is related to various aspects of the

human-robot teaming problem. There has been work on devising generalized archi-

tectures and infrastructures for distributed human-robot teams (Scerri et al., 2003;

Schurr et al., 2005). Additionally, as shown in Figure 2.1, other previous work can be

15

HUMAN

ROBOT PLANNER

Planning and Execution

Monitoring

Human Robot Interaction

(HRI)

Mixed Initiative Planning

(MIP)

Figure 2.1: Interactions between the various roles in a human-robot teaming sce-
nario.

classified into three parts based on the aspects of the HRT problem that it addresses –

human-robot interaction, human-planner interaction, and planner-robot interaction.

More specifically:

• Planning and execution monitoring deals with the interactions between a fully

autonomous robot and a planner.

• Human-Robot Interaction (HRI) works toward smooth interactions between a

human user and a robot.

• Mixed initiative planning relates to interactions between humans who are re-

ceiving plans and the automated planners that generate them.

Since the focus of this work is on providing planning support for human-robot

teams, the most interesting work is that which relates planning and execution moni-

toring to mixed initiative planning. A lot of work has been done in both these areas,

and their intersection; the closest work seems to be Bagchi et al.’s (Bagchi et al.,

1996) system for controlling service robots. In their system, the robot is equipped to

handle the user’s changing goals and advice at different levels of detail via a planner

that can refine and modify goals dynamically. The emphasis of their work is on the

16

robotic agent’s capability to not only plan and act autonomously, but also to do so in

an interactive way such that the user’s comfort and safety are kept in mind. In order

to achieve this, the robot is equipped to comprehend the user’s (changing) goals and

advice at different levels of detail. In turn, the planner can refine and modify these

goals dynamically and react to unexpected changes in the environment. This system

thus includes the human user in the loop via interaction with the robot and a prob-

abilistic planner. There has also been work on how humans interact with planners,

and how the process of accepting user input can be streamlined. In particular, work

by Myers (Myers, 1996, 1998) has dealt with advisable planning that allows a human

to specify partial plans, recommendations or methods to evaluate plan quality, all in

natural language.

There has been significant work in planning and execution monitoring, often in

the context of replanning and contingent planning. Contingent planners (c.f. (Albore

et al., 2009; Meuleau and Smith, 2003)) can be viewed as solving for the problem

of execution monitoring by assuming full sensing knowledge is available at execution

time, so no replanning would ever be necessary. However, as Gat (Gat, 1992) has

pointed out, in designing a planner whose ultimate goal is finding plans for execu-

tion, it is difficult (and sometimes impossible) to model for all contingencies, and

often it is better to design an execution monitoring system that is capable of recog-

nizing failures (i.e., cognizant failures (Firby, 1989)). That is, the planner’s problem

can be relaxed by removing uncertainty in the world. Agre and Chapman (Agre and

Chapman, 1990) also discuss these issues in relationship to planning and execution

monitoring and viewing “plans as advice”. A number of systems (c.f. (Lemai and

Ingrand, 2003; Knight et al., 2001; Myers, 1998)) have worked by performing execu-

tion monitoring and subsequent plan repair or replanning upon the discovery of an

inconsistent execution state. For instance, the CASPER planner (Knight et al., 2001)

17

performs plan repair upon failure. While the IxTeT-eXeC (Lemai and Ingrand, 2003)

system attempts a similar repair strategy, it replans only if no repair can be found.

It handles the arrival of new goals through replanning.

On the ‘planners interacting with humans’ side, there have been some planning

systems that work toward accepting input from users. In particular, work by My-

ers (Myers, 1996) has dealt specifically with advisable planning (i.e., allowing a human

to specify partial plans, recommendations of goals and actions, or methods to evalu-

ate plan quality; all in natural language). The Continuous Planning and Execution

framework, also developed by Myers (Myers, 1998), contained such a framework al-

lowing natural language advice. This system provided for plan execution monitoring

and initiated plan repairs when necessary (though appears to have never handled fully

open world scenarios). Another system that relies on high- level advice from a human

is TRAINS-95 (Ferguson et al., 1996). This system engages the human in a dialog,

explicitly eliciting advice from the user and asking for the best way to complete tasks

at the high level, while the planner engages in planning using more primitive actions.

2.2 Open World Goals

Handling an open environment using a closed world planner has been considered

before, notably in the work of Etzioni et al. (Etzioni et al., 1997) via the specifi-

cation of local closed-world (LCW) statements. However, there exists at least one

major difference between their work and the present work in open, dynamic worlds.

It should be noted that the representation used in that work, of closing a world that

is open otherwise via the local closed world (LCW) statements, is complementary to

representations that are used in this work. The approach in this work is to provide

support for open world quantified goals by relaxing the planner’s assumption of a

world closed with respect to object creation; that is, parts of a completely closed-

18

world are being opened with the aid of OWQGs. This approach provides a method of

specifying conditional goals, where goal existence hinges upon the truth value of facts.

Semantics of goals involving sensing have received attention in (Scherl and Levesque,

1993) and (Golden and Weld, 1996). The latter work is particularly relevant as they

consider representations that leads to tractable planning, and propose three anno-

tations initially, hands-off and satisfy to specify goals involving sensing. There has

been significant work on “temporal goals” (Baral et al., 2001; Bacchus and Kabanza,

1996), and “trajectory constraints” (Gerevini et al., 2009).

2.3 Changing Worlds

Automated Planning

Replanning has been an early and integral part of automated planning and problem

solving work in AI. The STRIPS robot problem-solving system (Fikes et al., 1972),

one of the earliest applications of planning and AI, used an execution monitoring

system known as PLANEX to recognize plan failures in the world, and replan if

direct re-execution was not an option. The replanning mechanism worked by sending

the change in state back to the STRIPS system, which returned a sequence of actions

that brought the state back to one from which the execution of the original plan could

be resumed.

The relatively simple procedure behind the STRIPS system encoded an idea that

would come to dominate replanning work within the planning community for the

next few decades – the notion of commitment to a plan. The principle underlying

the concept of minimally changing an existing plan is christened plan stability by Fox

et al. (Fox et al., 2006). In that work, two approaches – replanning from scratch,

and repairing the existing plan – and their respective impacts on plan stability are

19

considered. Stability itself is defined as the measure of the difference a process induces

between an original plan and a new plan, and is closely related to the idea of minimal

perturbation planning (Kambhampati, 1990) used in past replanning and plan re-

use (Nebel and Koehler, 1995) work. Fox et al. argue that plan stability as a property

is desirable both from the standpoint of measurable quantities like plan generation

time and plan quality, as well as intangibles like the cognitive load on human observers

of planned activity and the strain on the plan executive.

Other work on replanning has taken a strong stand either for or against the idea of

plan repair. Van Der Krogt et al. (Van Der Krogt and De Weerdt, 2005) fall firmly

into the former category, as they outline a way to extend state-of-the-art planning

techniques to accommodate plan repair. For the purposes of this work, it suffices to

note that this work looks at the replanning problem as one of commitment to and

maintenance of a broken plan. This work has a strong parallel (and precursor) in

planning for autonomous space exploration vehicles, a proven real world application

of planning technology. The Casper system (Knight et al., 2001), which was designed

to autonomously control a spacecraft and its activities, was designed as a system with

a high level of responsiveness, enabled through a technique called iterative repair –

an approach that fixes flaws in an existing plan repeatedly until an acceptable plan is

found. At the other end of the spectrum, Fritz et al. (Fritz and McIlraith, 2007) deal

with changes to the state of the world by replanning from scratch. Their approach

provides execution monitoring capabilities by formalizing notions of plan validity and

optimality using the situation calculus; prior to execution, each step in the (optimal)

plan is annotated with conditions that are sufficient for the plan’s optimality to hold.

When a discrepancy or unexpected change occurs during execution, these conditions

are re-evaluated in order to determine the optimality of the executing plan. When one

of the conditions is violated, the proposed solution is to come up with a completely

20

new plan that satisfies the optimality (or validity) conditions.

Multi-Agent Systems

In contrast, the multi-agent systems (MAS) community has looked at replanning is-

sues more in terms of multiple agents and the conflicts that can arise between these

agents when they are executing in the same dynamic world. Wagner et al. (Wagner

et al., 1999) proposed the twin ideas of inter-agent and intra-agent conflict resolution.

In the former, agents exchange commitments between each other in order to do team

work. These commitments in turn may affect an agent’s local controller, and the

feasibility of the agent’s individual plan – this brings up the process of intra-agent

conflict resolution. Inter-agent commitments have been variously formalized in differ-

ent work in the MAS community (Komenda et al., 2008; Bartold and Durfee, 2003;

Wooldridge, 2000), but the focus has always been on the interactions between the

various agents, and how changes to the world affect the declared commitments. The

impact that these changes have within an agent’s internal planning process has not

received significant study. The closest work in the multi-agent planning community

to this work is by (Komenda et al., 2012), where the multi-agent plan repair prob-

lem is introduced and reduced to the multi-agent planning problem; and (Meneguzzi

et al., 2013), where a first-order representation and reasoning technique for modeling

commitments is introduced.

In this work (in Chapter 4), it is proposed to bring these two approaches from two

different communities – single-agent planning, and multi-agent systems – together

in a unified theory of agent replanning. The central argument is that it should be

the single-agent planning community’s brief to heed the changes to the world state

and inter-agent commitments, and to generate a new (single-agent) plan that remains

consistent with the larger multi-agent commitments in the world. The first step in this

21

endeavor is to re-define the replanning problem such that both single and multi-agent

commitments can be represented under a unified framework.

2.4 Coordination Using Mental Models

Robots that are designed to interact with humans in a manner that is as natural

and human-like as possible will require a variety of sophisticated cognitive capabilities

akin to those that human interaction partners possess (Scheutz et al., 2007b). Per-

forming mental modeling, or the ability to reason about the mental states of another

agent, is a key cognitive capability needed to enable natural human-robot interac-

tion (Scheutz, 2013). Human teammates constantly use knowledge of their interac-

tion partners’ belief states in order to achieve successful joint behavior (Klein et al.,

2005), and the process of ensuring that both interaction partners have achieved com-

mon ground with regard to mutually held beliefs and intentions is one that dominates

much of task-based dialogue (Clark and Brennan, 1991). However, while establishing

and maintaining common ground is essential for team coordination, the process by

which such information is utilized by each agent to coordinate behavior is also impor-

tant. A robot must be able to predict human behavior based on mutually understood

beliefs and intentions. There has been a variety of prior work in developing coordina-

tion and prediction capabilities for human-robot interaction in joint tasks involving

physical interaction, such as assembly scenarios (Kwon and Suh, 2012) and object

hand-overs (Strabala et al., 2013). However, these scenarios assume the robot is in

direct interaction with the human teammate and is able to observe the behavior of

the human interactant throughtout the task execution. Some forms of coordination

may need the robot to be able to predict a teammate’s behavior from only a high-level

goal and mental model, as outlined in Chapter 6.

22

Chapter 3

OPEN WORLD GOALS

Robots operating in teaming scenarios require the ability to plan (and revise)

a course of action in response to human instructions. The focus of this chapter

is on understanding the challenges faced by a planner that guides a robot in such

teaming scenarios specific to the scenario goals. Several parts of the state-of-the-art

planning technology that go beyond typical classical planning are both required and

easily adapted to goals in human-robot teaming scenarios. In particular, the planner

should allow for actions with durations to handle goals with deadlines and the reality

that actions take time execute in the physical world, and partial satisfaction of goals

should be possible to allow the planner to “skip” seemingly unreachable goals (e.g.,

if the goal of exiting a building cannot be currently satisfied, that should not prevent

the robot from reporting on injured humans). For partial satisfaction planning, soft

goals are modeled (i.e., goals that may remain unachieved) with a reward and a

cost is given to each action; the planner then seeks to find a plan with maximum

net benefit (i.e., summed goal reward - summed action cost). Along with these, an

important part of any online system is execution monitoring and replanning to allow

the planner to receive and react to new information from a human commander (e.g.,

a change in goal deadline). To accept information from a human commander, the

robotic architecture parses and processes natural language (i.e., speech) into goals or

new facts. If the architecture cannot handle a goal or fact by following a simple script

located in its library, it calls the planner to find a method of achieving the goal.

Human-robot teaming tasks present an additional critical challenge not handled

by current planning technology: open worlds. Simply put, an open world is one

23

where new objects, and facts about them, may be discovered at any time during

execution. Open worlds are related to the closed world assumption – the assumption

that anything that is not explicitly mentioned is automatically assumed to be false.

Most human-robot teaming tasks involve open world scenarios and require the ability

to handle knowledge that may be counterfactual, and goals that may be contingent

on that knowledge. For example, a human commander might instruct the robot to

report on any injured humans it encounters in a search-and-rescue scenario. Here the

world is open in that neither the human nor the robot know where injured humans

are, or even if there are any to begin with (hence the goal does not actually exist

until an injured human is found).

While the state-of-the-art planners are very efficient, they focus mostly on closed

worlds. Specifically, they expect full knowledge of the initial state, and expect up-front

specification of the goals. Adapting them to handle open worlds presents many thorny

challenges. Three tempting but ultimately flawed approaches for making closed-

world planners handle open worlds are: (i) blindly assuming that the world is indeed

closed; (ii) deliberately “closing” the world by acquiring all the missing knowledge

before planning; or (iii) accounting for all contingencies during planning by developing

conditional plans.

Assuming a closed-world will not only necessitate frequent replanning during ex-

ecution, but can also lead to highly suboptimal plans in the presence of conditional

goals (such a plan would, for example, direct the robot in the USAR scenario to make

a bee-line to the end of the corridor, merrily ignoring all the conditional reward op-

portunities of reporting on injured people whose existence is not known beforehand).

Acquiring full knowledge up-front would involve the robot doing a sensing sweep to

learn everything about its world before commencing the planning – a clearly infeasi-

ble task. After all, a robot cannot be simply commanded to “sense everything,” but

24

rather has to be directed to specific sensing tasks. Accounting for missing knowledge

would involve making conditional plans to handle every type of contingency, and let-

ting the robot follow the branches of the plan that are consistent with the outcomes

of its sensing. Such full contingency planning is already known to be impractical in

propositional worlds with bounded indeterminacy (c.f. (Meuleau and Smith, 2003));

it is clearly infeasible in open worlds with unknown numbers of objects, of (possibly)

unknown types.

What is needed instead is both a framework for specifying conditional knowledge

and rewards, and an approach for using that knowledge to direct the robot in such

a way as to intelligently trade sensing costs and goal rewards. Accordingly, an ap-

proach for representing and handling a class of conditional goals called open world

quantified goals (OWQGs) is proposed. OWQGs provide a compact way of specifying

conditional reward opportunities over an “open” set of objects. For instance, using

OWQGs, it can be specified that for a robot to report an injured human, it must

have found an injured human and that finding an injured human involves sensing. It

will be shown how OWQGs foreground the tradeoff between sensing costs and goal

rewards. Discussion will also center around the issues involved in optimally selecting

the conditional rewards to pursue, and on describing the approximate “optimistic”

method that is used in the current approach.

3.1 Conditional Goals

There exists an obvious problem with using a planner that assumes a closed-

world in a dynamic, real-world scenario such as planning for an autonomous robot in

a human-robot team – because the world is “open”, the robot (as well as the human)

does not have full knowledge of all the objects in the world. In an urban search and

rescue (USAR) scenario, for example, neither the human nor the robot know where

25

injured humans might be. Furthermore, it is also possible that the human-robot team

does not have a complete or correct map of the building in which the rescue is taking

place. One immediate ramification of this “open world” is that the goals are often

conditioned on particular facts whose truth value may be unknown at the initial state.

For example, the most critical goal in a search and rescue scenario – viz. reporting

the locations of injured humans – is conditioned on finding injured humans in the

first place.

In open worlds like the USAR scenario, there may be a set of objects that imply

these facts of interest. For instance, when moving through the hallway, it could be

said that sensing a door implies the existence of a room. Subsequently, doors imply

the potential for goal achievement (i.e., opportunities for reward), since they imply

the existence of a room, where injured people might be situated. While the number

of possible injured individuals remains unknown, the commander becomes aware that

people are likely within rooms (and subsequently passes this information on to the

robot). This goal is over an open world, in that new objects and facts may be brought

to light through either external sources like the mission commander, or through action

execution and sensing.

To be effective in such scenarios, the planner should be opportunistic, generating

plans that enable goal achievement as against finding the most direct path to the

currently known goals (e.g., by entering rooms to look for injured individuals instead

of going straight to the exit). Unfortunately, there are several other constraints that

may preclude the achievement of goals. The robot may have deadlines to meet and

may run out of exploration time; it may also be unable to fully explore the building

due to parts of it being inaccessible. Additionally, sensing to resolve the truth of

world-facts may often be costly and time-consuming. This means that certain aspects

of the world may remain open (and therefore unknown) by design, necessitating the

26

use of soft goals that do not have to be achieved for the plan to be valid.

To formally model the USAR robot’s goal of looking for and reporting injured

people, it is useful to consider the fact that this goal is certainly not one of simple

achievement, since the robot does not need to (and should not) report victims unless

they are actually present in the rooms. The uncertainty in this scenario and other

similar real-world problems stems from the inherently conditional presence of objects

– and the truth of facts about them – in the world. Such goals can be looked at as

conditional goals, where a conditional goal A B is interpreted as “B needs to be

satisfied if A is true initially”.

A planning problem Π is a tuple 〈I,G,D〉 where I is the initial state, G the goal

formula, and D = 〈V, P,A〉 is the planning domain description (V is a set of typed

variables, P is a set of boolean propositions, and A is a set of PDDL 2.1 level 3 (Fox

and Long, 2003) planning operators).

Conditional Goal: A (hard) conditional goal gc w.r.t. Π = 〈I,G,D〉 is a struc-

ture A B where A ∈ I and B ∈ G.

Given a planning problem Π = 〈I,G,D〉 and a plan ρ which satisfies Π we say

that ρ also satisfies a conditional goal A B if it makes B true in the final state

resulting from the application of ρ to I.

From the definition of conditional goals above, it holds that the set of goals that a

plan ρ needs to fulfill in order to be considered a solution to the problem is variable,

and that the composition of such a set depends on the values of the antecedents of the

conditional goals initially (at I). It also follows that a plan ρ′ will not be considered

a solution unless it fulfills each and every conditional goal.

27

The conditional goal as defined above poses a “hard” constraint: if the antecedent

holds, then every solution plan must achieve the goal. It is useful to relax this re-

quirement:

Soft Conditional Goal: A (soft) conditional goal gcs w.r.t. a planning problem

Π = 〈I,G,D〉 is a structure A B [u] [p] where A ∈ I and B ∈ G, and u and p

are non-negative reals.

Given that the soft conditional goal is defined using soft goal semantics (van den Briel

et al., 2004), any plan ρ that is a solution for Π satisfies the given soft conditional

goal carrying reward u units and penalty p units.

Planning Spectrum for Conditional Goals

In general, it is useful consider a spectrum of planning methods (as shown in figure

3.1) to deal with conditional goals, all of which are contingent on the the observability

of the initial state I ∈ π. If I is fully observable, the planner knows the values of the

antecedents of all the conditional goals gc ∈ Gc. With this information, a problem

with conditional goals may be compiled into a standard classical planning problem

(in case only hard conditional goals are present) and a partial satisfaction planning

(PSP) problem otherwise.

However, if I is partially observable, the planner is faced with a more complex

problem. If all the conditional goals are hard (and hence must be achieved for plan

success), the planner has no option but to direct the robot to sense for all the facts

that occur in the antecedents of the goals in Gc, culminating in the compilation

approach mentioned previously.

28

Initial State

Observable?

GoalsCompilation

Goals
Sense and compile to

Classical Planning

Naïve Optimistic

Approach

Sampling

ApproachesClassical Planning
Oversubscription

Planning

Decide goals to

pursue and compile

to Oversubscription

Planning

Conditional Goals

Yes No

Hard Soft

SoftHard

Figure 3.1: A schematic outline of methods to deal with Conditional Goals.

If the conditional goals in the scenario are all soft instead 1 , the planner is

confronted with an interesting problem: it must not only sense in order to establish

which of the antecedents are true in the initial state, but must also select a subset of

these goals whose achievement will optimize the net benefit achieved given the costs

and rewards of achieving the original goals and the costs of sensing for the antecedents

(the standard PSP problem).

A General Solution

The most general way of dealing with conditional goals in such a case would be

to accept knowledge on the antecedents in the form of distributions, and to use a

1If there is a mixture of hard and soft conditional goals, they can be split and the hard conditional
goals can he handled as described previously.

29

probabilistic planner to compute the set of goals with the best expected net benefit.

As an illustration, consider the set of conditional goals Gi
c = {P i

1 Gi
1, P

i
2

Gi
2, . . . , P

i
k Gi

k}, from which the planner must pick a set of goals to pursue. First,

let S(Gi
c) denote the cost of sensing the status of the conditions {P i

1 · · ·P
i
k}. Since the

results of sensing cannot be predicted during plan synthesis, to decide whether this

sensing cost will be offset by the increased net benefit, the planner has to compute the

expected net benefit achievable. In order to do this, it needs to have (or assume) some

prior knowledge on how the truth values of the antecedents P : Pi of the conditional

goals are jointly distributed. Let this distribution be Ψ(P). Further, let Gi
c \P be the

set of conditional goals that are triggered by a specific valuation of the antecedents.

For each such valuation P, the optimal net benefit achievable by the planner is B(Go∪

[Gi
c \ P]). The expected net benefit is EP∼Ψ B(Go ∪ [Gi

c \ P]). Thus the optimal set

of conditional goals to be sensed Ĝc is computed as:

Ĝc = argmax
Ĝ

i
c⊆Gc

EP∼ΨB(Go ∪ [Gi
c \ P])− S(Gi

c) (3.1)

Focusing sensing this way, while optimal, can be infeasible in practice both because

of the need for distributional information, and because of the computational cost of

computing optimal net benefit plans for each potential goal set. Thus reasonable as-

sumptions need to be made on the distribution of the antecedents of these conditional

goals.

One such assumption that may be made is that of optimism; the planner could

assume that all the antecedents are true in the initial state, which would result in all

of the conditional goals being triggered for achievement 2 . Under such an assumption,

the process of plan synthesis reduces to one of optimistic determinization, where the

2Note that since the goals are soft, the planner still has to do a PSP analysis in order to determine
whether it is worth pursuing them.

30

partial observability of the world is resolved by assuming (in the case of the USAR

scenario) the presence of victims in all rooms that are encountered, thus reducing

the computation required to determine the set of goals to pursue. Such a strategy,

combined with the replanning that is central to this approach, is highly reminiscent

of the most-likely outcome approach adopted by FF-Replan (Yoon et al., 2007) in

dealing with stochastic actions.

A secondary benefit of optimistic determinization is that since it ignores probabil-

ities (and instead focuses only on reward), it can be used in scenarios where stochastic

information is missing, which is the case in the USAR scenario (i.e., nothing is known

about the probability that injured individuals exist in rooms, except that it is non-

zero). For problems like these, a construct called the open world quantified goal is

defined, that enables optimistic determinization of conditional goals so that deter-

ministic planners may be used to plan for such scenarios.

