
Path Selection Based Branching for Coarse Grained Reconfigurable Arrays

by

Shri Hari Rajendran Radhika

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved September 2014 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Jennifer Blain Christen

Yu Cao

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

Coarse Grain Reconfigurable Arrays (CGRAs) are promising accelerators capable of

achieving high performance at low power consumption. While CGRAs can efficiently

accelerate loop kernels, accelerating loops with control flow (loops with if-then-else

structures) is quite challenging. Techniques that handle control flow execution in

CGRAs generally use predication. Such techniques execute both branches of an

if-then-else structure and select outcome of either branch to commit based on the

result of the conditional. This results in poor utilization of CGRA′s computational

resources. Dual-issue scheme which is the state of the art technique for control flow

fetches instructions from both paths of the branch and selects one to execute at

runtime based on the result of the conditional. This technique has an overhead in

instruction fetch bandwidth. In this thesis, to improve performance of control flow

execution in CGRAs, I propose a solution in which the result of the conditional

expression that decides the branch outcome is communicated to the instruction fetch

unit to selectively issue instructions from the path taken by the branch at run time.

Experimental results show that my solution can achieve 34.6% better performance

and 52.1% improvement in energy efficiency on an average compared to state of the

art dual issue scheme without imposing any overhead in instruction fetch bandwidth.

i

DEDICATION

To my parents, for their unconditional love and support.

ii

ACKNOWLEDGEMENTS

I am thankful to Prof. Aviral Shrivastava for giving me an opportunity to work on

this thesis. I would like to express my sincere gratitude to him for his pin point

criticisms and probing questions that enabled me to develop a solid understanding of

the subject and instilled in me an attitude of not to settle for mediocrity. I am

grateful for the valuable feedback, and the expertise provided by him.

I am thankful to Prof. Sarma Vrudhula for being friendly and approachable and

letting me use his lab resources required for the experimental results of this thesis.

I am thankful to my colleagues Mahdi Hamzeh, Dipal Saluja, Reiley Jeyapaul and

Bryce Holton for the technical discussions we had and for providing constructive

criticism of my work in good faith since the initiation of this work. I would also like

to thank my friends Sivaseetharaman and Sathish Kumar for their support for the

completion of this thesis.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK . 5

2.1 Partial Predication. 7

2.2 Full Predication . 8

2.3 Dual Issue. 9

3 LIMITATIONS OF EXISTING TECHNIQUES . 12

4 PROPOSED APPROACH: PSB . 14

4.1 What Must the Compiler Do? . 16

4.2 Problem Formulation . 19

4.3 My Heuristic . 22

5 EXPERIMENTAL RESULTS . 26

5.1 Experimental Setup . 26

5.2 PSB Achieves Lower II Compared to Existing Techniques to Accel-

erate Control Flow . 26

5.3 PSB Architecture has Comparable Area and Frequency with Exist-

ing Solutions . 30

5.4 PSB Achieves Higher Energy Efficiency Compared to Existing Tech-

niques . 30

5.5 Instruction Memory Overhead in PSB is Tolerable 32

6 SUMMARY . 34

REFERENCES . 35

iv

LIST OF FIGURES
Figure Page

1.1 A 4 × 4 CGRA. A PE Consists of an ALU and Two Register Files, Data

 Register File to Hold Data and a Predicate Register File Store Predicate

 Values (Result of Conditional Expressions) . 1

2.1 (a) Shows a Simple Loop Body, (b) Shows a 2 × 2 CGRA with Torus

 Interconnection, (c) Shows the DFG for a Loop Body in (a), (d) A Valid

 Mapping for the DFG in (c) . 5

2.2 (a) Shows a Loop Body with Control Flow, (b) Shows the Loop Body after

 SSA Transformation. 6

2.3 (a) Code Transformation for Partial Predication Scheme, (b) Shows Cor-

 responding DFG for the Partial Predication Transformation, (c) Shows

 a Valid Mapping Obtained for the DFG on a 2 × 2 CGRA, the II Obtained

 is 3. 7

2.4 (a) Shows the Transformation for Full Predication Scheme, (b) Shows

 Corresponding DFG for the Full Predication Transformation, (c) Shows

 a Valid Mapping Obtained for the DFG on a 2×2 CGRA. The II Obtained

 is 5 . 8

2.5 PE Architectural Template for Full Predication Scheme 9

2.6 (a) Shows the DFG after Packed Node Formation (b) Shows a Valid

 Mapping Obtained for the DFG on a 2 × 2 CGRA. The II Obtained is 3. 9

2.7 PE Architectural Template for Dual Issue Scheme . 10

4.1 A Valid Instruction Arrangement for PSB . 15

v

Figure Page

4.2 Architectural Support for the Proposed Approach. The Branch Parameters

 and Outcome is Communicated to the Instruction Fetch Unit (IFU) to

 Issue Instructions only from the Path Taken at Run Time. 16

4.3 Selective Instruction Issuing Without Pairing of If-Path and Else-Path

 Operation a) Shows Instruction Arrangement b) Shows Mapping of the

 Kernel with Poor Resource Utilization of PEs . 18

4.4 Arrangement of Instructions for the Loop Kernel after Modulo Scheduling . . . 19

4.5 (a) (b) (c) Shows a Valid Pairing of Operations from the If and Else-Path.

 (d) Shows an Invalid Pairing since such a Pairing Fails to Meet the Criteria

 for Validity and a Feasible Schedule for such a Pairing Does Not Exist 20

4.6 (a) (b) (c) Shows Elimination of Eligible PHI/Select Operation with Inputs

 from If-Path and Else-Path, (d) Shows an Example of a PHI that Cannot be

 Eliminated to Form a Fused Node since One of its Input Does not Belong to

 the Set of If or Else-Path Operations . 21

4.7 Shows Construction of DFG with Fused Nodes from an Input DFG 24

5.1 Performance of Compiled Loops Using I) Partial Predication Malhke et al.

 [1992], ii) Full Predication Han et al. [2013] , iii) Dual-Issue Han et al.

 [2010], iv) PSB on a 4x4 CGRA .. 27

5.2 % of Conditional Instructions in a Loop Kernel Prior to DFG Formation. 28

5.3 % Reduction of Input DFG Size in Terms of Nodes and Edges for PSB Comp-

 ared to other Approaches. On Average 40% or More Reduction in Edge Size

vi

Figure Page

 and 20% or More Reduction in Node Size Translates to Achieving Lower II

 Compared to Other Techniques. 29

5.4 Hardware Overhead of Supporting Existing Acceleration Techniques Used

 While Executing Loops with Control Flow on 4 × 4 CGRA with Torus Inter-

 Connection Network . 30

5.5 Estimation of Relative Energy Efficiency Normalised with Respect to Full

 Predication Technique for Executing the Kernel of Each Benchmark 31

5.6 Required IMEM Size in Kb for the Benchmarks Used 32

vii

Chapter 1

INTRODUCTION

Improving performance and energy efficiency simultaneously has been always the goal

in micro-electronics industry. Quest for high performance and low power consump-

tion has resulted in novel architectural solutions such as accelerators. Special purpose,

custom hardware accelerators have been shown to achieve the highest performance

with the least power consumption Chung et al. [2010]. However, they are not pro-

grammable and incur a high design cost. On the other hand Graphics Processing

Units (GPUs), although programmable, they are limited to accelerating only parallel

loops Betkaoui et al. [2010]. Field Programmable Gate Arrays (FPGAs) have some

of the advantages of hardware accelerators and are also programmable Che et al.

[2008]. However, their fine-grain reconfigurability incurs a very high cost in terms of

power and energy efficiency Poon et al. [2005], Hartenstein [2001].

PE

PE

D
at

a
M

em
or

y

PE

PE

Instruction Memory

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

FU

reg

Data Output

Data

 Register
File

Predicate
Register

File

reg

Predicate Output

Predicates

From Neighbors & BUS

Data

Figure 1.1: A 4 × 4 CGRA. A PE Consists of an ALU and Two Register Files,
a Data Register File to Hold Data and a Predicate Register File Stores Predicate
Values (Result of Conditional Expressions).

