
Establishing the Software-Defined Networking Based Defensive System in Clouds

by

Tianyi Xing

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree of

Doctor of Philosophy

Approved October 2014 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair
Guoliang Xue
Arunabha Sen

Deepankar Medhi

ARIZONA STATE UNIVERSITY

December 2014

ABSTRACT

Cloud computing is regarded as one of the most revolutionary technologies in the

past decades. It provides scalable, flexible and secure resource provisioning services,

which is also the reason why users prefer to migrate their locally processing work-

loads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2[15]),

ProtoGENI [9] and PlanetLab [68] have further improved the current Internet-based

resource provisioning system by allowing end users to construct a virtual network-

ing environment. By archiving the similar goal but with more flexible and efficient

performance, I present the design and implementation of MobiCloud [83] that is a

geo-distributed mobile cloud computing platform, and G-PLaNE [85] that focuses on

how to construct the virtual networking environment upon the self-designed resource

provisioning system consisting of multiple geo-distributed clusters. Furthermore, I

conduct a comprehensive study to layout existing Mobile Cloud Computing (MCC)

service models and corresponding representative related work in [41]. A new user-

centric mobile cloud computing service model is proposed to advance the existing

mobile cloud computing research.

After building the MobiCloud, G-PLaNE and studying the MCC model, I have

been using Software Defined Networking (SDN) approaches to enhance the system

security in the cloud virtual networking environment. I present an OpenFlow based

IPS solution called SDNIPS [86] that includes a new IPS architecture based on Open

vSwitch (OVS) in the cloud software-based networking environment. It is enabled

with elasticity service provisioning and Network Reconfiguration (NR) features based

on POX controller. Finally, SDNIPS demonstrates the feasibility and shows more

efficiency than traditional approaches through a thorough evaluation.

At last, I propose an OpenFlow-based defensive module composition framework

called CloudArmour that is able to perform query, aggregation, analysis, and con-

i

trol function over distributed OpenFlow-enabled devices. I propose several modules

and use the DDoS attack as an example to illustrate how to composite the compre-

hensive defensive solution based on CloudArmour framework. I introduce total 20

Python-based CloudArmour APIs. Finally, evaluation results prove the feasibility

and efficiency of CloudArmour framework.

ii

DEDICATION

In Memory Of My Grandparents

iii

ACKNOWLEDGEMENTS

First, I want to truly express my foremost gratitude to my advisor, Dr. Dijiang

Huang, for his mentoring, guidance and support during my PhD study. His excellent

guidance, profound insight in research and extraordinary dedication to work helped

me to finish my dissertation smoothly and successfully. He is a modest, precise,

amiable, understanding person. He is the mentor not only for my study but also for

my life. I always feel lucky to be supervised by him. By working with him for several

years, I have been shaped into a better person. Without his mentoring, I would not

be able to become who I am today.

I would also like to thank my committees for their supports. Dr. Guoliang Xue,

Dr. Arun Sen and Dr. Deep Medhi provided me with invaluable advice and comments

on my research. Their feedback helped me to improve the dissertation in many ways.

I am also thankful to all members from SNAC lab and friends for their kind

supports. I am paticularly thankful to Dr. Yang Qin, Dr. Zhibin Zhou, Yuan Wang,

Zhengyang Xiong, Huijun Wu, Bing Li, Ziming Zhao, Yiming Jing, Chun-Jen Chung,

for their inspiring discussions.

Lastly, but absolutely not least, my family were always supporting me and stood

by me through the good times and bad. I have been living separately with my wife,

Chau Lam, since I started my PhD program back in 2010. Due to my busy study, my

wife visited me at Phoenix from NYC almost every month and she never complained

about it. Without her considerate thought and kind understanding, I would not be

able to finish my PhD program.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Mobile Cloud Computing System . 1

1.2 Mobile Cloud Computing Service Model . 2

1.3 Cloud Network Security Issues . 3

1.4 Outline . 5

2 STATE OF THE ART . 6

2.1 Cloud System & Platform . 6

2.2 Mobile Cloud System and Services . 7

2.2.1 Mobile Cloud Computation . 8

2.2.2 Mobile Cloud Storage . 9

2.2.3 Security and Privacy . 10

2.2.4 MCC Context Awareness . 11

2.3 Traditional Security Solutions for DDoS attack 11

2.4 SDN-enabled Cloud Network Solutions . 13

2.5 SDN-enabled Security Solutions . 15

3 RESEARCH CHALLENGES AND OBJECTIVES . 18

3.1 Mobile Cloud Computing Platform . 18

3.2 Mobile Cloud Computing Service Model . 20

3.3 Cloud Security Approach Design . 22

4 MOBICLOUD: A GEO-DISTRIBUTED MOBILE CLOUD COMPUT-

ING PLATFORM . 25

v

CHAPTER Page

4.1 System Components . 26

4.2 Implementation Flow . 28

4.3 System Extension Model: CaaS (Cluster as a Service) 29

4.4 System Resource Monitoring. 30

4.5 Experiencing the MobiCloud . 32

4.5.1 Single VM Creation . 32

4.5.2 Virtual Network Creation . 34

4.5.3 Accessing the Resources . 35

4.6 Performance Evaluation . 36

5 CONSTRUCTING VIRTUAL NETWORKS IN A GEO-DISTRIBUTED

PROGRAMMABLE LAYER-2 NETWORKING ENVIRONMENT (G-

PLANE) . 39

5.1 Virtual Network Construction . 39

5.1.1 Intra-Cluster Network Creation . 40

5.1.2 Inter-Cluster Network Creation . 40

5.2 Enabling Additional Research Capabilities . 41

5.3 Case Study: SeRViTR . 42

5.3.1 SeRViTR Architecture Overview . 42

5.3.2 SeRViTR Deployment on G-PLaNE . 44

6 MOBILE CLOUD USER-CENTRIC MODEL . 46

6.1 Current Mobile Cloud Service Models . 46

6.2 Design Principles of User-centric Mobile Cloud Computing 48

6.3 Mobile-as-a-Representer: A User-Centric Approach 49

6.3.1 MaaR Model Basic . 50

vi

CHAPTER Page

6.4 An Application Scenario based on User-centric MaaR model 52

7 SDNIPS: ENABLING A SDN-BASED INTRUSION PREVENTION SYS-

TEM IN CLOUDS. 54

7.1 SDNIPS: Design and Implementation . 54

7.1.1 Overall Architecture and Components . 55

7.1.2 Implementation . 56

7.1.3 SDNIPS Processing Flow . 58

7.2 SDNIPS vs Snort/Iptables IPS . 58

7.3 Network Reconfiguration (NR) . 62

7.3.1 Representative NR Actions . 64

7.3.2 NR Selection Policy . 67

7.4 Evaluation . 69

7.4.1 Evaluation Environment . 69

7.4.2 Evaluation Results . 70

7.5 Network Security as a Service (NSaaS) . 78

7.5.1 NSaaS System Architecture . 78

7.5.2 NSaaS Elasticity Model . 80

8 CLOUDARMOUR: CONSTRUCTING A SDN-BASED DEFENSIVE

SYSTEM IN THE VIRTUAL NETWORKING ENVIRONMENT 84

8.1 CloudArmour Overall Design . 86

8.1.1 Security Application Interface Architecture 88

8.2 Traffic Statistics Aggregation Module (TSAM) . 88

8.2.1 Traffic Statistics Aggregation Architecture 88

8.2.2 Flow Table Information Proxy . 89

vii

CHAPTER Page

8.2.3 Traffic Operator . 90

8.2.4 Traffic Statistics Database/Dataset(DB/DS) 92

8.2.5 Traffic Packet Acquisition . 95

8.3 CloudArmour Service Module Design and Implementation 96

8.3.1 Traffic Monitor and Detection . 96

8.3.2 Attack Source Tracer Module (ASTM) . 96

8.3.3 Mitigation Executor Module(MEM) . 98

8.4 Tutorial, Implementation and Evaluation . 99

8.4.1 A Tutorial: A DDoS Defensive Solution 99

8.4.2 Implementation and Evaluation . 102

8.5 CloudArmour APIs . 111

9 CONCLUSION . 114

9.1 MobiCloud: a Geo-distributed Mobile Cloud Computing Platform . . 114

9.2 Constructing Virtual Networks in a Geo-Distributed Programmable

Layer-2 Networking Environment (G-PLaNE) . 114

9.3 Mobile Cloud User-Centric Model . 115

9.4 SDNIPS: Enabling a SDN-Based Intrusion Prevention System in

Clouds . 115

9.5 CloudArmour: Constructing a SDN-based Defensive System in the

Virtual Networking Environment. 116

9.6 Limitations and Future Works . 116

REFERENCES . 118

viii

LIST OF TABLES

Table Page

2.1 Comparison table of GENI Projects . 6

2.2 Summary of MCC Services and Applications . 7

2.3 Security Solutions Comparison Table . 17

4.1 Single VM Creation Specification . 32

7.1 Network Reconfiguration Actions. 62

7.2 SDNIPS Actions Selection Guidance . 67

7.3 NSaaS Elastic Operations. 82

8.1 TSAM API Summarization . 112

8.2 CloudArmour Application Module API Summarization 113

ix

LIST OF FIGURES

Figure Page

2.1 The OpenFlow Architecture. 13

4.1 MobiCloud Resource Distribution Map . 25

4.2 MobiCloud Architecture Design . 26

4.3 Processing flows in MobiCloud . 28

4.4 NetFlow Monitoring Top Protocol . 30

4.5 sFlow Connection Circle . 31

4.6 Single VM Creation . 33

4.7 Virtual Network Creation . 34

4.8 Accessing VPN on (a) iOS and (b) android, accessing VM via VNC on

iOS . 36

4.9 VM Preparation Performance . 37

4.10 Bandwidth Performance . 38

5.1 Intra- & Inter-Domain Network Architecture . 39

5.2 SeRViTR Architecture Overview . 43

6.1 Current Service Models of MCC . 47

6.2 Mobile-as-a-Representor (MaaR) . 49

6.3 MaaR Conceptual Architecture . 52

7.1 The SDNIPS System Architecture. 54

7.2 The SDNIPS Processing Flow. 57

7.3 SDNIPS and Snort/Iptables IPS Mechanisms. 59

7.4 The Network Reconfiguration Mechanism. 64

7.5 CPU Utilization Performance Comparisons. 70

7.6 The Impact of Health Traffic. 72

7.7 Evaluation of Intrusion Detection Rate. 73

x

Figure Page

7.8 CPU Utilization Performance of Major NRs. 75

7.9 TR Traffic Handle Capacity. 76

7.10 Bandwidth Performance of QA. 77

7.11 SDNIPS as a Service System Architecture . 79

7.12 NSaaS Elastic Service Model for One Tenant. 81

7.13 NsaaS Elasticity Example . 83

8.1 CloudArmour Lifecycle . 84

8.2 CloudArmour System Overall Architecture. 86

8.3 Traffic Statistic Aggregation Module . 87

8.4 Tree-based Traffic Expanding Model. 92

8.5 DDoS Attack Model . 100

8.6 DDoS Defensive Solution Construction Flow . 102

8.7 DDoS Detection Engine Implementation Screenshot 104

8.8 DDoS Attack Scenario and flow table Entries . 105

8.9 Screenshot of ASTM in DDoS Attack Scenario . 106

8.10 Comparison Evaluation between OpenFlow-based and Traditional Mit-

igation . 108

8.11 Major Mitigation Options Evaluation . 109

8.12 Comprehensive DDoS Defensive Solution Performance Evaluation 110

xi

Chapter 1

INTRODUCTION

Cloud computing has grown rapidly in recent few years due to the increasing net-

work bandwidth, mature virtualization techniques, and emerging cloud based business

demands. Besides the traditional service models of cloud computing, i.e., IaaS, PaaS

and SaaS, new models keep coming out to provide new types of services, e.g., StaaS

(Storage as a Service), DaaS (Desktop as a Service), NaaS (Network as a Service),

etc. After the neonatal stage of cloud computing, especially within the recent few

years, cloud computing has shifted its focus from fixed users oriented to dynamic mo-

bile users oriented, from local to global, from centralized to distributed architecture.

Among all issues related to clouds, mobile cloud computing platform, user centric

mobile cloud service model, and virtual networking security have been regarded as

most critical concerns as well as my research focus.

1.1 Mobile Cloud Computing System

Today, the Internet web service is the major way that we access information from

fixed or mobile terminals. Information is stored on Internet clouds, where comput-

ing, communication, and storage services are common services provided for Internet

users. In a non-distant future, many of our queries will be beyond current Internet

scope and will be about the people, the physical environments that surround us, and

virtual environments that we will be involved. With the Internet environment getting

improved, mobile phones will overtake PCs as the most common web access entities

worldwide by 2014 as predicted by Gartner [53]. Current mobile devices have many

advanced features such as mobility, communication and sensing capabilities, and can

1

serve as the personal information gateway for mobile users. However, when running

complex data mining and storing operations, the computation, energy, and storage

limitations of mobile devices demand an integrated solution relying on cloud-based

computation and storage support. As a result, a new research field, called Mobile

Cloud Computing (MCC), is emerging to meet the increasing demand and address

the issues.

The trend of the MCC system is not just aiming to provide services for users

in some certain areas, but is especially looking forward to establishing connections

among mobile users all over the world. Due to the mobility of MCC users, a geograph-

ically distributed cloud system is a natural choice that allows users to connect to the

cloud resource that is geographically “close” to their mobile devices, which usually

means less communication delay compared to the centralized approach. Here, a ge-

ographically distributed MCC system refers to an infrastructure combining multiple

cloud clusters (with dedicated computing, storage, and communication resources) lo-

cated at different locations. Unlike the centralized service provisioning data centers,

in geographically distributed data centers, users’ requests will be responded by the

closest and least loaded data centers, that guarantees better user experience. Many

cloud service providers, like Google and Amazon, place their data centers all over the

world to provide rapid resource and service access for end users.

1.2 Mobile Cloud Computing Service Model

One the mobile cloud computing platform is physically established, another signif-

icant research topic goes to the logic part, i.e., service model. In MCC, a mobile entity

can be considered as either a physical mobile device or a mobile computing/storage

software agent within a virtualized cloud resource provisioning system. In the lat-

ter view of the cloud system, a software agent’s main functionality is the mobility

2

associated with the software codes. In other words, mobile cloud applications may

migrate or compose software codes in the distributed MCC resource-provisioning envi-

ronment. Mobile cloud services will account for delay, energy consumption, real-time

entity presence, information caching capabilities, networking and communication con-

nectivity, data protection and sharing requirements, and so on. By achieving these

features, we are able to create a new world composed by both physically networked

systems and virtualized entities that are mapped to the physical systems preserving

and in some cases extending their functions and capabilities.

MCC distinguishes its research focuses on a tight interaction between, and con-

struction and integration of, the Cyber Physical System (CPS) and Cyber Virtual

System (CVS), in which the CPS is immensely composed by computational and

physical smart and mobile entities, and the CVS is mainly formed by cloud-based

virtualized resource and services. Recent developments of Augmented Reality (AR)

[13, 72, 17, 22] have demonstrated some of the application capabilities of MCC.

1.3 Cloud Network Security Issues

Cloud computing technologies have been widely adopted today due to its resource

provisioning capabilities, such as scalability, high availability, efficiency, and so on.

However, security is one of the critical issues that have not been fully addressed

[14]. Attackers may compromise vulnerable virtual machines (VMs) to form botnets,

and then deploy distributed denial-of-service (DDoS) attacks or send spams, which

have become a major security concern of using cloud services. Several critical cloud

network security issues are highlighted as below:

1. Abuse and Nefarious Use of Cloud Computing. IaaS providers offer

their customers the illusion of unlimited compute, network, and storage capacity. By

abusing the relative anonymity behind these registration and usage models, spam-

3

mers, malicious code authors, and other criminals have been able to conduct their

activities with relative impunity. PaaS providers have traditionally suffered most

from this type of attacks; however, recent evidence shows that hackers have begun to

target IaaS vendors as well [46]. Future areas of concern include password and key

cracking, launching dynamic attack points, hosting malicious data, botnet command

and control, etc.

2. Malicious Insiders. The threat of a malicious insider is well-known to most

organizations. This threat is amplified for consumers of cloud services by the con-

vergence of IT services and customers under a single management domain, combined

with a general lack of transparency into provider process and procedure. In traditional

computer networking systems, security protection is usually deployed at the edge of

the system, for example, the firewall system. However, an attacker can break the

firewall or DMZ and get access into the internal network, these attack consequences

can be very servere. Since all resources in the same domain is trusted among each

other by default, insider attacks can cause more damage than outsider attacks.

3. Data Integrate. Storage is one of the most important and common scenarios

in clouds. Therefore, compromising stored data, e.g., deletion or alteration of records

without a backup of the original content, becomes another critical security issue in

clouds. The authentication and authorization of the data must securely guarantee

that unauthorized or unauthenticated parties must be prevented from gaining access

to privacy data. The threat of data compromise increases in the cloud, due to the

number of and interactions between risks and challenges which are either unique to

cloud, or more dangerous because of the architectural or operational characteristics

of the cloud environment.

4. Virtualization Hijacking. One of the significant characteristics of the cloud

computing is the virutalization, which enables better resources utilization and fine

4

grained resource isolation. IaaS vendors provide their services by sharing the physi-

cal infrastructure in a scalable fashion. However, the underlying components building

up the infrastructure (e.g., CPU, GPU, etc.) were not dedicated designed to deliver

strong isolation capability in a multi-tenant environment. To address this issues, hy-

pervisor is designed and introduced to fill the gap between the physical infrastructure

and guest operating system. However, the existing hypervisor is not flawless and can

still be compromised in that it enables users to gain access to inappropriate level of

control to guest OS. A defense in depth strategy is recommended, and should include

compute, storage, and network security enforcement and monitoring. Strong com-

partmentalization should be also employed to guarantee that individual customers

do not impact the operations of other tenants running on the same cloud service

provider. Customers should not have access to any other tenant’s actual or residual

data, network traffic, etc.

1.4 Outline

My research interests mainly involve the cloud infrastructure design and imple-

mentation, cloud service design and implementation, software defined network, cloud

network security, etc. The outline of this dissertation is arranged as follows: Chapter

2 discusses the related work for all related research areas, and a brief summary of

them. Chapter 3 mainly discusses the research challenges and expected objective

for my research. MobiCloud and G-PLaNE system are discussed in chapter 4 and 5

respectively. Chapter 6 introduces a new MCC model and corresponding exemplar

architecture. Chapter 7 discusses a SDN-enabled IPS system in cloud environment.

