
Android Application Context Aware I/O Scheduler

by

Sivasankaran Jeevan Prasath

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved September 2014 by the
Graduate Supervisory Committee:

Yann Hang Lee, Chair
Carole-Jean Wu
Aviral Shrivastava

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

Android has been the dominant platform in which most of the mobile development

is being done. By the end of the second quarter of 2014, 84.7 percent of the entire

world mobile phones market share had been captured by Android. The Android li-

brary internally uses the modified Linux kernel as the part of its stack. The I/O

scheduler, is a part of the Linux kernel, responsible for scheduling data requests to

the internal and the external memory devices that are attached to the mobile sys-

tems. The usage of solid state drives in the Android tablet has also seen a rise owing

to its speed of operation and mechanical stability. The I/O schedulers that exist

in the present Linux kernel are not better suited for handling solid state drives in

particular to exploit the inherent parallelism offered by the solid state drives. The

Android provides information to the Linux kernel about the processes running in the

foreground and background. Based on this information the kernel decides the process

scheduling and the memory management, but no such information exists for the I/O

scheduling. Research shows that the resource management could be done better if

the operating system is aware of the characteristics of the requester. Thus, there is

a need for a better I/O scheduler that could schedule I/O operations based on the

application and also exploit the parallelism in the solid state drives. The scheduler

proposed through this research does that. It contains two algorithms working in uni-

son one focusing on the solid state drives and the other on the application awareness.

The Android application context aware scheduler has the features of increasing the

responsiveness of the time sensitive applications and also increases the throughput

by parallel scheduling of request in the solid state drive. The suggested scheduler

is tested using standard benchmarks and real-time scenarios, the results convey that

our scheduler outperforms the existing default completely fair queuing scheduler of

the Android.

i

To all who supported me

ii

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my Professor Dr.Yann Hang Lee, for

his support, without which my thesis would not have been possible. It is because of

his guidance and support that I was able to complete my research. I would also like

to thank Professor Dr.Carole-Jean Wu and Dr.Aviral Shrivastava for their support.

I would also like to thank my friend Mr.Kuan Hao Ken Chen for his support in

setting up the lab equipment. Finally, I would like to thank my parents, for their

motivation and encouragement to pursue this degree.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

2 BACKGROUND . 3

2.1 Fundamentals of Flash Memory . 3

2.1.1 Solid State Drive Architecture . 4

2.1.2 Flash Commands and Basic Operations . 7

2.1.3 Parallelism in Solid State Drives . 8

2.2 Details on Android . 9

2.2.1 Foreground and Background Processing. 10

2.3 I/O Scheduler . 11

2.3.1 Basic Types of I/O Scheduler . 12

2.3.2 Linux I/O Schedulers . 16

2.4 Blktrace: Linux I/O Operations Tracing Tool . 21

2.4.1 Blkparse . 23

2.4.2 Blktrace and Our Research . 24

2.5 Ext4 Filesystem of Linux . 25

2.5.1 Fundamentals of Ext4 . 25

2.5.2 Virtual File System . 25

2.5.3 Ext4 File System Organization . 26

2.6 FileBench I/O Benchmark . 30

2.6.1 Salient Features . 30

iv

CHAPTER Page

2.6.2 Workload Modeling Language . 31

2.6.3 Commands f Language . 31

3 LITERATURE REVIEW AND RELATED WORKS 37

3.1 Solid state drive Based I/O Schedulers: . 37

3.2 Application Aware Scheduling: . 38

3.3 Scheduler for Android Working with a Solid State Drive: 38

4 PROBLEM ANALYSIS AND REQUIREMENTS . 40

4.1 Exploiting Parallelism in Solid State Drives . 40

4.1.1 Schedulers for Solid State Drives . 41

4.2 Application Aware I/O Scheduler . 42

4.2.1 Features Required in an Application Scheduler 43

5 THE DESIGN OF CONTEXT-AWARE SSD I/O SCHEDULER 46

5.1 Concept of the Solid State Drive I/O Scheduler 46

5.1.1 Design Details . 47

5.2 Concept of the Application Aware I/O Scheduler 51

5.2.1 Design Details . 51

5.2.2 Algorithm . 53

6 IMPLEMENTATION . 56

6.1 Solid State Drive I/O Scheduler . 56

6.2 Application Aware I/O Scheduler . 57

7 EVALUATION . 58

7.1 Test Results from Solid State Drive I/O Scheduler 58

7.2 Test Results Application Aware I/O Scheduler . 60

7.3 Conclusion . 62

v

CHAPTER Page

8 FUTURE WORK . 64

REFERENCES . 65

vi

LIST OF TABLES

Table Page

7.1 Workload Analysis for CFQ and Our Scheduler . 59

vii

LIST OF FIGURES

Figure Page

2.1 An Solid State Drive Architecture Adapted from [26] 4

2.2 A Layout of the Solid State Drive Structure Adapted from [9] 7

2.3 Addressing Format Within a Solid State Drive Adapted from [9] 9

2.4 An Adapted Architecture Blocks of the Linux I/O System [17] 27

5.1 An Solid State Drive Scheduler for Internal Parallelism[31] 49

7.1 Workload Analysis of the CFQ(Default Linux Scheduler) and Our

Scheduler . 60

7.2 Cdf of the CFQ(Default Linux Scheduler) and Our Scheduler for the

Media Player Playing Video of 320 Px Resolution . 61

7.3 Cdf of the CFQ(Default Linux Scheduler) and Our Scheduler for the

Media Player Playing Video of 1080px Resolution . 61

viii

Chapter 1

INTRODUCTION

The Linux kernel’s I/O scheduler is designed for the hard disk drives that are used in

a desktop environment. It is not optimized for solid state drives and does not have

any specific implementations that would cater the need of the Android devices. But

Android utilizes the Linux I/O scheduler for scheduling the I/O operations. This will

result in under utilization of the potential available in the solid state drives and not

being able to meet the needs of the Android system, of mobile devices. The above

situation gives scope for changes and enhancements to be done in the kernel in order

to make it best suited for the mobile and Android platform.

1.1 Motivation

Demand for Faster I/O Operations: The demand for a quick response and

interaction by Android devices has always existed. The delay in loading a game or

a lag while playing a video, resulting in not meeting the expected quality of service

(QoS) is not acceptable to the end user. Hence many approaches are taken to improve

the performance of the Android device, they include introducing high end processors,

switching to solid state drives etc.,

I/O Scheduler and Solid State Drives: It is seen in the past that the I/O

processing systems could be a source of concern in real-time applications. The I/O

operation’s performance is the combined effect of many things like the latency of

the memory device, the speed of the processor, the interface bandwidth and so on.

Through solid state drives the devices have become faster, as they have a faster access

1

to the memory blocks than the traditional hard disk drives. The I/O scheduler is the

time controlling valve in the communication between the memory device and the

processor. The I/O scheduler software that exist in the present Linux kernel, is not

designed with the solid state drives architecture in mind. They are designed and

optimized for the hard disk drives [19]. This leads to a need for a new I/O scheduler,

that could be used to enhance the throughput by exploiting the features that are

present in the solid state drives.

Application Awareness in Scheduling: Consider a scenario, in which the

Android is doing a background work of downloading an update or it is fetching a

huge chunk of database from the memory, at the same time the user tries to play a

stored video from the device. The present Linux I/O scheduler, the Completely Fair

Queuing (CFQ), has the implementation such that the background process gets all

the resource bandwidth it requests. This could lead to a lag in the video watching

and reduce the QoS to the end user. The present Linux as mentioned above does not

distinguish the applications based on their I/O operations. It does the allocation of

the I/O bandwidth such that it can maximize the system throughput. This could

result in the degradation in the performance of the time sensitive application [12]. The

present implementation of the I/O scheduler contains a queue per process request,

and each of these queues is serviced in a round robin manner. It works on the idea of

maximum throughput and fair allocation of the disk resource. The CFQ scheduler is

not aware of the characteristics of the application requesting the I/O operations and

therefore there is a possibility of the time sensitive application to stall. Hence, there

is a need for an I/O scheduler that incorporates information about the applications

in its decision on I/O scheduling. This approach would enhance the responsiveness

of the Android towards the end user.

2

Chapter 2

BACKGROUND

2.1 Fundamentals of Flash Memory

The advancement in the field of NAND-flash technology and the reduction in the

manufacturing cost, have seen the deployment of the solid state drives in many fields.

Solid state drives are gaining significance in the data server systems, desktops and the

hand held devices. The usage of the solid state drives in the tablet devices has also

seen a significant rise. There are two types of flash devices NAND and NOR. NOR is

used for byte level random access while NAND is used for block-level random access.

NAND is denser and lower in cost and hence used in more general applications. Our

focus in only on the NAND devices [8].

NAND devices come in single-level cell (SLC), and multi-level cell (MLC) tech-

nology, where the naming is based on the bits that could be stored in a single cell.

The basic unit of the NAND device is the NAND string. A NAND string is made

up of 64 to 128 cells in series. It contains two selection transistors that provide the

source and the connection to the bit line. The bit lines are connected to each cell’s

control gates. The NAND strings sharing the common bit lines constitute a block.

In order to increase the density of the devices, the flash devices are manufactured

by packaging several chips together. A package has the same I/O bus with separate

chip select and read/busy signal for each chip. Every chip is composed of two or

more dies. Each die contains several planes. Furthermore, every plane is comprised

of thousands of flash blocks. Each flash block has around 64 to 128 pages, and each

3

page is of a size of 4 Kilobyte,8 Kilobyte or 16 Kilobyte. A total of 8192 or more flash

blocks makes an NAND array [11].

2.1.1 Solid State Drive Architecture

Figure 2.1: An Solid State Drive Architecture Adapted from [26]

A basic solid state drive is made of four major components namely (i)the host

interface (ii)solid state drive controller (iii)DRAM or SRAM buffer (iv) Multiple

channels [9].

Host Interface: The interaction between the solid state drive and the outside

world is established through this interface. The interface is one of the connecting

mediums that would be available like PCI express, SATA, USB or Fiber channel.

The host interface has a critical role in the performance of the solid state drives.

It is often seen as a bottleneck point, especially the bandwidth supported by the

interface is expected to match that of the flash array. The host interface also contains

command decoding circuit that is sent by the host (operating system) that handles

the data flow from and to the flash memories.

