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ABSTRACT 

The development of new policies favoring integration of renewable energy into 

the grid has created a need to relook at our existing infrastructure resources and at the 

way the power system is currently operated. Also, the needs of electric energy 

markets and transmission/generation expansion planning has created a niche for 

development of new computationally efficient and yet reliable, simple and robust 

power flow tools for such studies. The so called dc power flow algorithm is an 

important power flow tool currently in use. However, the accuracy and performance 

of dc power flow results is highly variable due to the various formulations which are 

in use. This has thus intensified the interest of researchers in coming up with better 

equivalent dc models that can closely match the performance of ac power flow 

solution.     

This thesis involves the development of novel hot start dc model using a power 

transfer distribution factors (PTDFs) approach. This document also discusses the 

problems of ill-conditioning / rank deficiency encountered while deriving this model. 

This model is then compared to several dc power flow models using the IEEE 

118-bus system and ERCOT interconnection both as the base case ac solution and 

during single-line outage contingency analysis. The proposed model matches the base 

case ac solution better than contemporary dc power flow models used in the industry.  
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1 INTRODUCTION 

1.1 BACKGROUND 

In 2012 the electricity sector was the largest source of greenhouse gas emissions in 

US, contributing 32% of the total greenhouse gas emissions, which is significantly 

better than the 40% share of electricity sector in 2009 for greenhouse gas emissions. 

Albeit the contribution of electricity sector towards greenhouse emissions has declined 

significantly but a lot needs to be done to further improve on clean energy [1]-[2]. The 

decline is the result of development of new environmental policies and federal tax 

incentives favoring integration of renewable resources into grid. Now more than 35 

states have renewable energy targets in place [3]-[4]. In California, for example, as of 

April 2011, the renewable portfolio standards (RPS) requires California’s electric 

utilities to derive 33% of their retail sales from eligible renewable energy resources by 

2020 [5]. Because of governmental energy policies and incentives, the power industry 

is rapidly changing gears to accommodate renewable resources such as photovoltaics, 

wind in their energy portfolios and thus changing the traditional perspective of 

operation and design of power systems. Besides the changes in the generation in pattern, 

the 10-year planning summary prepared by Western Electricity Coordinating Council 

(WECC) indicated that there is a 14% expected rise in loads from 2009 to 2020, which 

is 1.2% compound annual growth rate [23]. However, to keep pace with the current 

trends in power systems, there is an urgent requirement to develop new tools to study 

the rapidly evolving power system.  
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It is a well-known that an ac power flow solution is more accurate than the 

corresponding dc solution for studies like power flow, contingency analysis. But the 

traditional Newton-Raphson (NR) algorithm used for the ac solution requires an 

iterative procedure which is quite time intensive and less appropriate for carrying out 

such studies where qualitative solution at an initial planning phase is of prime concern. 

Also, the interest in development of efficient dc power flow models has further 

intensified due to market applications (such as security–constrained economic dispatch 

(SCED), security-constrained unit commitment (SCUC)) where prices are a function of 

network congestions [6]. Conventionally, these approximate dc power flow models 

were used extensively to tackle convergence issues common to the full ac OPF, 

contingency screening, transmission loading relief and medium-to-long term 

transmission planning [6].  

The objective of the work reported on here is to determine a dc model which takes 

into account branch resistance in the flow equations and which produces a better 

estimate of power flows during transmission line outages. 

1.2 LITERATURE REVIEW 

Network equivalencing, as the name suggests, is a procedure which reduces the 

complexity of the original model to create a simplified model either through reduction 

in system size or ease in computational requirements. Often these network equivalents 

are the results of dc approximations of ac network with an emphasis on preserving the 

original network properties as much as possible. Rich literature developed over the 
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years is descriptive of the myriad “dc power flow models” used for specific purposes 

like contingency analysis, market analysis. With the recent upsurge in the electric 

energy market applications stated earlier, interest has been renewed in the development 

of improved dc power flow models that better replicate the ac network model 

performance. The stimuli for such research is the desire for robustness, simplicity and 

speed of these models when used in the applications of interest. 

The word “dc” in dc power flow comes from the use of old dc network analyzers, 

used to represent the series reactance as proportional series resistance and the current to 

represent the corresponding MW flow on the network [6]. The simplest version of dc 

power flow without any loss compensation, is a further simplification of fast decoupled 

power flow by completely neglecting Q-V equation and assuming constant 1 p.u. 

voltage magnitude. With these simplifications the dc power flow problem is reduced to 

solving a linear system of equations [7] and [21]. This “classical dc” series-reactance 

model is widely known as the original dc power flow method. 

Variants of dc models are legion and their performance is affected by the loss 

compensation techniques invoked and branch susceptances selected. Furthermore, 

these dc models are inherently approximate and their accuracy is very system and case 

dependent yet they provide significant insight into system behavior under different 

operating scenarios [22]. This research work is focused on the development of dc 

network models from ac network models, therefore it is vital to study the impacts of 

assumptions (i.e. voltage magnitude 1 p.u., resistances neglected.) on the dc model’s 
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accuracy. The theoretical implications of the assumptions made to derive a dc network 

model is well described in [8] while [9] – [11] and [22] discuss the effect of these 

assumptions on practical and realistic bulk energy systems. Reference [24] discusses 

the impact of flow controlling devices on dc power flow. Reference [26] presents the 

modification in the standard assumptions by introducing interval-valued  dc power 

flow equations to overcome voltage and parametric uncertainties. 

So-called dc power flow models have been segregated into different categories in 

literature. However, the more popular classification of these models include: 

incremental and non-incremental models. The non-incremental models are further 

categorized into hot start or state-dependent and cold start or state-independent dc 

models. The hot start dc models are based on the solved ac solution. In these type of 

models the series elements represent the power flow over the network and shunt 

elements model the loss injections. Therefore, these models match the ac solution 

losses at the base case. These types of models are used in real time SCED using a state 

estimator solution [12] and short / medium term planning studies. The other variant i.e. 

cold start dc models lacks a solved ac solution; thus the loss estimates are either 

neglected or an estimate is used that represent the losses as a percent of the net load. 

These type of models find utilization in the market based applications like financial 

transmission rights (FTR) / congestion revenue rights (CRR) [13] and long term 

planning studies.   
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Another category of models are known as the incremental models, which compute 

the incremental changes from a known ac or dc state [6]. These incremental models are 

sub-divided into sparse matrix models and sensitivity factor models. Sparse matrix 

models are based on the available base case ac/dc solution. The deviations from the 

base case (i.e. topological change – branch outage) are modeled as incremental changes 

in the problem formulation; this is performed by factor-updating in original formulation 

[6]. While in the sensitivity factor model, the sensitivity factors are a function of sparse 

dc network matrix and/or network solution. Computation of these sensitivity factors, 

like power transfer distribution factors (PTDFs), line outage distribution factor (LODF), 

outage transfer distribution factor (OTDF) is described in [14]. These sensitivity factors 

are widely used by system operators in the congestion modeling in market applications 

e.g., transmission loading relief (TLR) procedure, by providing fast approximations of 

the active power flow changes due to various system operations [20]. References [15] – 

[17] discuss the formation of network equivalents using the sensitivity factors and 

extending it further to obtain the reduced network models which tend to preserve 

network properties. References [18] – [19] provide an insight into the variation of 

sensitivity factors i.e., PTDFs with multiple loading scenarios across different systems.  

References [16], [17] and [37] present network aggregation techniques applied to 

the classical dc formulations, but, for a complex network they suffer from the rank 

deficiency/numerical ill-conditioning problems. Also, when this technique is applied to 

a set of inconsistent PTDFs instead of consistent classical dc PTDFs the solution 
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becomes constraint dependent and yields different results for different constraints 

applied.  

Often in deregulated electricity markets, the market participants, in the open access 

environment, want to maximize their profit, so they compete to obtain electrical energy 

from a cheap source, which may lead to congestion in the transmission network and 

affect system security and reliability [25]. This has increased the need to conduct 

dynamic security and reliability assessment on a real time basis. Therefore, 

contingency analysis plays an integral part of such a study.  

Transmission planning (TPL) standards define reliable system performance 

following a loss of a single bulk electric element, two or more bulk electric elements, or 

following extreme events [27]. NERC [28] – [30], requires analysis of the following 

contingencies [27]: 

 Resulting in a loss of a single element (Category B) 

 Resulting in a loss of two or more elements (Category C) 

 Extreme events forcing two or more elements removed or cascading out of 

service (Category D) 

dc power flow models are frequently used to provide a insight when such an enormous 

number of cases must be taken under consideration. 

1.3 RESEARCH OBJECTIVE  

This research focuses on the development of an improved dc model which produces 

a better estimate of power flows during transmission line outages or contingencies. This 

report covers following areas: 
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1. Basic dc power flow formulation 

2. Modeling of loss compensation in dc models 

3. Introduction to PTDFs (both ac and dc)   

4. Detailed development of a series element in the proposed dc model 

5. Numerical issues in the development of this model 

6. Comparison of the results of this model with other widely accepted dc models   

1.4 THESIS OUTLINE 

This thesis is divided into four additional chapters: 

Chapter 2 introduces reader to general dc power flow model formulation and the 

underlying assumptions for development of such models. 

Chapter 3 presents the new optimization based approach for the development of a 

series element of the proposed model. 

Chapter 4 discusses the rank deficiency or ill-conditioned matrix issues 

encountered in the development of the proposed model. 

Chapter 5 conducts the numerical illustration on 7-bus, IEEE-118 bus system and 

ERCOT interconnection to demonstrate the accuracy of this model compared to other 

more prevalent dc models. 

Chapter 6 provides the summary of this research and future scope of work.    
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2 DC POWER FLOW MODEL FORMULATION 

The power flow problem involves the solution of a non-linear system of equations 

using the traditional implicit methods like Newton-Raphson and Gauss-Seidel. In 

contrast, a dc power flow algorithm explicitly solves a linear system of equations, an 

equation set that is far more computationally efficient, i.e., non-iterative and low 

storage requirements. The advantages of speed and robustness offered by such models, 

makes the dc power flow an attractive option to pursue for several of the applications 

stated earlier.  

In this chapter, the ac model for the power flow over a transmission line is first 

introduced and then the dc model assumptions are overlaid to derive the classical dc 

model formulation. A more generalized dc power flow model is then presented to the 

reader. Furthermore, cold-start and hot-start dc models with and without loss 

compensation respectively, are described in detail.        

2.1 AC POWER FLOW MODEL FOR A TRANSMISSION LINE 

A simplified ac network model for a transmission line connecting bus i and bus j is 

shown in Figure 2.1. The power flows on the branch at the sending end bus i and 

receiving end bus j are given by Pij and Pji respectively.  