A SDN-enabled modular composition framework called CloudArmour is discussed in

chapter 8. Finally, chapter 9 concludes this dissertation and discusses the future

work.

5

Chapter 2

STATE OF THE ART

2.1 Cloud System & Platform

Global Environment for Network Innovations (GENI) [10], is a project exploring

the future global networking infrastructure where different types of resource provision-

ing platforms are residing. GENI projects can be divided into backbone networks,

programmable hosts, wireless testbeds and specialized aggregates. Different GENI

platforms, e.g., PlanetLab [68], ProtoGENI [9], and OpenFlow Networks [54], have

different concentration in terms of provisioning resources, network architecture, pro-

grammable networks, etc. For example, ProtoGENI has integrated a large group of

Table 2.1: Comparison table of GENI Projects
Project Major Sensing Programmable Extension

Resource Capability Networks Simplicity

PlanetLab Fedora VM No No Difficult

ProtoGENI (Emu-

lab)

PC and VM USRP Yes Difficult

OpenFlow Net-

works

OF Switch No Yes DD

GENICloud (open-

cirrus)

Physical node No No NA

Seattle Experimenter Software No No Easy

ORBIT Dedicated node No Yes NA

DOME Linux VM No No NA

DETER (Emulab) PC No Yes NA

Kansei Sensing node Yes No NA

ViSE Debian VM Yes Yes NA

GpENI Fedora VM No Yes DD

MobiCloud Windows, Linux VMs Yes Yes CaaS

DD: Dedicated Device, NA: Not Allowed

6

resources available from the world to provide resources with network programmability

and sensing features. Seattle [26] has an efficient design that can easily make spare

nodes join their available resource pool to be further utilized to provide python based

experiments. All GENI related projects [68, 9, 54, 25, 26, 69, 74, 21, 16, 43, 76] and

our proposed MobiCloud are summarized in Table 2.1.

2.2 Mobile Cloud System and Services

Table 2.2: Summary of MCC Services and Applications

MCC Services and Applications Service Models

MCC Service Types Representative Approaches MaaSC MaaSP MaaSB

Mobile Cloud Computation CloneCloud [28] X

MAUI [32] X

ThinkAir [49] X

Mobile Cloud Storage Dropbox, Box, iCloud, GoogleDrive

and Skydrive [31]

X

WhereStore [77] X

STACEE [60] X X

Security and Privacy CloudAV [63] X

Secure Web Referral Services for Mo-

bile Cloud Computing [50]

X

Zscaler [12] X

Google Wallet [37] X

Context Awareness An Integrated Cloud-based Framework

for Mobile Phone Sensing [34]

X X

I summarize existing MCC services and applications in Table 2.2. I defined 3

service models, Mobile as a Service Consumer (MaaSC), Mobile as a Service Provider

(MaaSP), Mobile as a Service Broker (MaaSB), based on the role of mobile devices

in the MCC environment. The service models are classified based on the role of the

mobile device, such as service consumer, service provider, and service broker. More

detail on the service model will be discusses in chapter 6. I also discuss corresponding

7

representative projects. Each service or application can be categorized into one or

multiple service models. MaaSC is the most common MCC service model because

most of existing mobile devices are still restricted by their computation and energy

capacities. As an example, clonecloud [28] provides the computation task offloading

service for mobile devices. In this case, the mobile device is the service consumer

since it only gets benefit from the service provided by cloud rather than providing

services for other users.

2.2.1 Mobile Cloud Computation

Computation task offloading is a demanding feature for mobile devices relying

on Internet clouds to perform resources-intensive computation tasks. Partitioning

computation tasks and allocating them between mobile devices and clouds can be very

inefficient during the application runtime considering various performance metrics

such as energy consumption, CPU power, network delay, etc. How to efficiently and

intelligently offload the computation tasks onto the cloud is one of the main research

issues of MCC. CloneCloud [28] and MAUI [32] are two pioneer work in this area.

They both can automatically offload computing tasks to the cloud.

CloneCloud serves as an application partitioner as well as an execution runtime

environment that allows unmodified mobile applications seamlessly offloading parts

of the executions from mobile devices onto a cloud server. The offloading decision is

made by optimizing execution time and energy usage for mobile devices. Contrast

to CloneCloud, MAUI allows modifying offloading applications at the coding level

to maximize the energy saving of mobile devices. Thinkair [49] demands dedicated

virtual machines (VMs) in clouds as part of a complete smartphone system, and

removes the restrictions on applications/inputs/environmental conditions by using

an online method-level offloading.

8

2.2.2 Mobile Cloud Storage

Storage capacity is another constraint of mobile devices. There are many exist-

ing storage services for mobile devices, e.g., Dropbox, Box, iCloud, Google Drive,

and Skydrive [31]. Besides manually uploading the files or data onto the cloud, one

desired feature of mobile cloud storage services is the automatic synchronization be-

tween mobile devices and the cloud. Multimedia data generated by mobile devices

demands a stable and high available storage solution. This is the reason that many

smartphone operating systems natively implant the multimedia data synchronization

feature, e.g., iCloud for iOS, Skydrive for Window Phone, Google Drive for Android,

etc. Moreover, mobile users’ behavior data such as location traces, browsing history,

personal contacts, preference settings need to be kept in a reliable and protected stor-

age space. Most existing commercial cloud storage solutions are built on a centralized

data center, which is appropriate for Internet Clouds.

Storage mobility has been gradually becomes a recent research focus. Where-

Store [77] is a location-based data storage solution for smartphones. It uses filtered

replication (a filter expressing the set of data items that are likely to be accessed in

the near future) along with each device’s location history to distribute data items

between smartphones and the cloud. STACEE [60] proposes a peer-to-peer cloud

storage where mobile phones, tablets, set-top-boxes, modems and networked storage

devices can all contribute as storage within these storage clouds. It provides a peer-

to-peer (P2P) cloud storage solution and addresses the storage issue for mobile users

as a QoS-aware scheduling problem.

9

2.2.3 Security and Privacy

Security related services aim to provide data security protections through the

cloud. Security of mobile devices can be enhanced under the help of cloud security

mechanism including cloud-based secure proxy, remote anti-virus, remote attestation,

etc.

CloudAV [63] advocates such a cloud-based security model for malware detection

for end hosts by providing antivirus as an in-cloud security service. Secure web referral

services [50] enable the antivirus and anti-phishing services through the cloud. The

referral services depend on a secure search engine to validate URLs accessed by a

mobile device to prevent mobile users from accessing phishing websites.

Zscaler [12] is one of the most well-known commercial cloud-based security com-

pany that provides policy-based, secure internet access for mobile devices. It provides

a comprehensive cloud-based security solution including three main components: ZEN

(proxy), CA (central authority), and Nanologs server (log server). Various cloud-

based security services are built based on these components. For example, the ByteS-

can service enables each ZEN to scan every byte of the web request, content, responses

and all related data to block malicious actions and data such as viruses, cross site

scripting (XSS), botnets, etc.; The PageRisk service relies on the ZEN to computes a

PageRisk index for every page loaded and enables the administrator to control con-

tent served to their users based on an acceptable risk evaluation; the NanoLog service

enables administrators to access any transaction log in realtime.

An increasing number of security features can be enabled in cloud, in which a

reliable and secure connection between a mobile device and the cloud is the main

challenge for this type of solutions. Google Wallet [37] is developed on a cloud-mobile

dual trust root model, where the cloud is in charge of the application level security

10

such as credit card transactions and user credential management, and the Google

Wallet mobile device is protected by strong trust computing elements on the board

to prevent malicious attacks on the mobile devices.

2.2.4 MCC Context Awareness

Nowadays, a smart mobile device usually serves as an information gateway for

mobile users involving various personalized activities such as checking emails, making

an appointment, surfing the web, locating some interested spots, analyzing personal

behavior data based on data mining and machine learning, etc. For example, in

[34], each mobile device has a dedicated Mobile Cloud Engine (MCE) including three

modules: decision module, publish subscribe module, and context awareness module.

The decision module handles and regulates the transactions among the different parts

of the MCE. The publish subscribe module is responsible for establishing the data flow

between the mobile application and the MCE. Finally, the context awareness module

provides context information to the application. The state-of-the-art solutions lack a

unified approach suitable to support diverse applications, while reducing the energy

consumption and providing intelligent assistance to mobile users.

2.3 Traditional Security Solutions for DDoS attack

Among all malicious behaviors, Distributed Denial of Service (DDoS) is one of the

most critical issues in cloud virtual networking environment since the DDoS attack is

hard to defend once the internal resources are controlled by attackers. Thus, in my

research work, DDoS has been used to demonstrate the security defensive solution.

According to the definition from WWW Security FAQ [75] on Distributed Denial of

Service (DDoS) attacks: “A DDoS attack uses many computers to launch a coordi-

nated DoS attack against one or more targets. Using client/server technology, the

11

perpetrator is able to multiply the effectiveness of the DoS significantly by harnessing

the resources of multiple unwitting accomplice computers, which serve as attack plat-

form”. The countermeasure of DDoS includes identification, trace, and prevention

action.

In [33], author classified the solution of DDoS attack into different ways, such as

filtering, disabling unused services, changing IP address, load balancing, honeypots,

etc. Data-mining technology is normally applied in DDoS attack detection. In [78],

authors used an incremental mining approach to detect large-scale attacks for network

intrusion detection system. This work is distinguished because traffic information is

obtained in real time and the analysis is not done by static data. Another work [88]

presented a multiple layers game-theoretic framework for DDoS attack and defense

evaluation. An innovative point in this work is the strategic thinking of attacker’s

perspective benefit the defense decision maker in this interaction between attacks

and defenses. However, two works above are not suitable for deploying dynamic

network threats countermeasure and has no real time security solution for real time

attacks. In [89], authors proposed a dynamic resource allocation strategy to counter

DDoS attacks against individual cloud customers. When a DDoS attack occurs, they

employ the idle resources of the cloud to clone sufficient intrusion prevention servers

for the victim in order to quickly filter out attack packets and guarantee the quality

of the service for benign users simultaneously. However, this paper focused on how

to allocated idle resource for IPS but did not discuss how the IPS prevent the DDoS

attack.

Since DDoS attack is different from other types of attacks in terms of the great

number of the attack sources, packet marking technique is widely used for IP trace-

back to locate the attack sources. In [36], the authors present a marking mechanisms

for DDoS traceback, which injects a unique mark to each packet for traffic identi-

12

fication. As a Probabilistic Packet Marking(PPM) method, it has a potential that

leads attackers to inject marked Packet and spoofed the traffic. [20] is another impor-

tant traceback method by using Deterministic Packet Marking (DPM). The victim

could track the packets from the router which splits the IP address into two seg-

ments. Differing from previous methods, the authors present an independent method

to traceback attacker based on entropy variations in [90]. However, most of these

works did not handle the IP spoofing effectively, and packet modification needs to be

enabled, which introduces more overhead and even vulnerabilities.

2.4 SDN-enabled Cloud Network Solutions

Host 1

Controller

OpenFlow Protocol

SSL

In Port
VLAN

ID

Ethernet
src dst type

Match

Fields
Priority Counters Instructions Timeouts Cookie

IP
src dst Protocol

Port
src dst

Flow Entry 1
Flow Entry 2
Flow Entry 3

Flow Entry n

Secure ChannelS
w

itch
 P

o
rts

P
o

rt 0
P

o
rt 1

P
o

rt m

Host 2

Host m

Figure 2.1: The OpenFlow Architecture.

OpenFlow is a representative standard and protocol implementing SDN concept.

As shown in Fig. 2.1, it introduces a centralized controller and defines standard in-

13

terfaces to the controller for installing a packet-forwarding rules in the flow table

that is defined in [64]. The flow table is in the data plane and is able to rapidly

handle incoming packets at line rate. It mainly has fields such as match fields, prior-

ity, counters, instructions, etc. The statistics counter field of the flow table records

statistics of traffic passing through all the OpenFlow devices, such as individual and

aggregate flow statistics, flow table statistics, port statistics, queue statistics, etc. In

the OpenFlow architecture, a controller executes all control tasks of the switches and

is also used for deploying new networking frameworks, such as new routing protocols

or optimized cross-layer packet-switching algorithms. When a packet arrives at an

OpenFlow switch (OFS) or Open vSwitch (OVS), the switch processes the packet in

the following three steps:

1. It checks the header fields of an incoming packet and tries to match any entry in

the local flow table. If there is no matching entry in the flow table, the packet

is encapsulated and is sent to the controller for further processing. There can

be multiple flow control rules. It follows a best matching procedure to pick the

best rule, e.g., the one with the highest priority.

2. It then updates the byte and packet counting information associated with the

rules to log statistics, which can be used to collect the traffic information to

detect any abnormal traffic.

3. Once a matching rule is decided, the OpenFlow switch takes the action based

on the corresponding flow table entry, e.g., forwarding to a specific port, or

dropping.

OpenFlow switch separates the control plane and data plane by virtualizing the

network control as a network OS layer. The network controller is considered as the

14

software engine to deploy the control functions that can be implemented through

automatic control algorithms. With these features, dynamic network reconfiguration

can be implemented in the cloud virtual networking environment. There are several

OFS controllers available following the OpenFlow standard, such as NOX/POX [38].

Both OVS and OFS are OpenFlow protocol enabled switches. For all works men-

tioned in this report, I choose to use OVS to represent all the OpenFlow switches

implemented as a software switch in the cloud environment, where OVS is usually

implemented in the privilege domain of a cloud server, e.g., Domain 0 of XenServer

[30] and the host domain of KVM [3]; while the OFS represents physical OpenFlow

switches.

OpenFlow switch, as a programming network device with high flexibility and

scalability, has been largely deployed to enable new services or enhance performance

especially for network scenarios [48, 45, 79]. Also, combining the OpenFlow with

other opensource packages creates new opportunities. QuaggaFlow [58] integrates

the Quagga opensource routing suite with OpenFlow to provide a centralized control

over the physical OpenFlow switches and Quagga router in Virtual Machine (VM).

However, very few researchers started using OpenFlow as a way for security purpose,

especially in cloud environment.

2.5 SDN-enabled Security Solutions

SDN has been well researched to establish monitoring system [70] [18] [80] due to

its centralized abstract architecture. These three works all utilize the programmable

fabric of OpenFlow monitor the traffic and detect the malicious behavior. However,

all three aforementioned studies did not specifically consider the SDN-based detection

for DDoS attack and countermeasure for malicious behaviors. OpenSafe[18] is a net-

work monitoring system that allows administrators to easily collect usage statistics

15

of networking and detect malicious activities by leveraging programmable network

fabric. It uses OpenFlow technique to enable some manipulations of traffic, such as

selective rules matching and arbitrary flows directing, to achieve its goal. Further-

more, ALARMS is designed as a policy language to articulate paths of switches for

easily network management. OpenNetMon [80] is another network monitoring appli-

cation based on OpenFlow platform and is implemented to monitor per-flow metrics

to deliver fine-grained input for traffic engineering. Benefiting from the OpenFlow

interfaces that enable statistic query from controller, authors proposed an accurate

way to measure per-flow throughput, delay and packet loss metrics. In [70], authors

proposed a new framework to address the detection problem by manipulating net-

work flows to security nodes for investigation. This flow-based detection mechanism

guarantees all necessary traffic packets are inspected by security nodes. However, all

three aforementioned studies did not specifically consider the SDN-based detection

for DDoS attack and did not discuss the countermeasure for malicious activities.

SDN technology is also used to detect specific threat, e.g., DDoS, in cloud system.

In [23], the authors present a flow-based lightweight method for DDoS attack de-

tection. This solution is implemented on NOX/OpenFlow platform to collect traffic

statistic information from flow table by Flow Collector. Important DDoS relevant

features will be extracted from feature extractor module and be sent to classifier

where classification algorithm comes from Self Organizing Maps (SOM)[47] method.

However, this paper does not provide an optimized detection solution for distributed

cloud environment and corresponding countermeasures for the DDoS attack.

Besides detection, proposing SDN-enabled prevention solutions is another key di-

rection for SDN based security research. CONA [27] is a content-oriented networking

architecture build on NetFPGA-OpenFlow platform. In this design, hosts request

contents and agents deliver the requested contents while the hosts can not. Under

16

Table 2.3: Security Solutions Comparison Table
Project Cloud Detection Prevention DDoS

CloudWatcher [70]

OpenSafe [18]

OpenNetMon [80]

Avant-Guard [71]

Lightweight DDoS Detection [23]

ORHM [44]

CONA [27]

NICE [29]

SnortFlow [84]

the content-aware supervision, system can perform prevention by: (1) collecting sus-

pect flows information from others agents for analysis, and (2) applying rate limit

to each of relevant agents to slow down the overwhelming malicious traffic. Open-

Flow Random Host Mutation (OFRHM) [44] is another innovative solution by using

Moving Target Defense (MTD) to protect the targets from being attacked though

changing its identity representation. In this research, they add a transparent virtual

IP layer above real IP and make real IP addresses untouchable by unauthorized en-

tities. The system will assign a virtual IP to each host after each mutation interval.

However, this work is a proactive solution and does not work when the attack is

initiated from malicious insiders who are aware of the real IP address of victims.

Finally, besides enhancing the security level by utilizing the SDN technology, en-

hancing the security of the SDN itself is also a hot topic. In [71], authors proposed

AVANTGUARD, a new framework to advance the security and resilience of open-

Flow networks with greater involvement from the data-plane layer. It makes SDN

security applications more scalable and responsive to dynamic network threats. They

introduce actuating triggers that automatically insert flow rules when the network is

under duress. The overhead of the proposed extension over SDN was evaluated to be

minimal. All SDN-based security solution are summarized in Table. 2.3.

17

Chapter 3

RESEARCH CHALLENGES AND OBJECTIVES

The research challenges and objectives are classified into the following several

perspectives.

3.1 Mobile Cloud Computing Platform

Several MCC system is described in the chapter 2, however, there are more issues

brought by such emerging architecture.

Resource Management. When some physical machines in the datacenter are

approaching the capacity limit of the system, all devices accessing those machines

will be affected. Without efficient resource management approaches, service providers

have no choice but to purchase additional physical cloud servers to overcome this issue.

To decrease the cost as much as possible, efficient resource management approach that

considers resource scheduling, workload balancing, etc., are needed to handle the crisis

introduced by hardware resource shortages.

