
Data Movement Energy Characterization of Emerging Smartphone Workloads for
Mobile Platforms

by

Dhinakaran Pandiyan

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved November 2014 by the
Graduate Supervisory Committee:

Carole-Jean Wu, Chair
Yann-Hang Lee

Aviral Shrivastava

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

A benchmark suite that is representative of the programs a processor typically

executes is necessary to understand a processor’s performance or energy consumption

characteristics. The first contribution of this work addresses this need for mobile plat-

forms with MobileBench, a selection of representative smartphone applications. In

smartphones, like any other portable computing systems, energy is a limited resource.

Based on the energy characterization of a commercial widely-used smartphone, appli-

cation cores are found to consume a significant part of the total energy consumption

of the device. With this insight, the subsequent part of this thesis focuses on the

portion of energy that is spent to move data from the memory system to the appli-

cation core’s internal registers. The primary motivation for this work comes from

the relatively higher power consumption associated with a data movement instruc-

tion compared to that of an arithmetic instruction. The data movement energy cost

is worsened esp. in a System on Chip (SoC) because the amount of data received

and exchanged in a SoC based smartphone increases at an explosive rate. A detailed

investigation is performed to quantify the impact of data movement on the overall en-

ergy consumption of a smartphone device. To aid this study, microbenchmarks that

generate desired data movement patterns between different levels of the memory hier-

archy are designed. Energy costs of data movement are then computed by measuring

the instantaneous power consumption of the device when the micro benchmarks are

executed. This work makes an extensive use of hardware performance counters to val-

idate the memory access behavior of microbenchmarks and to characterize the energy

consumed in moving data. Finally, the calculated energy costs of data movement are

used to characterize the portion of energy that MobileBench applications spend in

moving data. The results of this study show that a significant 35% of the total device

energy is spent in data movement alone. Energy is an increasingly important criteria

i

in the context of designing architectures for future smartphones and this thesis offers

insights into data movement energy consumption.

ii

ACKNOWLEDGEMENT

The first person I would like to thank is my advisor, Dr. Carole-Jean Wu. Dr. Wu

has been a great source of inspiration with her hard work and passion for computer

architecture. She kindled my interest in research and has helped me sustain that

interest by offering challenging problems to work on. She has been instrumental for

me to learn the significance of paying attention to details. I owe most of my learning

during the past two years to the opportunities Dr. Wu has provided me. I am also

immensely grateful for her patience to improve my thesis. This thesis would not have

been possible without her support and mentoring.

I am grateful to my committee members Dr. Aviral Shrivastava and Dr. Yann-

Hang Lee for their valuable suggestions that have made my thesis better.

I want to thank my friends Akhil, Jeevan, Saketh and Shin-Ying for helping me

stay motivated through tougher times.

Most importantly, I am thankful to my family for their vital and unrelenting

support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Thesis Contributions . 4

1.2.1 Outline . 6

2 RELATED WORK . 7

3 MOBILEBENCH . 11

3.1 Workloads . 11

3.2 Platform Energy Characterization with EnergyUsageCollector 13

4 MICROBENCHMARKS . 18

4.1 Background . 18

4.2 Design of the Microbenchmarks . 18

4.3 Discussion . 24

5 DATA MOVEMENT ENERGY COST EVALUATION 26

5.1 Dynamic Energy Measurement for the Microbenchmarks. 26

5.2 Stall Cycles . 28

5.3 Long Latency Memory Operations . 29

5.4 Cache Prefetcher . 29

6 EXPERIMENTAL SETUP . 31

6.1 Experimental Platform . 31

6.2 Energy Measurement for the Experimental Platform. 31

6.3 Performance Counters . 33

iv

CHAPTER Page

7 DATA MOVEMENT CHARACTERIZATION FOR MOBILE WORK-

LOADS . 35

8 CONCLUSION . 40

8.1 Summary of Results . 40

8.2 Future Research Directions . 40

8.2.1 Smartphone processors . 40

8.2.2 Data movement in heterogeneous mobile systems 41

8.2.3 Data movement in client-server environments 43

REFERENCES . 44

v

LIST OF TABLES

Table Page

6.1 Technical Specifications of the System. 32

7.1 Energy Cost of Data Movement. 36

vi

LIST OF FIGURES

Figure Page

1.1 Power Consumption Comparison for Load and Add. 5

3.1 Power Profile for Hardware Components in Galaxy S3 14

3.2 MobileBench Energy Profile . 15

4.1 Galaxy S3 Architecture . 19

4.2 Memory Access Latency . 20

5.1 Energy Measurement for Data Movement . 27

6.1 Current and Voltage Measurement with NI SignalExpress 33

6.2 ARM Streamline Timeline View . 34

7.1 Energy Breakdown for the Experimental Device . 36

7.2 Relative Energy Costs of Data Movement . 38

vii

Chapter 1

INTRODUCTION

1.1 Background and Motivation

The smartphone market has witnessed a rapid growth in the past decade. The

sales figures for smartphones [41] surpassed that of desktops [42] in 2010 and touched

one billion units in annual sales in 2013 [40]. Touch-sensitive high resolution dis-

plays, high speed internet connectivity, powerful processors, intuitive operating sys-

tems and large repositories of applications have all aided the proliferation of these

devices. Smartphones have now become sufficiently capable to handle a wide variety

of use cases for which desktops were earlier used. For example, the Microsoft Office

productivity suite [27] has been adapted to work on smartphones in 2014. Smart-

phones nowadays are adept at handling word processing, high quality media con-

sumption, high resolution image and video capture, gaming, navigation, web brows-

ing and many other use cases. To support the ever-growing list of applications [43],

smartphone manufacturers have been steadily increasing the computing horsepower

of these devices. Some of the mechanisms that have been widely adopted in the indus-

try, especially in top-of-the-line devices, are the integration of an increasing number

of general-purpose application cores (up to eight cores as of 2014) [30], more than one

hundred graphic processing cores [22], and many special purpose accelerators such

as digital signal processors and video encoder/decoders. This is exemplified by the

recent Exynos Octa [30] or the Snapdragon 810 SoCs [35]. The application cores in

these modern smartphones have also grown more complex, with a goal to deliver high

1

performance since users expect feature-rich, responsive and interactive applications

to operate seamlessly.

The processors that are used in smartphones have to be vastly different from their

desktop counterparts to cater to the interactive applications that they handle and op-

erate at a different power-performance point. Benchmark suites like SPEC CPU2006

[18] and PARSEC [11] are widely used across the industry and academia in order to

evaluate the performance and power consumption of processors in the desktop and

server space. However, there are no such comparable benchmark suites targeted at

mobile platforms. The mobile platform benchmark suite, MobileBench, was hence

developed with a goal to explore key characteristics critical to interactive applica-

tions, to examine the effectiveness of modern architectural features in the hardware,

and to design architectural features specifically for smartphone devices [33]. Mo-

bileBench is useful for comparative studies of different mobile devices from either the

performance or energy stand point. MobileBench includes representative smartphone

applications including general-purpose interactive web browsing, education-oriented

web browsing, photo browsing and video playback applications, which constitute a

majority of activities performed on today’s smartphones.

From the energy perspective, smartphones much like other portable electronic

devices have to work with a limited energy capacity constrained by the battery. Ad-

ditionally, smartphones are designed to be light and thin which limits the size of the

Li-Ion batteries. For example, many top-of-the-line smartphones today that weigh

less than 150 grams, have batteries with a capacity of around 2000mAh. The battery

technology for smartphone devices has not kept pace with developments that some

of the other components like processors or displays have seen. While intuitively, the

display is expected to be the major source of battery drain, it is imperative to fully

understand the energy consumption characteristics of the device. To that measure,

2

energy consumption of various important platform components on a smartphone is

profiled with an Android background service called EnergyUsageCollector. The rele-

vant details are provided in the Chapter 3. Coarse-grained profiling of MobileBench

applications with EnergyUsageCollector demonstrates that when the brightness of

the LCD screen is at 25% of its maximum value, the application cores become the

most energy-hungry element, consuming more than 50% of the total energy capacity.

This suggests that the energy consumption characteristics of the application cores,

which consume significant energy, has to be studied further.

Most prior works that characterize the power profile of smartphones focus on

component-level results. However, component-level energy characterization does not

give the full picture of how energy is spent in the entire system; the information about

where data resides and how data is moved across the system have not been considered.

A recent work has highlighted the significance of the data movement energy cost in the

server computing environment [24] concluding that 28-40% of total processor energy

consumption executing scientific applications is spent on data movement. Moving

data present in the cache requires as much energy as a floating point computation

itself and costs much more if the data is not in the cache hierarchy [23]. The gap

between the energy cost of moving data from memory to registers and the energy cost

of performing floating point computations is expected to widen for future systems.