4

Solid State Drive Controller: This plays a crucial role in the solid state

drives. The roles performed by it are as follows: it act as a disk emulation to enable

solid state drives replicate the hard disk drives. It contains a buffer manager that

is responsible for maintaining the pending and serviced requests. The multiplexer of

the flash is responsible for sending the commands and receiving the data from the

flash packages. The important block that enables the solid state drives to function,

as a magnetic disk is the flash file system. When the host requests a sequential

access of memory that extends to multiple sectors forming a file. The solid state

drives maintains it as a link list, which the host uses to form a file allocation table

for itself. The flash file system is implemented as a firmware inside the controller

with specific operation to each sub layer. The basic operations include the wear level

management, garbage collection and block management. Wear leveling phenomenon

is needed in order to maintain the long life of the blocks. The NAND flash devices

have a life cycle that would last 10K to 100K writes and therefore it is necessary

to have a management or controller to relieve the stress on the frequently accessed

blocks. In order to mitigate the risks of the frequently accessed blocks, it is necessary

to uniformly distribute the aging process of the blocks. The maximum life cycle of

the blocks must also be considered while making this decision. The wear leveling

techniques uses the logical address to physical address translation in a way to reduce

the risk of the blocks. Whenever a host application requests updates to the same

sector, the controller maps the sector to a different physical sector, and the obsolete

copy is tagged as invalid and erasable. In this way, aging is maintained uniformly

across all the blocks. The are two types of wear leveling techniques that have been

adopted. The dynamic wear leveling technique refers to the process, where the first

available erased block with the least erase count is used to write the new block. The

static wear leveling technique, refers to the process wherein every block is eligible for

5

the erase as soon as it’s age deviates the average value coded. Garbage collection

refers to the process in which the solid state drives get the free sectors even when

the available free sectors fall below a threshold value. The wear leveling techniques

need the free sectors for it to write the request, but when the availability of those

free sectors falls below the threshold value they are compacted, and multiple obsolete

copies are deleted. The garbage collection layer selects the blocks that have invalid

sectors, copies the valid copy onto that free sectors and erases those blocks. As a

performance improvement, the garbage collection is handled in the background. The

bad block management is the sub layer wherein the solid state drives maintain a map

that contains the list of bad blocks. These are the bad blocks that cannot be used

further, for the usage of those blocks would not return a guaranteed result. The

map in this is updated right from the testing phase and continues to be updated for

the entire life time of the solid state drives based on its usage. Another unit that is

present in the controller is the error correction code. The most popular codes used

are the Reed-Solomon and the BCH codes, used for the error correction of the disk

requests.

SRAM/DRAM Buffer: Based on the type of solid state drives, it contains a

dedicated DRAM buffer or low cost SRAM. It is integrated in the controller to hold

the data. Before they are being written to the flash or being transferred to the host.

Multiple Channels: In most of the solid state drives there exist multiple chan-

nels ranging from 2 to 10, used to connect the controller and the flash packages. The

number of packages that share one channel may vary based on the solid state drives

implementations.

6

2.1.2 Flash Commands and Basic Operations

The solid state drives have three main functions read, write and erase. As the name

suggests the read fetches the data from the flash, the write programs the data on to

the flash and the erase resets all the target blocks to 1. The operations are executed by

placing the correct code in the command register along with the address of the block

that needs to be accessed in the address register. The address contains six segments:

chip, address, die, plane, block and page. Page represents the least significant bits.

In flash, there is one restriction that within a block, the pages must be programmed

sequentially in the ascending order of the page address. Solid state drives also support

few extra commands these are the extension of the basic commands.

Figure 2.2: A Layout of the Solid State Drive Structure Adapted from [9]

Internal Data Move: Also called as the copy back, this command is used

to move a data page from one location to another within the same plane without

7

accessing the I/O bus. The restrictions are that the source and the destination page

must be on the same chip, die and plane. The address of the source and the destination

page must be either odd or both even.

Multi Plane: This command provides the option of multiple reads, write or

erase operations on multiple planes of a die. The cost incurred is only of one operation.

The constraint in the command is that the Multiplane can be executed only on blocks

that have the same chip, die and block address.

Interleaving: This command is used to execute multiple reads,writes and erase

operations on multiple planes of different dies that are on the same chip. The only

restriction of this command is that the command is executed only on pages of different

dies belonging to the same chip.

2.1.3 Parallelism in Solid State Drives

The internal architecture of the solid state drives suggests that many levels of

parallelism are possible with the solid state drives. Further the operations can be

interleaved or paralleled at each level. The list of the parallelism possible and that

could be exploited [13].

Channel Level Parallelism: In flash devices, the packages are connected through

channels, and few high end solid state drives have error correction and flash controller

for each channels in-order to boost its performance. Each of these channels can be

operated in parallel or individually.

Package Level Parallelism: Making the packages that share a channel to be

operated independently can optimize resource utilization. Interleaving of the opera-

8

Figure 2.3: Addressing Format Within a Solid State Drive Adapted from [9]

tion between the packages of the same channel is also possible with the solid state

drives.

Die Level Parallelism: In order to increase the throughput, each die of the

package can be operated individually. This could be achieved in the flash devices by

placing the appropriate die address and requesting data from the exact die.

Plane-level level parallelism: Chips are composed of multiple planes. High-

end flash memories support performing similar operation on multiple planes simulta-

neously. There are some flash devices that provide caches to increase the parallelism

in all levels.

2.2 Details on Android

The Android platform has three main components that are of our concern the

Java application, the Android middleware and the Linux kernel [27]. Each Java ap-

plication has its own Dalvik virtual machine and it runs in this instance. Every

application has its own process identification number to differentiate it from other

applications and platform threads. The middleware contains a list of libraries and

services that are used by these applications. The middleware manages the life cycle

of the application; it provides Java native libraries that could be used by the appli-

cations to access the device specific features and facilities. The middleware provides

functionality like the activity manager controls the existence of the application. It

9

is also responsible for services like the media service that is used to play videos on

the mobile, the location manager for the GPS updates and so on. The application

uses the Android inter process communication mechanism called the binders to com-

municate to these system services. An example would be the playing of the video in

the mobile phones, the application requests the service manager for using the media

service. The service manager is a process that maintains a service list available in the

system. It is responsible for granting services to the application based on the requests

and its availability. Once the request is placed by the application the service manager

checks the media service availability and grants the application the permission. Upon

receiving the permission the Android application informs the location of the video to

the media player service, along with its type through a binder. It is the media service

that plays the video by decoding it based on its media file type.

2.2.1 Foreground and Background Processing

The Android application can run either in foreground or in background. The

tasks that run in foreground are generally user interactive tasks.The background task

does not need much interaction with the end user. The middleware is aware of the

list of application that run in background and foreground, this information is passed

on to the process scheduler and memory manager of the Linux kernel. The kernel

has the CFS (Completely Fair Scheduler), as its process scheduler and it provides

higher priority to the application that are running in the foreground when compared

to the background. The Android memory management is used to provide memory

by removing the background tasks in case there is a shortage of memory for the

foreground. These techniques are not extended to the I/O scheduling.

10

2.3 I/O Scheduler

Input Output (I/O) scheduler is a piece of software that decides the ordering of

the input and output block requests and when they are to be submitted to storage

devices. It is a part of the kernel of the operating system. It is also referred to as disk

scheduling. The I/O scheduler has to implement variants of the elevator algorithms

in order to minimize the large seek time that is caused due to the random requests

made to the disks. The I/O scheduler has the following responsibilities.

Merging and Sorting Block Requests: The main function of the I/O sched-

uler is to merge and sort the disk request. This is important owing to the nature of

the disk and the way the data is organized in it. The seek time in disks is one of the

bottlenecks in retrieving or writing data. It is highly affected by the seek distance

and the moving speed of the disk arm. The merging and the sorting are needed in

order to reduce the disk latency that is being caused due the movement of the disk

arm. Sorting requests reduces this movement by making the disk arm service requests

that are close to each other.

Priority of Requests: Not all the requests that are placed to the disk have the

equal urgency, but it is important that all must be serviced within certain time. This

gives the leverage for the kernel developers to prioritize the request and service them

in the order that is best suited for the operating system. This prioritization is done

based on certain parameter like the deadline for request, the priority of the task that

is requesting the request, the availability of the bandwidth etc. All these decisions

are made in the I/O scheduler.

11

Bandwidth Sharing: This bring fairness in the scheduler. It is the expectation

that each request to the disks will be serviced immediately, but it is not feasible. It is

necessary to make sure that all the process gets its share of the disk bandwidth. These

I/O schedulers handle the responsibility of maintaining a balance in meeting all the

demands of the processes and distributing the available bandwidth proportionally.

Avoiding Starvation: Another important responsibility of the I/O schedulers

is to avoid starvation of the process that request for the disk data. In general this is

implemented by the I/O schedulers by assigning each request with a default deadline.

This deadline is the maximum time within which the I/O scheduler must service the

request. By assigning this deadline to each request, it is taken care that each request

gets serviced within that stipulated time.

2.3.1 Basic Types of I/O Scheduler

FCFS: First Come First Serve [1], the most basic form of an I/O scheduler this

scheduler has no specific function. It queues requests and services them one after the

other. This type of service handling suffers badly in performance because it does not

try to reduce the seek time by merging or sorting the requests. This is better suited

for non rotational-disks like flash devices, but FCFS as an I/O scheduler is not used

extensively.

LIFO: Last in first out I/O scheduler, it takes the most recent request and

services them. The only advantage that could be seen is that, it could be used to

service a sequence of reads at one time taking into account the locality factor. It runs

into a high risk of starvation if there are highly intensive I/O operations.

12

SSTF: Shortest service/Seek time first seek time is the measure of the disk

arms latency to settle at the correct track of the request to be serviced. Seek time

depends on various factors like the distance the arm needs to move, the mechanical

characteristics of the arm and the size of the disk. The SSTF algorithm tries to service

the requests whose service/seek time is the lowest. That is from the present location

of the disk arm, the next shortest distance that it has to travel to service the next

request. Now for example,if there are three requests that needs to be serviced. Their

track numbers are 34,55,62 respectively, assuming that the disk arm is at location 55

and still 34 and 62 are not serviced. Then as per the SSTF algorithm the track 62

will be serviced as it is only seven tracks ahead of the 55. This algorithm requires to

always maintain the information about the disk arm. It is good if the requests show

the property of temporal locality. But it causes starvation for the random requests

and when the request patterns are located much farther apart.

SCAN: The elevator Algorithm, as the name suggests follows the servicing pat-

tern of the elevator. All the disk requests that are coming in one direction are serviced

first and then the disk arm changes its direction to service the request in reverse order.

This algorithm is much better when compared to the previously discussed algorithm

in servicing the disk request. Conditions are that the disk arm moves only in one

direction, servicing all the request of that direction. If there is no request in the

current direction then the direction of the arm is reversed. This scheduler also has

some drawbacks if the requested block is in the track just traversed or just close in

the other direction, it is not serviced immediately. It will be serviced only when all

the requests in the current directions are serviced and then the disk arm reaches the

requested track in the reverse direction after servicing the requests in between. It

13

is more favored to the innermost tracks, the outermost tracks and the jobs that are

arriving at the latest in the current direction.

C-SCAN: The circular scan is a variation of the SCAN algorithm. In this

algorithm, the servicing of the request always follows a single direction. It scans in

one direction and on reaching the end moves its disk arm to the other end and moves

in the same direction. This algorithm eliminates the unfairness that was caused in

the previous elevation algorithm wherein certain tracks had a probability of being

serviced two times. This algorithm is fairer and it reduces the request time for those

blocks, which are on the edges.

