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ABSTRACT  
 
 

No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional 

factorial designs that have been suggested as attractive alternatives to the regular 

minimum aberration resolution IV designs because they do not completely confound any 

two-factor interactions with each other.  These designs allow for potential estimation of 

main effects and a few two-factor interactions without the need for follow-up 

experimentation.  Analysis methods for non-regular designs is an area of ongoing 

research, because standard variable selection techniques such as stepwise regression 

may not always be the best approach. The current work investigates the use of the 

Dantzig selector for analyzing no-confounding designs. Through a series of examples it 

shows that this technique is very effective for identifying the set of active factors in no-

confounding designs when there are three of four active main effects and up to two active 

two-factor interactions. 

 To evaluate the performance of Dantzig selector, a simulation study was conducted and 

the results based on the percentage of type II errors are analyzed. Also, another 

alternative for 6 factor NC design, called the Alternate No-confounding design in six 

factors is introduced in this study. The performance of this Alternate NC design in 6 

factors is then evaluated by using Dantzig selector as an analysis method. Lastly, a 

section is dedicated to comparing the performance of NC-6 and Alternate NC-6 designs. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Screening experiments are widely used during the early stages of experimentation when 

many factors are considered and when the objective is to identify the active factors that 

have large effects. Fractional factorial designs, the most extensively used screening 

designs are classified into two broad types: Regular and Non-regular designs. The factor 

effects in regular designs are either unaliased or completely confounded. Non-regular 

designs exhibit a more complex aliasing but the effects are not completely confounded. 

Hence there is at least some chance that some information on the aliased effects may be 

available.   

In the screening experiments involving 6-8 factors, resolution IV Fractional factorials 

designs (FFD) are widely used, as they are economical and provide clear estimates of 

main effects when three-factor and higher-order interactions are negligible. However, if 

the estimation of two-factor interaction is required, experimenters are frequently 

required to augment the original fraction with new runs to resolve ambiguities resulting 

from the factors being completely confounded. 

1.2 Literature Survey 

Non regular designs have received considerable attention ever since Plackett and 

Burman (PB) (1946) provided a series of two-level fractional factorial designs for 

examining (n - 1) factors in n runs, where n is a multiple of four and n <100. When only 

main effects are involved, PB designs can estimate all of them. Additionally, they have 

smaller run size requirements and are much more flexible in accommodating many 

factor levels. However, traditionally, non-regular factorials were not advocated because 
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of their complex aliasing structure and difficulty in interpreting interactions. Hamada 

and Wu (1992) showed that for data from designs with complex aliasing, it is possible to 

detect interaction effects.  

Consequently in recent years, PB designs enjoy wide applications and a number of 

analysis methods were put forth. Hamada and Wu (1992) proposed a traditional analysis 

approach to identify significant interactions while Chipman et al. (1997) proposed a 

Bayesian variable selection approach for analyzing experiments with complex aliasing. 

Tyssedal and Samset (1997) suggested using contrast plots and employ the aliasing 

structure of the non-regular designs to identify significant effects.  

Supersaturated designs, where the run size is not enough for estimating all the active 

effects, have also been widely researched. Wu (1993) and Lin (1993) constructed 

supersaturated designs through partially aliased interactions and half fractions of 

Hadamard matrices, respectively. Wu and Hamada (2000) pointed out that the analysis 

of supersaturated designs is driven by effect sparsity and effect heredity.  

Variable selection methods like all possible regression are not computationally feasible 

for a supersaturated design. Phoa et. all (2008) presented factor screening based on 

Dantzig selector.  Marley et al (2009) compared four analysis strategies and confirmed 

that shrinkage methods perform better for supersaturated designs. Draguljic et al (2014) 

analyzed screening strategies in the presence of interactions and pointed out that 

Dantzig Selector outperforms other shrinkage methods. Mee (2013) discussed analysis of 

non-regular designs of different strengths using forward selection method.  

Jones and Montgomery (2010) proposed a new set of non-regular orthogonal designs 

called the no-confounding designs (NC) that have no complete confounding of two factor 

interactions. For 6-8 factors, these designs are projections of the Hall designs (1961) 
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created by selecting specific sets of columns. Since the two factor interactions are not 

completely aliased, these designs allow for the estimation of models containing both 

interactions and main effects.  In this study, the NC designs will be analyzed using the 

Dantzig selector proposed by Candes and Tao (2007).   

1.3 No-confounding designs: 

This section presents the NC designs and highlights some of its properties. The 

recommended no-confounding design for 6 factors is given in Table 1.1. Figure 1.1 

displays the correlation matrix for this design along with the correlation matrix for the 

regular fraction. 

Table 1.1 Recommended 16-run six-factor no-confounding design 

Runs A B C D E F 

1 1 1 1 1 1 1 

2 1 1 -1 -1 -1 -1 

3 -1 -1 1 1 -1 -1 

4 -1 -1 -1 -1 1 1 

5 1 1 1 -1 1 -1 

6 1 1 -1 1 -1 1 

7 -1 -1 1 -1 -1 1 

8 -1 -1 -1 1 1 -1 

9 1 -1 1 1 1 -1 

10 1 -1 -1 -1 -1 1 

11 -1 1 1 1 -1 1 

12 -1 1 -1 -1 1 -1 

13 1 -1 1 -1 -1 -1 

14 1 -1 -1 1 1 1 

15 -1 1 1 -1 1 1 

16 -1 1 -1 1 -1 -1 
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Figure 1.1 Correlation matrix (a) regular 2 6-2 fractional factorial (b) the no-confounding 

design 

Since all of the off-diagonal entries in the correlation matrix for the NC design are 

between –1 and +1, it is clear there are no two-factor interactions completely aliased with 

each other, unlike the regular 26-2 fraction. 

Tables 1.2 and 1.3 provide the no-confounding designs in 16 runs for seven and eight 

factors along with the correlation matrices. 

Table 1.2 Recommended 16-run seven factor no-confounding design 

Runs A B C D E F G 

1 1 1 1 1 1 1 1 
2 1 1 1 –1 –1 –1 –1 
3 1 1 –1 1 1 –1 –1 
4 1 1 –1 –1 –1 1 1 
5 1 –1 1 1 –1 1 –1 
6 1 –1 1 –1 1 –1 1 
7 1 –1 –1 1 –1 –1 1 
8 1 –1 –1 –1 1 1 –1 
9 –1 1 1 1 1 1 –1 
10 –1 1 1 –1 –1 –1 1 
11 –1 1 –1 1 –1 1 1 
12 –1 1 –1 –1 1 –1 –1 
13 –1 –1 1 1 –1 –1 –1 
14 –1 –1 1 –1 1 1 1 
15 –1 –1 –1 1 1 –1 1 

16 –1 –1 –1 –1 –1 1 –1 
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Figure 1.2 Correlation matrix (a) regular 27–3 fractional factorial (b) the no-confounding 

design 

 

Table 1.3 Recommended 16-run eight factor no-confounding design 

Runs A B C D E F G H 

1 1 1 1 1 1 1 1 1 
2 1 1 1 1 –1 –1 –1 –1 
3 1 1 –1 –1 1 1 –1 –1 
4 1 1 –1 –1 –1 –1 1 1 
5 1 –1 1 –1 1 –1 1 –1 
6 1 –1 1 –1 –1 1 –1 1 
7 1 –1 –1 1 1 –1 –1 1 
8 1 –1 –1 1 –1 1 1 –1 
9 –1 1 1 1 1 1 1 1 
10 –1 1 1 –1 1 –1 –1 –1 
11 –1 1 –1 1 –1 –1 1 –1 
12 –1 1 –1 –1 –1 1 –1 1 
13 –1 –1 1 1 –1 –1 –1 1 
14 –1 –1 1 –1 –1 1 1 –1 
15 –1 –1 –1 1 1 1 –1 –1 

16 –1 –1 –1 –1 1 –1 1 1 
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Figure 1.3 Correlation matrix (a) regular 28–4 fractional factorial (b) the no-confounding 

design 

To identify active factors, Jones and Montgomery (2010) illustrated using forward 

stepwise regression with all main effects and two-factor interactions as candidate effects. 

Stepwise regression is a popular method for model selection as it is widely available in 

commercial software. Shinde (2012) analyzed NC designs using stepwise regression and 

confirmed that the method does not perform well when the number of active effects 

exceeds four. In this study, an attempt is made to analyze the active factors in no-

confounding designs using the Dantzig selector proposed by Candes and Tao (2007).   

1.4 The Dantzig selector 

The Dantzig selector (DS) is an effective variable selection technique which chooses the 

best subset of variables or active factors by solving a simple convex program. It is a 

shrinkage method that achieves variable selection by shrinking the estimated regression 

coefficients towards zero at a different rate. 
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For a linear regression model y = X𝜷̂, +ε, where  y is an n × 1 vector of observations, X 

is an n×p model matrix, β is a k×1 vector of unknown parameters to be estimated and ε 

is an n×1 vector of random errors, the estimate of β is chosen to satisfy, 

𝐦𝐢𝐧
𝜷̂∈𝑹𝒌

‖𝜷̂‖
𝒍𝟏

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑿𝒕𝒓‖𝒍∞
≤ 𝜹 

where r is the residual vector r=y-X𝜷̂ and ε ~ N (0, σ2In).  Here || β ||1 = |β0 | + ….+|β k  

| is the l1 norm || β ||∞ =max( |β0 | , ….,|β k |) is the l∞ norm, and δ is the tuning 

parameter.  Here, we seek an estimator β with minimum complexity (as measured by the 

l1-norm) among all objects that are consistent with the data.  

A two-stage estimation approach called the Gauss-Dantzig selector was also proposed by 

Candes and Tao (2007). First the Dantzig selector is used to identify the active factors, 

and then the factors whose coefficient estimates are greater than γ are retained. Second, 

least squares estimates are found by regressing the response on the set of retained 

factors. The value of γ is the threshold between the signal and the noise and hence affects 

the selection of active factors. 

 

In Chapter 2, we discuss how the Dantzig selector performs for selected examples. We 

propose an alternate NC-6 design in Chapter 3 and also present an extensive simulation 

study to analyze the performance of Dantzig selector, as a variable selection method for 

NC designs. 
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Chapter 2 

EXAMPLES OF ANALYSING NO-CONFOUNDING DESIGNS USING DANTZIG 

SELECTOR 

2.1. Background  

The purpose of screening experiments is to identify the active factors correctly and 

economically. For 6, 7 and 8 factors, resolution IV regular fractional factorial designs in 

16 runs are widely used as screening designs; however, because the two factor 

interactions are completely confounded, experimenters are frequently required to 

augment the original fraction with more runs to resolve the ambiguities. 

The no-confounding designs introduced by Jones and Montgomery (2010) are non-

regular designs like the Plackett-Burman designs. Since they do not completely confound 

any of the two factor interactions, they potentially allow for unambiguous estimation of 

models containing both main effects and a few two factor interactions. . In a six factor 

example Jones and Montgomery used forward stepwise regression with all main effects 

and two-factor interactions as candidate effects to successfully identify the active factors. 

However, stepwise regression methods may not always be the best approach.  Analysis 

methods for non-regular designs is an area of on-going research.  Mee (2013) provides an 

excellent discussion of several analysis methods for non-regular designs.   

Candes and Tao (2007) propose the Dantzig selector as a technique for variable selection 

in problems where the number of factors exceeds the number of runs.  Phao, Pan and Xu 

(2009) demonstrate the successful application of this technique to supersaturated 

designs. Because NC designs are essentially supersaturated designs for the main effects 

and all two-factor interactions, we suspect that the Dantzig selector would also perform 

well in this application.  We evaluate how the Dantzig selector performs in analyzing the 
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Jones and Montgomery no-confounding designs involving 6, 7 and 8 factors. Each of the 

designs was tested with simulated models involving main effects only, models with main 

effects plus one hierarchical two-factor interaction, and models with main effects and 

two two-factor interactions as these scenarios are very typical of the situation frequently 

encountered in practice. 