Resource Diversity. Virtual machine is the major format of the resource due to

its efficient utilization of hardware resources, although some systems choose to provide

physical nodes. All major guest OSes can be supported in a main stream virtualization

environment, e.g., Xen [66]. However, current service providers pay more attention to

system architecture design but not enough to resources provisioning diversity, which

means users have little choice on resources. The resource diversity includes not only

the type of guest OS, but also different virtual hardware configurations.

Network Programmability and Sensibility. A static and simple network

cannot meet the increasing demand from users nowadays. Network programmabil-

18

ity usually separates the control and data path of network device, and provides an

interface of the control path so that the control function can be easily programmed.

Programmable network devices are more flexible in that they make decisions based

on not only predefined rules, but also on dynamically generated policies. Sensibil-

ity provides a bridge connecting cloud resources and the physical world. Sensibility

greatly expands the range of experiments supported in the system.

Extensibility and Scalability. All resource provisioning systems are facing the

extension issue when the number of users is increasing. This issue involves two tracks

on internal and external one. For the internal issue, the system should consider how

to expand the system without changing and affecting the current running system. For

example, add more storage servers. For the external issue, the system should consider

how others can easily join the system family without much effort. For example, how

to make the donated nodes to easily become available resources in system resource

pool.

SLA Guarantee. Since cloud resource provisioning is a neonatal service, the

performance is not as optimal as others imagine. With a growing number of cloud

resource provisioning platforms being developed, how to provide resources within an

acceptable time period is another major concern. Besides responding time, SLA also

refers to system availability. For some geo-distributed research-oriented platforms,

e.g., ProtoGENI, multiple universities or institutions are providing resources collab-

oratively. It always happens that some of the resources are not available due to node

failure or connection failure. Thus, how to enhance the reliability and availability of

all resources is also a critical concern for current MCC platform development.

Inter-Domain Communication. Users probably expect a type of resource such

as virtual machines (VMs) that connect with each other across domains. Furthermore,

in this virtual network resource environment, data and services need to be transferred

19

from one to another sometimes, which is highly dependent on inter-domain commu-

nication. How to optimize the inter-domain communication to establish highly con-

nected resources and transfer the service or data to the destination server without

noticed delay is also another challenge for the existing geo-distributed cloud system.

To address challenges and achieve objectives illustrated above, I choose Xen-based

virtualization solution which is an efficient and flexible hypervisor and supports a

wide range of guest OS. For the backend network of the cloud system, I enable the

SDN control in the form of Open vSwitch (OVS) to flexibly control the network

traffic and manage the virtual network. Another major concern is how to improve

the cloud system from centralized architecture into the geo-distributed architecture,

which raises another problem that the interconnection among different clusters should

be guaranteed. After enabling the SDN network management as our backend network

function, I establish the GRE tunnel among all remote site. Thus, the inter-cluster

connection is established in a layer-2 fashion, which VLAN is still supported across

different sites. After the mainframe is built, I can further design the higher layer

resource provisioning and monitoring function.

3.2 Mobile Cloud Computing Service Model

From the service point of view, current mobile cloud computing service providers

and their services customers (i.e., mobile devices) are clearly defined. Most existing

computing models are similar to the traditional “client-server” type of service models.

Serval issues for the existing MCC services are explained and the expected transition

characteristics are also discussed given as below.

Symmetric MCC Service Model: Most current MCC service models are in the

asymmetric fashion. As examples presented in Table 2.2, mobile devices are usually

considered as clients of cloud services. The service (e.g., computing and storage

20

services) direction is mainly one directional, i.e., from cloud to mobile devices. With

the increasing capability of mobile devices, mobile devices can also collaboratively

execute the applications tasks. Moreover, the virtualized environment should provide

intelligent feedbacks to physical devices to adjust their behaviors or actions in order to

provide better virtualized services. This virtualization-feedback loop model demands

a symmetric MCC service model, i.e., both mobile devices and the virtualized cloud

are service providers as well as clients.

Personalized Situation Awareness: In the current complicated mobile cloud en-

vironment, data sources could be diverse, e.g., mobile device, environment, or social

network. Sometimes, single data source is not sufficient for supporting MCC ap-

plications in the cloud; moreover, data collected from heterogeneous network might

be unstructured or unclassified. For example, in the physical world, there could be

multiple networking interfaces and services that are available to a user’s device, e.g.,

wireless sensor network, social network, vehicular network, personal & body area

network, etc. cloud should be able to get data from different source network and

then cluster them together to make the data structural and readable in the future.

Thus, more work is expected to construct situation awareness services that can be

personalized according to individual users in the virtual environment.

User-Centric Trust Model: Most current cloud trust model is centralized, i.e., all

mobile entities need to trust the cloud service provider. Storing private data in the

cloud environment is a big hurdle for most of mobile cloud applications. It is desirable

to establish a distributed or decentralized trust management framework within the

virtualized cloud system to address the privacy concerns of mobile users. In the

physical world, the virtualized resource could be hosted in either public or private

clouds that are tailored according to users preference. This requirement demands to

transfer current centralized cloud to into a distributed or decentralized fashion. For

21

example, including mobile users’ computing and storage resources into the mobile

cloud infrastructure without requiring (or even allowing) administrative privilege can

significantly reduce the privacy concerns from mobile users.

3.3 Cloud Security Approach Design

Here, I will describe two major design requirements that should be considered to

establish a secure cloud networking environment.

1. Robust Network Architecture Design. Before building the cloud system,

a robust security system design is highly desired. The following criteria should be

followed when designing the cloud network architecture.

• Network isolation should be provided for multiple purposes. For example, data

networks should be separated from the management network because it is not

secure to make users have privilege to access the cloud management network.

Moreover, different networks needs to be separated from each other physically

by using different network devices, e.g., switch, or virtually by deploying the

network virtualization technology, such as VLAN, GRE tunnel, etc.

• The system should allocate sufficient resources based on the usage of system

components. For example, storage network usually should be allocated with

more bandwidth than management network because only control messages are

sent over management network while Gigabit-sized virtual machine images may

be transmitted over the storage network. Besides network resources, host re-

sources should be also considered. For example, the rabbitMQ, i.e., the message

queuing system, should be allocated with better resources due to its higher pro-

cessing workload than other servers, otherwise, it will become the bottleneck of

the whole system.

22

• They system should be enabled with High Availability (HA), e.g., redundant

or backup, to avoid the single point (link) failure. The HA can be reflected in

either network or host perspective. It is recommended to enable the HA for the

services that especially can be directly accessed by users.

The challenge of building a robust network architecture is that there can not be

a perfect system design, which means, system architect or administrator can only

design a near perfect system and always have other security solutions to prevent the

system from being impact by any possible malicious behavior.

2. Intrusion Detection and Prevention System (IDS/IPS). An intuitive

solution to address the cloud security issues is to deploy an Intrusion Detection and

Prevention System (IDS/IPS), e.g., Snort [5], Suricata [6], etc. Detecting and alert-

ing natures of IDS solutions demand the human-in-the-loop to inspect the generated

security alerts, which cannot respond to attacks in a prompt fashion. Recently, the

Software Defined Networking (SDN) technologies provide a programmable networking

environment, which enable the Intrusion Prevention System to become a key research

area in the cloud automated defensive mechanism. In general, the IPS can be con-

structed based on IDS. For instance, Snort can be configured as inline mode and work

with a common firewall system, e.g., Iptables, to implement the IPS in the cloud net-

working environment [56]. However, there are several issues in the Snort+Iptables

based IPS system, and our presented solutions target at addressing these issues:

• Latency : The IPS detection engine usually uses a buffer to queue incoming

packets for inspection purpose, and a packet will be dropped when the incoming

packets exceeds the buffer’s capacity. This mechanism ensure the IPS for packets

inspection and possible blocking actions on each network packet. IPS usually

consumes more cloud system resources compared to IDS, and it also increases

23

the packet delivery delay due to the packets inspection procedure.

• Resource Consumption: Enabling new services in the system will consume more

resources and downgrade the system performance. For the service that is highly

interactive with all the network traffic generated in the cloud virtual network-

ing system, resources utilization becomes very critical since the security services

availability depends on it. Under the same hardware resources, the one with

better processing capability, e.g., detection rate, has better resources consump-

tion performance.

• Network Reconfigurations : Programmable virtual networking system in the

cloud environment provides the IPS a flexible way to reconfigure the virtual

networking system and provide a secure traffic inspection and control. How

to incorporate the Deep-Packet Inspection (DPI) with fine-grained traffic con-

trol in the cloud virtual networking environment to reduce the intrusiveness to

normal traffic is a key research challenge.

• Service Provisioning : IDS/IPS are generally provided and administrated by the

cloud system administrator to guarantee the security of the system. However,

to guarantee the privacy of the users’ traffic and efficiency of the security ap-

plication, IDS/IPS are expected to be provided as a cloud service so that users

can claim the IDS/IPS service within their virtual networking domain. The

IDS/IPS service is also expected to be elastic, which means that the resources

of the IDS/IPS can be dynamically adjusted to meet the demand of traffic.

24

Chapter 4

MOBICLOUD: A GEO-DISTRIBUTED MOBILE CLOUD COMPUTING

PLATFORM

Figure 4.1: MobiCloud Resource Distribution Map

Motivated by the research challenges and objective discussed in chapter 3, it is

essential to propose a cloud provisioning platform by considering mobile users and

experimenters to solve the problems raised by the emergence of the popular geo-

distributed cloud systems. I propose the MobiCloud, a geo-distributed MCC re-

source provisioning system. The major contributions of this work are summarized

as below. I design the MobiCloud framework, define the service model, and propose

a novel extension model CaaS. Then, the components are implemented and a geo-

distributed infrastructure is established. A concrete example on how to experience

the MobiCloud system is given to better understand what MobiCloud can provide.

MobiCloud is a geo-distributed MCC service provisioning platform including elastic

25

Web Server

RadiusDNS
Domain

Controller

DatabaseVPN

Open Virtual Switches (OVSes)

OpenFlow Switch Router

(Incoming & Outgoing

traffic Gateways)

ASU

Cloud Internal Management

Servers

Cloud Internal Data Networks

(VLANs)

Cloud Management

Network

Incoming traffic network

Outgoing traffic networkCloud internal & public services

(Using VMs and OVSes)

UMKC

OCU

Inter-cluster OpenFlow

Switch Router
To other c

lusters

Resource

Pool

Network File

System (NFS)

Figure 4.2: MobiCloud Architecture Design

computing, secure storage, and layer-2 and above networking capabilities. This plat-

form is currently connecting three sites located at ASU 1, UMKC 2 in the US and

OCU 3 in Japan, respectively. Several sites in Paris and Beijing are under establish-

ment to be joined to the MobiCloud system. A Cloud resource distribution map can

be seen in Fig. 4.1.

4.1 System Components

The prototype of the proposed MobiCloud system has been established and can be

found in Fig. 4.2. I partition the MobiCloud system into different types of components

including computing, storage, administrative and networking ones.

Computing Component. The computing component is the entity providing

1Arizona State University
2University of Missouri − Kansas City
3Osaka City University

26

the computing resources, i.e., Cloud host. The major difference among different com-

puting components depends on the virtualization technology being adopted. The

virtualization in MobiCloud is based on XEN that has an impressive scalability and

efficiency. A Cloud system can provide more logically separate resources upon the vir-

tualization layer. Usually, Cloud resources in one domain are grouped into a resource

pool that always has at least one physical node known as the master node. Other

physical nodes that join existing pools are described as slave nodes. Only the master

node exposes an administration interface and forwards commands to individual slaves

as necessary.

Storage Component. Storage stores all the resource images and users’ data.

Resource is prepared by cloning resource templates that are stored in the storage

repository. I choose to establish a remote storage repository, Network File System

(NFS), to manage the storage of resources in the Cloud system. An NFS storage

server is connected to the computing server via a switch that greatly increases the

scalability of storage.

Administrative Component. Dedicated physical servers are for administrating

resources and monitoring the network traffic within and across the domains. There

is also a set of internal functional servers serving different administrative purposes,

i.e., web service, DHCP, DNS, authentication service, database service, VPN, etc.

Networking Component. Control plane and data plane are isolated based on

the multi-network design of the MobiCloud. In Fig. 4.2, there are 4 networks in

each cluster. The incoming and outgoing traffic switches isolate the control traffic

(i.e., resource access, OS update, and package download) coming into or going out of

the MobiCloud Gateway. The data network switch is a managed switch with VLAN

supported that enables VMs from different physical servers to reside in the same

virtual domain. Lastly, the Cloud management network is connecting the internal

27

management and monitoring server and NFS. Each Cloud server is installed with an

Open vSwitch with which the data traffic between two VMs in the same physical

server does not need to go through the physical data network switch out of the Cloud

host.

Access Distributor

Web Serivce DMZ Firewall

ab

Remote Configure

Service

abc

Resource Allocation

& Management

Service

b

Network

Management

Service

b

ID & Credential

Management

Service

b

VPN Service

ab

c c

a. Registration b. Requesting Resource c. Accessing the system

b

Database Service

bab

Figure 4.3: Processing flows in MobiCloud

4.2 Implementation Flow

After the framework is designed and the infrastructure is established, I implement

the system to provide resource provisioning services to users. The implementation

flow is defined in terms of three major aspects, registration, requesting resources and

accessing the system. These three procedures can be found in Fig. 4.3.

• Registration. Anyone who wants to use the MobiCloud system must have a

valid account. Users have to register an account by visiting the MobiCloud por-

tal. After users create an account, the account credential will be automatically

stored in the ID and Credential Management Service, which is implemented by

the Kerberos based Active Directory, and dedicated Databased Service.

• Requesting Resource. After users’ credentials are authenticated, users are

authorized to request resources at the Resource Allocation & Management Ser-

vice. Although all services are hosted in the MobiCloud private domain, I still

introduce a DMZ to enhance the security of the Cloud resources. The Database

28

service stores all related information of newly created resources, and the Net-

work Management Service prepares and configures the network attributes of

the resources. So far, the network Management Service consists of DHCP and

Dynamic DNS. Users are also able to configure the network attributes of re-

sources by themselves, which is the reason why the Remote Configure Service

is developed.

• Accessing Resource. When users are about to access their allocated resource,

they have to connect to the VPN server through the gateway first. The VPN

server authenticates the users’ accounts at the ID&Credential Management Ser-

vice where users’ account credentials are stored. After connecting to the VPN,

users’ mobile devices are assigned with the MobiCloud private internal IP ad-

dress and are free to access their resource by using the corresponding domain

name that was assigned for each VM.

4.3 System Extension Model: CaaS (Cluster as a Service)

MobiCloud is not only designed for general mobile users but also for developers

and researchers who may want to have more control on the Cloud system. Thus,

I propose a novel system extension model called Cluster as a Service (CaaS), with

which users can setup their own cluster joining the MobiCloud umbrella and easily

turn their roles from service consumers to service providers. You do not have to have

all equipment (as shown in Fig. 4.2), but some necessary ones with which everything

needed in the cluster can be easily reproducible. I package all functional servers (i.e.,

DHCP, DNS, Database, etc.) into Virtual Appliances (VAs), so that users just simply

import the image files and turn them into functional virtual servers. To configure the

network, i.e., VLAN creation and tunnel setup, a set of scripts running on XEN Dom

0 are prepared.

29

Figure 4.4: NetFlow Monitoring Top Protocol

There are two types of system extension configurations, full-cluster and semi-

cluster. Full-cluster exactly duplicates the cluster at ASU. Physical Xen servers,

general switches, an OpenFlow switch, and a public IP address are needed. The

semi-cluster provider does not even need to have the OpenFlow switch and other

physical devices, but a single PC supporting Intel-VT or AMD-V with access to the

Internet. A dynamic DNS configuration can help the cluster to be accessed from

public. To establish the layer-2 connection (GRE tunnel) to other clusters, users just

need to use the Open vSwitch residing in the Xen Dom 0. With this CaaS extension

model, the MobiCloud system becomes more extensible and scalable.

4.4 System Resource Monitoring

As system administrators, to better monitor the performance of both network

and Cloud hosts in the MobiCloud and track the ongoing and potential issues exist-

ing in the system, I introduce a multi-layers monitoring mechanism, that is enabled

by sFlow and NetFlow [42]. NetFlow provides limited visibility, focusing on layer-3

network connections, while sFlow provides comprehensive visibility into network and

system resources needed to manage performance in virtualized and Cloud environ-

30

Layer-2 GRE Tunnel Connection

Internal IP Connection Layer- 2 Non-IP Connection

ASU, UMKC@US OCU@Japan

United States

10.0.0.253

10.0.0.3

unknown
Non-IP

FFFFFFFFFFFF

Japan

Figure 4.5: sFlow Connection Circle

ments. In each Open vSwitch in Dom 0 of each Cloud server, I enable not only sFlow

at the switch level but also at the host level, which means not only can the traffic

be monitored, but also the host performance (i.e., CPU utilization, memory usage,

virtual disk I/O, etc.) can be monitored.

From the analyzer of both NetFlow ManageEngine and sFlow Flowtrend [8, 7],

network parameters, e.g., top conversation, top connections, most popular protocols,

etc., can be monitored. Fig. 4.4 is the NetFlow captured top protocol statistic chart

for one hour at the ASU site. The chart shows that the top two protocols of HTTP

and NFS correspond to two spikes in the website and read activity on the virtual

machine. The third top traffic is the unknown application including communication

between Open vSwitch and its controller and other internal control messages. The

following traffic, which is almost control traffic including ssh, https, GRE tunnel and

bootp, etc., does not consume much bandwidth.

Besides layer-3 network monitoring, the sFlow is able to inspect the connection

relationship from the following three aspects shown in Fig. 4.5: internal connections,

external connections and non-IP connections. The left-top part of Fig. 4.5 shows the

internal connections that represent the internal topology at the ASU site where the

31

connections between the Cloud server master node(10.0.0.3) and the storage server

(10.0.0.253) can be seen. The top-right part shows the layer-2 Non-IP connections

including unicast and broadcast. The bottom part shows the external connections

that indicate the inter-cluster connection among all three sites.

4.5 Experiencing the MobiCloud

In this section, I present the implementation of the MobiCloud through a simple

example of its use. Through the developed web interface, users are free to realize

all operations (register, request resource, and access resource) I mentioned in the

previous section.

Table 4.1: Single VM Creation Specification

VM Host Configuration

VM name Define the name of the VM.

OS Type Specify the Operation System of VM. Since I use Xen Hypervi-

sor, which supports a wide range of guest OS including Windows,

Linux, Solaris, and various versions of the BSD operating systems.

Hard Disk Size Specify the size of the virtual hard disk on each VM. There are

several options ranging from 8GB to 128GB.