3.2 Open World Quantified Goals

Syntax

Open world quantified goals (OWQG) (Talamadupula et al., 2010b) combine informa-

tion about objects that may be discovered during execution with partial satisfaction

aspects of the problem. Using an OWQG, the domain expert can furnish details

about what new objects may be encountered through sensing, and include goals that

relate directly to those sensed objects.

Given a planning problem Π = 〈I,G,D〉 with D = 〈V, P,A〉 as the planning

domain description, an open world quantified goal (OWQG) is defined as a

tuple:

31

Q = 〈F, S,P,C,G〉

where F, S ∈ V ; P ∈ P ; C =
∧

i ci is a formula where each ci ∈ P ; and G is a

proposition in P grounded out with constants from I.

F belongs to the object type that Q is quantified over, and S belongs to the object

type about which information is to be sensed. P is a proposition which ensures sensing

closure for every pair 〈f, s〉 such that f is of type F and s is of type S, and both f

and s belong to the set of objects in the problem, O ∈ Π; for this reason, it is termed

a closure condition. Each ci ∈ C is a statement about the openness of the world with

respect to the variable S. Finally G is a quantified goal on S.

Newly discovered objects may enable the achievement of goals, granting the op-

portunity to pursue reward. For example, detecting a victim in a room will allow the

robot to report the location of the victim (where having reported accrues reward).

Given that the reward in this case is for each reported injured person, there exists

a quantified goal that must be allowed partial satisfaction. In other words, the uni-

versal base, or total grounding of the quantified goal on the real world, may remain

unsatisfied while its component terms may be satisfied. To handle this, the partial

satisfaction capability of the base planner is used.

As an example, an illustration from the USAR scenario is presented: the robot is

directed to “report the location of all victims”. This goal can be classified as open

world, since it references objects that do not exist yet in the planner’s object database

O; and it is quantified, since the robot’s objective is to report all victims that it can

find. In the OWQG syntax, this information is encoded as follows:

1 (:open

2 (forall ?z - zone

3 (sense ?hu - human

32

4 (looked_for ?hu ?z)

5 (and (has_property ?hu injured)

6 (in ?hu ?z))

7 (:goal (reported ?hu injured ?z)

8 [100] - soft))))

In the example above, line 2 denotes F , the typed variable that the goal is quan-

tified over; line 3 contains the typed variable S—the object to be sensed. Line 4 is

the unground proposition P known as the closure condition (defined earlier). Lines 5

and 6 together describe the formula C that will hold for all objects of type S that are

sensed. The quantified goal over S is defined in line 7, and line 8 indicates that it is

a soft goal and has an associated reward of 100 units. Of the components that make

up an open world quantified goal Q, P is required (if P were allowed to be empty, the

planner could not gain closure over the information it is sensing for, which will result

in it directing the robot to re-sense for information that has already been sensed for),

and F and S must be non-empty, while the others may be empty. If G is empty,

i.e., there is no new goal to work on, the OWQG Q can be seen simply as additional

knowledge that might help in reasoning about other goals.

Semantics

In this section, the semantics of the OWQGs (defined previously) are introduced.

Consider a planning problem Π = 〈I,G,D〉 and a given OWQG Q = 〈F, S,P,C,G〉.

Consider also the “ground truth” initial state of the world, W0. The planner’s initial

knowledge (state) is a subset of this ground truth, i.e.:

I ⊆ W0 (3.2)

33

Thus the world state can be described in terms of both the ground truth, as well

as the planner’s knowledge of that ground truth, as:

〈W0, I〉 (3.3)

The planner generates a plan ρ for the problem Π; let the state that results

from the application of ρ to the initial state I be denoted Iρ, which is the planner’s

knowledge of the state that results from executing ρ. Similarly, the ground truth

state of the world changes from W0 to Wρ. Thus the world state becomes:

〈Wρ, Iρ〉 (3.4)

The plan ρ is said to satisfy the OWQG Q if both the following conditions hold:

∀F ∈ Iρ , P ⊆ Iρ (3.5)

∀F, S ∈ Iρ , (C ∈ Iρ =⇒ G ⊆ Iρ) (3.6)

The requirement to fulfill the second condition depends on the degree of satisfac-

tion of the goal G itself; if G is a hard goal, then the condition must be satisfied,

whereas if G is a soft goal instead, the condition need not be satisfied. This bears

some similarity to the semantics of hard versus soft conditional goals, as introduced

in Section 3.1.

It is more instructive to think of the set of all OWQGs Qσ, and the set of all

respective goals Gσ associated with those OWQGs:

Gσ = {Gi | Qi = 〈Fi, Si,Pi,Ci,Gi〉 ∈ Qσ}

Now, there are three possibilities:

34

1. Gσ contains only hard goals.

2. Gσ contains only soft goals.

3. Gσ contains a mixture of hard and soft goals.

For case 1, for every OWQG Qi, Equation 3.6 must hold respectively for a candi-

date plan ρη to satisfy the set of OWQGs Qσ. That is:

∀Qi ∈ Qσ , ∀Fi , Si ∈ Iρη ,
(

Ci ∈ Iρη =⇒ Gi ⊆ Iρη
)

(3.7)

Cases 2 and 3 are more interesting: in case 2, since Qσ consists exclusively of soft

goals, any plan ρ satisfies Qσ. In this case, given a set of candidate plans ̺ such that

each ρη ∈ ̺, the plan that results in the maximum net benefit will be picked. Using

the semantics defined by van den Briel et al. (2004), we have:

ρ = argmax
ρη

∑

j

U(Gj) +
∑

k

U(Gk)−
s

∑

1

C(Am) (3.8)

where ρη is a candidate plan; U(•) stands for the utility (reward) of a goal; Gj ⊆ G

is the set of original goals of Π achieved by ρη; Gk ⊆ G is the set of OWQGs whose

goals are achieved by ρ; Am is the set of actions that make up the plan ρη; C(•)

stands for the cost of an action Am; and s = |ρη| is the number of actions in ρη.

For the semantics of the OWQGs, a candidate plan ρη satisfies the OWQG Qσ iff

ρη has the value defined by the maximum value in Equation 3.8.

Case 3 can be handled as a combination of cases 1 and 2; first, consider a partition

of the set of all OWQGs Gσ into GH
σ which contains all the OWQGs with hard

goals, and GS
σ which contains all the OWQGs with soft goals. Then satisfaction is

determined as follows:

35

1. First, the set of candidate plans ̺ is filtered down to a set ̺H of only those plan

candidates that each satisfy all of the goals in GH
σ according to Equation 3.7.

2. Second, Equation 3.8 is used with the candidate set ̺H and the goal set GS
σ to

determine whether a given plan candidate satisfies the OWQG QS
σ .

3

As in case 2, a plan satisfies the given OWQG iff it has a value equal to the

maximum value given by the right hand side of Equation 3.8 under the conditions

enumerated above.

An Example

Here, it is instructive to use an example to clarify the syntax and semantics. Consider

a directive of the following nature, taken from a USAR scenario: “Wounded persons

may be found inside rooms. Report the locations of all wounded persons.” This

statement is ambiguous, and could mean one of four different things:

1. Case 1: Look inside all past known rooms (and only those) for wounded persons,

and report the locations of any persons that are thus found.

2. Case 2: Look inside all future discovered rooms (and only those) for wounded

persons, and report the locations of any persons that are thus found.

3. Case 3: Look inside all past known rooms, as well as any that are discovered in

the future, and report the locations of any persons that are thus found.

4. Case 4: Look inside all the rooms in the building, and report the locations of

all persons inside those rooms.

3Notice that here we are merely describing the satisfaction semantics of the OWQGs. However,
were we to be interested in the auxiliary problem of finding the best plan candidate instead, we
could get away with considering just the goal set GS

σ in a ranking consideration since the filtering
in the first step ensures that every remaining candidate plan achieves exactly the same set of hard
goals. This assumes that goal utility is additive, and breaks down under certain circumstances: see
work by Do et al. (2007) for details.

36

These cases can be considered in light of Statement 3.3 and Statement 3.4. Cases

1 – 3 are based only on I and Iρ, that is, only on the planner’s knowledge of the world

state. However, case 4 is different in that it is predicated on W0 and Wρ; that is, on

the actual ground truth state of the world. OWQGs, as defined above, are designed

to express case 3.

The natural language statement above is interpreted to mean case 3, which can

be written in the current OWQG syntax as follows:

1 (:open

2 (forall ?r - room

3 (sense ?p - person

4 (looked_for ?p ?r)

5 (and (has_property ?p wounded)

6 (in ?p?r))

7 (:goal (reported ?p wounded ?r)

8 [100] - soft))))

3.3 Implementation

The implementation uses the Sapa Replan (Talamadupula et al., 2010a) planner.

This planner uses the algorithm defined by (Benton et al., 2009) for finding the best

beneficial plan (this algorithm is reproduced from Benton et al. in Figure 3.2). That

algorithm finds a correct plan under all conditions if one such plan exists. To handle

the open world quantified goals, the planner grounds the problem into the closed-

world using a process similar to Skolemization. More specifically, runtime objects are

generated from the sensed variable S that explicitly represent the potential existence

of an object to be sensed. These objects are marked as system generated runtime

objects. Given an OWQG Q = 〈F, S,P,C,G〉, one can look at S as a Skolem function

37

Figure 3.2: An algorithm for finding the maximum beneficial plan, from Benton
et al. (2009).

of F , and runtime objects as Skolem entities that substitute for the function. Runtime

objects are then added to the problem and ground into the closure condition P,

the conjunctive formula C, and the open world quantified goal G. Runtime objects

substitute for the existence of S dependent upon the variable F . The facts generated

by following this process over C are included in the set of facts in the problem through

the problem update process. The goals generated by G are similarly added. This

process is repeated for every new object that F may instantiate.

The condition P is treated as an optimistic closure condition, meaning a particular

state of the world is considered closed once the ground closure condition is true.

38

On every update the ground closure conditions are checked and if true the facts in

the corresponding ground values from C and G are removed from the problem. By

planning over this representation, a plan is provided that is executable given the

planning system’s current representation of the world until new information can be

discovered (via a sensing action returning the closure condition). The idea is that

the system is interleaving planning and execution in a manner that moves the robot

towards rewarding goals by generating an optimistic view of the true state of the

world.

As an example, consider the scenario at hand (in Section 3.2) and its open world

quantified goal. Given two known zones, zone1 and zone2, the process would gen-

erate a runtime object human!1. Subsequently, the facts (has property human!1

injured) and (in human!1 zone1) and the goal (report human!1 injured zone1)

(with reward 100) would be generated and added to the problem (where the exclama-

tion mark (!) indicates a runtime object). A closure condition (looked for human!1

zone1) would also be created. Similarly, a runtime object human!2 would be gener-

ated and the facts (has property human!2 injured) and (in human!2 zone2) and

goal (report human!2 injured zone2) added to the problem, and the closure con-

dition (looked for human!2 zone2) would be created. When the planning system

receives an update including (looked for human!1 zone1), it will update the prob-

lem by deleting the facts (has property human!1 zone1) and (in human!1 zone1)

and the goal (report human!1 injured zone1) at the appropriate time point. Sim-

ilar actions are taken when (looked for human!2 zone2) is received. The planner

must only output a plan up to (and including) an action that will make the closure

condition true. Therefore once the condition becomes true, the truth values of the

facts in C are known.

In Section 3.4, the results of running the planner – augmented with support for

39

OWQGs – on a real world HRT scenario are presented, to illustrate the difference

that the use of OWQGs can make.

3.4 Empirical Evaluation

The task used to evaluate the OWQGs is the following: the robot is required to

deliver essential supplies (which it is carrying) to the end of a long hallway – this is

a hard goal. The hallway has doorways leading off into rooms on either side, a fact

that is unknown to the robot initially. When the robot encounters a doorway, it must

weigh (via the planner) the action costs and goal deadline (on the hard delivery goal)

in deciding whether to pursue a search through the doorway. A map of the scenario

is shown in Figure 3.3.

In the specific runs described here, green boxes act as stand-ins for injured humans,

whereas blue boxes denote healthy people (whose locations need not be reported).

The experimental setup consisted of three rooms, which are represented as R1, R2 and

R3. The room R1 contained a green box (GB), representing a victim; R2 contained a

blue box (BB), representing a healthy person; and R3 did not contain a box 4 . The

respective doorways leading into the three rooms R1 through R3 are encountered in

order as the robot traverses from the beginning of the hallway to its end.

The aim of these experimental runs is to demonstrate the importance of each of

the planning components that make up this integrated system, and to showcase the

tight integration that was achieved in order to control the robot in this scenario. To

achieve these goals, a set of experiments were conducted where four parameters were

varied – each of which could take on one of two values – thus giving 16 different

experimental conditions through the scenario. The factors that were varied were:

4Although distinguishing injured humans from healthy ones in noisy environments is an interest-
ing and challenging problem, it is not directly relevant to the core of the work being presented and
evaluated.

40

Figure 3.3: A map of the scenario in which OWQGs are evaluated; boxes in rooms
are stand-ins for humans, where green (at left) indicates injured and blue (at right)
indicates normal.

1. Hard Goal Deadline: The hard goal deadline was fixed at 100 time units, re-

sulting in the runs in Table 3.1, and 200 time units to give the runs in Table

3.2.

2. Cost: Presence or absence of action costs to demonstrate the inhibiting effect

of costly sensing actions on the robot’s search for injured people.

3. Reward: Presence or absence of a reward for reporting injured people in rooms.

4. Goal Satisfaction: Label the goal of reporting injured people as either soft or

hard, thus modulating the bonus nature of such goals.

In the tables provided, a + symbol stands for the presence of a certain feature, while a

- denotes its absence. For example, run number 5 from Table 3.1 denotes an instance

where the deadline on the hard goal (going to the end of the hallway) was 100 time

units, action costs were absent, the open world goal of reporting people carried reward,

and this goal was classified as soft.

The experimental runs detailed in this section were obtained on a Pioneer P3-AT

robot (see Figure 3.4) as it navigated the USAR scenario with the initial hard goal

41

Figure 3.4: A Pioneer P3-AT on which the planner integration with OWQGs was
verified.

of getting to the end of the hallway, while trying to accrue the maximum net benefit

possible from the additional soft goal of reporting the location of injured people. A

video of the robot performing these tasks, as a validation of the test runs, can be

viewed via the following link: http://www.youtube.com/watch?v=NEhBZ205kzc .

The robot starts at the beginning of the hallway, and initially has a plan for

getting to the end in fulfillment of the original hard goal. An update is sent to the

planner whenever a doorway is discovered, and the planner subsequently replans to

determine whether to enter that doorway. In the first set of runs, with a deadline of

100 units on being at the end of the hallway, the robot has time to enter only the

first room, R1 (before it must rush to the end of the hallway in order to make the

deadline on the hard goal).

Even with this restriction, some interesting plans are generated. The planner

directs the robot to enter R1 in all the runs except 3 and 7—this can be attributed

to the fact that there is no reward on reporting injured people in those cases, and

the reporting goal is soft; hence the planner does not consider it worthwhile to enter

the room and simply ignores the goal on reporting. The alert reader may ask why it

is not the case that entering R1 is skipped in runs 4 and 8 as well, since there is no

42

Run Cost Reward Soft Enter R1 Report GB Enter R2 Report BB Enter R3

1 + + + Yes Yes No No No

2 + + - Yes Yes ⊥ ⊥ ⊥

3 + - + No No No No No

4 + - - Yes Yes ⊥ ⊥ ⊥

5 - + + Yes Yes No No No

6 - + - Yes Yes ⊥ ⊥ ⊥

7 - - + No No No No No

8 - - - Yes Yes ⊥ ⊥ ⊥

Table 3.1: Results of trial runs with a deadline of 100 time units. ⊥ denotes that
there is no feasible plan from that point on that fulfils all hard goals.

reward on reporting injured people in those cases either; however, it must be noted

that this goal is hard in cases 4 and 8, and hence the planner must plan to achieve

it (even though there may be no injured person in that room, or reward to offset the

action cost). This example illustrates the complex interaction between the various

facets of this scenario (deadlines, costs, rewards and goal satisfaction), and shows how

the absence of even one of these factors may result in the robot being unable to plan

for opportunities that arise during execution—in this case, detecting and reporting

injured people.

When the deadline on reaching the end of the hallway is extended to 200 units,

the robot is afforded enough time to enter all the rooms. In such a scenario, it is

expected that the robot would enter all the rooms to check for victims, and this is

indeed what transpires, except in runs 11 and 15. In those runs, the robot skips all

rooms for precisely the same reasons outlined above (for runs 3 and 7)—the lack of

reward for reporting the goal, combined with the softness of that goal. Indeed, runs

3 and 7 are respectively identical to runs 11 and 15 save the longer deadline on the

hard goal.

43

Run Cost Reward Soft Enter R1 Report GB Enter R2 Report BB Enter R3

9 + + + Yes Yes Yes No Yes

10 + + - Yes Yes Yes No Yes

11 + - + No No No No No

12 + - - Yes Yes Yes No Yes

13 - + + Yes Yes Yes No Yes

14 - + - Yes Yes Yes No Yes

15 - - + No No No No No

16 - - - Yes Yes Yes No Yes

Table 3.2: Results of trial runs with a deadline of 200 time units.

Another interesting observation is that in all the cases where the robot does enter

R2, it refuses to report the blue box (BB), since there is no reward attached to

reporting blue boxes (non-victims). Since the deadline is far enough away for runs 9

through 16, the planner never fails to generate a plan to enter rooms in order to look

for injured people, avoiding the situation encountered in runs 2, 4, 6 and 8 where

there is no feasible plan that fulfills all hard goals since the robot has run out of time

(denoted ⊥ in Table 3.1).

In terms of computational performance, the planning time taken by the planning

system was typically less than one second (on the order of a hundred milliseconds).

Our empirical experience thus suggests that the planning process always ends in a

specific, predictable time frame in this scenario— an important property when actions

have temporal durations and goals have deadlines. Additionally, in order to test the

scale-up of the system, it was evaluated on a problem instance with ten doors (and

consequently more runtime objects) and it was found that there was no significant

impact on the performance.

44

3.5 Limitations

While the work described in this section presents a representation for a specific

class of conditional goals that a robotic agent may encounter in open world scenarios,

it still suffers from some limitations that are typical of application-oriented work. The

first such limitation is the question of scalability – how well does the OWQG-centric

approach scale in comparison to other methods? Here scalability is defined in terms

of the problem instance size, and specifically continuing the running example from

this chapter, in terms of the number of rooms in a given map and/or the number of

objects that must be searched for and reported.

A related question concerns the use of probabilities to specify the likelihood of

certain relations holding, or certain events occurring (for e.g. the likelihood that an

injured human will be found in a room). While the OWQGs as presented cannot

handle probabilitiy distributions, the conditional goals (which are a more general

solution) are certainly equipped to deal with probabilistic information on the distri-

bution of objects in the scenario. Fortunately, work by Joshi et al. (Joshi et al., 2012)

has explored this very problem, down to an integration with the same DIARC archi-

tecture used to evaluate the OWQGs (see Section 7.3.1). An additional advantage is

that Joshi et al.’s evaluation also considers the issue of scalability as the size of the

problem instance increases.

Finally, a major limitation of the OWQG approach is that it fails to consider

the various complexities and problems inherent in recognizing high-level objects from

noisy sensor feedback on a robot. For example, in the USAR scenario, the current

approach just assumes that the planner will be informed by the DIARC architecture

when a door appears. In reaity, this is a very big approximation, and much work has

focused on the problem of object detection for robots (Orabona et al., 2005).

45

Chapter 4

CHANGING WORLDS

Many tasks require handling dynamic objectives and environments. Such tasks

are characterized by the presence of highly complex, incomplete, and sometimes in-

accurate specifications of the world state, the problem objectives and even the model

of the domain dynamics. These discrepancies may come up due to factors like plan

executives, or other agents that are executing their own plans in the world. Due

to this divergence, even the most sophisticated planning algorithms will eventually

fail unless they offer some kind of support for replanning. These dynamic scenarios

are non-trivial to handle even when planning for a single agent, but the introduction

of multiple agents, such as in a human-robot teaming scenario (the human and the

robot are both considered agenrts of interest here) introduces further complications.

All these agents necessarily operate in the same world, and the decisions made and

actions taken by an agent may change that world for all the other agents as well.

Moreover, the various agents’ published plans may introduce commitments between

them, due to shared resources, goals or circumstances.

For example, in a human-robot teaming scenario, the goals assigned by the com-

mander are commitments that the robotic agent must uphold. Additionally, if the

agent tells the human that it is executing a specific plan, or achieving a specific goal,

then it cannot simply change the execution of that plan or the pursuit of that goal

(respectively) without first informing the human that it is breaking the commitment.

Matters get more complicated with the addition of more independent agents that

may be pursuing their own respective plans and goals, and may not necessarily be

co-operative or controlled by the same entity. The need for inter-agent replanning in

46

terms of commitments is understood in the multi-agent systems (MAS) community

(c.f. Section 2.3). However, these inter-agent commitments may evolve as the world

itself changes, and may in turn affect a single agent’s internal planning process.

Given the importance of replanning in dealing with all these issues, one might

assume that the single-agent planning community has studied the issues involved

in depth. This is particularly important given the difference between agency and

execution, and the real-world effectors of those faculties: a single agent need not

necessarily limit itself to planning just for itself, but can generate plans that are

carried out by multiple executors in the world. Unfortunately, most previous work

in the single-agent planning community has looked upon replanning as a technique

whose goal is to reduce the computational effort required in coming up with a new

plan, given changes to the world. The focus in such work is to use the technique

of minimally perturbing the current plan structure as a solution to the replanning

problem. However, neither reducing replanning computation nor focusing on minimal

perturbation are appropriate techniques for intra-agent replanning in the context of

multi-agent scenarios.

In this chapter, an argument is presented for a better, more general, model of

the replanning problem as applicable to planning problems that involve the plans

and goals of multiple agents, such as human-robot teaming. This model considers

the central components of a planning problem – the initial state, the set of goals

to be achieved, and the plan that does that, along with constraints imposed by the

execution of that plan in the world – in creating the new replan. These replanning

constraints take the form of commitments for an agent, either to an earlier plan

and its constituent actions, or to other agents in its world. It will be shown that

this general commitment sensitive planning architecture subsumes past replanning

techniques that are only interested in minimal perturbation – the “commitment” in

47

such cases is to the structure of the previously executing plan. It will also thus result

that partial satisfaction planning (PSP) techniques provide a good substrate for this

general model of replanning.

In the next section, the formulation of the replanning problem used in this work

is presented in terms of the problem instance (composed of the initial state and the

goals), the plan to solve that particular instance, and the dependencies or constraints

that are introduced into the world by that plan, and three models associated with

the handling of these replanning constraints that are defined in that formulation.