2.2. Analysis of the six factor NC design using Dantzig selector 

The Dantzig selector is a shrinkage method where the estimates of the regression 

coefficients are chosen to satisfy, 

𝐦𝐢𝐧
𝜷̂∈𝑹𝒌

‖𝜷̂‖
𝒍𝟏

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑿𝒕𝒓‖𝒍∞
≤ 𝜹 

where r is the residual vector r=y-X𝜷̂, δ is a tuning parameter, Here || β ||1 = |β0 | + 

….+|β k  | is the l1 norm and || β ||∞ =max( |β0 | , ….,|β k |) is the l∞ norm. 

In applying a Gauss-Dantzig selector, Candes and Tao (2007) suggested choosing a set of 

active factors for a specific value of δ based on some model fitting criteria, and then 

using standard least squares to fit the reduced linear model and produce the final 

estimates of the model parameters.  The choice of 𝛿 in the l1-regularisation problem 

equation has a significant impact on the results. When 𝛿 is too large, it leads to the 

insignificance of all predictors on the change in response (type II errors) and when 𝛿 is 

too small, inactive factors with small magnitudes of coefficients are falsely included in 

the model (type I errors). In the examples below, the designs and models were tested for 

a range of values of 𝛿.  The analysis was performed using JMP.  The penalized regression 

estimates for each value of 𝛿 is obtained and then the modified AIC criterion (mAIC) 

proposed by Phoa et al. (2009) was used for final model selection. 

Screening designs should be effective in detecting real factor effects of moderately large 

size, say at least two standard deviations in magnitude.  Smaller effects may be 

statistically significant, but unless they exert a relatively large effect on the mean 
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response, they may not have much practical significance.  To investigate how the six 

factor NC design performs with a simple model containing only main effects  the first-

order model with significant factors A, B, and F, y=1.5+2.9A+4.5B-2.7F + ε, was 

assumed and a response generated with standard normal random noise ε ~ N (0, 1) 

constituted the data . Table 2.1 displays the NC-6 design with the simulated responses. 

Table 2.1 NC-6 design with responses for the model y=1.5+2.9A+4.5B-2.7F + ε 
 

Runs A B C D E F Y 

1 1 1 1 1 1 1 5.881004 

2 1 1 -1 -1 -1 -1 10.51876 

3 -1 -1 1 1 -1 -1 -5.86881 

4 -1 -1 -1 -1 1 1 -7.17214 

5 1 1 1 -1 1 -1 12.93893 

6 1 1 -1 1 -1 1 7.439093 

7 -1 -1 1 -1 -1 1 -9.89413 

8 -1 -1 -1 1 1 -1 -3.90374 

9 1 -1 1 1 1 -1 2.982714 

10 1 -1 -1 -1 -1 1 -1.84172 

11 -1 1 1 1 -1 1 -0.63985 

12 -1 1 -1 -1 1 -1 5.742818 

13 1 -1 1 -1 -1 -1 2.100142 

14 1 -1 -1 1 1 1 -3.53534 

15 -1 1 1 -1 1 1 0.013759 

16 -1 1 -1 1 -1 -1 5.666989 

 

Table 2.2 shows selected results when the above model was analyzed for various values 

of delta. Except for the columns shown, the estimated effects for all other variables were 

zero, and those columns were omitted from the table for clarity. A wide range of values 

for the tuning parameter δ (between 0.5 and 100) was tested. Intervals between 

consecutive δ may not be consistent as the δ between 0-10 was manually input with a 

0.25 interval and the δ >10 were selected randomly. It is evident that as the δ increases, 

fewer effects are included in the model. It can be observed that the model that has the 

minimum value of mAIC correctly identifies the true model form, although the 
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parameter estimates depend on the value of δ.  A least squares fit of the first-order model 

with factors A, B, and F produces the correct estimates of the model parameters. 

Table 2.2 NC-6 results for the model  y=1.5+2.9A+4.5B-2.7F+ε 
 

 

To investigate the impact of a significant two-factor interaction effect another model, 

y=1.5+2.2A+4.5B+1.9F+2.9AF + ε was created. Random normal noise, ε ~ N (0, 1) was 

included to generate the responses. The design with responses and selected results for 

delta ranging between 0.5-15 are presented in Table 2.3 and 2.4, respectively. 

Delta A B C D E F mAIC 

0.5 3.252418 4.637159 0 0 0 -2.4642 16.71075 

0.75 3.236793 4.621534 0 0 0 -2.44857 16.71075 

1 3.221168 4.605909 0 0 0 -2.43295 16.71075 

1.25 3.205543 4.590284 0 0 0 -2.41732 16.71075 

1.5 3.189918 4.574659 0 0 0 -2.4017 16.71075 

1.75 3.174293 4.559034 0 0 0 -2.38607 16.71075 

2 3.158668 4.543409 0 0 0 -2.37045 16.71075 

2.25 3.143043 4.527784 0 0 0 -2.35482 16.71075 

2.5 3.127418 4.512159 0 0 0 -2.3392 16.71075 

2.75 3.111793 4.496534 0 0 0 -2.32357 16.71075 

3 3.096168 4.480909 0 0 0 -2.30795 16.71075 

3.25 3.080543 4.465284 0 0 0 -2.29232 16.71075 

3.5 3.064918 4.449659 0 0 0 -2.2767 16.71075 

3.75 3.049293 4.434034 0 0 0 -2.26107 16.71075 

4 3.033668 4.418409 0 0 0 -2.24545 16.71075 

4.25 3.018043 4.402784 0 0 0 -2.22982 16.71075 

4.5 3.002418 4.387159 0 0 0 -2.2142 16.71075 

4.75 2.986793 4.371534 0 0 0 -2.19857 16.71075 

5 2.971168 4.355909 0 0 0 -2.18295 16.71075 

5.25 2.955543 4.340284 0 0 0 -2.16732 16.71075 

5.5 2.939918 4.324659 0 0 0 -2.1517 16.71075 

5.75 2.924293 4.309034 0 0 0 -2.13607 16.71075 

6 2.908668 4.293409 0 0 0 -2.12045 16.71075 

13.44909 2.443099 3.827841 0 0 0 -1.65488 16.71075 

25.89818 1.665031 3.049773 0 0 0 -0.87681 16.71075 

38.34727 0.886963 2.271704 0 0 0 0 39.47342 

50.79636 0 1.493636 0 0 0 0 48.18566 

63.24545 0 0.715568 0 0 0 0 48.18566 
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Table 2.3 NC-6 design with responses for y=1.5+2.2A+4.5B+1.9F+2.9AF+ε 
 

Runs A B C D E F Y 

1 1 1 1 1 1 1 14.34351 

2 1 1 -1 -1 -1 -1 3.777049 

3 -1 -1 1 1 -1 -1 -5.40884 

4 -1 -1 -1 -1 1 1 -6.29689 

5 1 1 1 -1 1 -1 2.84584 

6 1 1 -1 1 -1 1 15.12935 

7 -1 -1 1 -1 -1 1 -6.72336 

8 -1 -1 -1 1 1 -1 -4.87035 

9 1 -1 1 1 1 -1 -5.15461 

10 1 -1 -1 -1 -1 1 4.342885 

11 -1 1 1 1 -1 1 2.149369 

12 -1 1 -1 -1 1 -1 5.012015 

13 1 -1 1 -1 -1 -1 -6.33973 

14 1 -1 -1 1 1 1 4.370357 

15 -1 1 1 -1 1 1 1.766734 

16 -1 1 -1 1 -1 -1 2.82219 
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Table 2.4 NC-6 results of the model for y=1.5+2.2A+4.5B+1.9F+2.9AF+ε 

 

 

It can be observed that the Dantzig selector method correctly identifies A, B, F, and AF as 

active factors without any type I or type II errors. 

To test a model where two two factor interactions enter with strong heredity, another 

model y=1.5+2.2A+4.5B+3.9C+2.3F-3.2AB+2.5AF+ ε, assuming A, B, C, F, AB, AF 

as the active effects was generated and normal random noise ε ~ N (0, 1) was added to 

the mean response to generate the simulated data.  The design table with the generated 

responses and the selected results are presented in Tables 2.5-2.6. Once again, models 

with minimum mAIC value correctly identify the active effects. 

 

 

 

 

 

Delta A B F AF mAIC 

0.5 2.68431 4.500736 2.036185 2.976832 16.60565 

1 2.65306 4.469486 2.027837 2.976832 16.60565 

1.25 2.63743 4.453861 2.01742 2.976832 16.60565 

1.5 2.62181 4.438236 2.007004 3.01138 16.60565 

1.75 2.60618 4.422611 1.996587 2.98013 16.60565 

2 2.59056 4.406986 1.98617 2.962856 16.60565 

2.25 2.57493 4.391361 1.975754 2.947231 16.60565 

2.5 2.55931 4.375736 1.965337 2.931606 16.60565 

3 2.52806 4.344486 1.944504 2.901073 16.60565 

3.25 2.51243 4.328861 1.934087 2.890656 16.60565 

3.5 2.49681 4.313236 1.92367 2.880239 16.60565 

3.75 2.48118 4.297611 1.913254 2.869823 16.60565 

4 2.46556 4.281986 1.902837 2.857295 16.60565 

4.520314 2.43304 4.249467 1.881157 2.824776 16.60565 

8.040629 2.21302 4.029447 1.734477 2.604756 16.60565 

11.56094 1.99300 3.809427 1.55234 2.384736 16.60565 

15.08126 1.77298 3.589408 1.33232 2.164717 16.60565 
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Table 2.5 NC-6 design with responses for y=1.5+2.2A+4.5B+3.9C+2.3F-3.2AB+2.5AF+ ε 

Runs A B C D E F y 

1 1 1 1 1 1 1 13.75917 

2 1 1 -1 -1 -1 -1 -3.21595 

3 -1 -1 1 1 -1 -1 -4.13436 

4 -1 -1 -1 -1 1 1 -12.4164 

5 1 1 1 -1 1 -1 5.538028 

6 1 1 -1 1 -1 1 5.265305 

7 -1 -1 1 -1 -1 1 -5.45184 

8 -1 -1 -1 1 1 -1 -12.0781 

9 1 -1 1 1 1 -1 0.657267 

10 1 -1 -1 -1 -1 1 3.601692 

11 -1 1 1 1 -1 1 11.42639 

12 -1 1 -1 -1 1 -1 2.152705 

13 1 -1 1 -1 -1 -1 1.362273 

14 1 -1 -1 1 1 1 2.742272 

15 -1 1 1 -1 1 1 11.50986 

16 -1 1 -1 1 -1 -1 2.98114 
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Table 2.6 NC-6 analysis for y=1.5+2.2A+4.5B+3.9C+2.3F-3.2AB+2.5AF+ ε 