The energy cost of double-precision floating point operations is expected to reduce

by ten times by 2018 while the energy cost of moving data from memory to register

is expected to remain the same [2, 14]. This trend highlights the importance of data

movement energy.

Interestingly, such analysis has not been performed for smartphone processors

specifically. Smartphone SoCs employ heterogeneous units for different types of

computations. With many components generating, processing, and consuming data

3

within the SoC, the on-chip data traffic is bound to be high. This data sharing

happens to be primarily accomplished via the system memory. In light of the sig-

nificance of data movement energy consumption for scientific applications in servers,

the application core’s power consumption and distributed computing models adopted

in smartphones, a detailed investigation is carried out to quantify the energy cost of

data movement for modern smartphone applications on a real, commercial device.

To begin with, it has been found in this thesis that even when the mobile application

processor is solely working on fetching data from the memory and spending most of

the cycles waiting for data, its power consumption is on par with it busy executing

arithmetic operations under 100% utilization. Figure 1.1 compares the application

processor power consumption under four different scenarios: continuous load instruc-

tion execution with and without data dependency, and add instruction execution

utilizing one or both pipelines. This experiment was performed with a dual-issue

ARM Cortex-A9 processor that is present in the Galaxy SIII device. The inference

drawn from this experiment is that the dynamic power consumption of the bench-

mark which performs continuous, independent load operations is far more significant

than that of the benchmark performing continuous add operations. This illustrates

the significance of the data movement energy cost relative to ALU operations and its

potential impact on total application energy consumption in mobile platforms.

1.2 Thesis Contributions

Overall, this thesis makes the following contributions:

1. MobileBench, a benchmark suite of representative smartphone applications that

enables comparative performance and energy evaluations in modern smartphone

SoCs is created. With the availability of the MobileBench suite, a background

service application in the Android framework called EnergyUsageCollector is

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

)

Time (ms)

LOAD - without data
dependency

LOAD - with data
dependency

ADD- single issue

ADD - dual issue

Figure 1.1: Dynamic power consumption comparison for load instruction execution
with and without data dependency, and add instruction execution utilizing one or
both pipelines of the dual-issue ARM Cortex-A9 processor.

designed to characterize the energy consumption behavior for modern smart-

phones.

2. A microbenchmark based methodology is proposed to characterize the data

movement energy across the different levels of the memory hierarchy on a com-

mercial real-device. Hardware performance counter statistics and power meter

measurements are utilized to quantify the energy cost of data movement.

3. A detailed characterization is performed to show the significance of data move-

ment energy and stalled cycle energy when running realistic smartphone appli-

cations, including various web browsing activities, video playback, photo brows-

ing, and an interactive game. Based on the results, this work offers insights for

future smartphone architecture designs.

In summary, the results presented in this thesis show the energy cost to perform a

memory load instruction whose data is not found in any level of the cache hierarchy

is 115 times higher than that of an add operation. On average, a significant portion

5

(34.6%) of the total device energy consumption is spent on moving data from one level

of the memory hierarchy to the next level for the interactive smartphone workloads.

The data movement energy is particularly high, 41% for realistic web browsing [32].

1.2.1 Outline

The remainder of this thesis is organized as follows: Chapter 2 discusses related

work. Chapter 3 describes MobileBench and component energy profiling using En-

ergyUsageCollector. In the Chapter 4, the background information of the memory

hierarchy for modern smartphone architectures is provided along with the design

of the microbenchmarks that characterize the data movement energy for a specific

memory hierarchy. Chapter 5 explains the energy measurement methodology in detail

and Chapter 6 describes the real-device experimental setup for measuring the energy

consumption. Chapter 7 concludes the data movement study with data movement

energy characterization for MobileBench applications. Chapter 8 summarizes the

results and presents future research directions.

6

Chapter 2

RELATED WORK

There are numerous approaches that researchers take to gain a deeper understanding

of the power consumption by processors. One such popular approach is to construct

power models that provide a breakdown of the total system power consumption into

different components. Further, these power models can be designed at various levels

of abstraction - circuit, architecture or system components. Accurate models aid

in design space exploration with good estimates of power consumption. Software

and hardware can then be optimized for a lower power consumption. Low power

optimizations are particularly important and necessary for battery-powered devices.

McPAT [26] and Wattch [12] are two widely used frameworks to analyze and optimize

microprocessor power dissipation at the architecture level. These frameworks estimate

the power dissipated by different functional units within the processor based on an

input configuration and detailed statistics from a performance simulator. To obtain

power estimates that are meaningful from such frameworks, it is key to set up the

framework with a configuration that closely resembles the processor under study.

Moreover, it is especially hard to model a real interactive system like a modern

smartphone to evaluate the impact of data movement.

Instruction level power models that estimate the power consumed during the ex-

ecution of a software are also extremely useful to optimize software. Such models

are typically constructed by measuring dynamic power consumption of different in-

structions. The information from the measurements is used to profile programs ei-

ther offline during development or at run-time. For example, in [39], Sinha, Ickes

and Chandrakasan proposed a run-time software energy estimation technique for an

7

ARM architecture that isolates switching and leakage energy components of the soft-

ware. They observed that the energy consumption of various instruction classes show

very little variation for the StrongARM SA-110 and Hitachi SH-4 embedded proces-

sors. But, through characterization that is later presented in this thesis, contrasting

results are observed for a modern smartphone platform running a commercial oper-

ating system. Hao et al. in [17] suggested an energy estimation technique that can

aid developers to write energy-efficient code. The proposed tool combines program-

level analysis with an instruction level power model to arrive at an energy estimate.

However, such byte-code level energy analysis abstracts out vital information that

could be used for potential hardware optimizations and also different memory access

instructions can get clubbed together. As it is shown in the Chapter 5 in this thesis,

energy cost of loading data from the processor’s cache is vastly different from loading

data from the DRAM. Lee et al. [25] used a combination of test programs and device

power measurements to generate an instruction level power model by employing lin-

ear regression. The model was targeted at an ARM7TDMI processor that is used in

embedded systems but the analysis left out energy estimation for pipeline stalls and

load/store instructions. This is crucial as demonstrated in the Chapter 1.

Further, the above mentioned works do not specifically target modern smart-

phone platforms. With smartphones emerging as ubiquitous computing devices and

the architecture of smartphone processors showing trends of increasingly differenti-

ating itself from that of conventional PC processors, it is interesting to study their

power and energy consumptions. Several recent studies have been performed to that

end. For instance, Zhang et al. [44] described an online, utilization based estima-

tion tool called PowerTutor that uses a pre-generated component-level power model.

The power model is generated by running test programs that stress different compo-

nents and measuring energy consumption either with an external power measurement

8

instrument or internally by sampling the battery voltage. The tool takes into con-

sideration the power states and utilization of various hardware components like the

display, CPU and other components to generate the power estimate. This approach

to power dissipation estimation is similar to the battery usage statistics that recent

versions of Android implement. The statistics, in this case, are computed by making

use of the current draw of different components in the power_profile.xml file provided

by smartphone vendors. In [38], power consumption characteristics in smartphones

are studied from a user perspective. Using the regression-based component level

power model, Shye, Scholbrock and Memik showed that the display and CPU are the

two largest power consuming components. This is similar to the observation from

the EnergyUsageCollector 3.2 proposed in this thesis for MobileBench applications.

Additionally, Shye, Scholbrock and Memik performed an end-user sensitivity study

of power optimizations by tuning the CPU frequency governor and controlling the

display brightness. The suggested optimizations take into account change blindness

that humans exhibit. In [34], the authors tackled scenarios where utilization based

power models, e.g., [38] and [44], are insufficient with a power model that is based

on system call tracing. On the other hand, Carroll and Heiser [13] used sensors on a

smartphone to measure the power usage of the individual computation components

under different workloads. Murmuria et al. [28] demonstrated power usage charac-

terization and developed a power-modeling framework based on the component-level

power consumption. However, what these component level power models fail to es-

tablish is the dependency of system power consumption on data movement within

the system. As presented in Chapter 1, the cost of a load instruction moving data

from the closest level of the memory hierarchy to the register far exceeds that of

an arithmetic instruction. Addressing this issue, a detailed study quantifying data

movement energy costs in scientific applications was presented by Kestor et al.[24].

9

This work uses CPU performance counters and power measurement techniques to

evaluate data movement energy costs in servers. The results showed that scientific

applications executed on high-performance desktop/server processors spend 28-40%

of total energy consumed in moving data. Distinct from all prior works, the energy

characterization results presented in this thesis are for modern smartphones execut-

ing interactive emerging applications that are different from scientific applications.