Subsequently, the composition of those constraints is examined in more detail, and

the various solution techniques that can be used to satisfy these constraints while

synthesizing a new replan are discussed. This chapter discusses and builds on work

that was presented in (Talamadupula et al., 2014b).

4.1 The Replanning Problem

It is posited that replanning should be viewed not as a technique, but as a problem

in its own right – one that is distinct from the classical planning problem. Formally,

this idea can be stated as follows. Consider a plan ΠP that is synthesized in order

to solve the planning problem P = 〈I,G〉, where I is the initial state and G, the

goal description. The world then changes such that the problem to be solved is now

P ′ = 〈I ′, G′〉, where I ′ represents the changed state of the world, and G′ a changed set

of goals (possibly different from G). The replanning problem is then defined as one

of finding a new plan Π′
P that solves the problem P ′ subject to a set of constraints

ψΠP . 1 By “subject to”, it is implied that the final state produced by the (re)plan

Π′
P must entail the constraints in the constraint set ψΠP . This model is depicted in

Figure 4.1. The composition of the constraint set ψΠP , and the way it is handled, can

1These constraints are defined in the next section.

48

be described in terms of specific models of this newly formulated replanning problem.

Here, three such models are presented based on the manner in which the set ψΠP is

populated.

1. M1 | Replanning as Restart: This model treats replanning as ‘planning from

restart’ – i.e., given changes in the world P = 〈I,G〉 → P ′ = 〈I ′, G′〉, the old

plan ΠP is completely abandoned in favor of a new plan Π′
P which solves P ′.

Thus the previous plan induces no constraints that must be respected, meaning

that the set ψΠP is empty.

PLANNER
<I, G>

PLAN

Present for

Assessment

CONSTRAINT

PROCESSING

W
O

R
LD

 Publicize to

Other Agents

MONITORING
EVENT

аIげが Gげが ／>

Similarity

Constraints

Commitment

Constraints

SENSING

／

EXECUTION

Figure 4.1: A model of replanning

2. M2 | Replanning to Reduce Computation: When the state of the world forces

a change from a plan ΠP to a new one Π′
P , in the extreme case, Π′

P may bear

no relation to ΠP . However, it is most desirable that the cost of comparing the

differences between the two plans 2 with respect to execution in the world be

2The notion of ‘difference’ between plans is elaborated on in the next section.

49

reduced as far as possible. The problem of minimizing this cost can be re-cast

as one of minimizing the differences between the two plans Π′
P and ΠP using

syntactic constraints on the form of the new plan. These syntactic constraints

are added to the set ψΠP .

3. M3 | Replanning for Multi-agent Scenarios: In many real world scenarios, there

are multiple agents A1 . . . An that share an environment and hence a world

state. 3 The individual plans of these agents, Π1 . . .Πn respectively, affect

the common world state that the agents share and must plan in. This leads to

the formation of dependencies, or commitments, by other agents on an agent’s

plan. These commitments can be seen as special types of constraints that are

induced by an executing plan, and that must be obeyed when creating a new

plan as a result of replanning. The aggregation of these commitments forms the

set ψΠP for this model. The formal structure of these constraints is that each

one of them is a soft goal – this work uses the notion of soft goal as defined

by van den Briel et al. (2004) – which in itself consists of a boolean predicate,

an achievement requirement (soft/hard), and a reward and/or penalty value. A

given (re)plan is said to satisfy one such constraint if the predicate part of the

goal holds (is true) in the state that is produced by the execution of that plan.

This definition of satisfaction is extended for a set of predicates; if the state

produced by the execution of the (re)plan has all of the constraint-predicates

true in it, that plan is said to satisfy the constraint set. 4

In the following section, the composition of the constraint set ψΠ (for any given

plan Π) is explored in more detail. First, however, a real world application scenario

3Note that this is the case regardless of whether the planner models these agents explicitly or
chooses to implicitly model them in the form of a dynamic world.

4Notice that predicates that are part of soft goals are waived from this holding requirement.

50

and the application of the three replanning models described above to it are consid-

ered, in order to illustrate that these models are broad enough to capture the various

kinds of replanning techniques.

Example: Planetary Rovers

Planning for planetary rovers is a scenario that serves as a great overarching applica-

tion domain for describing the motivations behind the various models of replanning

that are proposed in this chapter. Automating the planning process is central to this

application for three reasons: (1) the complex checks and procedures that are part

of large-scale or critical applications can often only be fully and correctly satisfied

by automation; (2) there are limited communication opportunities between the rover

and and the control station; and (3) the distances involved rule out immediate tele-

operation, since there is a considerable communication lag between a rover operating

on the surface of a distant planet and the control center.

1. M1: This model is frequently used by planning algorithms that create path and

motion plans for the rover’s operation. Often, changes to the environment (e.g.

the detection of an obstacle such as a rock ahead) will render the currently

executing plan useless; in cases where the system needs to react immediately

and produce a new plan, creating a completely new plan works better than

trying to salvage some version of an existing plan.

2. M2: In the case of planetary rovers, both computational and cognitive costs are

present when it comes to comparing Π and Π′. Changes to an executing plan Π

must pass muster with human mission controllers on Earth as well as mechanical

and electrical checks on-board the rover itself. It is thus imperative that the

replanning model is aware of the twin objectives of minimizing cognitive load

51

on the mission controllers as well as minimizing the computation required on

board the rover when vetting a new plan Π′ that replaces Π. In this case, the set

ψΠP will contain constraints that try to minimize the effort needed to reconcile

Π′ with Π, and the metric used in the reconciliation determines the contents

of ψΠP . These can be seen as a syntactic version of plan stability constraints,

as against the semantic stability constraints (based on commitments) that will

further be proposed.

3. M3: In a typical scenario, it is also possible that there may be multiple rovers

working in the same environment, with knowledge (complete or partial) of the

other rovers’ plans. This knowledge in turn leads to dependencies which must

be preserved when the plans of one (or more) of the rovers change – for example,

rover Spirit might depend on rover Opportunity to transmit (back to base) the

results of a scientific experiment that it plans to complete. If Opportunity now

wishes to modify its current plan ΠO, it must pay heed to the commitment

to communicate with Spirit – and pass on the data that results from that

communication – when devising its new plan Π′
O.

4.2 Replanning Constraints

As outlined in the previous section, the replanning problem can be decomposed

into various models that are defined by the constraints that must be respected while

transitioning from the old plan Π to the new plan Π′. In this section, those constraints

are defined, and the composition of the set ψ for each of the models defined previously

is discussed. Prior to this, the notion of a plan is defined; a plan Π is an action

sequence such that the first action is applicable (executable) in the initial state I,

and the execution of the entire sequence results in a state in which the goal G holds.

52

4.2.1 Replanning as Restart

By the definition of this model, the old plan ΠP is completely abandoned in favor

of a new one. There are no constraints induced by the previous plan that must be

respected, and thus the set ψΠP is empty. Instead, what results is a new problem

instance P ′ whose composition is completely independent of the set ψΠP .

4.2.2 Replanning to Reduce Computation

It is often desirable that the replan for the new problem instance P ′ resemble the

previous plan ΠP in order to reduce the computational effort associated with verifying

that it still meets the objectives, and to ensure that it can be carried out in the world.

The effort expended in this endeavor is named the reverification complexity associated

with a pair of plans ΠP and Π′
P , and informally define it as the amount of effort that

an agent has to expend on comparing the differences between an old plan ΠP and a

new candidate plan Π′
P with respect to execution in the world.

This effort can either be computational, as is the case with automated agents like

rovers and robots; or cognitive, when the executor of the plans is a human. Real world

examples where reverification complexity is of utmost importance abound, including

machine-shop or factory-floor planning; planning for assistive robots and human-

robot teaming; and planetary rovers (see Section 4.1). Past work on replanning has

addressed this problem via the idea of plan stability (Fox et al., 2006). The general

idea behind this approach is to preserve the stability of the replan Π′
P by minimizing

some notion of difference with the original plan ΠP . In the following, two such ways of

measuring the difference between pairs of plans are examined, and it is seen how these

can contribute constraints to the set ψΠP that will minimize reverification complexity.

53

A

B

C

D

A

C

D

B

A

B

C

D
ヾ' ヾ"

ヾ

Action Similarity Causal Similarity

Figure 4.2: Example illustrating action and causal similarity.

Action Similarity

Plans are defined, first and foremost, as sequences of actions that achieve specified

objectives. The most obvious way to compute the difference between a given pair of

plans then is to compare the actions that make up those plans. (Fox et al., 2006)

defines a way of doing this - given an original plan Π and a new plan Π′, they define

the difference between those plans as the number of actions that appear in Π and

not in Π′ plus the number of actions that appear in Π′ and not in Π. If the plans Π

and Π′ are seen as sets comprised of actions, then this is essentially the symmetric

difference of those sets, and we have the following constraint: 5 min |Π △ Π′|.

This method of gauging the similarity between a pair of plans suffers from some

obvious pitfalls; a very simple one is that it does not take the ordering of actions in

the plans into account at all. Consider the simple plans Π : 〈a1, a2〉 and Π′ : 〈a2, a1〉;

the difference between these two plans is Π △ Π′ = ∅. However, from a replanning

5Given this constraint, the similarity and difference of a pair of plans are inverses, and hence the
name ‘Action Similarity’.

54

perspective, it seems obvious that these two plans are really quite different, and

may lead to different results if the actions are not commutative. This difference is

illustrated in Figure 4.2 with the use of a simple 4-action plan. In order to account

for such cases, the ordering of actions within a plan, and more generally, the causal

structure of a plan need to be considered.

Causal Link Similarity

The next step in computing plan similarity is to look not just at the actions that

constitute the plans under comparison, but to take the causal structure of those

plans into account as well. Work on partial order planning (POP) has embedded

a formal notion of causal links quite strongly within the planning literature. The

notion of a causal link is defined from (McAllester and Rosenblatt, 1991) as “a triple

〈s, P, w〉 where P is a proposition symbol, w is a step (action) name that has P as a

prerequisite (precondition), and s is a step (action) name that has P in its add (effect)

list”. Past partial order planning systems (Penberthy and Weld, 1992; Joslin and

Pollack, 1995) have looked at the idea of different serializations of the same partial

order plan. Given plans Π and Π′, and CL(Π) and CL(Π′) the sets of causal links

on those plans respectively, a simple constraint to enforce causal similarity would be:

min |CL(Π) △ CL(Π′)|. Note that this number may be non-zero even though the two

plans are completely similar in terms of action similarity; i.e. (Π △ Π′) = ∅. This

analysis need not be restricted to causal links alone, and can be extended to arbitrary

ordering constraints of a non-causal nature too, as long as they can be extracted from

the plans under consideration.

55

4.2.3 Replanning for Multi-Agent Scenarios

“In a multiperson situation, one man’s goals may be another man’s

constraints.”

– Herb Simon (Simon, 1964)

In an ideal world, a given planning agent would be the sole center of plan synthesis

as well as execution, and replanning would be necessitated only by those changes to

the world state that the agent cannot foresee. However, in the real world, there exist

multiple such agents, each with their own disparate objectives but all bound together

by the world that they share. A plan ΠP that is made by a particular agent affects

the state of the world and hence the conditions under which the other agents must

plan – this is true for every agent. In addition, the publication of a plan ΠA
P by an

agent A leads to other agents predicating the success of their own plans on parts of

ΠA
P , and complex dependencies are developed as a result. Full multi-agent planning

can resolve the issues that arise out of changing plans in such cases, but it is far

from a scalable solution for real world domains currently. Instead, this multi-agent

space filled with dependencies can be projected down into a single-agent space with

the help of commitments as defined by (Cushing and Kambhampati, 2005). These

commitments are related to an agent’s current plan Π, and can describe different

requirements that come about:

1. when Π changes the world state that other agents have to plan with

2. when the agent decides to execute Π, and other agents predicate their own plans

on certain aspects of it

3. due to cost or time based restrictions imposed on the agent

4. due to the agent having paid an up-front setup cost to enable the plan Π

56

A simple travel example serves to demonstrate these different types of commit-

ments (Do and Kambhampati, 2002). Consider an agent A1 who must travel from

Phoenix (PHX) to Los Angeles (LAX). A travel plan Π that is made for agent A1

contains actions that take it from PHX to LAX with a long stopover at Las Vegas

(LAS). A1 is friends with agent A2, who lives in LAS, and thus publicizes the plan of

passing through LAS. A2 then makes its own plan to meet A1 – this depends on A1’s

presence at the airport in LAS. If there are changes to the world (for e.g., a lower

airfare becomes available), there are several commitments that a planner must respect

while creating a new plan Π′ for A1. First, there are commitments to other agents –

in this case, the meeting with A2 in LAS. There are also setup and reservation costs

associated with the previous plan; for example, A1 may have paid a non-refundable

airfare as part of Π. Finally, there may be a deadline on getting to LAX, and any

new plan has to respect that commitment as well.

At first blush, it seems that the same kinds of constraints that seek to minimize

reverification complexity between plans Π and Π′ (minimizing action and causal link

difference between plans) will also serve to preserve and keep the most commitments

in the world. Indeed, in extreme cases, it might even be the case that keeping the

structures of Π and Π′ as similar as possible helps keep the maximum number of

commitments made due to Π. However, this is certainly not the most natural way of

keeping commitments. In particular, this method fails when there is any significant

deviation in structure from Π to Π′; unfortunately, most unexpected changes in real

world scenarios are of a nature that precludes retaining significant portions of the

previous plan. For example, in the (continuing) air travel example from above, agent

A1 has a commitment not to the plan Π itself, but rather to the event of meeting

A2. This suggests modeling commitments natively as state conditions (as opposed

to casting them as extraneous constraints on plan structure) as goals that must be

57

either achieved or preserved by a plan as a possible replanning constraint. This is

elaborated on in Section 4.3.3.

4.3 Solution Techniques

So far, three different ways in which the replanning problem can be represented

have been looked at, and the differences between these models via the constraints

that need to be considered when making new plans in a changed world have been

delineated. The planning techniques that are (or can be) used to solve these variants

are now examined.

4.3.1 T1: Classical Planning

For the replanning as restart model, the problem is defined as one of going from

a plan ΠP that solves the problem instance P = 〈I,G〉 to the best new plan Π′
P that

is valid for the new problem instance P ′ = 〈I ′, G′〉. I ′ is the state of the world at

which ΠP stops executing to account for the change that triggered replanning; that is,

replanning commences from the current state of the world. G′ is the same as G unless

new goals are explicitly added as part of the changes to the world. The replanning

constraint set ψΠP is empty, since replanning is being performed from scratch. This

new instance is then given to a standard classical planner to solve, and the resulting

plan is designated Π′
P .

4.3.2 T2: Specialized Replanning Techniques

When it comes to replanning to reduce computation and associated constraints,

techniques that implement solutions that conform to these constraints must neces-

sarily be able to compile them into the planning process in some way. This can be

achieved by implementing plan stability metrics – either explicitly by comparing each

58

synthesized plan candidate with the existing plan ΠP , or implicitly by embedding

these metrics within the search process. One way of doing the latter is to use a

planner such as LPG (Gerevini et al., 2003), which uses local search methods, and

to structure the evaluation function such that more syntactic similarity between two

plans – similar actions, for example – is preferred. Such an approach is used by (Sri-

vastava et al., 2007) in the generation of a set of diverse plans where the constituent

plans differ from each other by a defined metric; for replanning where search re-use

is of importance, the objective can instead be to produce minimally different plans

within that set. An earlier version of this approach can be seen in the Casper system’s

iterative repair approach (Knight et al., 2001).

4.3.3 T3: Partial Satisfaction Planning

This section examines replanning techniques that can be used when the depen-

dencies or commitments towards other agents due to an agent A’s original plan Π

(solving the problem instance P) must be maintained. The planning algorithm used

here is the same one introduced in Section 3.3, and it finds a correct plan if such a

plan exists. That is to say, the planning algorithm in use is not modified, and it is

merely the problem that is given to that algorithm that is modified – this section

details that modification.

The constraint set ψΠA
P now contains all those commitments to other agents that

were made by the plan Π. This work follows Cushing et al. (Cushing and Kamb-

hampati, 2005) in modeling commitments as soft constraints that an agent is not

mandated to necessarily achieve for plan success. More generally, commitments –

as reservations, prior dependencies or deadlines – can be modeled as soft trajectory

constraints on any new plan Π′ that is synthesized. Modeling commitments as soft

constraints (instead of hard) is essential because not all commitments are equal. A

59

replan Π′ may be valid even if it flouts a given commitment; indeed, it may be the only

possible replan given the changed state of the world. Soft goals allow for the specifi-

cation of different priorities for different commitments by allowing for the association

of a reward for achieving a given goal, and a penalty for non- achievement. Both of

these values are optional, and a commitment may either be seen as an opportunity

(accompanied by a reward) or as a liabiity (when assigned a penalty). The quality

of a replan Π′ – in terms of the number of commitment constraints that it satisfies –

can then be discussed in terms of the net-benefit, which is a purely arithmetic value.

An added advantage of modeling commitments as soft goals is that the constraints

on plan structure discussed previously in Section 4.2.2 can be cast as commitments

too. These constraints are commitments to the structure of the original plan Π, as

against commitments to other agents or to other extraneous phenomena like deadlines

etc. The advantage in doing this is that new plans and their adherence to commit-

ments can be evaluated solely and completely in terms of the net-benefit of those

plans; this makes the enforcement of the replanning constraints during the planning

process more amenable to existing planning methods. Thus a natural way of com-

bining two distinct quality issues in replanning is devised: (1) how good a replan Π′

is for solving the changed problem instance 〈I ′, G′〉; and (2) how much Π′ respects

and balances the given replanning constraints, which may be in service of completely

different objectives like reducing the computation involved in verifying a new plan,

or commitments to other agents in the world.

To obtain the new problem instance P ′ from the original problem P , the following

transformations are performed: I ′ is, as before, the state of the world at which exe-

cution is stopped because of the changes that triggered replanning. G′ consists of all

outstanding goals in the set G as well as any other explicit changes to the goal-set;

in addition, the constraints from the set ψΠA
P are added to G′ as soft goals, using

60

the compilations described below. The new problem instance is then given to a PSP

planner to solve for the plan with the best net-benefit, which is then designated Π′A
P .

The syntactic plan similarity constraints discussed at length in Section 4.2.2 can

be cast as PSP constraints, in the form of soft goals. In the following, a general com-

pilation of the constraints in ψΠA
P to a partial satisfaction planning problem instance

is described. This follows (van den Briel et al., 2004) in defining a PSP Net Benefit

problem as a planning problem P = (F,O, I,Gs) (where F is a finite set of fluents, O

is a finite set of operators and I ⊆ F is the initial state as defined earlier) such that

each action a ∈ O has a “cost” value Ca ≥ 0 and, for each goal specification g ∈ G

there exists a “utility” value Ug ≥ 0. Additionally, for every goal g ∈ G, a ‘soft’ goal

gs with reward rg and penalty pg is created; the set of all soft goals thus created is

added to a new set Gs.

The intuition behind casting these constraints as goals is that a new plan (replan)

must be constrained in some way towards being similar to the earlier plan. However,

making these goals hard would over-constrain the problem – the change in the world

from I to I ′ may have rendered some of the earlier actions (or causal links) impossible

to preserve. Therefore the similarity constraints are instead cast as soft goals, with

rewards or penalties for preserving or breaking (respectively) the commitment to

similarity with the earlier plan. In order to support these goals, new fluents need

to be added to the domain description that indicate the execution of an action, or

achievement of a fluent respectively. Further, new copies of the existing actions in

the domain must be added to house these effects. Making copies of the actions from

the previous plan is necessary in order to allow these actions to have different costs

from any new actions added to the plan.

61

Compiling Action Similarity to PSP

The first step in the compilation is converting the action similarity constraints in ψΠA
P

to soft goals to be added to Gs. Before this, the structure of the constraint set ψ
ΠA

P is

examined; for every ground action ā (with the names of the objects that parameterize

it) in the old plan Π, the corresponding action similarity constraint is Ψā ∈ ψΠA
P , and

that constraint stores the name of the action as well as the objects that parameterize

it.

Next, a copy of the set of operators O is created and named Oas; similarly, a

copy of F is created and named Fas. For each (lifted) action a ∈ Oas that has an

instance in the original plan Π, a new fluent named “a-executed” (along with all the

parameters of a) is added to the fluent set Fas. Then, for each action a ∈ Oas, a new

action aas which is a copy of the action a that additionally also gives the predicate

a-executed as an effect, is created. The process of going from the original action a

to the new one aas is depicted graphically in Figure 4.3(i). In the worst case, the

number of actions in each Oas could be twice the number in O. Figure 4.3 provides

an illustration of one such action, on the left in orange.

Finally, for each constraint Ψā ∈ ψΠA
P , a new soft goal gā is created with corre-

sponding reward and penalty values rgā and pgā respectively, and the predicate used

in gā is ā-executed (parameterized with the same objects that ā contains) from Oas.

All the gā goals thus created are added to Gs. In order to obtain the new compiled

replanning instance P ′ from P , the initial state I is replaced with the state at which

execution was terminated, I ′; the set of operators O is replaced with Oas; and the set

of fluents F is replaced with Fas. The new instance P ′ = (Fas, Oas, I
′, Gs) is given to

a PSP planner to solve.

62

acs

a

prec(a)

eff(a)

aas

prec(a)

eff(a)

a-executed

a

prec(a)

eff(a)

prec(a)

eff(a)

for all f in eff(a) s.t. f is the

reason a is a producer, f-link

ACTION SIMILARITY CAUSAL SIMILARITY

for all f in prec(a) s.t. f is

the reason a is a

consumer, f-link

Figure 4.3: Compiling action and causal similarity to PSP by creating new effects,
actions that house those effects, and soft goals on those effects.

Compiling Causal Similarity to PSP

Causal similarity constraints can be compiled to PSP in a manner that is very similar

to the above compilation. The difference that now needs to be considered is that the

constraints are no longer on actions, but on the grounded fluents that comprise the

causal links between the actions in a plan instead.

The first step is to augment the set of fluents; a copy of F is created and named

Fcs. For every fluent f ∈ F , a new fluent named “f -produced” is added to Fcs, along

with all the original parameters of f . A copy of the set of operators O is created

and named Ocs. Then, for each action in a ∈ Ocs, a new action acs is added; acs is a

copy of action a, with the additional effects that for every fluent fa that is in the add

effects of the original a, acs contains the effect fa-produced – this process is shown

in Figure 4.3, on the right in green. Thus in the worst case, the number of effects of

every action acs is twice the number of effects of the original action a, and the size of

Ocs is twice that of O.

Finally, the causal constraints in ψΠA
P must be converted to soft goals that can

63

be added to Gs. The constraints Ψ ∈ ψΠA
P are obtained by simulating the execution

of Π from I using the operators in O. Each ground add-effect f̄e of each ground

action āΠ in Π is added as a new constraint Ψf̄e . Correspondingly, for each such new

constraint added, a new soft goal gf̄e is created whose fluent corresponds to f̄e, with

reward and penalty values rgf̄e and pgf̄e respectively. 6 All the goals thus created are

added to Gs. The new planning instance to be provided to the PSP planner is thus

given as P ′ = (Fcs, Ocs, I
′, Gs), where I

′ is the state of the fluents when execution was

previously suspended.