Ram Size Specify the size of the memory. The range of memory can be

selected from 128MB to 4GB.

VM Network Configuration

NIC configure Specify the IP address, netmask and default GW.

4.5.1 Single VM Creation

I design three types of users to be registered. Each type of user has its own

privilege. 1. Free users: multiple users share one VM; 2. Basic users: each user is

32

(a)

(b)

Figure 4.6: Single VM Creation

provided with a dedicated VM with limited resources; 3. Premier users: each user is

provided with one or multiple VMs that are configurable. After registering an account

at the MobiCloud system, users are free to claim resources from the Cloud servers.

Here I use a premier user account, which has full privileges, to demonstrate how a

single VM creation is processed. The interface is shown in Fig. 4.6(a). To create the

single VM, there are several fields to be configured by users that can be referenced in

Table 4.1.

After a user specifies all the parameters in the corresponding fields, VM will be

created at the backend side. One of the advantages of MobiCloud over current existing

platforms is that the response time of the resource preparation is swift. Because the

33

Figure 4.7: Virtual Network Creation

VM template is already prepared, what the system only needs to do involves two

steps: 1) fast copy the VM template and 2) configure the VM. When the VM is done

being prepared, users can use the management interface, shown in Fig. 4.6(b), to

manage their VM. There are several options including restart, resume, suspend, stop,

and remove. Each VM will be assigned with a unique domain name, in the format

of username.mobicloud.asu.edu that is registered in the DNS system. A Single VM

can also be set as a proxy of a mobile device to enhance the its capability. For

example, users can set their VMs as the proxy with an anti-virus function enabled,

which greatly enhances the security of the mobile device.

4.5.2 Virtual Network Creation

Besides single VM creation, users are also allowed to claim multiple VMs connect-

ing as virtual networks. The interface can be seen in Fig. 4.7. Users can simply click,

34

drag, and drop on the canvas to create their desired network components and connect

them. There are three major components in the network creation canvas, desktop,

switch, and router. Users can configure the component in a pop-up window. Beside

the virtual hardware configuration (i.e., CPU, memory, harddisk, etc.), network in-

formation can also be configured, including creating virtual interfaces, IP addresses,

netmasks, default gateways, etc. I use a switch component to represent VLAN to par-

tition the network. Users can drag lines to connect two or more components (i.e., desk-

top or router) through a switch, which means those interfaces are in the same VLAN

and isolated from others. The router is the last component with routing functions

enabled by a software-based pre-installed router (Vyatta [11]). After user confirms

the topology by clicking the submit button, a summary page, indicating all hardware

and network information of VMs is presented. When the preparation is done, a re-

source page is returned with the detail of the resource created. Each VM is assigned

a unique domain name that is similar to the single VM creation case. But each user

can have multiple VMs, so that I choose the domain naming scheme in the format of

username-networkname-number.mobicloud.asu.edu to identify the VM. For example,

user cnsm2012 creates a network named mynetwork including three VMs, the domain

name assigned to the first VM is cnsm2012-mynetwork-1.mobicloud.asu.edu.

4.5.3 Accessing the Resources

After the resources are prepared, users are free to access the resources via either

fixed terminal (i.e., desktop) or a mobile device (i.e., Smartphone, tablets, etc.).

There is a VPN server running behind the MobiCloud firewall to provide access to

resources for users. Resources (VMs) are enabled with SSH and VNC service that

can be used to access the VM. Besides the fixed device, users are also able to access

the resources by using the mobile devices built-in function to access VPN (shown in

35

(a) (b) (c)

Figure 4.8: Accessing VPN on (a) iOS and (b) android, accessing VM via VNC on
iOS

Fig.4.8 (a) (b) for iOS and Android OS). After connecting to the VPN, the device

will be assigned with a private IP address that is in the same subnet with resources.

Fig. 4.8(c) is an example of accessing the virtual desktop of resources from an iOS

smartphone.

4.6 Performance Evaluation

MobiCloud is always aiming to provide resources with expected user experience.

Thus, two metrics are mainly considered to benchmark the system performance, re-

source preparation time and available bandwidth among resources. To make the

performance evaluation result approach the real capacity, I test both metrics by us-

ing the Cloud server and network device with about a 70% load of the full capacity.

Since VM is the major type of resource to be provided in the system, the preparation

time of VM is directly related to user satisfaction. Thus, to evaluate the VM prepa-

ration performance, I choose the five most popular used guest OS in the system that

are CentOS 5.5, Ubuntu 10.04 (with and without desktop GUI), Windows 7, and

36

Windows XP. The preparation time can be divided into two aspects, creation and

reboot. Creation time refers to the time from clicking the create button to returning

the confirmation page. The VM preparation includes not only the VM boot proce-

dure, but also some back-end configuration steps (e.g., find and clone the template,

domain name registration, and etc.). Besides the first time VM creation, I also eval-

uate the VM reboot time that indicates how fast the user can refresh the resources.

From Fig. 4.9, the VM preparation time varies due to different guest OS and are

all in the acceptable even decent range. The reason why creation time is more than

reboot time is that creation needs more configuration steps I discussed above.

125.7

58.2

66.2

82.2
79.281.1

17.6

29.8

37.3 35.8

0

20

40

60

80

100

120

140

CentOS5.5 Ubuntu 10.04

non-GUI

 Ubuntu 10.04

GUI

 Windows 7 Windows XP

P
re

p
a

ra
ti

o
n

 T
im

e
 (

s)

Resource Preparation Performance

VM Creation VM Reboot

Figure 4.9: VM Preparation Performance

Users also need their resources to be distributed in the system to construct their

specific application or service. Thus, I test the bandwidth between resources at

different scenarios (in-cluster mode and in-server mode), to see how freely resources

can communicate with each other. Currently, the geo-distributed system does not

have a large scale, the bandwidth between different clusters varies due to different

link conditions and is not representative. So I am not considering the bandwidth

37

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Times

B
a

n
d

w
id

th
 (

M
b

it
s/

S
)

Bandwidth Performance

In Cluster In Server

Figure 4.10: Bandwidth Performance

among clusters, but just the two cases mentioned above. In-cluster mode tests the

bandwidth between two VMs in the same cluster but different physical servers. These

two VMs are usually in the layer-2 connection through a physical switch. In-server

mode tests the bandwidth between two VMs in the same physical server. They are

connected internally through the Open vSwitch. I test the TCP bandwidth for 10

times for each mode and the result can be found in Fig. 4.10. From the result,

the bandwidth performance between resources in both modes does not show much

difference. The average bandwidth for the in-cluster mode and in-server mode is

89.1 and 74.0 Mbits/s, respectively, which is sufficient for most normal application or

experiments.

38

Chapter 5

CONSTRUCTING VIRTUAL NETWORKS IN A GEO-DISTRIBUTED

PROGRAMMABLE LAYER-2 NETWORKING ENVIRONMENT (G-PLANE)

G-Plane is primarily based on MobiCloud system and is more focused on the

virtual network manipulation and case study in a geo-distribtued cloud networking

environment.

5.1 Virtual Network Construction

Resources in G-Plane are mainly in the form of VMs, connected as a network.

The resource network can be created by different configurations due to different re-

quirements: 1) a single physical server, 2) multiple servers with one cluster (servers

in the same cluster are connected through a layer-2 physical switch), and 3) multiple

servers belong to different clusters.

VLAN 1

Open vSwitch

VLAN 2

OpenFlow Switch/

Router (OFS)

XenServer 1@Cluster1

Physical Managed

Switch (VLAN) OpenFlow Switch/

Router (OFS)

Physical Managed

Switch (VLAN)

GRE Tunnel

XenServer n@Cluster1

VLAN 1

Open vSwitch

VLAN 2

XenServer 1@Cluster2

XenServer n@Cluster2

Figure 5.1: Intra- & Inter-Domain Network Architecture

39

5.1.1 Intra-Cluster Network Creation

Intra-Cluster means that there is always a native layer-2 connection among all

resources within the the same cluster. To create a virtual network within the same

cluster, VLAN technology is deployed. As I previously mentioned, it is inefficient

to forward packets through the managed switch from one VM to another one in

the same physical resource provisioning server. Therefore, each XenServer has an

internal Open vSwitch enabled to handle traffic inside the physical server as shown

in Fig. 5.1. Open vSwitch is designed to enable massive network automation through

programmatic extensions, while still supporting standard management interfaces and

protocols (e.g. NetFlow, sFlow, RSPAN, ERSPAN, CLI, LACP, 802.1ag, etc.). Open

vSwitch can operate as a software-based switch running within the hypervisor (Xen

Dom 0), in which many security control functions can be implemented. With Open

vSwitch enabled, a packet sent from one VM to another one within the same physical

server does not need to be exposed out of the physical box. When a virtual network

is created within the same cluster but across different physical servers, a packet sent

from one VM to another one on a different server should go through the physically

managed switch by enabling trunk ports. The virtual network containing multiple

VMs in different physical servers is simply created by assigning the same VLAN ID

so that it is virtually isolated from other resources.

5.1.2 Inter-Cluster Network Creation

To enable provisioning of virtual network across clusters in G-PLaNE, I establish

a layer-2 GRE tunnel among each site by deploying OpenFlow switch running on top

of NetFPGA box. After a layer-2 tunnel is established, VLAN can function well upon

a layer-2 tunnel since it is a 2.5 layer technology strictly speaking. Although there are

40

some options to establish the layer-2 tunnel, I choose the OpenFlow solution since it

is user-centric and can be easily extended due to its programmability. OpenFlow is an

open standard that enables researchers to run experimental protocols. In a classical

router or switch, the fast packet forwarding (data path) and the high level routing

decisions (control path) occur on the same device. An OpenFlow switch separates

these two functions. The data path portion still resides on the switch, while high-

level routing decisions are moved to a separate controller, typically a standard server.

The OpenFlow switch and controller communicate via the OpenFlow protocol, which

defines messages, such as packet-received, send-packet-out, modify-forwarding-table,

get-stats, etc. The data path of an OpenFlow switch presents a clean flow table

abstraction; each flow table entry contains a set of packet fields to match, and an

action (such as send-out-port, modify-field, or drop).

5.2 Enabling Additional Research Capabilities

With the virtual network provisioning service provided, users are able to expand

their own development and research work. There are some representative ones listed

below:

• Routing Algorithm & Protocol Design. Because I provide resources at

the IaaS level, users have more flexibility and privilege on their claimed re-

sources. Each virtual machine can be easily turned into a general virtual router

or OpenFlow switch by installing a software-based routing suite. Thus, exper-

imenters and researcher can have a real network environment in any possible

topology they expect. With the capability of modifying the entire routing pro-

tocol or algorithms module, research on routing protocols and other networking

layer mechanisms can be investigated, tested and measured in a real networking

environment.

41

• Distributed Application Development. G-PLaNE users can use any IP

connected device to communicate with their VMs supporting a variety of OS.

So it enables developers to develop Cloud based applications on both the Cloud

side and the mobile device side. Moreover, after the virtual network resources

have been provided, more complicated networking and distributed applications

can be developed and tested in a real distributed networking environment.

• Distributed Security and Privacy Model. There is some research work [63]

deploying a Cloud to help users keep from viruses and enhance security. Cloud

based anti-virus engines have been emerging and are being studied. If users are

able to control a virtual network rather than a single VM or multiple isolated

VMs, then an advanced model can be investigated. For example, different anti-

virus engines can be placed onto different VMs and a centralized control VM

running some algorithm to coordinate them, is expected to enhance efficiency

to some extent. Generally speaking, any security and privacy research issues

can be investigated in a real distributed environment that G-PLaNE provides.

5.3 Case Study: SeRViTR

The G-PLaNE system is designed to be able to support research in a virtual

networking environment. In this section, I present a case study on how to utilize the

G-PLaNE system to generate and manage virtual domains between geo-distributed

platforms.

5.3.1 SeRViTR Architecture Overview

A trustworthiness model for future networks called the Virtual Trust Routing

and Provisioning Domain (VTRouPD)[40] has recently been proposed. Trustwor-

thiness can be defined in many facets. From the viewpoint of a network, it means

42

1

2

3

4

VTRouPD @ Cluster A (ASU)

Policy Manager

Flow Controller

ForwardingID (VlanID)

VTRouPD Manager

VLAN 1

Flow Controller

VTRouPD @ Cluster B (UMKC)

Virtual Domain

Flow Controller

Host

Flow Controller

VLAN 2

VLAN 3

VLAN 4

Virtual Domain

VLAN 1

VLAN 3

VLAN 4

XenServer in the

resource pool

VMs dedicated as SeRViTR

functional managers

VM dedicated as a

Virtual Router

VLAN 2

Policy ManagerVTRouPD Manager

Figure 5.2: SeRViTR Architecture Overview

routing information must be confidential, secured, and protected, whereas from the

service provider’s perspective, trustworthiness of service assures that the service is

safe and exclusive of anonymous users. Due to such variety of trustworthiness, a

network should be sliced into multiple virtual domains that are isolated from each

other. A VTRouPD is constructed by a collection of networking resources includ-

ing routers and switches based on virtualization techniques; e.g., constructing virtual

managed domains through tunneling and VLAN technologies. Within one or multiple

VTRouPDs, I can further create flow or application level virtual routing domains that

are denoted as µVTRouPDs[40]. In my recent work [52], the intra- and inter-domain

policy and trust management between VTRouPDs within the SeRViTR architecture

is discussed.

Fig.5.2 presents an overview of the SeRViTR system architecture. The figure

presents two VTRouPDs that are geo-distributed clusters at two places: Arizona

State University and the University of Missouri - Kansas City. Each VTRouPD is a

overall domain with the administrative control, and it may contain multiple Virtual

Domains. Here, I will only give a very high level description on SeRViTR components

43

along with their relations; The detailed functions of the SeRViTR system can be found

in [52].

Packet flows to Virtual Domains in the SeRViTR architecture are differentiated

based on trustworthiness policies, and the Policy Manager plays a key role on setting

up policies along with establishing Virtual Domains. First, it sends policy rules to

the VTRouPD Manager to make a request of Virtual Domain creation or deletion.

Second, it communicates with the Flow Controller about flow updating. A VTRouPD

Manager manages the information of physical routers within the VTRouPD, and

it is responsible for the creation or deletion of Virtual Domain as well as resource

management. The Flow Controller is placed at the edge of VTRouPDs, and it is in

charge of forwarding flows to correct Virtual Domains based on the policy.

5.3.2 SeRViTR Deployment on G-PLaNE

The core idea behind SeRViTR is constructing the network by setting up policies

to assure secured routing between virtual domains across multiple sites. To achieve

such a goal, SeRViTR has to be deployed in a virtual networking environment that

is well supported by the G-PLaNE system.

The G-PLaNE system allows the cluster to be scalable. Take the SeRViTR clusters

at ASU and UMKC for example, presented in Fig. 5.2; here, two VTRouPDs are

created at different clusters. I have established a layer-2 GRE tunnel between the

two VTRouPDs through OpenFlow switches. Within the cluster at each site, the

G-PLaNE resource pool contains physical XenServers where VMs are created. Recall

that all VMs can be created and deployed as any form of functional entities; thus, I

can customize VMs as dedicated SeRViTR functional components as well as virtual

routers. Particularly, VTRouPD Managers, Flow Controllers, and Policy Managers

are implemented on VMs created on one XenServer from the resource pool.

44

The virtual routing domain is a vital constituent part in the SeRViTR architec-

ture design, and it requires good isolation as well as scalability when constructing

virtual networks. With the G-PLaNE system data network switch, which is VLAN

supported, VMs can be grouped into different virtual domains by tagging VLAN IDs,

and the ones which have been used can be queried through the database of the G-

PLaNE system. Fig. 5.1 shows a high level virtual domain creation by grouping VMs

into the distinct VLANs. Particularly, consider cluster A at ASU in Fig. 5.2, where

four XenServers are reserved from the resource pool for creating virtual routers. On

each XenServer, I can customize an arbitrary number of VMs as dedicated virtual

routers by deploying a routing suit (i.e. OpenFlow switch, Quagga, etc) on it. Now,

consider the SeRViTR virtual domains. The PolicyManager-VM sends a request

along with a trustworthiness policy to announce the creation of a new virtual domain

to the VTRouPDManager-VM. The VTRouPDManager-VM, in turn, communicates

with every XenServer that is reserved for creating VMs as virtual routers and sends

out an unused VLAN ID. When creating VMs, the XenServer will add this unused

VLAN ID through its API. Therefore, VMs (Virtual Routers) created by distinct

XenServers can be put into the same VLAN according to the unique VLAN ID. The

data network switch will enable the intra- or inter-virtual domain communications.

45

Chapter 6

MOBILE CLOUD USER-CENTRIC MODEL

After a comprehensive literature review on the existing MCC services in terms of

computing, storage, security, context awareness, etc. I firstly summarized and defined

three types service model based on the existing MCC services, and proposed a new

user-centric MCC service model called Representor as a Service (RaaS).

6.1 Current Mobile Cloud Service Models

Current Internet clouds have been broadly classified in three-type service models:

Infras-tructure-as-a-service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-

Service (SaaS). They are classified according to the layers of virtualization. However,

due to the involvement of both CPS and CVS, the MCC’s service models are more

appropriate to be classified according to the roles of computational entities within

its service framework, where the classification of MCC service models can use the

roles and relations between mobile entities and their invoked cloud-based resource

provisioning. Based on this view, existing MCC services can be classified in three

major models: Mobile-as-a-Service-Consumer (MaaSC), Mobile-as-a-Service-Provider

(MaaSP), and Mobile-as-a-Service-Broker (MaaSB). These MCC service models are

illustrated in Fig. 6.1, in which arrows indicate service processing flows from service

providers to service recipients.

MaaSC is originated from the traditional client-server model. It was enhanced

by introducing virtualization, fine-grained access control, and other cloud-based tech-

nologies at the initial stage. Mobile devices can outsource their computation and

storage functions onto the cloud in order to achieve better performance, and more

46

Cloud Resource

Service Recipient

Service AP

Cloud Resource
Service

Provider

Service AP

Cloud Resource
Service

Broker

Service AP

Sensor

Networks

Service

Recipient

Service

Recipient

Mobile as a Service Consumer (MaaSC)

Mobile as a Service Broker (MaaSB)

Mobile as a Service Provider (MaaSP)

Figure 6.1: Current Service Models of MCC

application capabilities. In this architecture, the service flow is in an one-way fashion.

It is from the cloud to mobile devices and mobile devices are service consumers. Most

existing MCC services fall into this category.