F-SCAN: The SCAN and SSTF causes the problem of arm stickiness. When

there is a burst of requests for the same track, all the above mentioned algorithms

will stop the progress of the disk arm. It would service the request with zero arm

movement. This would yield unfairness to the tracks that are positioned in the edges

or the other sides. In order to avoid this starvation the F-SCAN has two queues, where

once the first queue is filled with the sorted requests, the next bunch of requests are

placed in the other smaller queue. Only when the first queue is serviced the next

queue is serviced, similar to double buffering. This would make the arm non-sticky,

the disadvantage is that the disk on the other queue has to wait till the first queue is

serviced.

N-SCAN: Similar to F-SCAN, that had two queues, the N-SCAN contains N

queues of fixed smaller sizes and all the queues are serviced one after the other. Such

an implementation guarantees servicing of requests and avoids starvation.

14

LOOK: This is similar to the elevator algorithm, with one addition that the

algorithm sees if there are further requests in the current direction. If there are no

requests then it reverses its direction from the current position and starts servicing

the requests that are in the opposite direction. By doing this it reduces, the time

taken for the disk arm to reach the latest request and the edge of the disks. LOOK

is similar to the SSTF algorithm with the only addition that it causes a starvation

problem because the LOOK algorithm is dependent on the track area or the location

being serviced. LOOK still retains the problem of being biased to the outermost

and the inner most edges just like the elevator algorithm. The LOOK algorithm also

favors the recently arriving jobs.

C-LOOK: A variant of the CSCAN and LOOK algorithm. In this algorithm

the scanning is unidirectional and unlike the CSCAN. It does go till the end of the

disks, but only till the last request in that direction. Once it is serviced the disk

arm is moved to the starting position. This relies on the factor that many disks can

move the read/write disk arm at high speeds if it is moving across a large number of

sectors.

F-LOOK and N-LOOK: This was designed to avoid the bias that LOOK had

towards the recent jobs that are closer to the disk arms. The idea is to split the

request queue into multiple queues of smaller size and process the queues in the order

of the older ones first. F-LOOK contains only two queues like the double buffering

technique. The advantage of this sub queuing is that it limits the maximum latency

a process can expect before it is being serviced.

S-LOOK: S stands for the shortest here. This algorithm is also an extension of

the LOOK algorithm. It is used to handle cases, wherein the disk head is positioned

15

between two requests that are located on either end. Then the decision is made based

on the shortest seek time between the two requests, before any further request arrives.

This algorithm aims at reducing the seek time.

2.3.2 Linux I/O Schedulers

NOOP: As the name suggests it is a no operational scheduler, it acts as a

modified version of the FIFO scheduler [3]. The NOOP scheduler inserts the incoming

requests into a queue and provides merging if they are requested consecutively. This

scheduler is used when the host does not know whether the re-ordering of the request

based on the sector number would result in an increase in the productivity. The

following are the places wherein the scheduler can be used: The merging and the

sorting are performed by some other module located in the upper or the lower layers

of the stack. The request that could probably be optimized in the block device layer,

by a host bus adapter like the Serial attached small computer system interface (SCSI)

with a RAID controller or an external controller connected to a storage area network.

Another possible reason could be the host does not have the details of the sector

positions. This could be because the host does not know about the exact arrangement

of how the sorted queue should look like, when being sent to the device. The other

reason could be that the devices disk arm movement from the start position to the

edge position or vice-verse, would not impact the performance of the disk. Hence,

does not require the re-ordering of the request. This case is true for the non-rotational

media like the flash devices solid state drives.

Deadline Scheduler: This scheduler is an extension of the C-SCAN scheduler.

It contains additional deadlines that are soft to prevent the starvation that might hap-

pen to the request that are not at the innermost or outermost edges. This scheduler

16

is the ideal schedulers for non rotational type of flash devices. The Implementation

of the deadline scheduler is good to know because this forms the basic block for the

other advanced type of schedulers [21].

Implementation of the deadline scheduler: The scheduler is based on the concept

of the elevator algorithm. There are two types of queues: the elevator queue wherein

the requests are arranged based on their sectors using a red black tree, such that

the next immediate left leaf of the tree contains the next request to be serviced.

The red black tree is a self-balancing search tree [10]. The other queue is the FIFO

queue called the deadline list. The deadline list is a standard queue containing block

requests of same deadline period inserted to the tail of the list. Whenever a request is

made, they are placed in both the deadline list and the elevator queue. Further, both

the data structure have two instances, one to store the read and the other to store

the write requests. The reason for two separate queues is that it gives the ability for

the scheduler to prioritize the read and write requests differently. Further, batching

is allowed in this scheduler, that is, up to 16 requests in a row can be serviced from

the elevator queue, once the value is reached or when there are no more requests in

the queue, the direction(read to write or write to read) is reversed. Adding to this,

the reads are serviced twice when compared to the writes. The reason for giving high

priority to the read overwrite is because the processes, usually gets blocked on the

read operations. Once the data direction is selected the head of the deadline list is

seen to check whether there are any requests whose deadline time has expired. If

any such request is found, it is chosen as the next request to be serviced. The other

main functionality handled by this deadline scheduler is merging. The request needs

to be ordered to increase the throughput. The existing Linux file system splits the

read operations that are large, to multiple smaller requests. Before sending them

to the schedulers and the merging. It is also possible to merge request of another

17

processes if they are the consecutive requests. The elevator queue is generally used to

take decisions about the merging of requests. One of the drawbacks of the deadline

scheduler is that it does not have any quality of service support. All the deadlines

maintained are global and is same to all process. Therefore they have equal priority

to all the tasks. Though it has an option to change the priority of the read request

overwrite but it is not very useful. All the deadlines are soft, they are made only

to prevent starvation of the requests which may happen in these types of elevator

algorithms.

Anticipatory Scheduler: It is no longer maintained in the Linux kernel and

replaced with the CFQ scheduler discussed in the next section [15]. The Anticipatory

scheduler, came in limelight to eliminate the drawbacks of the deadline scheduler.

Namely, the reduced throughput in a highly spatial locality process, the cause of

thrashing due to the work conserving nature of the scheduler. Deceptive idleness: It

is a situation wherein the process whose data was currently processed gives the per-

ception that it has done requesting meanwhile preparing for the next request data.

The I/O scheduler owing to its nature switch to another process thereby creating

possible thrashing and reduced merging. The reason for the deceptive idleness is

that the deadline scheduler is making decisions, due to early or lack of future pre-

diction. This problem is eliminated in the anticipatory scheduler by waiting for few

milliseconds before dispatching the new request, once it has completed dispatching

the current request. The Apache web server load seems to perform better with this

type of scheduler. The delay provides the scheduler with an option to know the about

the next coming request to gives it an option to better schedule the next request. The

implementation of the anticipatory scheduler is similar to that of the deadline sched-

uler, it has two data structure, one deadline list and the other elevator queue. Once

18

a request has been serviced, unlike the deadline scheduler before processing the next

request, the anticipatory scheduler checks whether there are any requests from the

same process or if there any request which is less than thousand sectors away from the

present location of the disk arm. If found, it will be serviced. Otherwise the scheduler

waits for a stipulated amount of time with the expectation that a new request may

come from the same process or requests that are closer to the present disk arm loca-

tion. This avoids the trashing affect of the deadline scheduler. In addition to this,

the anticipatory scheduler also allows backward seeks if they are located very near to

the present location. The main advantage of anticipatory scheduler is as follows: It is

often seen that many processes make multiple blocks of read causing multiple submit

request invocation. The underlying scheduler fails to see the complete scenario, there

is a possibility for more to arrive soon. The other reason for the delay may be from

the file system that may have to look for the indirect blocks or the physical location

of the next block in large requests. This will require sometime to get the next request

that should be issued. There could be a delay from the application or the process

issuing the request, that is, it may request future data based on the some caclulation

results obtained or may be the processor has a low memory footprint. The other

condition may be wherein multiple reads are made on the files of the same directory

that are located close to each other due to the file system organization.

CFQ Scheduler: The completely fair queuing scheduler (CFQ)[20], is the de-

fault scheduler for the Linux kernel. This scheduler tries to satisfy most of the short-

comings of the above mentioned schedulers. The detailed explanation of this scheduler

are as followed

19

Providing Fairness to All the Process: This is brought about by assigning

the processes of the same I/O priority class, equal time slices to access the I/O system.

The interesting point here is that the fairness is obtained based on the time slice and

not on the throughput obtained, that is, for a given time the random I/O operations

produce less throughput than a sequential I/O operation. Prioritizing the tasks is

crucial in providing some quality of service to the processes. It is obtained by dividing

the processes into classes and assigning them with some priority based on the class.

Similar to the anticipatory scheduler, the spatial locality of the process request are

exploited by waiting for more requests from the current process with the idea to avoid

long latency caused due to the seeks from far sectors. Latency is maintained equally

across all the process by scheduling them periodically in the round robin manner. As

explained above the main aim of the CFQ scheduler is to provide fair allocation of the

disk I/O bandwidth to all the processes. Implementation wise CFQ allocates a queue

for every process that requests for an I/O operation and there are separate queue

maintained for the asynchronous requests. The underlying idea is that all reads are

sync and all writes are async for this scheduler. The process that requests the data is

given exclusive access to the block device for a fixed time. The time allocated depends

on the priority and is calculated as time_slice = slice_sync+ (slice_sync/(5 ∗ (4−

prio))). The default value of the slice_sync is 100msec [2]. Thus providing priorities

to the application tasks based on their disk priorities brings about the QoS. CFQ has

three priority classes and every process may fall into any one of those priority classes.

Real−Time: Process can be set into this class only by the user with root priv-

ileges. The tasks, which fall into this category, are given the first access time among

the other classes. The real-time (RT) classes have priority levels ranging from 0 to 7

classes. 7 is the lowest, with 0 being the highest.

20

Best Effort: All the process by default is assigned to this class. Like the RT

class, this class too has seven priority levels with 4 being the default value. The I/O

priority class is modified to that of the CPU’s if its priority is set.

Idle: This the third class of scheduling priority. The root users usually place

tasks in this process. These processes are serviced only when the RT and Best Effort

(BE) classes are serviced. Hence in a heavily loaded system there is a possibility

of starvation for these processes. The CFQ data structure consists of all the active

process (its queue) arranged in the order of their classes with RT first, followed by

the BE and then the IDLE class. The second level of arrangement is based on the

expected service time. The time to service is just a soft deadline. A task whose

service time has been expired does not preempt an active task. If the active process

is not requesting any more data then, its I/O scheduling is stopped and the remaining

time slice is used during the next iteration.

2.4 Blktrace: Linux I/O Operations Tracing Tool

The Blktrace is developed and maintained by Jens Axboe. It is used to know the

path and the operations performed on the I/O requests submitted by the application

layers, in the block I/O layer[5]. The Blktrace is the tracing mechanism that is used to

measure the performance and the behavior of the I/O layers of the Linux operating

system. The Blktrace works by storing all the I/O request related information in

the debug file systems and thus it makes it less burdensome on the CPU working.