It should be noted here that past results have already established a straightforward

compilation from soft goals and PSP to the classical planning problem (Keyder and

Geffner, 2009); this can be exploited to make replan generation more efficient.

Compiling PSP to Preferences

The constraints in the set ψΠA
P can also be cast as preferences (Baier and McIlraith,

2009) on the new plan that needs to be generated by the replanning process. Prefer-

ences are indicators of the quality of plans, and can be used to distinguish between

plans that all achieve the same goals. The automated planning community has seen

a lot of work in recent years on fast planners that solve preference-based planning

problems specified using the PDDL3 (Gerevini and Long, 2006) language; casting the

constraints in ψΠA
P into preferences can thus open up the use of these state-of-the-

art planners in solving the replanning problem. Benton et al. (2009) have already

detailed a compilation that translates simple preferences specified in PDDL3 to soft

goals. This work can be used in order to translate the replanning constraints into

6Note that in the general case, the consumers – i.e., actions that consume the causal link – would
need to be considered apart from the producers of those links, in order to avoid over-constraining
the new problem. However, the assumption here is that the original plan does not contain any
superfluous actions.

64

simple preferences, thus enabling the use of planners like SGPlan5 (Hsu et al., 2007)

and OPTIC (Benton et al., 2012). In the evaluation presented in Section 4.4, this

preference-based approach is used to improve the scalability of replan generation.

The compilation itself is straightforward. For every soft goal gs that models ei-

ther an action similarity or inter-agent commitment constraint respectively (from Sec-

tion 4.3.3), a new preference τs is created, where the condition that is evaluated by

the preference is the predicate a-executed or f -achieved respectively, and the penalty

for violating that commitment is the penalty value associated with the soft goal, pgs .

The set of preferences thus created is added to the problem instance, and the metric

is set to minimize the (unweighted) sum of the preference violation values.

4.4 Empirical Evaluation

To evaluate the contributions to the theory of replanning, two claims are made

and checked. The first is that it is possible to support all the existing replanning

metrics (and associated techniques) using a single planner, via compilation to a sin-

gle substrate. That substrate can be either soft goals (and the technique to solve

them partial satisfaction planning), or preferences (preference-based planning). The

compilation outlined in Chapter 4 serves as support for this first claim. Empirical

evidence is also provided for the second claim – namely that these different replanning

metrics are not good surrogates for each other – and that swapping them results in a

deterioration of the metric being optimized.

The Warehouses Domain

Planning for the operations and agents contained in automated warehouses has emerged

as an important application (Barbehenn et al., 2011), particularly with the success

of large-scale retailers like Amazon. Given the size, complexity, as well as real-time

65

nature of the logistical operations involved in administering and maintaining these

warehouses, automation is inevitable. One motivation behind designing an entirely

new domain for the evaluation was so that the various actions, agents, and problem

instances that were generated could be controlled. Briefly, the domain consists of

packages that are originally stocked on shelves ; these shelves are accessible only from

certain special locations or gridsquares. The gridsquares are themselves connected

in random patterns to each other (while ensuring that there are no isolated grid-

squares). Carriers – in the form of forklifts that can stock and unstock packages

from shelves, and transports that can transport packages placed on them between

various gridsquares – are used to shift the packages from their initial locations on

shelves to packagers, where they are packaged. The instance goals are all specified

in terms of packages that need to be packaged. The domain thus provides coverage

for important characteristics from existing planning benchmarks such as Blocksworld,

Depots, Driverlog, and Logistics.

Perturbations

There are two main kinds of perturbations that are modeled and generated: (i)

packages can fall off their carriers at random gridsquares; and (ii) carriers (forklifts

or transports) can themselves break down at random. For packages that fall off at

a gridsquare, a forklift is required at that gridsquare in order to lift that package

and transport it to some other desired location (using either that same forklift, or

by handing off to some other carrier). For carriers that break down, the domain

contains special tow-trucks that can attach themselves to the carrier and tow it along

to a garage for a repair action to be performed. Garages are only located at specific

gridsquares.

66

Agent Commitments

There are three kinds of agents in the domain – packagers, tow-trucks, and carriers.

Agent commitments are thus any predicates that these agents participate in (as part

of the state trace of a given plan Π). In our domain, there are four such predicates:

forklifts holding packages, packages on transports, tow-trucks towing carriers, and

packages delivered to a packager.

4.4.1 Results

Experimental Setup

Using the domain described in Section 4.4, an automated problem generator that can

generate problem instances of increasing complexity was created. Instance complex-

ity was determined by the number of packages that had to be packaged, and ranged

from 1 to 12. Four randomly generated instances were associated with each step up in

complexity, for a total of 48 problem instances. As the number of packages increased,

so did the number of other objects in the instance – forklifts, transports, shelves,

and gridsquares. The number of tow-trucks and garages was held constant at one

each per instance. The initial configuration of all the objects (through the associ-

ated predicates) was generated at random, while the top-level goal always remained

the same – package all packages in the initial configuration by delivering them to a

packager. Perturbations (as outlined in Section 4.4) were generated at random and

incorporated via addition to the problem instance file.

For each of the replanning metrics that are evaluated – speed, similarity, and

commitment satisfaction – the constraints outlined in Section 4.2 are set up as part

of the replanning metric. When optimizing the time taken to generate a new plan,

the planner does not need to model any new constraints, and can choose any plan

67

that is executable in the changed state of the world. Likewise, when the planner is

optimizing the similarity between the new plan and the previous plan (as outlined

in Section 4.2.2), it only evaluates the number of differences (in terms of action

labels) between the two plans, and chooses the one that minimizes that value. The

planner’s search is directed towards plans that fulfill this requirement via the addition

of similarity goals to the existing goal set, via the compilation procedure described

in Section 4.3.3. Finally, when the metric is the satisfaction of commitments created

by the old plan, the planner merely keeps track of how many of these are fulfilled,

and ranks potential replans according to that. These commitments are added as

additional (simple) preferences to the planner’s goal set, and in the current evaluation

each preference has the same violation cost (1 unit) associated with it.

All the problem instances thus generated were solved with the SGPlan5 plan-

ner (Hsu et al., 2007), which handles preference-based planning problems via partition

techniques by using the costs associated with violating preferences to evaluate partial

plans. The planner was run on a virtual machine on the Windows Azure A7 cluster

featuring eight 2.1 GHz AMD Opteron 4171 HE processors and 56GB of RAM, run-

ning Ubuntu 12.04.3 LTS. All the instances were given a 90 minute timeout; instances

that timed out do not have data points associated with them.

Metric: Speed

In Figure 4.4, the time taken for the planner to generate a plan (on a logarithmic

scale) for the respective instances is presented, using the three replanning constraint

sets. Replanning as restart is a clear winner, since it takes orders of magnitude less

time than the other two methods to come up with a plan. In particular, replanning

that takes plan similarity into account takes an inordinate amount of time in coming

up with new plans, even for the smaller problem instances. This shows that when

68

1

10

100

1000

10000

100000

1000000

10000000

P
0

P
2

P
4

P
6

P
8

P
1

0

P
1

2

P
1

4

P
1

6

P
1

8

P
2

0

P
2

2

P
2

4

P
2

6

P
2

8

P
3

0

P
3

2

P
3

4

P
3

6

P
3

8

P
4

0

P
4

2

P
4

4

P
4

6

Time to Replan (ms.)

Restart Similarity Commitments

Figure 4.4: Time taken to replan, in milliseconds (ms.)

0

20

40

60

80

100

120

140

160

180

P
0

P
2

P
4

P
6

P
8

P
1

0

P
1

2

P
1

4

P
1

6

P
1

8

P
2

0

P
2

2

P
2

4

P
2

6

P
2

8

P
3

0

P
3

2

P
3

4

P
3

6

P
3

8

P
4

0

P
4

2

P
4

4

P
4

6

Plan Size

Restart Similarity Commitments Original

Figure 4.5: Plan size (number of actions)

69

0

20

40

60

80

100

120

140

P
0

P
2

P
4

P
6

P
8

P
1

0

P
1

2

P
1

4

P
1

6

P
1

8

P
2

0

P
2

2

P
2

4

P
2

6

P
2

8

P
3

0

P
3

2

P
3

4

P
3

6

P
3

8

P
4

0

P
4

2

P
4

4

P
4

6

Actions: Set Difference

Restart Similarity Commitments

Figure 4.6: Set difference (action) vs. original plan Π

speed is the metric under consideration, neither similarity with the original plan

nor respecting the inter-agent commitments are good surrogates for optimizing that

metric.

Additionally, the evaluation also measured the length of the plans that were gen-

erated, in order to compare against the original plan length. Figure 4.5 shows that

the planner doesn’t necessarily come up with significantly longer plans when it has

to replan; instead, most of the computation time seems to be spent on optimizing the

metric in question. However, these results seem to indicate that if plan length is the

metric that is sought to be optimized, replanning without additional constraints (as

restart) is the way to go.

Metric: Similarity

For this evaluation, the difference between the old plan Π and the new replan Π′

was modeled as the set difference |Π \ Π′| between the respective action sets. This

70

0

20

40

60

80

100

120

P
0

P
2

P
4

P
6

P
8

P
1

0

P
1

2

P
1

4

P
1

6

P
1

8

P
2

0

P
2

2

P
2

4

P
2

6

P
2

8

P
3

0

P
3

2

P
3

4

P
3

6

P
3

8

P
4

0

P
4

2

P
4

4

P
4

6

Actions: Symmetric Difference

Restart Similarity Commitments

Figure 4.7: Symmetric difference (action) vs. original plan Π

number was then plotted for the different problem instances as a measure of the

differences between the two plans. As shown in Figure 4.6, the method that takes

plan similarity constraints into consideration does much better than the other two

for this case. Additionally, the evaluation also calculated the symmetric difference

|Π △ Π′| (the metric used by Fox et al. (Fox et al., 2006)); these results are presented

in Figure 4.7. Even here, the approach that respects the similarity constraints does

consistently better than the other two approaches. Thus these two results show that

when similarity with the original plan is the metric to be maximized, neither of the

other two methods can be used for quality optimization.

Metric: Commitment Satisfaction

Finally, the number of inter-agent commitment violations in the new plan were mea-

sured, where the commitments come from the agent interactions in the original plan.

Figure 4.8 shows that the similarity preserving method violates the most number of

71

0

5

10

15

20

25

30

35

40

P
0

P
2

P
4

P
6

P
8

P
1

0

P
1

2

P
1

4

P
1

6

P
1

8

P
2

0

P
2

2

P
2

4

P
2

6

P
2

8

P
3

0

P
3

2

P
3

4

P
3

6

P
3

8

P
4

0

P
4

2

P
4

4

P
4

6

Violated Commitments

Restart Similarity Commitments

Figure 4.8: Number of agent commitments violated

commitments in general. This may appear surprising initially, since preserving the

actions of the old plan is at least tangentially related to preserving commitments

between agents. However, note that even the similarity maximizing method cannot

return the exact same plan as the original one; some of the actions where it differs

from the old plan may indeed be the actions that created the inter-agent commit-

ments in the first place, while other preserved actions may now no longer fulfill the

commitments because the state of the world has changed. These results confirm that

both maximizing similarity as well as replanning from scratch are bad surrogates for

the metric of minimizing inter-agent commitment violations.

4.5 Limitations

There are several extensions that can be proposed to the current work on replan-

ning and handling changes to the world state. Some of these handle limitations that

are specific to the current approach, while others extend the state-of-the-art as far as

72

the understanding of replanning goes.

First, the limitations. One big limitation of this work currently has to do with

the evaluation. As can be seen from Section 5.3.1, the current evaluation is restricted

to a single warehouse style domain. A justified criticism of this evaluation may

thus be that it fails to report coverage on a variety of existing benchmarks from

the International Planning Competitions (IPCs). However, the main purpose of this

work was to bring the different kinds of replanning techniques together; besides, this

limitation can be overcome by running additional experiments.

Another limitation concerns the representation of commitments (c.f. Section 4.3.3).

Currently, commitments are restricted to just fluents, whether those fluents be pred-

icates that represent interactions between multiple agents, or “meta”-predicates that

represent the achievement of certain states. However, it is conceivable that the defi-

nition of commitment be expanded to take into account definitions offered in related

work (Levesque et al., 1990; Hunsberger and Ortiz Jr, 2008; Meneguzzi et al., 2013).

Yet another limitation of the current work pertains to how execution failures

are modeled and handled in the evaluation scheme. Currently, the initial state of

the original problem is perturbed – that is, modifications are added to it – and the

planner is given this modified problem instance to plan over. However, this is an

approximation of execution failure as it would manifest itself in the real world, due to

the reason that not only would facts relevant to the perturbation change, but other

facts would have changed from the initial state as well. In fact, the right state of the

world would depend on precisely where the execution of the old plan was interrupted.

One way to partially address this is to create a simulator for plans that simulates the

execution of a given plan up until a specified point, and returns the state that results

from the partial execution of that plan. Then, instead of modifying the initial state

with the perturbations (as is currently the case), the algorithm would instead modify

73

that state that results from the partial execution with the perturbations.

As far as extending the state-of-the-art regarding replanning is concerned, the

first idea that demands exploration is one that is briefly introduced towards the

end of Section 4.3.3. In order to support better scalability and to use the compilation

outlined in this work to generate a quantifiable empirical speed-up for replanning, the

soft goals generated as replanning constraints can be compiled to classical planning

using the process outlined by Keyder and Geffner (Keyder and Geffner, 2009). Doing

so will open up an entire batallion of fast classical planners (a list that is constantly

updated every couple of years thanks to the IPC) in service of fast solutions to

replanning problems.

Finally, an issue where much progress still remains to be made concerns the re-

planning metrics themselves, and the related issue of where the numbers that are used

to rank various replans are obtained from. For the former, the outstanding question is

this – when there are multiple competing metrics (for e.g., time taken to replan, com-

mitment satisfaction, and similarity to some previous plan) for replanning, is there

any feasible way of combining these disparate metrics? For the latter, the question

is one of justifying costs and rewards related to a specific application – for example,

when planning for earth orbiting satellites, can simulations and an analysis of histori-

cal usecases produce realistic estimates for the costs associated with violating various

commitments and for actions that might preserve such commitments, but increase

the overall cost of a plan? These are all questions that can be studied to much depth

as an extension of the work that has been presented in this dissertation.

74

Chapter 5

EVOLVING MODELS

As automated planning systems move into the realm of real world problem do-

mains like human-robot teaming, a recurring issue is that of model uncertainty and

incompletely specified domain theories. These shortcomings manifest themselves as

reduced robustness in plans that are synthesized (Nguyen et al., 2013), and subsequent

failures during execution in the world. One way of dealing with such contingencies is

to employ a reactive approach that replans for every failure that is detected during

execution. However, such an approach is doomed if parts of the model are never re-

vealed to the planner; for example, consider trying to open a door that is locked, yet

the planner’s model does not support the notion of doors having locks. A reactionary

module would keep trying an ‘open’ action with no success, since the door has to be

unlocked first (Gil, 1993).

More generally, it may be the case in many HRT scenarios that though plan

synthesis is performed using a nominal domain model, there are domain experts who

specify changes to the specific problem instance and sometimes the domain model

itself during the planning process. Quite often it is useful to take this new information

into account, since it may help prevent grievous execution failures when the plan is

put into action. Additionally, new information about the domain or the problem

may open up new ways of achieving the goals specified, thus resulting in better plan

quality as well as more robust plans.

In smaller domains and problems, it may be possible to handle updates to the

domain model and the specific problem under consideration by engaging in reactive

replanning. However, things look different when considering human-robot teaming

75

domains that use automated planning. Consider a robotic agent acting in an Urban

Search and Rescue (USAR) scenario as part of a human-robot team. The human

commander is removed from the scene due to the inherent dangers of the situation,

and hence the agent needs to act in an autonomous manner to achieve the goals

prescribed to it. To achieve these goals, the agent follows a domain theory that is

provided by a domain expert; however, updates to this domain may be specified while

the agent is executing a plan in the world. In such circumstances, two things are of

essence: first, we need a semantics for specifying such updates and integrating them

into the knowledge base of the planner that is guiding the agent. Subsequent to this,

the problem changes to one of reasoning about the changes and their effect on the

current plan’s validity and metrics. As noted previously in Section 4.3.1, replanning

from scratch is a trivial approach – however, this method ignores the fact that many

changes may be localized to a certain portion of the domain and may not require the

expensive re-computation of a new plan. In this chapter, the problem of updates to

a domain model while a plan is actively executing in the world is presented. Based

on prior experience in providing planning support to a robotic agent in a search and

rescue scenario (Cantrell et al., 2012), the nature of the updates that need to be

supported are described, and the components of such an update are demonstrated.

5.1 Updates to the Robot’s Model

The standard for domain specification in the automated planning community

has been a variant of the Planning Domain Description Language, viz. PDDL

2.1 level 3 (Fox and Long, 2003), which extends the original PDDL semantics by

allowing for durative actions. In the rest of this section, the discussion is restricted to

the use of this particular variant language, since it is one of the most widely-used for

the specification of existing planning benchmark domains, and also expressive enough

76

to encode (to a reasonable level of detail) the robotic search and rescue domain of

interest. Thus the “robot’s model” is a planning domain model as defined in the

PDDL 2.1 level 3 language.

At the outset, it should be pointed out that it is very unlikely that updates to the

robot’s action model are “discovered” as changes in the world; it is more likely to be

the case that such updates are specified to the planner by a domain expert – perhaps

even the person who crafted the domain in the first place. Domain design is not an

exact science, and creating even an approximation of a real world model is fraught

with errors of omission and commission. However, most domains are designed such

that the first few versions are never completely off-base. Very rarely is there a need to

change a significant percentage of a domain model, and more often than not, changes

are updates to small portions of the description. This is especially true in human-

robot teaming scenarios like search and rescue – the commander is more likely to

provide additional information that is relevant to the immediate tasks that are being

performed; in terms of symbolic planning, this translates into the operators 1 that

are currently being executed as part of the overall plan. In such scenarios, it makes

more sense to provide a way of updating the existing domain description and the plan

that is currently executing than to throw out all the search effort and replan from

scratch, since the changes to the domain may not affect a significant portion of the

plan. In addition, this kind of approach is preferable even in scenarios where domain

descriptions are learned (and updated) automatically through repeated planning and

execution episodes.

1Note that in the rest of this chapter, ‘operator’ is used interoperably with ‘action’.

77

5.1.1 Describing Model Updates

In order that new information about the model may be captured and used fruit-

fully, the first need is to develop a syntax that can represent such updates. In this

pursuit, it is useful to consider where such updates come from – as mentioned previ-

ously, in most real world domains, it seems reasonable to assume that human experts

will provide these. Depending on the scenario at hand, these experts could range from

designers or engineers who have a great deal of experience with the existing planning

representation to commanders who are directing operations in the field (consider the

case of a search and rescue robot being given high-level directives). Any language that

describes changes to a model should be fairly similar to the representation that is used

to describe the original model (hence, PDDL 2.1). In order to devise a syntax that

updates operators, it is essential to first consider their structure. The constituents

of a PDDL 2.1 durative action are: (1) Name; (2) Parameters; (3) Duration; (4)

Conditions; and (5) Effects. Furthermore, conditions may be ‘at start’, ‘over all’, or

‘at end’, while effects may be specified ‘at start’ and ‘at end’.

Update Syntax & Semantics

This work borrows from the update syntax described in (Cushing et al., 2008) in

order to provide a means of updating operator descriptions. To define, an update

syntax for an operator description is U = 〈UN , UC , UD, UV , UP , UE〉 where UN is the

name of the operator (and is used as a primary key for looking up the operator if

it currently exists); UC is the new cost of the operator; UD is the new duration; UV

are the new variables (parameters); UP is a set of the new preconditions, and UE is

a set of the new effects. The sets UV , UP and UE each consist of two subsets, one for

the respective additions and the other for the respective deletions. The semantics of

78

the updates works by merging the changes with the existing operator O; the merge

semantics are as follows. First, the action to be updated is looked up using UN . If

a match is found, UC and UD replace the existing cost and duration of the action

respectively. Finally, the sets UV , UP and UE are handled; the add subsets of these

sets are respectively added to the variable, precondition, and effect list of operator O

respectively; then, the delete subsets of these sets are respectively removed from the

variable, precondition, and effect list of operator O respectively. The definition of a

plan with respect to this updated model of the robot remains the same as previously,

and does not change.

An example from the USAR scenario is picked to demonstrate the usage of this

syntax – the operator being updated is one that enables the robot to enter an area

of interest.

(:durative-action enter

:parameters

(?h - hallway ?r - room)

:duration

(= ?duration (dur_enter))

:condition (and

(at start (at ?h))

(over all (connected ?h ?r)))

:effect (and

(at start (not (at ?h)))

(at end (at ?r)))

)

The above action is a simple symbolic encoding of an ‘enter’ action in the search and

rescue scenario; it enables the agent to transit from a hallway into a room. In the

following, an update to this action is illustrated based on new information that the

79

human commander wishes to provide. In this particular case, the commander adds an

object of type ‘door’ as an additional parameter, and the additional requirement that

this door needs to be ‘open’ in order for the agent to enter the room. The commander

also re-sets the duration of the action to a static quantity.

(:actionupdate

:name enter

:addparameters

?d - door

:delparameters

:setduration 50

:addcondition

(at start (unlocked ?d - door))

:delcondition

:addeffect

:deleffect

)

Except the “:name” and “:duration” fields, which accept only one argument, all other

fields may have as many arguments as desired (or none). In particular, the name field

is of utmost importance, since it determines which action the update is applied to.

The onus on consistency is left with the domain expert; if there are inconsistencies,

that part of the update is simply ignored.

5.1.2 Approaches

Providing a syntax for enabling updates to the domain during execution is bereft

of value if one is unable to use that knowledge to analyze (and modify if required)

the currently executing plan. A trivial approach is replanning from scratch on any

and every update to the domain or problem description; in fact, such an approach

80

would not even require a complex syntax that describes domain change, given that

it would suffice to simply swap the current domain file with an updated one and re-

initialize the search. However, when one deals with real world domains, this reactive

approach is unsatisfactory due to the fact that most changes that are prescribed by

human experts are local to specific parts of the domain, as described earlier. Instead,

a more preferred approach would be to analyze the current plan and its validity and

associated metrics subsequent to the updates.

First, an overview of the various cases that arise when considering the problem

of plan validity pursuant to updates to the domain is provided, in order to ease the

comparison that will follow. The approaches to this problem can be classified as

follows:

1. Replan from Scratch: Given a new version of the domain (with updates),

the planner runs again in order to come up with a plan that completely replaces

the currently executing plan.

2. Plan Re-use: The planner analyzes the current plan with respect to the up-

dates received and takes one of the following courses:

(a) Action Addition: The addition of an action to the domain does not

affect the validity of the current plan. Other metrics associated with the

problem may change, since a new plan may now be available, but no change

is necessitated if a sufficient plan is already executing.