Delta A B C F AB AF mAIC 

0.5 2.088436 4.644177 3.85458 2.10700 -3.04173 2.2010 53.52532 

0.75 2.088436 4.612927 3.82333 2.07575 -3.02611 2.1698 53.52532 

1 2.0884364565 4.581677 3.79208 2.04450 3.01048 2.1385 53.52532 

1.25 2.0877702955625 4.551094 3.76083 2.01325 2.99486 2.1073 53.52532 

1.5 2.0721452955625 4.535469 3.72958 1.98200 2.97923 2.0760 53.52532 

1.75 2.0565202955625 4.519844 3.69833 1.95075 -2.96361 2.0448 53.52532 

2 2.0408952955625 4.504219 3.66708 1.91950 2.94798 2.0135 53.52532 

2.25 2.0252702955625 4.488594 3.63583 1.88825 2.93236 1.9823 53.52532 

2.5 2.0096452955625 4.472969 3.60458 1.88083 -2.91673 1.9510 53.52532 

2.75 1.9940202955625 4.457344 3.57333 1.88083 -2.90111 1.9198 53.52532 

3 1.9783952955625 4.441719 3.54208 1.88083 2.88548 1.8885 53.52532 

3.25 1.9627702955625 4.426094 3.51083 1.88083 2.86986 1.8573 53.52532 

3.5 1.9471452955625 4.410469 3.47958 1.88083 2.85423 1.8260 53.52532 

3.75 1.9315202955625 4.394844 3.44833 1.88083 2.83861 1.7948 53.52532 

4 1.9158952955625 4.379219 3.41708 1.88083 2.82298 1.7635 53.52532 

4.25 1.9002702955625 4.363594 3.38583 1.88083 2.80736 1.7323 53.52532 

4.5 1.8846452955625 4.347969 3.35458 1.88083 -2.79173 1.7010 53.52532 

4.75 1.8690202955625 4.332344 3.32333 1.88044 -2.77611 1.6698 53.52532 

5 1.8533952955625 4.316719 3.29208 1.87002 2.76048 1.6385 53.52532 

5.25 1.8377702955625 4.301094 3.26083 1.85960 2.74486 1.6073 53.52532 

5.5 1.8221452955625 4.285469 3.22958 1.84919 -2.72923 1.5760 53.52532 

5.75 1.8065202955625 4.269844 3.19833 1.83877 -2.71361 1.5448 53.52532 

6 1.7908952955625 4.254219 3.16708 1.82835 2.69798 1.5135 53.52532 

8.15560 1.65617020313988 4.119494 2.89763 1.73854 2.56326 1.2441 53.52532 

11.7334 1.43255765692857 3.895881 2.45040 1.58946 2.33964 0.7968 53.52532 

15.3112 1.20894511071726 3.672268 2.00318 1.36639 -2.11603 0 73.37744 

18.889 0.98533256450595 3.448656 1.64181 1.14278 -1.89242 0 73.37744 

22.4668 0.76172001829464 3.225043 1.44795 0.91916 -1.66881 0 73.37744 

26.0446 0.53810747208333 3.001431 1.22434 0.69555 -1.44519 0 73.37744 

29.6224 0 2.777818 1.00073 0.47194 -1.22158 0 67.67144 

33.2002 0 2.554206 0.77711 0 0.99797 0 60.99774 

36.7780 0 2.374837 0.55350 0 0.77436 0 60.99774 

40.3558 0 2.173625 0 0 0.55074 0 58.04743 

43.9336 0 1.950013 0 0 0 0 57.58655 

47.5114 0 1.7264 0 0 0 0 57.58655 

51.0891 0 1.502788 0 0 0 0 57.58655 

54.6671 0 1.279175 0 0 0 0 57.58655 

58.2441 0 1.055563 0 0 0 0 57.58655 

61.8226 0 0.83195 0 0 0 0 57.58655 

65.4004 0 0.608338 0 0 0 0 57.58655 
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2.3. Analysis of the seven factor NC design using Dantzig selector 

Three types of models, one with only main effects and two others with main effects and 

significant two-factor interactions were studied. To investigate a main effects only model 

using the NC-7 design, the following first-order model was generated: 

y=1.5+2.2A+4.5B+3.9C+1.9F + ε, where ε ~ N (0, 1). The design including the simulated 

responses and the results of the analysis for different delta values are presented in Tables 

2.7 and 2.8. Once again, the minimum value of the mAIC criterion identifies the correct 

model  

Table 2.7 NC-7 design table for y=1.5+2.2A+4.5B+3.9C+2.8F 

Runs A B C D E F G Y 

1 1 1 1 1 1 1 1 13.69104 

2 1 1 1 -1 -1 -1 -1 10.15821 

3 1 1 -1 1 1 -1 -1 1.387442 

4 1 1 -1 -1 -1 1 1 7.538254 

5 1 -1 1 1 -1 1 -1 4.892953 

6 1 -1 1 -1 1 -1 1 0.786086 

7 1 -1 -1 1 -1 -1 1 -7.74477 

8 1 -1 -1 -1 1 1 -1 -2.97237 

9 -1 1 1 1 1 1 -1 10.38366 

10 -1 1 1 -1 -1 -1 1 3.046954 

11 -1 1 -1 1 -1 1 1 1.987258 

12 -1 1 -1 -1 1 -1 -1 -2.30385 

13 -1 -1 1 1 -1 -1 -1 -4.85529 

14 -1 -1 1 -1 1 1 1 0.315871 

15 -1 -1 -1 1 1 -1 1 -9.50399 

16 -1 -1 -1 -1 -1 1 -1 -8.22494 
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Table 2.8 NC-7 results for y=1.5+2.2A+4.5B+3.9C+2.8F+ ε 

Delta A B C D E F G mAIC 

0.5 2.274447 4.543464 3.609779 0 0 2.258809 0 28.99056 

0.75 2.258822 4.527839 3.594154 0 0 2.243184 0 28.99056 

1 2.243197 4.512214 3.578529 0 0 2.227559 0 28.99056 

1.25 2.227572 4.496589 3.562904 0 0 2.211934 0 28.99056 

1.5 2.211947 4.480964 3.547279 0 0 2.196309 0 28.99056 

1.75 2.196322 4.465339 3.531654 0 0 2.180684 0 28.99056 

2 2.180697 4.449714 3.516029 0 0 2.165059 0 28.99056 

2.25 2.165072 4.434089 3.500404 0 0 2.149434 0 28.99056 

2.5 2.149447 4.418464 3.484779 0 0 2.133809 0 28.99056 

2.75 2.133822 4.402839 3.469154 0 0 2.118184 0 28.99056 

3 2.118197 4.387214 3.453529 0 0 2.102559 0 28.99056 

3.25 2.102572 4.371589 3.437904 0 0 2.086934 0 28.99056 

3.5 2.086947 4.355964 3.422279 0 0 2.071309 0 28.99056 

3.75 2.071322 4.340339 3.406654 0 0 2.055684 0 28.99056 

4 2.055697 4.324714 3.391029 0 0 2.040059 0 28.99056 

4.25 2.040072 4.309089 3.375404 0 0 2.024434 0 28.99056 

4.5 2.024447 4.293464 3.359779 0 0 2.008809 0 28.99056 

4.75 2.008822 4.277839 3.344154 0 0 1.993184 0 28.99056 

5 1.993197 4.262214 3.328529 0 0 1.977559 0 28.99056 

5.25 1.977572 4.246589 3.312904 0 0 1.961934 0 28.99056 

5.5 1.961947 4.230964 3.297279 0 0 1.946309 0 28.99056 

5.75 1.946322 4.215339 3.281654 0 0 1.930684 0 28.99056 

6 1.930697 4.199714 3.266029 0 0 1.915059 0 28.99056 

11.45649 1.589667 3.858684 2.924998 0 0 1.574028 0 28.99056 

21.91298 0.936136 3.205153 2.271467 0 0 0.920497 0 28.99056 

32.36947 0 2.551623 1.617937 0 0 0 0 46.92258 

42.82596 0 1.898092 0.964406 0 0 0 0 46.92258 

53.28245 0 1.244561 0 0 0 0 0 53.27399 

63.73894 0 0.591031 0 0 0 0 0 53.27399 

 

A two-factor interaction model  y=1.5+2.5A+4.5C+3.2F+2.9AF+ ε with N (0, 1) errors 

was also investigated.  The design and simulated responses is shown in Table 9.  The 

results of the Dantzig selector analysis is shown in Table 2.10. 
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Table 2.9 NC-7 design table for y=1.5+2.5A+4.5C+3.2F+2.9AF 

Runs A B C D E F G Y 

1 1 1 1 1 1 1 1 16.02077 

2 1 1 1 -1 -1 -1 -1 2.261747 

3 1 1 -1 1 1 -1 -1 -7.59143 

4 1 1 -1 -1 -1 1 1 5.699659 

5 1 -1 1 1 -1 1 -1 11.77831 

6 1 -1 1 -1 1 -1 1 2.090869 

7 1 -1 -1 1 -1 -1 1 -6.07119 

8 1 -1 -1 -1 1 1 -1 4.760928 

9 -1 1 1 1 1 1 -1 4.087872 

10 -1 1 1 -1 -1 -1 1 3.851497 

11 -1 1 -1 1 -1 1 1 -3.73806 

12 -1 1 -1 -1 1 -1 -1 -5.35274 

13 -1 -1 1 1 -1 -1 -1 3.760795 

14 -1 -1 1 -1 1 1 1 3.879211 

15 -1 -1 -1 1 1 -1 1 -5.26657 

16 -1 -1 -1 -1 -1 1 -1 -6.0011 
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Table 2.10 NC-7 results for y=1.5+2.5A+4.5C+3.2F+2.9AF 

Delta A C F AF EF mAIC 

0.5 2.076797599 4.228979206 3.019039 2.86467 0 29.05886 

0.75 2.061172599125 4.166479206 3.003414 2.849045 0.428178 43.98173 

1 2.045547599125 4.103979206 2.987789 2.83342 0.443803 43.98173 

1.25 2.029922599125 4.041479206 2.961992 2.807623 0.459428 43.98173 

1.5 2.014297599125 4.029909093 2.930742 2.776373 0.449588 43.98173 

1.75 1.998672599125 4.029909093 2.908078 2.75371 0.433963 43.98173 

2 1.983047599125 4.029909093 2.892453 2.738085 0 29.05886 

2.25 1.967422599125 4.029909093 2.876828 2.72246 0 29.05886 

2.5 1.951797599125 4.029909093 2.861203 2.706835 0 29.05886 

2.75 1.936172599125 4.029909093 2.845578 2.69121 0 29.05886 

3 1.920547599125 4.029909093 2.829953 2.675585 0 29.05886 

3.25 1.904922599125 4.029909093 2.814328 2.65996 0 29.05886 

3.5 1.889297599125 4.029909093 2.798703 2.644335 0 29.05886 

3.75 1.873672599125 4.029909093 2.783078 2.62871 0 29.05886 

4 1.858047599125 4.029909093 2.767453 2.613085 0 29.05886 

4.25 1.842422599125 4.029909093 2.751828 2.59746 0 29.05886 

4.5 1.826797599125 4.029909093 2.736203 2.581835 0 29.05886 

4.75 1.811172599125 4.029909093 2.720578 2.56621 0 29.05886 

5 1.795547599125 4.027102365 2.704953 2.550585 0 29.05886 

5.25 1.779922599125 4.016685699 2.689328 2.53496 0 29.05886 

5.5 1.764297599125 4.006269032 2.673703 2.519335 0 29.05886 

5.75 1.748672599125 3.995852365 2.658078 2.50371 0 29.05886 

6 1.733047599125 3.985435699 2.642453 2.488085 0 29.05886 

8.638383 1.5681486878125 3.875503091 2.034929 1.88056 0 47.01734 

11.18451 1.409015717375 3.756691291 1.568759 1.414391 0 47.01734 

13.73064 1.2498827469375 3.59755832 1.09136 0.936992 0 68.24936 

16.27677 1.0907497765 3.43842535 2.000155 1.845787 0 29.05886 

18.82289 0.9316168060625 3.279292379 1.841023 1.686654 0 29.05886 

21.36902 0.772483835625 3.120159409 1.68189 1.527521 0 29.05886 

23.91515 0.6133508651875 2.961026438 1.522757 1.368388 0 29.05886 

26.46128 0.45421789475 2.801893468 1.363624 1.209255 0 29.05886 

29.0074 0 2.642760497 1.204491 1.050122 0 44.61054 

31.55353 0 2.483627527 1.045358 0.890989 0 44.61054 

 

For delta values less than 2, an inactive factor EF is also included as being active. 