The active power flow from bus i to bus j under steady state conditions is described 

by the following power-flow equation: 

   *
)(Re ijijjjiiiiij bjgVVVP    (2.1) 
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 i

Pij Pji

j

yij=gij + jbij

zij=rij + jxij

 

Figure 2.1 Model of a transmission line connecting bus i and bus j  

Upon simplification, 

Similarly, 

Where, 

Vi = voltage at bus i in per unit 

Vj = voltage at bus i in per unit 

θi = angle at bus i 

θj = angle at bus j 

rij = resistance of transmission line i-j in per unit 

xij = reactance of transmission line i-j in per unit 

zij = impedance of transmission line i-j in per unit 

yij = admittance of transmission line i-j in per unit 

gij = conductance of transmission line i-j in per unit 

bij = susceptance of transmission line i-j in per unit 

Pij =Power flow from bus i to bus j in per unit 

  )sin()cos(2

jijiijjijiiijij VVbVVVgP  
 

(2.2) 

  )sin()cos(2

jijiijjijijijji VVbVVVgP  
 

(2.3) 
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Pji = Power flow from bus j to bus i in per unit 

It can be seen that the difference of the flows at the sending and receiving ends of the 

branch represent losses that occur on the branch. 

Occasionally, phase shifting transformers are found in the large networks to 

regulate the real power flow over the transmission lines. Therefore, a generalized 

model for phase shifting transformer involving taps is derived.  

 i

Pij Pji

j

yij=gij + jbij

zij=rij + jxij

 

Figure 2.2 Model of a phase shifting transformer connecting bus i and j 

Figure 2.2 shows a phase shifting transformer connecting buses i and j. A fictitious 

bus is added for clarity to separate the transformer impedance from transformation 

ratio. It is to be noted that the phase-shift transformer makes the bus admittance matrix 

Ybus asymmetric. Power flow at the sending end is obtained as follows [31] – [33]: 

Similarly, the receiving end power flow is given as: 









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









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






















*

)(Re ijijjj

ii

i

ii

i

ij bjgV
t

V

t

V
P 




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iji

i

ji

ijiji

i

ji

i

i
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VV
b
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VV

t
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
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)sin()cos(2
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ji

ijiji
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ji

jijji
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b

t

VV
VgP  
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where, 

ti = tap ratio of the transformer. 

δi = phase shift angle of the transformer 

2.2 CLASSICAL DC POWER FLOW MODEL DERIVATION 

To derive the classical dc power-flow model, the classical assumptions are applied 

to the ac branch flow model without the phase shifting transformer. The following 

assumptions are made for the dc power-flow model: 

Assumption 1: Losses are neglected on the branch i.e. resistance is neglected. 

 r ≈ 0 → gij = 0 and bij = -1/xij; 

Assumption 2: Voltage at the buses are approximate to 1 p.u. 

Vi ≈ 1 for all bus i; 

Assumption 3: The angle difference across the branch end is small such that 

 sin (θij) ≈ θij 

Assumption 4: Transformer taps are ignored as voltage is 1 per unit at each bus. 

 ti  ≈ 1 

The introduction of these assumptions in the ac power flow model introduces errors 

which shall be discussed later in this chapter. These assumptions modify the active 

power flow equations for bus i and bus j derived in (2.4) - (2.5) as follows: 

)( jiijjiij bPP  
 

(2.6) 
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 i

Pij Pji

j

xij

 

Figure 2.3 Typical dc model of a transmission line connecting bus i and j 

The node balance equation for an N+1 bus system (one bus is slack or reference bus) 

and L branch network using (2.6) yields the generalized equation for dc power flow 

model as: 

where, 





N

i

i

L

i

G

i

inj PPP
1

)(     =N × 1 bus injection vector   i1, 2…N 

  = Power generated at bus i 

i

LP   = Load at bus i 

Bbus  = CT. diag(1/x) . C = N × N bus susceptance matrix 

Θ  = Bus voltage angles  

C   = L × N bus-branch incidence matrix  

(1/x)  = [1/x1, 1/x2, 1/x3…..1/xL]  = susceptance of the network model 

diag(1/x) = L × L diagonal matrix containing network susceptance 

Also, the generalized equation for the power flow over the network branches can be 

written as: 

i

GP

 businj BP
 

(2.7) 
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where  

Pflow  = L × 1 network branch power flow vector 

Bbranch  = diag(1/x) . C  = L × N branch susceptance matrix 

The solution involves solving the linear system of equations, (2.7), from which nodal 

phase angles are obtained using sparse LU factorization of busB and then performing 

forward/backward substitution. Power flow over the network branch is obtained using 

(2.8). 

As mentioned earlier, phase shifters alter the real power flow over the transmission 

line. Therefore, its implications on the dc power flow equations must be accounted for. 

The power flow over a branch with phase shifter is given by: 

Using node balance equations, the dc bus injection and branch flow equations are 

modified as:  

where, 
shift

busP  and 
shift

branchP  represent the power injection vectors that compensate for the 

phase shifter on both the bus power injection and branch flow equation.  

 branchflow BP
 

(2.8) 

)( ijiijjiij bPP  
 

(2.9) 

shift

busbusinj PBP    

shift

branchbranchflow PBP  
 

(2.10) 
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2.3 ERRORS DUE TO DC POWER FLOW ASSUMPTIONS 

Although, the objective of this research is not to analyze in detail either the impacts 

of assumptions used in dc model creation or the impacts of loading on such a model, it 

is desirable to have a comprehensive view of these dc-modeling assumptions. 

Assumption #1 above states that the losses are neglected. At first glance, it implies 

that this assumption results in an error of few percent over the network branch. 

However, these small errors over all the lines accumulate and appear on the slack or 

reference bus. Therefore, for a large power system the power flows over the 

transmission lines in the vicinity of this reference bus results in large errors. This effect 

will be observed in the ERCOT interconnection model discussed later in this report 

when the comparison of ac and dc power flows will be made at the base case and under 

contingency. 

The second assumption above states that the bus voltages are assumed to be 1 per 

unit. This assumption directly implies the absence of transformer taps and the absence 

of line voltage drop. It is typical of the NERC-MMWG models to have voltages in the 

range of 0.75 to 1.4 per unit. Therefore the real power-flow error due to this assumption 

is in the range -43.75% to 96%. This assumption impacts the VAR flow over the line 

and hence the effective value of current, therefore, large deviations from this 

assumption in conjunction with the loss neglecting assumption (i.e. R=0) can lead to 

large errors in the dc power flows obtained from such a model. 
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The third assumption above states that the angle difference across a transmission 

line is small which approximates sin (θ) ≈ θ. This assumption is typically accurate for 

short transmission lines. However, for a longer transmission lines, the angle across the 

line may be larger. This may result in introducing significant error. For example a 40o 

angle across the transmission line introduces an error of 8.6% due to this assumption. 

It may seem from the above discussion that these assumptions lead to inaccurate 

power flow results by a large margin. However, in practice this may not hold true. 

Consider the following argument. First recognized that the dc network model is just a 

linear direct–current divider circuit model. Therefore, it follows that MW flows are 

divided according to Ohm’s and Kirchoff’s law where real power flows are analogous 

to current and bus angles are analogous to voltages. For example, if all the bus voltages 

are identical but not equal to 1 per unit, then the assumption of 1 per unit bus voltages 

will have no impact on the error of the dc power flow model. As another example, when 

there is a radial line no errors are induced apart from losses due to the assumption 

numbers one and three stated above. It often becomes difficult to predict if the 

assumptions made will accumulate errors or display self-cancellation properties or 

propagate the MW flow inaccuracies throughout dc network when power flows are 

obtained from such a model. For more details, an interested reader should look at 

[9]-[10] which discuss the impact of such assumption on realistic power systems.  
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2.4 GENERALIZED DC POWER FLOW MODEL         

The dc model discussed so far is a lossless model involving only series elements i.e. 

reactance or susceptance, therefore there is no provision of any loss compensation. In 

this section a more generalized dc power flow model is formulated. 

 i αk1 αk2 j

H

Pij Pji

 

Figure 2.4 A generalized dc model of a branch connecting bus i and j 

The generalized dc power flow model for a transmission shown in Figure 2.4 [6], 

indicates a series element i.e. reactance or susceptance represented by H. The flow over 

the branch is given by: 

where 

 kP  = Power flow over the transmission line 

 H  = Susceptance of the branch 

   = ji    = Angle difference across the branch 

 1k  = Sending end loss compensation for branch 

 2k = Receiving end loss compensation for branch 

This model incorporates losses (based on the solved ac solution) that occur over the 

entire network by modeling the (negative) power injections at the respective buses. It is 

 HPk  
(2.11) 
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worthwhile to note that sum of 21 kk   represent the total loss that appears over the 

branch due any resistive element in the ac model.  

Various dc power flow models are now introduced with respect to this generalized 

dc power flow model. 

2.4.1 COLD START OR STATE INDEPENDENT DC MODEL  

Cold start dc models a.k.a. state independent models are a common type of dc 

model used when there is an absence of reliable solved ac base case solution. Therefore, 

these type of dc models do not account for the losses that occur over the system, i.e. 

there is no loss compensation. Due to the absence of loss modeling, this model often 

leads to a less accurate power flow solution. However, this type of dc model is quite 

prevalent in industry and extensively used for SCUC, FTR and long term planning 

purposes.  

Mathematically, it is defined as: 

The power flow solution using this model is obtained as explained in section 2.2.  

 Another suggested approach to cold start models, where there is lack of good 

voltage/VAR solution, is to use a fixed-voltage ac power-flow solution. In this model, 

bus voltages and transformer taps are set to 1 per unit i.e. all buses are specified as PV 

ijx
H

1
  

021  kk   (No loss compensation) 

(2.12) 
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buses with no VAr limit. Although the VAr flows obtained from such a flat voltage ac 

solution are completely wrong, the MW flows, net losses or loss distribution obtained 

from such an approach is better than the no-loss or classical dc model.      

2.4.2 HOT START OR STATE DEPENDENT DC MODEL  

In this type of dc model, series and shunt elements are developed based on the 

solved ac network solution and remain fixed thereafter. Therefore, for a given network 

topology a priori knowledge of the losses is obtained and incorporated as injections or 

withdrawals at the buses; therefore, the load generation balance in this model is similar 

to the full blown ac model, i.e. losses match exactly those of the ac model. These types 

of models are used in SCED using a state estimator solution [6] and short/medium term 

operations/planning studies.  

In this section, two common hot start dc models shall be discussed.        

2.4.2.1 Single multiplier or Net loss dispersal dc model 

This type of dc model is similar to the classical dc model described above. 

However, the total losses are distributed across the network by scaling all the loads 

using a constant multiplier  . This constant multiplier   is defined as a ratio of total 

generation (load + losses) to total load in the network. The single multiplier is defined 

mathematically as: 
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Other variations for this dc model involve the use of zonal multipliers. Zonal 

multipliers are obtained in a similar fashion to single multiplier. In this case, loads in 

respective zones are scaled up by their zonal multipliers obtained using the load 

generation balance in respective zones.  