Blktrace is not a tool used for analyzing, it is an event logging tool. The events logged

are later parsed by other tools like the Blkparse.It provides detailed information of

the number of requests submitted, the size of the request, the time taken for it to be

21

dispatched and so on. The Blkrawverify could also be used to test the received log

messages for errors.

Blktrace[4] as mentioned before is an event logging tool. It contains many trace

points that are plugged into the file systems code, in the I/O platform stack and even

in the I/O scheduler. They remain inactive unless externally triggered by the user

application. But the modules must be activated during the kernel building process.

The logging of the events is handled by the minimal overhead mechanism called the

relay file system.

Relay File System: Relay file system is a feature in the Linux kernel. It could

be seen as a memory buffer that could be used to log events within the kernel. The

relay buffers are created per CPU and are tagged to each CPU based on its CPU

id. They are debug files that could be mapped on the user space by the mmap call.

The relay file system offers simple kernel logging for a large amount of data. It uses

the concept of channel abstraction layer that consists of a set of buffers which are

mapped per CPU, each of which buffers as mentioned before are represented as files.

The kernel events are logged onto the channel using the specific write functions. Each

logging is mapped directly to the corresponding CPU buffers. Once the logging is

completed, the events can be read by the user space by mmap the data from those

files. The relay file system does not impose any restriction on the type of data that

is being logged onto these files thus making it simple. The relay file system supports

system calls like open(),mmap(),close() ..

Logged Events: Request Queued(Q): This could be seen as the time in which

the request sent from the user is being inserted into the request queue [6]. The

22

happening of this event is mostly in the context of the requesting user i.e., the user

process is the one responsible for placing this request in the queue.

Dispatch Request(D): This is the time instant at which the request queue that

was inserted by the user is ready. It is being sent to the memory device in order to

retrieve the data from the physical memory. This is the final action from the part of

the CPU, in requesting the data.

Complete Request(C): This is the time taken for the request to be serviced. This

is inclusive of the time it spends in the queue before being dispatched, the time it has

taken in order to be processed by the physical device. This timestamp could be used

to calculate the total time taken for the request posted in the queue to be processed.

It must be noted that the users perform not all the request actions. The operations

like dispatching and completion are handled by the kernel threads.

2.4.1 Blkparse

As mentioned before, Blktrace is not an analyzing tool it just logs events. It is

the responsibility of the Blkparse tool to parse those log messages and generate data

in a human readable format. It could be used both as an offline tool on Blktrace data

that is logged and stored in a file or even during the run time by piping the output

from the Blktrace onto the Blkparse. Blkparse can be used to trace events mentioned

above like the request, queued, dispatch and the completed request. It also provides

the ability to format the output data [5].

The sample output from the I/O operation after being parsed would look like this

8,0 1 15 0.081862000 4713 A R 2253851 + 8 ←− (8,2) 277856

8,0 1 15 0.081862000 4713 A R 2253851 + 8 ←− (8,2) 277856

8,0 1 15 0.081862000 4713 A R 2253851 + 8 ←− (8,2) 277856

8,0 1 15 0.081862000 4713 A R 2253851 + 8 ←− (8,2) 277856

23

8,2 1 16 0.081865666 4713 Q R 2253851 + 8 [.example.ioread]

8,2 1 16 0.081865666 4713 Q R 2253851 + 8 [.example.ioread]

8,2 1 16 0.081865666 4713 Q R 2253851 + 8 [.example.ioread]

8,2 1 16 0.081865666 4713 Q R 2253851 + 8 [.example.ioread]

8,2 1 17 0.081889666 4713 G R 2253851 + 8 [.example.ioread]

8,2 1 17 0.081889666 4713 G R 2253851 + 8 [.example.ioread]

8,2 1 17 0.081889666 4713 G R 2253851 + 8 [.example.ioread]

8,2 1 17 0.081889666 4713 G R 2253851 + 8 [.example.ioread]

8,2 1 18 0.081896333 4713 P N [.example.ioread]

8,2 1 18 0.081896333 4713 P N [.example.ioread]

8,2 1 18 0.081896333 4713 P N [.example.ioread]

8,2 1 18 0.081896333 4713 P N [.example.ioread]

Details of the Trace: Here the first column stands for the major and minor

number of the device whose events are getting logged. The next column stands for

the CPU id. The third column stands for the sequence of instructions happening.

The following column is the time stamp of the event happening. Then followed by

the PID, the actions that took place in our case (A: mapping of I/O requests to a

different device, Q: I/O requests being queued by the I/O queues, G: getting the

request, P: Plugging of the request). The next column is the read, write operation,

followed by the block to be accessed and the process requesting for the block.

2.4.2 Blktrace and Our Research

As a part of the research we need to the I/O request characteristics of the Ap-

plications. The I/O requests that are send by the applications, needs to analyzed

24

for this. The analysis requires measuring the I/O requests size, the time spend on

the request and dispatch queues before it being serviced. Blktrace tool provides a

mechanism to measure those informations in the Linux kernel.

2.5 Ext4 Filesystem of Linux

2.5.1 Fundamentals of Ext4

The Android internally uses the ext4 file system of the Linux kernel. Ext4 was

born due to the limitations in the previous ext3 format. Ext3 format was designed to

hold file systems up to a size of 16TB due to its 32bit block numbers and the present

existing systems were reaching that ceiling limit set. The other reasons were the need

to increase the maximum number of sub directories, which had a limit of 32,768.

The time resolution from seconds to nanoseconds due to an increase in the speed

of the processing. The ext4 system was developed in order to cater these problems.

Android included this file system as part of its stack [7]. This chapter would try and

explain the working and the organization of the ext4 file system. It is based on the

understanding that the reader has a basic knowledge about file systems.

2.5.2 Virtual File System

This is also called as a virtual file switch. It could be seen as an abstraction layer

that provides an interface to the application layer and different file systems that are

available in the kernel. The virtual file system(VFS) is present in the kernel layer.

The VFS was implemented in order to make the access time of the files fast and the

data consistent. The VFS buffers information about each file system after it being

mounted in the memory. It must monitor the activities performed like file creation,

deletion and modification and update the buffers carefully. Among the caches, the

25

most important is the buffer cache, being responsible for the integration of the file

system onto the block devices. These caches are used not only for the data but also

for the interface with the block drivers asynchronously. Every file system once after

initialization is registered to the VFS, during the boot. It is possible to have both

dynamically linking modules and modules that are integrated into the kernel, the

static type for file systems. Once the file system is mounted, the VFS file system

reads the superblock of the file system. It is the responsibility of the file system

to map its superblock and the main routines to that of the VFS’s. The file system

must also contain its topology and directory tree information, mapped onto that of

the VFS of the superblock. The VFS contains a list of superblocks, each for a file

system available. Each of the superblocks contains the address of the subroutine

that should be invoked to perform specific operations. So when this read routine of

the file system is invoked, it fills out the fields of the VFS inode. Further, the VFS

superblock contains the pointer head to that of the first VFS inode. In case of the

root file system that would be "/".

2.5.3 Ext4 File System Organization

The disk is divided into a number of blocks of fixed sizes which is decided when

the file system is created. A group of sequential blocks are considered as block groups.

Each block group is represented through a block descriptor.

Group Descriptors: The block descriptors are stored in a group descriptor

table. The descriptors contain the pointers to bitmaps that are used for inode allo-

cation, pointers of the data, and the location of the inode table and the list of free

bitmaps. Upon the file system being mounted the group descriptor table and the su-

perblock of the file system are copied onto the RAM. The real group descriptor table

26

Figure 2.4: An Adapted Architecture Blocks of the Linux I/O System [17]

27

and the file systems superblock are copied in front of the block group 0. This is used

for the file system recovery and its backup is stored in the group 1. The mkfs.ext4

also stores some additional space for the expansion of the file system.

Inode and bitmaps: The bitmaps are used to give us an indication whether a

block or inode is empty or not. The bitmaps working is as follows: bit 0 is used for

byte 0 if the bit is not set then it means its empty. Every block group contains two

bitmaps, one for the inode and the other for the data blocks. The bitmaps are of size

of one block, the default size of the block is 4KiB thus the bitmaps limits the size of

the blocks in a block group to 128 Mib.

Inode: The inode is a structure that contains the information about the file or

directory. It contains the information like the access permission, the last time it

was changed, the address of the data blocks. The size of the inode in the ext4 data

structure is 256 bytes. The data blocks that are used for storing the inode tables are

pre-allocated during the initialization of the file system to fixed limit. The present

ratio is one inode for every 8KiB of disk. The inode number represents the inodes. It

is with this number that the inodes are located from the block array with any other

additional information.

Directory Block: The directory block is a part of the ext4 that is used for

mapping the files with the paths in which it is located. Thereby allowing the files to

be accessed by their path instead of the inode index number. The directory block is a

link list type of data structure. It contains the inode number, the type and the name

of the file. The directories blocks are in form of the link list because they do not

allow random access to the directory entries .i.e. the directories must be traversed

and searched.

28

Extents: Extents could be seen as index pointer that could hold up 21̂5 con-

tinuous blocks of address information. The size of each block is around 4 KiB. Thus

each extent can handle up to 128 Mib of data. The extent structure is provided

below. Extents find its use in all the files and directories created using ext4. Based

on the setting of the EXT4_ EXTENTS_ FL flag, the i_ node header i_ blocks are

interpreted. If the flag is set then it points to the header of the extent ext4_ extent-

header. The depth of the tree is held in the header structure variable eh_ depth.

If the variable eh_ depth is set to zero, as in the case with the small files, then the

extent points to direct disk block and the i_ node can hold 4 extents along with

its header. This facilitates a direct addressing of 512MiB possible. For large files,

the extents work based on the depth of the tree stored in the header struct. Thus

inside a inode we may have a header followed by four ext4 index id called the ext4

_ extent_ idx, while the index node can access only 4 ext4 _ extent_ idx each ext4

_ extent_ idx points to a leaf node which is a block of 4Kib in size and this could

access about 340 ext4 _ extent_ idx or ext4_ extent. Thus allowing each leaf to

access around 340*128 MiB .i.e, 42.5 GiB. Thus the maximum file size for one block

of size 4KiB is 16TiB.

Journaling: This is done in order to improve the response time and the relia-

bility. It is a cyclic buffer that holds the important data that needs to be preserved

in case of a crash. It works during the recovery by providing consistent data. The

present ext4 has 128 MiB allocated to its file system as a journal. The working of

the journal is as follows: the important data that is to be written onto the disk is

first stored in the journal and once the data from the disk cache is cleared and the

committed flag is set. The journal thread based on its scheduling will try and copy

the contents onto the exact location in the disk. During this slow process if there

29

is a system crash then the journal would be used to get all the data till the latest

committed record. This guarantees that during the midway of the update even if

there is a crash the data could be obtained correctly [22].

It is possible in the ext4 to specify the extent upto which the journal could be

used, whereas in default case only the metadata of the files are stored and could be

retried. The data of the files are not maintained in the journal so after a crash there

is a possibility to lose some file data. But it is possible to allow the journal to back

up all the file data by setting the flag data=journal.