However, this is not the minimum mAIC model.  As with the earlier cases, the models 

with the minimum mAIC correctly identify the active factors. 
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To investigate a model with two two-factor interactions, the model 

y=1.5+2.9A+3.2C+2.5AC+2.2AB + ε with N (0, 1) random errors was constructed. Notice 

that this model contains one hierarchical interaction (AC) and one interaction that has 

one weak heredity (AB). The design with the simulated response values and the results of 

the Dantzig selector analysis are shown in tables 2.11 and 2.12. The minimum value of 

mAIC (41.4161) identifies the correct model without any type I or type II errors. 

Table 2.11 NC-7 design for the model y=1.5+2.9A+3.2C+2.5AC+2.2AB + ε 

Runs A B C D E F G Y 

1 1 1 1 1 1 1 1 13.06209 

2 1 1 1 -1 -1 -1 -1 11.60521 

3 1 1 -1 1 1 -1 -1 -0.01448 

4 1 1 -1 -1 -1 1 1 0.709439 

5 1 -1 1 1 -1 1 -1 6.7633 

6 1 -1 1 -1 1 -1 1 7.919788 

7 1 -1 -1 1 -1 -1 1 -4.34065 

8 1 -1 -1 -1 1 1 -1 -2.90166 

9 -1 1 1 1 1 1 -1 -3.80524 

10 -1 1 1 -1 -1 -1 1 -0.88725 

11 -1 1 -1 1 -1 1 1 -3.69191 

12 -1 1 -1 -1 1 -1 -1 -3.30848 

13 -1 -1 1 1 -1 -1 -1 2.997959 

14 -1 -1 1 -1 1 1 1 1.524573 

15 -1 -1 -1 1 1 -1 1 0.761699 

16 -1 -1 -1 -1 -1 1 -1 0.160675 
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Table 2.12 NC-7 results for y=1.5+2.9A+3.2C+2.5AC+2.2AB + ε 

Delta A B C AB AC AE AF DE DF EG mAIC 

0.5 2.4094 0.0000 2.2322 0.0000 1.3003 0.3756 0.4587 1.0081 0.0000 2.1422 98.1185 

0.75 2.3938 0.0000 2.2009 0.0000 1.3003 0.2600 0.4431 0.9925 0.0000 2.1422 98.1185 

1 2.3782 0.0000 3.1465 1.9537 2.2771 0.3370 0.4274 0.0000 0.0000 0.0000 43.6431 

1.25 2.3626 0.0000 3.0996 1.9224 2.2615 0.3214 0.4118 0.0000 0.0000 0.0000 43.6431 

1.5 2.3469 0.0000 3.0528 1.8912 2.2459 0.3100 0.3962 0.0000 0.0000 0.2511 69.4156 

1.75 2.3313 0.0000 3.0059 1.8599 2.2303 0.2986 0.3806 0.0000 0.0000 0.2823 69.4156 

2 2.3157 0.0000 2.9590 1.8287 2.2146 0.2881 0.3649 0.0000 0.0000 0.3136 69.4156 

2.25 2.3001 0.0000 2.9248 1.7974 2.1863 0.2589 0.3493 0.0000 0.0000 0.3448 69.4156 

2.5 2.2844 0.0000 2.8936 1.7662 2.1551 0.2433 0.3337 0.0000 0.0000 0.3761 69.4156 

3 2.2532 0.0000 2.8311 1.7037 2.0926 0.0000 0.2970 0.0000 0.0000 0.4386 54.9610 

3.25 2.2376 0.0000 2.7998 1.6724 2.0613 0.0000 0.2657 0.0000 0.0000 0.4698 54.9610 

3.5 2.2219 0.000 2.768 1.6412 2.0301 0.000 0.000 0.000 0.000 0.5011 41.4161 

4 2.1907 0.000 2.706 1.5787 1.9676 0.000 0.000 0.000 0.000 0.563 41.4161 

4.25 2.1751 0.000 2.674 1.5474 1.9363 0.0000 0.000 0.000 0.000 0.594 41.4161 

4.5 2.159 0.000 2.643 1.5162 1.9051 0.000 0.000 0.000 0.000 0.6261 41.4161 

5 2.128 0.000 2.5811 1.4537 1.842 0.000 0.000 0.000 0.000 0.688 41.4161 

5.25 2.112 0.000 2.549 1.4224 1.8113 0.000 0.000 0.000 0.000 0.7198 41.4161 

5.5 2.096 0.000 2.518 1.3912 1.7801 0.000 0.000 0.000 0.000 0.7511 41.4161 

6 2.065 0.000 2.456 1.3287 1.7176 0.000 0.000 0.000 0.000 0.8136 41.4161 

7.7538 1.956 0.000 2.236 1.1094 1.498 0.000 0.000 0.000 0.000 1.0328 41.4161 

10.005 1.815 0.828 0.738 0.000 0.000 0.000 0.000 0.000 0.3889 3.3592 41.4161 

12.256 1.674 0.546 0.738 0.000 0.000 0.000 0.000 0.000 0.3889 3.0777 41.4161 

14.5076 1.5340 0.0000 0.7385 0.0000 0.0000 0.0000 0.0000 0.0000 0.3889 2.7963 50.0715 

16.7589 1.3933 0.0000 0.7385 0.0000 0.0000 0.0000 0.0000 0.0000 0.3808 2.5230 50.0715 

19.0101 1.2526 0.0000 0.7385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.3823 41.9006 

23.5127 0.9711 0.0000 0.7110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.1147 41.9006 

30.2665 0.5490 0.0000 0.4296 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.8333 41.9006 

34.7690 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.6457 42.4815 

41.5228 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.3445 42.4815 

46.0254 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0631 42.4815 
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For investigating a model where two two-factor interactions enter with strong heredity, 

the model, y=1.5+2.4A+2.8B-3.1D+2.5AB+2.2AD + ε with N (0, 1) errors was 

constructed. The design with the simulated responses and the result from the Dantzig 

selector analysis for different delta values are presented in tables 2.13 and 2.14. As with 

the earlier cases, the minimum value of mAIC (22.334) identifies the active factors 

without any errors. 

Table 2.13. NC-7 Design for the Model y= y=1.5+2.4A+2.8B-3.1D+2.5AB+2.2AD+ ε 

Runs A B C D E F G Y 

1 1 1 1 1 1 1 1 7.4192 

2 1 1 1 -1 -1 -1 -1 9.9557 

3 1 1 -1 1 1 -1 -1 8.6761 

4 1 1 -1 -1 -1 1 1 10.11 

5 1 -1 1 1 -1 1 -1 -2.058 

6 1 -1 1 -1 1 -1 1 -1.528 

7 1 -1 -1 1 -1 -1 1 -1.213 

8 1 -1 -1 -1 1 1 -1 -0.623 

9 -1 1 1 1 1 1 -1 -5.617 

10 -1 1 1 -1 -1 -1 1 4.9566 

11 -1 1 -1 1 -1 1 1 -5.699 

12 -1 1 -1 -1 1 -1 -1 4.4189 

13 -1 -1 1 1 -1 -1 -1 -6.624 

14 -1 -1 1 -1 1 1 1 3.7118 

15 -1 -1 -1 1 1 -1 1 -6.209 

16 -1 -1 -1 -1 -1 1 -1 3.8419 
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Table 2.14. NC-7 Results for y=1.5+2.4A+2.8B-3.1D+2.5AB+2.2AD + ε 

Delta A B D AB AD BF CG mAIC 

0.5 2.34 2.7 -2.76 2.29 2.12 0 0 22.335 

0.75 2.33 2.69 -2.77 2.27 2.13 0 0 22.335 

1 2.31 2.67 -2.71 2.26 2.07 0 0 22.335 

1.25 2.29 2.66 -2.69 2.24 2.05 0 0 22.335 

1.5 2.28 2.64 -2.66 2.22 2.03 0 0 22.335 

1.75 2.26 2.63 -2.64 2.21 2 0 0 22.335 

2 2.25 2.61 -2.61 2.19 1.97 -0.3 0 43.354 

2.25 2.23 2.59 -2.58 2.18 1.94 -0.3 0 43.354 

2.5 2.22 2.58 -2.55 2.16 1.91 -0.4 0 43.354 

2.75 2.2 2.56 -2.64 2.15 2 0 0 22.335 

3 2.18 2.55 -2.63 2.13 1.99 0 0 22.335 

3.25 2.17 2.53 -2.45 2.11 1.81 -0.5 0 43.354 

3.5 2.15 2.52 -2.4 2.1 1.76 -0.5 0 43.354 

3.75 2.14 2.5 -2.35 2.08 1.72 -0.5 0 43.354 

4 2.12 2.48 -2.31 2.07 1.67 -0.6 0 43.354 

4.25 2.11 2.47 -2.26 2.05 1.62 -0.6 0 43.354 

4.5 2.09 2.45 -2.21 2.04 1.58 -0.6 0 43.354 

5 2.06 2.42 -2.12 2.01 1.48 -0.7 0 43.354 

5.25 2.04 2.41 -2.07 1.99 1.44 -0.7 0 43.354 

5.5 2.03 2.39 
-

2.03 
1.97 1.39 -0.7 0.3 61.69 

6 2 2.36 -1.93 1.94 1.3 -0.8 0.4 61.69 

7.595 1.9 2.26 
-

2.06 
1.84 1.42 0 0.6 37.244 

10.89 1.69 2.05 -1.01 1.64 0.38 -1.4 1 61.69 

12.54 1.59 1.95 -0.7 1.53 0 -1.6 1.2 88.903 

15.84 1.38 1.74 -1.82 1.33 1.19 0 0 22.335 

17.49 1.28 1.64 -1.72 1.22 1.08 0 0 22.335 

20.79 1.07 1.44 -1.51 1.02 0.88 0 0 22.335 

24.08 0.87 1.23 -1.31 0.81 0.67 0 0 22.335 

27.38 0.66 1.02 -1.1 0.61 0.47 0 0 22.335 

30.68 0.45 0.82 -0.9 0.4 0 0 0 58.491 

32.33 0.35 0.71 -0.79 0.3 0 0 0 58.491 

35.63 0 0.51 -0.6 0 0 0 0 52.93 

38.92 0 0.34 -0.45 0 0 0 0 52.93 

40.57 0 0.27 -0.35 0 0 0 0 52.93 
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2.4. Analysis of the eight factor NC design using Dantzig selector 

For investigating the utility of the Dantzig selector with the NC-8 design, three random 

models were created and standard normal error was added to the mean at each 

treatment combination to produce simulated responses. The responses and the results of 

the model with four main effects are presented in Tables 2.15 and 2.16.  As shown in 

Table 14, the minimum value of mAIC correctly identifies the four active main effects. 