1

Coarse Grain Reconfigurable Arrays(CGRAs) are programmable accelerators that

promise high performance at low power consumption Carroll et al. [2007]. For instance

ADRES CGRA Bouwens et al. [2008] has been shown to achieve performance and

power efficiency of upto 60 GOPS/W. CGRA is an array of processing elements(PE)

which are connected with each other through an interconnection network as shown

in Figure 1.1. Each PE consist of a functional unit, local register files and output

register. The functional unit typically can perform arithmetic, logic, shift and com-

parison operations. The operands for each PE can be obtained from neighbouring

PEs, it’s output from previous cycle, data bus or the local register file. Every cycle,

instructions are issued to all PEs specifying the operation type and position of input

operands. CGRAs are programmable at a coarser granularity at a level of arithmetic

operations in contrast to FPGAs which are programmable at bit level. Since CGRAs

are capable of pipe-lining and executing iterations simultaneously they can accelerate

both parallel and non-parallel loops De Sutter et al. [2013], Hartenstein [2001].

The majority of an application′s execution time is spent on loops Rau [1994].

Acceleration of such loops results in lower execution time and hence an improvement

in performance. CGRAs have been used to accelerate such loops Galanis et al. [2005].

Software pipelining Allan et al. [1995] is a classic technique to accelerate loops and

modulo scheduling Hatanaka and Bagherzadeh [2007] is a form of software pipelining

that is widely used. Compiler solutions to accelerate both parallel and non-parallel

loops on CGRAs are presented in Hamzeh et al. [2012], Park et al. [2008], Chen

and Mitra [2012], Hamzeh et al. [2013]. The performance metric of these techniques

is measured by Initiation Interval(II), which is the number of cycles after which the

next iteration of the loop can be initiated. Lower II results in faster execution of the

loop and hence better performance.

2

One of the major challenges associated with CGRA accelerators is accelerating

loops with if-then-else structures. The need for supporting conditionals in loops is

presented in Hamzeh et al. [2014]. Since the result of the conditional is known

only at run time, existing solutions handle control in CGRAs by predication Mahlke

et al. [1992],Mahlke et al. [1995],Han et al. [2013b],Chang and Choi [2008]. These

techniques execute operations from both the paths of an if-then-else structure and

chose the result based on the evaluation of the conditional. State of the art Dual-Issue

scheme Han et al. [2010], Han et al. [2013a], Hamzeh et al. [2014] aims to improve

performance by fetching 2 instructions per PE in the same cycle, one from the if-then

path and the other from the else path, then by selectively executing one instruction,

based on the result of the conditional. Predication based techniques result in poor

utilization of CGRA′s computational resources (PEs), since operations from both the

if-then path and else path are executed unconditionally. Moreover, there is mapping

overhead to communicate the result of the conditional, to operations belonging to

the if-then-else path. Dual issue scheme alleviates the problem of poor resource

utilization by conditionally executing instructions in a PE. However, this comes at

an overhead in instruction fetch bandwidth, since 2 instructions have to be fetched

per PE. Moreover, there is hardware overhead additional circuitry required to select

an instruction at each PE.

In this thesis, I aim to improve the state of the art to accelerate loop kernels with

if-then-else structures in CGRAs by leveraging on the fact that only one of the paths

of the conditional branch is required to execute at run time. My solution communi-

cates the result of the conditional expression that decides the branch outcome, to the

Instruction Fetch Unit (IFU) of the CGRA. The IFU issues only instructions that

belong to the path taken by that branch at run time. Experimental results on acceler-

ating loop kernels, with if-then-else structures from biobench Albayraktaroglu et al.

3

[2005] and SPEC Albayraktaroglu et al. [2005] benchmark by my solution demon-

strates the following: a performance improvement (lower II) of 34.6% on an average

and energy efficiency (CGRA power and power spent on instruction fetch operation)

of 52.1% on an average compared to state of the art Dual issue technique Hamzeh

et al. [2014], a performance improvement of 36% and improvement of 35.5% in energy

efficiency compared to partial predication scheme presented in Mahlke et al. [1992]

and 59.4% performance improvement and improvement of 53.9% in energy efficiency

compared to full predication scheme presented in Han et al. [2013b], can be achieved.

4

1 a[i] a← [i] + X1 ;
2 b[i] b← [i] - X2 ;
3 c[i] a← [i] x b[i] ;
4 d[i] c← [i] – b[i] ;
5 e[i] d← [i] + X3 ;

a b

d

c

e

1

2

3

4
Ite

ra
tio

n

a b

a b

b

a

a b

II
=
2b

a

c

d

e

1 2 3 4
1 2

34

(a)

(b)

(d)(c)

bi

i

i-1 i-1

i

ia b

c bi+1 i+1

Figure 2.1: (a) Shows a Simple Loop Body, (b) Shows a 2×2 CGRA with Torus
Interconnection, (c) Shows the DFG for a Loop Body in (a), (d) A Valid Mapping
for the DFG in (c).

Chapter 2

BACKGROUND AND RELATED WORK

Loop kernels are the most desirable parts of the program to be accelerated in

a CGRA Rau [1994]. Existing compiler techniques use modulo scheduling scheme

to efficiently map the loop kernels on a CGRA Hamzeh et al. [2012], Park et al.

[2008], Chen and Mitra [2012], Hamzeh et al. [2013]. Consider a simple loop kernel

in figure 2.1(a) which has five instructions to update the variables a[i],b[i],c[i],d[i]

and e[i]. X1, X2 and X3 in code represent constants obtained from the immediate

field of the instruction to a PE. An attempt to map this kernel onto a 2x2 CGRA is

shown in figure 2.1(d). As a first step a Data Flow Graph(DFG) of the loop kernel

is created as shown in figure 2.1(c). Each node in the DFG represents an operation

and the edges represent the data dependencies for those operations. A valid mapping

5

1 a[i] a← [i1] +C1 ;
2 b[i] b← [i1] - C2 ;
3 if (a[i1] < S)
4 c[i] ← (b[i]x c[i1]) - C3;
5 else
6 c[i] ← (a[i]xC4)-(b[i]xC5);

1 a[i] a← [i1] +C1 ;
2 b[i] b← [i1] - C2 ;
3 if (a[i1] < S)
4 yt ← b[i] x c[i1];
5 c[i],t ← yt - C3 ;
6 else
7 xf a← [i] x C4 ;
8 yf b← [i] x C5 ;
9 c[i],f x← f yf ;
10 c[i] ← select(c[i]t,c[i]f,s);

(b)(a)

Figure 2.2: (a) Shows a Loop Body with Control Flow, (b) Shows the Loop Body
After SSA Transformation.

for the DFG on a 2x2 CGRA is shown in figure 2.1(d). Nodes enclosed in solid lines

represent computation and nodes enclosed dashed lines represent routing operation.

The number of cycles required to execute an iteration of the kernel is schedule length,

which is 4 for the assumed example. The performance metric, Initiation Interval (II)

is 2, since the operations of the next iteration can be started 2 cycles after the start

of the current iteration.

Consider a loop kernel with If-Then-Else as shown in figure 2.2(a). The resulting

SSA transformation of the loop kernel is shown in figure 2.2(b). The kernel has 5 pred-

icate based instructions, two in if block and three in the else block. The variable c[i]

could be updated in both the blocks so it’s updation must be conditional depending

on the branch taken at run time. Variable yt is an intermediate variable used for the

computation of the final value of ct in the if block. Variable xf , yf are intermediate

values used for the computation of cf in the else block. C represents constant values

that can be obtained from the immediate field of the instruction. There are three

commonly used techniques to execute such kernels with if-else structures in CGRAs.