2.6 FileBench I/O Benchmark

A benchmark that is used for storage, the filebench could be used to generate

different types of workload. Using the workload modeling language it is possible to

generate a wide variety of the workload that could be used to analyze the systems

[23]. The main advantage of the filebench is the flexibility that it provides in creating

different kinds of workloads and the ease with which they could be developed. The

filebench by default provides some basic workloads like the mail server, web server

and database server. The added advantage of the filebench is that it could be used

for the micro benchmarking.

2.6.1 Salient Features

•As said before the filebench supports testing of multiple workloads.

•It comes with some predefined workloads like the web, data base and mail

servers.

•The flexibility to add personalities files or custom workloads.

•It has the ability to support multi-threaded and multi-process environment.

•Filebench comes with the ability to support configurable directories depths,

30

widths and even for files to provide a statistical distribution.

•Filebench provides statistical information like the throughput,

latency and also the CPU cycle count per system call.

•Filebench works on all POSIX complainants operating system.

2.6.2 Workload Modeling Language

Filebench works by creating synthetic modeling of the workloads. This can be

used to create the behavior of the applications to a good extent thereby allowing

us to analyze and predict real-time behavior with reduced time. The idea behind

the filebench is to use the models described through its language, to create synthetic

benchmarks that could be used to test the system in a manner much similar to the

real applications [32]. It could be used to measure the performance of the system

using these workloads. In order to simulate a real workload the benchmark works by

creating the exact numbers of processes, thread and memory usage along with the

inter process synchronization as available in the real systems. A description of the

workload is obtained by defining it as a bunch of processes and thread with a defined

work flow. Here every process could be seen as an address space containing many

threads, with each thread specifying a certain sequence of operation. Each operation

is of pre-defined behaviour as read, write etc.

2.6.3 Commands f Language

The commands can be broadly classified into four main categories: commands,

entities, attributes and flowops [23]. The entities constitute the specific resources like

the file and threads. The executing actions are referred as flowops. The commands

control the running of the benchmark. The attributes could be used to pass the

commands to the entities and flowops as parameters.

31

General Commands:

debug: This command is used to decide the level of debugging required. If

debug flag is not zero the output would be provided in a defined format starting with

the process id followed by seconds from the start of the script to the debug message.

By making the flag debug to 0, all the debugging messages could be suppressed. The

default value of debug flag is set to 2, by making the debug flag 3 messages appear

during the flowops with the statistics of the flowops.

Syntax

debug ”level of debug”

echo: As with every other language echo is used to send output to the standard

output. Syntax must be such that message or text within the quotes will be echoed.

Syntax

echo ”information to be printed”

exit: This is the termination command use to stop the filebench

Syntax:

exit

foreach: This command is used to provide variables with values successively

from a string list or a comma separated integer list. This works as simple for loop

by assigning values to a variable and then executing the instructions that are written

within the enclosed brackets.

Syntax:

foreach $testvar in $1,$2

//instructions

32

quit: Command is used to stop the filebench

Syntax

quit

log: This commands prints the value of the variables onto a log file and also to

the terminal. In order to print the variables, they must be placed in the command

line comma separated while the entire list of variables is placed in quotes.

Syntax:

log ”$testvar1,$testvar2”

run: This command is used to execute the filebench it could be supplied with

the time in seconds for which the execution must be run. It resets the static variables

and also initiates all the processes and creates the file set and files. Once it is done it

goes to sleep and gets activated only at the time provided in the first parameter and

stops the process while collecting all the necessary statistics.

run $testvar

create: This command is used to create file sets and processes.

define: used for defining the processes,random variables and the file sets

set variable: This command is used to search for the variable supplied as the

first argument and if found assigns an integer, variable or string value in the variable.

If the variable is not found it creates a variable and then assigns the second parameter.

Syntax:

set testvar = $testvar2| < integer > | < string >

33

shutdown: This command is used to stop the process, list of processes provided.

If there exist no such argument then its an error. Syntax:

shutdown Process | processes

sleep: This command is used to sleep the master process for the specified time .

Syntax:

sleep < integer variable >

system: This command is used to execute the Linux command that is provided

in the quotes.

Syntax:

system ”Linux command”

Entities:

Var: The workload can use variables, where the representation of the variables

is a string of character followed by a dollar sign. The variables could be assigned

values such as an integer, string or boolean by using the set variable. There are two

types of commands regular variable and random variable. Regular variables are user

variables that can be initialized using the set variable. The random variables are used

wherein there is a need for a random value each time it is being used. These variables

could be used as a regular user variables but each time it is used, it returns a random

value.

file: This entity is used to provide information about a single file. They are

defined using the syntax define file followed by the name of the file, the path and the

size of the file. The f language also provides the option of reusing, filling of the file

with null data and to allocate the file in parallel to other files.

34

fileset: This entity is defined using the define fileset command. The define

fileset command provides the functionality to create a group of related files. The

fileset command must provide a name for the fileset command, with its path to the

directory where it must be created. Along with the number of files to be created, their

average size, the depth of the directories and the number of the sub directories that

contains the files of the fileset. The f language also provides the option of reusing,

filling of the file with null data.

Process and thread entities: This entity is used to create a process, like in the

operating system and thread that are contained in the process. The define keyword

followed by process could be used to create processes. It provides the flexibility

to create multiple instances and also providing the nice value to it could change

the priority. The threads of the process are used to hold the attributes and other

information about the operating system process, it is created within a process, it

could be duplicated to multiple threads by specifying it. Threads could also be

assigned regions of memory by specifying it or there is also a possibility for it to use

the IPC shared memory.

eventgen: This is used to specify the rate in which the events must be triggered.

There is only one defined value for the event generator.

Flow operation: The nature of the workload written is controlled by the flow

operations called the flowops. The flowops are written after the defining the threads.

Creating, reading, writing, opening files or filesets are the general flow operations

available. The files are accessed in round robin manner.There is also a possibility in

filesets to specify a specific file index number in the flowops and that file could be

accessed directly. Flowops provides a wide variety of I/O operation. Flowops contains

35

operations like read, write, read whole file, write whole file, append file, append, file

rand, statfile, fsync, fsyncset, deletefile. There are directory flowops like the MakeDir,

ListDir, RemoveDir. Flowops also provides the option to specify asynchronous I/O

operations like the aiowrite.

36

Chapter 3

LITERATURE REVIEW AND RELATED WORKS

There has been a lot of work done to find an I/O scheduler that would be better

suited for the solid state drives. These approaches varies from modifying the existing

hard disk drive inclined schedulers to work better for solid state drives, defining a new

scheduling algorithm. This section is written in order to list few of those approaches

and the algorithms that have influenced the Scheduler that is implemented through

this thesis.

3.1 Solid state drive Based I/O Schedulers:

FIOS: It works in order to provide fair scheduling to all the tasks, it works towards

avoiding the read/write interference problem[25]. To ensure fairness it has it own fair

time slice management, which fragments the quanta of time given to every request

thereby ensuring fairness. It also have I/O requests anticipation to provide fairness.

The other SSD specific scheduler is FlashFQ, this scheduler also works on providing

fairness to all the tasks by using the start fair queuing time. This time is a virtual

time based on which the requests are dispatched [28]. The internal parallelism is also

exploited by sending multiple requests to the same region. The performance of the

FIOS and the Flash FQ on fairness is the same. The Argon scheduler [30] is similar

to the working of the FIOS. It also maintains a fair queuing technique by assigning

a time quanta to each of the workload request. The incoming requests are queued

and when its time to dispatch all the requests from the workload they are sent to the

disk. It is continued till the quantum assigned to it expires. PASS: This scheduler

is a simple scheduler that is designed to exploit the internal parallelism that exists

37

the solid state drive [31]. This is achieved by queuing the request based on their

requested address. The idea is to have multiple queues to dispatch requests. The

Disk I/O Scheduling based on Energy is also discussed in the paper [33]. The sole

idea behind the paper is to estimate the burst size of the request and then use that

measure to schedule the task and remain idle in between the consecutive requests.

3.2 Application Aware Scheduling:

Rialto: This is an interesting attempt to combine both the real-time and non

real-time system programs to co-exist in an architecture[16]. This approach design

involves including both the strict time constrained real-time applications and the

non real-time applications to work together. The scheduling of these tasks takes into

account a factor called the "runbytime". This runbytime is the time by which the task

must be scheduled in order to meet the deadline. SMART as the name suggests, this

scheduler dynamically notifies the application the current load status, thereby making

them aware and adapt to the present situation[24]. It also provides a mechanism to the

user to decide the allocation of resources in case of runnings tasks having same priority.

It dynamically stalls or evicts the real-time tasks in case of an overload. ACIOM:This

is an application based scheduler, that prioritizes the application requesting access

to the disk or the networks based on its request pattern[18]. The scheduler is for the

Android platform and is implemented by modifying the Linux default scheduler the

CFQ.

3.3 Scheduler for Android Working with a Solid State Drive:

The Scheduler that is to be designed must work for Android device that is equipped

with solid state drives. The focus of our implementation is on the I/O Scheduling.

There are various types of the solid state drive scheduling algorithms that are dis-

38

cussed above. There are quite a few algorithms that are mentioned above that could

be used to schedule resources taking into account the behavior of the requester. In

general, the solid state drives perform better with the deadline scheduler of the Linux

kernel. The design decision was to reuse the existing scheduler and combine the two

required features in it. The PASS scheduler was chosen, owing to solution it provides

to the exploit the internal parallelism. Also the compatibility of it with the other

application aware scheduler. The other scheduler that was chosen to be integrated

onto the system is the ACIOM disk scheduler. The reason for this is, the I/O schedul-

ing algorithm that is implemented in this is more focused on Android and meets our

requirements. Thus, the thesis could be seen as the attempt to integrate the fea-

tures of PASS and the ACIOM onto an Android platform and test to see whether the

performance meets the expectations required.

39

Chapter 4

PROBLEM ANALYSIS AND REQUIREMENTS

The Problem that is being attempted to be resolved through this effort is of two folds.

The first problem is focused on improving the bandwidth by increasing the parallelism

in the Android devices that use solid state drive. The other focuses on the need to

make the I/O requests rendering of the Android based on the application which

requests the I/O operations. Rather, than just trying to improve the throughput by

distributing the I/O system resource uniformly.

4.1 Exploiting Parallelism in Solid State Drives

The Android tablets are being attached with solid state drives for a lot of reasons

like the speed, durability and lack of noise. The Android stack has Linux as its

working kernel, and it does not have an I/O scheduler that caters the requirements of

the solid state drives. The I/O Schedulers that are available in the Linux are elevator

based schedulers are more focused towards the memory devices like the hard disk

drives. The elevator approach to the hard disk drive is done so that it can service

the requests better with minimum disk arm movement to avoid latency and wear and

tear of the mechanical parts. The solid state drives as explained in the background

chapter does not have any mechanical or rotating parts and their random seek time

is as good as a sequential seek time. Thus the I/O Schedulers that are available in

the Linux kernel although doesn’t affect the working of the solid state drives in the

system they do not do any good either.