This thesis offers insights into the impact of data movement for future smartphone

architectures.

10

Chapter 3

MOBILEBENCH

3.1 Workloads

A key aspect of this work is to create a publicly available benchmark suite that

contains a collection of representative interactive smartphone applications to be used

by the research community for SoC performance and energy exploration. The Mo-

bileBench suite is created to enable such comparative performance and energy eval-

uations. In addition to the publicly available BBench [16] that is used to represent

simple web browsing behavior, four additional commonly-used benchmarks – realistic

web browsing, education-oriented web browsing, photo rendering, and video playback

- are included in MobileBench. Each of the MobileBench applications is discussed in

more detail next.

General Web Browsing (GWB): One of the most important smartphone appli-

cations is web browsing. In fact, the web browser is one of the most commonly-used

interactive applications on smartphones. Many other cross-platform applications are

also browser-based. To study the behavior of general-purpose web browsing, Gutier-

rez et al. [16] constructed BBench which is an offline, automated benchmark to assess

the performance of a web browser when rendering a collection of 11 popular websites

on the web, including Amazon, BBC, CNN, Craiglist, eBay, ESPN, Google, MSN,

Slashdot, Twitter, and YouTube. BBench traverses the collection of the websites re-

peatedly by loading the web page and scrolling down to the bottom of the web page

before proceeding to the next website. In this thesis, BBench is referred to as GWB

since it is a benchmark which focuses on simple general web browsing behavior.

11

Realistic General Web Browsing (RealisticGWB): The always-scroll-down

browsing pattern in GWB does not reflect a realistic browsing pattern. In order to

model a more realistic user web browsing behavior, the home page for each web

page is instrumented to include additional movement patterns. Specifically, the

RealisticGWB benchmark introduces vertical up-and-down, horizontal right-and-left

movements, page zoom with random delays between actions. This models the brows-

ing pattern where users spend more time reading web contents located on specific

parts of a web page and skim through the rest of the page.

Education Web Browsing (EWB-Blackboard): As technology advances, stu-

dents today are able to use their smartphones to read course announcements and get

started with assignments by accessing course websites on smartphone devices. These

educational websites, however, exhibit different types of contents than those included

in popular websites. Unlike general-purpose websites where web contents are more

sophisticated, e.g., with images, audio/video streams, or advertisement clips, web con-

tents on these educational websites are mostly in text or document formats, where

documents are often embedded in download links. This benchmark that focuses on

browsing educational websites captures this set of browsing behavior in addition to

RealisticGWB.

BlackBoard, a popular education-oriented web platform commonly used in univer-

sities to host course materials and tools, is used to model EWB-Blackboard. Students

access Blackboard web pages for course information, announcements, assignments,

discussions, etc. In addition to the Blackboard web page browsing, EWB-Blackboard

often involves viewing assignment documents that are not directly displayed in a web

browser. For example, course assignments from Blackboard web pages are often made

accessible in Portable Document File (PDF) format. This means that in-between sev-

12

eral Blackboard web page browsing sessions, students often need to switch from web

browsing to document viewing.

To understand the interaction between Blackboard web page browsing and doc-

ument viewing, the behavior of first browsing through Blackboard web pages and

opening an assignment file embedded as a link on the Blackboard web page is mod-

eled.

Photo Viewing (PhotoView): With the increasing number of pixel counts for

the camera on modern smartphones (as high as 13 mega pixels), high resolution

photos are prevalent on these mobile platforms. As a result, to view high resolution

photos smoothly, modern smartphones must be capable of displaying high resolution

photos on the screen timely for a satisfactory user experience. To represent this

class of applications, high resolution photo rendering for the Android platform is

modeled using a picture viewing application: QuickPic. The PhotoView benchmark

includes consecutive photo rendering of high resolution images, each with a resolution

of 4912x3264 and is of size between 4 to 6 MB.

Video Playback (VideoPlayback): In addition to PhotoView, an important class

of applications for modern smartphones is high definition video playback. With popu-

lar video sharing, users today frequently view video/movie clips on their smartphones

and expect high performance delivery in this application class. VideoPlayback helps

to evaluate only the rendering performance for our target mobile platform, excluding

any network issues that might affect our results. The application MX Player is used

to play a high-definition (720p) MPEG-4 video of 1 minute in length.

3.2 Platform Energy Characterization with EnergyUsageCollector

The background app, EnergyUsageCollector, was implemented by modifying the

code in the file PowerUsageSummary.java of the Android Settings application. Ener-

13

0	

150	

300	

450	

600	

sc
re
en

.o
n	

sc
re
en

.fu
ll	

bl
ue

to
ot
h.
ac
6v
e	

bl
ue

to
ot
h.
on

	
w
ifi
.o
n	

w
ifi
.a
c6
ve
	

w
ifi
.s
ca
n	

ds
p.
au
di
o	

ds
p.
vi
de

o	
ra
di
o.
ac
6v
e	

ra
di
o.
sc
an
	

gp
s.
on

	
ra
di
o.
on

	
cp
u_

1.
2G

Hz
	

cp
u_

1G
Hz

	
cp
u_

80
0M

Hz
	

cp
u_

50
0M

Hz
	

cp
u_

20
0M

Hz
	

cp
u.
id
le
	

En
er
gy
	 (m

A)
	

Figure 3.1: The amount of current drawn by various hardware components on
Samsung Galaxy S III smartphone.

gyUsageCollector calculates the energy consumption of a running application based

on two pieces of important information. First, by reading the power specification

sheet (power_profile.xml in framework-res.apk) provided by smartphone vendors,

the PowerUsageSummary code obtains the power consumption specific to the var-

ious hardware components. Figure 3.1 shows the amount of current drawn by various

hardware components on the smartphone target, a Samsung Galaxy S III i9300. Then,

EnergyUsageCollector measures the amount of time an application spends utilizing

the different hardware components, e.g., application CPU cores, Wifi, the screen.

The CPU power consumption takes into account the change in current draw at dif-

ferent frequencies, and similarly the display power consumption considers change in

the brightness levels. To calculate the total energy consumed for each hardware com-

ponent, EnergyUsageCollector simply multiplies the amount of time spent at each

component with the power constant from power_profile.xml. For MobileBench, each

application is run for a duration of 30 minutes and the application energy profile

is generated. Because power_profile.xml is available in most of the modern smart-

14

0%	

20%	

40%	

60%	

80%	

100%	

Lo
.	

M
e.
	

Hi
.	

Lo
.	

M
e.
	

Hi
.	

Lo
.	

M
e.
	

Hi
.	

Lo
.	

M
e.
	

Hi
.	

Lo
.	

M
e.
	

Hi
.	

Lo
.	

M
e.
	

Hi
.	

GWB	 Realis7cGWB	 EWB-‐Blackboard	 PhotoView	 VideoPlayback	 Average	

En
er
gy
	 P
ro
fil
e	
Br
ea
kd

ow
n	

screen	 wifi	 kernel	 libraries	 	 	 main	 applica7on	 other	

Figure 3.2: Energy profile breakdown for various smartphone components running
MobileBench applications.

phones and Android uses the same code to provide battery usage information, energy

profiling needs only minor code modification.

Figure 3.2 shows the energy profile for MobileBench. At the brightest level (100%),

the LCD screen is undoubtedly the energy hog among all platform components. How-

ever, when the brightness of the LCD screen is lowered to 25%, the energy consump-

tion of the application cores starts dominating.

The second important observation is that, except for general web browsing (GWB

and RealisticGWB), commonly-used smartphone applications spend a significant amount

of energy at executing library function calls (by as much as 36% for PhotoView at the

screen brightness of 25% and by an average of 21% for all MobileBench applications).

This is because MobileBench applications make extensive use of Android system li-

braries.

15

For media-content based applications, e.g., Video Playback and PhotoView in Mo-

bileBench, the application cores consume 30% (at 100% LCD brightness) to 70% (at

25% LCD brightness) of the total device energy. Given that users spend a significant

amount of time executing media-content based applications and the auto-brightness

setting is enabled on most of today’s smartphone platforms (with advanced power

management), the application core energy consumption becomes increasingly domi-

nant.

Validation. The total energy consumption obtained from EnergyUsageCollector

is validated with device power meter measurements. The methodology is described in

detail in Chapter 6. EnergyUsageCollector estimates the energy consumption of the

device with a minimum error of 3.6% and an average error of 14.5% for VideoPlayback

and the web browsing applications. However, this error increases sharply by 3.6X for

PhotoView; the estimated energy consumption is much higher than the meter-based

measurement. One of the factors for the discrepancy is that EnergyUsageCollector

does not consider the RGB components of the pixels which constitute the images. Pre-

vious study [28] has shown that the power consumption of a white pixel in comparison

to that of a black pixel can be as high as 5 times. This change in energy consumption

based on the color composition becomes particularly significant for PhotoView, which

spends the majority of the time displaying the images on the screen. To improve the

accuracy of EnergyUsageCollector, both EnergyUsageCollector and the default bat-

tery estimation application in the Android framework need to account for the color

profile of images being displayed on the screen.