6

1 a[i] a← [i1] + C1 ;
2 b[i] b← [i1] - C2 ;
3 S (a← [i1] < S) ;
4 yt b← [i] x c[i1] ;
5 ct y← t C3 ;
6 xf a← [i] x C4 ;
7 yf b← [i] x C5 ;
8 cf x← f yf ;
9 c[i] select(c← t,cf,S) ;

a bS

c

cf

yfxf

1

2

3

4

Ite
ra

tio
n

a b

 a b

a b

S

a b

II=
3

a

xf

S

(a) (b) (c)

i-1

i

i

i i

i

i

a b

ct

b

cf

yf

c

i-1

yt

ct

ytS

S

c

Figure 2.3: (a)Code Transformation for Partial Predication Scheme, (b) Shows
Corresponding DFG for the Partial Predication Transformation, (c) Shows a Valid
Mapping Obtained for the DFG on a 2×2 CGRA, II Obtained is 3.

2.1 Partial Predication

In partial predication method, the if-path instructions (true path) and the else-

path instructions (false path) of a conditional branch are executed in parallel in

different PE resources. When the result of computation becomes available at both

paths, the final result of an output is selected between outputs of two paths based

on conditional operations outcome (predicate value) as shown in figure 2.3(b). This

is accomplished by a select instruction which acts like a hardware multiplexer. The

diamond shaped nodes represent the select instruction for variable c[i]. If a variable

is updated in only one path, a select instruction is still required to choose between

old value and new value generated after executing conditional path. Details about

architectural support for partial predication scheme is studied in Han et al. [2013a].

Architectural support for partial predication scheme is presented in figure 1.1.

There is a predicate mux selecting a predicate value available from the neighbouring

PEs or from the PEs register file or the predicate value generated by the PE in

previous cycle. This predicate value is communicated to other PEs through a output

predicate register and a predicate network.The overhead of this predication scheme

7

1 a[i] a← [i1] + C1 ;
2 b[i] b← [i1] - C2 ;
3 S (a← [i1] < S) ;
4 yt b← [i] x c[i1] ;
5 xf a← [i] x C4 ;
5 yf a← [i] x C5 ;
6 ct y← t - C3 (S);
7 cf x← f - yf (S);

a bS

ct

cf

yfxf

1

2

3

4

Ite
ra

tio
n c

s
a
s

b

c
s

a
s

b

a
s

b

a

c
s

a
s

b

II=
5

5

s

s

c
s

yfxf

cf

(c)(b)(a)

ct

i-1

i-1

i-
1

i

i

i-
1

i-1

i

i

i

i

i
byt

yt

c
s

a
s

bs i-1

i-1

i-1

i

i

i

i-1

i-1

i-1

i-1

i

bs

c

c

c

i

i

c
s

a
s

b
sc i i6 s

i

i-1

i-1

s

Figure 2.4: (a)Shows the Transformation for Full Predication Scheme, (b) Shows
Corresponding DFG for the Full Predication Transformation, (c) Shows a Valid Map-
ping Obtained for the DFG on a 2×2 CGRA. The II Obtained is 5.

is that several select operations have to be introduced and instruction set has to be

extended to support select operation.

2.2 Full Predication

In full predication scheme Han et al. [2013b], the operations that update the same

variable in both the paths of an if-then-else structure has to be mapped onto the same

PE albeit at different cycles as shown in figure 2.4(c) where operations ct and cf are

mapped to the same PE (PE 1) at cycle 4 and 5. The right value is available in the

register of the PE (PE 1) after instructions from both paths have been executed at

cycle 6. At run time, false path instruction’s result is suppressed, meaning the false

path instruction does not update the register value.

The architectural support for full predication shown in figure 2.5 is very similar

to the architecture for a partial predication technique. However, since the false path

operations have to suppressed at run time, there is an additional hardware to enable

this feature. The write enable signal to the register file is disabled when executing

the instruction of the branch not taken at run time. This way only the instruction of

8

the branch path taken stores its result in the data register file.

FU

reg

Data

Register
File

Predicate
Register

File

reg

Predicates Data

From Neighbors & data bus

32

Instruction

Write
enable Predicated write enable

Predicate
Output

Data
Output

Figure 2.5: PE Architectural Template for Full Predication Scheme.

Full predication eliminates the need for select instructions, but there is an overhead

because of the tight constraints on where instruction updating the same variable can

be mapped. This leads to poor resource utilization.

2.3 Dual Issue

a bS

nop,xf

ct,cf

(a) (b)

yt,yf

1

2

3

4

Ite
ra

tio
n

s
a b

s
a b

a b

s
a b

II=
3

c
s

c
s

c
s

c
s

s

s

a b

nop,xf

ct,cfs

i-1

i

i

i-1

i

i

i-1

i

i-1i-1

i

i

i-1

i-1

i-2

i-1

yt,yf

ct,cf

i

i

c

a

i-1

s
i-1

Figure 2.6: (a)Shows the DFG after Packed Node Formation (b) Shows a Valid
Mapping Obtained for the DFG on a 2×2 CGRA. The II Obtained is 3.

9

This scheme aims to improve performance by issuing 2 instructions per PE si-

multaneously. One from the if-path and the other from the else-path. Nodes that

have 2 instructions associated with them are called the packed nodes as shown by a

octagon in figure 2.6(a). In case of unbalanced number of operations in the if and

else path nops are used to form the packed node (node nop and xf in the example).

At run-time, the PE selects one of those instructions based on a predicate value. In

this case there is no need of a separate select instruction. This way, the problem of

unnecessary execution of both the control flow paths in partial and full predication

scheme is eliminated.

FU

reg

Data

Register
File

Predicate
Register

File

reg

Predicates Data

select

32

Instruction

From Neighbors & BUS(data only)

2x
1

m
u

x

Data
Output

Predicate
Output

32

32

Figure 2.7: PE Architectural Template for Dual Issue Scheme.

The underlying PE structure for dual issue technique shown in figure 2.7 is the

similar to the partial predication scheme. Only change that is required here is an

additional 2x1 mux which selects either the true path instruction or the false path

instruction. A predicate value serves as a select signal to choose 1 instruction from 2

available instructions to that PE at run time.

Dual issue scheme Han et al. [2010]Han et al. [2013a] mitigates some problems

associated with partial and full predication schemes, however, this scheme has certain

limitations. Firstly, if there are more than 1 instructions in the if block and the else

10

block, all those packed instructions belonging to the same branch should be mapped to

the PEs which is hold the predicate value in its internal register. Since this predicate

value is used to select the instruction for the packed node, this causes a restriction

to map those packed nodes to the PEs where this predicate value is available. This

problem is similar to the tight mapping restriction seen in full predication scheme.

Secondly, this scheme has the following hardware penalties: First, the instruction

fetch bandwidth has to be doubled and the input port size of the PE must be increased

to receive two instructions. Then a 2x1 mux has to be added to the input of each PE

to select an instruction. These hardware penalties become much more pronounced

when the size of the PE array is large. This causes an overhead in the instruction

fetch bandwidth of the overall CGRA. Hence the scalability of this scheme is limited.