(b) Action Removal: The removal of an action can be further classified into

two categories with respect to the validity of the current executing plan:

i. Non-participating Action: If the action that is removed does not par-

ticipate in the currently executing plan, no change is necessary.

81

ii. Participating Action: This is a more complex case, and needs analysis

of the nature that is proposed in the following.

(c) Action Update: When parts of an action are updated (addition or dele-

tion), one needs to perform a more complex analysis as described next.

5.2 Implementation

In order to describe how model updates are facilitated in the planner, one must

first briefly describe the representation of the domain model, and its constituent

actions, within the planner. The domain model for a planning problem is typically

represented in the PDDL language; most planners can parse domains that are specified

in PDDL 2.1 (Fox and Long, 2003). However, in real-world domains, it is unreasonable

to assume that the domain description is given to the planner as a structured PDDL

file. Instead, it is much more likely that the domain will be specified via calls to the

planner from the architecture. As seen in Figure 5.1, the planner server sits inside

the DIARC (Scheutz et al., 2007a) architecture – information regarding the domain

model is piped to the planner from various components in this architecture.

To enable the transfer of this information, the planner provides an API called

PDDL Helper that contains various methods to create and set various domain con-

stituents, as follows:

1. Name: Set the domain name.

2. Requirements: Keywords denoting the PDDL requirements of a planner that

runs on this domain.

3. Predicates: Logical predicates in the domain.

4. Functions: Mathematical functions (for e.g., non-static durations of actions).

82

5. Constants: Constants used in the domain (for e.g., colors of boxes to be iden-

tified).

6. Variables: Variables used in the domain.

7. Actions: Actions that are part of this domain.

8. Action Costs: The costs of the various actions.

9. Action Durations: The durations of the various actions.

The actions themselves are created by calling a special Action Maker (AM) API

that is provided as a planner service. The AM API contains methods that can be

used to create, set, and query the values of the following constituents of an individual

action 2 :

1. Cost: The cost of performing that action.

2. Duration: The duration of the action.

3. Constants: The list of constants used in that action (if any).

4. Functions: The list of functions used in that action (if any).

5. Variables: The list of variables used in that action (if any).

6. Predicates: The list of predicates used in that action (if any).

7. Conditions: The start, over all, and end conditions that are part of the action.

8. Effects: The start and end effects that are part of the action.

These APIs (and the methods contained within them) can be used to create or

modify actions in the planner’s model of the actions available to the robot.

2Note that the name of the action cannot be set, since it acts as a unique identifier from the time
the action is created, through to when the action has to be modified.

83

5.3 Empirical Evaluation

First, the use-case used throughout this evaluation is presented: the human spec-

ifies (during execution) that the robotic agent must push the door to a room in order

to enter that room. The robot must be in a position to understand the implications

of that directive. If there are goals that can only be achieved by entering that room,

the robot must update its understanding of the world and infer that the new capa-

bility now allows it to achieve those goals. It is these tasks that are performed by the

planner: (1) the task of updating the robot’s model of the world and understanding

the implications of those changes, and (2) processing changes to the facts and goals

in the robot’s knowledge that are brought on by the changes to the model.

5.3.1 Application Task: Updates from Natural Language

The specific application that is considered in this chapter involves a robot ex-

ecuting in an Urban Search and Rescue (USAR) task. The robot is in constant

communication with a commander, who directs the robot with regard to its goals.

The robot starts on an unspecified floor, at the beginning of a long hallway with

doors leading into rooms on either side. The robot’s initial goal is to get to the end of

that hallway within a stipulated time (ostensibly to deliver important supplies). To

this initial goal, the commander adds a new goal after the robot starts executing its

initial plan, using the mechanism specified in Chapter 3 – that the robot must check

inside rooms and report on injured humans in those rooms (if any).

The robot’s model is equipped to deal with such an instruction, but if the robot

comes to a closed door, it moves on without checking inside that room. However,

in this particular scenario, the commander also specifies (during execution) that if

the robot comes upon a closed door, it can try to push that door in order to open

84

it. This is a new capability that is being specified to the robot (and hence to the

planner that plans for it) after execution has commenced; the planner must parse this

information, update its internal representation of the world model, and replan anew

if the new information has any bearing on the scenario goals (and the plan currently

executing).

Vision

Processor

Laser

Processor

Goal

Manager

SapaReplan

Planner

Motion

Planner

Text to

Speech

Laser

Rangefinder
Camera

Robot

Base
Speaker

NLP/

Dialogue

Microphone

Speech

Recognizer

Figure 5.1: A schematic of the integrated system that facilitates model updates.

Results

The evaluation is conducted on the scenario outlined previously. In specific, variants

of the sentence “if you are at a closed door and you push it one meter, you will be

in the room” are used to inform the robot about the new capability (action) at its

disposal. This input can be segmented as follows:

• preconditions: you are at a closed door

• action definition: you push it one meter

85

• postconditions: you will be in the room

This sentence is run through reference resolution and parsing modules, in order

to come up with semantic entities that formalize the meaning of the utterance to

the robot’s (and planner’s) model of the world. After this step, the new capability

is submitted to the goal manager via a method call of the following form: associate-

Meaning(action definition, preconditions, postconditions). The goal manager processes this

capability and passes it on to the planner, as shown in Figure 5.1. The API methods

described in the previous section are invoked on the planner in order to update its

model. The planner process is then restarted and the search for a new plan begins.

Note that this technique falls under the first approach discussed in Section 5.1.2, i.e.,

Replan from Scratch. Such an approach was found to be sufficient for this scenario;

future work includes considering the other approaches outlined in that section and

testing their effect on the planning process.

In this scenario, the addition of the “push” action manifests a difference when the

planner encounters a closed door during the execution of the scenario. The presence

and detection of the door informs the planner of the existence of a room to explore –

and consequently a possible injured human to look for – behind that door. However,

prior to the model update, the planner would simply have planned to move on from

that location since it did not have the capability to go into the room. Given the

new action – which is specified once the robot has passed the first closed door – the

planner instead instructs the robot to push open the next closed door. When the

robot pushes through and succeeds in getting into the room, the plan to look around

that room to verify whether there are any injured humans continues. A successful

run of this scenario is presented as the evaluation for this scenario, in the following

video: http://www.youtube.com/watch?v=NEhBZ205kzc 3 .

3In this video evaluation, “Red box” was used as a stand-in for an injured human.

86

5.4 Lower Level Action Sequencing

Although the robot can accept useful information from the human that will make

the execution of its various tasks clearer or easier, it must be equipped with natural

interfaces for such interactions with humans. One of the problems with efficient

information exchange between robots and humans has been (and remains) the high

entry barrier relating to the question of natural human-robot interaction. Robots –

and the integrated systems that control them – require input in structured formats

(as evidenced by the recent discussion), while humans are most comfortable with

less structured mediums like speech. This impedance mismatch between entities that

store knowledge on the one hand, and those that can make effective use of it on the

other, can often make it inefficient or even impossible to plan and execute in the real

world.

One way to overcome this mismatch is to provide an interface that maps natu-

ral language input to the various structured information requirements on the robot’s

end. Such approaches have been tried earlier, from work in mixed-initiative plan-

ning (Myers, 1998) to more recent work on using natural language instructions to

update an executing planner’s model (Cantrell et al., 2012). In this section, the focus

is shifted to enabling model updates via information specified by humans. As part

of an extended undergraduate research project (Sethia et al., 2014), Cantrell et al.’s

work was extended by addressing two main concerns. First, the complex natural

language processing that is often needed to understand human speech was sought to

be simplified. This is made possible by the emergence of reliable and cheap voice

recognition capabilities on various open-source mobile platforms like Android, which

enabled the creation of a mobile application (app) that would handle the interface

with the human. Second, Cantrell et al.’s work suffered from the restriction of having

87

to specify before the fact the lower level realization of any new high level action that

is specified, which defeats the purpose of enabling the human to teach an old plan-

ner new tricks. Instead, in this extension, information was sought from the human

teammate on how to make this mapping possible. The functionality described in

this section was implemented on a Google Nexus 7 tablet, and evaluated using an

Aldebaran Nao humanoid robot (Aldebaran Robotics, 2008).

Planner Integration

At the core of this extension is the algorithm that interfaces the Nao robot with

the Sapa Replan planner, an interface that was developed over Summer and Fall of

2013. To do this, it was necessary to be able to access the planner freely using an

API; read the planner’s output in order to get the instructions to be executed; and

read and write to the world state and goals in the problem file so that they could

be updated whenever necessary (Talamadupula et al., 2011). The Java programming

language provides tools that easily allows interfacing with the command prompt, thus

allowing for the running of java jar archives such as Sapa Replan through them, as

well as reading and writing output. Although the Sapa Replan planner comes with

an API that allow for the direct modification of internal data structures, the aim was

to keep the integration as simple and straightforward as possible. Thus this work

is restricted to processing only the output from the planner on the command line.

Once the planner’s output is read, it is processed into its individual components:

what action is being performed, the actor, and the object being acted on or toward.

These are compiled together, along with the main goal of the problem, and processed,

meaning that the set of all actions is looped through and each action is executed.

88

Model Updates: Creating a New Action

To create a new action, the user first has to stop the robot, and then say “New

Action”. The robot then asks the user for the name of the new action. Once the

action name has been added, the robot prompts the user for information to fill out the

PDDL action template. The user provides a word, corresponding to a parameter name

or type, precondition parameter, effect parameter, etc., and based on the previous

word stated and the portion of the PDDL action being dictated, the word given is

formatted appropriately. Once the human provides the entirety of the High Level

Action (HLA), she says “End of Action” in order to store the PDDL action as a

string and terminate the PDDL action generation sequence.

I. PUSH

II. OBJ, L1, L2

III. AT L1, OBJ AT L1, L1 CONNECTED L2

IV. AT L2, OBJ AT L2

V. WALK; PUSH; WALK

1. NAME

2. PARAMETERS

3. PRECONDITIONS

4. EFFECTS

5. LOWER LEVEL IMPLEMENTATION

Figure 5.2: An example of lower level action sequencing; the arrows indicate the
information exchanged between the robot and the human, both members of the same
team.

A PDDL action is useless, however, without some way to implement that action in

the (lower level) real world. Once the PDDL action is generated, a second sequence is

launched in order to determine the low level implementation of the new action. The

low level implementation of an action is the step-by-step process that is necessary

to physically implement an HLA, described in PDDL, in the real world. The user

specifies each of the low level components needed to implement the HLA. An example

89

of this interaction is outlined in Figure 5.2.

When the user inputs a lower level component, the robot looks up the name of

that component in a data structure. The name of each component is mapped to a

list of its parameters. If the robot successfully looks up the component, it prompts

the user for the parameters for that component. A component name specific to the

HLA that it is being used for is generated. The parameters are then mapped to that

specific component name and stored in another data structure. The entire low level

implementation, known as a lower level action (LLA) is then mapped to the name of

the HLA and stored in a third data structure.

Once the high level and low level implementations are complete, the replanning

process can begin. As Sapa Replan does not support updates involving direct changes

to the PDDL domain file, it is necessary to completely terminate the planner in order

to add the new action to the domain file. The program automatically terminates

the planner, opens the domain file, and adds the new action to the file. Once the

action is added, the file is closed and the planner is restarted. The program then runs

as normal, generating a plan and executing it, only this time using the new action

whenever necessary in order to complete the plan. If (and when) the new HLA is

called, the system already knows the LLA corresponding to it, and thus knows how

to execute that HLA in the world.

5.5 Limitations

There exist a couple of limitations with the approaches taken to deal with domain

models (and modifications to those models) in this chapter. First, the approach

outlined in Section 5.2, though sufficient for the purposes of the USAR scenario

discussed here, still leaves open the question of mapping high-level action descriptions

to their lower-level counterparts on the robot, so that the new action may be carried

90

out successfully in the world. Staying with the example discussed in this chapter,

this means that although the planner has the capability of accepting a high-level

description of the “push” action, there is no way of mapping that description to a

lower-level specification on the robotic agent. Instead, in Cantrell et al. (Cantrell

et al., 2012), it is assumed that this mapping is already written into the integrated

architecture. This is clearly a limitation on the kinds of updates that can be specified,

since the mappings need to be specified beforehand. Fortunately, this limitation is

handled by the work described in Section 5.4, where the design of a new app allows

users to specify both high-level modifications as well as their lower-level mappings

using rudimentary natural language. The scope of the lower-level mappings is limited

by the robotic agent in question; for example, if a Nao humanoid robot (Aldebaran

Robotics, 2008) is being used, the list of all applicable (and relevant) lower-level

operators is readily available.

91

Chapter 6

COORDINATION THROUGH PLAN & INTENT RECOGNITION

As robotic systems become more ubiquitous, the need for technologies to facilitate

successful coordination of behavior in human-robot teams becomes more important.

Specifically, robots that are designed to interact with humans in a manner that is

as natural and human-like as possible will require a variety of sophisticated cogni-

tive capabilities akin to those that human interaction partners possess (Scheutz et al.,

2007b). Performing mental modeling, or the ability to reason about the mental states

of another agent, is a key cognitive capability needed to enable natural human-robot

interaction (Scheutz, 2013). Human teammates constantly use knowledge of their

interaction partners’ belief states in order to achieve successful joint behavior (Klein

et al., 2005), and the process of ensuring that both interaction partners have achieved

common ground with regard to mutually held beliefs and intentions is one that dom-

inates much of task-based dialogue (Clark and Brennan, 1991). However, while es-

tablishing and maintaining common ground is essential for team coordination, the

process by which such information is utilized by each agent to coordinate behavior is

also important. A robot must be able to predict human behavior based on mutually

understood beliefs and intentions. In particular, this capability will often require

the ability to infer and predict plans of human interaction partners based on their

understood goals.

In this chapter, the focus of the discussion is shifted from the model of the robotic

agent to the model of the human agent who is part of the human-robot team (Tala-

madupula et al., 2014a). Automated planning is a natural way of generating plans

for an agent given that agent’s high-level model and goals. The plans thus gener-

92

ated can be thought of either as directives to be executed in the world, or as the

culmination of the agent’s deliberative process. When an accurate representation of

the agent’s beliefs about the world (the model and the state) as well as the agent’s

goals are available, an automated planner can be used to project that information

into a prediction of the agent’s future plan. This prediction process can be thought

of as a simple plan recognition process; further in this section, the expansion of this

process to include incomplete knowledge of the goals of the agent being modeled will

be discussed.

In the rest of this chapter, the discussion concerns the modeling of the robotic

agent’s human teammate’s mental state, and the use of information from that to

enable coordination between the robot and the human agent via automated planning.

First, a simple human-robot interaction (HRI) scenario that will necessitate mental

modeling and planning-based behavior prediction for successful human- robot team

coordination will be presented. The formal representation of beliefs, and the mapping

of these beliefs into a planning problem instance in order to predict the plan of the

agent of interest, will then be discussed. Also discussed will be the expansion of

this problem to accommodate state-of-the-art plan recognition approaches. Finally,

the component integration within the DIARC (Scheutz et al., 2013) architecture that

enables the theory being proposed on a real robot will be presented, along with the

evaluation on a case study. This section presents and discusses techniques and results

presented as part of (Talamadupula et al., 2014a).

6.1 Motivation

Consider a disaster response scenario inspired by an Urban Search and Rescue

(USAR) task that occurs in a facility with a long hallway. Rooms 1 and 2 are at the

extreme end of one side, whereas rooms 3-5 are on the opposite side (see Figure 6.1).

93

Figure 6.1: A map that represents the human-robot teaming scenario discussed in
this section.

Consider the following dialogue exchange:

H: Comm. X is going to perform triage in room 5.

R: Okay.

H: I need you to bring a medical kit to room 1.

R: Okay.

The robot R has knowledge of two medical kits, one on each side of the hallway

(in rooms 2 and 4). Which medical kit should the robot attempt to acquire? If

commander X (CommX) does not already have a medical kit, then she or he will attempt

to acquire one of those two kits. In order to avoid inefficiency caused by resource

conflicts (e.g., wasted travel time), the robot ought to attempt to acquire the kit that

is not sought by the human teammate.

The medical kit that CommX will select depends on a variety of factors, including –

but not limited to – the duration of each activity and the priority given by CommX to

each activity. If the commander had goals to perform triage in multiple locations, the

medical kit he or she would acquire would be determined by what triage location she

or he visits first. Additionally, the beliefs about the environment may differ between

the robot and human teammates. Consider a variation of the previous dialogue /

scenario (where previously there existed only one medical kit in room 2):

94

H: I just put a new medical kit in room 4.

H: Comm. X is going to perform triage in room 5.

R: Okay.

H: I need you to bring a medical kit to room 1.

R: Okay.

While the robot now knows there are two medical kits, CommX likely only knew

of the original one, and will thus set out to acquire that one, despite it being at the

opposite end of the hallway. Therefore, successful prediction of a human teammate’s

behavior will require modeling that teammate, assuming he or she adopts a rational

policy to achieve multiple goals given one’s best estimate of their belief state. One

way of performing such modeling is by leveraging the planning system found within

the robotic architecture. In the following, the process of modeling beliefs, casting

them into a planning problem instance, predicting the plan of the agent of interest

using this problem instance, and finally achieving coordination via that predicted

plan will be detailed.

6.2 Belief Modeling

Beliefs are represented in a special component that handles belief inference and

interacts with various other architectural components. It is clarified at the outset

that “belief” is used in the rest of this section to denote the robot’s knowledge, and

not in the sense of “belief space”. Beliefs about state are represented by predicates

of the form bel(α, φ), which denote that agent α has a belief that φ is true. Goals are

represented by predicates of the form goal(α, φ, P), which denote that agent α has a

goal to attain φ with priority P .

Belief updates are primarily generated via the results of the semantic and prag-

matic analyses performed by the natural language processing subsystem, which are

95

submitted to the belief component (the details of this process are described in (Briggs

and Scheutz, 2011)). While the interpretation of natural language communication al-

lows for the most direct inferences about an interlocutor’s belief state, the system

does allow for belief updates to be generated from other input modalities as well

(e.g., the vision system).

In order for a robot to adopt the perspective of another agent α, we must consider

the set of all beliefs that the robot ascribes to α. This can be obtained by considering

a belief model Belα of another agent α, defined as { φ | bel(α, φ) ∈ Belself }, where

Belself denotes the first-order beliefs of the robot (e.g., bel(self, at(self, room1))).

Likewise, the set of goals ascribed to another agent can be obtained: {goal(α, φ, P) |

goal(α, φ, P) ∈ Belself}.

This belief model, in conjunction with beliefs about the goals / intentions of

another agent, will allow the robot to instantiate a planning problem. Here, it is

important to note that all agents share the same basic beliefs about the initial task

goal and the initial environmental state (beliefs about subsequent goals and states

can differ among agents, see Section 6.3.1 for details).

Case Analysis

First, the integrated architecture’s handling of the motivating scenario is examined.

The simple case is where the robot has knowledge of the location of both medical kits

and the location of CommX. The robot also believes that the commander’s belief space

is equivalent (at least in terms of the relevant scenario details) to its own. This belief

space is described below:

96

Belself = {at(mk1, room2), at(mk2, room4),

at(commX, room3), bel(commX, at(commX, room3)),

bel(commX, at(mk1, room2)),

bel(commX, at(mk2, room4))}

For the sake of future brevity, the predicates describing the robot’s beliefs about the

beliefs of CommX will be expressed using the notation BelcommX ⊆ Belself , and the

predicates describing the robot’s beliefs about the goals of CommX as GCX
⊆ Belself :

BelcommX = {at(mk1, room2), at(mk2, room4),

at(commX, room3))}

GCX
= {}

A planning problem (as specified in Section 6.3.1) is submitted to the Sapa Replan

planner. Since GCX
is initially an empty set, no plan is computed by the planner.

However, the robot then receives the first piece of natural language input: “Comm. X

is going to perform triage in room 5”. As a result of the processing from the nat-

ural language subsystem, including applying pragmatics rules of the form described

in (Briggs and Scheutz, 2011), the robot’s belief model of CommX is updated:

BelcommX = {at(mk1, room2), at(mk2, room4),

at(commX, room3))}

GCX
=

{goal(commX, triaged(commX, room1), normal)}

The new problem (with an updated GCX
) is submitted to the planner, which returns

the following plan:

97

ΠcommX = 〈move(commX, room3, hall5),

move(commX, hall5, hall6),

move(commX, hall6, room4),

pick up(commX,mk2, room4),

move(commX, room4, hall6),

move(commX, hall6, room5),

conduct triage(commX, room5)〉

This plan is used by the robot to denote the plan that CommX is likely utilizing. The

robot is subsequently able to infer that the medical kit in room 4 has likely been

taken by CommX, and can instead aim for the other available medkit, thus successfully

achieving the desired coordination.

6.3 Using Automated Planning

Automated planning representations are a natural way of encoding an agent’s

beliefs such that a simulation of those beliefs may be produced to generate information

that is useful to other agents in the scenario. These representations come with a

notion of logical predicates, which can be used to denote the agent’s current belief:

a collection of such predicates is used to denote a state. Additionally, actions can

be used in order to model the various decisions that are available to an agent whose

beliefs are being modeled; these actions will modify the agent’s beliefs, since they

effect changes in the world (state). Finally, planning representations can also be used

to specify goals, which can be used to denote the agent’s intentions and/or desires.

Together, these three features – predicates, actions, and goals – can be used

to create an instance of a planning problem, which features a domain model and

a specific problem instance. Formally, a planning problem Π = 〈D, π〉 consists of

the domain model D and the problem instance π. The domain model consists of

D = 〈T, V, S, A〉, where T is a list of the object types in the model; V is a set of

98

variables that denote objects that belong to the types t ∈ T ; S is a set of named

first-order logical predicates over the variables V that together denote the state; and

A is a set of actions or operators that stand for the decisions available to the agent,

possibly with costs and/or durations.

Finally, a planning problem instance consists of π = 〈O, I,G〉, where O denotes

a set of constants (objects), each with a type corresponding to one of the t ∈ T ;

I denotes the initial state of the world, which is a list of the predicates from S

initialized with objects from O; and G is a set of goals, which are also predicates from

S initialized with objects from O.

This planning problem Π = 〈D, π〉 can be input to an automated planning system,

and the output is in the form of a plan Υ = 〈â1 . . . ân〉 – which is just a sequence

of actions such that ∀i, ai ∈ A, and 〈â1 . . . ân〉 are each copies of the respective ais

initialized with objects from O.

6.3.1 Mapping Beliefs into a Planning Problem

In this section, we formally describe the process of mapping the robot’s beliefs

about other agents into a planning problem instance. First, the initial state I is

populated by all of the robot’s initial beliefs about the agent α. Formally, I =

{φ | bel(α, φ) ∈ Belrobot}, where α is the agent whose beliefs the robot is modeling.