Overall, when the screen display brightness is at a reasonable, 25% brightness

level, the application cores executing the main application, the library functions, and

the kernel source codes, become the dominating energy-consuming component on

16

the Samsung Galaxy S III platform. This motivates a deeper understanding of the

application core’s energy consumption behavior.

17

Chapter 4

MICROBENCHMARKS

4.1 Background

Modern smartphone processor architectures feature a hierarchical memory struc-

ture. Figure 4.1 illustrates the memory hierarchy of the ARM Cortex-A9 processor

in a Samsung Galaxy S3 smartphone. Other commonly-available mobile processors,

e.g., Intel Atom-based Clover Trail processors, also implement a similar memory hier-

archy. When data in the memory is accessed, it will be moved across different levels of

memory: from DRAM to the level-two (L2) cache, from the L2 cache to the level-one

(L1) cache, and from the L1 cache to the register file. To accurately quantify the

data movement energy cost, a set of microbenchmarks are designed to continuously

access data in a specific level of the memory hierarchy. The data references from the

microbenchmark are correlated with power readings obtained from an external power

meter to compute the energy cost of each data movement operation.

4.2 Design of the Microbenchmarks

Isolating data accesses to a specific level of the memory hierarchy and quantifying

the energy cost of a specific data movement are challenging in modern processors.

Out-of-order execution and other important architectural optimization features, such

as data prefetching and speculation, have worked well in hiding memory latencies

but, at the same time, make the energy cost benchmarking for an individual instruc-

tion difficult. This necessitates the design of microbenchmarks that minimize the

effect of out-of-order execution and other architectural optimizations. The design of

18

L1D$	 L1I$	

I/DTLB	

Cortex-‐A9	

L1D$	 L1I$	

I/DTLB	

Cortex-‐A9	

L1D$	 L1I$	

I/DTLB	

Cortex-‐A9	

L1D$	 L1I$	

I/DTLB	

Cortex-‐A9	

Cache	 Snoop	 Controller	

AXI	 Interface	

L2	 Unified	 Cache	

LPDDR	 Memory	

Figure 4.1: Architecture of the ARM Cortex-A9 processor in a Samsung Galaxy S3
smartphone.

the microbenchmark methodology is inspired by a recent work that quantifies the

data movement energy cost for scientific applications running on desktop and server

processors [24].

The goal for the benchmark design is to consistently bring data from a partic-

ular level of memory hierarchy. The program has to overcome a number of micro-

architectural and compiler optimizations to accomplish that. Between the two, hard-

ware optimizations are relatively harder to combat as they occur at runtime, are

not visible to the software and only can be deduced based on performance counter

values. On the other hand, compiler optimizations can be investigated by review-

ing the assembly code which the compiler generates and be selectively disabled with

compiler flags and appropriate programming methods. There are six different mi-

crobenchmarks that are used in this study. Four of them perform data movement

operations used to compute energy costs and the remaining two are reference bench-

marks. The reference benchmarks serve as a metric to understand the relative cost

of data movement operations.

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.05

0.1

0.15

0.2

0.25

8 32 128 512 2048 8192

TL
B

 d
at

a
al

lo
ca

ti
o

n
s

p
e

r
Lo

ad

La
te

n
cy

 (
u

s)

Active Data Working Set Size (KB)

Latency(us) TLB data allocations per Load

L1 D. Cache Unified L2 Cache Main Memory

L1

R
eg

L2

R
eg

M
em

R
eg

Figure 4.2: Latency measurement of the designed microbenchmarks with varying
active data working set sizes.

The workings of the data movement microbenchmarks are summarized as follows:

1. Each microbenchmark first requests the operating system to allocate a mem-

ory of size that fits within the capacity of the level of memory system we are

interested in.

2. The memory region is then accessed as an array of pointers. Pointer chasing

is performed so that each array element access corresponds to only one archi-

tecturally executed load instruction; this avoids overhead due to array index

increment. A temporary pointer variable is utilized to hold the address that

refers to a word in the data set and a subsequent dereference of that pointer

provides the address to another word. The sequence of addresses dereferenced

can either be random or strided depending on the specific benchmark. The

following snippet of C code illustrates pointer chasing.

tmp_ptr = *(void**)tmp_ptr;

20

Initialize benchmark

Start Timer

for i = 0 to i < iterations/x do

.

<operation> // repeated x times

.

.

end for

Stop Timer
Algorithm 1: Pseudo-code of the microbenchmark which performs the desired data

movement in a target level of the memory hierarchy iteratively.

3. By continuously performing these dereferences in a loop, it is possible to traverse

different locations within the allocated memory. The loop is timed to enable the

calculation of the average latency per load instruction. The average latency is

used to validate that the microbenchmark indeed performs the intended memory

accesses in the targeted level of the memory hierarchy. Figure 4.2 shows the

average access latency and the data TLB allocations per Load operation for

different sizes of the array. There are substantial changes in the access latencies

near the capacity boundaries of different levels of the memory hierarchy.

Algorithm 1 outlines the pseudo-code of the data movement microbenchmark.

The initialization performs memory allocation for an array of pointers, calculates

and writes addresses into the array for pointer chasing. If the measured average data

access latency per load corresponds to the targeted level of the memory hierarchy,

it can be safely assumed that the impact of operating system activities and other

21

potentially co-executing background service processes is negligible and the designed

microbenchmark performs the desired data movement patterns faithfully.

Four microbenchmarks were created to study the data movement energy across the

different levels of the memory hierarchy. Each of them is listed below with description.

• L1 cache to CPU register (MicrobenchmarkL1→Reg): This microbenchmark

performs random accesses within the data set. Each access brings a word from the

L1 data cache to the register and all data references to the L1 cache are hits. A

data set size of 24KB is chosen which comfortably fits in the 32KB L1 data cache.

The data access is performed using the pointer chasing logic.

• L1 cache to CPU register w/o data dependency

(MicrobenchmarkL1→Reg,no−dep.): The microbenchmark moves data from the L1

cache to the registers similar to MicrobenchmarkL1→Reg, except that, for each

instruction the address to be loaded from is hardcoded in the program rather than

dereferenced from the previous memory access. The usefulness of this approach

is explained in Chapter 5. The addresses are randomized and fit within the L1

cache.

• L2 cache to CPU register (MicrobenchmarkL2→Reg): This microbenchmark

performs random accesses within the data set that fits into the 1MB L2 cache of

the experimental platform. The selection of the data set size for this microbench-

mark requires more considerations than MicrobenchmarkL1→Reg. This is because,

additional TLB misses can be incurred by the random-walk references performed

in the larger memory region. In order to ensure the majority of data movement

happens between the L2 cache and the register, a data set size that fits in the

1MB L2 cache but does not fit in the 32KB L1 cache has to be chosen. This

means, the L1 data cache miss rate should be as high as possible while the L2

22

cache miss rate is as low as possible. In addition, it is important to keep the TLB

miss rate as small as possible 1 . To fulfill these constraints, the data set size

for MicrobenchmarkL2→Reg is selected to be 125KB. As shown in Figure 4.2, the

selected data set size performs memory accesses that move data from the L2 cache

to the register as intended since the load latency closely tracks the L2 cache access

latency.

• Main memory to CPU register (Microbenchmarkmemory→Reg): This microbench-

mark is designed to bring data from the memory to the processor register. This

means that the data set size needs to be larger than the 1MB L2 cache resulting

in high L1 and L2 cache miss rates. Since the data set size needs to be larger

than 1MB, this microbenchmark inevitably thrashes the L2 TLB leading to page

table walks. Because the additional memory references related to page table walks

also access the cache hierarchy, they can lower the high L1 and L2 cache miss

rates expected for the random access microbenchmark. Currently, there is not a

known, effective method to differentiate cache accesses related to page table walks

from those made by application load instructions. As a result, the data set size

is experimentally chosen such that it has a high L2 miss rate while keeping the

TLB allocations as few as possible. In this work, a data set size of 2MB is cho-

sen. Therefore, this causes more data movement for each memory instruction on

average compared to one with a smaller data set.

• Integer and NOP (Microbenchmarkadd and Microbenchmarknop): In addition

to the microbenchmarks which perform iterative data movement from a specific

level of the memory hierarchy to the processor register, these microbenchmarks

that execute integer addition and NOP instructions continuously are designed to
1The 128-entry TLB effectively covers the memory region of 512KB

23

understand their relative impact on energy consumption with respect to that of

data movement.