11

Chapter 3

LIMITATIONS OF EXISTING TECHNIQUES

The fundamental limitations of the existing solutions to handle loops with control flow

are twofold. Firstly, instructions from both the paths of the branch are fetched and

issued unconditionally to the CGRA. This leads to more instructions being fetched

than necessary, even after the branch outcome is known. For instance, partial and

full predication schemes, even after the branch outcome is known at cycle 1, execute

three unnecessary operations (xf , yf and cf) if the condition evaluates true for the

loop kernel presented in 2.2(b), incurring wastage of PE resources and an overhead

in dynamic power by executing unnecessary operations. This poor utilization of PE

resources in predication schemes results in inability to achieve low II. Even though

the dual issue scheme avoids executing operations from the path not taken, it fetches

unnecessary instructions (operations xf , yf and cf) at run time incurring a power

overhead in an instruction fetch operation. Secondly, there is a need to communicate

the predicate value to operations in the if-path and the else-path. This communica-

tion is usually done either by storing the predicate value in the internal register of

a PE or through the predicate network via routing. The need for this communica-

tion results in restrictions on where the conditional operations can be mapped, for

instance, the select operations (c) in partial predication scheme can be mapped only

to PE resources at which the corresponding predicate value is available, in full pred-

ication scheme, operations ct, cf should be mapped onto the same PE (PE1) where

the predicate value is available. For dual issue scheme, the predicate value must be

communicated to the packed nodes 〈nop, xf〉,〈yt, yf〉 and 〈ct, cf〉. These restrictions

in mapping conditional operations leads to poor resource utilization. The impact

12

of these effects on performance and energy efficiency is worse especially when the

number of instructions in the conditional path is more. In existing solutions, CGRA

does not take advantage of the branch outcome, which is available at run time, and is

oblivious of the path taken. Either all operations from both paths have to be executed

in case of predication schemes, creating more nodes and edges in the DFG, or pred-

icate value has to be communicated to all the packed operations (from both paths)

in case of dual issue scheme causing a predicate communication overhead. In either

case performance is limited because of the inability to achieve a low II. Moreover,

energy efficiency is affected either by executing unnecessary operations (operations in

the path not taken) in case of predications schemes or by fetching twice the number

of instructions than required (dual issue scheme increases the dynamic power per

instruction read operation). In this thesis I attempt to overcome these limitations to

improve performance and energy efficiency of accelerating control flow loops.

13

Chapter 4

PROPOSED APPROACH: PSB

Considering that only one path is taken at run time for the if-then-else construct, the

solution I propose, communicates the predicate (result of the branch instruction) to

the instruction fetch Unit (IFU) of the CGRA, to selectively issue instructions only

from the path taken by the branch at runtime. This is the essence of Path Selection

based Branch (PSB) technique. This is similar to if-then-else execution in general

purpose processors but while simultaneously taking advantage of parallelism available

in the CGRA for performance improvement.

Figure 4.1 demonstrates how a loop body shown in Fig 2.2(b) can be transformed

to work on a 2x2 CGRA as per the proposed approach. Figure 4.1(a) shows the

scheduled loop body. It shows a schedule for 4 cycles, in which each cycle has op-

erations for all the 4 PEs. Figure 4.1(b) shows the arrangement of instructions for

the CGRA at a high level. In the first cycle, the branch operation 〈blt a[i− 1], S | 2〉

is executed on PE 2, while the rest of the PEs are idle. The 〈blt a, b | k〉 operation

compares branches if a < b. K represents the no.of cycles required to execute the

branch path (max of the cycles required to execute the if-path or else-path). In this

case the else-path is composed of instructions for all PEs at addresses 3 and 4, and

it takes 2 cycles to execute the else-path operations. The if-path also takes 2 cycles,

and is composed of instructions at addresses 5 and 6. Even though the condition in

the branch operation executes in cycle 1, the operations in the if or else-path does

not begin execution until cycle 3. Cycle 2 is the delay slot of the CGRA. In this

cycle, operations independent of the current branch outcome can be executed. This

delay slot cycle is used to communicate the branch outcome to the IFU. In this case,

14

 PE 1 PE 2 PE 3 PE 4
1 <idle> <blt a[i1], S| 2> <idle> <idle>
2 <idle> <a[i] a← [i1] + C1> <b[i] b← [i1] – C2> <idle>

3 F: <xf a← [i] + C4> <idle> <idle> <yf b← [i] x C5>
4 <idle> <idle> <idle> <c[i],f x← f– yf>

5 T: <nop> <idle> <idle> <yt b← [i] x c[i1]>

6 <idle> <idle> <idle> <c[i],t y← t-C3>

 (b)

Time

1

2

3

4

Ite
ra

tio
n

a b

a b

a b

S

b

a b

II=
2

a

no,xf

ct,cf

S

ba

n,x

ct,cf

i

i-1

i-1

i

i-1

i-1

i

i

yt,yf

yt,yf

(a)

Figure 4.1: A Valid Instruction Arrangement for PSB

operations 〈a[i] = a[i−1]+C1〉 and 〈b[i] = b[i−1]−C2〉 are executed on PEs 2 and

3. After the delay slot the Instruction Fetch Unit (IFU) will start issuing instructions

from the path taken by the branch. If the else-path is taken, then instructions 3 and

4 will be issued. After executing else-path instructions, the IFU will skip the next s

instructions, and start issuing instructions after that. If the branch is taken, then the

IFU will skip s instructions and start issuing true path instructions.

For branch outcome based issuing of instructions, additional hardware support

is required as shown in figure 4.2. The architecture of partial predication scheme

15

FU

reg

Data

Register
File

Predicate
Register

File

reg

Predicates Data

From Neighbors & BUS(data only)

Instruction
Fetch

Unit(IFU)

Instruction Memory

In
st

ru
ct

io
n

A
dd

re
ss

Instruction

Predicate Data

Branch Information

Branch outcome

Figure 4.2: Architectural Support for the Proposed Approach. The Branch Param-
eters and Outcome is Communicated to the Instruction Fetch Unit (IFU) to Issue
Instructions Only from the Path Taken at Run Time.

is extended to communicate the branch outcome to CGRA′s IFU along with the

information of number of cycles to execute the branch. IFU is modified to issue

instructions from the path taken based on branch information (outcome + no.of

cycles for conditional path).

4.1 What Must the Compiler Do?

To enable such a branch based issuing of instructions, the compiler must map

operations from the loop kernel, (including if-path, else-path and select or phi op-

erations) onto the PEs of the time-extended CGRA. The PEs required to map the

if-then-else portion of the loop kernel is the union of the PEs on which the operations

from the if-path are mapped and the PEs on which the operations from the else-path

are mapped. In case where operations from the if-path and the operations from the

else-path are mapped to different PEs, the PEs on which the operations from the

if-path are mapped will be inactive when the else-path is executed, and similarly

when the if-path is executed the PEs on which the else-path operations are mapped

16

are not used. Figure 4.3(a) shows a mapping of operations where if-path operations

and else-path operations are mapped onto different PEs. Corresponding instruction

arrangement is shown in figure 4.3(b). In such a scheme, where if and else-path

operations are mapped to different PE resources, the PEs allocated to execute the

operations in the conditional path is the sum of the PEs required for the if-path op-

erations and the PEs required for the else-path operations. But at run time only one

of the paths is taken, and the PEs on which the other path operations are mapped

will not be used, resulting in poor resource utilization and hence poor performance.

In order to improve the resource utilization and II, PSB maps the operations

from the if-path and the operations from the else-path to the same PEs, so that the

number of PEs used to map the if-then-else is equal to the maximum of the number

of PEs required to map either path’s operations. Hence, irrespective of the path

taken by branch, the PEs that are allocated operations from the if-then-else path,

executes a useful operation from the path taken. This facilitates better utilization of

PE resources. By the virtue of improved resource utilization, more PEs are available

to map operations from adjacent iterations enabling the use of a modulo scheduling

scheme to further improve the performance.

Figure 4.1 shows the loop after it has paired operations per PE and software

pipelined via a modulo scheduling scheme. Figure 4.4 shows the corresponding in-

struction arrangement. Even though the schedule length is 4, the II of this mapping

is 2 – which is the best achieved for the loop kernel till now.

Since PSB issues instructions only from the path taken, it overcomes the ineffi-

ciencies associated with earlier techniques. PSB utilises the the branch outcome to

improve performance and energy efficiency of control flow execution by eliminating

issuing and execution of unnecessary operations. In predication based approaches in-

struction issuing is oblivious of the branch outcome, issuing and executing instructions

17

Time

1

2

3

4

Ite
ra

tio
n

a b

a

s
b

b

S

b

a

s
b

II=
3a

a

s
i

i-1

i-1

i

i-1

i-1

i

i

yt yf

cfct

xf

a bi i c

Else path node

If path node

select node

 PE 1 PE 2 PE 3 PE 4
1 <blt a[i1],S | 2> <idle> <idle> <idle>
2 <a[i] a← [i1] + C1> <idle> <b[i] b← [i1] – C2> <idle>

3 F:<xf a← [i] + C4> <idle> <idle> <yf b← [i] x C5>
4 <idle> <idle> <idle> <c[i],f x← f– yf>

5 T: <idle>> <idle> <yt b← [i]x c[i1]> <idle>

6 <idle> <idle> <c[i],t y← t-C3> <idle>
7 <idle> <idle> <idle> <select(ct, cf, S)>

(a)

(b)

Figure 4.3: Selective Instruction Issuing Without Pairing of If-Path and Else-Path
Operations. a) Shows Instruction Arrangement b) Shows Mapping of the Kernel with
Poor Resource Utilization of PEs.

from the path not taken, resulting in poor resource utilization and energy efficiency.