Similarly, the goal set G is populated by the robot’s beliefs of agent α’s goals; that

is, G = {φ | goal(α, φ, P) ∈ Belrobot}, where P is the priority assigned by agent α

to a given goal. 1 This priority can be converted into a numeric quantity as the

reward or penalty that accompanies a goal. Finally, the set of objects O consists of

all the objects that are mentioned in either the initial state, or the goal description:

1Note that in this work, the priority is not used; however, it is introduced here as it is part of
the definition introduced by Briggs & Scheutz in 2011.

99

O = {o | o ∈ (φ | φ ∈ (I ∪G))}.

Next, the focus is shifted to the domain model D that is used in the planning

process. For this work, it is assumed that the actions available to an agent are known

to all the other agents in the scenario; that is, the possibility of beliefs on the models

of other agents is ruled out (of course, rolling back this assumption would result in a

host of interesting possibilities – this is alluded to in Section 6.3.3). However, even

with full knowledge of an agent α’s domain model Dα, the planning process must be

carried out in order to extract information that is relevant to the robot’s future plans.

6.3.2 Coordination Using Plans

Before illustrating how coordination is achieved, it is useful to define the notion of

coordination as used in this work, and the assumptions that are made to achieve such

coordination. For the purposes of this work, coordination is defined as the robotic

agent being able to reproduce the plan of a human agent. More formally, given a

human agent’s planning domain model Dα, initial state I, and goal description G, the

claim is that the robotic agent can come up with a plan Υα that is a prediction of

agent α’s plan.

In order to facilitate coordination between agents using the robot’s knowledge of

the other agent α’s beliefs, two separate planning problems are utilized, ΠR (robot)

and Πα (agent α) respectively. The robot’s problem consists of its domain model

DR = 〈TR, VR, SR, AR〉 and the initial planning instance πR, which houses the initial

state that the robot begins execution from as well as the initial goals assigned to it.

The robot also has some beliefs about agent α; these beliefs are used to construct

α’s problem Πα = 〈Dα, πα〉 following the procedure outlined previously (note that

currently, the same domain model is used for the robot and agent α; i.e., DR and Dα

are the same). The assumption made in this section is that all three constituents of

100

Πα are known fully and correctly; in Section 6.3.3, one of these is relaxed.

Both of these planning problems are given to separate instances of the planning

system, and respective plans ΥR and Υα are generated. A key difference between the

two plans must be pointed out here: although ΥR is a prescriptive plan – that is, the

robot must follow the actions given to it by that plan, Υα is merely a prediction of

agent α’s plan based on the robot’s knowledge of α’s beliefs.

In the case of coordination with agent α that needs to happen in the future, the

robot can turn to the simulated plan Υα generated from that agent’s beliefs. The crux

of this approach involves the robot creating a new goal for itself (which represents

the coordination commitment made to the other agent) by using information that

is extracted from the predicted (or simulated) plan Υα of that agent. Formally, the

robot adds a new goal gc to its set of goals GR ∈ πR, where gc is a first-order predicate

from SR instantiated with objects extracted from the relevant actions of agent α in

Υα.

6.3.3 Plan Recognition

So far, it has been assumed that the goals of CommX are known completely. For-

mally, it has been assumed in Section 6.3.2 that G is known completely as part of Πα

in order to achieve coordination (also defined in Section 6.3.2). This section relaxes

that assumption, since it is unlikely to hold for many real world scenarios, given that

only a belief of the likely goal of agent α based on updates from CommY is available;

this may not be a full description of the actual goal. Further, in the case of an incom-

pletely specified goal, there might be a set of likely plans that the commander can

execute, which brings into consideration the issue of plan or goal recognition given a

stream of observations and a possible goal set. This also raises the need for an online

re-recognition of plans, based on incremental inputs or observations. In this section,

101

a plan recognition approach that takes these eventualities into account is presented.

The “relaxation” is that now instead of knowing the constituents of G fully, there

may be a set of goals Ψ of which the actual goal that agent α may be trying to achieve

is only a part; and thus G ⊆ Ψ.

Goal Extension and Multiple Plans

To begin with, it is worth noting that there can be multiple plans even in the presence

of completely specified goals (even if agent α is fully rational). For example, there may

be multiple optimal ways of achieving the same goal, and it is not obvious beforehand

which one agent α is going to follow. In the case of incompletely specified goals, the

presence of multiple likely plans become more obvious. Thus the more general case

is considered where agent α may be following one of several possible plans, given a

set of observations.

To accommodate this, the robot’s current belief of agent α’s goal, G, is extended to

a hypothesis goal set Ψ containing the original goal G along with other possible goals

obtained by adding feasible combinations of other possible predicate instances not

included inG. To understand this procedure, let’s first look at the set Ŝ, defined as the

subset of the predicates from S which cannot have different grounded instances present

in any single goal. The existence of Ŝ is indeed quite common for most scenarios,

including the running example where the commander cannot be in two different rooms

at the same time; hence for example, one need not include both at(commX,room3)

2 and at(commX,room4) in the same goal. Hence at (?comm, ?room) is one of the

(lifted) predicates included in Ŝ.

Now, the set is defined Q = {q | qO ∈ G}∩ Ŝ as the set of such lifted unrepeatable

2Note that agent α and CommX are used interchangeably in this discussion, and indicate the same
agent.

102

predicates that are already present in G, where qO refers to a lifted domain predicate

q ∈ S grounded with an object from the set of constantsO, and similarly, q is the lifted

counterpart of the grounded domain predicate qO. Following this representation, the

set difference Ŝ \Q gives the unrepeatable predicates in the domain that are absent in

the original goal, and its power set gives all possible combinations of such predicates.

Then, let B1 = (P(Ŝ \ Q))∗O denote all possible instantiations of these predicates

grounded with constants from O. Similarly, B2 = P((S \ Ŝ)∗O) denotes all possible

grounded combinations of the repeatable predicates (note in the case of B1 the power

operation was being performed before grounding to avoid repetitions). Then the

hypothesis set of all feasible goals can be computed as Ψ = {G | G ∈ B1 ∪ B2}.

Identifying the set Ŝ is an important step in this procedure and can reduce the

number of possible hypotheses exponentially. However, to make this computation,

some domain knowledge is assumed that allows us to determine which predicates

cannot in fact co-occur. In the absence of any such domain knowledge, the set Ŝ

becomes empty, and a more general Ψ = {G | G ∈ P
(

S∗
O

)

} can be computed that

includes all possible combinations of all possible grounded instances of the domain

predicates. Note that this way of computing possible goals may result in many un-

achievable goals, but there is no obvious domain-independent way to resolve such

conflicting predicates. However, it turns out that since achieving such goals will in-

cur infinite costs, their probabilities of occurrence will reduce to zero, and such goals

will eventually be pruned out of the hypothesis goal set under consideration.

Goal / Plan Recognition

In the present scenario, there is thus a set Ψ of goals that agent α may be try-

ing to achieve, and observations of the actions agent α is currently executing (as

relayed to the robot by CommY). At this point one refers to the work of Ramirez

103

and Geffner (Ramırez and Geffner, 2010) who provided a technique to compile the

problem of plan recognition into a classical planning problem. Given a sequence of

observations θ, the probability distribution over G ∈ Ψ is recomputed by using a

Bayesian update P (G|θ) ∝ P (θ|G), where the prior is approximated by the function

P (θ|G) = 1/(1 + e−β∆(G,θ)) where ∆(G, θ) = Cp(G− θ) − Cp(G+ θ).

Here ∆(G, θ) gives an estimate of the difference in cost Cp of achieving the goal G

without and with the observations, thus increasing P (θ|G) for goals that explain the

given observations. Note that this also accounts for agents which are not perfectly

rational, as long as they have an inclination to follow cheaper (and not necessarily

the cheapest) plans, which is a more realistic model of humans. Thus, solving two

planning problems, with goals G− θ and G+ θ, gives the required probability update

for the distribution over possible goals of agent α. Given this new distribution, the

robot can compute the future actions that agent α may execute based on the most

likely goal.

Incremental Plan Recognition

It is also possible that the input will be in the form of a stream of observations,

and that the robot may need to update its belief as and when new observations are

reported. The method outlined in the previous section would require the planner

to solve two planning problems from scratch for each possible goal, after every new

observation. Clearly, this is not feasible, and some sort of incremental re-recognition

is required. Here the advantage of adopting the plan recognition technique described

above becomes evident: by compiling the plan recognition problem into a planning

problem, the task of updating a recognized plan becomes a replanning problem with

updates to the goal state (Talamadupula et al., 2014b). Further, every new observa-

tion does not produce an update, since in the event that the agent being observed

104

DIARC

Integrated
Architecture

Goal

Manager

Sapa Replan

Planner
Robot’s Instance

Execution

Monitor

Sapa Replan

Planner
Agent g’s Instance

Execution

Monitor

Goal

Recognition

Sensor Readings
to

High Level
Observations

Plan

Initial State of g
Goal of g

Model of g

P
la

n
 o

f
g

S
e
n
s
o
r

in
p
u

t
re

:
g’

s
ac

tio
ns

High Level

Observations

ki

Possible Goals of g

S
e
n
s
o
r

In
fo

rm
a
ti
o
n

C
o
n
tr

o
l
D

ir
e
c
ti
v
e
s

Initial State + Updates

Goals + Updates

Model + Updates

ROBOT

Figure 6.2: A schematic of the plan recognition framework described in this section.

is actually following the plan that has been recognized, the goal state remains un-

changed; while in the case of an observation that does not agree with the current

plan, the goal state gets extended by an extra predicate. Determining the new cost

measures thus does not require planning from scratch, and can be computed by using

efficient replanning techniques.

A Framework for Coordination & Recognition

In Figure 6.2, a schematic of the system that can handle the plan prediction and plan

recognition described in this chapter is presented. To describe: there are two separate

instances of the Sapa Replan planner that are run. The first instance takes care of

the planning for the robot, while the second instance is entrusted with producing the

predicted plan of the agent α.

The goal manager on board the DIARC integrated architecture sends out informa-

tion to both of these planner instances in order to enable the planning process. To

105

the robot’s instance, the goal manager sends out information about the initial state,

goals, and the domain model, as well as updates to these three. Full details of this

process can be found in Chapter 7. To the instance of agent α, the goal manager

sends information (from the belief modeling component, as outlined in Section 6.2)

about the initial state, model, and possible goals of agent α. Here the framework

enables one of two possible flows; if the set of agent α’s goals is known completely,

then it is sent along with the initial state and the model, as in Section 6.3.1. If the

goal set is not known completely, then the process described in the previous section is

used, and the goal recognition component (in green) is employed to send the possible

goals of agent α to the respective planner instance.

Once an observation τi ∈ θ is received by the goal recognition component, the

probability distribution over the set of goals Ψ that agent α may be trying to achieve

is recomputed, as specified in Section 6.3.3. In the worst case, this computation may

have to occur for every observation τi that is received (if all the observations come in

piecemeal), and can become a very intractable process. The top ranked goal from the

set Ψ is then sent to the planner component. There is currently work underway that

considers ways of approximating this update process, and making it more tractable.

This is a prime candidate for future extensions.

6.4 Implementation

For the proof-of-concept validation, theWillow Garage PR2 robot (Willow Garage,

2010) was used. The PR2 platform allows for the integration of ROS localization and

navigation capabilities with the DIARC architecture. Components in the system

architecture were developed in the Agent Development Environment (ADE), which

is a framework for implementing distributed cognitive robotic architectures. Speech

recognition was simulated using the standard simulated speech recognition in ADE

106

(which allows input of text from a GUI), and speech output was provided by the

MaryTTS text-to-speech system.

Belief Component

The belief component in DIARC utilizes SWI-Prolog in order to represent and reason

about the beliefs of the robotic agent (and beliefs about beliefs). In addition to

acting as a wrapper layer around SWI-Prolog, the belief component contains methods

that extract the relevant belief model sets described in Section 6.2 and handling the

interaction with the planner component. Specifically, this involves sending the set

of beliefs and goals of a particular agent that needs to be modeled to the planner.

Conversion of these sets of predicates into a planner problem is handled in the planner

component.

Planner

In order to generate plans that are predicated on the beliefs of other agents, the Sapa

Replan (Talamadupula et al., 2010a) planner is employed; more details about the

planner may be found in Section 7.2.

Currently, the plan recognition approach described in Section 6.3.3 has not been

implemented fully on the Sapa Replan planner. However, the chapters preceding this

one have demonstrated that the planner can be extended to deal with various forms of

information that arrive during execution – specifically (and in order) changes to the

goals, to the world state, and to the agent’s model. Thus the existing Sapa Replan

system can be modified to handle (action) observations during execution time in

order to support the plan recognition approach previously outlined. This modification

would entail the creation of the components outlined in green in Figure 6.2. Note

that this will require that the problem of translating the robot’s sensory feedback (or

107

another agent’s utterances to the robot) to a high-level representation be handled;

this is a problem that is non-trivial (see Section 6.6).

It should be clarified that since an entirely different instance of the planner is run

in order to simulate/predict the plan of the agent α, the only extension that needs

to be provided to the execution monitor component of the planner (see Chapter 7

for full details) is a way of specifying high-level observations about the action that

was performed to the planner. The syntax for such an update can originate in the

operator update syntax described in Section 5.1.1, and is left as a future extension to

the currently implemented system.

Plan Recognition

For the plan recognition component, the probabilistic plan recognition algorithm de-

veloped by Ramirez and Geffner (Ramırez and Geffner, 2010) is used. The base

planner used in the algorithm is the version of greedy-LAMA (Richter et al., 2008)

used in the sixth edition of the International Planning Competition in 2008. To

make the domain under consideration suitable for the base planner, the durations of

the actions were ignored while solving the planning problems during the recognition

phase.

6.5 Empirical Evaluation

In this section, a demonstration of the plan prediction capabilities described in

Section 6.3 is presented through a set of proof-of-concept validation cases. These cases

include an implementation with the full robotic architecture on an actual robotic

platform (Willow Garage PR2), as well as a more extensive set of cases that were run

with a limited subset of the cognitive architecture in simulation. These validation

cases are not intended to be a comprehensive account of the functionality that the

108

Robot Condition Cases with no conflict: Opt1 Cases with no conflict: Opt2

Robot at room2 55.83% 47.50%

Robot at room3 25.0% 33.33%

Robot at room3 w/

mental modeling

100.0% 91.67%

Table 6.1: Performance of the robot.

belief modeling and planning integration affords, but rather indicative of the success

of the architectural integration (which also seeks to highlight some interesting and

plausible scenarios in a human-robot teaming task). First, a video of an instance

similar to the case described in Section 6.2 evaluated on a PR2 robot and annotated

with the robot’s knowledge of agent α’s beliefs is presented, as well as its prediction

of the commander’s plan: http://tinyurl.com/beliefs-anno.

6.5.1 Simulation Runs

The scenario shown in the video was also utilized to perform a more extensive set

of simulations. The number of medical kits the robot believes CommX knows about

(1 vs. 2), the believed location of each medical kit (rooms 1-5), and the believed

goals of CommX (triage in room 1, room 5, or both) were all varied. The commander

is believed to always start in room 3. This yields 90 distinct cases to analyze. The

resulting prediction of CommX’s plan is then compared with what one would expect

a rational individual to do. However, in some scenarios there are multiple optimal

plans that can be produced by different strategies. The first strategy, Opt1, is where

the individual favors picking up medkits towards the beginning of their plan (e.g. at

their starting location), and the second, Opt2, is where the individual favors picking

up medkits toward the end of the plan (e.g. in the same room as the triage location).

109

The results of these simulation runs show that the robot successfully predicts

which medical kit CommX will choose in 90 out of 90 cases (100.0% accuracy) if Opt1

is assumed. If Opt2 is assumed, the robot is successful in predicting 80 out of 90

cases correctly (88.9% accuracy). This demonstrates (for unestablished reasons) a

bias in the planner for plans that comport with Opt1 behavior. Nonetheless, these

results confirm that the mental modeling architecture can be successful in predicting

the behavior of rational agents.

Next, the following question was evaluated: what does this mental modeling ability

give the system performance-wise? The medical kit selection task was compared

between a robot with and without mental modeling capabilities. The robot without

the mental modeling capabilities still looks for a medkit but can no longer reason

about the goals of CommX. 120 cases were considered: 20 combinations of medical kit

locations where the two kits were in different locations (as this would be a trivial case)

× 3 possible goal sets of CommX (as described above) × 2 sets of beliefs about medkit

existence (as described above). To demonstrate the efficacy of the belief models, also

consider were two different starting locations of the robot - including now room 3 in

addition to room 2 - as there would naturally be more selection conflicts to resolve if

both the robot and CommX started in the same location. The evaluation calculated the

number of cases in which the robot would successfully attempt to pick the medical kit

not already taken by the human teammate first. The results are tabulated in Table

I. As shown, the mental modeling capability leads to significant improvements over

the baseline for avoiding potential resource conflicts.

6.5.2 Plan Recognition

Although the plan recognition component was not fully integrated into the Sapa

Replan planner, two proof of concept scenarios to illustrate its usefulness were con-

110

Figure 6.3: Plan Recognition: Case 1.

Figure 6.4: Plan Recognition: Case 2.

sidered: reactive, and proactive. In the reactive case, the robot only knows agent α’s

goal partially: it gets information about agent α having a new triage goal, but does

not know that there already existed a triage goal on another location. In this case,

by looking at the relative probabilities of all triage related goals, the robot is quickly

able to identify which of the goals are likely based on incoming observations; and it

reacts by deconflicting the medkit that it is going to pick up. In the proactive case,

the robot knows agent α’s initial state and goals exactly, but agent α now assumes

that the robot will bring him a medkit without being explicitly asked to do so. In

such cases, the robot adopts the goal to pick up and take a medkit to agent α by

recognizing that none of agent α’s observed actions seem to be achieving that goal.

The reactive scenario was evaluated with the help of a simulated case similar to

111

the one first introduced in Section 6.1. In this case, the robot’s hypothesis (set)

on the possible goals of Commander X (CommX) contains two goals – one where the

commander conducts triage in room1, and another where the commander conducts

triage in room5. The goal of the plan recognition component is to accept observations

as they come in piecemeal, and use those observations to evaluate the belief in each

one of these hypothesized goals. Figure 6.3 illustrates the scenario, as well as the

observations that are given to the robot. The graph summarizes the robot’s belief

in the two goals in the hypothesis set as each observation comes in, with the red

probability standing for the room5 goal and the blue probability denoting the room1

goal. A kink is evident in this graph, between observations 1 and 5. This results from

the fact that as the robot receives observations regarding CommX’s actual executed

plan, the plan recognition module is reasoning about the most likely goal that the

plan observed up until the current point is achieving. As it becomes more and more

evident from the observations that CommX is moving towards room1 (and not room5),

the robot’s belief in that particular goal converges to probability 1.0.

A similar case is illustrated in Figure 6.4; however, notice the difference in the

map layout from the previous case – in this case, there is a wall now that separates

the hall4 and hall5 areas. This topography forces CommX to make a choice at the

very beginning of the plan, as evidenced in the first observation. Once this choice

is made, the robot’s belief in the goal that is supported by that choice (in this case,

heading to room1) steadily increases, and the kink that is observed in the previous

case is no longer present.

6.6 Limitations

One of the bigger limitations of this work concerns the plan recognition based ap-

proach outlined in Section 6.3.3. The current approach works since it takes a list of of

112

high-level actions (along with the objects/parameters used) performed by the agent

of interest as input from a third agent. However, the assumption that observations

are given in such a structured, high-level form is non-trivial. Indeed, much research

has gone into the observational uncertainty inherent in recognizing plans among in-

teracting agents (Huber and Durfee, 1993), to go along with research on planning for

sensor based observations for plan and activity recognition (Patterson et al., 2005)

and object recognition (Gremban and Ikeuchi, 1994). The intent behind pointing

out this limitation is to acknowledge the fact that in robotics communities and fora

similar to those that some of the work in this dissertation has previously appeared

in, there is a very real question regarding the availability of high-level observations

that can be used as is by a planner and plan recognition module. Though this work

does not address this question further, it is a promising area of future research.

Apart from this limitation, the method outlined in Section 6 also makes some

restrictive assumptions when modeling the (human) agent of interest. To begin with,

it assumes full knowledge about that agent. That is, it assumes that the action model,

initial state, and entire goal set of that agent is fully known, in order to simulate the

plan of that agent. Even for a robotic agent that is completely under the control of

the planner, this is an unrealistic assumption to make, since the action model is rarely

known completely – there are many methods to deal with such incompleteness, as

outlined in Section 1.1.5. Similarly, the current method also assumes that the agent

being modeled is a perfectly rational being and will not select actions at random.

Finally, there is work currently underway that seeks to relax the very restrictive

assumption that all of the goals of the agent of interest are known beforehand.

113

Chapter 7

FIELDED PROTOTYPE

Evaluating the contribution of work that discusses an entire problem area, such as

Human-Robot Teaming, and its implications in another established area – automated

planning – is fraught with three different issues:

1. Coverage: Surveying the previous work in the areas of Human-Robot Interac-

tion, and automated planning; and linking it to the approaches proposed.

2. Evaluation: Reporting results to determine if the proposed ideas achieve the

desired advances.

3. Prototype: Devising an integrated prototype to evaluate the novel work that is

proposed by the work.

Of these, the issue of coverage was addressed in Chapter 2, where prior work that

considers the intersections in the interactions of humans, robots, and planners was

presented. Further examples of related work will be presented in the following Sec-

tion 7.1. Evaluations for each of the contributions were presented at the ends of

the respective chapters. In the rest of this chapter, the prototype issue is tackled by

presenting a motivating example of a Human-Robot Teaming task, and describing

the kind of integration among various components that is carried out to make this

possible. Details are also provided on the Sapa Replan planning system, which is

the main systems-oriented artefact of this dissertation, and incorporates all of the

human-robot teaming (HRT) related extensions described in this document.

114

ROBOT

Goals

Model Updates

Trajectory

Constraints

Hypotheticals

Reports

Active

Model Elicitation

PDDL

〉-PDDL

LTL

N-LTL

Replanning

Open World

Planning

Excuse

Generation

HUMAN

Affect

Dialog
Planning

Task Planning

Instructions

Negotiation

Excuses
Questions

Belief
Modeling

Path
Planning

Sensing Intent Recognition

Activity Recognition Dynamics

Figure 7.1: A schematic of the various interactions present in a simple human-robot
teaming task.

7.1 A Motivating Example

Consider a robotic agent that is employed in lieu of human emergency personnel

in an urban search and rescue setting. The agents that constitute this scenario are as

follows — Human Agents: Commander X, Commander Y , Commander Z; Robotic

Agent: R.

R is sent into a building by Commander Z with a nominal description of

the building’s layout, and an initial goal – to gather a medical kit from

a specific location and deliver it to Commander X. As R is proceeding

through the building, however, Z (who is located in another location but

can communicate with R) informs the robot that there may be wounded

people in rooms in that building, and that the robot should check for

such people if possible. Additionally, R encounters Commander Y in

115

the building, who asks it to void the earlier (more important) goal of

finding the medical kit and delivering it; and to follow instead. R declines

while indicating urgency and interruption in its voice, and negotiates a

commitment to meet Y wherever the commander happens to be when it

achieves its current goal. R then gathers the medical kit and proceeds to

X’s location to deliver it; however, arriving outside that door, it senses

that the door is closed. This triggers a further query to the handler,

Z, who tells the robot to try a new action – pushing the door open. R

tries this, succeeds, and delivers the medical kit to X–who reinforces the

commitment to go and meet Y at once.