Table 2.15 NC-8 design table for y=1.5+2.2A+4.5B+3.9C+2.8F + ε 

Runs A B C D E F G H Y 

1 1 1 1 1 1 1 1 1 15.44734 

2 1 1 1 1 -1 -1 -1 -1 10.92649 

3 1 1 -1 -1 1 1 -1 -1 7.261216 

4 1 1 -1 -1 -1 -1 1 1 0.514923 

5 1 -1 1 -1 1 -1 1 -1 -0.29637 

6 1 -1 1 -1 -1 1 -1 1 5.78224 

7 1 -1 -1 1 1 -1 -1 1 -7.02248 

8 1 -1 -1 1 -1 1 1 -1 -0.38851 

9 -1 1 1 1 1 1 1 1 11.25737 

10 -1 1 1 -1 1 -1 -1 -1 4.477287 

11 -1 1 -1 1 -1 -1 1 -1 -3.40267 

12 -1 1 -1 -1 -1 1 -1 1 1.316205 

13 -1 -1 1 1 -1 -1 -1 1 -3.73184 

14 -1 -1 1 -1 -1 1 1 -1 3.06383 

15 -1 -1 -1 1 1 1 -1 -1 -7.81701 

16 -1 -1 -1 -1 1 -1 1 1 -12.4118 
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Table 2.16 NC-8 results for y=1.5+2.2A+4.5B+3.9C+2.8F + ε 

Delta A B C F mAIC 

0.5 2.4358386749165 4.382504 4.273527 2.898069 25.53061 

0.75 2.4202136749165 4.366879 4.257902 2.882444 25.53061 

1 2.4045886749165 4.351254 4.242277 2.866819 25.53061 

1.25 2.3889636749165 4.335629 4.226652 2.851194 25.53061 

1.5 2.3733386749165 4.320004 4.211027 2.835569 25.53061 

1.75 2.3577136749165 4.304379 4.195402 2.819944 25.53061 

2 2.3420886749165 4.288754 4.179777 2.804319 25.53061 

2.25 2.3264636749165 4.273129 4.164152 2.788694 25.53061 

2.5 2.3108386749165 4.257504 4.148527 2.773069 25.53061 

2.75 2.2952136749165 4.241879 4.132902 2.757444 25.53061 

3 2.2795886749165 4.226254 4.117277 2.741819 25.53061 

3.25 2.2639636749165 4.210629 4.101652 2.726194 25.53061 

3.5 2.2483386749165 4.195004 4.086027 2.710569 25.53061 

3.75 2.2327136749165 4.179379 4.070402 2.694944 25.53061 

4 2.2170886749165 4.163754 4.054777 2.679319 25.53061 

4.25 2.2014636749165 4.148129 4.039152 2.663694 25.53061 

4.5 2.1858386749165 4.132504 4.023527 2.648069 25.53061 

4.75 2.1702136749165 4.116879 4.007902 2.632444 25.53061 

5 2.1545886749165 4.101254 3.992277 2.616819 25.53061 

5.25 2.1389636749165 4.085629 3.976652 2.601194 25.53061 

5.5 2.1233386749165 4.070004 3.961027 2.585569 25.53061 

5.75 2.1077136749165 4.054379 3.945402 2.569944 25.53061 

6 2.0920886749165 4.038754 3.929777 2.554319 25.53061 

9.827509 1.85286936829909 3.799535 3.690558 2.3151 25.53061 

18.65502 1.30115006168169 3.247816 3.138838 1.763381 25.53061 

27.48253 0.749430755064277 2.696097 2.587119 1.211661 25.53061 

36.31004 0 2.144377 2.0354 0.659942 48.56203 

45.13754 0 1.592658 1.48368 0 51.68206 

53.96505 0 1.040939 0.931961 0 51.68206 

62.79256 0 0.489219 0 0 58.35857 

 

The second model contains three active factors, A, C and F, and a two-factor interaction 

with strong heredity.  The design with the simulated responses is shown in Table 2.17.  

The results of using the Dantzig selector are in Table 2.18.  These results show that the 

model with the minimum mAIC value of 36.14368 correctly identifies the active factors. 
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Table 2.17 NC-8 design table for y=1.5+2.5A+4.5C+3.2F+2.9AF + ε 

Runs A B C D E F G H Y 

1 1 1 1 1 1 1 1 1 15.01554 

2 1 1 1 1 -1 -1 -1 -1 2.124344 

3 1 1 -1 -1 1 1 -1 -1 5.315324 

4 1 1 -1 -1 -1 -1 1 1 -7.31853 

5 1 -1 1 -1 1 -1 1 -1 4.025293 

6 1 -1 1 -1 -1 1 -1 1 13.69961 

7 1 -1 -1 1 1 -1 -1 1 -6.74345 

8 1 -1 -1 1 -1 1 1 -1 6.286797 

9 -1 1 1 1 1 1 1 1 3.974207 

10 -1 1 1 -1 1 -1 -1 -1 4.43829 

11 -1 1 -1 1 -1 -1 1 -1 -4.63541 

12 -1 1 -1 -1 -1 1 -1 1 -3.37166 

13 -1 -1 1 1 -1 -1 -1 1 2.992898 

14 -1 -1 1 -1 -1 1 1 -1 2.256046 

15 -1 -1 -1 1 1 1 -1 -1 -5.82062 

16 -1 -1 -1 -1 1 -1 1 1 -5.80214 
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Table 2.18 NC-8 results for y=1.5+2.5A+4.5C+3.2F+2.9AF+ε 

 
The same model with two two-factor interactions that was used with the 7-factor design 

was used to investigate the performance of the Dantzig selector for the 8-factor design. 

Tables 2.19 shows the design and responses and Table 2.20 provide the results of 

delta A C F AF BE EG FH mAIC 

0.5 2.367081862375 3.101022 2.572449 2.566908 0.827 0.450707 1.051352 101.824 

0.75 2.351456862375 3.163522 2.546382 2.592975 0.796 0.388207 1.020102 80.65336 

1 2.335831862375 3.221213 2.570045 2.564503 0.769 0.330516 0.988852 101.824 

1.25 2.320206862375 3.262829 2.559603 2.554061 0.759 0 0.957602 55.52304 

1.5 2.304581862375 3.497921 2.591628 2.586087 0.663 0 0.926352 55.52304 

1.75 2.288956862375 3.387829 2.520957 2.515415 0.774 0 0.864628 55.52304 

2 2.273331862375 3.3738 2.498318 2.492776 0.788 0 0.847406 55.52304 

2.25 2.257706862375 3.34255 2.467068 2.461526 0.819 0 0.847406 55.52304 

2.5 2.242081862375 3.3113 2.435818 2.430276 0.85 0 0.847406 55.52304 

2.75 2.226456862375 3.202747 2.365916 2.360374 0.959 0 0.92471 55.52304 

3 2.210831862375 3.031693 2.264764 2.259222 1.13 0 0.95596 55.52304 

3.25 2.195206862375 3.21755 2.342068 2.336526 0.944 0 0.847406 55.52304 

3.5 2.179581862375 3.1863 2.310818 2.305276 0.975 0 0.847406 55.52304 

3.75 2.163956862375 3.15505 2.279568 2.274026 1.006 0 0.847406 55.52304 

4 2.148331862375 3.1238 2.248318 2.242776 1.038 0 0.847406 55.52304 

4.25 2.1327068623 3.939956 2.084666 2.079124 0 0 0 36.14368 

4.5 2.11708186237 3.908706 2.037791 2.032249 0 0 0 36.14368 

4.75 2.1014568623 3.877456 2.154568 2.149026 0 0 0 36.14368 

5 2.085831862375 3.846206 2.123318 2.117776 0.315 0 0 55.52304 

5.25 2.070206862375 3.814956 2.092068 2.086526 0.346 0 0 55.52304 

5.5 2.054581862375 3.783706 2.060818 2.055276 0.378 0 0 55.52304 

5.75 2.038956862375 3.752456 2.029568 2.024026 0.409 0 0 55.52304 

6 2.023331862375 3.721206 1.998318 1.992776 0.44 0 0 55.52304 

7.793407 1.911243924052 3.280288 1.665771 1.660229 0.881 0 0 55.52304 

10.05788 1.7697146112777 2.714171 1.241183 1.235641 1.447 0 0 79.27787 

12.32235 1.628185298503 2.930913 1.208024 1.202483 1.23 0 0 55.52304 
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applying the Dantzig selector.  As observed the earlier cases, minimum mAIC value 

correctly identifies the active effects. 

Table 2.19 NC-8 design for model y=1.5+2.9A+3.2C+2.5AC+2.2AB+ε 

Runs A B C D E F G H Y 

1 1 1 1 1 1 1 1 1 11.31217 

2 1 1 1 1 -1 -1 -1 -1 13.25942 

3 1 1 -1 -1 1 1 -1 -1 -0.22 

4 1 1 -1 -1 -1 -1 1 1 1.317641 

5 1 -1 1 -1 1 -1 1 -1 5.540407 

6 1 -1 1 -1 -1 1 -1 1 8.456294 

7 1 -1 -1 1 1 -1 -1 1 -4.06881 

8 1 -1 -1 1 -1 1 1 -1 -4.34169 

9 -1 1 1 1 1 1 1 1 -3.18056 

10 -1 1 1 -1 1 -1 -1 -1 -3.07519 

11 -1 1 -1 1 -1 -1 1 -1 -4.17996 

12 -1 1 -1 -1 -1 1 -1 1 -4.79309 

13 -1 -1 1 1 -1 -1 -1 1 2.461678 

14 -1 -1 1 -1 -1 1 1 -1 0.717867 

15 -1 -1 -1 1 1 1 -1 -1 0.846125 

16 -1 -1 -1 -1 1 -1 1 1 0.531216 
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Table 2.20 NC-8 results for y=1.5+2.9A+3.2C+2.5AC+2.2AB+ε 

Delta A C AB AC BD CE EF EG mAIC 

0.5 2.589 3.092 2.448 2.527 0.000 0.000 0.000 0.000 35.042 

0.75 2.574 3.020 2.389 2.455 0.000 0.000 0.000 0.000 23.460 

1 2.558 3.043 2.307 2.478 0.000 0.000 0.000 0.000 23.460 

1.5 2.527 3.012 2.283 2.447 0.000 0.000 0.000 0.000 23.460 

1.75 2.511 2.996 2.184 2.431 0.000 0.000 0.000 0.000 23.460 

2 2.496 2.981 2.069 2.416 0.000 -0.394 0.000 0.000 39.673 

2.25 2.480 2.965 2.077 2.400 0.000 -0.362 0.000 0.000 39.673 

2.5 2.464 2.949 2.085 2.385 0.000 -0.331 0.000 0.000 39.673 

2.75 2.449 2.914 2.027 2.349 0.000 0.000 0.317 0.000 40.377 

3 2.433 2.918 2.190 2.353 0.000 0.000 0.000 0.000 23.460 

3.25 2.417 2.903 2.174 2.338 0.000 0.000 0.000 0.000 23.460 

4 2.371 2.856 2.129 2.291 0.000 0.000 0.000 0.000 23.460 

4.25 2.355 2.829 2.123 2.264 0.000 0.000 0.000 0.000 23.460 

4.5 2.339 2.824 2.116 2.260 0.000 0.000 0.000 0.000 23.460 

5 2.308 2.793 2.107 2.228 0.000 0.000 0.000 0.000 23.460 

5.25 2.292 2.778 2.107 2.213 0.000 0.000 0.000 0.000 23.460 

5.5 2.277 2.762 2.107 2.197 0.000 0.000 0.000 0.000 23.460 

6.6 2.208 2.693 2.073 2.128 0.000 0.000 0.000 0.000 23.460 

8.0 2.121 2.480 1.992 1.915 0.000 0.000 0.000 0.340 41.352 

10.8 1.946 1.785 1.817 1.221 0.706 0.000 0.000 0.673 62.827 

12.2 1.858 1.903 1.729 1.338 0.881 0.000 0.000 0.000 40.939 

13.6 1.771 1.728 1.642 1.163 1.056 0.000 0.000 0.000 40.939 

15 1.683 2.168 1.554 1.603 0.000 0.000 0.000 0.000 23.460 

16.400 1.595 1.377 1.467 0.813 1.406 0.000 0.000 0.000 40.939 

19.2 1.420 1.906 1.292 1.341 0.000 0.000 0.000 0.000 23.460 

22 1.245 1.731 1.117 1.166 0.000 0.000 0.000 0.000 23.460 

24.8 1.070 1.556 0.942 0.991 0.000 0.000 0.000 0.000 23.460 

26.2 0.983 1.468 0.854 0.903 0.000 0.000 0.000 0.000 23.460 

29 0.808 1.293 0.679 0.728 0.000 0.000 0.000 0.000 23.460 

30.4 0.720 1.206 0.592 0.641 0.000 0.000 0.000 0.000 23.460 

33.2 0.545 1.031 0.417 0.466 0.000 0.000 0.000 0.000 23.460 

34.6 0.458 0.943 0.329 0.378 0.000 0.000 0.000 0.000 23.460 

36.0 0.370 0.856 0.000 0.000 0.000 0.000 0.000 0.000 49.617 

38.8 0.000 0.681 0.000 0.000 0.000 0.000 0.000 0.000 50.205 

40.2 0.000 0.593 0.000 0.000 0.000 0.000 0.000 0.000 50.205 
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To test a model where two two-factor interactions enter with strong heredity, another 

model y= 1.5+2.9A+3.2B+2.8C+2.5AB-2.2AC+ε , assuming A, B, C, AB, and AC as the 

active effects was created and normal random noise ε ~ N (0, 1) was added to the mean 

response to generate the simulated data.  The design with the generated responses and 

the analysis results are presented in Tables 2.21 and 2.22. The models with the minimum 

value of the mAIC criterion correctly identify the active effects. 