Parameters corresponding to a generalized model for the single multiplier type loss 

compensation is given as:  

2.4.2.2 Base point matching or Alpha-matching dc model 

This model introduces localized loss compensation at the buses connected to the 

transmission line. This model matches the MW flows and nodal phase angles obtained 

from the ac power flow solution perfectly [6]. In this model, the H parameter is 

specified beforehand and the corresponding loss compensation injections (α’s) are then 

calculated based on solved ac power flow. Although, the detailed derivation to obtain 

optimized series element H parameter shall be dealt with in the next chapter, the 

mathematical relations for all the model parameters is given as follows:     








N

i

i

L

N

i

i

G

P

P

1

1  (2.13) 

ijx
H

1
  

nodesNiP i

Li ,,2,1)1(    

(2.14) 
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where 

o superscript denotes the values obtained from the ac base case solution. 

In comparison to all other dc models discussed so far, this model best fits itself to the 

solved ac solution and can predict the small perturbation around the operating point.  

The discussion on dc power flow models is incomplete without introducing reader 

to the nonlinearities associated with the continuous acting control devices like 

phase–shifters, tap changers, HVDC, FACTS devices, active during the “outer loop” of 

the ac power flow. For example, the phase-shifter angle will vary within a prescribed 

range to control the power flow while it will act as fixed-angle transformation when the 

lower/upper limit is hit. This leads to discontinuities in the system model and may lead 

to inaccurate MW flows over the lines if modeling is not handled properly. If necessary 

such nonlinearities can be accounted for by using iterative procedures but then some of 

the advantage of using dc model is eliminated as it becomes more computationally 

complex.  

The discussion of the dc power model can be summarized by stating that these 

models provide qualitative insight into the system, however, the accuracy of these 

models varies over networks with loading conditions. Due to pervasive use of such 

derivedx
H

1
  

)(1

o

j

o

i

o

ijk HP    

)(2

o

j

o

i

o

jik HP    

(2.15) 
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models in market applications, the accuracy of dc models is of great interest especially 

when the critical paths are under consideration.    
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3 PTDF BASED DC SERIES ELEMENT MODEL 

3.1 INTRODUCTION 

A dc model is made up of two distinct element types, series and shunt, and the 

methods used to get values for each element type may be, and often are, handled 

independently. The lossless series element has units of susceptance and is used to 

approximate the power-flow angle-difference relationship of a network branch. The dc 

series elements act similar to a current divider network and these elements divide the 

power across the network branches in accordance with Ohm’s law. The shunt element 

has units of power and models the effect of losses in some fashion.  

The focus of this chapter is the development of an optimized dc series element 

model for the base point matching or alpha-matching dc model introduced in the 

previous chapter. First, the mathematical inter-relationship of power transfer 

distribution factor (PTDF) and reactance shall be derived. Second, the problems 

associated with ac PTDFs shall be considered and their conversion to equivalent dc 

PTDFs is discussed. Finally, an optimization problem is then formulated to derive the 

equivalent dc model from these derived dc PTDFs.  

3.2  GENERAL DC SERIES ELEMENT MODEL 

The dc power flow formulation for an N+1 buses (N – non-reference bus and 1 

reference/slack bus) and L branches model is represented by (2.7) and (2.8) matrix 

equations repeated below: 
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On substituting (3.1) in (3.2),  

Therefore, 

where, 

  = L × N PTDF matrix or sensitivity factor matrix. 

This gives the relationship of PTDF matrix to the power flow over network branches 

and bus injections at respective buses. 

3.3 POWER TRANSFER DISTRIBUTION FACTORS (PTDFs) 

A power transfer distribution factor is defined as the linear sensitivity of line flow to 

the injection at particular bus and withdrawal at sink bus. If the amount of power ∆t is 

injected at bus k (injection bus) and same amount of power is withdrawn from bus N+1 

(sink bus) [34], we define the PTDF for the line connecting bus i and bus j as:   

where, 

 businj BP  

 branchflow BP
 

(3.1) 

(3.2) 

injbusbranchflow PBBP  1

 
(3.3) 

injflow PP  
 

(3.4) 

1 busbranch BB
 

(3.5) 

t

PijN

ijk 


1

 

(3.6) 
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ijP  = change in power flow over branch ij 

1N

ijk
  = PTDF for branch ij due to injection at bus i and withdrawal at slack bus 

t   = Power transacted between bus i and bus N+1 (slack/reference bus) 

 

Figure 3.1 dc network representing PTDF for branch ij  

In the similar fashion, a matrix corresponding to the transaction between the each 

bus to reference bus is constructed, this is known as the PTDF ( ) matrix in (3.5) and 

the column corresponding to each injection bus is defined as injection shift factor (Ψ). 

The PTDFs obtained are functions of network branch parameters (i.e. reactance) and 

network topology. Any change to these parameters typically leads to a change in these 

sensitivity factors.     

However, the PTDF matrix obtained in (3.5) is based on the classical dc model and 

its assumptions. These classical dc PTDFs have unpredictable accuracy and can lead to 
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large errors in estimating flow sensitivities when the network deviates from the nom-

inal conditions, like 1 per unit bus voltage, or has branches with low X/R ratios or large 

angle difference across the line; in contrast the ac PTDFs do take into account such 

sensitivities that arise due to network topology, branch parameters and network oper-

ating point. Therefore, ac PTDFs can provide a better allocation of MW’s across the 

network than the classical dc PTDFs and can be used to obtain a better network dc 

equivalent model for market application and planning studies. 

3.3.1 Classical DC PTDF derivation 

In furtherance of the state goal of this research, it is beneficial to recognize that the 

bus susceptance matrix ( busB ) and branch susceptance matrix ( branchB ) can be written in 

terms of the bus-branch incidence matrix (C) and network reactance (x) as follows: 

where, 

 C    = L × N Bus-branch incidence matrix 

 CT    = Transpose of bus-branch incidence matrix 

 
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On substituting (3.7) and (3.8) into (3.5), dc PTDFs as a function of network parameter 

and topology are obtained as: 

Since these PTDFs are derived from an ideal lossless model,   is said to be consistent 

in the following three ways: 

 The PTDFs at the sending and receiving end are exactly same 

 PTDFs are consistent along the injection shift factor i.e. sum of injections at the 

non-source buses is zero. 

 PTDFs are consistent across the injection shift factors i.e. there exist a unique 

(can be uniformly scaled values though) set of reactance that can satisfy all the 

injection shift factors simultaneously.   

3.3.2 Linearized AC PTDFs derivation 

The incremental ac PTDFs are defined by linearizing the ac power flow equations 

obtained for branch ij ((2.1)– (2.5)) around the base operating point. Mathematically, 

these ac PTDFs are defined as: 

where, 

 ijP  = Incremental change in power flow over branch ij due to injection at bus k 

o   = Angle from solved ac base case solution 

1
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oV   = Voltage magnitude from solved ac base case solution 

 

Figure 3.2 ac network representing ac PTDF for branch ij  

Alternatively, these sensitivities can be obtained from the final Jacobian formed in 

the Newton-Raphson method based ac power flow. Since the approach involves 

evaluating the Jacobian it makes sense to discuss the basic ac power flow equations [35] 

at this point.   

3.3.2.1  The ac power flow equations. 

For the typical transmission line model shown in Figure 2.1, the power balance 

equations for bus i are defined as: 

For PQ bus (or for PV bus on VAr limits) 
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For PV bus (within VAr limits) 

where, 

 iP  = net real power injection to bus i   = 
i

L

i

G PP   

   iQ  = net reactive power injection to bus i  = 
i

L

i

G QQ   

 
i

GP  = net real power injection at bus i due to generators 

 
i

GQ  = net reactive power injection at bus i due to generators 

 
i

LP  = net real power withdrawn at bus i due to loads 

 
i

LQ  = net reactive power withdrawn at bus i due to loads 

 
sp

iV = specified voltage at bus i if it is a PV bus 

The incremental values of the unknown system variables, i.e. V and θ, are given by:  

where, 
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The Jacobian matrix in (3.15) is a sparse matrix. Solution of (3.15) is obtained using 

sparse LU factorization [35]-[36] of this matrix and then sparse forward/backward 

substitution. 

3.3.2.2 Sensitivity calculation for bus voltage magnitude and angle  

As stated earlier, the Jacobian matrix provides the sensitivity of power injections to 

both bus voltage magnitudes and angles. Conversely, for an incremental power 

injection at a particular bus, (3.15) provides the bus voltage magnitude and angle 

sensitivities. Using these bus voltage magnitude and angle sensitivities, one can obtain 

the MW flow sensitivities; hence one can obtain the MW flow sensitivity due to the 

incremental injection at a given bus which is the definition of ac PTDF given in (3.10).  

Define the N+1th bus as the slack bus/sink bus and let the kth bus be the injection 

bus. Let ∆Ptransacted of dimension N × 1 be the real power transaction vector between the 

source and the sink bus. Similarly ∆Qtransacted be of cardinality N × 1 and represent the 

reactive power transaction vector. Since the PTDFs are defined for MW flow 

sensitivity to incremental MW injection at bus, the mathematical formulation [37] for 

these sensitivities is obtained as: 

 k

transactedP contains only 0’s and 1’s. 

 k

transactedP is 1 at the kth position corresponding to the injection bus k and the 

remaining elements of vector are 0 value corresponding to the non-injection 

bus.    

 k

transactedQ is 0 value for all its element, as reactive power is not of interest at 

this stage.  
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Thus, (3.17) and (3.18) can now be substituted in (3.15) to obtain the bus voltage 

magnitude and angle sensitivity for injection at kth bus as:  

Upon simplification, 

This process is repeated by considering each injection bus, one at a time, and the 

corresponding bus voltage magnitude and angle sensitivities are calculated. 

Alternatively, it can be seen that each column vector obtained from the inverse of the 

Jacobian matrix provides the bus voltage magnitude and angle sensitivities 

corresponding to the each injection bus k.  

3.3.2.3  ac PTDF/Branch MW flow sensitivity calculation 

Recall the ac power flow equations (2.1)-(2.3) representing the power flow over 

branch ij (refer to Figure 2.1), which can be re-written as:       

  )sin()cos(2

jijiijjijiiijij VVbVVVgP    

  )sin()cos(2

jijiijjijijijji VVbVVVgP    

Tk

transacted

Tk

transacted

th

Q

P

elementk

]0,0,0,0,,0,0[

]0,0,1,0,,0,0[











 

(3.17) 

(3.18) 



































k

k

k

transacted

k

transacted

VJJ

JJ

Q

P 

43

21

 

(3.19) 





































k

transacted

k

transacted

k

k

Q

P

JJ

JJ

V

1

43

21

 

(3.20) 



32 

 )cos()sin( 2

jijiiijjijiijij VVVbVVgQ    

 )cos()sin( 2

jijijijjijiijji VVVbVVgQ    

The MW flow sensitivity for a branch ij can be obtained by considering the partial 

differential equation of power flow to bus voltage magnitude and angle as: 

where, 

The variables ∆θ and ∆V used in (3.21) are obtained by solving (3.19). And finally 

the ac PTDFs are calculated using (3.10), (3.21). and ∆t = 1 MW (incremental injection 
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at bus k). ∆t represents the power transacted between the source (kth bus in (3.17)) and 

sink bus. 