Compared to Dual issue scheme, in addition to eliminating the need to fetch two

instructions per PE, PSB also alleviate the overhead of communicating the predicate

value to all the nodes that execute instructions from the conditional block.

18

 PE 1PE 1 PE 2PE 2 PE 3PE 3 PE 4PE 4
1 F: <xf a← [i] + C4> <blt a[i1], S| 2> <idle> <yf b← [i] x C5>
2 <idle> <a[i] a← [i1] + C1> <b[i] b← [i1] – C2> <c[i],f x← f – yf>

3 T: <nop> <blt a[i1], S | 2> <idle> <yt b← [i]x c[i1]>

4 <idle> <a[i] a← [i1] + C1> <b[i] b← [i1] – C2> <c[i],t y← t- C3>

 Figure 4.4: Arrangement of Instructions for the Loop Kernel After Modulo Schedul-
ing.

4.2 Problem Formulation

To optimize the resource usage and improve performance, PSB needs to pair

operations from the if-path and the else-path to be mapped to the same PE. Hence,

I define the problem formulation as obtaining a valid pairing of operations from the

if-path and the else-path. The pairing must be done in such a way the the correct

functionality of the loop kernel is maintained.

Problem is formulated as finding a transformation ØT (D) = P from the input

DFG: D = (N,E) to an output DFG: P (M,R) with fused nodes, with the objective

of |M | <= |N | (N and M represent the set of nodes in D and P) while maintaining

functional equivalence between D and P.

Inputs: DFG: D = (N,E) is a data flow graph that represents the loop ker-

nel, where the set of vertices N are the operations in the loop kernel, and for any

two vertices, u, v ∈ N, e = (u, v) ∈ E iff the operation corresponding to v is data

dependent or predicate dependent on the operation u. For a loop with control flow

N = {Nif ∪Nelse∪Nother} where {Nif } is the set of nodes representing the operations

in the if-path and likewise Nelse for operations in the else-path. Nother is the set of

nodes representing operations not in the if-path or the else-path and includes select

operations. If a variable is updated in more than one path, a select operation (or phi

operation) is required to select the right output based on the branch outcome.

19

a b

yt

xt

d

(a)

yf

xf

a b

yt

xt

d

yf

xf

a b

d

xt,yf

yt,xf

If
path

Else
path

(d)(c)

a b

yt

xt

d

yf

xf

a b

d

xt,xf

yt,yf

(b)

(e)

valid

Invalid
pairing

Figure 4.5: (a)(b)(c) Shows a Valid Pairing of Operations from the If and Else-
Path. (d) Shows an Invalid Pairing since such a Pairing Fails to Meet the Criteria for
Validity and a Feasible Schedule for such a Pairing Does Not Exist.

Output: DFG: P = (M,R): Where M is the set of nodes in the transformed

DFG representing the operations in the loop kernel with M = {Mfused ∪Mother}.

The nodes Mfused represent the fused nodes. Each fused node m ∈ Mfused is a tuple

m = 〈mif ,melse〉, where mif ∈ Nif ∪ {nop} and melse ∈ Nelse ∪ {nop}. For nodes

x, y ∈ Mfused, r = (x, y) ∈ R iff there is an edge eif = (xif , yif) ∈ E or an edge

eelse = (xelse, yelse) ∈ E. For nodes xother ∈ Mother, y ∈ Mfused, r = (xother, y) ∈ R

iff there is an edge eif = (xother, yif) ∈ E or an edge eelse = (xother, yelse) ∈ E where

xother ∈ Nother. For nodes x ∈Mfused, yother ∈Mother, r = (x, yother) ∈ R iff there is an

edge eif = (xif , yother) ∈ E or an edge eelse = (xelse, yother) ∈ E where yother ∈ Nother.

Valid Output: The output DFG P obtained after transformation is valid iff:

For two vertices x,y with x = (xif , xelse), y = (yif , yelse) ∈ Mfused and r = (x, y) ∈ R

then if there is a path from xif to yif then there is no path (intra-iteration) from

yelse to xelse and if there is a path from xelse to yelse there is no path (intra-iteration)

from yif to xif originally in the input DFG. However, recurrence paths satisfying inter

iteration dependencies are valid. Figure 4.5 shows an example each for a valid paring

(4.5(b),(c)) and an invalid pairing (4.5(d)).

Optimization: Objective is to minimize the number of PEs used to map the

loop kernel such that the resulting mapping results in good resource utilization :

20

a b

ct

(a)

cf

a b

ct cf

b

ct,cf
If
path

Else
path

(b)

c c

d d
d

s s

a
a

b

ct ef

If path

Else
path

c

d

s

cp

(c) (d)

Figure 4.6: (a)(b)(c) Shows Elimination of Eligible PHI/Select Operation with In-
puts from If-Path and Else-Path, (d) Shows an Example of a PHI that Cannot be
Eliminated to Form a Fused Node since One of its Input Does Not Belong to the Set
of If or Else-Path Operations.

minimising |M | can be achieved by minimizing |Mfused| and |Mother|. The proposed

approach can minimise Mfused by minimizing the number of nops used to make a

pair. |Mother| can be minimised by eliminating the eligible select or phi operations

that belong to Nother.

Phi Operation Elimination If a variable which is updated in both the if-path

and the else-path serves as an input to an operation after the conditional block, a

select operation is used to select the right value from either path based on the branch

taken at runtime. Each select instruction has three inputs: an input from if-path,

an input from else-path and a predicate boolean input to choose among former two.

If the if-path operation and the else-path operation updating the same variable is

paired to form a fused node, there is no need for a select operation since at run time

only of the paths is executed. Hence, the output of the fused node has the right

value after branch execution and can serve as an input to a node which requires this

updated value. Figure 4.6(a)(b)(c) shows an scenario in which a select/phi operation

can be eliminated. Figure 4.6(d) shows a scenario in which one of the inputs to the

phi operation is not from either {Nif } or {Nelse} of the current iteration, such a phi

21

node cannot be eliminated.

4.3 My Heuristic

Algorithm 1: PSB (Input DFG(D), Output DFG(P))

nif ← getLastNode({Nif});1

nelse ← getLastNode({Nelse});2

while (nif 6= NULL or nelse 6= NULL) do3

if nif ∈ Nif and nelse ∈ Nelse then4

fuse(nif , nelse);5

else if nif ∈ Nif and nelse == NULL then6

fuse(nif , nop);7

else if nif == NULL and nelse ∈ Nelse then8

fuse(nop, nelse);9

nif ← getLastRemainingNode({Nif});10

nelse ← getLastRemainingNode({Nelse});11

for ni such that i=0 to |N | do12

if ni is an eligible select operation ∈ Nother, 3 input1(ni), input2(ni) =13

mfused ∈Mfused then

Eliminatephi(ni);14

Remove Redundant Arcs(E);15

Prune Predicate Arcs(E);16

The process of creating a DFG from CFG of a loop is presented in Johnson and

Pingali [1993]. The operations from the if-path and else-path form the set of operation

Nif and Nelse respectively. The algorithm for forming the DFG with fused node is

22

shown in Algorithm 1. The algorithm starts with pairing of operations from if-

path and else-path. Pairing starts from the terminating operation in both the paths

as shown in lines 1,2 in alg. 1. Then the pairing proceeds iteratively through the

predecessors of the fused nodes as long as there are unbalanced operations in the

if-path and the else-path. Please note that the operations in the if and else-path have

a partial order associated with them which is according to the order in which the

operations appear in the if block and the else block of the CFG. If the operations

in the if and else-path are unbalanced, unbalanced operations are paired with a nop,

lines 7,9 in alg. 1. After all operations in the if and else path are paired, eligible select

operations which have both the inputs from the same fused node are eliminated via

a phi elimination pass, line 14 in alg. 1. Then the redundant edges are between the

same nodes are eliminated and predicate arcs are pruned and final output DFG (P)

is obtained. The DFG is given as an input to any mapping algorithm to find a valid

mapping. However, the mapping algorithm must accommodate the delay slot in its

mapping such that the fused nodes are scheduled with 1 cycle delay after the branch

operation.