Table 2.21. NC-8 Design for y=1.5+2.9A+3.2B+2.8C+2.5AB-2.2AC+ε 

Runs A B C D E F G H Y 

1 1 1 1 1 1 1 1 1 10.9434 

2 1 1 1 1 -1 -1 -1 -1 11.3763 

3 1 1 -1 -1 1 1 -1 -1 9.82478 

4 1 1 -1 -1 -1 -1 1 1 9.2585 

5 1 -1 1 -1 1 -1 1 -1 -0.95296 

6 1 -1 1 -1 -1 1 -1 1 -0.34907 

7 1 -1 -1 1 1 -1 -1 1 -2.31745 

8 1 -1 -1 1 -1 1 1 -1 -0.71584 

9 -1 1 1 1 1 1 1 1 3.44992 

10 -1 1 1 -1 1 -1 -1 -1 5.46637 

11 -1 1 -1 1 -1 -1 1 -1 -5.41717 

12 -1 1 -1 -1 -1 1 -1 1 -5.30063 

13 -1 -1 1 1 -1 -1 -1 1 2.73516 

14 -1 -1 1 -1 -1 1 1 -1 2.20055 

15 -1 -1 -1 1 1 1 -1 -1 -5.14266 

16 -1 -1 -1 -1 1 -1 1 1 -7.20666 
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Table 2.22. NC-8 Results for the Model y=1.5+2.9A+3.2B+2.8C+2.5AB-2.2AC+ε 

Delta A B C AB AC DH EF GH mAIC 

0.5 2.861 3.002 2.346 2.301 -1.725 0 0 0 36.784 

0.75 2.846 2.987 2.331 2.285 -1.71 0 0 0 36.784 

1 2.83 2.971 2.315 2.269 -1.694 0 0 0 36.784 

1.25 2.815 2.877 2.3 2.176 -1.679 0 0 0.45 57.125 

1.5 2.799 2.757 2.284 2.055 -1.663 0 0 0.472 57.125 

1.75 2.783 2.718 2.268 2.016 -1.647 0 0 0.488 57.125 

2 2.768 2.783 2.298 2.082 -1.586 0 0.308 0 58.722 

2.25 2.752 2.893 2.267 2.191 -1.586 0 0 0 36.784 

2.5 2.736 2.877 2.088 2.176 -1.467 0 0 0 57.14 

2.75 2.721 2.862 2.057 2.16 -1.436 0 0 0 57.14 

3 2.705 2.846 2.182 2.144 -1.561 0 0 0 36.784 

3.25 2.69 2.83 2.175 2.129 -1.554 0 0 0 36.784 

3.5 2.674 2.815 2.159 2.113 -1.538 0 0 0 36.784 

4 2.643 2.534 2.128 1.832 -1.507 0 0.558 0 58.722 

4.5 2.611 2.343 2.096 1.642 -1.475 0 0.51 0.66 83.056 

5 2.58 2.281 2.065 1.579 -1.444 0 0.573 0.66 83.056 

5.5 2.549 2.432 2.034 1.731 -1.413 0 0.573 0 58.722 

6 2.518 2.658 1.972 1.957 -1.351 0 0 0 36.784 

8.132 2.384 2.525 1.705 1.824 -1.084 0.329 0 0 57.508 

10.985 2.206 2.347 1.348 1.645 -0.727 0.685 0 0 57.508 

12.411 2.117 1.607 1.17 0.905 -0.549 0.864 1.36 0 83.441 

15.264 1.939 2.079 1.424 1.378 -0.803 0 0 0 36.784 

16.69 1.85 1.99 1.335 1.289 -0.714 0 0 0 36.784 

18.117 1.76 1.901 1.245 1.2 -0.624 0 0 0 36.784 

19.543 1.671 1.812 1.156 1.111 -0.535 0 0 0 36.784 

20.97 1.582 1.723 1.067 1.021 -0.446 0 0 0 36.784 

23.822 1.404 1.545 0.889 0.843 0 0 0 0 55.799 

25.249 1.315 1.455 0.8 0.754 0 0 0 0 55.799 

28.102 1.136 1.277 0.621 0.576 0 0 0 0 55.799 

30.954 0.958 1.099 0.532 0.397 0 0 0 0 55.799 

32.381 0.869 1.01 0.487 0.308 0 0 0 0 55.799 

35.234 0.691 0.831 0.387 0 0 0 0 0 55.947 

38.086 0.512 0.677 0 0 0 0 0 0 53.858 

40.939 0.334 0.57 0 0 0 0 0 0 53.858 

45.218 0 0.383 0 0 0 0 0 0 54.09 
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2.5. Conclusion 

The examples presented in this chapter illustrates the effectiveness of the Dantzig 

selector in identifying the active factor effects for several different types of models 

containing both main effects and interactions for the 16-run no confounding designs in 

6, 7, and 8 factors.  We observe that the mAIC is a good criterion and that the minimum 

value of mAIC is effective in identifying the correct model. The choice of δ plays a major 

role as expected. Even though δ was varied between 0-100 in all the cases, smaller δ 

(~<10) seems to be adequate to identify the model that has the minimum value of mAIC. 

The true models tested in this study have about half of the main effects active and either 

one or two active two-factor interactions. All of the models studied have significant 

factors with relatively large effects, at least two standard deviations in magnitude.  An 

obvious useful extension of this work would be to investigate how the Dantzig selector 

performs in situations where more effects are active and smaller factor effects are 

present.  However, since the primary objective of screening designs is to detect factor 

with large effects, we think this work clearly illustrates the utility of the Dantzig selector 

in this situation. 
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Chapter 3 

DANTZIG SELECTOR ANALYSIS USING SIMULATION STUDY 

 
3.1 Background 

Dantzig selector introduced by Candes and Tao (2007) has received considerable 

attention in the recent years for its property of identifying sparse signals from huge data. 

Consequently, studies were conducted to demonstrate the effectiveness of Dantzig 

selector for factor screening experiments. Phoa et al. (2009) analyzed supersaturated 

designs using Dantzig selector and pointed out that this method is powerful, while also 

being simple and fast to use.  

In this chapter we evaluate the performance of Dantzig selector as a model selection 

method for analyzing no-confounding (NC) designs in 6,7 and 8 factors. NC designs are 

non-regular designs introduced by Jones and Montgomery (2010) and they have no 

complete confounding of two factor interactions. Hence they could allow for estimation 

of models containing main effects and interactions without having the need to run 

follow-up experiments like other regular designs. 

A comprehensive study is carried out to study the effectiveness of using Dantzig selector 

for NC designs in 6,7 and 8 factors in this chapter. Also we introduce an alternate 6 

factor NC design in 16 runs and present a comparative study on the performance of NC6 

and the alternate NC6 designs. 

 

3.2 Dantzig selector and choice of parameters 

The Dantzig selector performs variable selection by shrinking the estimated regression 

coefficients towards zero. The estimated β’s are the solution to the below regularization 

problem, 

𝐦𝐢𝐧
𝜷̂∈𝑹𝒌

‖𝜷̂‖
𝒍𝟏

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑿𝒕𝒓‖𝒍∞
≤ 𝜹 
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where r is the residual vector r=y-X𝜷̂. || β ||1 = |β0 | + ….+|β k  | is the l1 norm and || β 

||∞ =max( |β0 | , ….,|β k |) is the l∞ norm.  Being a form of penalized regression, the 

method requires selection of tuning parameter δ.  

Selection of an appropriate tuning parameter is crucial. The procedure recommended by 

Phoa et. al (2009) to select the δ automatically was used in the simulation study. As the 

first step, the Dantzig selector estimates of β are obtained for a wide range of δ. 

Secondly, a list of models is obtained for a fixed value of γ ≥ 0. The models obtained are 

then compared based on a criterion and then the value of δ that yields the best model is 

selected.  

The value of γ is the threshold between the signal and the noise and hence affects the 

selection of active factors. Since no prior knowledge of the magnitude of coefficients is 

available, for the simulations, the value for γ was set to be 0.1 of the largest |β| in the 

model when δ=0, as recommended by Phoa et al (2009). 

The modified AIC criterion was used as the model selection criterion. Phoa et al (2009) 

demonstrated that since effect sparsity is an important assumption while using Dantzig 

selector, imposing a heavy penalty on the model complexity worked well in their 

simulation. However, our preliminary studies showed that the model chosen based on 

minimum mAIC value selected too few active factors. Hence, we decided to pick two 

models from each simulation. One based on the minimum value of mAIC and another 

one based on the second minimum value of mAIC. The following sections show that this 

approach reduced the type II error rate considerably. 

 

3.3 Simulation set-up 

Since the Dantzig selector is not incorporated into any statistical package yet, JMP was 

used to code and perform the simulations. The true model is unknown in general; hence 
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each of the designs was tested for main effects only, main effects + 1 hierarchical 

interaction and main effects + 2 hierarchical interaction cases. Additionally, three 

different coefficient / noise ratios were tested for each of the above models. The true 

models for each of the cases were kept constant across the NC 6, 7 and 8 factor designs. 

The different settings of the simulation parameters are listed in Table 3.1. 

Table 3.5 Simulation settings 

True Model 
Main effects only, Main effects+1 hierarchical 

interaction, Main effects+2 hierarchical interaction 

No. of variables 6, 7, 8 
Coefficient/Noise 
ratio 1, 2, 3 

Number of active 
factors 

Main effects only models 2, 3, 4 

Main effects + 1 hierarchical 
interaction 2+1, 3+1, 4+1 

Main effects + 2 hierarchical 
interaction 3+2, 4+2 

 

For every combination of factor types and coefficient/noise ratios, 5000 iterations were 

performed for each run. For every iteration, the true model was kept constant and  

random normal error (N (0, 1)) was added to the responses. Two models are chosen for 

each iteration based on the values of minimum mAIC and second minimum mAIC value. 

The results of each simulation run were evaluated by calculating the following 

parameters separately for the two models chosen: 

 

π1: Percentage of runs where the true model was identified 

π2: Percentage of runs where true model + some inactive factors were identified (Type I 

error) 

π3 : Percentage of runs where some or all of the active factors were missed (Type II error) 
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Ideally it is desired to have π1 close to 100% and the others close to zero, since we are 

looking at factor screening experiments. Also, in general, experimenters tend to have less 

tolerance towards type II errors as once active factors are excluded from the initial 

stages, it is unlikely to be reconsidered in the next stage. Apart from calculating the 

individual type II error percentage for the models chosen from each iteration, the 

combined type II error percentage - where either of the two models chosen missed one or 

more active factors was also calculated. 