The ac PTDF matrix thus obtained is inconsistent if used as a dc PTDF matrix in all 

respects mentioned earlier as it accounts for the nonlinearities like losses, in the model. 

This matrix is accompanied with following inconsistencies: 

 The PTDFs at the sending and receiving end are not same. 

 PTDFs are inconsistent along the injection shift factor i.e. sum of injections at 

the non-source buses is zero. 

 PTDFs are inconsistent across the injection shift factors i.e. there does not exist 

a unique set of reactance that can satisfy all the injection shift factors 

simultaneously.   

3.4 PTDF-BASED OPTIMIZATION APPROACHES 

Relatively recently, bus aggregation techniques (as opposed to bus elimination 

techniques such as Ward reduction) have been introduced as an alternative for creating 

reduced network equivalents that perform better in some applications [15]-[17]. Bus 

aggregation techniques are PTDF-based and rely on solving an optimization problem to 

find the network series elements of a reduced network, given the PTDF matrix of the 

network under study. In essence, these methods take a large consistent PTDF matrix 

and find a smaller “equivalent” PTDF matrix from which the series elements of a 

reduced network can be inferred. This approach can be used to advantage in the work 

here by applying it with the following change: We take a large inconsistent PTDF 
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matrix and, in essence, map it to a partially consistent PTDF matrix of the same size and 

sparsity pattern, from which we infer the series elements of the dc network model.  

Typically we have topology and the branch susceptance from which we calculate 

the dc PTDF matrix,  . Our situation is a bit different. We have an ac PTDF matrix 

(from which we will calculate a dc PTDF matrix) and wish to find the branch reactances 

consistent with this dc PTDF matrix. This can be accomplished in the following way. 

Equation (3.9) may be manipulated as follows,  

Using the matrix algebra for further simplification, 

where, 

 C  = Bus-branch incidence matrix = [c1, c2..., cm,…cN]  

 cm  =mth column vector of bus-branch incidence matrix   

diag(cm) = diagonal matrix formed using cm 

Alternatively, 
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where, 

Several observations about this over-determined set of equations, (3.29), are 

important. First, the trivial solution to (3.29), (1/x = 0) is of no interest. This implies that 

all line reactances are infinite, i.e., all branches are open circuited. Equation (3.29) and 

(3.30) describe  -matrix which has a rank of at most L-1, and is therefore rank 

deficient. Because the dc power-flow problem is based on linear angle-flow 

relationships and linear bus-power-balance constraints, it can be thought of as a 

“current divider” network where current is the analog of power. Since the series branch 

values of any dc network with only series branch “resistances” and shunt current 

injections can be scaled by an arbitrary constant without affecting the “current 

division” properties, (3.29) should be rank deficient by at least one degree. 

3.5 CONVERSION FROM AC PTDFs TO DC PTDFs 

Rank-deficiency notwithstanding, a unique solution to (3.29) exists with all residu-

als identically equal to zero if the (dc) PDTF matrix is consistent. More precisely, the 

PTDF matrix consistency and inconsistency can be stated as: each column, or injection 

shift factor, is self-consistent if a network model could be created which corresponds 
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exactly to the injection shift factor. If all columns, or injection shift factors, are mutually 

consistent (i.e., the PTDF matrix is fully consistent) then a network model could be 

created which corresponds exactly to all injection shift factors simultaneously. The ac 

PTDF matrix is consistent in neither of these ways because of the branch power losses. 

A method for creating a partially consistent dc PTDF matrix from an inconsistent ac 

PTDF matrix is introduced next. 

 

Figure 3.3 Loss modeled as Injections (Positive/Negative) 

Inherently ac PTDFs are inconsistent and each column of ac PTDF’s, i.e., injection 

shift factor, can be made self-consistent (but not mutually consistent) if the branch 

power loss is modeled as a power injection/withdrawal at one end of each branch, as 

shown in Figure 3.3. This compensation of losses modeled as injection/withdrawal 

accounts for the inconsistency due to resistive elements in the network. Define the in-

jection at bus k needed to compensate for branch losses associated with the qth injection 

shift factor as q

kP : 
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where, 

 q

sendingkP _  = Sum of power received at node k from all branches where k is the  

 sending end node based on direction of the power flow 

 q

receivingkP _  = Sum of power received at node k from all branches where k is the  

 receiving end node direction of the based on power flow 

Define injection vector q'  associated with the qth injection shift factor can be 

written as: 

Combining all the injection vectors corresponding to each injection shift factor into 

a matrix 

Using this matrix, the relationship between ac PTDF, derived dc PTDF and injection 

matrix can be written as:  

 Tq

N

q

k

qqq PPPP   ,,,, 21
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where, 

dc   = derived dc PTDF matrix 

ac   = inconsistent ac PTDF matrix 

m   = represents mth branch 

ΨT  = transpose of the loss injection matrix 

iac

m  = represents the ac PTDF corresponding to mth
 branch for ith ISF 

idc

m  = represents the dc PTDF corresponding to mth
 branch for ith ISF 
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Solving this equation for the dc injection shift factors yields, 
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Equation (3.35) can be used to calculate the PTDFs corresponding to every injection 

bus corresponding to each branch one at a time. Linear system of equations (3.35) is 

solved using LU factorization and forward/backward substitution to calculate the dc 

PTDFs. Using the process each injection shift factor comprising the dc PTDFs are 

self-consistent but are not mutually consistent. 

3.6 OBTAINING THE DC NETWORK MODEL 

Now, the next problem that needs to be attacked is finding the equivalent line 

reactances for each branch using the above derived equivalent dc PTDF matrix. As 

stated above, the injection shift factors (ISF) derived corresponding to these derived dc 

PTDFs are inconsistent among themselves i.e. no single network reactances can satisfy 

all the ISFs simultaneously. 
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The problem then is to calculate the network reactances that can fit all of these 

derived dc PTDFs simultaneously as closely as possible. Using the derived dc PTDFs (

dc ) to compute the matrix in place of classical dc PTDFs ( ) in (3.29), is given by: 

where, Z is an arbitrary small constant representing a lower bound on the L2 norm of 

vector (1/x) and  is the matrix defined by (3.33). 

In addition to (3.38) , constructing an optimization approach which avoids the trivial 

solution to this optimization problem can be handled in several ways, such as an 

eigenvalue approach as discussed in [15]. Since all the susceptances can be scaled 

proportionally, a constraint (as per (3.39)) has been introduced for the purposes.  

Let us define the vector of network susceptances as, 

The constraint in (3.39) can be re-written with susceptance as: 
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In order to solve the problem in a linear least-squares sense, the constraint in (3.41) 

or (3.46) is linearized by using the first two terms of a Taylor-series expansion around 

the base-point, i.e. higher order terms are neglected. The base point for the susceptance 

is selected as:  

The truncated Taylor-series expansion of constraint is written as: 

Upon further simplification, this yields 

This linearized constraint can be embedded into (3.38) as, 

where, 

 (j) = 1, 2…, m iteration index 

This equation can be restated as: 
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which is a set of over-determined linear equations; therefore the solutions is an error 

minimization process.   

Also, note that )''( )1()1(   jTj
 is a square matrix of cardinality L × L and it is a very 

sparse matrix, so one can exploit the benefits of the sparsity techniques to evaluate 

(3.48). This calculation using sparse LU factorization and forward/backward 

substitution is computationally more efficient than the eigenvalue decomposition, QR 

factorization method proposed in [15]. Equation (3.47) is solved recursively to obtain 

better estimates of the network parameters (y) at each iteration. Equation (3.47) is 

iterated until the convergence tolerance  (10-4) is met.  

 It is worthwhile to note that the rank of the lambda ( ) matrix may vary with the 

network topology and this subject shall be elaborated upon more in the next chapter. 

3.7   SUMMARY 

In this chapter, a PTDF based dc network model development procedure is 

introduced. The proposed model is a least square based evaluation technique for 

deriving network parameters. It is worth mentioning, that several tests were conducted 

for optimal performance at both the stages i.e. equivalent dc PTDF calculation and 

evaluation of network parameters in the derivation of the proposed model. In the 



)1()1(1)1()1()( ]'[)]''[(][   jTjjTjj by
 

(3.48) 

  ).max( )1()( jj yyabs
 

(3.49) 



43 

derivation of dc PTDFs several possibilities of including weighted power flow 

constraints in (3.34) was explored. While several optimization techniques such as L1 

norm, least absolute value approach and L-infinity were introduced for (3.38)-(3.39) to 

derive equivalent model parameters. These variations in optimization techniques were 

evaluated for power flows at the base operating condition and under contingency 

analysis. Also, the eigenvalue approach described in [15] was implemented and tested 

for (3.38)-(3.39). It was found that network parameters obtained using the least square 

approach and eigenvalue approach yielded same results (although scaled) within the 

precision of 1e-3. It can be concluded the least square approach and eigenvalue 

approach performed better than the other optimization techniques mentioned above 

when evaluated for distribution of power flows in network under contingency 

conditions. Furthermore, it is essential to note that eigenvalue approach is 

computationally much more expensive (as it involves singular value decomposition) 

than performing least squares.   

The model development process can be summarized in the flowchart shown in 

Figure 3.4.   



44 

Run ac power flow on full model (Obtain V and θ) 

Calculate ac PTDF’s using V and θ (from differential)

START

Let iteration index m = 1

Calculate the loss injection  matrix

Calculate the dc PTDFs

m ≤ Num. branches

NO

Is

A

Increment m

m = m+1

 



45 

NO

Obtained dc network susceptance

Construct the lambda (Ʌ ) matrix using dc PTDF’s.

Augment this matrix with linearized constraint. 

Increment j
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STOP

A

Calculate and update susceptance vector

 

Figure 3.4 Flowchart for entire network equivalencing process 
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4  MODEL VALIDATION AND NUMERICAL ILL-CONDITIONING 

4.1 INTRODUCTION 

In the previous chapter, a novel network equivalence technique has been proposed. 

This model provides the network equivalent when the lambda ( ) matrix (prior to 

augmenting it with constraint) is rank deficient by only one degree. However, 

depending on the topology, the rank deficiency of -matrix may be greater than one. 