MaaSP is different from MaaSC in that the role of a mobile device is shifted from

a service consumer to a service provider. For example, with on-board sensors, i.e.,

GPS module, camera, gyroscope, etc., mobile devices are able to sense data from

the devices and their neighboring environment, and further provide sensing services

47

to other mobile devices through the cloud. In Fig. 6.1, consumers receive services

provided by both the cloud and mobile devices. The types of services provided by

mobile devices are diverse based on their sensing and processing capabilities.

MaaSB can be considered as an extension of MaaSP, where MaaSB provides

networking and data forwarding services for other mobile devices or sensing nodes.

MaaSB is desired under some circumstances because mobile devices usually have lim-

ited sensing capability compared to sensors that are dedicated for specially designed

functionalities and sensing locations. For example, mobile phones can be used to

collect users’ physical activities from Nike Fuelband [61]. MaaSB extends the cloud

edges to mobile devices and wireless sensors. Thus, a mobile device can be configured

as a gateway or a proxy providing networking services through various communication

approaches such as 3/4G, Bluetooth, WiFi, etc. Moreover, the proxy mobile device

can also provide security and privacy protections to their interfaced sensors.

6.2 Design Principles of User-centric Mobile Cloud Computing

Future MCC should be re-considered as a new service model, where mobile agents,

i.e., both physical and virtual entities, and related resources collectively operate as

mobile clouds that enable computing, storage and networking capabilities, context

awareness modeling, content discovery, data collection and dissemination. To build

the future user-centric mobile cloud computing based on the described concepts and

requirements, mobile clouds should be shifted from the traditional Internet cloud by

using the following principles:

• Principle 1: User-centric: MCC applications should be designed in a way that

user can control their own data and activities with strong privacy and security

protection. Cloud resources should be collected and allocated according to

mobile applications customized for each individual user.

48

• Principle 2: Service-oriented application platform: Due to the symmetric ser-

vice model, every mobile node can potentially serve as an MCC service provider,

and thus service-oriented application platform is the natural choice for MCC.

• Principle 3: Mobility efficiency: MCC resources should be dynamically allo-

cated and managed according to the need of mobile cloud applications. Mobility

of MCC should be confined through a set of mobile cloud application constrains

to maximize the efficiency using a set of system performance evaluation met-

rics such as availability, computing power, storage, and their spacial-temporal

boundaries.

• Principle 4: Virtual representation: MCC maintains a trusted, reliable, and

accessible virtual representation for each user. The virtualized representation

can be considered as an assistant for mobile users and performs actions such as

sensing a user’s daily activity to build user’s behavior and activity profiles, and

delegate the user’s activities in the virtual environment.

6.3 Mobile-as-a-Representer: A User-Centric Approach

Cloud Resource

Service AP

Virtual

Representor

Phyical

Representor

Mobile as a Representor (MaaR)

Real User

Figure 6.2: Mobile-as-a-Representor (MaaR)

49

6.3.1 MaaR Model Basic

Besides previously presented service models, i.e., MaaSC, MaaSP and MaaSB, and

user-centric MCC design principles, I present a new user-centric MCC service model

called Mobile-as-a-Representor (MaaR). The architecture of MaaR can be found in

Fig. 6.2. In MaaR, each user can be represented by a virtualized entity in the cloud

through his/her physical entity (i.e., mobile device). Users’ behaviors and attributes

can be collected from the real world (people, environment or mobile devices) in real

time and sent to their corresponding virtual entities in the cloud to perform further

analysis and processing. Data mining and machine learning algorithms can be used

to analyze a mobile users situation and perform actions proactively. MaaR can be

regarded as the next-generation MCC service model in that both physical systems

and virtual systems are seamlessly integrated through virtualization technologies to

provide services. In MaaR, the mobile devices and clouds are highly interactive, and

as a result, the service flow can be presented as bidirectional arrows. In addition to

help mobile entities execute tasks more efficiently, MaaR is able to accomplish some

tasks that are impossible to be realized in current MCC architecture.

MaaR model is presented to support the next-generation user-centric MCC ser-

vices and applications. A conceptual architecture of MaaR is presented in Fig. 6.3,

where both CPS and CVS are integrated as a whole system. In the CPS, hetero-

geneous networks co-exist and all these networks can be virtualized at the CVS by

performing operations including presenting, offloading, abstracting, caching, migra-

tion, etc. All data with the spatial, temporal, and correlation information from the

CPS will be submitted to the CVS. Among all these three types of information, corre-

lation information is essential in that it helps to fuse different types of data together

into a well formatted one so that the CVS can further perform context awareness,

50

user-centric proactive and security protection tasks. For example, the sensor network

carries sensed data while social network collects and generates the social relationship

data. The correlation information helps the CVS to generate sensing data with social

attributes (e.g., personal data that is only accessible from a specific social group, like

people in the users friend list).

In MaaR, the CVS has three main types of provisioning resources: computing re-

source, storage resource, and networking resource. User’s virtual entity is represented

by maintaining seamless communication between the CPS and the CVS, which also

allows for establishing multiple personalized MCC clouds due to different application

purposes. A MCC application is able to control integration of CPS and CVS through

a well-defined API and MCC tools. Traditional Internet cloud is one-way operational

as users can only submit data from the CPS to the CVS while it is possible to al-

low the CVS to further control the CPS functions in a highly adaptive and dynamic

fashion based on the MaaR model. Besides physical data being virtualized to virtual

environment, the CVS can provide feedback and control functions in the CPS.

To enable the service-oriented application running environment, MaaR provides

POEM (Personal On-demand execution Environment for Mobile cloud computing)

framework [82] to achieve the user-centric MCC service running platform highlighted

in Fig. 6.3. POEM is a mobile cloud application execution platform that enables

mobile devices to easily discover and compose cloud resources for their applications.

For mobile resource providers, they may not even know what applications and who

may call their provisioned functions beforehand. In this way, the mobile application

design should not be application-oriented; instead, it should be functionality-oriented

(or service-oriented). To achieve these features, I can consider those Provisioning

Functions (PFs) as the fundamental application components in the MaaR model,

which can be composed by mobile cloud service requesters in runtime.

51

POEM takes a comprehensive approach by incorporating the OSGi-based [65]

service-oriented architecture into the mobile cloud computing. It treats the offload-

ing as part of service composition, and as a result, the codes (or computation tasks)

are considered as services provided by mobile devices and the cloud. In this way,

offloading and migration operations can be multi-directional (i.e., among mobile de-

vices and the cloud) compared to one-directional (i.e., from a mobile device to the

cloud) in previous solutions. Moreover, due to the popular Java-based OSGi frame-

work, POEM can greatly improve the adoption of the SoA-based code reuse and

composition for mobile cloud computing.

6.4 An Application Scenario based on User-centric MaaR model

Cyber Physical System: Complex Heterogeneous Network Systems Cyber Virtual System: Abstracted Network Systems

APIs & Tools

Virtual-life
Mobile cloud

Resource provisioning

Space

Time

Computing

Resource

Networking

Resource

*Presentation

*Offloading

*Abstraction

*Caching

*Migration

*Data

Virtualization

Control

* Situation-aware

* Human-centric

* Proactive

* Security & privacy

protection

Coordination & Integration

Physical life

Mobile Cloud Application Scenarios

Cellular & Data Networks Social Networks Mobile Ad Hoc Networks

Vehicular Networks Personal & Body Networks Mission Critical Networks

Correlation

Storage

Resource

Figure 6.3: MaaR Conceptual Architecture

To better understand the proposed future MaaR model, I introduce a vehicular

video sensing and collaboration application as an example. It is assumed that MaaR

service modules are already equipped on many users’ smartphones. When user Alice

is driving, her smartphone uses onboard sensors like camera or GPS to detect her

location, driving speed, and image/video captured on the road. Those collected

information can be collected and virtualized into the CVS to construct a virtual

52

representation of the mobile device in the cloud for Alice, which is the essence of

MaaR in that the virtual representor represents the real situation of the physical

user. Practically, the representor is implemented through a set of software agents

(i.e., OSGi bundles) on a dedicated VM allocated for Alice, where Alice has the

administrative privilege on the VM to decide what data can be shared and protected

(by encryption). The dedicated VM is the application holder for Alice to incorporate

various data processing models and functions for security, data mining, and intelligent

situation-awareness decision making that are personalized for the uses of Alice. In

this model, the VM can be hosted in public or private cloud as the choice of Alice.

User Bob may want to know what is the current traffic status around the bridge

5 miles ahead where Alice is driving through. Users with MaaR services running

on their mobile devices near the bridge can provide sensing functions, e.g., GPS,

video/camera, which are searchable by Bob so that Bobs display function can call

those functions in real-time through either direct P2P connections or a centralized

traffic monitoring function provided by a third party. In addition to the presented

video capturing usage of the application, MaaR services and applications can also

maintain social diagrams for each user. For example, when Bob is driving in the

area during the lunchtime, the MaaR service representor of Bob can prepare for

suggestions such as good nearby restaurants with high rates by Bobs trusted friends.

Other suggestions may relate to Bobs daily activities and job functions according to

his current location, and provide promptly when Bob needs them. These personalized

suggestions are based on correlating the location and various sensed data by the MaaR

service representor.

53

Chapter 7

SDNIPS: ENABLING A SDN-BASED INTRUSION PREVENTION SYSTEM IN

CLOUDS

User Dom U

Dom 0

Controller

Kernel

User
ovsdb-server

ovs-vswitchd

flowtable
JSON/RPC

Openvswitch_mod.ko

Hash lookup table

VM from Dom 1

Xenbr1 Xenbr0

Vif 1.1 Vif 1.0

eth1 eth0

Packet

classifier

Eth xEth xeth x

VM from

Dom 2

Vif 2.0

eth0

OpenFlow

Listen

Log

Snort-Agent

Admin Dom U

Figure 7.1: The SDNIPS System Architecture.

7.1 SDNIPS: Design and Implementation

In this section, I present the designed architecture including components and the

processing flow of the SDNIPS, which is then followed by the Network Reconfiguration

(NR). The architecture and components are presented in Fig. 7.1.

54

7.1.1 Overall Architecture and Components

Cloud Cluster is the major component hosting cloud resources and the environ-

ment where the proposed SDNIPS is applied. A cloud cluster can contains one or

multiple cloud servers with major cloud-based OS installed. The established system

is based on XenServer that is an efficient parallel virtualization solution on top of the

bare metal. There are two types of domains in XenServer cloud OS: Dom 0 and Dom

U. Dom 0 is the management domain while Dom U is the user domain. I introduce

one Dom U dedicated for administrative purpose to place controller and log compo-

nent, while all other Dom Us are for hosting Virtual Machines (VMs) for users. All

Dom U resources are managed by Dom 0 and must go through Dom 0 to access the

hardware.

Open vSwitch (OVS) is the pure software implementation of the OpenFlow

switch. OVS is usually implemented in the management domain or privilege domain

of the cloud system. In my designed prototype, OVS is natively implemented in the

Dom 0 of XenServer cloud system. Communications among different VMs in the

same physical server only need to be managed and forwarded through OVS without

exposing the traffic out of the physical box. Each Dom 0 in Xenserver runs a user-

space daemon (flow path) as well as a kernel space module (fast path).

In user-space, there are two modules which are ovsdb-server and ovs-switchd. The

module ovsdb-server is the log-based database that holds switch-level configuration;

while the module ovs-switchd is the core OVS component that supports multiple in-

dependent data-paths (bridges). As shown in Fig. 7.1, ovs-switchd module is able

to communicate with ovsdb-server through management protocol, with controller

through OpenFlow protocol, and with kernel module through netlink. In the ker-

nel space, kernel module handles packet switching, lookup and forwarding, tunnel

55

encapsulation and decapsulation. Every Virtual Interface (VIF) on each VM has a

corresponding virtual interface/port on OVS, and different virtual interface connect-

ing to the same bridge can be regarded on the same switch. For example, VIF 1.0

(the virtual port of eth0 on VM from Dom 1) has the layer 2 connection with VIF

2.0 (the virtual port of eth0 on VM from Dom 2). OVS forwards packets based on

the entries in flowtable as I mentioned in chapter 2.

Snort can be implemented in Dom 0 (privilege domain) or Dom U (unprivileged

domain) based on Xen virtualization architecture. In this work, I deploy the Snort in

Dom 0, which makes it natively detect the bridge in OVS and has better performance

[84]. All the logging information generated from the Snort is output into a CSV file

that controller can access in real time.

Controller is the component providing a centralized view and control over the

cloud virtual network. The controller contains three major components, SDNIPS

daemon, alert interpreter, and rules generator. SDNIPS daemon is mainly for col-

lecting alert data generated from Snort agent in Dom 0 of controlled SDN devices,

i.e., OVS. The SDNIPS daemon is implemented in the format of JSON message.

The alert information is stored in JSON message and the JSON server is running at

the controller side. Alert interpreter takes care of parsing the alert and targets the

suspect traffic. Several information is parsed out of the raw alert data, e.g., source

IP address, destination IP address, TCP port, etc. Then, the parsed and filtered

information is passed to rules generator that generates the rules to be injected to the

OpenFlow device to reconfigure the network.

7.1.2 Implementation

I have built up the prototype based on Xen-based cloud technology, Snort IDS

and OpenFlow-based SDN. I use Snort as the intrusion detection agent since it is one

56

CSV Log File

SDNIPS

Agent@Dom0

Packets

OVS@Dom0

Bridge 0 Bridge n

Cloud Resource

SDNIPS

Daemon

Alert

Intepreter

Rules

Generator

FlowTable

SDNIPS Controller

Cloud Virtual Network Environment

Figure 7.2: The SDNIPS Processing Flow.

of the best and dominating candidates on the market due to its high efficiency and

lightweight. Snort at Dom 0 is able to natively monitor all bridges on OVS. Dom U

is also possible to realize the Snort agent since the OVS can be configured as mirror

based thus Snort agent can keep listening all the traffic on whatever network it can

access. Based on the previous evaluation results, I install and properly configure the

Snort agent in the Dom 0 in each cloud server as shown in Fig. 7.1. Controller is

based on POX [38] and is implemented in a VM in Dom U. All the received Snort

alerts is stored in the CSV file that controller is reading in real time. Any alert

found in by the controller will be converted into flowtable entry to the OVS to take

corresponding actions to prevent the suspect traffic.

57

7.1.3 SDNIPS Processing Flow

The processing flow of the SDNIPS is illustrated in Fig. 7.2. The network traffic is

generated from the cloud resources, i.e., VMs. All network traffic must be generated

from the VIFs that are attached to virtual bridges of OVS. The virtual bridge can be

regarded as the virtual switch, which means all VIFs connecting to the same bridge

are on the same network. Snort agent in Dom 0 has the advantage of directly detecting

through the bridge, which is more efficient than sniffing the traffic by utilizing the

SPAN technology. The SPAN port mirror technology duplicates all traffic on specified

ports and forwards to a dedicated port that the traffic sniffer tool is listening. When

any traffic matching the Snort rules is alerted into the log file, The SDNIPS daemon

will store the alert information in JSON format and send over to the JSON server

at controller side. After that, the alert interpreter will parse the alert information

and extract all necessary information, e.g., attack type, source IP, destination IP,

TCP port, etc. Finally, the rules generator will generate the OpenFlow rule entries

and push them to the OVS to update the flowtable. Therefore, the following suspect

traffic matching the newly updated flowtable entries will be swiftly handled with

valid countermeasures in the data plane of the OVS with line rate. Currently, I have

implemented the system described in Fig. 7.1.

7.2 SDNIPS vs Snort/Iptables IPS

Motivated by the limitation of the traditional IPS, e.g., Snort/Iptables IPS, in

chapter 3, SDNIPS is designed to take advantages of SDN to provide more counter-

measures to increase the flexibility and efficiency. This section discusses the com-

parison between the proposed SDNIPS and the Snort/Iptables IPS in terms of IPS

working mechanisms and new capabilities.

58

Application

FlowTable

Dom U

Dom 0

Attacker

Dom U Dom U

SDNIPS

Controller

IptablesIPS

Controller

Transport

Internet

Network

Network

User Space

Kernel Space NFQueue

Dom U

Victim

1 2 341 2 3 4

Control Packet Data Packet

Figure 7.3: SDNIPS and Snort/Iptables IPS Mechanisms.

Traditional IPS system is not specially designed for the cloud virtual networking

environment, but for a general network environment. The major difference between

the general network environment and the cloud virtual networking environment is

that the latter one usually has difference network domains, i.e., management net-

work domain and user network domain. User network is on top of the management

network, which means that the management network in the lower layer has better

performance. Thus, I design the SDNIPS especially for the cloud virtual networking

environment and take advantages of OVS in management domain in order to achieve

better performance.

59

Two IPS solutions are different in terms of the essence, i.e., working mechanism

and operation level. Fig. 7.3 indicates the scenario on how the Iptables IPS (blue

lines) and SDNIPS (red lines) prevent the attacks. The number besides each line

represents the sequence of the packet flow. Solids lines and dot lines represent the

data traffic and control traffic respectively. For Snort/Iptables IPS, Snort needs to be

configured as inline mode and recompiled with Iptables. Besides detection engines,

one of most important components of the Iptables is the NFQUEUE, which is an

Iptables and Ip6tables target which delegate the decision on packets to a user-space

software. It then must issue a verdict on the packets. Since the Dom 0 has its

own packet handling mechanism, it is inefficient and unnecessary to implement the

Snort/Iptables IPS in Dom 0. Thus, placing it in Dom U should be the most practical

choice.

Additionally, it is noted that OVS in Dom 0 is the same as network stack in OS

kernel level, which means that OpenFlow feature is not enabled when the flowtable is

empty. As shown in Fig. 7.3, when attacking packets generated from attacker’s virtual

interface, all the packets need to be passed through Dom 0 before being forwarded to

the destination (line 1). When Snort detects any suspect traffic, it needs to inform the

NFQUEUE to take the actions defined in the rules. The Iptables IPS needs to consult

its brain (controller at application level), which then sends out control messages to

issue command (line 2 & 3).

Finally, the suspect packet is handled at Internet level kernel space at Dom U and

will be either forwarded to victim or dropped (line 4). Unlike the Snort/Iptables IPS,

SDNIPS stands out since both the detection engine and the packet processing are

natively deployed in Dom 0, which is dramatically efficient especially handling large

amount of traffic. When packets arrive at Dom 0 (line 1), Snort detection engines is

able to natively monitoring the bridges, even though the OVS controller is placed at

60

Dom U, only few traffic between OVS at Dom 0 and controller at Dom U is generated

(line 2 & 3).