40

4.1.1 Schedulers for Solid State Drives

From the reasons mentioned above, it is clear that there is a need for a scheduler

that could cater the solid state drives and exploit the parallelism that is offered by

it. The following could be seen as the requirements that would be ideal for a new

scheduler.

• Should not contain any elevator type approach

• Should be able to cater all the memory devices

• Need to exploit the parallelism available in the solid state drives.

• The solid state drives need sorting to increase the throughput as random reads

are slower in solid state drives.

• Allow the writing and reading but avoid the read write interference problem.

• No changes must be done in the Android framework.

The reason for choosing these requirements is as follows

Solid State Drive and Elevator Approach The elevator algorithms are de-

veloped in order to cater the hard disk drives, the elevator algorithm makes sure

that the request are serviced in sequential order. Elevator algorithm also supports

a backward movement but only upto a certain limit. The reason for this being very

advantageous to the hard disk drive is because the mechanical movement of the arm

that read the disk plates takes time and it is always faster to service request with

minimum arm movement. The other reason is if there is a request that is on the

other side of the disk then the mechanical arm will have to travel more distance.

More distance causes further delay. Thus taking advantage of the principal locality

41

the hard disk drive performs better with elevator algorithms. This would not be the

case with the solid state drives as it does not have any delay to get the requests from

any block. Hence, the algorithm to be used on the solid state drives need not worry

a lot about the principle of locality.

Exploiting Parallelism in Solid State Drive The background chapter clearly

explains the inherent features of the solid state drives and their addressing modes.

The solid state drives exhibit package level, die level and even plane level parallelism.

So it is possible to make multiple planes work in parallel to gain more throughput.

But the existing schedulers are unaware of it. The solid state drives also have a flash

translation layer along with a buffer manager that is used for caching request and

buffering the data based on the request. It tries to find the pattern of the request

and prefetching the data. Hence sorting the request would yield a better result with

the solid state drives.

Read Write Interference The read write interference problem in the solid

state drives happens when the read operation and the write happen in the parallel.

Due to background operations like cleaning or writing from the cache buffer, due to

buffer constraints there could be conflicts between read and write. Though there are

few existing I/O scheduling algorithms that avoid this by dispatching the request in

separate queues, not all schedulers have something like this implemented.

4.2 Application Aware I/O Scheduler

Android provides an open source software for smart devices, which includes the

Linux kernel, Java application and the middle layer. The middle layer is responsible

for providing the services that are requested by the application and it is also responsi-

42

ble in providing the system libraries that are needed by the Application. The Android

along with the middle layer maintains a good amount of information about the appli-

cation. These includes its request to the resources like camera, media service, other

information like applications is running in foreground or background. These infor-

mation are not available to the Linux kernel. This results in the bursty application

running in the background to receive the major share of the bandwidth and thereby

starve the application running in the foreground. This will result in poor Quality

Of Service to the end user. Adding to this there could be a unresponsiveness in the

device caused due to the non-serviced requests from the foreground application or

could cause a lag. Thus, there must be some mechanism to monitor the application

bandwidth usage.

4.2.1 Features Required in an Application Scheduler

The paragraph above focused on the need for the I/O Scheduler that enhances

the QoS of time sensitive application.

The requirement for such a scheduler should be:

• Able to characterize the applications and assign requests based on their type.

• Should make sure that the time sensitive application are serviced within time

• Fairness among the time sensitive application must be maintained.

• The other application running in the background should not starve

• If the request is only from the background process they should be serviced

without any delay.

• No changes must be done in the Android framework.

43

Though the reason for choosing the above requirements are self-explanatory here

some more justification for these requirements

Characterize Application The scheduler must be able to do this because the

priority assignments should be done only, based on the type of the application that

need the requests.

Service in Time The scheduler should be responsive to the task that needs its

request to be serviced within a fixed interval. For e.g. the media player, its request

must be serviced with a specified time to avoid lag or distortion.

Fairness The scheduler must be fair to the application of the same type, this is

also crucial because we cannot allow two applications running with the same specifi-

cations being serviced differently.

Starvation The scheduler must not cause the starvation of the background ap-

plications, they must run with lower priority but still should receive their request

within due time. It is also the responsibility of the scheduler to allow the tasks to

access the maximum bandwidth, if it is the only application running.

This algorithm makes the effort to bring those application details on to the Linux

kernel and thereby make the I/O system’s resource management of the kernel, take

into the account the nature of the application. The algorithm suggested does not

involve any changes in the application or the service layers. It characterizes the

applications based on the services that it requests as time sensitive and bursts or

plain. The idea of this scheduler is to provide a maximum bandwidth reservation

for the time sensitive applications and put a limit on the bandwidth allocated to the

44

bursty applications. The effectiveness of the algorithm lies in the management of the

I/O system resource when the time sensitive and the bursty applications are running.

45

Chapter 5

THE DESIGN OF CONTEXT-AWARE SSD I/O SCHEDULER

The Design of the our I/O Scheduler combines the effect of the parallelism in the solid

state drives and includes application awareness during I/O scheduling. The scheduler

must be integrated onto the Linux kernel that would work on the Android systems.

The idea is to modify any one of the existing schedulers in order to integrate these

above features on to the Linux kernel. The best candidate for this is chosen to be the

deadline scheduler, the reason for choosing this Deadline scheduler is as below:

• It is simple and easy to adapt.

• It has separate data structures for handling both read and write.

• It has both time-based as well as address based sorting structures.

• It has a deadline associated with each request that could be used to guarantee

fixed response times.

5.1 Concept of the Solid State Drive I/O Scheduler

The suggested scheduler is focused towards the solid state drives and the paral-

lelism in it. The algorithm suggested here partitions the disk into subregions spec-

ulatively and then attaches a queue that could be used for dispatching the request

to those regions. The requests are placed in the corresponding queues based on the

addresses of the blocks being requested. The sub queues are serviced in a round robin

manner one after the other [31]. The relationship between the addresses requested

and the parallelism that exists within the solid state drives are utilized effectively

46

through this algorithm. The results convey the same. In addition to this, the algo-

rithm also enhances few other features of the solid state drives like the lifetime and

reduction of the read-write interference [25]. The life-time of the solid state drives are

improved by sorting the requests and thereby reducing the number of random writes

which enhances the life of the solid state drive. The read-write interference problem

is resolved by having a specific queue for each of the operations.

5.1.1 Design Details

The idea as mentioned above is to split the entire disk region into a number

of subregions of each fixed size, such that each subregion exploits the parallelism

intrinsically present in the solid state drives. The requested address is used as an

indicator to place them in the expected queues. The internal implementation of the

scheduler includes two FIFO lists that are used to track the request based on the

arriving times and two red black trees to track the same request, but sorted by the

requested address. The data structure maintained here contains two of each type

in order to handle read and write separately. The incoming request is placed on

both the data structures. The servicing of the requests is done in the round robin

manner. The assumption here is that the request would fall into different queues and

therefore would be serviced in parallel by the underlying solid state drive. The idea

of dividing the entire disk into number of subregions comes from the fact that the

inherent parallelism in the solid state drive is optimal only for a fixed defined number

of requests. Anything more, would degrade the performance. In other words, the

subregion or the flash package can best serve only a fixed requests simultaneously. If

the number of the requests exceeds the optimal point then, the performance would

degrade due to resource contention [14]. The creation of these subregions would

provide us with the ability to successfully control the number of requests that could

47

be send to each subregion. By switching to another queue, we would be able to avoid

overcrowding. The switching to another queue allows requests to be served in another

queue within the same time thereby increasing performance, which otherwise must

be spent on waiting for the over requested queue to be completed. To explain this

lets assume that the maximum number of requests that could be serviced within a

subregion is "A". If there are two requests "A1" and "A2" such that both are greater

than A and let us assume that the requests fall in two different subregions "Q1" and

"Q2" respectively. Then it is possible with our algorithm to service a part of "A1"

that is equal to A and then by switching to another queue "A2" to service some more

request. This approach is not possible in the existing algorithms which can service

only "A" requests in one region at a given time.

Deciding the Optimal Subregion Space: This is one of the important pro-

cedure of the entire algorithm. The ideal size is determined by running tests on the

solid state drive. The test is carried out by sending multiple requests on to the same

region. By varying the size of the region and the number of requests being sent to

it, the ideal point is obtained. Plotting the performance curve between requests and

region sizes the optimal point gives us the region size and the batch value for every

queue.

Creation of the Subregion: The algorithm calculates the total disk size. The

splitting of the request based on the queue is done as following: let us say the total

size of the disk is A in sectors and the size of the subregions is L in sectors. Then the

total number of the queues that would be needed is A+L-1/L. The address regions

for all the queues ranging from 0 to A/L would be (L*c,(c+1)*L-1). Where "c" is

an index ranging from 0 to A/L. Whenever there is, a request received its address is

48

Figure 5.1: An Solid State Drive Scheduler for Internal Parallelism[31]

49

divided by the sector size of the subregion "L" and the corresponding number is the

queue’s index. The corresponding data is placed onto that queue’s linked list and the

red black tree.

The Request Handler and Mechanism to Avoid Interference: As men-

tioned before, there are several data structures that are used to track the request

based on their requesting address. The two FIFO lists handle the requests based

on the arrival order one for read and the other for write. The two red black trees

are for ordering the requests based on the accessing order. Each incoming request is

assigned with a deadline in order to serve the request, avoid starvation and guarantee

responsiveness. The idea of the deadline is to try and make the request be serviced

within that specified time. This servicing is achieved by monitoring the FIFO lists

for their deadline expiry. The usage of the red black tree is to provide a sequential

access pattern to the solid state drives which could improve the life of the solid state

drives.

Dispatching the Request: The dispatching of the request happens by selecting

the dispatching queues in a round robin manner. During the dispatch of a sub queue,

based on the direction of the previous request, it continues in the same request order

and dispatches the request, then changes its direction in the coming turn. There

exist two conditions wherein the dispatch queue moves to another queue, when the

dispatching queue is empty or the case when the number of requests it has dispatched

exceeds the batch value. The idea of individual queues and batching avoids the read-

write interference problem and also exploits the inherent parallelism that exists.

Read-write Interference Avoidance: The dispatching of the request follows

the read-write request handling in such a way that the interference problem is avoided.

50

The dispatching queue checks if there are any pending request in its queue. If any

request is found then it is serviced, provided the number of requests serviced in this

queue is less than it batch value. If the request exceeds the threshold or there are no

more requests in the queue, then the request pattern is changed from the previous one

i.e. if the previous request was read then it is changed to write. Then the next queue

is checked for the pending request in the write queue, if there are any requests they

are serviced. If the requests in that direction do not exist or the number of requests

exceeded the threshold, then it changes the direction of dispatching the request back

to read and checks the next queue. On a closer look, we could understand that the

request queues are serviced in the direction opposite to the adjacent queue. This

avoids the read-write interface problem in the solid state drives.