This leads to a theoretically undetermined problem, though due to imprecision in the 

PTDF’s the matrix will appear to be of full rank, but numerically ill-conditioned, 

leading to erroneous results for the value of the network susceptances.  

The focus of this chapter is on validating the proposed model and analyzing the 

topological dependency of rank of the lambda ( ) matrix and on how to resolve the 

rank deficiency issues. The approach to identify topological rank dependency is studied 

empirically. 

4.2 MODEL VALIDATION 

Model validation of the physical network which includes resistance, 

phase-shifting transformers using the proposed method is a daunting task. This is 

attributed to the use of ac PTDFs which include the inherent nonlinearities, such as 

losses, typical of such network. Thus the network parameters derived from the 

proposed model cannot be compared against any reference. Therefore, some 

sanity-check exercises are introduced for algorithmic verification purposes on a small 
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system, before the application of this technique on the larger and realistic power 

systems. Since the proposed model is derived in two stages i.e. first, obtaining the 

equivalent dc PTDFs from ac PTDFs and, second, deriving network susceptances 

using these derived dc PTDFs, the sanity check of this proposed model is also 

segregated into two independent parts.  

4.2.1 CHECKS ON THE EQUIVALENT DC PTDFs 

The classical dc PTDFs, which are completely consistent, are different than the 

derived dc PTDFs, which are consistent within a shift factor but inconsistent across 

shift factors. As an example, consider a non-branching radial network. In this 

network, the power distribution is unidirectional i.e. power will flow from the source 

or the injection bus to the sink bus. Therefore, the derived dc PTDFs and ac PTDFs 

should converge to a same value. This simple validation experiment exploits the 

topological property of the radial network.  

15 MW

AC
0.05 pu

`

0.5 pu 0.6 pu 1 pu 0.1 pu 1 pu

19 MW

13 MVAr

1 2 3 4

 

Figure 4.1 Radial network of four buses 

For the sample radial network show in Figure 4.1, an ac power flow is run to 

compute the bus voltage magnitudes and angles. Based on the network parameters 

and ac solution, the ac PTDFs are computed as discussed in previous chapter. Bus 4 is 
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the slack bus or the sink bus. The ac PTDFs at the from end for the shown network is 

given by: 
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sensitivities of the ac model or insertion of series capacitors (often used in the line 

compensation). Using the proposed model, the dc PTDFs are obtained as: 
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This is what we expect the model to deliver, for the radial network i.e. the power from 

the injected bus flows to the sink bus. Note that the dc PTDFs have a maximum value 

equal to 1.0. The dc PTDFs can also attain values greater than 1.0 in cases where 

negative susceptances are introduced in the model i.e. insertion of series capacitors for 

line compensation.  

4.2.2 TOWARD VALIDATING THE SUSCEPTANCE EVALUATION 

ALGORITHM 

Since the dc PTDFs obtained using the proposed algorithm are inconsistent across 

the shift factors, the validation of the reactance/susceptance computation algorithm 

becomes a thorny issue: how does one compare the obtained dc reactances with the 
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given network ac parameters? Thus, for the purpose of algorithm validation the 

classical dc PTDFs are used to compute the lambda ( ) matrix instead of the derived 

dc PTDFs as explained in the proposed model. 

As stated earlier, the classical dc PTDFs are fully consistent along and across the 

shift factors. This will result in a unique solution reactance vector. As stated earlier, 

the angle of this reactance vector is unique, though it can be scaled in magnitude 

without altering its “current division” properties. One way of partially validating the 

approach is to use (3.29) while replacing   by the classical dc PTDFs of the 

network. Then, using the initial estimate as per (3.43) and solving for susceptances 

using (3.46) – (3.48), the solution will be the susceptances of the original network. 

Consider a small 3-bus example for illustration. 

1

2

AC

3

Sink Bus

0.04 pu

0.06 pu

0.05 pu

 

Figure 4.2 Three bus sample system 

The classical dc PTDFs are given by (3.9): 
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The corresponding lambda ( ) matrix derived using (3.29) is 






























3333.000.2667-

3333.000.2667-

3333.000.2667

00.4-0.2667

00.4-0.2667

00.40.2667-

 

Using the initial estimate of susceptances y = [1, 1, 1]T; and augmenting the lambda 

( ) matrix with the linearized constraint, the linear system of equations is solved as 

per (3.46)-(3.48). The converged solution is given by: 

y = [1.1997, 0.7998, 0.9597]T  

The value of the susceptance vector based on classical dc model reactances is given 

by: 

y = [25, 16.6667, 20]T  

It can be noticed that the susceptance values are scaled by a factor of 20.84. 

Therefore, if the solution is scaled up by a common multiplying factor for all the 

susceptances then the original susceptances are obtained. In this case a random initial 

value was chosen which illustrates that the robustness of this algorithm and 

non-dependency of solution on initial point. However, for fast convergence a more 

appropriate initial point such as susceptance vector corresponding to the classical dc 

reactance could be chosen. 

The same test was conducted on IEEE-118 bus system and ERCOT for validation 

purposes and similar test results were obtained.  
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4.3 PROBLEMS ASSOSCIATED WITH RANK DEFICIENCY 

In the proposed modeling process, the reactances are evaluated by solving the 

over-determined set of linear equations whose coefficients are described by the 

-matrix and b vector. If the - matrix becomes theoretically singular then the 

condition number goes to infinity. In practical problems, due to roundoff error, 

theoretically singular matrices will appear nonsingular but will have very large 

condition numbers, which allows the calculations to go forward but results in an 

erroneous answer. In the next sections the cause of such rank deficiency in the 

-matrix is explored.  

4.4 TOPOLOGICAL DEPENDENCY OF THE RANK OF   

Let us first revisit the mathematical concept of the rank of the matrix. For the 

matrix A of cardinality m by n 

Row rank: Is the maximum number of linearly independent rows in the matrix.  

Row rank of A ≤ m 

Column rank: Is the maximum number of linearly independent columns in the matrix.  

Column rank of A ≤ n 

 rank (A) ≤ min(m,n) 

Also, by linear algebra 

 rank (A) = rank (AT) 

Suppose two matrices A and B have rank as m and n respectively. Then  

 rank (A.B) = min(rank(A), rank(B))  




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This property shall be exploited as the  - matrix size grows with the increase in the 

system size (recall that the cardinality of   = N.L × L). The problem at hand 

involves the solution to the over-determined set of equations, whose solution is given 

by (3.48) re-written here as: 

)1()1(1)1()1()( ]'[)]''[(][   jTjjTjj by  

Finding the rank of   is much more computationally expensive than that of T

which has cardinality of L × L. Therefore, T
is used to compute rank of . 

4.4.1 EMPIRICAL ANALYSIS OF NETWORK TOPOLOGIES 

Consider the following network topologies for which the rank of the   matrix is 

determined and tabulated. This empirical approach will lead to an intuitive 

understanding of the relationship between the rank of  and the network topology. 

Case 1: Radial network 

2 31 4

 

Figure 4.3 Four bus sample radial network 

rank ( ) = 0 

An important conclusion can be drawn from this result is that it is impossible to 

determine the network parameters for a radial network. Also, it aligns with our 

intuitive understanding of the radial network that the power flow is independent of the 
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network reactance. Therefore, network branch parameters need to be specified for 

such a network.   

Case 2: Meshed network 

Let us now merge bus 1 and bus 4 from the previous network.  

1

2

3

 

Figure 4.4 Three bus meshed network 

rank () = 2 (The rank of -matrix for network shown in Figure 4.4 is two.) 

Thus, in a meshed network if the linearized constraint ((3.45)-(3.46)) is included 

then the equivalent network branch parameters can be calculated using the proposed 

algorithm.  

Case 3: Semi-meshed network 

 For the 8-bus model shown in Figure 4.5 the naively expected rank of the  

matrix is 8 (Number of branches - 1). However, the actual rank turns out to be 5. This 

aligns with our intuition that radial lines (2 in number) and radially-attached 

sub-networks (buses 5, 6, 7 and 8) reduce the rank of the matrix by 1 degree each.  
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Figure 4.5 Eight bus meshed network 

We observe that it is not necessary that the sub-networks be connected only 

through radial lines but can be connected radially on the bus itself as shown in Figure 

4.6. 

 

Figure 4.6 Generalized network 

4.5 IDENTIFICATION OF THE SUB-NETWORKS  

Now that some sense for the cause of numerical ill-conditioning or rank 

deficiency due to network topology of the   matrix is developed, it becomes 

Radial

Line

Sub-network

Sub-network

Network
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convenient to use a larger network to identify the radial lines and sub-networks using 

an algorithm.  

1

2

3

6

7

8

4 5

9 10

Branch 1

Branch 2

Branch 3

Branch 4 Branch 5

Branch 6

Branch 7

Branch 8

Branch 9

Branch 10 Branch 11

Branch 12

 

Figure 4.7 10-bus network 

Consider the 10-bus sample network shown in Figure 4.7 with bus 10 serving as the 

sink bus. Assume that the network is lossless and all the reactances are set to 1 per 

unit. The classical dc PTDF matrix is computed for the network shown in Figure 4.7 

using (3.9) as shown in Table 4.1.  

 This dc PTDF matrix structure can help decipher our empirical observations from 

the previous section. The following key characteristics are observed in the dc PTDF 

matrix: 

 Strictly radial branches have PTDF values of either 0 or 1 (branch 4 and 5); 

 Identify the pattern of non-zero PTDFs in non-radial branches i.e. rows in the 

PTDF matrix other than the rows of the PTDF matrix representing radial 

branch.  (i.e. in essence make note of for which injection buses there is flow 

over the branch) . Branches corresponding to PTDF matrix which have same 

pattern of non-zero PTDF shall form a sub-network. 

For example: 
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 Branches/Line – 1, 2 and 3 have the same pattern of non-zero elements. 

 Branches/Line – 6, 7, 8 and 9 have the same pattern of non-zero elements. 

 Branches/Line – 10, 11 and 12 have the same pattern of non-zero 

elements. 

From this observation, it can be concluded that branches (1, 2 and 3) form one 

sub-network, branches (6, 7, 8 and 9) form the second sub-network and branches (10, 

11 and 12) form the third sub-network in the network. Also branches 4 and 5 are the 

radial branches in the network. 