After the controller update the flowtable, all traffic with the same pattern will be

processed at OVS fast path in Dom 0 (line 4). From the Fig. 7.3, it is also obvious

that packets in Snort/Iptables IPS scenario need to be in and out the Dom 0 twice

while the SDNIPS only needs once to fulfill the same task. Although control message

in SDNIPS has further way to go than in Iptables IPS, the control message only

updates the flowtable at the first time when traffic is suspected and all the traffic will

be only handled by flowtable fast path at Dom 0 without interaction with controller

at Dom U. Thus, due to the IPS working mechanism, SDNIPS should significantly

outperformance any other Dom U IPS solution especially in cloud virtual networking

environment.

Since the accuracy is one of major concerns for detection engines, taking direct

actions on suspect traffic is not always an advisable choice since it may kill the healthy

and innocent traffics. With the network programmability feature enabled in cloud

virtual networking environment. The network for whole cloud environment can be

reconfigured to provide security protections. Fig. 7.3 represents the overall working

scenario of SDNIPS. The attacker generates malicious packets and sends to target

through OVS virtual bridge. When SDNIPS detection agent detects the packets

matching any rule and starts suspecting them, there are several possible network

reconfiguration actions need to be taken to lower the risk without directly killing

them through OpenFlow network programmable capability. All traffic in the cloud

system will not be forwarded until OVS allows to do so. There are mainly two ways

to handle the malicious traffic through network reconfiguration method, modify the

flowtable and rewrite the header of the packet at controller.

61

Table 7.1: Network Reconfiguration Actions

No. Countermeasure

1 Traffic Redirection

2 QoS Adjustment

3 Traffic Isolation

4 Filtering

5 Block Port

6 Quarantine

7.3 Network Reconfiguration (NR)

Network reconfiguration is an approach to reconfigure the network characteristics

including topology, packet header, QoS parameters, etc. With the SDN concept

enabled in the cloud virtual networking environment, network reconfiguration can

be applied to construct the IPS system. Major network reconfiguration actions are

summarized in Table 7.1:

1. Traffic Redirection (TR) can redirect the traffic to designed destination, such as

a secure appliance (e.g. DPI unit, Honeypot) by rewriting the packet header.

TR is usually implemented by using MAC/IP address rewriting. Controller

can push entry to flowtable, which can take packet header rewriting action on

matching packets.

2. QoS Adjustment (QA) is a very efficient way to handle flood type of attacks.

OVS is able to adjust the QoS parameters of any attached VIF. After lower

the TX/RX rate, suspect attack traffic will generate less impact on the network

and hosts nearby. Sometimes, QA can be configured to work with other NR

like traffic isolation.

62

3. Traffic Isolation (TI) is different from the traffic redirection in that TI provides

an isolated virtual networking channel separated from others, e.g., separated

virtual bridges, isolated ports or GRE tunnel. Malicious traffic will be only

impact any host on its isolated virtual channel and will not impact other normal

traffic.

4. Filtering is similar with the filter in Iptables, but they are different in that

filtering in NR will handled packets at OVS kernel space and will not forwarded

to a remote controller. MAC/IP address change is a very straightforward way

to prevent the victim from being attacked by the malicious traffic. The default

IPS action, i.e., drop, can be also regarded as a filtering rule that drop the

matching packets.

5. Some attacks are performed by exploring a certain port, especially a public

service port. By blocking those ports, the attack can be prevented as the

attacking path is disconnected.

6. Quarantine is a comprehensive mean to do the isolation in cloud virtual net-

working environment. It works similarly with TI but it isolates the suspect

network resources (not just the suspect traffic). Another difference between the

normal traffic isolation and quarantine is that more flexible self-defined policies

can be applied in quarantine mode. Quarantine can be also regarded as the

superset of many network reconfiguration set. For example, you can quarantine

suspect network targets, e.g., VMs, with only ingress permission and without

egress permission. Thus, such VM can only receive traffic but cannot generate

traffic to the network.

63

TCPIPEthernetVLAN

ID

In

Port SA DA type SA DA proto Src Dst

Open vSwitch

Virtual Bridge 1 Virtual Bridge 2 Virtual Bridge 3 Virtual Bridge n

Attacker

VM Hosts

Snort Detection

Engine

POX

Controller

Snort Log

Packets Packets

DPI/Honeypot
Drop Malicous Pakcet

SSL

PacketsPacketsPackets Traffic

Redirection

QoS

Adjustment

QoS Control

VM HostVM Host

Figure 7.4: The Network Reconfiguration Mechanism.

7.3.1 Representative NR Actions

Before introducing the NR actions, the default action taken by the IPS is block-

ing or dropping the malicious traffic. Since NIDS may have false positive and false

negative when judging the network packets, dropping packets is not always the best

strategy when facing the suspect traffic. In this section, I will discuss two represen-

tative NR actions besides the default IPS action, traffic redirection (TR) and QoS

Adjustment (QA). How dropping and other two NR actions work are displayed in

Fig. 7.4.

Traffic Redirection

There are three ways to implement the TR: MAC Address Rewriting, IP Address

Rewriting, and OVS Port Rewriting. When any suspect packet is detected, the

controller firstly pushes the OpenFlow entry (i.e., matching packet header fields and

corresponding actions) to OVS flowtable. When certain packets are matching specific

entries, then corresponding actions will be taken for matching packets. Actions can

be set as changing on any header field of the flowtable, e.g., source IP, destination IP,

source MAC, destination MAC.

64

Traffic redirection mostly depends on the Destination Address (DA) field. When

destination IP or MAC address is changed, the OVS will naturally forward the packet

to the changed destination address in the packet header. This NR function is espe-

cially useful when dealing with the suspect packets, which cannot be judged as mali-

cious one for sure and are expected not to forward to possible victim but a detection

site for further checking, e.g., Deep Packet Inspection (DPI) or honeypot. As shown

in Fig. 7.4, the orange colored block represents the corresponding flowtable fields that

TR may change. Moreover, IP and MAC field rewriting can be combined with other

NR function to implement many network function, e.g., Network Address Translation

(NAT).

Beside the MAC and IP address change, there is another way to realize the TR,

port rewriting. This method is also natively enabled by OVS architecture. As shown

in Fig. 7.1, each bridge created in OVS can be regarded as a virtual switch. All VM

VIFs are connected to virtual bridges through virtual port (i.e., virtual interface).

Thus, by forwarding any packet to the virtual port, the VM VIF that connects to that

virtual port will be able to receive the forwarding packets. Through this mechanism,

SDNIPS is also able to set any virtual port as the output port of any packet to

implement the TR function without changing the packet header.

One benefit of using port rewriting is that any packet header will not be changed

while traffic redirection is being realized, which is very efficient and useful to some

components (e.g., security appliance) when collecting original network data for further

learning. To sum up, traffic can be redirected by OVS through multiple ways in cloud

environment.

65

QoS Adjustment

QoS Adjustment (QA) is a desired feature when dealing with flood type of attack,

e.g., DoS and DDoS. When one or multiple victims are under stress from receiving

a huge amount of traffic from one or multiple sources, which cannot be confidently

determined as attackers, it is always expected to slow down the current extremely

fast flow and to determine if the traffic is malicious or not after further inspection.

Thus, QoS adjustment is an ideal way to handle such situation.

There are two ways to implement the QA, reset the QoS parameters on either VIF

or port on OVS. Setting the QoS limitation on VIF or OVS port has different applied

scenarios. When setting the QoS limitation on VIF, it is necessary to firstly locate

the packet source, e.g., the attacker. Thus, the number of suspect attackers would

better not be large. On the other hand, when there is a DDoS attack on the network,

the attack source may be a large set, which means it is infeasible and impractical to

locate all zombie attackers and adjust their VIFs. To solve this issue, I introduce a

smart way to implement the QoS for such situation, by limiting the incoming port

on OVS. When any packet arrived at OVS, it must have an event port also called in

port, as shown on the flowtable in Fig. 7.4.

The QoS of that incoming port can be limited so that any arriving packet exceeding

the QoS limit will be dropped without further process, which greatly enhances the

performance of QA. Also, attacker may deploy IP spoofing technology to modify the

source IP address of attacking packets to avoid being traced back. Thus, the best

way is to modify QoS parameters. I will not discuss the the QoS model based on the

network but just explore the capability provided by SDNIPS, because QoS issue can

be discussed as an individual research topic in its own area.

66

7.3.2 NR Selection Policy

Table 7.2: SDNIPS Actions Selection Guidance

Major Actions DoC Cost Preferred Scenario

Drop High Low Any determined malicious traffic

TR Medium Medium Attacking traffic requiring further in-

spection

QA Low Medium Attacks with overwhelmed traffic, e.g.,

DoS

In Fig. 7.2, there is a component in SDNIPS controller called rules generator.

Rules generator is for choosing NR and generating the corresponding OpenFlow rules

based on the detection engine output. The rules can be generated based on different

algorithms that are not the focus of this work. Based on two representative NRs

I mentioned above and the default drop action, I am summarizing the IPS action

selection policy in Table 7.2.

Degree of Confidence (DoC) represents the degree of how confident the detection

engine believes the traffic is a malicious one. Since one of the biggest challenges of

NIDS is to reduce the false negative and false positive, it is impossible for a detection

engine to work with a 100% correctness. Several types of evidence, e.g., detection

engine signature, history behavior, machine learning result, etc., can lead to the con-

firmation of judging the real attack. Thus, when the traffic is suspected and the

detection engine cannot draw the conclusion that it is definitely the malicious traffic,

it is wise to choose the appropriate NR to keep the traffic alive and lower its possi-

ble dangerousness. Cost means the resources consumption in both the system and

network level when taking corresponding actions. Different actions consumes differ-

ent amount of resources due to the frequency of OpenFlow operation, e.g., updating

67

flowtable, taking OpenFlow actions. In this way, it is possible to enumerate preferred

scenarios of attacks that can be counted by using certain NR setup.

Drop is the default NR and it has the lowest cost since when the packet match

the entry in flowtable, it will be simply dropped without any further actions. This

action is the best candidate to prevent the determined attacks with high DoC by

terminating the malicious packets.

Traffic Redirection (TR) is appropriate for the traffic with medium DoC. When

SDNIPS detects possible attacking traffic with a medium DoC, the traffic can be

redirected to a secure appliance, e.g., DPI proxy or Honeypot for further inspection

and learning. After the secure appliance further inspect the traffic, the traffic can

be possibly forwarded to the original destination or take other actions, e.g., drop.

Through the TR, the suspect traffic will not be forwarded to the original destination

until a further process is done. Since TR needs to use packet header or OVS port

rewriting technology for every single suspect packet matching the flowtable entry, it

costs more resource than simply drop action.

QoS Adjustment has two ways as I mentioned above, VIF based QA and virtual

port based QA. I am mainly focusing on the virtual port-based QA since it can be

applied to broader range of scenarios. QA is preferred for traffic with low DoC than

TR since the malicious packets with lower DoC can be sent to the original destination.

Packets with low DoC cannot be determined as the malicious one. Thus, such traffic

does not need to be dropped or redirected. QA costs similar amount of resource with

TR since all the packets need to be handled by OVS. QA is preferred for flood type

of attack with either few or large set of sources.

68

7.4 Evaluation

7.4.1 Evaluation Environment

I establish the SDNIPS prototype by using one cloud server with OVS installed

and properly configured in Dom 0 which has 4 virtual CPUs. The detection engine in

Dom 0 can directly access the virtual bridges in OVS to monitor all tenant networks

while Snort/Iptables-based IPS agent in Dom U can only monitor the tenant network

where it is in. The OVS controller is implemented based on the POX controller [38].

All other components are placed in VMs.

Traditional Snort/Iptables IPS is implemented in a VM (Ubuntu 12.04 Server edi-

tion, 4 virtual CPUs and 2048 MB Memory) at Dom U. All VMs at Dom U are con-

figured with VIF with 10GbE maximum capacity whose actual bandwidth is around

8 Gbits/s based on our testing in the real XenServer virtual network environment. I

evaluate three major performance scenarios:

1. Performance comparison between placing detection engine in management do-

main and user domain;

2. Performance comparison between our proposed SDNIPS and traditional Snort/Iptables

IPS in terms of the attack prevention capability (I will simply use the term IPS

in the following to represent the Snort/Iptables one); and

3. Performance of the designed and developed NR functions to validate their fea-

sibility and efficiency.

In the evaluation, the traffic are generated by hacking tools and packet generators such

as [1, 4, 51, 2, 59] to mimic the real attack scenario in the cloud virtual networking

environment.

69

7.4.2 Evaluation Results

1 5 10 15 20 25 50 100 200 250 300 500 1000 2000 3000 4000 5000

Traffic Load(Packet/s)

0

10

20

30

40

50

60
C
P
U
 U

ti
li
za
ti
o
n
(%

)
CPU Utilization Performance Comparison

Snort Agent in Dom 0
Snort Agent in Dom U

Figure 7.5: CPU Utilization Performance Comparisons.

NIDS Performance

Fig. 7.5 illustrates the performance comparison between Snort in Dom 0 and in

Dom U, measured by CPU Utilization. The traffic load is represented by the packets

sending speed from 1 to 5000 packets per second (pps). Both Dom 0 and Dom U

are configured with 4 virtual CPUs. The detection engine running in Dom U also

consumes computation resources in Dom 0 since Dom 0 is the management domain.

Thus, the CPU utilization is measured by the summation of CPU utilization of Dom

0 and Dom U. In sum, the performance of running the detection engine at Dom

0 consumes less CPU resources than in Dom U because Snort is able to natively

access all the network traffic through OVS bridge in Dom 0. Thus, based on the

70

evaluation in the Xen-based cloud environment, the conclusion can be drew that

deploying the Snort detection agent in Dom 0 has better performance than in Dom

U, which validates the SDNIPS design in Fig. 7.1. The main reason is that all the

traffics of Dom U need to go through OVS in Dom 0, and virtual resources in each

Dom U need to be routed to access the hardware resources through Dom 0. Thus

directly deploying the Snort agent in Dom 0 is more efficient in terms of both host

and network resource utilization.

OpenFlow-based IPS vs Iptables-based IPS

In this part, I compare the performance of proposed SDNIPS and one traditional IPS

candidate, i.e., Snort/Iptables IPS (mentioned as IPS as following). SDNIPS only de-

ploys the default NR action (drop) to make the comparison fair, since Snort/Iptables

IPS does not have extra NR capability besides drop.

Fig. 7.6 shows the health traffic forwarding capability under overwhelmed work-

load for both systems. To evaluate the performance, I set the IPS and SDNIPS as the

proxy of two virtual end hosts to forward ordinary traffic packets. I use hacking tools

[1] to initiate the DoS attack toward the IPS target at different attacking rate as the

interference source. For demonstration purpose, I choose two major DoS attacks as

candidates, which are Ping of Death (PoD) and SYN flood Attack. And then, one

VM sends normal health packets to another VM via proxy at the rate of average daily

traffic rate, to measure the IPS health traffic forwarding capability under attack. In

traditional IPS solution, DoS packets are captured by the IPS detection engine, which

further matches the rules and takes drop action on the inspecting packets.

In SDNIPS solution, the OVS fulfills the same task as Iptables does but it handles

packets by a different and more efficient mechanism. After Snort detecting packets

matching any signature, controller is able to be aware of the current threats in real

71

20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

11
00
00

12
00
00

13
00
00

14
00
00

15
00
00

16
00
00

17
00
00
0

18
00
00

19
00
00

20
00
00

21
00
00

22
00
00

Attacking Rate (packets per second)

0

10

20

30

40

50

60

70

80

90

100

110

120

H
e
a
lt
h
y
T
ra
ff
ic
 S
u
cc
e
ss
 F
o
rw

a
rd
in
g
 R
a
te
 (
%
)

Health Traffic Impact
SDNIPS PoD & SYNFlood
IPS SYNFlood
IPS PoD

Figure 7.6: The Impact of Health Traffic.

time by parsing CSV log file and then pushes corresponding flow entries into the

flowtable. After flowtable is updated, the malicious traffic can be handled by using

OVS fast path approach in line-rate, which can dramatically increase the system

performance and avoid the overwhelming traffic to interrupt normal traffic forwarding.

In Fig. 7.6, SDNIPS under both type of attacks has almost 100% forwarding rate,

which means that all normal traffic can be properly forwarded even the SDNIPS is

under the significant stress. For Snort/Iptables IPS, it has decreased around 68%

and 38% success forwarding rate under PoD attack and SYN flood respectively after

the attacking increase to 150,000 packets per second. The reason why health traffic

has higher success forwarding rate of health traffic under IPS PoD attack is because

72

the SYNFlood attack consumes more bandwidth and network resources compared to

IPS PoD attack.

10
00
15
00
20
00
25
00
30
00
35
00
40
00
45
00
50
00
55
00
60
00
65
00
70
00
75
00
80
00
95
00

10
00
0

15
00
0

25
00
0

35
00
0

40
00
0

50
00
0

75
00
0

10
00
00

12
50
00

35
00
00

Attack Rate(packets per second)

0

10

20

30

40

50

60

70

80

90

100

110

120

In
tr
u
si
o
n
 D
e
te
ct
io
n
 R
a
te
 (
%
)

Intrusion Detection Rate
SDNIPS
IPS

Figure 7.7: Evaluation of Intrusion Detection Rate.

In Fig. 7.7, I evaluate the alert generation capacity of both IPS and SDNIPS under

flood interference. This metrics also states how IPS can process the attacking packets

from security perspective. To evaluate this performance, I generate two different types

of attacks, which are DoS flooding attack acting as the stressful background traffic

and ICMP flood attack acting as an potential threat to be tested. This evaluation

mainly indicates whether IPS and SDNIPS can generate alert under high workload

stress. The figure shows the successful alert generation rate of ICMP attack under DoS

73

attack interference. It suggests that alert generation of traditional IPS is impacted

by DoS interference and most resources of IPS system are used to handle DoS attack

therefore the performance of alert generation rate decreases as the ICMP attack speed

increases.

When the speed of the ICMP attack reaches to 15000 packets per second, IPS can

only generate 13.72% alerts of the ICMP attack. On the other hand, SDNIPS is able

to efficiently avoid interference from DoS flooding attack due to OVS capability, so it

can successfully alert all the threats that are sent at the speed of 15000 packets per

second. When the speed of the ICMP attack reaches to 30000 packets per second,

the performance of SDNIPS start decreasing, and when the speed of ICMP attack

increases to 300000 packets per second, Snort agent in SDNIPS is not able to capture

packets and launch alerts because the snort detection engine itself almost reached its

threshold.