4.3 Discussion

There are other challenges and considerations in the process of designing and

running the microbenchmarks, which are discussed below.

• The Influence of TLB: Continuously accessing words within a data set whose

working set is larger than the address space covered by the L1 TLB and L2 TLB

results in TLB misses. The Cortex A9 performs hardware page table walks on a

L2 TLB miss and this results in two additional memory references with two-level

page table. As the page table can be cached in the Cortex A9, these references

due to page table walk alter the high L1 and L2 miss rates the random access

microbenchmark is designed to produce. Furthermore, without the performance

counters events to precisely differentiate between L1 data cache references made

by the program and references related to the TLB miss handler, we are left

with a lower overall L1 and L2 miss rate. Therefore, a data set size that has a

higher L2 miss rate while keeping the TLB allocations to a minimum is chosen.

Therefore, the data set size is chosen such that the TLB misses are lower.

• Compiler Optimization: To verify that the designated data access pattern is

not affected by compiler optimizations, the assembly code generated for the mi-

crobenchmarks is reviewed. For example, the variable that holds the temporary

pointer could be removed by the compiler.

• Loop Unrolling Effect: The main loop of memory accesses in the microbench-

marks is unrolled such that a larger number of memory loads are executed for

each loop iteration to reduce the frequency of branch instruction execution. The

24

loop size/iterations is carefully selected such that the loop body is large enough

for the reduced overhead of loop index increment and branch instructions but

not too large to cause unintended, additional instruction cache misses.

• Context Switch and OS Scheduling Overhead: The loop count should

be large enough for the benchmark to run for a sufficiently long period of time

so that the power measurement device can collect enough samples for analysis,

but not too large such that the operating system/other programs could affect

the execution time of the benchmark with context switch overhead. Since, the

benchmarks are run on a commercial device which is not tailored for bench-

marking, the possibility of such interference is likely if not cared for.

• Priority Setting and Task Migration: To minimize interference with other

running processes, the microbenchmarks are given the highest priority by setting

the nice number 2 to −20. Furthermore, to prevent task migration between

the different, available cores, the microbenchmarks is pinned to a specific core

at the beginning of the program execution.

• Frequency: The microbenchmark’s power consumption highly depends on the

core frequency setting, which the default Android/Linux operating system varies

dynamically based on runtime core utilization. To eliminate the influence of fre-

quency variation, the performance CPU governor is selected to set the frequency

of the cores to 1.4 GHz.

• Spatial Locality: Finally, spatial locality needs to be taken into account in

the microbenchmark design. To ensure that data accesses always result in cache

misses, only one data word within a cache line is accessed.

2nice is a Linux program to give a process more or less CPU time than other processes. A
niceness of −20 is the highest priority and 19 is the lowest priority.

25

Chapter 5

DATA MOVEMENT ENERGY COST EVALUATION

This chapter describes the techniques that are used to measure the energy cost of

individual instructions and to isolate the components that do not contribute to the

data movement energy, e.g., idle energy and stalled cycles. Figure 5.1 illustrates the

approach to determining the energy cost for accessing data in different levels of the

memory hierarchy. The energy cost for moving data from the L1 cache to the registers

(∆EnergyL1) is first determined. This process is repeated to determine the energy

cost for moving data from the L2 cache to the L1 cache (∆EnergyL2) and from the

memory to the L2 cache (∆Energymem). Since the number of instructions performed

in the body loop of the microbenchmarks is in the order of billions, the majority of

the processor energy consumption is spent on the designed data movement.

5.1 Dynamic Energy Measurement for the Microbenchmarks

The scope for external power measurements with commercial smartphones is lim-

ited significantly compared to that of product development boards, which often come

with exposed test points/voltage rails. The only power measurement access points

offered in our test device are the battery terminals. The entire system, consisting of

the display, LEDs, speakers, DRAM, SoC, sensors, eMMC etc. is powered via this

set of terminals. For the data movement power measurements at this terminal to

be meaningful, all the peripheral components are turned off or kept inactive through

options that the OS provides. When the display, Wi-Fi, mobile radio and other pe-

ripherals are turned off, the application processor and DRAM consume most of the

power since the microbenchmarks used in the measurements do not make use any

26

Emem

EL2

EL1

Ereg

ΔEnergyL1 ΔEnergyL2 ΔEnergymem

register L1 cache L2 cache memory

Figure 5.1: Energy measurement for data movement across the memory hierarchy.

peripheral components. To minimize potential interference, unnecessary background

service processes that can potentially skew measurements of the microbenchmarks

are manually terminated. The power measurements are made in stable memory ac-

cess phases (regions of interest) when the program is fully loaded into memory and

executes only the desired data movement instructions. The microbenchmarks are

written in C, cross-compiled on the host machine with the ARM-Android NDK tool

chain [3]. The binaries are then pushed to the device to be launched from the host

machine via the Android Debug Bridge (adb) terminal. The L2 prefetcher is turned

on/off while evaluating the energy costs for microbenchmarks by modifying a part

of architecture-specific kernel start-up code. The Linux kernel modules in [1] are

extended to read the L2 cache controller registers and to validate the configuration

that has been set by the kernel.

In order to calculate the power consumption of the microbenchmarks, the baseline

power or the idle power consumption of the device before the microbenchmarks

begin to execute is recorded and subtracted from the measured value. Thus, the

power consumption attributed to the microbenchmarks is

Pmicrobenchmark = Pdevice − Pidle

27

Furthermore, the total energy consumption of the microbenchmarks is

Emicrobenchmark =
∫ EndT ime

StartT ime
Pmicrobenchmarkdt

5.2 Stall Cycles

Depending on where data resides, it takes from 4 to 200 cycles to bring the

requested data to processor registers. This means that the processor could spend

a majority of time waiting for data, resulting in significant stall cycles. The stall

cycles increase when the memory instruction in an application depends on the data

requested by the previous instruction, e.g., in the pointer-chasing microbenchmarks.

In order to separate the energy cost of stall cycles from the energy cost of moving

data from one level to another level of the memory hierarchy, a matching microbench-

mark, MicrobenchmarkL1→Reg,no−dep. is utilized. This benchmark performs exactly

the same data movement as in MicrobenchmarkL1→Reg, except that all data de-

pendencies in the original microbenchmark have been removed. Since all memory

addresses in MicrobenchmarkL1→Reg,no−dep. are known, the memory accesses are in-

dependent of each other and, thus, the stall cycles caused by data dependency is

removed. The number of stall cycles in MicrobenchmarkL1→Reg is obtained from the

performance counters.

By comparing the energy consumption of MicrobenchmarkL1→Reg,no−dep. with the

pointer chasing MicrobenchmarkL1→Reg, we can compute the stall cycle energy con-

sumption. Using values measured from the hardware performance counters, it can be

deduced that MicrobenchmarkL1→Reg creates three pipeline stalls for each load that

is issued. Therefore, Stall Cycle energy can be computed as:

EStall = (EL1toReg→Reg − EL1toReg→Reg,no−dep)/NStalls

28

5.3 Long Latency Memory Operations

The MicrobenchmarkL2→Reg and MicrobenchmarkRAM→Reg benchmarks with the

pointer chasing logic like MicrobenchmarkL1→Reg cause several stall cycles due to the

data dependency between loads. The stall cycle energy has to be subtracted from

the energy measurement values for both benchmarks to isolate the data movement

energy. The same formula is used for these long latency operations.

EL2→Reg = (EL2→Reg − EStall ∗NStalls)/NMemoryAccesses

5.4 Cache Prefetcher

Hardware prefetching is a commonly-used latency mitigation technique in modern

processors. Cache prefetchers bring data into the cache hierarchy before the actual

reference, thereby shortening the memory latency of application demand requests.

While often helpful, the benefits of aggressive prefetching hinge on its accuracy. When

effective, memory performance can be significantly improved. However, inaccurate or

untimely prefetched cache lines can result in additional data to be brought into the

cache, which amounts to wasted energy. As energy is a key limited resource in mobile

platforms, it is of critical importance to evaluate the energy cost of prefetching. We

approximate this energy cost of prefetching as ERAM→L2, i.e., same as moving data

from the memory to L2 cache. The rationale is that the energy cost of prefetching

a line from memory is mostly expended on the actual data movement [24]. Isolating

the energy consumption of prefetch engine’s overhead from this is not apparent, due

to a combination of the energy measurement methodology that is adopted and the

limited access to component level power measurement on a production smartphone.

29

There are three distinct prefetchers on the Samsung Exynos-based SoC which

houses the ARM Cortex A9 processor: per-core L1 cache stride prefetchers, L2 double

line-fill cache prefetcher, and the L2 cache stride prefetcher [5].