5.2 Concept of the Application Aware I/O Scheduler

The I/O Scheduler suggested makes the effort to bring the application awareness

on to the Linux kernel. Thereby make the I/O system’s resource management of the

kernel to taken into the account the nature of the application. It does not involve any

changes in the application or the service layers. It characterizes the applications as

time-sensitive or bursty or plain, based on the services that it requests. The idea of

the algorithm is to provide a maximum bandwidth reservation for the time-sensitive

applications and put a limit on the bandwidth allocated to the bursty application.

The effectiveness of the algorithm lies in the management of the I/O system’s resource

during the situation when both time-sensitive and bursty applications are running.

5.2.1 Design Details

This section describes the design to be adapted on the I/O scheduler to make

it a priority based, with a bounded time guaranteed I/O operations to the time-

51

sensitive application. This algorithm would provide a prompt and fixed delay bounded

responses to the user interactive tasks and thereby improve the quality of service to

the end user. The first part of this section attempts to provide an insight into how

the applications are characterized as time-sensitive, bursty or plain.

Classification of the Application Type Based on the Services: The appli-

cations are characterized by their I/O requests access pattern as plain, bursty or time-

sensitive. Applications could be said time-sensitive if they impose some restrictions

on the timing requirements of the I/O requests. The video player is time-sensitive as

it expects the data available to it at a particular rate of frames, any delay would cause

a lag in the appearance of the video. Bursty requests are those type of applications

that would make huge chunks of request in a bursty manner. A typical example of

such an application would be a download manager service or a storage service. The

plain type of applications would be services like power management which are not

that intensive. There are few other application that are intensive when they are in

the foreground while when in the background they are bursty, an example for that

would be the SQL service. If this works for the foreground application then, it is

time-sensitive,background then it is a bursty application.

Information Provided by Android to Characterize the Application: The

application by itself does not provide any information to the Linux kernel about its

nature. This makes it difficult for the Linux kernel to differentiate. The advantage of

Android platform in this context is that it provides us with the information about the

services that are being requested by the application. Based on that the characteristics

of the application are derived. For example, an application that uses the download

manager service routine could be seen as a bursty application. The download man-

52

ager requests data in the bursty fashion both the disks and the networks are affected

by these bursty requests. While, on the other hand, a foreground running app like a

game could be seen as a time-sensitive app when it requests data from the disk for its

processing. Thus, the classification is brought about in the application by deciding

the type of services that are being requested by these applications.

5.2.2 Algorithm

The algorithm should be able to reserve bandwidth for time-sensitive applications

and at the same time restrict the bandwidth to the bursty applications. The amount

of bandwidth that could be allocated to the time-sensitive application, in order to

execute it smoothly and avoid any performance loss is not known. Through the

algorithm, the bandwidth based on the previous request size and the time allocated

for the requests is estimated. The algorithm takes a count of the disk requests along

with its size. The algorithms first calculates the estimated time by which the present

disk request should be serviced. For this it measures the arrival time of the requests,

the requests size. The projected time period is represented as a weighted combination

of the previously available values and the new data. Mathematically: If Ri represents

the ith request by an application that is time-sensitive. Let Ei be the arrival time of

the request and RSi be the request size. Then the projected time by which it must

be serviced is given by

T i = λ ∗ T i−1 + (1− λ) ∗ Ei − Ei−1

Here T 0 represents the default time period set for read in the scheduler. The arrival

time of the first instance is calculated as E0 = E1 − T 0. λ is a history quotient it

determines the how much previous value must be considered. It ranges from [0, 1].

53

The request size is measured for the ith request as follows

RSi = γ ∗ RSi−1 + (1− γ) ∗RSi

. Here the RS0 is RS1, where RS1 is the first size requested by the application i.

The parameter γ similar to λ. The bandwidth BW i is the measure of the quantity

that the application requests on an average for its working[29].

BW i = T i ∗RSi

Once the estimation of bandwidth for each application is available, the next task is

to assign this bandwidth. In order to do it, the application’s request size RSi is to

be serviced within the time interval of T i. This is achieved by using the deadline

parameter attached to every request when inserted into the I/O schedulers queue.

Thus, the required bandwidth is attached to every request from a time-sensitive

application as below

Di = Di−1 + T i

. Here Di is the request’s deadline of the ith request and the initial value D0 is

made equal to A1. Thus, by making sure that the ith request from the time-sensitive

application is handled before its assigned deadline Di the bandwidth of minimum Bi

is provided to the application.

Bursty Request The bursty application, on the other hand, tends to con-

sume all the available disk bandwidth, when they are scheduled which affects the

time-sensitive application. Hence, a limit is placed on the bandwidth of the bursty

applications such that a reserved bandwidth is always available for the time-sensitive

application. The implementation involves maintaining a separate queue for bursty

applications and all the bursty applications are placed in this queue for some default

time and are then inserted into one of the I/O request queues.

54

The release time of these applications is decided based on the available remaining

bandwidth once it has been allocated to all the time-sensitive applications. The total

remainder bandwidth is first calculated and then equally distributed to all the bursty

applications. This ensures that the application that are time critical receives the

bandwidth required.

Bursty Request Bandwidth Allocation: Calculating the remaining band-

width is done as follows

BWR = TBA− σ ∗Bi + SB

TB

where BWR is the remaining bandwidth, TBA is the total maximum bandwidth

possible in the system, T: the number of time-sensitive tasks and B; number of bursty

tasks. Bi stands for the aggregate of the total bandwidth consumed by the time-

sensitive application and SB is the safety reserved bandwidth.

Once the remaining bandwidth is obtained, the next task is to assign the band-

width to the bursty applications. In order to do this, the average request size is

needed. This is obtained in a similar way as the time-sensitive application.

BSi = ε ∗ BSi−1 + (1− ε) ∗BSi

Where the BSi is the average requested size of the bursty application and BSi is

the actual size. Once the average request is calculated, it is used to find a number

of bursty request that could be serviced. This is obtained as Qi = BWR/ BSi, this

value is used to adjust the release time of the bursty applications.

RBi = RBi−1 + 1
Qi

. The value of RB0 = E1 − T 1.

55

Chapter 6

IMPLEMENTATION

The Linux kernel’s block layer is modified in order to implement the algorithm. The

deadline scheduler is modified in order to incorporate the change. The reason for

choosing this scheduler is, it is better suited to include both the Android specific and

the solid state drive specific algorithms. The Linux kernel version 3.0.05 was chosen

for the modification. The Android version used for testing the algorithm is Jelly

Bean 4.3. The test setup was build on SABRE SD from Freescale. The board has the

following configuration: Freescale i.MX 6Quad, 1 GHz processor based on the ARM

Cortex A9 core, 1 GB DDR3 SDRAM, 7-pin SATA data connector and 8GB flash

memory storage. A 8GB solid state drive was connected via the SATA connector to

the setup.

6.1 Solid State Drive I/O Scheduler

Experimental Setup: The solid state drives used is a Seagate 8GB in size, the

sub region size for the solid state drive algorithm is decided by using the filebench

benchmark. The exact sub region size is decided by modifying the workload fivestream-

read. This workload contains five threads reading onto five different files. The file is

changed to make the five threads read the same file. Slowly the size of the file and

the number of threads is increased. A graph is plotted between the file size and the

number of threads the point, which is optimum, is chosen. The optimal point gives us

the size of the sub region and the batch value of that region. After our analysis, for

the solid state drive we found that the optimal point is at 2GB and the batching size

is 16. So the entire sector size of the solid state drive is created into the sub regions

56

of size 2GB each, and the inherent parallelism is exploited using it. The filebench

provides us with workloads of various types like the varmail, webserver, fileserver and

the database, these workloads, as explained before could be used to emulate the exact

conditions of the real workloads that exist in the systems.

6.2 Application Aware I/O Scheduler

Experimental Setup: The application aware scheduler needs to be configured

with the below parameters. The TBA the total bandwidth available with the solid

state drive this is taken from the specification of the disk and cross checked by running

a micro bench of sequential read. The SB is the safety bandwidth and it was decided

to be 0.1 times the value of the TBA. The values of λ and γ are chosen to be 0.99

to account for the previous value as much as possible. The exact value of λ is chosen

by repeated tests with various values ranging from 0.5 to 0.99. The default request

deadline is based on the Linux kernel provided along with the board. The default

request deadline was set to 50ms. The modification in the Deadline Scheduler required

for implementing the application aware I/O Scheduler are the following: Two hashmap

data structures one for the time sensitive application and the other for the bursty

application was created. The hashmap data structure was implemented using the

support functions provided in the Linux kernel. These structures hold the deadline

information that are added to the request blocks when it is inserted into the queue.

These data structures along with the deadline also maintains the bandwidth and

the request sizes, these are used for the calculation. The insertion of the modified

deadline is done at the "deadline_ add_ request" interface exposed by the elevator.

The decision of selecting the dispatch queue is taken by the "deadline_ dispatch_-

requests", which is modified to allow insertion of the bursty requests on to the request

queue along with updating the dispatch request.

57

Chapter 7

EVALUATION

The Two algorithms the solid state drive parallelism and the Application awareness

are combined in the deadline scheduler. The resultant scheduler has the features to

exploit the parallelism in the solid state drives and schedule the I/O requests based on

Application characteristics. The implementation mentioned in the previous chapter

was tested.

7.1 Test Results from Solid State Drive I/O Scheduler

In order to test the solid state drives parallelism exploits, the filebench test works

loads were used. The Comparison is made between the present default Linux scheduler

the CFQ against our scheduler. The workloads used and their characteristics are

defined:

fileserver: This workload could be closely related to the general workload of

all mobile application. This workload does the following operations it creates files,

deletes files, append files, read and write and has some attribute operations performed

on the directory tree provided. It works by using up to 50 threads, It works similar

to the specsfs benchmark.

webserver: This workload as the name explains emulates the web-server. It has

around 100 threads that open read and close multiple files in the directory mentioned.

It is a basic functionality repeatedly performed.

58

mailserver: This off the shelf workload is called the varmail. The mail server

store files(e -mails) in a particular directory referred as the server. The operations

that are performed consists of reading, deleting, create-append-sync, read-append-

sync. There were 16 threads used and it resembles the postmark bench with multi-

threading enabled.

proxywebserver: This workload is similar to the webserver with the additional

operation of appending the files to simulate the logs generated in the proxy servers.

Like the webserver, it has 100 threads created by default.

Table 7.1: Workload Analysis for CFQ and Our Scheduler

S.No Workload CFQ(in OPS) OurScheduler(in OPS)

1 FileServer 3795.235 4039.433

2 webserver 4697.863 4720.331

3 Mailserver 4640.463 4722.6

4 ProxyWebserver 723.7 907.712

These workloads are considered because the are the closest the mobile application

workloads. The workloads are ran in both the CFQ scheduler and our scheduler the

table below gives the measure of operations per second performed. The table below

provides the information about the behavior of the schedulers to the workloads

From the table and the figure it is clearly seen that our I/O Scheduler outperforms

the CFQ in all the workloads thereby making it better suited for the devices fixed

with the solid state drives. The main reason for our scheduler to perform better is

because of selecting the exact sub region size and thereby allowing the requests to be

serviced in parallel.