Proof: Next, I present the proof of correctness of the proposed algorithm. For

nodes xt, yt ∈ Nif and xf , yf ∈ Nelse, such that the partial order of operations in

the DFG is xt < yt in the if block and xf < yf in else block, meaning yt cannot be

scheduled earlier than xt and yf cannot be scheduled earlier than xf . An incorrect

pairing is 〈xt, yf〉 and 〈yt, xf〉 as shown in fig. 4.5(d). Since the algorithm starts pairing

from the terminating nodes of if-path and else-path, nodes 〈yt, yf〉 in this example

and proceeds upward iteratively through the partial order of nodes in the if-path and

else-path forming another valid pair 〈xt, xf〉, there is no possibility of breaking the

partial order in the process of pairing the operations from both the paths. Hence the

algorithm always produces valid a pairing of operations.

23

a b

n,xf

ct,cf

S
Instruction
Fetch Unit

yt,yf

a bS

c

cf

yfxf

(b)

yt

ct
Else
path

If
path

(a)

Figure 4.7: Shows Construction of DFG with Fused Nodes from an Input DFG.

Time Complexity: Since the pairing happens as long as there are unpaired

operations in the if-path and else-path, the time complexity for pairing the op-

erations in O max{|Nif |, |Nelse|} whereas phi eligibility is checked for each node

n ∈ Nother, hence time complexity for checking phi node eligibility is O(|Nother|).

Hence, the overall time complexity of the algorithm is determined to be finite :

O(max{|Nif |, |Nelse|}+ |Nother|)

Figure 4.7 demonstrates how the kernel in figure 2.2 is mapped using PSB. In the

proposed approach PSB first pair operations from either path to form a fused node.

The pairing starts from the terminating nodes ct and cf in the if-path and the else-

path respectively. Next, the predecessor operations of the fused node from the if-path

and the else-path are paired to form a fused node, 〈yt, yf〉 represents such a pairing,

where yt is an operation from if-path and yf is an operation from the else-path. Since

the number of operations in the if-path is less the the operations in else-path, the

unpaired else-path operation xf is paired with a nop to form a fused node 〈nop, xf〉.

In this example, the phi operation c has both of its inputs from the same fused node

〈ct, cf〉 and hence it is eligible for elimination. Hence the corresponding phi node c,

operation ct and cf are transformed into single 〈ct, cf〉 node. The loop kernel after

pairing of operations is shown in figure 4.7(b). A DFG for the transformed code

is shown in figure 4.7(c). Then dependency edges between all nodes m ∈ M are

24

updated. Redundant edges are removed creating a DFG composed of fused nodes

as shown in 4.7(c). Figure 4.7(d) shows a valid mapping of the DFG with modulo

scheduling scheme. The achieved II =2 which is the lowest compared to all other

techniques.

Support for Nested Conditionals: PSB approach provides maximum perfor-

mance benefit when the percentage of conditional operations in the loop kernel is

large. Hence for nested conditionals, the formation of fused nodes is done for the

outermost conditional block. All the instructions from the true path and false path

of the outermost branch is packed to form the fused node. Since the number of

nodes for the inner nests of loops are typically small, the nodes for the inner nests of

the conditional blocks are created from predication based transformation. Therefore,

true and false path operations of the fused nodes are inherently composed of their

respective path′s inner conditional blocks. For this reason, it is necessary to retain

predicate dependencies for the inner conditional blocks. A partial predication scheme

is preferred over full predication because full predication imposes tight restriction on

where the operations inside the conditional block can be mapped.

25

Chapter 5

EXPERIMENTAL RESULTS

5.1 Experimental Setup

I have modelled CGRA as an accelerator in GemV simulation environment Binkert

et al. [2011]. I have integrated PSB compiler technique as a separate pass in the LLVM

compiler framework Lattner and Adve [2004]. Computational loops with control flow

are extracted from SPEC2006 Henning [2006], biobench benchmarks Albayraktaroglu

et al. [2005]. The CFGs of the loops are obtained after -O3 optimization. I explore and

compare performance and power consumption of the techniques proposed in related

work with PSB solution. PSB maps the loops on a 4× 4 regular mesh interconnected

CGRA with sufficient instruction memory to hold all instructions within a loop body.

5.2 PSB Achieves Lower II Compared to Existing Techniques to Accelerate

Control Flow

First, I compare the performance of the proposed PSB technique with existing

techniques to accelerate loops with control flow. I obtain the reduced DFG after

PSB transformation and map it using REGIMap mapping algorithm Hamzeh et al.

[2013] to obtain II. Figure 5.1 plots the achieved II for the loops mapped by different

techniques. PSB solution to accelerate loops with control flow achieves the best

performance(lowest II). The full predication technique presented in Han et al. [2013b]

which is a special version of a full predication technique, achieves the worst II since all

the instructions in a conditional path are mapped onto the same PE resulting in tight

restriction in mapping and an increase in schedule length. Partial predication Hamzeh

26

fa
st

a

tr
ee

ga
pa

lin
g

st
at

tig
er

ch
v

gc
c

co
re

-a
lg

or
ith

m

ca
lc

ul
ix

sp
hi

nx
3

A
ve

ra
ge

0

4

8

12

16
Partial-pred
Full -pred
Dual-Issue
PSB

In
iti

a
tio

n
 In

te
rv

a
l (

II)

Figure 5.1: Performance of Compiled Loops Using i) Partial Predication Mahlke
et al. [1992], ii) Full Predication Han et al. [2013b], iii) Dual-Issue Han et al. [2010],
iv) PSB on a 4x4 CGRA

et al. [2014] achieves a better mapping compared to full predication technique since it

does not have the restriction in mapping and just adds select nodes to the DFG. Dual

issue scheme achieves relatively better II since it is able to pack the nodes whenever

packing cost is low. Details about compiler implementation of dual issue scheme is

presented in Han et al. [2010]. PSB solution achieves best II due to the following

reasons:

1 Since PSB packs instructions from the if path and the esle path to form fused

nodes, the node size of the DFG is significantly reduced. Moreover, the edges

for the fused nodes are a union of edges for the primary and the secondary

instruction of the fused node. This way any redundant edges to a fused node is

removed. Further more, all predicate edges but the ones from the dominating

compare node to its immediate fused nodes are removed. This further reduces

the edge size of the DFG. By virtue of these properties, PSB is able to reduce

the size of the input DFG to the mapping algorithm. Figure 5.3 shows the

27

fa
st

a

tre
e

ga
pa

lin
g

st
at

tig
er

ch
v

gc
c

co
re

-a
lg

or
ith

m

ca
lc

ul
ix

sp
hi

nx
3

A
ve

ra
ge

0

10

20

30

40

50

60

70

80

%
 o

f C
o

n
d

iti
o

n
a

l I
n

st
ru

ct
io

n
s

in
 k

e
rn

e
l

Figure 5.2: % of Conditional Instructions in a Loop Kernel Prior to DFG Formation.

percentage reduction of the input DFG for PSB approach compared to other

techniques. From figure it is evident that for loops with good percentage of

reduction in DFG size, PSB is able to achieve a good reduction in II compared

to other techniques. For the loop kernel of core− algorithm where the number

of instructions in the if path and else path is heavily unbalanced(more than

60% of packed nodes are unbalanced), the the scope for good reduction in node

size of the DFG is low since PSB packs the unbalanced instructions with nop

instruction. In spite of low percentage reduction in node size, PSB is still able

to achieve a low II by eliminating the need to communicate the predicate value

to all instructions inside the conditional block.