The per-core L1 cache prefetchers monitor cache references to the L1 cache based

on the program counter (PC) value and address and are capable of tracking multiple

prefetch streams. The L1 cache prefetchers bring data from the lower levels of the

cache hierarchy in advance by placing the prefetched cache lines into a dedicated

prefetch buffer. Upon hits, prefetched data are brought from the prefetch buffers to

the L1 caches. In the case of inaccurate prefetch requests, the prefetcher throttles

down its aggressiveness to reduce the degree of potential interference in the prefetch

buffer. Apart from this, the L1 prefetcher also sends prefetch hints to the L2 cache

controller for prefetching lines into the L2 cache. These lines that are allocated in

the L2 cache are not sent to the L1 cache. The L2 double line-fill cache prefetcher

observes the L2 cache misses and fetches two cache lines – the one that caused a miss

and the next line from the memory. The L2 controller implements stride prefetching

mechanism that fetches a pre-configured number of cache lines based on the references

it receives.

30

Chapter 6

EXPERIMENTAL SETUP

This chapter introduces the experimental methodology for real-system energy

measurements and provides the background to the measurement infrastructure this

work makes use of.

6.1 Experimental Platform

All experiments presented are performed on a Samsung Galaxy S3 I9300 smart-

phone which houses the Samsung-made Exynos4 Quad 4412 SoC. The SoC has four

Cortex-A9 application cores and an integrated L2 cache. The device runs a rooted

Cyanogenmod that is based on Android 4.3. This specific model ships with a 1GB

Low Power DDR (LPDDR) memory. The relevant technical specifications are pro-

vided in below table 6.1.

6.2 Energy Measurement for the Experimental Platform

The experiments presented in this thesis rely on the described power consumption

measurements of the smartphone device. To perform power measurements, the Li-Ion

battery is removed and the device is powered with a DC power supply set to 4.0V.

The first application of energy measurements is the validation of energy consumption

estimate generated by EnergyUsageCollector 3.2. The device energy consumption is

measured with a Watt’s Up RC Watt meter [15] that has a current measurement res-

olution of 0.01A. The source side of the meter is connected to Power Supply with the

load side connected to the smartphone. The measured values are manually recorded

for comparison. In contrast, the data movement energy measurements described in

31

Table 6.1: Technical Specifications of the System.
Operating System Android Jelly Bean 4.3

Display Super AMOLED with capacitive touchscreen

Display Size 720 x 1280 pixels, 4.8 inches

ISA ARMv7 processor architecture

CPU 4 ARM Cortex A9 cores

TLB L1 I/DTLB 32-entries, full-assoc.; L2 TLB 2-way set-assoc. 128

entries

L1 Inst. Cache 32KB, 4-way, Private

L1 Data Cache 32KB, 8-way, Private

L2 Unified Cache 1MB, 16-way, Shared, Inclusive

Main Memory 1GB

Page size 4KB

5 are performed with the National Instruments DAQ 6251 [20]. The DAQ offers a

higher resolution and sampling rate for measurements compared to the Watt’s Up

power meter . In this case, the power supply is connected to the battery terminals

by a pair of test clips and a small shunt resistor in between to form the measurement

circuit. The DAQ periodically samples voltages across the resistor that is then used

to calculate the current flow through the circuit. The readings are displayed in the

NI SignalExpress [21] tool installed on a host NI PXI Controller. Figure 6.1 is a

captured snapshot of the time graph that shows the current and voltage. SignalEx-

press has several features that aid in data recording, run-time calculation of power

and post-measurement analysis. Further, the data logged by the DAQ is minimally

processed to eliminate noise by time averaging, histogram analysis and DC compo-

nent extraction. Both current and voltage are sampled at 100KHz with a resolution

of 10−6. All data movement energy measurement results presented in this thesis are

obtained with the lowest brightness setting for the display.

32

Figure 6.1: Current and Voltage measurement with NI SignalExpress

6.3 Performance Counters

The Linux kernel that runs on the device is configured at build time to enable

profiling, tracing, high resolution timer support and access to performance counters.

This configuration is necessary to enable performance counter reading in the CPU

and the L2 cache controller with ARM Streamline [6]. Streamline is a CPU profiling

and performance analysis tool that runs on a host machine and connects to a target

device through adb. This setup establishes adb connection between the host and

the target via the micro USB connection on the smartphone. Streamline provides a

graphical timeline view of a selection of statistics from the Linux kernel’s sysfs virtual

file system and the processor’s Performance Monitoring Unit(PMU). Figure 6.2 is a

snapshot of Streamline’s timeline with PMU statistics captured. The PMU counters

are sampled and the readings are streamed to Streamline by the driver gator and

user space daemon gatord, both running on the target. Gator is built as a Linux

33

Figure 6.2: Timeline view of performance couner statistics from ARM Streamline

kernel module using the Android NDK toolchain. The driver configures the PMU

registers to measure the performance events specific to the architecture and samples

the registers that hold the event counts. Similarly, the L2 cache controller that is

integrated with the application cores provides two counters. The events that Cortex

A9 architecture supports and are of interest to this work are L1 data cache misses,

L1 data cache accesses, L1 instruction cache misses, total instructions executed and

the number of Load, Store and Integer instructions. Similarly, the L2 cache controller

can record the number of L2 reads, L2 cast outs, L2 writes etc.

34

Chapter 7

DATA MOVEMENT CHARACTERIZATION FOR MOBILE WORKLOADS

Table 7.1 summarizes the energy costs for each of the operations described in

Chapter 5. The methodology that has been developed so far is now leveraged to

analyze the impact of data movement for real world, smartphone applications. The

total energy consumption measurement for a diverse set of mobile workloads, e.g., the

MobileBench suite and a game workload, FrozenBubbles, from the Moby suite [19], is

obtained by sampling the dynamic power consumption, Pi. The energy consumption

is calculated by integrating the power samples over time with the trapezoidal rule.

Energy =
∫ EndT ime

StartT ime
Ptdt =

k∑
i=0

Ptti

The energy consumption of the application is the difference between the total

device energy consumption and the idle energy consumption. The data movement

energy is estimated by multiplying the number of accesses to the L1, L2 caches, and

the main memory with the respective unit energy costs in table 7.1 for moving data

between the different levels. Similarly, the energy spent on processor stall cycles is

also evaluated. By separating the data movement and stall cycle energy consumption

from the total energy consumption of the experimental device, we can attribute the

rest of the energy consumption to the application processor, other SoC accelerators

which may be active and performing computations concurrently with the application

processor, other system peripherals (e.g., SD card access), as well as the display.

Figure 7.1 shows the energy breakdown for the mobile workloads. The Data Move-

ment Energy bars represent the portion of the total device energy consumption due

to the data movement in the application processor’s memory hierarchy and the Stall

35

Table 7.1: Energy Cost of Data Movement.
Operation Energy Cost (nJ) ∆ Energy (nJ) Equivalent ADD

Ops.

NOP 0.105 - -

ADD 0.105 - 1

LOAD L1→ Reg 0.192 0.192 1.83

LOAD L2→ Reg 0.803 0.611 7.65

LOAD DRAM→ Reg 12.032 11.228 114.6

Stall cycle 0.068 - -

0%

20%

40%

60%

80%

100%

B
re

ak
d

o
w

n
 %

Data Movement Stalls Arithmetic Instructions Others

Figure 7.1: Energy breakdown for the experimental device.

Cycle Energy bars represent the portion of the total device energy consumption from

processor stall cycles. The energy consumption due to the execution of arithmetic in-

structions is represented by the portion labeled Arithmetic Instructions. The Others

bars represent the rest of the energy consumption of other active components in the

device. On average, a significant portion (34.6%) of the total device energy consump-

tion is spent on moving data from one level of the memory hierarchy to the next level

for mobile workloads. The data movement energy is particularly high (41%) for real-

istic web browsing (RWB). Relatively PhotoView spends less amount of energy in data

36

movement. This is likely due to the application using hardware acceleration for jpeg

decoding. As a result, more energy is spent on the Others category for PhotoView.

Another interesting observation is that there is a considerable amount of energy

spent on stall cycles in the application processor. On average, 23.5% of the total

device energy is spent on stalled cycles, e.g., resolving data dependencies, waiting for

long latency memory operations, etc. This stall cycle energy is expected to increase

considering realistic user behavior for mobile devices. Users typically do not user

their smartphones for continuous computations. Typical smartphone usage reveals a

pattern of a short-term use, e.g., texting, viewing pictures, searching for restaurants,

followed by a long period of idle time. While today’s Android OS already adopts smart

energy management policies that aggressively modulate down the operating frequency

of the application processor or even puts the application processor into the sleep

mode, the stalled cycle energy in the processor cannot be completely eliminated by

such coarse-grained energy management. This urges architects for mobile processors

to integrate more, but simplified, cores into the application processor to reduce the

energy cost of stall cycles which can translate to improved energy efficiency. Finally,

the energy cost of computations, hardware accelerators, etc., in the Other category

varies from 31.3% to 54.1%. A significant portion of the Other energy consumption

comes from the smartphone display, which has been shown as one of the most power-

hungry components in modern smartphones [13, 33].