 

3.4 Six factor designs 

Figures 3.1-3.3 display the graphical summaries of the type II error rate for different 

coefficient sizes based on the noise ratio. The range of delta value was varied between 1 

and 100. When there are only large or medium sized main effects in the model, the error 

rate is zero for true models containing only main effects. But when the effect sizes are 

small, the error rate is high in all the cases tested. 

 
 

Figure 3.1 NC-6 factor design with Small effects 
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Figure 3.2 NC-6 factor design with Medium effects 

 

 
 

Figure 3.3 NC-6 factor designs with large effects 
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It was also observed that the models selected based on the second minimum value of 

mAIC have higher error rates. However, the combined error rate, which denotes the 

percentage of runs where both models fail to identify the active factors, is considerably 

lower. As the number of factors increases, the error rates in all the three cases go beyond 

80%. This could be due to wide range of delta values, which are much higher in 

magnitude than the coefficient sizes. Hence another set of simulations was run by 

restricting the range of delta. 

Figures 3.4-3.5 show the summary of error rate when the range of delta is varied 

between 0-10.  In the case of medium and large effects, the error rate is zero for models 

with only main effects as well as for models with interaction. When the effect sizes are 

small, the combined error rate in the all cases is <10%. Hence it is evident that when the 

delta value is chosen reasonably, the Dantzig selector performs well in identifying the 

active factors. For the models selected based on the second minimum mAIC, high type I 

error rates are observed when the true model contains 1 or 2 interactions. Tables 3.2-3.3 

summarize the results obtained for the two models selected during each run.  
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Figure 3.4 NC-6 small effects – δ < 10 

 
 

Figure 3.5 NC-6 medium/large effects - δ < 10 
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Table 3.2 NC6 Results summary - models selected based on minimum mAIC 

 
 
 

 

 
 
 
 
 
 
 
 
 

 

 

 

Coefficient/

Noise ratio
Active factors 

in true model

All AF's 

identified+ No 

inactive

Type I error 

percent

Type II error 

percent

2 96.96% 3.04% 0.00%

3 99.32% 0.68% 0.00%

4 99.68% 0.32% 0.00%

2  +1 66.18% 33.82% 0.00%

3  +1 68.04% 31.96% 0.00%

4  +1 68.72% 31.28% 0.00%

3  +2 67.82% 32.18% 0.00%

4  +2 70.16% 29.84% 0.00%

2 97.00% 3.00% 0.00%

3 99.28% 0.72% 0.00%

4 99.66% 0.34% 0.00%

2  +1 54.92% 45.08% 0.02%

3  +1 52.64% 47.36% 0.00%

4  +1 51.52% 48.48% 0.00%

3  +2 52.66% 47.34% 0.00%

4  +2 55.48% 44.52% 0.00%

2 95.06% 3.72% 1.26%

3 90.66% 1.92% 7.56%

4 88.50% 0.98% 10.56%

2  +1 30.38% 68.40% 15.08%

3  +1 25.94% 70.74% 21.74%

4  +1 26.12% 69.16% 25.56%

3  +2 25.18% 71.08% 24.36%

4  +2 30.08% 63.52% 28.02%

3 SD

2 SD

1 SD
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Table 3.3 NC6 Results summary - models selected based on second minimum mAIC 

 
 

 

 

 

 

 

 

 

 

Coefficient/

Noise ratio
Active factors 

in true model

All AF's 

identified+ No 

inactive

Type I error 

percent

Type II error 

percent

2 65.10% 34.90% 0.00%

3 73.46% 26.54% 0.00%

4 81.56% 18.44% 0.00%

2  +1 22.16% 77.84% 0.00%

3  +1 19.82% 80.18% 0.00%

4  +1 20.64% 79.36% 0.00%

3  +2 19.24% 80.76% 0.00%

4  +2 23.66% 76.34% 0.00%

2 43.22% 56.78% 0.00%

3 48.80% 51.20% 0.00%

4 60.94% 39.06% 0.00%

2  +1 7.68% 92.32% 0.00%

3  +1 4.90% 95.10% 0.00%

4  +1 5.14% 94.86% 0.00%

3  +2 4.66% 95.34% 0.00%

4  +2 7.38% 92.62% 0.00%

2 13.32% 85.32% 1.46%

3 25.58% 73.00% 1.86%

4 42.90% 56.06% 1.40%

2  +1 4.52% 95.02% 8.54%

3  +1 2.72% 96.78% 11.66%

4  +1 3.26% 96.14% 12.48%

3  +2 2.94% 96.68% 12.28%

4  +2 5.50% 93.98% 12.58%

1 SD

3 SD

2 SD
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3.5 Seven factor designs 

As in the case of six factor designs, when only medium or large main effects are present, 

the combined error rate is zero. But when the true models have interaction, the error rate 

increases with the number of factors. Figures 3.6-3.8 show the graphical summary of the 

type II error rate when the range of delta was between 1- 100. 

When the value of delta was restricted to be within 0-10, the error rate dropped 

considerably.  For the medium and large coefficients, the combined type II error was  

close to zero for true models with a total of 5 active effects including interactions. 

However, the design breaks down when the true model has 4 main effects + 2 

interactions. The error rates for smaller coefficients are much higher. It is also 

interesting to note that, the model selected using the second minimum value of mAIC 

has lower error rate than the models selected using minimum mAIC when the size of the 

coefficient is medium or large. Figures 3.9-3.11 present the results for cases where the 

delta value is less than 10.  

Tables 3.4-3.5 present the individual results summary for the two models selected for 

each iteration.  From the results, it is evident that the design breaks down when the 

number of active factors reach 6. Also the type I error is higher for the models selected 

based on the second minimum value of mAIC. 
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Figure 3.6 NC7 factor design with small coefficients 

 

 
 

Figure 3.7 NC7 factor design with medium coefficients 
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Figure 3.8 NC7 factor design with large coefficients 

 
 

Figure 3.9 NC-7 small effects - δ < 10 
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Figure 3.10 NC-7 medium effects - δ < 10 

 
 

 
 

Figure 3.11 NC-7 large effects - δ < 10 
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Table 3.4 NC7 Results summary - models selected based on minimum mAIC 

 
 

 
 
 
 

 

Coefficient

/Noise ratio

Active 

factors in 

true model

All AF's 

identified+ 

No inactive

Type I 

error 

percent

Type II 

error 

percent

2 96.80% 3.20% 0.00%

3 99.02% 0.98% 0.00%

4 99.74% 0.26% 0.00%

2  +1 65.76% 34.24% 6.86%

3  +1 67.82% 32.18% 6.38%

4  +1 60.56% 39.44% 6.28%

3  +2 53.72% 46.28% 6.74%

4  +2 9.80% 90.20% 80.38%

2 95.84% 4.16% 0.00%

3 98.92% 1.08% 0.00%

4 99.52% 0.48% 0.00%

2  +1 54.04% 45.96% 5.54%

3  +1 50.74% 49.26% 7.76%

4  +1 43.20% 56.80% 7.74%

3  +2 34.16% 65.84% 8.40%

4  +2 6.52% 93.48% 80.14%

2 94.02% 4.86% 1.16%

3 89.94% 2.00% 8.16%

4 89.56% 0.94% 9.60%

2  +1 27.94% 70.40% 35.08%

3  +1 25.18% 71.64% 39.16%

4  +1 19.06% 77.44% 46.24%

3  +2 12.92% 84.84% 52.08%

4  +2 2.50% 97.42% 89.64%

3 SD

2 SD

1 SD
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Table 3.5 NC7 Results summary - models selected based on second minimum mAIC 

 
 

 
 
 
 
 
 

Coefficient

/Noise ratio

Active 

factors in 

true model

All AF's 

identified+ 

No inactive

Type I 

error 

percent

Type II 

error 

percent

2 60.42% 39.58% 0.00%

3 66.90% 33.10% 0.00%

4 73.98% 26.02% 0.00%

2  +1 24.44% 75.56% 5.98%

3  +1 21.94% 78.06% 5.90%

4  +1 6.60% 93.40% 5.70%

3  +2 2.44% 97.56% 6.06%

4  +2 8.78% 91.22% 74.98%

2 39.12% 60.88% 0.00%

3 39.36% 60.64% 0.00%

4 49.36% 50.64% 0.00%

2  +1 9.94% 90.06% 5.28%

3  +1 6.18% 93.82% 7.00%

4  +1 1.88% 98.12% 7.38%

3  +2 1.48% 98.52% 8.66%

4  +2 7.38% 92.62% 66.84%

2 31.08% 67.84% 1.18%

3 19.78% 78.56% 2.22%

4 29.50% 69.18% 1.78%

2  +1 5.36% 94.18% 27.36%

3  +1 3.14% 96.16% 32.08%

4  +1 3.34% 96.22% 38.06%

3  +2 2.02% 97.68% 40.34%

4  +2 1.44% 98.54% 86.40%

1 SD

3 SD

2 SD
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3.6 NC8 factor design 

When the true model contains only the main effects, NC8 designs have zero error rate 

when the size of the coefficients are medium or large. When the effects are large, NC8 is 

even able to detect true models which contain 3 main effects and 1 hierarchical 

interaction with close to a zero error rate. Figures 3.12-3.14 present graphical summary 

of results when the delta is varied between 1 and 100. 

For the cases where the delta is restricted between 1-10, as observed with the NC6 and 

NC7 designs, there is a considerable drop in the combined type II error rate. Additionally 

the error rates are close to zero for true models with up to 3 main effects and 2 

hierarchical interactions when the coefficient sizes are medium. Also when the effect 

sizes are small, the type II error rate exceeds 30% when interactions are present in the 

true model.  When the effects are large, true models with 3 or 4 main effects and 2 

hierarchical interactions have lower error rates than the models with 1 hierarchical 

interaction. Individually, the models selected based on the second minimum mAIC have 

lower type II error rates than the models selected based on minimum mAIC. Figures 

3.15-3.17 present graphical summary of results when the delta is varied between 1 and 

10. 