2 When the percentage of conditional instructions in the loop kernel is high, there

is good scope for reducing the size of DFG. Hence the percentage reduction in

DFG size by PSB is proportional to the percentage of conditional instructions

in the loop kernel. Figure 5.2 plots the percentage of conditional instructions in

a loop kernal prior to DFG formation. The average percentage of conditional

28

fa
st

a

tre
e

ga
pa

lin
g

st
at

tig
er

ch
v

gc
c

C
or

e-
al

go
rit

hm

ca
lc

ul
ix

sp
hi

nx
3

0

20

40

Nodes

Edges
%

 R
e

d
u

ct
io

n
 o

f i
n

p
u

t D
F

G
 s

i z
e

Figure 5.3: % Reduction of Input DFG Size in Terms of Nodes and Edges for PSB
Compared to other Approaches. On an Average 40% or More Reduction in Edge Size
and 20% or More Reduction in Node Size Translates to Achieving Lower II Compared
to other Techniques.

instructions is 51% for the extracted loop kernels. As it can be seen from the fig-

ure, when the percentage 45% or more on an average, there is a good reduction

in DFG size which in turn leads to achieving a lower II as shown in 5.1. It is ob-

served that the kernel in sphinx3 has fewer conditional instructions which leads

to poor reduction in DFG size which in turn leads to poor reduction in achieved

II compared to all the existing techniques. Hence I deduce that PSB has the

best performance improvement over existing techniques when accelerating loops

kernels which have 45% or more conditional instructions.

3 Compared to a full predication scheme presented in Han et al. [2013b] there

is no restriction on where the conditional operations must be mapped. Hence

PSB is able to efficiently explore the solution space by utilizing all the available

PE resources.

29

4 Compared to dual issue scheme there is no overhead of communicating or rout-

ing the predicate value to each of the dependent packed nodes.

5.3 PSB Architecture has Comparable Area and Frequency with Existing Solutions

CGRA
Partial

Predication
Full

Predication
Dual Issue PSB

Area (sq.um) 375708 384539 411248 384154

Frequency
(MHz)

463 477 454 458

Figure 5.4: Hardware Overhead of Supporting Existing Acceleration Techniques
used for Executing Loops with Control Flow on 4 × 4 CGRA with Torus Intercon-
nection Network

Next I compare the area, frequency and power associated with PSB architecture

with existing architectures. I implemented an RTL model of a 4times4 CGRA with

mesh interconnect network including the Instruction fetch unit for all CGRA archi-

tectures. The RTL models were synthesized using 65nm technology library using

RTL compiler tool. The models were verified for functionality after synthesis. To

obtain the accurate impact of predicate communication in a PSB architecture on the

overall frequency and area of CGRA, place and route was performed using Cadence

Encounter tool. Final numbers for all designs after place and route, optimized for

maximum frequency, without any timing violations, are reported in table 5.4. From

the table it is seen that that PSB architecture does not incur any significant overhead

in frequency and area and is comparable with existing solutions.

5.4 PSB Achieves Higher Energy Efficiency Compared to Existing Techniques

In this section I evaluate the energy efficiency in executing loop kernels for each

benchmark. The power expenditure for each PE for an activity factor of 0.2 is ob-

30

fa
st

a

tre
e

ga
pa

lin
g

st
at

tig
er

ch
v

gc
c

co
re

-a
lg

or
ith

m

ca
lc

ul
ix

sp
hi

nx
3

A
ve

ra
ge

50

100

150

200
Partial Predication

Full Predication

Dual Issue

PSB

R
e

la
tiv

e
 E

n
e

rg
y

E
ffi

ci
e

n
cy

Figure 5.5: Estimation of Relative Energy Efficiency Normalised with Respect to
Full Predication Technique for Executing the Kernel of Each Benchmark.

tained from the synthesized netlist and estimates of dynamic power for each type

of operation (ALU, routing and IDLE) is scaled to fit the power distribution model

presented in Kim et al. [2012]. The power spent by the basic IFL is only 0.4% of the

total CGRA power and only 1.9% of the total CGRA power for a PSB version of the

IFL. The configuration cache assumed in the model is a 2kb cache, implemented in

65 nm technology, with 16 read ports. The number of bits read per port is 64 bits for

a dual issue scheme and 32 bits for PSB, partial and full predication scheme. This

cache is modeled in cacti 5.3 tool CACTI [2008] to obtain the total dynamic power

per read operation. The total power spent in executing kernel instructions of each

benchmark is modeled as the function of the power spent per PE per cycle depending

upon the PE operation(ALU,routing or IDLE) and the instruction fetch power from

the configuration memory. Results are presented in figure 5.5. Experimental results

31

show that energy efficiency of 52.1% on an average can be obtained compared to dual

issue scheme. This power saving is obtained by virtue of reduced II(34.6% improve-

ment) and also reduced power consumption(34.9% power saving while fetching a 32

bit instruction compared to a 64 bit instruction) during an instruction fetch opera-

tion. An average energy efficiency of 53.9% and 35.5% was obtained compared to full

predication and partial predication schemes.

5.5 Instruction Memory Overhead in PSB is Tolerable

fa
st

a

tr
ee

ga
pa

lin
g

st
at

tig
er

ch
v

gc
c

co
re

-a
lg

or
ith

m

ca
lc

ul
ix

sp
hi

nx
3

A
ve

ra
ge

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Partial Predication

Full Predication

Dual Issue

PSB

R
e

q
u

ir
e

d
 c

o
d

e
 s

iz
e

 in
 K

b

Figure 5.6: Required IMEM Size in Kb for the Benchmarks Used.

I have also estimated the required instruction memory size (figure 5.6) to hold the

kernel instructions for each benchmark for all approaches. I assumed an ISA with

32 bits for normal instructions and 64 bits for dual issue scheme. My instruction

memory model assumes to have a 32 bit instruction for each PE for each cycle of

32

the kernel. For instance, a benchmark with II of 2 would require 2 x 16 x 32 bits of

instruction memory to hold all instructions. Since Dual issue scheme requires to fetch

two instructions per PE in a cycle this causes an overhead in instruction memory size.

Even though actual instructions for non-packed nodes or normal nodes needs to be

only 32 bits, architecture for dual issue scheme needs to fetch 64 bit instructions. In

case of normal node half of the instructions bits are unused and in case of packed

nodes full 64 bit is used to store the instruction for the true path and the false path.

To overcome this wastage of instruction memory associated with dual-issue scheme,

Han et al. [2010] came up with an optimized instruction memory arrangement with

interleaving of normal node instructions in a dual instruction, details are presented

in Han et al. [2010]. To make a fair comparison, I performed experiments with this

optimized instruction memory arrangement for dual-issue scheme. PSB approach

selects the right instruction from the instruction block (true block or the false block)

for cycles that have a fused node. Similar to the instruction arrangement for the

motivating example as shown in figure4.1. Since there is replication of non-fused node

instruction for those cycles which have fused nodes, one for the true block and other

other for the false block, an overhead of 14.3% on an average compared to dual issue

scheme and 13% on an average for the partial predication scheme is incurred in the

required instruction memory size for PSB. This trade off is justified by improvement

in performance and energy efficiency as shown in experimental results. However,

compared to a full predication scheme there is saving of 29% on an average in the

required instruction memory size. This is attributed to the poor II obtained via full

predication scheme.

33

Chapter 6

SUMMARY

In this thesis I proposed a novel solution to accelerate control flow loops by utilising

the branch outcome. My solution eliminates fetching and execution of unnecessary

operations and also the overhead due to predicate communication thus overcoming the

inefficiencies associated with existing techniques. Experiments on several benchmarks

demonstrate that my solution achieves the best acceleration at minimum hardware

overhead.