In addition to the energy breakdown, the energy analysis for data moving from one

level of the memory hierarchy to another level is also performed. Figure 7.2 shows the

relative energy cost for moving data from the L1 cache to processor register (L1 →

Reg), from the L2 cache to the L1 instruction cache (L2→ L1Instruction), from the

L2 cache to the L1 data cache (L2→ L1Data), from the memory to the L2 cache by

the processor (Mem → L2) and by the cache prefetchers (Prefetches). Depending

37

44%

3% 10%

15%

28%

EWB-Blackboard

37%

2%
8%

24%

29%

Frozen Bubble

39%

3%
11% 16%

31%

RWB

39%

3%
10%

18%

30%

GWB

L1 -> Reg L2 -> L1 Data

27%

3%

7%
30%

33%

VideoPlayback

L2 -> L1 Instruction Mem -> L2

47%

2% 6%

21%

24%

PhotoView

Prefetches

Figure 7.2: Relative energy cost for moving data from one level to another level of
the entire memory hierarchy in the ARM Cortex-A9 processors for mobile workloads.

on the memory access patterns of the mobile workloads, the energy consumption

dedicated to each level of the memory hierarchy varies. For all studied workloads

except for VideoPlayback, L1 → Reg is the most significant. The reason for the

relatively lower L1 → Reg for VideoPlayback is because the active working set of

this benchmark does not completely fit in the cache hierarchy, having a higher L2

cache miss rate of 24.86%. Thus, a considerable amount of energy is spent moving

data from the memory to the L2 cache.

Another interesting observation for the studied mobile workloads is the relatively

higher data movement energy to bring instructions to the L1 instruction cache than to

bring data to the L1 data cache. This is because mobile workloads often heavily rely

on built-in libraries and system calls in the OS (Android Jelly Bean 4.3 in this case)

and thus exhibit larger instruction working sets that can exceed the size of the L1

38

instruction cache. This is similarly shown in an older study by Guitierrez et al. [16].

Overall, the data movement energy of Mem → L2 is dominating. This motivates

mobile processor and SoC architects to optimize the data path between the memory

and the L2 cache, which will translate to significant energy consumption reduction

and improved energy efficiency gains.

39

Chapter 8

CONCLUSION

8.1 Summary of Results

This thesis describes a detailed methodology for quantifying the data movement

energy cost on a commercial smartphone and summarizes the energy cost for moving

data from one to another level of the memory hierarchy in a mobile processor, ARM

Cortex-A9. With the instruction-level energy cost quantification, detailed characteri-

zation is presented for the portion of the energy that is spent on data movement for a

diverse set of smartphone applications. Overall, the energy spent on data movement

in mobile processors is significant. 34.6% of the total device energy consumption is

spent on data movement. The data movement energy is particularly high (41%) for

realistic web browsing that is commonly performed on smartphones. The results also

indicate a relatively high stalled cycle energy consumption (an average of 23.5%) for

current smartphones. With the experimental methodology, detailed energy charac-

terization and insights provided, this thesis lays a foundation to further explore data

movement energy cost constraints in smartphone SoCs.

8.2 Future Research Directions

8.2.1 Smartphone processors

The substantial contribution by the stall cycle component to total power con-

sumption motivates the design for future mobile processors with more but simpler

cores. Simpler cores can reduce the energy cost per stall cycle. Furthermore, the

considerable amount of energy spent on moving data from the memory to the L2

40

cache encourages more research into low-power emerging memory technologies for

embedded devices.

8.2.2 Data movement in heterogeneous mobile systems

Increasingly, GPUs with their massively parallel architecture are being exercised to

accelerate highly parallel kernels within applications. The introduction of the Nvidia

CUDA [29] programming model has simplified the programming interfaces, letting

programmers leverage the potential of GPUs to perform non-graphics computations.

Another distinct approach to program GPUs is the OpenCL [31] programming lan-

guage, which has enabled developers to write cross-platform kernels that are portable

to different architectures. These kernels can either be compiled offline to a device

or JIT compiled at run-time to run on any supporting device. Although, both ap-

proaches are fairly well-established in the context of desktop and server computing

environments, the same cannot be said with reference to mobile computing. But,

with emerging trends in mobile architectures leaning towards heterogeneous designs,

suitable programming models are also evolving. The recent Samsung SoCs for mo-

bile devices like the Exynos 5420 [36] and 5422 [37] have programmable GPUs that

allow developers to write OpenCL or Renderscript [4] programs for general purpose

computations and offload the computations to the GPU. Likewise, the latest Snap-

dragon SoCs [35] from Qualcomm have Adreno GPUs that are capable of supporting

general computations aside from enabling graphics. The changes in hardware along

with the availability of corresponding run-time libraries will allow developers write

device agnostic code where the target can be CPU, GPU or a DSP. Also, in mobile

SoC’s where typically the GPU and CPU share system memory, the scope for data

movement characterization is even wider. To illustrate the idea, a preliminary in-

41

vestigation was carried out to quantify the data movement energy cost between the

GPU and memory.

Different from the characterization presented in the rest of this thesis, the target

platform for this study was the Arndale Octa development board [10] that has Exynos

5420 SoC. The primary reason being, the Mali-400 MP [7] GPU in the Exynos 4412

does not support general purpose computing, whereas, the Mali-T628 [8] GPU cores

in the Exynos 5420 explicitly support the OpenCL 1.1 framework. An OpenCL

microbenchmark was developed using the Mali SDK [9] to generate strided memory

accesses within a large data set that does not fit within the GPU cache. The idea is to

repeatedly move data from the shared system memory to the GPU core. The power

consumption of the board is recorded during the idle phase as well as the memory

access phase to compute the benchmark’s power consumption. Each memory access

from the memory to the GPU core is estimated to cost 370.1 nJ, which is several times

larger than the energy cost reported for the CPU counterpart in Chapter 7. This huge

difference is likely due to the stall cycle energy cost that is included in the estimated

370.1 nJ energy consumption. Another benchmark that performs continuous ADD

operations is designed and executed on the GPU. The corresponding energy cost is

evaluated to be 0.3179 nJ. This energy consumption for performing an ADD operation

on the GPU is also much higher than that of the CPU. We speculate this higher

energy cost to come from the GPU arithmetic logic that is possibly less-optimized

for general-purpose compute. Notwithstanding the absence of an exact analysis, this

experiment stimulates the need to explore the role of data movement in heterogeneous

architectures like the mobile SoC. A thorough analysis will be immensely useful to

make run-time decisions with regards to choosing the target platform for execution.

42

8.2.3 Data movement in client-server environments

A growing number of mobile applications, including email, word processing, media

players, etc., offload parts of their computation, in varying degrees, to the cloud. In

most cases, the smartphone app itself is a light-weight client that relies on the remote

servers in cloud to perform heavy-duty computations. Kestor et al. through their

detailed analysis in [24] shed light on the relative costs of data movement in processors

targeted at servers. By taking into account the energy consumption incurred in

transmitting data through the network along with the energy spent in computations

at the server-end, it is possible to deduce the total energy consumption involved. This

figure can then be compared against performing computations in the smartphone

itself. Characterizing the energy consumption involved and studying such trade-offs

from both energy and performance points of view will offer new metrics that can be

used by developers to distribute application execution.

43

REFERENCES

[1] Cortex a9 prefetch disable. URL https://github.com/deater/
uarch-configure/tree/master/cortex-a9-prefetch.

[2] S Amarasinghe, M Hall, R Lethin, K Pingali, D Quinlan, V Sarkar, J Shlf,
R Lucas, K Yelick, P Balaji, P. C. Diniz, A Koniges, M Snir, and S. R. Sachs.
Report of the workshop on exascale programming challenges. In Technical report,
US Department of Energy, 2011.

[3] Android. Ndk, . URL https://developer.android.com/tools/sdk/ndk/
index.html.

[4] Android. Renderscript, . URL http://developer.android.com/guide/
topics/renderscript/compute.html.

[5] ARM. Pl310 cache controller technical reference manual, . URL http://goo.
gl/GUP7xf.

[6] ARM. Streamline analyzer, . URL http://ds.arm.com/ds-5/optimize/.