Even in this simple task, various sub-problems must interact and be solved in

parallel to enable the robot to act autonomously and intelligently in carrying out

its tasks as part of the human-robot team. Some of these problems (outlined in

Figure 7.1) are presented below:

1. Task Planning: Agents must be able to plan for changing or conditional goals

like the medical kit (Talamadupula et al., 2010a), elaboration of the goals asso-

ciated with the task (Baral and Zhao, 2008) as well as trajectory constraints like

‘remain undetected’ on the form of the plan (Mayer et al., 2007). Additionally,

the task planner may have to deal with updates to the model that are either

learned, or specified by humans (Cantrell et al., 2012).

2. Path Planning: Autonomous robots must be endowed with capabilities of plan-

ning their paths. These may include planning with goal-oriented actions like

looking for the medical kit (Simmons and Koenig, 1995), finding the shortest

path to the room that holds the kit (Koenig et al., 2004), obeying constraints

116

on the trajectories of the path (Saffiotti et al., 1995) or planning for agents that

exhibit different dynamics, like UAVs and AUVs (McGann et al., 2008).

3. Dialog Planning: Robots need to skilled at both recognizing and producing sub-

tle human behaviors vis-a-vis dialog (Briggs and Scheutz, 2013) – for example,

in the above scenario, the agent needs to both understand the superiority in

Commander Y’s voice when requesting a new task, as well as inflect its own

response with urgency in order to indicate that the task at hand cannot be

interrupted. Negotiation is another possibility, for which the robot needs to be

informed by the task planner regarding excuses (Göbelbecker et al., 2010) and

other hypotheticals.

4. Belief and Mental Modeling: The agent must be in a position to model the

beliefs and mental state of other agents that are part of the scenario (Briggs

and Scheutz, 2012); in this case, the agent may want to model Commander Y’s

mental state to determine her location at the end of the first task.

5. Intent and Activity Recognition: Closely tied in to both dialogue and mental

modeling is the problem of recognizing the intents of, and activities performed

by, other agents (Vail et al., 2007). Humans are endowed with these capabilities

to a very sophisticated degree, and agents that interact and team with humans

must possess them as well.

6. Architecture: Finally, the integrated architecture that all these processes ex-

ecute in plays a big role in determining the planning capabilities of the au-

tonomous system. A good control structure must display programmability,

adaptability, reactivity, consistent behavior, robustness, and extensibility (Alami

et al., 1998). By dint of having to interact with humans, it must also fulfill the

117

notions of attending and following, advice-taking, and tasking (Konolige et al.,

1997). Finally, it must be able to detect and recover from failure, and tide all

the other planning components over that failure.

7.2 Planning System

This work builds on and implements new features into the Sapa Replan (Ta-

lamadupula et al., 2010a) planner, an extension of the metric temporal planner

Sapa (Do and Kambhampati, 2003). Sapa Replan is a state-of-the-art planner that

can handle actions with costs and durations, partial satisfaction of goals, and changes

to the world and model via replanning. Of these, the most relevant to the problem of

dynamic natural language input is the ability to model and use changes to the world

to the robot’s advantage. Sapa Replan additionally handles temporal planning and

partial satisfaction. The system contains an execution monitor that oversees the

execution of the current plan in the world, which focuses the planner’s attention by

performing objective (goal) selection, while the planner in turn generates a plan using

heuristics that are extracted by supporting some subset of those objectives.

The planner consists of three coupled, but distinct parts:

• Search: Sapa Replan performs a weighted A*, forward search using net benefit

as the optimization criterion.

• Heuristic: The heuristic used to guide the planner’s search is based on well-

known relaxed planning graph heuristics where, during search, relaxed solutions

are found in polynomial time per state. Sapa uses a temporal relaxed planning

graph that accounts for the durations of actions when calculating costs and

finding relaxed solutions. In the partial satisfaction planning extensions, the

heuristic also performs online goal selection. In essence, it solves for all goals

118

(hard and soft) in the relaxed problem and gives a cost for reaching each of

them (∞ for unreachable goals). If the cost of reaching a soft goal is greater

than its reward, it removes that goal from the heuristic calculation. If the cost

of reaching a hard goal is infinity, it marks a state as a dead end. Finally,

the difference between the total reward and total cost of the remaining goals is

calculated and used as the heuristic value.

• Monitoring / Replanning: The extensions for replanning require the use of an

execution monitor, which takes updates from the human-robot team architec-

ture (in this case). Upon receiving an update, the planner updates its knowledge

of the “current state” and replans. Replanning itself is posed as a new partial

satisfaction planning problem, where the initial and goal states capture the

status and commitments of the current plan (Cushing et al., 2008).

To see how the planning system copes with open environment scenarios, it is

important to understand the details of its execution monitoring component. This is

arguably the most important part of the planning system for the problem at hand,

as its focus is on handling unexpected events and gathering new information for the

planner. It serves as an interface between the integrated architecture (discussed in

the next section) and the planning engine.

New sensory information, goals, or facts given by a human commander can be sent

to the planner at any time, either during planning or after a plan has been output.

Regardless of the originating source, the monitor listens for updates from a single

source in the architecture and correspondingly modifies the planner’s representation

of the problem. Updates can include new objects, timed events (i.e., an addition or

deletion of a fact at a particular time, or a change in a numeric value such as action

cost), the addition or modification of a goal (or its deadline and/or reward), and a

119

time point to plan from.

All goals are on propositions from the set of boolean fluents in the problem, and

there can only be one goal on any given proposition. In the default setting, goals are

hard, lack deadlines and have zero reward 1 . All fields in an update specification,

with the exception of “:now” (representing the time that the planner expects to

begin executing the plan), may be repeated as many times as required, or left out

altogether. The intent of allowing such a flexible representation for updates is to

provide for accumulation of changes to the world in one place.

As discussed by (Cushing et al., 2008), allowing for updates to the planning prob-

lem provides the ability to look at unexpected events in the open world as new

information rather than faults to be corrected. In this setup, problem updates cause

the monitor process to restart the planner (if it is running) after updating its internal

problem representation.

7.2.1 Partial Satisfaction Planning

A Partial Satisfaction Planning (PSP) problem involves actions and (soft) goals

with varying costs and rewards. This contrasts with classical planning, which focuses

on hard goal achievement. The planning objective is to find plans with high net benefit

(cumulative goal reward minus plan action cost) by considering which goals should

be achieved and which should be ignored due to their high cost or other resource

constraints (such as time). The selection process occurs during an A* search. At

each search state, the planner’s heuristic evaluates the cost for achieving individual

goal facts and removes those goals (and supporting actions) that appear too costly

to achieve. That is, a goal will not be pursued at a given state if the estimated cost

1Since these goals are hard, they can be seen as carrying an infinite penalty; i.e., failing to achieve
even one such goal will result in plan failure.

120

of achievement outweighs the reward.

Goal reward can be viewed as a representation of potential opportunities. The

replanning process allows the planner to exploit these as the problem changes over

time (i.e., as new updates are sent to the planner). The system aims to handle

developments in the problem that remain unknown until execution time, while at the

same time providing an ability to exploit opportunities. When a new update arrives,

it may enable a path to a potential goal. For example, if a new doorway is discovered,

that immediately entails a room and the potential opportunity to achieve more net

benefit by looking for and perhaps finding an injured person. Similarly, if a new hard

goal arrives with a closely approaching deadline, the planner can generate a new plan

that directly achieves it, ignoring soft goals—hard goals such as these can be looked

at as commitments that must be achieved.

In Sapa Replan soft goal choice occurs simultaneously as part of the planner’s

forward state-space search. The planner estimates the cost of reaching goals using

its planning graph heuristic and assumes that goals whose achievement cost is higher

than their reward will remain unreached (and thus not be selected for achievement

at a given search state). 2 When a plan is found, it is announced to the goal

manager, which then performs its analysis to find conflicts that may occur in the

control mechanisms of the robot. Unfortunately, Sapa Replan’s support for all of the

varied functionalities listed previously renders it less scalable to an increase in the

number of soft goals that must concurrently be pursued by the planner.

2Note that past versions of the planner performed objective selection upon each problem update
using the same process; however this may lead to the unfortunate consequence of selecting mutually
exclusive objectives.

121

7.3 Integrated Architecture

The Sapa Replan planner is integrated into the robotic architecture as a newly

created client server that interacts directly with a goal manager, as detailed in (Scher-

merhorn et al., 2009) (see Figure 7.3). This new server does not manage action execu-

tion, as the existing goal manager already has that capability. The planner is viewed

by the goal manager, in effect, as an external library that augments its internally-

maintained store of procedural knowledge. When a new goal is presented, the goal

manager determines whether there is a procedure already known to achieve it; if so,

then that procedure is executed, otherwise the goal is sent to the planning component,

which returns a script representation of a plan to achieve the goal, if one is found. In

the following, we describe these parts and the integration of the system in detail.

7.3.1 DIARC Control Architecture

The architecture used to control the robotic agent in the above scenario (shown

in Figure 7.2) is a subset of the distributed, integrated, affect, reflection and cognition

architecture (DIARC) (Scheutz et al., 2007a). DIARC combines higher-level cognitive

tasks, such as natural language understanding, with lower-level tasks, such as naviga-

tion, perceptual processing, and speech production (Brick and Scheutz, 2007). DIARC

has served as a research platform for several human subject experiments in the past

(although none of those were directly related to any of the work in this disserta-

tion), and is designed with human-robot interaction in mind, using multiple sensor

modalities (e.g., cameras for visual processing, microphones for speech recognition

and sound localization, laser range finders for object detection and identification) to

recognize and respond appropriately to user requests. DIARC is implemented in the

agent development environment (Scheutz, 2006), a framework that allows developers

122

to create modular components and deploy them on multiple hosts. ADE combines

support for the development of complex agent architectures with the infrastructure

of a multi-agent system that allows for the distribution of architectural components

over multiple computational hosts (Scheutz, 2006). Each functional component is

implemented as a server. A list of all active ADE servers, along with their function-

alities, is maintained in an ADE registry. The registry helps in resource location,

security policy enforcement and fault tolerance and error recovery. When an ADE

server requires functionality that is implemented by another component, it requests a

reference to that component from the registry, which verifies that it has permission to

access the component and provides the information needed for the two components

to communicate directly.

The ADE goal manager is a goal-based action selection and management system

that allows multiple goals to be pursued concurrently, so long as no resource conflicts

arise. When the actions being executed for one goal present a hazard to the achieve-

ment of another goal, the goal manager resolves the conflict in favor of the goal with

the higher priority, as determined by the net benefit (reward minus cost) of achieving

the goals and the time urgency of each (based on the time remaining within which to

complete the goals).

The goal manager maintains a “library” of procedural knowledge in the form of

(1) action scripts which specify the steps required to achieve a goal, and (2) action

primitives which typically interface with other ADE servers that provide functionality

to the architecture (e.g., a motion server could provide an interface to the robot’s

wheel motors, allowing other ADE servers to drive the robot). Scripts are constructed

of calls to other scripts or action primitives. Aside from this predefined procedural

knowledge, however, the goal manager has no problem-solving functionality built in.

Therefore, if there is no script available that achieves a specified goal, or actions

123

Figure 7.2: A schematic of the DIARC architecture used on the robot.

Laser

Server

Vision

Server

Goal

Manager

SapaReplan

Server

Motion

Server

Speech

Server

Laser

Rangefinder

Camera

Robot

Base Speaker

Figure 7.3: A schematic showing the interaction of the Sapa Replan planner server
with the ADE infrastructure.

are missing in a complex script, then the action interpreter fails. The addition of

the planning system thus provides DIARC with the problem-solving capabilities of a

standard planner in order to synthesize action sequences to achieve goals for which

no prior procedural knowledge exists.

124

7.3.2 Integrating the Planner into DIARC

The integration uses a new interface to the planner to facilitate updates from the

goal manager. The modified version of the planner is encapsulated as a new DIARC

component that provides access to this interface to other ADE servers (although in

practice, the goal manager is the only client of the planning server). The interface

specifies how the goal manager can send state updates to the planner, and how the

planner, in turn, can send updated or new plans to the goal manager. State updates

are sent whenever relevant data of the requested type is received via sensors. In the

USAR scenario that is used, for example, information about doors and boxes (which

stand in for humans in the experimental runs) would be considered relevant. In this

manner, the goal manager filters the information that is sent back in the form of

problem updates, to avoid overwhelming the planning system. These updates can

then trigger a replanning process, which returns a plan in the form of action scripts

that the goal manager can adopt and execute in the same way as its predefined scripts.

Moreover, the new plan can be added to the goal manager’s local knowledge base so

that future requests can be serviced locally without having to invoke the planner. This

plan re-use is applicable only when the relevant parts of the world remain unchanged,

where relevance is determined by examining the preconditions of the actions in the

plan. If there is a change in these facts due to updates to the world, ADE initiates

replanning via Sapa Replan.

The Sapa Replan planner server starts the Sapa Replan problem update monitor,

specifies the planning domain, and (when applicable) the sensory update types that

are of interest to the planner are sent to the goal manager, and the planner server

enters its main execution loop. In this loop, it retrieves new plans from the planner (to

be forwarded to the goal manager) and sends new percepts and goal status updates

125

(received from the goal manager) to the planner. If a percept triggers replanning, the

previously executing plan (and script) is discarded and a new plan takes its place.

A closely related issue that crops up when integrating a planner such as Sapa

Replan into a robotic architecture is that actions (and consequently plans) take time

to execute on a robot and carry temporal annotations denoting the time it takes to

execute them. Since execution is happening in an open-world, it is entirely possible

that an action takes more time to execute than was planned. This problem is cir-

cumvented by assigning conservative time estimates to each action available to the

robotic agent (and consequently the planner). If there is slack time during the execu-

tion, the planner simply brings forward the execution of the actions that are next in

the plan. Though this approach would fail for certain types of concurrency exhibited

by actions (Cushing et al., 2007), the USAR scenario that is sought to be solved does

not contain any actions that need to be executed concurrently 3 . In case an action

takes longer time to execute than even the conservative estimate assigned to it (due

to a failure of some nature), the planner is called into play in order to provide a new

plan (see Chapter 4).

7.4 Deployment

The integration of the Sapa Replan planner and the DIARC system has been suc-

cessfully deployed on various robotic platforms, thus demonstrating the reliability

and seamless nature of the integration. Most of the work detailed in the previous

chapters was evaluated on a deployed robot in a real-world setting: in Chapter 3, the

evaluation results were generated on a Pioneer P3-AT; in Chapter 5 on an MDS base;

and in Chapter 6, the results were generated using a Willow Garage PR2.

3Considering the fact that there is only one robotic agent that can effect changes in the world in
this scenario, this is not an unreasonable assumption to make.

126

Chapter 8

CONCLUSION

This chapter concludes the dissertation by summarizing the contributions of the

work, listing some avenues via which this work may be gainfully extended in the

future, and finally considering some of the broader implications and impact resulting

from of this work.

8.1 Summary of Contributions

With the advancement in robotic technology, humans and robots have come in-

creasingly closer in terms of cooperative interaction and teaming. This dissertation

motivated the use of automated planning technology as a mediator in such team-

ing interactions between a human agent and a robotic agent, and the challenges to

automated planners arising from this.

Open World Goals

Goals are a key component of autonomous planning and action; in human-robot

teaming scenarios, they become the vehicle through which the human agent delegates

or cedes autonomy and responsibility to the robot. The first planning challenge

addressed by this work was the issue of goals that may be specified in ways that seem

natural to humans, but are hard for current planners to handle. Specifically, this

issue cropped up when goals were described with respect to objects and facts in an

open world – that is, when those objects and facts may not have been known when

the goal was assigned, and may only have come into the planner’s knowledge base

much after the initial planning phase was over and the execution process was being

127

carried out.

A solution to this problem was proposed (Talamadupula et al., 2010a) that first

provided a framework for specifying conditional knowledge and rewards known as

open world quantified goals (OWQGs). On top of this framework, an approach that

uses the knowledge specified in the OWQGs to intelligently trade sensing costs with

goal rewards was implemented. In addition to these contributions, there was also the

introduction of the notion of conditional goals, a generalized version of the OWQGs

that could allow for the use of expectations on facts (and consequently goals) of inter-

est. The OWQGs were implemented in the Sapa Replan planner, and an evaluation

was carried out that showed that using this construct greatly increased the net reward

collected by the robot upon the execution of its plan.

Changing Worlds

Yet another challenge that is brought to the fore due to having to plan for a deployed

application like HRT is the need to handle dynamic environments and ever-changing

world states that can differ from the planner’s original conception. These differences

can arise due to factors like the agent’s own execution – that is, the robot may not

be able to execute the plan exactly as conceptualized by the planner; or simply due

to the presence of other agents that share (and thus change) the same world and

its constituent states. Furthermore, if a plan once computed is made public, that

may introduce further commitments on that plan due to shared resources, goals, or

circumstances.

The automated planning community has tried to tackle the problem of execution

failures and world states changing outside of the planner’s expectation by proposing

various disparate replanning algorithms (c.f. Section 2.3). This dissertation proposed

an argument for a better, more general model (Talamadupula et al., 2013b) of re-

128

planning problems that involve the plans and goals of multiple agents – scenarios

similar to HRT. That model considered the central components of a planning prob-

lem together with the constraints imposed by the execution of the original plan in the

world (before it was interrupted) in creating a new replan. It was shown that these

constraints took the form of commitments on the part of an agent – either towards

the earlier plan itself, or to other agents in the world. This general commitment sen-

sitive planning architecture was shown to subsume past replanning techniques, and

results were provided to show that different past techniques optimized metrics that

were quite varied from each other.

Evolving Models

The third challenge that was handled in this work concerned an assumption that

most current planners make – that agents’ action models are complete and correct,

and thus unchanging. While related work that deals with the problem of planning with

incomplete models, this dissertation focused more on the problem of using available

information to complete the models themselves. This was accomplished in two ways

– first, knowledge from the human was used to add new actions to the model of the

robot. This knowledge was obtained in the form of natural language instructions

from the human teammate, which were then processed to create a new action to

be added to the planner’s existing action model of the robot’s capabilities (Cantrell

et al., 2012). This work was evaluated with various human subjects and shown to be

effective at completing the model of the robotic agent in a deployed HRT use case.

Coordination Through Plan & Intent Recognition

In Chapter 6, knowledge about a human agent’s model was used to augment the

robot’s planning capabilities and facilitate coordination. This was done by gathering

129

observations about the human agent’s actions (relayed by another agent to the robot)

and using those observations to model the mental state of the human agent of interest,

including the goals and current state of that agent (Talamadupula et al., 2014a). This

information was then used to simulate that human agent’s plan, so as to coordinate

the robot’s own plan with that simulated plan to maximize teaming efficiency, by

minimizing contentions for a specific resource. This work was also augmented with

rudimentary plan recognition capabilities to relax some of the assumptions made

initially. Experiments in simulation as well as on a deployed robot in a HRT scenario

confirmed the utility of this approach.

8.2 Future Work

Throughout this dissertation, the existing limitations of the approaches taken

were pointed out; where solutions to these limitations existed, they were either im-

plemented and described, or written about in a manner such that future work may

use this document as a starting reference for extensions.

In Section 3.5, work by Joshi et al. (Joshi et al., 2012) related to open world goals

was mentioned as an approach complementary to the one adopted in this disserta-

tion. Also alluded to was the very real challenge of recognizing objects from noisy

sensor feedback on a robot, and the complete dependence of the current OWQG-based

approach on the resolution of this problem by other entities in the integrated system.

Section 4.5 went into the limitations of the unified approach to replanning that

was proposed in this work, and the potential for future work arising from addressing

those limitations. The first of these concerned the evaluation offered in support of

this unified approach, and the idea that the compilation presented in this dissertation

can be used to reduce every kind of replanning problem (with all its attendant con-

straints) to a classical planning problem. Such a compilation would be of immense use

130

to the replanning problem, since it would unleash fast classical planners that improve

year upon year on to this problem. Another avenue for future work pertains to the

formalization of the notion of commitment – work in multi-agent systems has con-

sidered this problem in the past, and it would be worthwhile exploring the marriage

of one (or a combination) of these existing representations with the unified replan-

ning framework presented here. Finally, an immediate area of interest to planning

researchers is the issue of replanning metrics, how to combine these disparate metrics,

and where realistic numbers that inform these metrics are obtained from.

Section 5.5 examined the limitations of the approaches taken to complete the

models used to generate plans for the robotic agent, and ways to improve upon the

work presented in this dissertation. One clear direction where further progress can be

made concerns the initial plan recognition methodology outlined in Section 6.4 – this

process needs to be fully integrated into the Sapa Replan system in order to become

a plug-and-play service like the rest of the contributions of this thesis. There is also

work currently underway on relaxing the assumption that the goals of the human

agent of interest are known fully to the robot (and hence planner), and instead trying

to filter the set of all possible goals of that agent down based on received observations

about that agent’s actions (c.f. Section 6.6).

8.3 Broader Implications

Apart from the contributions detailed above that are related to a specific appli-

cation (human-robot teaming), one of the more general contributions of this work

was the provision of the general underpinnings required to frame a research prob-

lem that holds great promise as a unifying umbrella for future work in this area –

the human- in-the-loop planning problem. Section 1.1.5 contained a description of

the two general problems that a planner needs to solve to situate itself for decision-

131

making in such scenarios. The understanding offered by this generalized framework

contributed in a large way to the conception of an integrated system that could tackle

the crowdsourced planning problem (Talamadupula and Kambhampati, 2013; Tala-

madupula et al., 2013a; Manikonda et al., 2014a), with the work being recognized with

a ‘Best Demo’ award at the 2014 International Conference on Automated Planning

and Scheduling (Manikonda et al., 2014b).

Additionally, work that has been presented as part of this dissertation has: pro-

vided research opportunities for undergraduate students (Sethia et al., 2014); been

published in multiple international workshops, conferences, and journals; been deliv-

ered as talks at various venues; and will form a significant part of a tutorial at the

AAAI 2015 conference.

132

REFERENCES

Agre, P. and D. Chapman, “What are plans for?”, Robotics and Autonomous Systems
6, 1-2, 17–34 (1990).

Alami, R., R. Chatila, S. Fleury, M. Ghallab and F. Ingrand, “An architecture for
autonomy”, The International Journal of Robotics Research 17, 4, 315–337 (1998).

Alami, R., A. Clodic, V. Montreuil, E. A. Sisbot and R. Chatila, “Toward human-
aware robot task planning.”, in “AAAI Spring Symposium: To Boldly Go Where
No Human-Robot Team Has Gone Before”, pp. 39–46 (2006).