Tables 3.6-3.7 show the results summary individually for the two models selected after 

each iteration. From the results, it is evident that the models selected based on second 

minimum mAIC consistently performs better than the model selected by minimum 

mAIC when it comes to type II error rate. But the type I error rates are lower for the 

models selected through minimum mAIC value. 
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Figure 3.32 NC8 factor design with small coefficients 

 
 

 
 

Figure 3.13 NC8 factor design with medium coefficients 
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Figure 3.14 NC8 factor design with large coefficients 

 

 
 

Figure 3.15 NC-8 small effects - δ < 10 
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Figure 3.16 NC-8 medium effects - δ < 10 

 

 

 
 

Figure 3.17 NC-8 large effects - δ < 10 
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Table 3.6   NC8 Results summary - models selected based on minimum mAIC 

 
 
 

 
 
 
 
 
 
 

Coefficient/

Noise ratio

Active 

factors in 

true 

model

All AF's 

identified

+ No 

inactive

Type I 

error 

percent

Type II 

error 

percent

2 96.00% 4.00% 0.00%

3 99.02% 0.98% 0.00%

4 99.52% 0.48% 0.00%

2  +1 61.76% 38.24% 0.00%

3  +1 33.88% 66.12% 26.62%

4  +1 31.66% 68.34% 43.10%

3  +2 65.10% 34.90% 0.00%

4  +2 34.80% 65.20% 28.00%

2 95.64% 4.36% 0.00%

3 98.84% 1.16% 0.00%

4 99.14% 0.86% 0.00%

2  +1 41.84% 58.16% 0.68%

3  +1 39.54% 60.46% 1.08%

4  +1 33.48% 66.52% 0.90%

3  +2 21.72% 78.28% 0.94%

4  +2 7.74% 92.26% 43.52%

2 93.16% 5.72% 1.18%

3 89.82% 3.08% 7.20%

4 88.02% 1.48% 10.54%

2  +1 26.26% 72.48% 28.88%

3  +1 22.52% 74.48% 40.26%

4  +1 12.46% 86.08% 54.76%

3  +2 7.54% 91.28% 63.98%

4  +2 2.24% 97.70% 83.74%

3 SD

2 SD

1 SD
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Table 3.7   NC8 Results summary - models selected based on second minimum mAIC 

 
 

 
 

 
 

 

 

 

 

Coefficient/

Noise ratio

Active 

factors in 

true 

model

All AF's 

identified

+ No 

inactive

Type I 

error 

percent

Type II 

error 

percent

2 51.84% 48.16% 0.00%

3 58.88% 41.12% 0.00%

4 66.68% 33.32% 0.00%

2  +1 10.40% 89.60% 0.00%

3  +1 5.62% 94.38% 22.00%

4  +1 7.22% 92.78% 34.28%

3  +2 0.76% 99.24% 0.00%

4  +2 4.94% 95.06% 23.88%

2 19.54% 80.46% 0.00%

3 31.30% 68.70% 0.00%

4 40.72% 59.28% 0.00%

2  +1 5.26% 94.74% 0.94%

3  +1 0.78% 99.22% 1.00%

4  +1 0.28% 99.72% 1.24%

3  +2 0.18% 99.82% 1.44%

4  +2 1.06% 98.94% 36.94%

2 6.64% 91.88% 1.78%

3 12.12% 86.38% 2.04%

4 22.16% 76.80% 1.62%

2  +1 4.02% 95.48% 17.46%

3  +1 2.56% 96.96% 27.04%

4  +1 0.84% 99.00% 47.74%

3  +2 0.74% 99.16% 57.98%

4  +2 0.36% 99.64% 80.88%

1 SD

3 SD

2 SD
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3.7 Alternate no-confounding designs for 6 factors 

An alternative six factor no-confounding design and its performance based on analysis 

using a Dantzig selector are presented in this section. A comparative study for the two 

NC-6 designs is also presented. 

We recommend the following alternate no-confounding design in six factors (alternate 

NC-6) in 16 runs, as shown in Table 3.8.  The design is orthogonal and has no 

confounding of two factor interactions like the NC-6 design.  The correlation matrix for 

the alternate NC-6 design is presented in Figure 3.18. 

Table 3.8 Recommended Alternate NC-6 design in 16 runs 

Run A B C D E F 

1 1 1 1 1 1 1 
2 1 1 1 -1 -1 -1 
3 1 -1 -1 1 1 -1 
4 1 -1 -1 -1 -1 1 
5 1 1 -1 1 -1 1 
6 1 1 -1 -1 1 -1 
7 1 -1 1 1 -1 -1 
8 1 -1 1 -1 1 1 
9 -1 1 1 1 -1 1 
10 -1 1 1 -1 1 -1 
11 -1 -1 -1 1 -1 -1 
12 -1 -1 -1 -1 1 1 
13 -1 1 -1 1 1 -1 
14 -1 1 -1 -1 -1 1 
15 -1 -1 1 1 1 1 

16 -1 -1 1 -1 -1 -1 

 
 

 
 

Figure 3.18 Correlation matrix for Alternate NC-6 design 
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3.8 Analysis of alternate NC-6 design using Dantzig selector 

Figures 3.19-3.21 present the graphical summaries of type II error for the three different 

coefficient sizes tested when the delta value is varied between 1 and 100.  As observed in 

the case of NC-6 designs, when the true model contains only main effects, the type II 

error rate is zero for medium and large sized coefficients.  When the true model includes 

1 or 2 interactions, the maximum error rate observed was 64% when the coefficient size 

was medium.  True models with small coefficient sizes had higher error rates.  

Figures 3.22-3.25 present the summaries of error rate when the delta value is varied 

between 1 and 10. When the delta value is small, the alternate NC-6 designs perform well 

for all ranges of coefficients. The error rate was zero for both medium and large 

coefficients.  For the small coefficients, the maximum error rate observed was 9%. 

Tables 3.9-3.10 present the results summary individually for the two models chosen in 

each simulation run. When it comes to type I error, the models chosen based on 

minimum mAIC perform better. But when type II error is considered, models based on 

second minimum mAIC have smaller error rates. 

A graphical comparison of success rate between NC-6 and the alternate NC-6 design, 

where the method identifies the true model without any error is shown in Figure 3.26. 

When the coefficients are medium or large sized, the type II error rates are zero for both 

the designs. But when it comes to smaller coefficients, the alternate NC-6 design has a 

higher success rate. It is also evident that the alternate NC-6 design performs much 

better even when the true model contains as many as 6 active factors including 2 

hierarchical interactions. 
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Figure 3.19 Alternate NC-6 factor design with small coefficients 

 

 
 

Figure 3.20 Alternate NC-6 factor design with medium coefficients 
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Figure 3.21 Alternate NC-6 factor design with large coefficients 

 
 

Figure 3.22 Alternate NC-6 small effects - δ < 10 
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Figure 3.23 NC-6 medium/large effects - δ < 10 

 
 

 
 

Figure 3.24 Comparison - NC6 and Alternate NC6 success rate 
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Table 3.9 Alternate NC-6 results summary - models selected based on minimum mAIC 

 
 

 
 
 
 
 
 

Coefficient

/Noise ratio

Active 

factors in 

true 

model

All AF's 

identified+ 

No inactive

Type I 

error 

percent

Type II 

error 

percent

2 97.06% 2.94% 0.00%

3 99.48% 0.52% 0.00%

4 99.82% 0.18% 0.00%

2  +1 81.46% 18.54% 0.00%

3  +1 81.88% 18.12% 0.00%

4  +1 73.84% 26.16% 0.00%

3  +2 73.26% 26.74% 0.00%

4  +2 85.96% 14.04% 0.00%

2 97.06% 2.94% 0.00%

3 99.16% 0.84% 0.00%

4 99.72% 0.28% 0.00%

2  +1 72.66% 27.34% 0.00%

3  +1 70.82% 29.18% 0.04%

4  +1 56.12% 43.88% 0.14%

3  +2 53.18% 46.82% 0.16%

4  +2 76.84% 23.16% 0.00%

2 94.82% 4.00% 1.30%

3 91.02% 1.48% 7.58%

4 88.42% 0.64% 10.98%

2  +1 59.26% 38.58% 10.68%

3  +1 54.32% 40.20% 16.38%

4  +1 38.24% 55.52% 27.70%

3  +2 37.94% 56.46% 25.90%

4  +2 57.30% 32.86% 20.24%

3 SD

2 SD

1 SD
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Table 3.10 Alternate NC-6 results summary - models selected based on second minimum 
mAIC 

 

 
 

 
 
 
 
 
 

 

 

Coefficient

/Noise ratio

Active 

factors in 

true 

model

All AF's 

identified+ 

No inactive

Type I 

error 

percent

Type II 

error 

percent

2 62.42% 37.58% 0.00%

3 72.64% 27.36% 0.00%

4 81.48% 18.52% 0.00%

2  +1 11.86% 88.14% 0.00%

3  +1 6.82% 93.18% 0.00%

4  +1 3.68% 96.32% 0.00%

3  +2 3.82% 96.18% 0.00%

4  +2 7.82% 92.18% 0.00%

2 43.24% 56.76% 0.00%

3 48.88% 51.12% 0.00%

4 63.68% 36.32% 0.00%

2  +1 7.28% 92.72% 0.02%

3  +1 3.14% 96.86% 0.04%

4  +1 0.42% 99.58% 0.08%

3  +2 0.38% 99.62% 0.06%

4  +2 4.80% 95.20% 0.04%

2 32.72% 66.18% 1.16%

3 23.52% 74.92% 1.92%

4 43.00% 55.90% 1.58%

2  +1 3.40% 95.94% 4.44%

3  +1 4.44% 94.84% 6.20%

4  +1 4.62% 94.72% 14.26%

3  +2 4.04% 95.66% 12.06%

4  +2 8.42% 90.90% 6.14%

1 SD

3 SD

2 SD
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3.9 Conclusion 

This chapter studies the effectiveness of the Dantzig selector as a variable selection 

method for analyzing NC designs. Stepwise regression is the most commonly used 

method for variable selection. However, an extensive study on their performance by 

Shinde (2012) confirmed that stepwise regression does not work well once the total 

number of active factors exceeds four. Based on the simulations conducted in this study, 

it is evident that Dantzig selector performs better even for true models that contain up to 

six active factors including two interactions. Additionally, the results also indicate that 

when the delta values chosen are within a reasonable range, Dantzig selector performs 

exceptionally well for medium and large sized coefficients.  

An alternate NC-6 design was also introduced in this chapter. A comparative study 

suggests that the alternate NC-6 performs better even when the true models contain 

small coefficients.  

While using the modified AIC criterion for model selection, selecting two models from 

each experiment based on the minimum and second minimum value worked well by 

reducing the error rate considerably.  

We believe that NC designs are good alternatives to the fractional factorial designs when 

both main effects and interactions are to be identified, especially in cases where running 

follow-up experiments is not an option.  
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Chapter 4 

CONCLUSIONS AND FUTURE WORK 

4.1 Conclusion and future work 

With increasing computational efficiency, supersaturated designs are continuing to 

receive more attention for their ability to handle a large number of variables in fewer 

runs. When developments and discovery involve complex systems with many factors, 

running regular fractional factorial designs could become expensive and challenging, as 

they would require follow up experiments to identify main effects and interactions. From 

the simulation study, it is evident that NC designs provide a good alternative to regular 

designs and can allow for the estimation of main effects and some two-factor interactions 

without the need of follow up experiments. 

The simulation study also confirmed that Dantzig selector performs well in identifying 

the active effects when true models contain few interactions. Shinde (2012) observed 

that stepwise regression breaks down once the number of active factors exceeds four. 

However, from this study, it can be observed that Dantzig selector was able to identify 

even 6 active factors with good accuracy. Additionally, the results also indicate that when 

the delta values chosen are within a reasonable range, Dantzig selector performs 

exceptionally well for medium and large sized coefficients.  

The proposed alternate NC-6 designs work better even when the coefficient to noise ratio 

is one. While using the mAIC criterion for model selection, choosing two models based 

on minimum and second minimum value of mAIC works better than choosing a single 

model based on the minimum value. The fact that Dantzig selector is a linear program 

makes it fast and easy to use, since many software and packages contain algorithms for 

linear programming.  
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We believe that NC designs are a good alternate to FF designs. When used with effective 

variable selection methods like the Dantzig selector, they can eliminate the need for 

running follow up experiments, thereby saving cost, time and resources. With the initial 

16 runs, NC designs can estimate both main effects and interactions when effect sparsity 

holds true. 

The threshold value (γ) is the minimum value for an effect to be considered active. In 

this study, a common threshold value was applied to each of the estimates calculated, 

irrespective of whether it is a main effect or an interaction. The present work could also 

be extended by defining different threshold for different types of effects. NC designs for 9 

through 14 factors in 16 runs were introduced by Montgomery (2012). Running a 

simulation study to evaluate the effectiveness of Dantzig selector for these designs could 

be a possible extension to the present work.  

As part of this study, I examined at true models with a maximum of 6 active factors. It 

would also be interesting to explore how the Dantzig selector performs for more complex 

models with higher number of factors. Also, exploring the possibilities of combining the 

Dantzig selector with other existing variable selection methods for improving variable 

selection could be another extension to the present work. 
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