 For the network shown in Figure 4.7 the rank () = 7. For a 12-branch network, 

the -matrix is deficient by a degree of 5, which exactly matches our conclusion (3 

sub-networks + 2 radial branches.) 
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Table 4.1 Classical dc PTDFs for network in figure 4.7 

Line From To 1 2 3 4 5 6 7 8 9 

1 1 2 0.6667 0 -0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0 

2 1 3 0.3333 0 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 -0.3333 0 

3 2 3 -0.3333 0 -0.6667 -0.6667 -0.6667 -0.6667 -0.6667 -0.6667 0 

4 3 4 0 0 0 -1 -1 -1 -1 -1 0 

5 4 5 0 0 0 0 -1 -1 -1 -1 0 

6 5 6 0 0 0 0 0 -0.75 -0.25 -0.5 0 

7 5 7 0 0 0 0 0 -0.25 -0.75 -0.5 0 

8 6 8 0 0 0 0 0 0.25 -0.25 -0.5 0 

9 7 8 0 0 0 0 0 0.25 0.25 -0.5 0 

10 2 9 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 -0.3333 

11 2 10 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 0.3333 

12 9 10 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.6667 

5

7 

5
7
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4.6 EQUIVALENT NETWORK SOLUTION WITH SUB-NETWORKS 

Upon identification of radial lines and sub-networks the problem at hand is to 

evaluate the equivalent dc PTDFs using the rank deficient  matrix. The network 

parameter evaluation process can be divided into sub-problems, each of whose  

matrices are rank deficient by one: 

 Fix the susceptance of the radial lines arbitrarily. 

 Solve each independent sub-network one at a time. 

For example, in the network shown in Figure 4.7 the subsequent steps are followed: 

1) Set the radial branches 4 and 5 to classical dc reactance.  

2) Then calculate the -matrix using the subset of the PTDF matrix associated 

with each of the sub-networks (Sub Network – 1: 1, 2 and 3; Sub Network – 2: 

2, 9 and 10; Sub Network – 3: 5, 6, 7 and 8). 

where, 
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 S  = Subscript S indicates the values corresponding to the sub-networks. 

3) The S matrix thus formed is augmented with the constraint as explained in 

section 3.6. An initial estimate of susceptances is chosen for branches in each 

sub-network. The susceptance of a network model corresponding to each of the         
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sub-network is calculated using the iterative procedure described in previous 

chapter.  

4.7 SUMMARY 

In this chapter, model validation of the proposed model was explored and then the 

problems associated with the rank deficiency of -matrix were discussed. The following 

flowchart (Figure 4.8) schematically summarizes the procedure to identify the 

sub-networks and evaluation of the network parameters. It is found that even for very 

large networks such sub-networks are not very large in number and size. Therefore, it is 

not very computationally expensive to evaluate such sub-networks.  
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Obtained dc network susceptance

Choose one sub-network one at a time

Initialize the susceptance vector y

Construct the ɅS-matrix using derived dc PTDF’s.

Augment this matrix with linearized constraint. 

Identify the radial lines and sub-networks

Compute the classical dc PTDF

Calculate the susceptance vector until 

converged

Are all

sub-networks 

calculated

YES

STOP

START
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Figure 4.8 Flowchart for sub-network reactance evaluation 
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5 NUMERICAL EXAMPLES 

5.1 INTRODUCTION 

This chapter presents the implementation of the concepts developed through 

numerical examples. Since the accuracy and performance of dc models are subject to 

the assumptions made during the modeling stage and loading levels (i.e. lightly loaded 

or heavily loaded) of the system. Therefore, an attempt has been made to develop 

general insight for these dc models. The accuracy of several parameters like branch 

power flows during contingency conditions, PTDF’s, branch reactance were evaluated 

for a 7-bus, the IEEE-118 and the 5650 bus ERCOT interconnection to draw 

comparison between different models currently in use (i.e. classical dc, single 

multiplier and proposed model) described earlier.  

5.2 CASE STUDIES AND DESCRIPTION 

This section summarizes the general information of the three cases illustrated: 

Table 5.1 Case Study details 

S. No. Case Description Buses Branches Radial Branches 

1 7-Bus 7 11 0 

2 IEEE-118 118 186 9 

3 ERCOT  5650 6771 1892 
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5.2.1  Case Study 1: 7-Bus Model 

Figure 5.1 shows the 7-bus, 11-branch network model. The network parameters are 

given in Table 5.2 for reference. 

 

Figure 5.1 7-Bus Network Model 

Table 5.2 Network Parameters for 7-bus model 

Line No. From Bus To Bus R (p.u.) X (p.u.) P† (MW) Q† (MVAr) 

1 1 3 0.02 0.24 22.25 -5.13 

2 1 2 0.06 0.15 -62.25 -34.87 

3 2 6 0.005 0.06 -153.52 53.79 

4 2 5 0.01 0.12 20.11 48.63 

5 2 4 0.015 0.18 73.1 45.86 

6 2 3 0 0.18 74.27 56.85 

7 3 4 0.015 0.03 -33.61 -5.59 

8 4 5 0.02 0.24 -41.84 -3.55 

9 6 7 0.25 0.25 -35.5 33.84 

10 6 7 0 0.25 -69.35 -1.66 

11 7 5 0.006 0.15 184.69 59.83 

†measured at from bus 
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The ac PTDFs for the model are derived using (3.6) are shown in Table 5.3 and 

Table 5.4. 

Table 5.3 ac PTDFs (at sending end) 

From 

Bus 

To  

Bus 
1 2 3 4 5 6 

1 3 0.3492 0.0169 -0.1473 -0.1102 -0.0153 0.0125 

1 2 0.6508 -0.0169 0.1473 0.1102 0.0153 -0.0125 

2 6 0.5421 0.5215 0.5059 0.4915 0.3425 -0.3529 

2 5 0.3315 0.3592 0.2458 0.2114 -0.2493 0.2649 

2 4 -0.0637 0.0573 -0.2528 -0.3265 -0.0426 0.0422 

2 3 -0.0998 0.0440 -0.3355 -0.2546 -0.0335 0.0324 

3 4 0.2459 0.0607 0.5188 -0.3636 -0.0486 0.0448 

4 5 0.1876 0.1176 0.2793 0.3144 -0.0905 0.0867 

6 7 0.1602 0.1542 0.1496 0.1453 0.1012 0.1865 

6 7 0.3907 0.3759 0.3646 0.3543 0.2469 0.4548 

7 5 -0.5362 -0.4907 -0.5447 -0.5466 -0.6776 -0.3618 

 

Table 5.4 ac PTDFs (at receiving end) 

From 

Bus 

To  

Bus 
1 2 3 4 5 6 

1 3 -0.3457 -0.0167 0.1457 0.1090 0.0151 -0.0123 

1 2 -0.7101 0.0181 -0.1634 -0.1218 -0.0171 0.0133 

2 6 -0.5510 -0.5300 -0.5142 -0.4995 -0.3481 0.3586 

2 5 -0.3313 -0.3586 -0.2460 -0.2119 0.2471 -0.2645 

2 4 0.0614 -0.0561 0.2459 0.3176 0.0413 -0.0414 

2 3 0.0998 -0.0440 0.3355 0.2546 0.0335 -0.0324 

3 4 -0.2490 -0.0614 -0.5252 0.3680 0.0492 -0.0453 

4 5 -0.1914 -0.1198 -0.2849 -0.3208 0.0923 -0.0884 

6 7 -0.2305 -0.2217 -0.2151 -0.2090 -0.1456 -0.2683 

6 7 -0.3907 -0.3759 -0.3646 -0.3543 -0.2469 -0.4548 

7 5 0.5227 0.4785 0.5309 0.5327 0.6605 0.3528 

The equivalent dc PTDFs thus obtained using (3.35) are given in Table 5.5.  
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Table 5.5 Equivalent dc PTDFs 

From 

Bus 

To  

Bus 
1 2 3 4 5 6 

1 3 0.3484 0.0170 -0.1457 -0.1095 -0.0150 0.0127 

1 2 0.6516 -0.0170 0.1457 0.1095 0.0150 -0.0127 

2 6 0.5078 0.5207 0.4867 0.4786 0.3373 -0.3577 

2 5 0.3116 0.3609 0.2394 0.2089 -0.2473 0.2694 

2 4 -0.0659 0.0574 -0.2485 -0.3249 -0.0420 0.0428 

2 3 -0.1020 0.0440 -0.3319 -0.2531 -0.0329 0.0329 

3 4 0.2465 0.0610 0.5224 -0.3626 -0.0479 0.0455 

4 5 0.1806 0.1184 0.2738 0.3125 -0.0899 0.0884 

6 7 0.1477 0.1515 0.1416 0.1392 0.0981 0.1868 

6 7 0.3601 0.3693 0.3452 0.3394 0.2392 0.4555 

7 5 -0.4922 -0.4793 -0.5133 -0.5214 -0.6627 -0.3577 

Also the classical dc PTDFs for the model are given for reference in Table 5.6. 

Table 5.6 Classical dc PTDFs 

From 

Bus 

To  

Bus 
1 2 3 4 5 6 

1 3 0.3389 0.0202 -0.1512 -0.1160 -0.0164 0.0137 

1 2 0.6611 -0.0202 0.1512 0.1160 0.0164 -0.0137 

2 6 0.5457 0.5621 0.5194 0.5090 0.3550 -0.2959 

2 5 0.2734 0.3192 0.2000 0.1710 -0.2588 0.2157 

2 4 -0.0590 0.0546 -0.2407 -0.3126 -0.0442 0.0369 

2 3 -0.0990 0.0439 -0.3276 -0.2514 -0.0356 0.0296 

3 4 0.2399 0.0641 0.5212 -0.3674 -0.0520 0.0433 

4 5 0.1809 0.1187 0.2805 0.3200 -0.0962 0.0802 

6 7 0.2728 0.2811 0.2597 0.2545 0.1775 0.3521 

6 7 0.2728 0.2811 0.2597 0.2545 0.1775 0.3521 

7 5 -0.4543 -0.4379 -0.4806 -0.4910 -0.6450 -0.2959 

Since the derived equivalent dc PTDFs and classical dc PTDFs correspond to the 

proposed model and more common prevalent models, respectively, their comparison is 

shown in Figure 5.2. 
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Figure 5.2 Comparison of Classical dc and Equivalent derived dc PTDFs 

ISF1 – ISF6 in Figure 5.2 represent the injection shift factors (i.e. column vectors in 

PTDF matrix) corresponding to each non-sink bus for a 7-bus system. ‘+’ represent 

each PTDF values along the injection shift factors. Figure 5.2 shows there is an offset in 

the two PTDFs values from the reference line (marked blue) which represent the slope 

of 45o. This is attributed to the variation of the reactance values thus obtained using the 

reactance evaluation algorithm described in Chapter 3 and Chapter 4.   