Albore, A., H. Palacios and H. Geffner, “A translation-based approach to contingent
planning”, in “Proc. 21st Int. Joint Conference on AI (IJCAI-09)”, pp. 1623–1628
(2009).

Aldebaran Robotics, “Nao Humanoid Robot, Aldebaran Robotics, Paris, France”,
(2008).

Bacchus, F. and F. Kabanza, “Planning for temporally extended goals”, in
“AAAI/IAAI, Vol. 2”, pp. 1215–1222 (1996).

Bagchi, S., G. Biswas and K. Kawamura, “Interactive task planning under uncertainty
and goal changes”, Robotics and Autonomous Systems 18, 1, 157–167 (1996).

Baier, J. A. and S. A. McIlraith, “Planning with preferences”, AI Magazine 29, 4, 25
(2009).

Baral, C., V. Kreinovich and R. Trejo, “Computational complexity of planning with
temporal goals”, in “IJCAI”, pp. 509–514 (2001).

Baral, C. and J. Zhao, “Non-monotonic temporal logics that facilitate elaboration
tolerant revision of goals”, in “Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI”, pp. 13–17 (2008).

Barbehenn, M. T., R. D’andrea, A. E. Hoffman, M. C. Mountz and P. R. Wur-
man, “System and method for transporting inventory items”, US Patent 7,912,574
(2011).

Bartold, T. and E. Durfee, “Limiting disruption in multiagent replanning”, in “Pro-
ceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems”, pp. 49–56 (ACM, 2003).

Benton, J., A. J. Coles and A. Coles, “Temporal planning with preferences and time-
dependent continuous costs.”, in “ICAPS”, (2012).

Benton, J., M. Do and S. Kambhampati, “Anytime heuristic search for partial satis-
faction planning”, AIJ 178, 5-6 (2009).

133

Brick, T. and M. Scheutz, “Incremental natural language processing for HRI”, in
“Proceedings of the Second ACM IEEE International Conference on Human-Robot
Interaction”, pp. 263–270 (Washington D.C., 2007).

Briggs, G. and M. Scheutz, “Facilitating mental modeling in collaborative human-
robot interaction through adverbial cues”, in “Proceedings of the SIGDIAL 2011
Conference”, pp. 239–247 (Association for Computational Linguistics, 2011).

Briggs, G. and M. Scheutz, “Multi-modal belief updates in multi-robot human-robot
dialogue interaction”, in “Proceedings of 2012 Symposium on Linguistic and Cog-
nitive Approaches to Dialogue Agents”, (2012).

Briggs, G. and M. Scheutz, “A hybrid architectural approach to understanding and
appropriately generating indirect speech acts”, in “Proceedings of the 27th AAAI
Conference on Artificial Intelligence”, p. (forthcoming) (2013).

Cantrell, R., K. Talamadupula, P. Schermerhorn, J. Benton, S. Kambhampati and
M. Scheutz, “Tell me when and why to do it!: Run-time planner model updates
via natural language instruction”, in “Human-Robot Interaction (HRI), 2012 7th
ACM/IEEE International Conference on”, pp. 471–478 (IEEE, 2012).

Cirillo, M., L. Karlsson and A. Saffiotti, “A human-aware robot task planner.”, in
“ICAPS”, (2009).

Cirillo, M., L. Karlsson and A. Saffiotti, “Human-aware task planning: an applica-
tion to mobile robots”, ACM Transactions on Intelligent Systems and Technology
(TIST) 1, 2, 15 (2010).

Clark, H. H. and S. E. Brennan, “Grounding in communication”, Perspectives on
socially shared cognition 13, 1991, 127–149 (1991).

Coltin, B. and M. Veloso, “Towards replanning for mobile service robots with shared
information”, in “To Appear, Proc. of ARMS Workshop, AAMAS”, (2013).

Cushing, W., J. Benton and S. Kambhampati, “Replanning as deliberative re-
selection of objectives”, Tech. rep., CSE Department, Arizona State University
(2008).

Cushing, W. and S. Kambhampati, “Replanning: A new perspective”, in “Proceed-
ings of ICAPS”, (2005).

Cushing, W., S. Kambhampati, Mausam, D. Weld and K. Talamadupula, “Evaluating
temporal planning domains”, Proceedings of ICAPS 2007 (2007).

Do, M. and S. Kambhampati, “Planning graph-based heuristics for cost-sensitive
temporal planning”, in “Proceedings of AIPS”, vol. 2 (2002).

Do, M. and S. Kambhampati, “Sapa: A multi-objective metric temporal planner”,
Journal of Artificial Intelligence Research 20, 1, 155–194 (2003).

134

Do, M. B., J. Benton, M. Van Den Briel and S. Kambhampati, “Planning with goal
utility dependencies”, in “Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-2007)”, pp. 1872–1878 (2007).

Etzioni, O., K. Golden and D. S. Weld, “Sound and efficient closed-world reasoning
for planning”, AIJ 89, 1-2, 113–148 (1997).

Ferguson, G., J. Allen and B. Miller, “TRAINS-95: Towards a mixed-initiative plan-
ning assistant”, in “Proceedings of the Third Conference on Artificial Intelligence
Planning Systems (AIPS-96)”, pp. 70–77 (1996).

Fikes, R., “Monitored execution of robot plans produced by strips”, Tech. rep., DTIC
Document (1971).

Fikes, R., P. Hart and N. Nilsson, “Learning and executing generalized robot plans”,
Artificial intelligence 3, 251–288 (1972).

Fikes, R. and N. Nilsson, “STRIPS: A new approach to the application of theorem
proving to problem solving”, Artificial Intelligence 2, 3, 189–208 (1972).

Firby, R., “Adaptive execution in complex dynamic worlds”, (1989).

Fox, M., A. Gerevini, D. Long and I. Serina, “Plan stability: Replanning versus plan
repair”, in “Proc. of ICAPS 2006”, (2006).

Fox, M. and D. Long, “PDDL2. 1: An extension to PDDL for expressing temporal
planning domains”, Journal of Artificial Intelligence Research 20, 2003, 61–124
(2003).

Fritz, C. and S. McIlraith, “Monitoring plan optimality during execution”, in “Proc.
of ICAPS 2007”, pp. 144–151 (2007).

Garland, A. and N. Lesh, “Plan evaluation with incomplete action descriptions”, in
“Proceedings of the National Conference on Artificial Intelligence”, pp. 461–467
(Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2002).

Gat, E., “Integrating planning and reacting in a heterogeneous asynchronous archi-
tecture for controlling real-world mobile robots”, in “Proceedings of the National
Conference on Artificial Intelligence”, pp. 809–809 (Citeseer, 1992).

Gerevini, A., P. Haslum, D. Long, A. Saetti and Y. Dimopoulos, “Deterministic
planning in the fifth international planning competition: Pddl3 and experimental
evaluation of the planners”, Artif. Intell. 173, 5-6, 619–668 (2009).

Gerevini, A. and D. Long, “Plan constraints and preferences in PDDL3”, in “ICAPS
Workshop on Soft Constraints and Preferences in Planning”, (2006).

Gerevini, A., A. Saetti and I. Serina, “Planning through stochastic local search and
temporal action graphs in lpg.”, J. Artif. Intell. Res. (JAIR) 20, 239–290 (2003).

135

Gil, Y., “Learning by experimentation: Incremental refinement of incomplete plan-
ning domains”, (1993).

Göbelbecker, M., T. Keller, P. Eyerich, M. Brenner and B. Nebel, “Coming up with
good excuses: What to do when no plan can be found”, in “International Conference
on Automated Planning and Scheduling (ICAPS)”, (2010).

Golden, K. and D. S. Weld, “Representing sensing actions: The middle ground revis-
ited”, in “KR”, pp. 174–185 (1996).

Gremban, K. D. and K. Ikeuchi, “Planning multiple observations for object recogni-
tion”, International journal of computer vision 12, 2-3, 137–172 (1994).

Hoffman, G. and C. Breazeal, “Effects of anticipatory perceptual simulation on prac-
ticed human-robot tasks”, Autonomous Robots 28, 4, 403–423 (2010).

Hsu, C.-W., B. W. Wah, R. Huang and Y. Chen, “Constraint partitioning for solv-
ing planning problems with trajectory constraints and goal preferences”, in “Pro-
ceedings of the 20th international joint conference on Artifical intelligence”, pp.
1924–1929 (Morgan Kaufmann Publishers Inc., 2007).

Huber, M. J. and E. H. Durfee, “Observational uncertainty in plan recognition among
interacting robots”, in “Proceedings, IJCAI-93 Workshop on Dynamically Interact-
ing Robots’, Chambery, France”, p. 68 (1993).

Hunsberger, L. and C. L. Ortiz Jr, “Dynamic intention structures i: a theory of
intention representation”, Autonomous Agents and Multi-Agent Systems 16, 3,
298–326 (2008).

Joshi, S., P. Schermerhorn, R. Khardon and M. Scheutz, “Abstract planning for
reactive robots”, in “Proceedings of the 2012 IEEE International Conference on
Robotics and Automation”, pp. 4379–4384 (IEEE, St. Paul, MN, 2012).

Joslin, D. and M. E. Pollack, “Least-cost flaw repair: A plan refinement strategy for
partial-order planning”, in “Proceedings of the National Conference on Artificial
Intelligence”, pp. 1004–1009 (1995).

Kambhampati, S., “Mapping and retrieval during plan reuse: a validation structure
based approach”, in “Proceedings of the Eighth National Conference on Artificial
Intelligence”, pp. 170–175 (1990).

Kambhampati, S., “Model-lite planning for the web age masses: The challenges of
planning with incomplete and evolving domain theories”, Proceedings of AAAI
2007 (2007).

Kambhampati, S. and B. Srivastava, “Universal classical planner: An algorithm for
unifying state-space and plan-space planning”, New Directions in AI Planning pp.
261–271 (1995).

Keyder, E. and H. Geffner, “Soft goals can be compiled away”, Journal of Artificial
Intelligence Research 36, 1, 547–556 (2009).

136

Klein, G., P. J. Feltovich, J. M. Bradshaw and D. D. Woods, “Common ground and
coordination in joint activity”, Organizational simulation 53 (2005).

Knight, R., G. Rabideau, S. Chien, B. Engelhardt and R. Sherwood, “Casper: Space
exploration through continuous planning”, IEEE Intelligent Systems pp. 70–75
(2001).

Koenig, S., M. Likhachev and D. Furcy, “Lifelong Planning A*”, Artificial Intelligence
155, 1, 93–146 (2004).

Kollar, T., M. Samadi and M. Veloso, “Enabling robots to find and fetch objects by
querying the web”, in “Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 3”, pp. 1217–1218 (International
Foundation for Autonomous Agents and Multiagent Systems, 2012).

Komenda, A., P. Novák and M. Pěchouček, “Decentralized multi-agent plan repair in
dynamic environments”, in “Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 3”, pp. 1239–1240 (Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2012).

Komenda, A., M. Pechoucek, J. Biba and J. Vokrinek, “Planning and re-planning
in multi-actors scenarios by means of social commitments”, in “Computer Science
and Information Technology, 2008. IMCSIT 2008. International Multiconference
on”, pp. 39–45 (IEEE, 2008).

Konolige, K., K. Myers, E. Ruspini and A. Saffiotti, “The saphira architecture: A
design for autonomy”, Journal of experimental & theoretical artificial intelligence
9, 2-3, 215–235 (1997).

Kulić, D. and E. A. Croft, “Safe planning for human-robot interaction”, Journal of
Robotic Systems 22, 7, 383–396 (2005).

Kwon, W. Y. and I. H. Suh, “A temporal bayesian network with application to design
of a proactive robotic assistant”, in “Robotics and Automation (ICRA), 2012 IEEE
International Conference on”, pp. 3685–3690 (IEEE, 2012).

Lemai, S. and F. Ingrand, “Interleaving temporal planning and execution: IxTeT-
eXeC”, in “Proceedings of the ICAPS Workshop on Plan Execution”, (Citeseer,
2003).

Levesque, H. J., P. R. Cohen and J. H. Nunes, “On acting together”, in “AAAI”,
vol. 90, pp. 94–99 (1990).

Manikonda, L., T. Chakraborti, S. De, K. Talamadupula and S. Kambhampati, “AI-
MIX: How a Planner Can Help Guide Humans Towards a Better Crowdsourced
Plan”, in “Innovative Applications of Artificial Intelligence (IAAI)”, p. 6 (AAAI
Press, 2014a).

137

Manikonda, L., T. Chakraborti, S. De, K. Talamadupula and S. Kambhampati,
“AI-MIX: How a Planner Can Help Guide Humans Towards a Better Crowd-
sourced Plan”, in “International Conference on Automated Planning and Schedul-
ing (ICAPS) Systems Demonstrations and Exhibits”, (2014b).

Mayer, M. C., C. Limongelli, A. Orlandini and V. Poggioni, “Linear temporal logic as
an executable semantics for planning languages”, Journal of Logic, Language and
Information 16, 1, 63–89 (2007).

McAllester, D. and D. Rosenblatt, “Systematic nonlinear planning”, (1991).

McGann, C., F. Py, K. Rajan, H. Thomas, R. Henthorn and R. McEwen, “A delib-
erative architecture for AUV control”, in “Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on”, pp. 1049–1054 (2008).

Meneguzzi, F., P. R. Telang and M. P. Singh, “A first-order formalization of commit-
ments and goals for planning”, (2013).

Meuleau, N. and D. Smith, “Optimal limited contingency planning”, in “19th Conf.
on Uncertainty in AI”, (2003).

Murphy, R. R., “Human-robot interaction in rescue robotics”, Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 34, 2, 138–
153 (2004).

Myers, K., “Advisable planning systems”, Advanced Planning Technology pp. 206–
209 (1996).

Myers, K., “Towards a framework for continuous planning and execution”, in “Pro-
ceedings of the AAAI Fall Symposium on Distributed Continual Planning”, (1998).

Nebel, B. and J. Koehler, “Plan reuse versus plan generation: a complexity-theoretic
perspective”, Artificial Intelligence 76, 427–454 (1995).

Nguyen, T. A., M. Do, A. E. Gerevini, I. Serina, B. Srivastava and S. Kambhampati,
“Generating diverse plans to handle unknown and partially known user prefer-
ences”, Artificial Intelligence 190, 1–31 (2012).

Nguyen, T. A., S. Kambhampati and M. B. Do, “Synthesizing robust plans under in-
complete domain models”, Neural Information Processing Systems (NIPS) (2013).

Orabona, F., G. Metta and G. Sandini, “Object-based visual attention: a model for a
behaving robot”, in “Computer Vision and Pattern Recognition-Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on”, pp. 89–89 (IEEE,
2005).

Patterson, D. J., D. Fox, H. Kautz and M. Philipose, “Fine-grained activity recog-
nition by aggregating abstract object usage”, in “Wearable Computers, 2005. Pro-
ceedings. Ninth IEEE International Symposium on”, pp. 44–51 (IEEE, 2005).

138

Penberthy, J. and D. Weld, “UCPOP: A sound, complete, partial order planner for
ADL”, in “Proceedings of the Third International Conference on Knowledge Rep-
resentation and Reasoning”, pp. 103–114 (Citeseer, 1992).

Ramırez, M. and H. Geffner, “Probabilistic plan recognition using off-the-shelf clas-
sical planners”, in “Proceedings of the 24th Conference on Artificial Intelligence”,
pp. 1121–1126 (2010).

Richter, S., M. Helmert and M. Westphal, “Landmarks revisited.”, in “AAAI”, vol. 8,
pp. 975–982 (2008).

Rosenthal, S., J. Biswas and M. Veloso, “An effective personal mobile robot agent
through symbiotic human-robot interaction”, in “Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent Systems: volume 1-
Volume 1”, pp. 915–922 (2010).

Rosenthal, S., M. Veloso and A. K. Dey, “Is someone in this office available to help
me?”, Journal of Intelligent & Robotic Systems 66, 1-2, 205–221 (2012).

Rosenthal, S. and M. M. Veloso, “Mobile robot planning to seek help with spatially-
situated tasks.”, in “AAAI”, vol. 4, p. 1 (2012).

Rosenthal, S., M. M. Veloso and A. K. Dey, “Learning accuracy and availability of
humans who help mobile robots.”, in “AAAI”, (2011).

Saffiotti, A., K. Konolige and E. H. Ruspini, “A multivalued logic approach to inte-
grating planning and control”, Artificial intelligence 76, 1, 481–526 (1995).

Samadi, M., T. Kollar and M. M. Veloso, “Using the web to interactively learn to
find objects.”, in “AAAI”, (2012).

Satia, J. K. and R. E. Lave Jr, “Markovian decision processes with uncertain transi-
tion probabilities”, Operations Research 21, 3, 728–740 (1973).

Scerri, P., D. Pynadath, L. Johnson, P. Rosenbloom, M. Si, N. Schurr and M. Tambe,
“A prototype infrastructure for distributed robot-agent-person teams”, in “Pro-
ceedings of the second international joint conference on Autonomous agents and
multiagent systems”, pp. 433–440 (ACM, 2003).

Schank, R. C. and R. P. Abelson, “Scripts, plans, goals and understanding: An
inquiry into human knowledge structures.”, (1977).

Scherl, R. B. and H. J. Levesque, “The frame problem and knowledge-producing
actions”, in “AAAI”, pp. 689–695 (1993).

Schermerhorn, P., J. Benton, M. Scheutz, K. Talamadupula and S. Kambhampati,
“Finding and exploiting goal opportunities in real-time during plan execution”,
in “2009 IEEE/RSJ International Conference on Intelligent Robots and Systems”,
(2009).

139

Scheutz, M., “ADE - Steps Towards a Distributed Development and Runtime Envi-
ronment for Complex Robotic Agent Architectures”, Applied AI 20, 4-5, 275–304
(2006).

Scheutz, M., “Computational mechanisms for mental models in human-robot interac-
tion”, in “Virtual Augmented and Mixed Reality. Designing and Developing Aug-
mented and Virtual Environments”, pp. 304–312 (Springer, 2013).

Scheutz, M., G. Briggs, R. Cantrell, E. Krause, T. Williams and R. Veale, “Novel
mechanisms for natural human-robot interactions in the diarc architecture”, in
“Proceedings of AAAI Workshop on Intelligent Robotic Systems”, (2013).

Scheutz, M., P. Schermerhorn, J. Kramer and D. Anderson, “First steps toward
natural human-like HRI”, Autonomous Robots 22, 4, 411–423 (2007a).

Scheutz, M., P. Schermerhorn, J. Kramer and D. Anderson, “First Steps toward
Natural Human-Like HRI”, Autonomous Robots 22, 4, 411–423 (2007b).

Schurr, N., J. Marecki, M. Tambe, P. Scerri, N. Kasinadhuni and J. P. Lewis, “The
future of disaster response: Humans working with multiagent teams using defacto.”,
in “AAAI Spring Symposium: AI Technologies for Homeland Security”, pp. 9–16
(2005).

Sethia, S., K. Talamadupula and S. Kambhampati, “Teach Me How to Work: Natural
Language Model Updates and Action Sequencing”, in “International Conference
on Automated Planning and Scheduling (ICAPS) Systems Demonstrations and
Exhibits”, (2014).

Simmons, R. and S. Koenig, “Probabilistic robot navigation in partially observable en-
vironments”, in “International Joint Conference on Artificial Intelligence”, vol. 14,
pp. 1080–1087 (1995).

Simon, H., “On the concept of organizational goal”, Administrative Science Quarterly
pp. 1–22 (1964).

Srivastava, B., T. Nguyen, A. Gerevini, S. Kambhampati, M. Do and I. Serina, “Do-
main independent approaches for finding diverse plans”, in “Proc. of IJCAI”, vol. 7,
pp. 2016–2022 (2007).

Strabala, K. W., M. K. Lee, A. D. Dragan, J. L. Forlizzi, S. Srinivasa, M. Cakmak and
V. Micelli, “Towards seamless human-robot handovers”, Journal of Human-Robot
Interaction 2, 1, 112–132 (2013).

Sun, Y., B. Coltin and M. Veloso, “Interruptable autonomy: Towards dialog-based
robot task management”, (2013).

Talamadupula, K., J. Benton, S. Kambhampati, P. Schermerhorn and M. Scheutz,
“Planning for human-robot teaming in open worlds”, ACM Transactions on Intel-
ligent Systems and Technology (TIST) 1, 2, 14 (2010a).

140

Talamadupula, K., J. Benton, P. Schermerhorn, M. Scheutz and S. Kambhampati,
“Integrating a Closed-World Planner with an Open-World Robot”, in “AAAI
2010”, (2010b).

Talamadupula, K., G. Briggs, T. Chakraborti, M. Scheutz and S. Kambhampati,
“Coordination in human-robot teams using mental modeling and plan recognition”,
in “Intelligent Robots and Systems (IROS)”, (IEEE, 2014a).

Talamadupula, K. and S. Kambhampati, “Herding the crowd: Automated planning
for crowdsourced planning”, arXiv preprint , arXiv:1307.7720 (2013).

Talamadupula, K., S. Kambhampati, Y. Hu, T. Nguyen and H. H. Zhuo, “Herding
the crowd: Automated planning for crowdsourced planning”, in “Conference on
Human Computation & Crowdsourcing (HCOMP)”, (AAAI Press, 2013a).

Talamadupula, K., P. Schermerhorn, J. Benton, S. Kambhampati and M. Scheutz,
“Planning for Agents with Changing Goals”, Twenty-First International Confer-
ence on Automated Planning and Scheduling: Proceedings of the System Demon-
strations pp. 71–74 (2011).

Talamadupula, K., D. E. Smith, W. Cushing and S. Kambhampati, “A theory of intra-
agent replanning”, ICAPS 2013 Distributed and Multi-Agent Planning Workshop
(DMAP) (2013b).

Talamadupula, K., D. E. Smith and S. Kambhampati, “The Metrics Matter! On the
Incompatibility of Different Flavors of Replanning”, arXiv preprint arXiv:1405.2883
(2014b).

Vail, D. L., M. M. Veloso and J. D. Lafferty, “Conditional random fields for ac-
tivity recognition”, in “Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems”, p. 235 (ACM, 2007).

van den Briel, M., R. Sanchez, M. Do and S. Kambhampati, “Effective approaches for
partial satisfaction (over-subscription) planning”, in “Proceedings of the National
Conference on Artificial Intelligence”, pp. 562–569 (Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2004).

Van Der Krogt, R. and M. De Weerdt, “Plan repair as an extension of planning”, in
“Proc. of ICAPS 2005”, (2005).

Wagner, T., J. Shapiro, P. Xuan and V. Lesser, “Multi-level conflict in multi-agent
systems”, in “Proc. of AAAI Workshop on Negotiation in Multi-Agent Systems”,
(1999).

Willow Garage, “Personal Robot 2 (PR2)”, (2010).

Wooldridge, M., Reasoning about rational agents (MIT press, 2000).

Yoon, S., A. Fern and R. Givan, “FF-replan: A baseline for probabilistic planning”,
in “ICAPS”, pp. 352–359 (2007).

141