[7] ARM. Mali-400 mp, . URL http://www.arm.com/products/multimedia/
mali-cost-efficient-graphics/mali-400-mp.php.

[8] ARM. Mali-t628, . URL http://www.arm.com/products/multimedia/
mali-performance-efficient-graphics/mali-t628.php.

[9] ARM. Mali opencl sdk, . URL http://malideveloper.arm.com/
develop-for-mali/sdks/mali-opencl-sdk/.

[10] Arndale. Octa. URL http://www.arndaleboard.org/wiki/index.php/
Introduction.

[11] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques, 2008.

[12] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings of the 27th
Annual International Symposium on Computer Architecture, 2000.

[13] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of USENIX annual technical conference (USENIX-ATC),
2010.

[14] Bill Dally. Power, programmability, and granularity: The challenges of ExaScale
computing. In Proceedings of International Parallel and Distributed Processing
Symposium, 2011.

44

https://github.com/deater/uarch-configure/tree/master/cortex-a9-prefetch
https://github.com/deater/uarch-configure/tree/master/cortex-a9-prefetch
https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/guide/topics/renderscript/compute.html
http://developer.android.com/guide/topics/renderscript/compute.html
http://goo.gl/GUP7xf
http://goo.gl/GUP7xf
http://ds.arm.com/ds-5/optimize/
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-400-mp.php
http://www.arm.com/products/multimedia/mali-performance-efficient-graphics/mali-t628.php
http://www.arm.com/products/multimedia/mali-performance-efficient-graphics/mali-t628.php
http://malideveloper.arm.com/develop-for-mali/sdks/mali-opencl-sdk/
http://malideveloper.arm.com/develop-for-mali/sdks/mali-opencl-sdk/
http://www.arndaleboard.org/wiki/index.php/Introduction
http://www.arndaleboard.org/wiki/index.php/Introduction

[15] RC electronics. Watt’s up. URL http://www.rc-electronics-usa.com/
ammeters/dc-amp-meter.html.

[16] A Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C. Em-
mons, and N. Paver. Full-System Analysis and Characterization of Interactive
Smartphone Applications. In Proc. of the International Symposium on Workload
Characterization, 2011.

[17] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Estimating
mobile application energy consumption using program analysis. In Proceedings
of the 2013 International Conference on Software Engineering, 2013.

[18] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 2006.

[19] Yongbing Huang, Zhongbin Zha, Mingyu Chen, and Lixin Zhang. Moby: A
mobile benchmark suite for architectural simulators. In Proceedings of IEEE In-
ternational Symposium on Performance Analysis of Systems and Software, 2014.

[20] National Instruments. Pxi-6251 daq, . URL http://sine.ni.com/nips/cds/
view/p/lang/en/nid/14125.

[21] National Instruments. Signalexpress, . URL http://www.ni.com/labview/
signalexpress.

[22] Nvidia Tegra K1. URL http://www.nvidia.com/object/
tegra-k1-processor.html.

[23] Steve Keckler. Life after dennard and how i learned to love the picojoule (keynote
speech). In Proceedings of International Symposium on Microarchitecture, 2011.

[24] G. Kestor, R. Gioiosa, D.J. Kerbyson, and A. Hoisie. Quantifying the energy
cost of data movement in scientific applications. In Proceedings of International
Symposium on Workload Characterization, 2013.

[25] Sheayun Lee, Andreas Ermedahl, Sang Lyul Min, and Naehyuck Chang. An ac-
curate instruction-level energy consumption model for embedded risc processors.
In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems, 2001.

[26] Sheng Li, Jung-Ho Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P.
Jouppi. Mcpat: An integrated power, area, and timing modeling framework for
multicore and manycore architectures. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, 2009.

[27] Microsoft Office Mobile. URL https://play.google.com/store/apps/
details?id=com.microsoft.office.officehub&hl=en.

[28] R. Murmuria, Jeffrey Medsger, A. Stavrou, and J.M. Voas. Mobile application
and device power usage measurements. In Proceedings of International Confer-
ence on Software Security and Reliability, 2012.

45

http://www.rc-electronics-usa.com/ammeters/dc-amp-meter.html
http://www.rc-electronics-usa.com/ammeters/dc-amp-meter.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/14125
http://sine.ni.com/nips/cds/view/p/lang/en/nid/14125
http://www.ni.com/labview/signalexpress
http://www.ni.com/labview/signalexpress
http://www.nvidia.com/object/tegra-k1-processor.html
http://www.nvidia.com/object/tegra-k1-processor.html
https://play.google.com/store/apps/details?id=com.microsoft.office.officehub&hl=en
https://play.google.com/store/apps/details?id=com.microsoft.office.officehub&hl=en

[29] Nvidia. Cuda. URL http://www.nvidia.com/object/cuda_home_new.html.

[30] Samsung Exynos Octa. URL http://www.samsung.com/global/business/
semiconductor/product/application/detail?productId=7977&iaId=2341.

[31] OpenCL. URL https://www.khronos.org/opencl/.

[32] Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data
movement for emerging smartphone workloads on mobile platforms. In Proceed-
ings of International Symposium on Workload Characterization, 2014.

[33] Dhinakaran Pandiyan, Shin-Ying Lee, and Carole-Jean Wu. Performance, energy
characterization and architectural implications of an emerging mobile platform
benchmark suite – MobileBench. In Proceedings of International Symposium on
Workload Characterization, 2013.

[34] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
Fine-grained power modeling for smartphones using system call tracing. In Pro-
ceedings of European Conference on Computer Systems, 2011.

[35] Qualcomm. Snapdragon 810. URL https://www.qualcomm.com/products/
snapdragon/processors/810.

[36] Samsung. Exynos 5420, . URL http://www.samsung.com/global/business/
semiconductor/product/application/detail?productId=7977&iaId=2341.

[37] Samsung. Exynos 5422, . URL http://www.samsung.com/global/business/
semiconductor/product/application/detail?productId=7978&iaId=2341.

[38] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: Studying
real user activity patterns to guide power optimizations for mobile architectures.
In Proceedings of the International Symposium on Microarchitecture, 2009.

[39] Amit Sinha, Nathan Ickes, and Anantha P. Chandrakasan. Instruction level and
operating system profiling for energy exposed software. IEEE Trans. Very Large
Scale Integr. Syst., 2003.

[40] International Data Corporation (IDC) Worldwide Quarterly Mobile Phone
Tracker, . URL http://www.idc.com/getdoc.jsp?containerId=
prUS24645514.

[41] International Data Corporation (IDC) Worldwide Quarterly Mobile Phone
Tracker, . URL http://www.idc.com/about/viewpressrelease.jsp?
containerId=prUS22689111.

[42] International Data Corporation (IDC) Worldwide Quarterly PC Tracker,
. URL http://www.idc.com/about/viewpressrelease.jsp?containerId=
prUS22653511.

[43] The Verge. Apple announces 1 million apps in the app store, more than 1 billion
songs played on itunes radio. URL http://www.theverge.com/2013/10/22/
4866302/apple-announces-1-million-apps-in-the-app-store.

46

http://www.nvidia.com/object/cuda_home_new.html
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7977&iaId=2341
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7977&iaId=2341
https://www.khronos.org/opencl/
https://www.qualcomm.com/products/snapdragon/processors/810
https://www.qualcomm.com/products/snapdragon/processors/810
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7977&iaId=2341
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7977&iaId=2341
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7978&iaId=2341
http://www.idc.com/getdoc.jsp?containerId=prUS24645514
http://www.idc.com/getdoc.jsp?containerId=prUS24645514
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22653511
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22653511
http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-app-store
http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-app-store

[44] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,
Zhuoqing Morley Mao, and Lei Yang. Accurate online power estimation and
automatic battery behavior based power model generation for smartphones. In
Proc. of CODES+ISSS, 2010.

47

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Background and Motivation
	Thesis Contributions
	Outline

	RELATED WORK
	MOBILEBENCH
	Workloads
	Platform Energy Characterization with EnergyUsageCollector

	MICROBENCHMARKS
	Background
	Design of the Microbenchmarks
	Discussion

	DATA MOVEMENT ENERGY COST EVALUATION
	Dynamic Energy Measurement for the Microbenchmarks
	Stall Cycles
	Long Latency Memory Operations
	Cache Prefetcher

	EXPERIMENTAL SETUP
	Experimental Platform
	Energy Measurement for the Experimental Platform
	Performance Counters

	DATA MOVEMENT CHARACTERIZATION FOR MOBILE WORKLOADS
	CONCLUSION
	Summary of Results
	Future Research Directions
	Smartphone processors
	Data movement in heterogeneous mobile systems
	Data movement in client-server environments

	REFERENCES