The value of loss compensation in a single multiplier type dc model is computed 

using (2.13) and for this 7-bus system is given by: 

Single Multiplier (γ) = 1.017     

The reactances obtained using the proposed algorithm and the corresponding power 

flows at the base operating point are shown in Table 5.7 below: 
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Table 5.7 Reactance and power flow comparison at base operating point 

From 

Bus 

To 

Bus 
X Xprop PFCl. dc PFSM. dc PFprop 

1 3 0.24 0.24 20.31 20.49 22.25 

1 2 0.15 0.1595 -60.31 -61.17 -62.25 

2 6 0.06 0.0556 -156.71 -160.98 -153.52 

2 5 0.12 0.1107 27.11 25.03 20.11 

2 4 0.18 0.1675 71.95 72.73 73.1 

2 3 0.18 0.1744 77.34 78.30 74.27 

3 4 0.03 0.0302 -32.35 -33.41 -33.61 

4 5 0.24 0.2429 -40.40 -42.04 -41.84 

6 7 0.25 0.5628 -53.35 -57.19 -35.5 

6 7 0.25 0.2308 -53.35 -57.19 -69.35 

7 5 0.15 0.1504 173.29 179.73 184.69 

PFCl. dc = Classical dc; PFSM. dc = Single Multiplier; PFprop = Proposed Model 

The performance of various dc models under base-case operating conditions is 

compared against ac branch power flow solution. For this purposes, we define branch 

power flow error as: 

Whereas, 

 elPFmod = dc power flow for a given model (in MW) 

 acPF   = ac power flow for the model (in MW) 

Figure 5.3 shows the performance of the models at base operating point. 

acel PFPFError  mod  
(5.1) 
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Figure 5.3 Comparison of power flow errors for different models at base case 

It can be seen that there are large MW flow errors for both the classical dc and 

single multiplier model. However, the proposed model matches the base point power 

flows to the precision of 10-3. Often, the flow errors are compared in percentage (%) but 

this unit becomes misleading for branches having small flow because if a small flow, 

say 1 MW, reverses direction the error in percent can easily be 200%. Therefore, in this 

work the errors are plotted in MW only. 
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Also the reactance values are compared for the two cases in Figure 5.4. The 

 

Figure 5.4 Comparison of reactance between different models 

reactance value is scaled for the proposed model for purpose of comparison (branch 1 

has same reactance value for all models). It is interesting to note that although small 

variations appear for most of the branches,, there is a huge variation in reactance for 

branch 9, which is high R/X ratio (R/X =1) branch.  

The next effort is to examine the difference in the models under contingency 

conditions. The models are evaluated for the single branch outage contingency. In this 

case each line is removed, one at a time, and the branch power flow is calculated for 

each of the dc models and compared to the ac model. Maximum absolute error and root 

mean square (rms) flow errors are used as metrics for the analysis.  

a) Maximum absolute MW error  

It is defined as the maximum of the absolute value of branch power flow error 

defined by (5.1). This is computed for each line contingency for the system under study. 
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Mathematically, it is defined as: 

where, 

j

acPF   = ac power flow on branch j 

 j

dcPF   = dc power flow on branch j 

 i  = Contingency branch ID number 

 This metric gives an indication of the accuracy of the dc models with respect to 

ac contingency results. 
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Figure 5.5 Comparison of maximum absolute MW error for contingencies 

It can be seen from Figure 5.5 that the proposed model gives better results as 

compared to the classical dc and single multiplier models. Significant improvements 

are witnessed on the lines near slack bus and on high R/X ratio branches. 

 A summative metric, an rms (MW) branch flow error discussed next will provide an 

overall estimate of error across all branches for each contingency. 

b) Root mean square (rms) error estimate  

Root mean square is defined mathematically as:   
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   L  = Number of branches 

j
PF

elmod
 = dc power flow for a given model i.e. classical dc, single multiplier  

proposed model for branch j 

j

acPF   = ac power flow for branch j 

This measure of error provides the rms flow error (MW) across all the branches for 

a contingency at a particular branch. 

 

 

Figure 5.6 Comparison of rms error for contingencies 

Table 5.8 summarizes the results for 7-bus model which indicates that proposed 

model works better than the other two models in terms of both the metrics chosen for 

comparison. 
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Table 5.8 Summary of results for 7-bus model 

 

Max. Absolute 

Error            

(MW) 

Max. RMS    

Error            

(MW) 

Proposed Model 17.84 6.17 

Classical DC 76.56 29.61 

Single Multiplier 69.51 29.24 

5.2.2 Case Study 2: IEEE-118 Bus Model 

In this section, the IEEE-118 bus system is examined for the accuracy of dc power 

flow models (classical dc, single multiplier and proposed model) both at the base case 

and under single-branch outage contingency conditions. (These are the same numerical 

experiments performed on the 7-bus model).  

It is worthwhile to note that the IEEE-118 bus system has one sub-network (shown 

in Figure 5.7) that needs to be solved independently (as described in Section 4.5 and 

Section 4.6) as a sub-problem to obtain the network model.  

All the branch power flows obtained from dc models under case operating 

condition (no contingency) is compared against the ac branch power flow solution.As 

per (2.13) multiplier for loss compensation is computed to be: 

Single Multiplier (γ) = 1.0312     

Figure 5.8 Comparison of power flow errors for different models at base case, 

computed using (5.1) for the IEEE-118 bus system. It can be seen that classical dc 

model has large errors at the base case. Since the single multiplier accounts largely for 
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losses, the branch flow errors are comparatively low. Our proposed method matches the 

base case with the precision of 10-3. 

 

Figure 5.7 IEEE-118 bus Model 
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Figure 5.8 Comparison of power flow errors for different models at base case 

Figure 5.9 and Figure 5.10 illustrate the maximum absolute MW error (using (5.2)). 

It becomes quite clear from the error duration curve (Figure 5.10) that the proposed 

model has significantly lower errors as compared to the contemporary methods. 
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Figure 5.9 Comparison of maximum absolute MW error for contingencies 

 

Figure 5.10 Error Duration Curve for maximum absolute MW error for contingencies 

Figure 5.10 shows that, for 10% of the branch contingencies, the maximum 

absolute branch flow error exceeds 4.2MW, 14.35MW and 63.6MW for proposed, 

single multiplier and classical dc model respectively. Figure 5.11 illustrates the RMS 
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error across all the branches in the network for each specified contingency. It is 

obtained using (5.4). 

 

Figure 5.11 Comparison of RMS error for contingencies 

Branch-flow error results for IEEE-118 bus system are summarized in Table 5.9. 

Table 5.9 Summary of results for IEEE-118 

 

Max. Absolute 

Error            

(MW) 

Max. RMS    

Error            

(MW) 

Proposed Model 35.95 5.62 

Classical DC 91.81 12.40 

Single Multiplier 41.36 6.41 
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5.2.3 Case Study 3: ERCOT Interconnection 

Electricity Reliability Council of Texas (ERCOT) shown in Figure 5.12 is one of 

the interconnections in North America which can serve as a realistic test basis for 

testing the performance of the dc models discussed so far. This practical system offers 

new challenges in terms of phase-shifting transformers (as discussed in Section 2.1 and 

Section 2.2). The phase-shift values for the phase-shifters was kept same as in the 

original network during the network equivalence process of computing the model 

parameters. Tests similar to 7-bus and IEEE-118 were conducted on ERCOT 

interconnection for performance measurement. 

 

Figure 5.12 ERCOT Interconnection 

All the branch power flows obtained from dc models under base-case operating 

conditions (no contingency) is compared against the ac branch power flow solution. As 

per (2.13), the multiplier for loss compensation is computed to be: 
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Single Multiplier (γ) = 1.0212  

It is worthwhile to note that branch ‘6160’ is connected to slack bus and branch 

number in the range 6000-6500 are in the vicinity of the slack bus. It can also be seen 

from Figure 5.13 that the flow errors for classical dc case tend to accumulate near slack 

bus. Also, the radial line ‘6160’ connecting the slack bus with the rest of the system 

incurs the maximum error due to the no loss compensation assumption. . As in previous 

cases, the proposed model matches the solved ac solution at base case.  

 

Figure 5.13 Comparison of power flow errors for different models at base case 

The same metrics as defined for the 7-bus and IEEE-118 test systems are used to 

evaluate the performance of dc models for ERCOT interconnection under contingency 

conditions. 
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Figure 5.14 Comparison of maximum absolute MW error for contingencies 

 

Figure 5.15 Error Duration Curve for maximum absolute MW error for contingencies 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

Contingent Branch ID

M
a
x
im

u
m

 a
b
s
o
lu

te
 M

W
 f

lo
w

 e
rr

o
r 

(i
n
 M

W
)

Comparison of Maximum absolute MW flow error vs Contingent Branch

 

 

Proposed Model

Classical dc

Single Multiplier

0

200

400

600

800

1000

1200

1400

1600

1800

0.
02

4.
37

8.
72

13
.0

7
17

.4
2

21
.7

6
26

.1
1

30
.4

6
34

.8
1

39
.1

6
43

.5
1

47
.8

6
52

.2
1

56
.5

5
60

.9
0

65
.2

5
69

.6
0

73
.9

5
78

.3
0

82
.6

5
86

.9
9

91
.3

4
95

.6
9

M
ax

im
u

m
 A

b
so

lu
te

 M
W

 E
rr

o
r

% of Total Contingent Branches

Error Duration Curve (MW)

Proposed Model Single Multiplier Classical DC



80 

Also, it can be seen from Figure 5.14 and Figure 5.15 that the proposed model in 

general has lower errors compared to the other two models. Figure 5.15 shows that, for 

10% of the branch contingencies, maximum absolute MW flow error exceeds 3.96MW, 

44.77MW and 1513.36MW for proposed, single multiplier and classical dc model 

respectively. Figure 5.16 illustrates the RMS error across all the branches in the 

network for each specified contingency. It is obtained using (5.4). 

 

Figure 5.16 Comparison of RMS error for contingencies 

Branch-flow error results for the ERCOT interconnection are summarized in Table 

5.10. 
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Table 5.10 Summary of results for ERCOT Interconnection 

 

Max. Absolute 

Error            

(MW) 

Max. RMS    

Error            

(MW) 

Proposed Model 54.90 2.27 

Classical DC 1551.53 29.82 

Single Multiplier 56.60 4.53 

It may appear from the results presented in Table 5.10 that the maximum absolute 

branch flow error is nearly same for both the single multiplier and proposed models. 

But Figure 5.15 suggests that such instances of comparable maximum absolute branch 

power flow errors between the single multiplier type dc model and the proposed model 

are few. .Also, the proposed model achieves a 50% reduction in rms error compared to 

single multiplier model.   

 In summary, the proposed model gives better performance indices under both 

base-case and contingency conditions. 
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6 CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

In this research work, the most common dc models were introduced and their 

performance was evaluated numerically. Also, an optimization-based novel dc power 

flow method in conjunction with the α-matching method was proposed, tested and 

implemented. The following conclusions are drawn from the work: 

In the state independent models, like the classical dc model, the branch flow errors 

are quite high. A major cause of this error is the lack of loss compensation. The impact 

of this assumption was not significantly for small systems where the overall system 

losses are low, but, this effect was magnified for the larger system especially on 

branches near the slack bus. This effect is clearly visible from the results presented in 

Section 5.2 and is attributed to the fact that for a large system losses were quite 

significant.   