Thus, the evaluation comparing between proposed SDNIPS and traditional IPS

validates the analysis mentioned in section 7.2, which is that the SDNIPS has better

network and security performance in cloud virtual networking environment.

Network Reconfiguration

After the SDNIPS and traditional IPS are comparatively evaluated, I evaluate the

performance of SDNIPS NR alone since traditional IPS does not have the NR capa-

bility. I mainly evaluate two NR actions mentioned above, Traffic Redirection (TR)

and QoS Adjustment (QA), in the aforementioned cloud environment.

Fig. 7.8 shows the performance of resources consumption in term of the CPU

utilization of Dom 0 for all discussed NRs. I am using packet generator [51] to

generate the packets captured by Snort and processed by flowtable in order to test

the resources utilization change in the cloud system. In each NR approach, TR is

74

implemented by using destination IP & MAC rewriting; while TR with spoofing reply

is implemented by rewriting not only destination IP & MAC address but also source

IP & MAC of victims. Thus, the attacking traffic can be redirected to a security

appliance that is able to spoof the attacker by replying the packet with victims’ IP

& MAC address as source address. TR with spoofing feature consumes a little more

resources than the pure TR since OVS modifies more packet fields to enable the

spoofing feature.

1 1000 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 30000

Attack Rate(packets/second)

0

10

20

30

40

50

60

70

C
P
U
 U
ti
li
za
ti
o
n
(%

)

CPU Utilization Performance of Major NRs
Drop
TR
TR with Spoofing
QA

Figure 7.8: CPU Utilization Performance of Major NRs.

The default NR, i.e., drop packets, consumes less system resource because the

OVS does not modify the matching flow and just simply drop them (output to a

non-existing virtual port in POX controller implementation). In the QA scenario, it

75

has the best performance among all NRs because the rate limiting action is performed

based on OVS native mechanism, which means excess packets will be discarded and

OVS does not have to inspect and match the packet with all kinds of fields.

50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

50
00
0

10
00
00

12
50
00

15
00
00

17
50
00

20
00
00

22
50
00

25
00
00

27
50
00

30
00
00

32
50
00

33
75
00

35
00
00

37
50
00

40
00
00

Atack Packet Rate (packets/second)

0

20

40

60

80

100

120

P
e
rc
e
n
ta
tg
e
(%

)

TR Traffic Handle Capacity
OVS Process
Receive Rate

Figure 7.9: TR Traffic Handle Capacity.

Fig. 7.9 provides the performance on the capacity of OVS and secure appliance

VM, e.g., DPI checker. In this scenario, I use TR (port rewriting) to redirect all

the attacking traffic to a DPI checker VM (4 vCPUs, 2,048 MB memory, Ubuntu

12.04 server OS). When the attacking packet rate is increased from 1,000 packets per

second up to 400,000 packets per second, the OVS can handle all the traffic without

any packet loss, which validates that the packet process capacity of OVS is expected.

The receive packet means the percentile of OVS redirected traffic has been received

by the DPI checker’s VIF. When the packet rate reaches the 400,000 packets per

76

second (I assume that there is no more than 400,000 packets generated in a single

physical server per second), the OVS can still handle 100% of the packet and security

appliance can receive 60% of them due to its VIF capacity.

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

10
00
00

40
00
00

50
00
00

55
00
00

60
00
00

70
00
00

10
00
00
0

Rate Limit(kbits/s)

0

1000

2000

3000

4000

5000

6000

7000

8000

A
va
il
a
b
le
 T
C
P
 B
a
n
d
w
id
th
 (
M
B
it
s/
s)

Bandwidth Performance of QA
IP Flood
TCP SYN Flood

Figure 7.10: Bandwidth Performance of QA.

Fig. 7.10 evaluates the TCP bandwidth performance of OVS-based QA under

different speed limit rate. I use either IP flood or TCP SYN flood as the background

attack traffic and try to evaluate the available bandwidth on the same network. Both

IP and TCP SYN flood attack send flood traffic at their maximum rate (about 300k

packets per second). I limit the source port on OVS thus the attacking traffic arriving

at OVS is limited before being processed. The default speed is 10Gbits/s without

77

any rate limit in XenServer cloud environment. The range of the speed limit is from

1 Mbits/s to 10Gbits/s.

For IP flooding attack, when the attack packet rate raises up to 5 Mbits/s, the

available bandwidth is still almost full (around 8 Gbits/s in XenServer environment),

which means when I limit the attacking traffic below 5 Mbits/s, it does not impact the

network where the victim is. With the increase of the speed limit, more bandwidth

is occupied by the attack traffic and thus less bandwidth is available for the victim.

For the TCP SYN flood attack, when the speed limit reaches to 4 Mbits/s, the TCP

bandwidth starts degrading because TCP SYN flood needs to establish the TCP

connection and this will definitely impact the TCP bandwidth performance. When

the speed limit is above 5.5 Mbits/s, almost no available bandwidth is available for

the victim. This evaluation result provides a valuable reference for any system when

deploying the QA NR as a security solution.

7.5 Network Security as a Service (NSaaS)

7.5.1 NSaaS System Architecture

After the SDNIPS is proposed, implemented, and evaluated, next research focus

goes to how to convert this system into a service provisioning system so that each

cloud tenant can claim such security service to use. Fig. 7.11 illustrates the system ar-

chitecture of the proposed Network-Security-as-a-Service (NSaaS). It shows its frame-

work in a virtual networking environment including cloud tenants running within the

data centers programmable networks and edge cloud (i.e., customer resources such as

computers or mobile devices). This setup is to demonstrate a common programmable

networking environment where the IT infrastructure can be established based on pub-

lic and private clouds running within one or multiple data centers and edge clouds

78

containing end users computer/devices. For this NSaaS, I focus on network security

and various network security appliances that can be componentized as security appli-

ances to provide Network-Security-as-a-Service (NSaaS). NSaaS is controlled by the

cloud security service model including several major components to deploy NSaaS. In

the following research description, I will focus the presentation on how to construct

NSaaS.

Cloud Orchestration API Open vSwitch (OVS)

Private/Public Cloud

(Data Center/Enterprise Resource) Edge Cloud

Security Appliances
Cloud Security Service Model

(virtual resource orchestration, flow programming, etc.)

SDN Network

Controller

Cloud Controller

Security

Analyser IDS IPS DPI
Security Policy

Module

Cloud

Tenant
Tunnels (GRE/VXLan/Vlan/VPN)

Network-Security-as-a-Service

(NSaaS)

Data Center Networks

Figure 7.11: SDNIPS as a Service System Architecture

Network-Security-as-a-Service (NSaaS) is a security appliance allocation model

according to the security requirements in the cloud environment. Similar work has

been presented in the Internet environment [35], where the authors proposed a mech-

anism called FireCol that is a collaborative system detecting flooding DDoS attacks

on the Internet Service Provider (ISP) network. FireCol takes the hop-count as the

evaluation metric and deploys IPS in the ISP networks. In contrast, NSaaS is an

SDN-enabled data center environment manipulating both traditional cloud resources

and the mobile edge cloud, and thus the IPS resource management must take a com-

79

prehensive approach that can be easily incorporated into the cloud cost evaluation

framework. In general, the NSaaS is deployed based on the cloud system resource

management according to the utilization of vCPU, memory, virtual hard disk, net-

work bandwidth, etc.

As shown in Fig. 7.11, the NSaaS are able to access and control all of three do-

mains, which are datacenter programmable networks, private/public cloud resources,

and edge cloud. Edge cloud is consist of mobile devices that may be acting as either

service resource consumer and provider. It connects to the private/public cloud do-

main through layer-2 network virtualization technology, e.g., GRE tunnel, VXLAN,

VPN, etc. Both edge and central cloud are connected by and sitting on top of the

SDN programmable networks. SDN programmable networks can be in the form of ei-

ther physical OpenFlow swtich or virtual Open vSwitch, and can provide flexible and

scalable NFV. The NSaaS is also a hierarchical security provisioning service, which

means that IDPS in terms of virtual appliances can be deployed in different tenant.

7.5.2 NSaaS Elasticity Model

Another critical research issue of NSaaS is that how to efficiently deploy the NSaaS

service in terms of IDPS virtual appliance in the datacenter environment. In the

FireCol [35], the IPS is deployed right on the routers of the ISP network and the

major metric is based on the detection range (number of hop) of IPS. In contract,

the NSaaS is deployed based on a more elastic policy where system resource (vCPU,

memory, virtual harddisk, etc.) and network resource (amount of traffic) are all

considered.

In the data center environment, the resource is virtually isolated in forms of ten-

ants. Resources in each tenant may cross multiple cloud clusters (each is denoted by

Cl) and may include edge cloud devices. NSaaS allocates security appliances for each

80

IPS Monitor Range

Cl

IPS Monitor Range

Migration

Tenant i

S
ca

le
 U

p

IPS Monitor Range

S
ca

le
 O

u
t

Demand

Change

Cm

Cl Cm

S
ca

le
 I

n

IPS1
i

IPS1
i IPS2

i

S
ca

le
 D

o
w

n

Tenant i

Tunnels (GRE/VXLan/Vlan/VPN)

Tunnels (GRE/VXLan/Vlan/VPN)

State Transfer

Figure 7.12: NSaaS Elastic Service Model for One Tenant.

tenant or for the entire data center virtual network. To simplify the demonstration of

the elastic NSaaS elastic service model, I choose the IPS appliance as the example and

define the following notations that will be used in Fig. 7.12: the jth IPS in tenant i is

represented as IPSi
j, where each IPS has its own monitor and control range that does

not overlap with others. In this illustrative example, I define four elastic strategies

for IPS service deployments that are summarized in Table 7.3. Scale Up/Down is to

change the cloud resource configuration, and scale in/out is to change the number of

resources in terms of virtual machines.

The IPS with both VM configuration and network configuration are considered.

The VM configuration includes the number of vCPUs, virtual memory and the virtual

hard disk, while the network configuration includes different QoS requirements. For

example, an IPS hosting a VM can have x vCPU, where x = 1, 2, ...n. The number

of allocated vCPU is decided according to the security performance need. All con-

figurations are pre-defined by the system administrator in to a pool. For instance of

81

Table 7.3: NSaaS Elastic Operations.

Title Actions

Scale-Up Increase the resources config

Scale-Down Decrease the resource config

Scale-Out Create a new IPS virtual appliance

Scale-In Shutdown a existing IPS virtual appliance

Migration Migrate tenant resource to optimized cluster

vCPU, the pool is pre-defined as follows: {1, 2, 3}, which means the number vCPU

can be configured as 1, 2, or 3. In the example setting, 1 denotes the bottom flavor

of vCPU and 3 denotes the top flavor. Scale up means increase flavor and scale down

means decrease the flavor.

There are two thresholds can be established, say overutilized and underutilized,

to decide adding or removing vCPUs. In general, the overutilized status triggers

the scale-up and the underutilized status triggers the scale-down action. Moreover,

there are two special cases: when an IPS hosting a VM only has one vCPU (bottom

flavor) and it is in the underutilized status, the system can enforce the scale-in policy;

and when an IPS hosting VM has n vCPU (which is the top flavor) and it is in

the overutilized status, it can scale-out. Particularly, the scale-in action has four

sub-actions: (1) evaluate the expected networking resources needed by the tenant

monitored by the current IPS; (2) check if any other IPS is available in the same

tenant with sufficient resources; (3) migrate the VMs from the current tenant into

the monitor range of available IPS from step 2; (4) shutdown the current IPS. Scale-

out is the reverse action of scale-in but with simpler sub-actions: (1) evaluate the

expected resources needed by the tenant under the current IPS; (2) create a new IPS

with proper number of vCPUs; (3) migrate the VMs from the current tenant to the

82

monitor range of a newly created IPS. The example of the scaling function can be

illustrated in Fig. 7.13.

IDS 1

CollectD

1vCPU

3vCPU

2vCPU

Scale In

Scale Out
IDS 2

CollectD

Delete

Create

5

1

S
ca

le
 U

p

S
ca

le
 D

o
w

n

3

2

4
Figure 7.13: NsaaS Elasticity Example

83

Chapter 8

CLOUDARMOUR: CONSTRUCTING A SDN-BASED DEFENSIVE SYSTEM IN

THE VIRTUAL NETWORKING ENVIRONMENT

Motivated by the aforementioned research challenges, I am aiming to propose

a detection&prevention system with complete lifecycle to defend the harmful and

complicated attacks in the distributed cloud environment. The complete lifecycle can

be divided into three stages as shown in Fig. 8.1: Traffic Sniff, Attack Analysis and

Actions Execution. In the traffic sniff stage, attacker are detected by using IDS or

other monitoring agents. In the analysis stage, it should analyze the attack behavior

that helps further determine the malicious traffic. Finally, prevention actions should

be optimally executed to kill the malicious traffic without impacting other normal

traffic.

In this research, I propose “CloudArmour”, a new SDN-based cloud network se-

curity framework, providing attack traffic monitoring and detection, attack analysis,

and mitigation deployment. Compared to existing solutions, CloudArmour provides

the following unique features:

• I design a Traffic Statistics Aggregate Module (TSAM) to monitor network

traffic patterns and detect anomaly behaviors. Moreover, TSAM can also in-

Attack

Analysis

Action

Execution

Traffic

Monitor

Detection Mitigation

Figure 8.1: CloudArmour Lifecycle

84

spect real packets to perform signature-based attacks detection. TSAM’s im-

plementation is efficient in that it is implemented based on OpenFlow protocol;

moreover, TSAM’s implementation is based on component-based design that

provides common interfaces (e.g., data access and operational functions) to fa-

cilitate other CloudArmour modules. For examples, TSAM provides interfaces

to support various existing detection modules such as anomaly and signature

based detection modules.

• I develop an Attack Source Tracer Module (ASTM) to track attack sources

at the SDN physical layer that prevents attackers from spoofing attack source

addresses even using dynamic address assigning approaches, e.g., no fixed IP is

assigned to a host such as using DHCP-based IP address assignments. ASTM

provides strong security protection against stealthy attack sources. This is

because attackers need to compromise the hypervisor of the cloud system in

order to fake their addresses.

• I devise a Mitigation Executor Module (MEM) to systematically implement var-

ious network reconfiguration approaches such as packets filtering, traffic redirec-

tion, traffic shaping (i.e., QoS-based adjustment), etc. I provide a comprehen-

sive performance evaluation to address the pros and cons of various mitigation

approaches.

• I implement 20 Python-based APIs for OpenFlow Controllers to interface traffic

monitoring, attack detection, traffic control and analysis modules. I illustrate

how to use the presented CloudArmour APIs by providing a comprehensive

tutorial on constructing a DDoS defense system in a cloud environment.

85

Network Controller

OpenFlow Enabled

Devices

CloudArmour Controller

Open vSwitch
Additional Virtual &

Physical Devices

Data Plane Elements

Traffic Statistics Aggregation Module

Detection

& Monitor

Attack Source

Tracer

Mitigation

Executor

Figure 8.2: CloudArmour System Overall Architecture.

8.1 CloudArmour Overall Design

The proposed CloudArmour system architecture is described in Fig. 8.2. All

SDN-enabled data plane elements including OpenFlow switch, Open vSwitch, and

other additional virutal&physical devices are connected and controlled by a central-

ized CloudArmour controller that is implemented based on POX controller [57]. Once

the centralized controller is connected with data plane elements, it has a cloud sys-

tem view including network topology, network connectivity status, packets statistics

information, etc. The proposed Traffic Statistics Aggregation Module (TSAM) is de-

signed on top of the SDN controller. It provides several traffic related interfaces (e.g.,

data access and operational functions). For example, TSAM APIs can be called to

expand flow table rules to collect more detailed traffic information such as IP/Mac

address, port number, etc.

86

Traffic Information DS/DB

OVS 1 OVS 2 OVS 3
GRE Tunnel GRE Tunnel

VM1 VM3 VM4 VM5 VM6 VM7 VM8 VM9

Flow Table Information Proxy

In Port VLAN ID
Ethernet

src dst type
Priority Counters Instructions Timeouts Cookie

IP

src dst Protocol

Port

src dst

VM2

Traffic Packet

Acquisition Traffic Operator

Traffic

Matcher

Traffic

Expander

Traffic

Trimmer

Traffic Statistics Aggregation Module

Traffic Volume

DS

Traceback

 DB

Traffic History

DB

Customized

DS

Figure 8.3: Traffic Statistic Aggregation Module

Above the TSAM, there are three highly integrated application modules: De-

tection&Monitor Module, Attack Source Tracer Module , and Mitigation Executor

Module. The Detection&Monitor Module is able to read the traffic statistics informa-

tion or fetch the real packets from all connected OpenFlow devices. It can also set up

the connection between OpenFlow devices and existing security application such as

intrusion detection engine. Furthermore, the Attack Source Tracer Module (ASTM)

traces back from the victim to identify the location of attack sources. Finally, the

Mitigation Executor Module (MEM) performs various network reconfiguration ap-

proaches such as traffic redirection, drop, QoS adjustment, etc.

87

8.1.1 Security Application Interface Architecture

There are total 20 module APIs designed in the CloudArmour system. The

CloudArmour system provides API functions at different layers. The TSAM mod-

ule provides several API function calls to retrieve the traffic statistics information

in different format. On top of the TSAM, several highly integrated functions are

constructed to provide integrated services including attack source trace, mitigation

execution, etc. Users have sufficient flexibility to construct their security solution by

organizing several integrated modules together or develop their own service module

such as the detection engine based on our lower level module, e.g., traffic packet ac-

quisition module that will be discussed in section 8.2. Section 8.4 will give a concrete

example on how to construct a full life cycle security solution to defend the DDoS

attack based on the CloudArmour. All APIs are listed in section 8.5.

8.2 Traffic Statistics Aggregation Module (TSAM)

TSAM is designed to collect traffic statistics information and provide flexible data

access and operational functions. It is able to retrieve traffic statistics information

and packet content in a more efficient and flexible fashion because OpenFlow can

records all traffic flow information and corresponding statistics information in the

flow table of all its controlled devices.

8.2.1 Traffic Statistics Aggregation Architecture

As part of the infrastructure of the CloudArmour, the TSAM shown in Fig. 8.3

can be divided into several components, which are Flow Table Information Proxy,

Traffic Operator, Traffic Information Databases (DB)/Dataset(DS), Traffic Packet

Acquisition.