34

REFERENCES

K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W. Tseng, and
D. Yeung. Biobench: A benchmark suite of bioinformatics applications. In Perfor-
mance Analysis of Systems and Software, 2005. ISPASS 2005. IEEE International
Symposium on, pages 2–9, March 2005. doi: 10.1109/ISPASS.2005.1430554.

Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Al-
lan. Software pipelining. ACM Comput. Surv., 27(3):367–432, Septem-
ber 1995. ISSN 0360-0300. doi: 10.1145/212094.212131. URL
http://doi.acm.org/10.1145/212094.212131.

B. Betkaoui, D.B. Thomas, and W. Luk. Comparing performance and energy effi-
ciency of fpgas and gpus for high productivity computing. In Field-Programmable
Technology (FPT), 2010 International Conference on, pages 94–101, Dec 2010. doi:
10.1109/FPT.2010.5681761.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL
http://doi.acm.org/10.1145/2024716.2024718.

Frank Bouwens, Mladen Berekovic, Bjorn De Sutter, and Georgi Gaydadjiev. Archi-
tecture enhancements for the adres coarse-grained reconfigurable array. In Proc.
HiPEAC, pages 66–81, 2008.

HP CACTI. Hp laboratories palo alto, cacti 5.3, 2008.

Allan Carroll, Stephen Friedman, Brian Van Essen, Aaron Wood, Benjamin Ylvisaker,
Carl Ebeling, and Scott Hauck. Designing a coarsegrained reconfigurable architec-
ture for power efficiency, department of energy na-22 university information tech-
nical interchange review meeting. Technical report, 2007.

Kyungwook Chang and Kiyoung Choi. Mapping control intensive kernels onto
coarse-grained reconfigurable array architecture. In SoC Design Conference,
2008. ISOCC ’08. International, volume 01, pages I–362–I–365, Nov 2008. doi:
10.1109/SOCDC.2008.4815647.

Shuai Che, Jie Li, J.W. Sheaffer, K. Skadron, and J. Lach. Accelerating
compute-intensive applications with gpus and fpgas. In Application Specific Pro-
cessors, 2008. SASP 2008. Symposium on, pages 101–107, June 2008. doi:
10.1109/SASP.2008.4570793.

Liang Chen and T. Mitra. Graph minor approach for application mapping on cgras. In
Field-Programmable Technology (FPT), 2012 International Conference on, pages
285–292, Dec 2012. doi: 10.1109/FPT.2012.6412149.

35

E.S. Chung, P.A. Milder, J.C. Hoe, and Ken Mai. Single-chip heterogeneous comput-
ing: Does the future include custom logic, fpgas, and gpgpus? In Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM International Symposium on, pages 225–
236, Dec 2010. doi: 10.1109/MICRO.2010.36.

Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts. Handbook of Signal
Processing Systems, chapter Coarse-Grained Reconfigurable Array Architectures,
pages 553–592. Springer, 2 edition, 2013. ISBN: 978-1-4614-6858-5.

M.D. Galanis, G. Dimitroulakos, and C.E. Goutis. Accelerating applications by map-
ping critical kernels on coarse-grain reconfigurable hardware in hybrid systems. In
Field-Programmable Custom Computing Machines, 2005. FCCM 2005. 13th An-
nual IEEE Symposium on, pages 301–302, April 2005. doi: 10.1109/FCCM.2005.15.

M. Hamzeh, A. Shrivastava, and S. Vrudhula. Epimap: Using epimorphism to
map applications on cgras. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 1280–1287, June 2012.

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Regimap: Register-aware
application mapping on coarse-grained reconfigurable architectures (cgras). In De-
sign Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, pages 1–10,
May 2013.

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Branch-aware loop map-
ping on cgras. In Proceedings of the The 51st Annual Design Automation Confer-
ence on Design Automation Conference, DAC ’14, pages 107:1–107:6, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2730-5. doi: 10.1145/2593069.2593100.
URL http://doi.acm.org/10.1145/2593069.2593100.

Kyuseung Han, Jong Kyung Paek, and Kiyoung Choi. Acceleration of control flow
on cgra using advanced predicated execution. In Field-Programmable Technol-
ogy (FPT), 2010 International Conference on, pages 429–432, Dec 2010. doi:
10.1109/FPT.2010.5681452.

Kyuseung Han, Junwhan Ahn, and Kiyoung Choi. Power-efficient
predication techniques for acceleration of control flow execution
on cgra. ACM Trans. Archit. Code Optim., 10(2):8:1–8:25, May
2013a. ISSN 1544-3566. doi: 10.1145/2459316.2459319. URL
http://doi.acm.org/10.1145/2459316.2459319.

Kyuseung Han, Kiyoung Choi, and Jongeun Lee. Compiling control-intensive loops
for cgras with state-based full predication. In Design, Automation Test in Eu-
rope Conference Exhibition (DATE), 2013, pages 1579–1582, March 2013b. doi:
10.7873/DATE.2013.321.

R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective. In
Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001.
Proceedings, pages 642–649, 2001. doi: 10.1109/DATE.2001.915091.

36

A. Hatanaka and N. Bagherzadeh. A modulo scheduling algorithm for a coarse-
grain reconfigurable array template. In Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007. IEEE International, pages 1–8, March 2007. doi:
10.1109/IPDPS.2007.370371.

John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 34(4):1–17, September 2006. ISSN 0163-5964. doi: 10.1145/1186736.1186737.
URL http://doi.acm.org/10.1145/1186736.1186737.

Richard Johnson and Keshav Pingali. Dependence-based program analysis. In
Proceedings of the ACM SIGPLAN 1993 Conference on Programming Lan-
guage Design and Implementation, PLDI ’93, pages 78–89, New York, NY,
USA, 1993. ACM. ISBN 0-89791-598-4. doi: 10.1145/155090.155098. URL
http://doi.acm.org/10.1145/155090.155098.

Yongjoo Kim, Jongeun Lee, Toan X. Mai, and Yunheung Paek. Im-
proving performance of nested loops on reconfigurable array pro-
cessors. ACM Trans. Archit. Code Optim., 8(4):32:1–32:23, Jan-
uary 2012. ISSN 1544-3566. doi: 10.1145/2086696.2086711. URL
http://doi.acm.org/10.1145/2086696.2086711.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-
7695-2102-9. URL http://dl.acm.org/citation.cfm?id=977395.977673.

S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann. Effective com-
piler support for predicated execution using the hyperblock. In Microarchitecture,
1992. MICRO 25., Proceedings of the 25th Annual International Symposium on,
pages 45–54, Dec 1992. doi: 10.1109/MICRO.1992.696999.

S.A. Mahlke, R.E. Hank, J.E. McCormick, D.I. August, and W.-M.W. Hwu. A
comparison of full and partial predicated execution support for ilp processors. In
Computer Architecture, 1995. Proceedings., 22nd Annual International Symposium
on, pages 138–149, June 1995.

Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh, Heeseok Kim, and Hong-
seok Kim. Edge-centric modulo scheduling for coarse-grained reconfigurable archi-
tectures. In Proceedings of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’08, pages 166–176, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-282-5. doi: 10.1145/1454115.1454140. URL
http://doi.acm.org/10.1145/1454115.1454140.

Kara K. W. Poon, Steven J. E. Wilton, and Andy Yan. A detailed power model
for field-programmable gate arrays. ACM Trans. Des. Autom. Electron. Syst., 10
(2):279–302, April 2005. ISSN 1084-4309. doi: 10.1145/1059876.1059881. URL
http://doi.acm.org/10.1145/1059876.1059881.

37

B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for soft-
ware pipelining loops. In Proceedings of the 27th Annual International Sym-
posium on Microarchitecture, MICRO 27, pages 63–74, New York, NY, USA,
1994. ACM. ISBN 0-89791-707-3. doi: 10.1145/192724.192731. URL
http://doi.acm.org/10.1145/192724.192731.

38