59

Figure 7.1: Workload Analysis of the CFQ(Default Linux Scheduler) and Our Sched-
uler

7.2 Test Results Application Aware I/O Scheduler

The Second part of the algorithm is focused on improving the responsiveness of the

time sensitive application. The experimental setup consists of the two applications,

the first application is a media player the Mx player: A free mobile app chosen for the

testing purpose, the other application is a custom app called the IOREAD: It spawns

a thread and reads a file sequentially in the background. The IOREAD app is written

in JNI and C combined with the Java interface to provide the app like behavior. The

test conditions is as follows, first the IOREAD app is ran and it makes sequential

reads, after some time the media player is made to play a video. The Blktrace is used

to measure the request traces posted by both the applications. The Blktrace traces

are later post-processed using Blkparse and a parsing script, to get the exact request

posted by each of the application. Two different quality of videos are used for the

test purpose one video is 320x240 px and the other has a resolution of 1080px.

60

Figure 7.2: Cdf of the CFQ(Default Linux Scheduler) and Our Scheduler for the
Media Player Playing Video of 320 Px Resolution

Figure 7.3: Cdf of the CFQ(Default Linux Scheduler) and Our Scheduler for the
Media Player Playing Video of 1080px Resolution

61

The results are shown using the cumulative distribution function. The reason for

choosing this distribution is that the request sequence and batching varies based on

the type of the schedulers used and a direct comparison between these two schedulers

could not be obtained using latency measurements.

The above two graphs shows the performance improvement with our scheduler in

comparison to that of the CFQ. The latency measurement clearly shows that for any

given video quality the performance of our scheduler stands out. The background

task chosen is sequential continuous read. The reason for the faster response with our

scheduler is because the video application is considered as a time sensitive application

and allocated the resource first and then the background tasks receive the remaining.

7.3 Conclusion

Through the thesis an I/O Scheduler is developed, it provides us with a better

performance and exploit the inherent parallelism in the solid state drives. It also

improves the responsiveness of the applications based on their services they request.

The inherent parallelism of the solid state drives are exploited using the exact sub-

region size and dispatching requests to those regions based on the request address.

Thereby, making them work in parallel. Since, the requests are being sent unidi-

rectional, after they are sorted it provides a solution to the read-write interference

problem. The results on the workloads have shown that out scheduler outperforms

the CFQ scheduler. The second part of the scheduler is focused on improving the

responsiveness of the mobile system for time sensitive applications. The results show

that we are able to provide better responsiveness to the time sensitive application

even during the existence of the background bursty application. Our scheduler com-

bines the effects of parallelism in the solid state drives and better scheduling of the

62

time sensitive applications. This is better suited for the Android system attached

with solid state drive.

63

Chapter 8

FUTURE WORK

The I/O scheduler has been designed, implemented and tested successfully the future

works that should be handled are as explained below:

The area that must be next focused is the networks. The application awareness

that has been brought about in the I/O scheduler could be extended to the networks.

The present network scheduler used in the Linux kernel is not application aware and

works by serving the requests in the FIFO order. This would result in degraded

performance on a n online game when in the background some downloading happens.

By making the network scheduler aware of the application, we can avoid this problem.

The other area that could be focused is pre-launching of the application in the

Android. Based on the context like the location, activity decision could be made

to pre-launch the apps. For e.g. based on the location say at home few apps like

the Games, Facebook and youtube could be pre-launched thereby avoiding the time

taken to load the application. Similarly, when a person is running the exercise apps

or the music apps could be pre-launched. These exact apps to be launched can be

configured based on the user’s request.

64

REFERENCES

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems:
Three Easy Pieces. Arpaci-Dusseau Books, 0.80 edition, May 2014.

[2] Jens Axboe. Trees ii: red-black trees, January 2002. URL https://www.kernel.
org/doc/Documentation/block/cfq-iosched.txt.

[3] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. 3.0 edition,
2005.

[4] A. D. Brunelle. Block I/O layer tracing: blktrace. In Gelato-Itanium Conference
and Expo, April 2006.

[5] Alan D Brunelle. blktrace user guide, February 2007. URL http://www.cse.
unsw.edu.au/~aaronc/iosched/doc/blktrace.html.

[6] Alan D Brunelle. btt user guide, April 2007. URL http://stderr.org/doc/
blktrace/btt.pdf.

[7] Mingming Cao, Suparna Bhattacharya, and Ted Tso. Ext4: The next genera-
tion of Ext2/3 filesystem. In Linux Storage & Filesystem Workshop,February.
USENIX Association, 2007.

[8] Feng Chen, David A. Koufaty, and Xiaodong Zhang. Understanding intrinsic
characteristics and system implications of flash memory based solid state drives.
In Proc of the 11th International Joint Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’09.

[9] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential roles of exploiting in-
ternal parallelism of flash memory based solid state drives in high-speed data
processing. In 17th International Conference on High-Performance Computer
Architecture, 2011.

[10] Jonathan Corbet. Trees ii: red-black trees, June 2006. URL http://lwn.net/
Articles/184495/.

[11] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson, Eitan
Yaakobi, Paul H Siegel, and Jack K Wolf. Characterizing flash memory: anoma-
lies, observations, and applications. In Microarchitecture, 2009. 42nd Annual
IEEE International Symposium on.

[12] Chang-Hung Hsieh, Yu-Yu Chen, Chih-Chieh Yang, Shih-Lung Chao, and Hung-
Yu Wei. POSTER: A smart scheduling mechanism for energy saving in Android
system. In Proc of the 10th International Conference MobiSys ’12. ACM.

[13] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shu Ping Zhang. Per-
formance impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity. In Proc of the 25th International Con-
ference on Supercomputing, 2011.

65

https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
http://www.cse.unsw.edu.au/~aaronc/iosched/doc/blktrace.html
http://www.cse.unsw.edu.au/~aaronc/iosched/doc/blktrace.html
http://stderr.org/doc/blktrace/btt.pdf
http://stderr.org/doc/blktrace/btt.pdf
http://lwn.net/Articles/184495/
http://lwn.net/Articles/184495/

[14] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren. Exploring
and exploiting the multilevel parallelism inside SSDs for improved performance
and endurance. Computers, IEEE Transactions on, June 2013.

[15] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O. In Proc of the
18th ACM SOSP ’01. ACM, 2001.

[16] Michael B. Jones, Paul J. Leach, Richard Draves, and Joseph S. Barrera III.
Modular real-time resource management in the rialto operating system. In 5th
Workshop on HotOS-V, 1995.

[17] M.Tim Jones. Anatomy of the linux file system, October 2007. URL http:
//www.ibm.com/developerworks/library/l-linux-filesystem/.

[18] Hyosu Kim, Minsub Lee, Wookhyun Han, Kilho Lee, and Insik Shin. Aciom:
application characteristics-aware disk and network I/O management on Android
platform. In Proc of the 11th International Conference on EMSOFT, 2011.

[19] Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and
Sam H Noh. Disk schedulers for solid state drivers. In Proc of the 7th ACM
international conference on Embedded software. ACM, 2009.

[20] Robert Love. Kernel korner - I/O schedulers, February 2004. URL http://www.
linuxjournal.com/article/6931.

[21] Robert Love. Linux kernel development, August 2010.

[22] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex
Tomas, Laurent Vivier, and Bull S. A. S. The new ext4 filesystem: current status
and future plans. In Ottawa Linux Symposium, 2007.

[23] Richard McDougall and J Mauro. Filebench tutorial. Sun Microsystems, 2004.

[24] Jason Nieh and Monica S. Lam. The design, implementation and evaluation of
SMART: A scheduler for multimedia applications. SIGOPS Oper. Syst. Rev.,
31, October 1997.

[25] Stan Park and Kai Shen. FIOS: a fair, efficient flash I/O scheduler. In Proc of
the 10th USENIX conference on FAST, page 13, 2012.

[26] Abhishek Rajimwale, Vijayan Prabhakaran, and John D. Davis. Block manage-
ment in solid-state devices. In Proc of the 2009 Conference on, USENIX’09.

[27] Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Android Ap-
plication Development: Programming with the Google SDK. O’Reilly Media, Inc.,
1st edition, 2009.

[28] Kai Shen and Stan Park. FlashFQ: A fair queueing I/O scheduler for flash-based
ssds. In USENIX Annual Technical Conference, 2013.

66

http://www.ibm.com/developerworks/library/l-linux-filesystem/
http://www.ibm.com/developerworks/library/l-linux-filesystem/
http://www.linuxjournal.com/article/6931
http://www.linuxjournal.com/article/6931

[29] Cheng-Han Tsai, Edward T.-H. Chu, and Tai-Yi Huang. Wrr-scan: A rate-
based real-time disk-scheduling algorithm. In Proc of the 4th ACM International
Conference on EMSOFT ’04.

[30] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger.
Argon: Performance insulation for shared storage servers. In 5th USENIX Con-
ference on FAST 2007.

[31] Hua Wang, Ping Huang, Shuang He, Ke Zhou, Chun-hua Li, and Xubin He. A
novel I/O scheduler for SSD with improved performance and lifetime. In IEEE
29th Symposium on MSST, pages 1–5, 2013.

[32] Andrew Wilson. The new and improved filebench. In Proc of 6th USENIX
Conference on File and Storage Technologies, 2008.

[33] Youjip Won, Jongmin Kim, and Wonmin Jung. Energy-aware disk scheduling
for soft real-time I/O requests. Multimedia Syst., 13, 2008.

67

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation

	BACKGROUND
	Fundamentals of Flash Memory
	Solid State Drive Architecture
	Flash Commands and Basic Operations
	Parallelism in Solid State Drives

	Details on Android
	Foreground and Background Processing

	I/O Scheduler
	Basic Types of I/O Scheduler
	Linux I/O Schedulers

	Blktrace: Linux I/O Operations Tracing Tool
	Blkparse
	Blktrace and Our Research

	Ext4 Filesystem of Linux
	Fundamentals of Ext4
	Virtual File System
	Ext4 File System Organization

	FileBench I/O Benchmark
	Salient Features
	Workload Modeling Language
	Commands f Language

	LITERATURE REVIEW AND RELATED WORKS
	Solid state drive Based I/O Schedulers:
	Application Aware Scheduling:
	Scheduler for Android Working with a Solid State Drive:

	PROBLEM ANALYSIS AND REQUIREMENTS
	Exploiting Parallelism in Solid State Drives
	Schedulers for Solid State Drives

	Application Aware I/O Scheduler
	Features Required in an Application Scheduler

	THE DESIGN OF CONTEXT-AWARE SSD I/O SCHEDULER
	Concept of the Solid State Drive I/O Scheduler
	Design Details

	Concept of the Application Aware I/O Scheduler
	Design Details
	Algorithm

	IMPLEMENTATION
	Solid State Drive I/O Scheduler
	Application Aware I/O Scheduler

	EVALUATION
	Test Results from Solid State Drive I/O Scheduler
	Test Results Application Aware I/O Scheduler
	Conclusion

	FUTURE WORK

	REFERENCES