On the other hand, the state dependent models were derived from the solved ac base 

case solution and involve different loss compensation techniques. The proposed model 

was based on an optimized reactance value (obtained using PTDFs) and models loss 

components as localized power injections. Whereas, the single multiplier models loss 

by scaling the loads by a uniform factor.  

In the proposed model, problems of numerical ill-conditioning were witnessed 

when solving for network parameters for larger systems which involved radial lines and 

sub-networks. This was attributed to specific topological features of the system under 



83 

consideration. Several examples were illustrated to develop the intuitive understanding 

of rank deficiency in the -matrix. Furthermore, handling of such ill-conditioning 

issues by fixing the reactance value for the radial lines and deriving the network 

parameters for sub-network was described in detail. 

Accuracy of all the dc models was evaluated using different test systems: 7-bus, 

IEEE-118 and 5650-bus Electricity Reliability Council of Texas (ERCOT). 

Performance of these dc models under base-case and contingency situations was 

evaluated numerically. Two metrics i.e., maximum absolute branch flow error and rms 

flow error for each contingency was considered. It was found that the proposed model 

not only matches the base case to a precision of 10-3 but also performs well compared to 

other dc models under contingency situations. 

6.2 FUTURE WORK 

This research work was focused on development of a dc model that can match an ac 

solution as closely as possible, both under base-case and contingency situations. To 

improve the versatility of this proposed model the following work is suggested for the 

future: 

 In the proposed algorithm, the -matrix is of dimension N.L × L which is 

computationally quite inefficient in terms of its formation and storage requirements 

especially for a large systems like eastern interconnection (EI) even if the matrix is 

sparse. For example, a system of the size of ERCOT which has 5650 buses and 6771 

branches the -matrix has approximately 38 million rows. It has been observed in the 
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construction of this -matrix that there are quite a large number of linearly dependent 

rows and few rows are very small in magnitude. Therefore, a considerable size 

reduction can be achieved in the -matrix if these smaller coefficient rows are 

neglected and hence reduction in computational time. 

 It can be seen from the results presented in chapter 5 that there are still 

significant deviations in branch flows from the ac solution for certain contingencies. 

Therefore, other methods for obtaining the H parameters can be investigated to obtain 

better power flow results. Since the proposed model uses an iterative algorithm based 

on an initial point estimate, it is subjected to non-convergence issues. It would be 

interesting to observe the robustness of the proposed algorithm on different test cases.   

 Since the dc models are quite prevalent in electric-power-market applications, 

the proposed dc model could be tested for locational marginal price (LMP) comparison 

and how well this model replicates the congestion in the network. 

 

 

 

 

 

 

 

 



85 

REFERENCES 

[1]U.S. Environmental Protection Agency, “Inventory of U.S. Greenhouse Gas Emis-

sions and Sinks: 1990 - 2012,” April 2014, [Online]. Available: 

http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory

-2014-Main-Text.pdf 

 

[2] U.S. Energy Information Administration, “Emissions of Greenhouse Gases in the 

United States 2009”, March 2011, [Online]. Available: 

http://www.eia.gov/environment/emissions/ghg_report/pdf/0573(2009).pdf 

[3] Executive office of the president, “The President’s climate action plan,” June 2013, 

Available: 

http://www.whitehouse.gov/sites/default/files/image/president27sclimateactionpla

n.pdf. 

[4] L. Murkowski, “Energy 20/20: A vision for America’s energy future”, [Online]. 

Available: 

http://www.energy.senate.gov/public/index.cfm/files/serve?File_id=099962a5-b5

23-4551-b979-c5bac6d45698  

[5] “Most states have renewable portfolio standards (RPS)”, [Online]. Available: 

http://www.eia.gov/todayinenergy/detail.cfm?id=4850 

[6] B. Stott, J. Jardim and O. Alsac “DC Power Flow Revisited,” IEEE Transactions on 

Power Systems, Aug. 2009, vol. 24, no. 3, pp. 1290-1300. 

[7] J. D. Glover, M. S. Sarma and T. J. Overbye, “Power System Analysis and Design 

5th Edition,” Cengage Learning, Stamford, 2012. 

[8] R. Kaye and F.F. Wu, “Analysis of linearized decoupled power flow 

approximations for steady-state security assessment,” IEEE Transactions on 

Circuits and Systems, Jul. 1984, vol. 31, issue. 7, pp. 623-636.  

[9] Y. Qi, D. Shi, and D. J. Tylavsky, “Impacts of assumptions on DC power flow 

model accuracy,” North American Power Symposium (NAPS), Sept. 2012. 

[10] K. Purchala, L. Meeus, D. V. Dommelen and R. Belmans, “Usefulness od dc 

power flow for active power flow analysis” Power Engineering Society (PES) 

general meeting, Jun. 2005, vol. 1, pp. 454-459. 

[11] T.J. Overbye, X. Cheng and and Y. Sun, “A comparison of the AC and DC power 

flow models for LMP calculations,” Proceedingd of the 37th annual Hawaii 

international conference on system sciences, Jan. 2004. 

http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Main-Text.pdf
http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Main-Text.pdf
http://www.eia.gov/environment/emissions/ghg_report/pdf/0573(2009).pdf
http://www.energy.senate.gov/public/index.cfm/files/serve?File_id=099962a5-b523-4551-b979-c5bac6d45698
http://www.energy.senate.gov/public/index.cfm/files/serve?File_id=099962a5-b523-4551-b979-c5bac6d45698


86 

[12] B.F. Wollenberg and W.O. Stadlin, “A real time optimizer for security dispatch,” 

IEEE Transactions on Power Apparatus and Systems, Sept. 1974, vol. PAS-93, 

Issue. 5, pp. 1640-1649. 

[13] V. Sarkar and S.A. Khaparde, “A comprehensive assessment of the evolution of 

financial transmission rights,” IEEE Transactions on Power Systems, Nov. 2008, 

vol. 23, no. 4, pp. 1783 - 1795. 

[14] A.J. Wood and B.F. Wollenberg, Power Generation, Operation and Control. 

New York: Wiley, 1996. 

[15] H. Oh, “A new network reduction methodology for power system planning 

studies,” IEEE Transaction Power System, May 2010, vol. 25, no. 2,pp. 677 - 684. 

[16] X. Cheng and T.J. Overbye, “PTDF – based power system equivalents,” IEEE 

Transaction Power System, Nov. 2005, vol. 20, no. 4,pp. 1868 - 1876. 

[17] D.Shi and D.J. Tylavsky, “An improved bus aggregation technique for generating 

network equivalents,” IEEE PES General meeting, July 2012.  

 

[18] R. Baldick, K. Dixit and T.J. Overbye, “Empirical analysis of the variation of 

distribution factors with loading,” IEEE PES General meeting, Jun. 2005, vol. 1, 

pp. 221–229. 

 

[19] R. Baldick, “Variation of distribution factors with loading,” IEEE Transactions on 

Power Systems, Nov. 2003, vol. 18, no. 4, pp. 1316-1323. 

[20] M. Liu and G. Gross, “Effectiveness of the distribution factor approximations used 

in congestion modeling,” Proceedings of the 14th Power System Computation 

conference, Jun. 2002. 

[21] J.J. Grainger and W.D. Stevenson, Jr., Power System Analysis, McGraw-Hill, 

1994. 

[22] P. Yan and A. Sekar, “Study of linear models in steady state load flow analysis of 

power systems,” Power Engineering Society winter meeting, 2002, vo1.1, pp. 

666-671. 

[23] Western Electricity Coordinating Council (WECC), “WECC 10-year regional 

transmission plan summary,” Sept. 2011. [Online]. Available: 

http://www.wecc.biz/library/StudyReport/Documents/Plan_Summary.pdf 

[24] D.V. Hertem, J. Verboomen, K. Purchala and R. Belmans, “Usefulness of dc 

power flow for active power flow analysis with flow controlling devices,” 8th IEE 

International conference on AC and DC transmission, Mar. 2006, pp. 58-62. 

http://www.wecc.biz/library/StudyReport/Documents/Plan_Summary.pdf


87 

[25] S. Nagalakshmi, S. Kalyani, V.A. Shobana and R.N. Ranjeni, “Estimation of 

available transfer capability under normal and contingency conditions in 

deregulated electricity market,” International conference on advances in 

engineering, science and management (ICAESM), Mar. 2012, pp. 453.459 

[26] F. Dorfler and F. Bullo, “Novel insights into lossless ac and dc power flow,” IEEE 

PES general meeting, July 2013, pp.1-5. 

[27] D. Chatterjee, J. Webb, Q. Gao and M.Y. Vaiman “N-1-1 ac contingency analysis 

as a part of NERC compliance studies at Midwest ISO,” IEEE PES transmission 

and distribution conference, Apr. 2010, pp. 1-7. 

[28]NERC, Transmission Planning (TPL) Standards. [Online]. Available: 

http://www.nerc.com/files/TPL-002-0.pdf 

[29] NERC, Transmission Planning (TPL) Standards. [Online]. Available: 

http://www.nerc.com/files/TPL-003-0.pdf 

[30] NERC, Transmission Planning (TPL) Standards. [Online]. Available: 

http://www.nerc.com/files/TPL-004-0.pdf 

[31] Z.X Han, “Phase Shifter and Power Flow Control,” IEEE Transaction on power 

apparatus and systems, Oct. 1982, pp. 3790 – 3795. 

[32] T. Overbye, “Lecture Notes on Advanced Power Flow Topics,” Large Scale 

Integration of Power System, Fall 2013. 

[33] P.E Rylatt and G.J. Cokkinides, “A method for planning phase-shifting 

transformers using linearized networks sensitivities,” IEEE Southeastcon ‘ 89 

Proceedings: Energy and Information technologies in the southeast, Apr. 1989, 

vo1.2, pp. 832-836. 

[34] X. Li and X. Yu, “A generalized power transfer distribution factor for power 

injection analysis of power grids,” IEEE Industrial Electronics Society IECON, 

Oct. 2012, pp. 4724-4728. 

[35] D. J. Tylavsky, “Lecture Notes on Computer Solutions of Power Systems,” Fall 

2012. 

[36] Strang, Gilbert. 18.06 Linear Algebra, Spring 2010. (MIT OpenCourseWare: 

Massachusetts Institute of Technology), 

http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010  

License: Creative Commons BY-NC-SA. 

http://www.nerc.com/files/TPL-002-0.pdf
http://www.nerc.com/files/TPL-003-0.pdf
http://www.nerc.com/files/TPL-004-0.pdf
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010


88 

[37] Y. Qi, “Network reduction for power system planning,” Nov. 2013, Master’s 

thesis, School of Electrical, Computer and Energy Engineering, Arizona State 

University, pp. 46-48. 

 

 