88

The Flow Table Information Proxy retrieves flow table information periodically

and it can also configure flow table entries onto OpenFlow switches. The Traffic Op-

erator includes three modules, which are traffic matcher, traffic expander, and traffic

trimmer. These traffic operator modules get inputs from flow table information proxy

and output to several databases(DB) and datasets(DS). Data access and operational

function APIs supports flexible traffic statistics information retrieval. Existing Open-

Flow implementation does not support packet content inspection. To address this

issue, Traffic Packet Acquisition extends the limited flow level information to packet

content level that can be used for deep packet investigation. The developed TSAM

APIs can be found in Table. 8.1 in section 8.5.

Normally, network related security applications or modules need to retrieve the

traffic data information for further analysis. There are many ways to retrieve the

traffic data, for example, configuring the SPAN to forward the traffic to certain ap-

pliances, retrieving the traffic data based on some monitoring protocols, e.g., sFlow,

NetFlow, etc. There are pros and cons for all aforementioned solutions. Therefore,

by utilizing this characteristic, Traffic Statistics Aggregation Module (TSAM) is able

to retrieve traffic statistics information and then further provide the traffic data and

packet acquisition services to the upper layer security applications, which is shown in

Fig. 8.3. As part of the infrastructure of the CloudArmour system,

8.2.2 Flow Table Information Proxy

In order to collect the flow statistical information, the flow table information

proxy module maintains the connections with all OpenFlow devices. It periodically

checks the OpenFlow connections and grabs the traffic statistics information from all

connected OpenFlow switches. All the information collected by flow table information

proxy will be processed by the traffic operator. It also performs control function by

89

injecting flow table rules into any specified OpenFlow switch. Basically, it acts as a

proxy between OpenFlow devices and CloudArmour modules by implementing read

and write functions.

8.2.3 Traffic Operator

To provide customized flow statistic data for CloudArmour APIs that can be

called by seccurity analysis modules, e.g., anomaly intrustion detection module, the

traffic operator is designed including three modules: traffic matcher, traffic trimmer,

and traffic expander. Their traffic operational functions are described as below:

Traffic Matcher is a module that implements matching function. Due to the

native feature of OpenFlow protocol, packets or flows can be matched through any

single field or combinations. Many APIs are implemented by utilizing the matcher

function.

Traffic Trimmer is the module trimming raw statistics data into a desired or

customized format. This module works with other modules such as traffic matcher

and traffic expander to generate the following statistics DB/DS, i.e., Traffic Volume

DS, Traceback DB, History Traffic DB. Users can also use these modules to build their

own customized data set, i.e., Customized DS, to fulfill their own design purposes.

Traffic Expander enables users to deeply investigate flow detail information. It

is possible that the flow table forwards packets based on very simple flow information,

which means that the flow statistics information may include insufficient information.

To investigate the traffic behaviors, more detailed traffic information are expected.

At this point, I implement the traffic expander function to expand the simple flow

entry into more detailed ones.

By default, the OpenFlow switch in datacenter can forward packets based on

layer-2 or layer-3 headers. Thus, the statistics information only maintains layer 2 or

90

3 header information rather than upper layer information that is important metric

for determining attack signatures and behaviors. Once the traffic expander function

is triggered, the matched flow entry will be expanded with more detailed header

information specified by users. After detailed flow entries are injected into flow tables,

the traffic information proxy is able to collect more detailed statistics information of

the targeted traffic.

An example is introduced in the Fig. 8.4. The packets coming from node A are

forwarded to node B only based on IP addresses and corresponding flow entry is in the

format of {A-B, forward}. However, this information is insufficient for identifying the

malicious traffic type, e.g. HTTP traffic (TCP, 80). The traffic expander module is

able to dynamically update detailed rules by learning the expected header information

from packets. The developers can use traffic expander modules API to specify the

flow table fields that need to be expanded, such as IP protocol. So the corresponding

expanding rules, {A-B, TCP, forward} and {A-B, UDP, forward}, will be injected

to flow table. When more detail information is expected, such as destination port,

flow table entry {A-B, UDP, 53, forward}, {A-B, UDP, 2049, forward},{A-B, TCP,

22, forward} and {A-B, TCP, 80, forward} are inserted to the flow table. The port

numbers in the updating flow entries are automatically learned from the corresponding

headers of packets. We can increase the priority of the flow entry each time it is

expanded. Thus, due to the different priority, the TCP traffic with port 80 from A to

B only matches the highest priority rule, which is {A-B, TCP, 80, forward}. In this

way, it will not create duplicate counters on other higher level matching flow table

entries, i.e., it can be guaranteed that only the leaf node rules are matched.

91

A-B

UDP

2049

A-B

TCP

22

A-B

TCP

80

A-B

UDP

A-B

TCP

A-B

A-B

UDP 53

Increment

Priority

Increment

Priority

SrcIP DstIP

SrcIP, DstIP,

IP Protocol

SrcIP DstIP,

IP Protocol,

Port

Figure 8.4: Tree-based Traffic Expanding Model.

8.2.4 Traffic Statistics Database/Dataset(DB/DS)

To maintain the history traffic information and realtime traffic information, I de-

sign DB and DS, respectively. In particular, two DSes and two DBs are implemented

to store real time traffic information and history traffic information. Using these DBs

and DSes, developers can acquire more customized traffic information based on the

functions provided by traffic operator.

Customized DS is an empty dataset for user to develop their own realtime

dataset based on their requirements. Traffic operator provides several basic meth-

ods for developers to transfer the OpenFlow statistics information to their own data

structure and sequence. Those basic methods could be found in Table. 8.1 in Ap-

pendix. Developers can customize user-defined realtime data set to support their

security application development.

92

For example, authors in [67] present a method to proactively detect the DDoS

attack by using source IP address monitoring. To plug-in this detection method,

an IP address monitoring data set is required. Users could use get active switch()

function to find all the connected OVS and use get raw data (dpid, start time stamp,

end time stamp) to query the history traffic information. IP Address Database can be

generated from these history knowledge. Then, based on the detection method men-

tioned in this work, it can apply the customized monitor (match, start time stamp,

time period, recurring = true) function to watch all the real time traffic information.

I set the ∆n(n = 1, 2, 3, ...) as the detection resolution parameter in the function,

then collect IP address information during each time slot ∆n and formulate a real

time system IP address dataset. This dataset supports upper layer detection engines

and algorithms to analyze the system status and report the potential DDoS attacks.

Traffic Volume DS can be used for supporting traffic volume-based detection

engines or monitors to identify the anomaly behaviors in the system. Most volume-

based detection engines need the traffic volume sequence to monitor the system status

and detect the anomaly traffic behaviors. To fulfill this requirement, the flow table

information proxy will request each OVS to return their current ingress traffic vol-

ume of each port attached by active VM every ∆T time period. Then the Traffic

Information Trimmer will trim the raw data as follows formation: {Destination IP,

Source VM IP sets, Traffic Volume, Time Stamp}.

For each active VM i in the system, let Ri(t) be the summation of traffic volume

record from all the source IP addresses to the destination VM i at timestamp t,

where t is the discrete time index. So at timestamp t, the system overall ingress

traffic volume record V (t) could be calculated by V (t) =
∑k

i=1Ri(t), k is the total

number of current active VMs in the system. After having the system traffic volume

record at each timestamp t, to generate the system traffic volume data sequence

93

{St, t = 0, 1, ..., n}, we have S(t) = V (t+ ∆t)− V (t). The request time period ∆t is

selected by corresponding detection engine and detection resolution.

Traceback DB is used to help Attack Source Tracer (AST) to traceback mali-

cious insiders in the system. In traditional cloud computing system, when attack is

performed by malicious insider with spoofed source IP addresses or MAC addresses,

it is difficult to trace them since there is no an effective mechanism to bining IP

addresses and connected physical port. Using CloudArmour, the decoupled data and

control plane enable us to track the attacking source by looking up the traffic ingress

port and egress port of OVS flow table, which can be tampered only if the attack-

ers can compromise the underlying virtualization layer, e.g., the hypervisor, which is

considered safe in this work.

At the back end of AST, the traceback database provides the Source VM and

Destination VM pair for each flow, which means even the source IP address of traffic

packet is spoofed, the system still can traceback the source virtual machine by looking

up this database. To generate the source and destination pair for a flow, traffic

information proxy acquires the statistics data from flow table of each OVS and traffic

operator will trim the data into following structure: {OVS ID, Ingress Port, Interface

type, Destination IP, Egress port,}. This information is stored in each OVS and its

flow table. OVS ID indicates which OVS this flow belongs to. Ingress Port and

Egress Port represent which port a flow comes through and to which port this flow is

delivered. Interface Type shows the type of the ingress port of this flow, which could

be Controller, OVS or Virtual Machine. This table tells us the abstract topology

of current network connection and the true location of each OVS with its attached

active VMs. It also shows where each traffic flow is exactly delivered. The system

can have an accurate information of source & destination pairs from this database

and the AST will trace the malicious insider based on it.

94

Traffic History DB can be used for upper layer security modules to develop

machine learning-based or data mining-based detection and monitor applications.

This database logs all the history traffic information for developers to perform deep

investigation of traffic patterns and features. Some functions provided in Table. 8.1

in Appendix can be called to retrieve the historical information easily. The flow

table information proxy requests all the active switches to return their flow table

statistics information with a configurable time interval and store them in following

structure: Switch DPID, Request Time, Raw Data Statistics. get raw data(dpid,

start time stamp, end time stamp) could retrieve the historical raw traffic data based

on switch dpid and timestamp. It will return the parsed raw data information by a

python dictionary with dpid and time sequence as the retrieving key.

8.2.5 Traffic Packet Acquisition

Besides collecting and operating on the traffic statistics information, some security

applications such as detection engine or DPI need to be deployed to inspect packet

content. Thus, I introduce a modular called Traffic Packet Acquisition (TPA) to poll

the real packets instead of traffic statistics information to the controller that further

forward to the security applications. Users are able to specify what traffic need to be

polled to the controller for inspection. The aforementioned module, traffic matcher,

enables developers or users specify what packets they are looking for. After users and

developers determine the packets they are interested in, new flow table rules will be

injected into connected OpenFlow devices so that following matching packets will be

forward to the traffic packet acquisition module.

95

8.3 CloudArmour Service Module Design and Implementation

This section discusses the integrated service modules that are constructed based

on the TSAM. All the Python-based APIs of service module can be found in Table.

8.2 in section 8.5.

8.3.1 Traffic Monitor and Detection

In a comprehensive security solution including detection, analyzer and mitigation,

traffic monitor and detection is usually the first step. The intrusion detection sys-

tem can be divided into two types, signature-based and anomaly-based. Signature

detection searches network traffic for a series of bytes or packet sequences known

to be malicious. For example, users might use a signature that looks for particular

strings within an exploit payload to detect attacks that are attempting to exploit a

particular buffer-overflow vulnerability. The anomaly detection technique centers on

the concept of a baseline for network behavior. The anomaly detection can perform

the detection based on different aspect, such as IP address changes, destination port

changes, volume changes, protocol anomalies, etc. In this traffic monitor and detec-

tion module, there are two types of information query approaches: packet-based and

statistics-based. An example of how to utilize the monitor and detection module API

will be given in section 8.4.

8.3.2 Attack Source Tracer Module (ASTM)

The attack behaviors need to be further analyzed after it is detected. One of the

most important tasks is to determine the location of the attack sources. A common

way to identify the location of attack sources is to use the trace back techniques that

is based on several metrics such as IP address, MAC address. Traditional solutions,

96

such as packet marking technique [87, 73] for IP traceback, always need to modify

the packets, which causes overhead. However, it is impossible to correctly trace back

all the attack sources based on IP or MAC addresses, when the attacks perform with

source address spoofing techniques. Based on the unique feature of OpenFlow that

flow table history records the historical flow information, users can utilize the ingress

and egress port characteristic to perform the trace back function. Since the ingress

and egress ports are the native property of the OpenFlow devices, thus they can not

ba spoofed if it is assumed that the OpenFlow itself is not compromised. Thus, any

IP or MAC spoofing technique does not work when performing trace back functions

at the port level.

Thus, I propose an IP spoofing prevented attack source trace back mechanism

called Attack Source Tracer Module (ASTM). I will discuss an example to illustrate

how the ASTM works in the OVS scenario (this algorithm can be also simply applied

to physical OpenFlow switch scenario). The benefit of considering the OVS port

over the traditional network switch port is that it is possible to know if a dedicated

OVS port is connecting to a VM directly or another OVS’s tunnel port. As shown

in Fig. 2.1, each flow entry has a field called in port. Through this information,

the CloudArmour is able to trace back attacker VMs from the OVS that any victim

directly connects. The connectivity of all OVS can be modeled as a graph. I first

define a function called traceback as below:

trace cur OVS(cur OVS, dst IP, IP prototol, port number) = {OVS/VM}

The trace cur OVS function returns all entities (VM or OVS) that sending pack-

ets to the current OVS (cur OVS) with destination IP = dst IP, IP protocol =

IP prototol, port number = port number. Thus I propose a trace back algorithm

based on depth-first search, which is described in Algorithm 1. The input of this al-

gorithm is the IP address of the victim, attack traffic type, e.g., TCP port 80 traffic,

97

and the OVS that the victim is directly connecting to. The algorithm returns a list of

all attacker VMs (OVS ports that all attack VMs are attached). The Python-based

API of this attack source traceback algorithm can be also found in Table. 8.2.

Algorithm 1 Attack Source Traceback Algorithm

Input: IP proto, port number VMvictim, OV Svictim

Output: {Set of Attacker VMs}

1: v ← OV Svictim

2: TraceRecursion (OVS v, Set AttackVM)

3: if v = VM then

4: ZVM.add(v)

5: return

6: end if

7: for each x ∈ trace cur OV S(cur OV S, dst IP, IP proto, port number) do

8: if x.visited = FALSE then

9: TraceRecursion(x, list)

10: end if

11: end for

12: RETURN list

8.3.3 Mitigation Executor Module(MEM)

The Mitigation Executor Module(MEM) is proposed to provide the mitigation

actions for users. In the SDN-based mitigation, when controller insert a mitigation

flow rule to the OpenFlow device, no matched overwhelming malicious traffic will be

sent to the controller, and the drop action is executed either in the kernel level of the

OVS or the hardware level of the physical OpenFlow switch. This mechanism can

guarantee the performance of mitigation as well as the detection engine. Thus, the

98

mitigation capability of SDN-based one can be expected more efficient than traditional

mitigation approach, e.g., Iptables NFQueue. The representative mitigation actions

are the same as what I discussed in section 7.3. The performance between SDN-based

mitigation and traditional mitigation approach is already evaluated in section 7.4.2.

8.4 Tutorial, Implementation and Evaluation

In this section, I provide a use case to present how cloud security solution re-

searcher and developer can leverage the benefits of CloudArmour to construct flexible

and efficient network security applications. I construct and implement a DDoS defen-

sive system based on CloudArmour framework. At last, I evaluate the CloudArmour

in the DDoS scenario. All the modules are implemented in the mininet [55] envi-

ronment and the evaluation is conducted in the real Xen-based virtual networking

environment.

8.4.1 A Tutorial: A DDoS Defensive Solution

DDoS Attack Model

According to the definition from WWW Security FAQ [75] on Distributed Denial of

Service (DDoS) attacks: “A DDoS attack uses many computers to launch a coordi-

nated DoS attack against one or more targets. Using client/server technology, the

perpetrator is able to multiply the effectiveness of the DoS significantly by harness-

ing the resources of multiple unwitting accomplice computers, which serve as attack

platform”. The DDoS is distinguished from other attacks by its ability to deploy its

weapons in a “distributed” way over the network and to aggregate these forces to

create lethal traffic. DDoS can be simply divided into two categories, the bandwidth

depletion attack and the resource depletion attack. The bandwidth depletion attack

is designed to flood the victim’s network with overwhelming traffic that prevents legit-

99

Attacker

Handler Handler

ZombieZombie Zombie

Victim

Zombie

Figure 8.5: DDoS Attack Model

imate traffic from reaching the victim, while the resource depletion attack is trying to

break the victim’s system by either breaking the protocol running on victim’s system

or crashing the victim’s system by sending incorrect data packets.

The attack scenario is modeled in Fig. 8.5. The DDoS attack is the most advanced

form of DoS attacks, which has been regarded as the most noticeable threat to Internet

security by both Kaspersky Labs and Symantec. A representative IDS/IPS system

Snort [5] claims that the detection and prevention for DDoS is not as effective as for

other attacks. The DDoS is distinguished from other attacks by its ability to deploy

its weapons in a “distributed” way over the network and to aggregate these forces to

create lethal traffic. DDoS can be simply divided into two categories, the bandwidth

depletion attack and the resource depletion attack. The bandwidth depletion attack

is designed to flood the victim’s network with overwhelming traffic that prevents

legitimate traffic from reaching the victim, while the resource depletion attack is

trying to break the victim’s system by either breaking the protocol running on victim’s

system or crashing the victim’s system by sending incorrect data packets. Although

100

DDoS has different types of attack in terms of the way of performing attack, they still

have common in nature, which is that a great number of packets from multiple zombie

hosts go to the victim at the same time. This work is also based on the assumption

that all DDoS traffic initiated from multiple zombies belongs to the same type.

Module Composition Flow

To construct the DDoS defensive solution based on CloudArmour modules, I first

divide the defensive solution into four phases: DDoS behavior detection, attack anal-

ysis, zombie trace, and mitigation execution. These four modules are executed in an

assembly line fashion. The processing phases of the DDoS defensive solution based

on CloudArmour are illustrated in Fig. 8.6.

The object of DDoS detection engine is to detect the DDoS attack behavior.

The detection engine can be implemented as either a signature-based approach or

an anomaly-based one. The anomaly-based detection engine can be simply con-

structed by calling monitor volume(match, start time, time period,recurring). Users

can also plug-in an existing signature-based detection engine such as Snort, by calling

ids connector(match,detection engine ip) function to make traffic flows and detection

engine connected. After the DDoS behavior is detected, further inspection needs to be

performed to determine: (1) identifying the victim; (2) identifying the type of DDoS

traffic initiated from zombies. Flow table expander(in port, out port, ethernet layer,

ip layer, transport layer) can be used to generate more elaborated traffic statistics

information, which can be further analyzed to determined aforementioned informa-

tion. When DDoS behavior, DDoS traffic type, and victim are all confirmed by the

previous modules, attack source traceback (victim ip, victim ovs, attack traffic type)

function is triggered to identify all DDoS traffic sources in zombie trace phase. After

zombie machines are all identified by traceback function, mitigation will be performed

101

Detection Engine

(Anomaly/Signature)

DDoS Attack Detected

No

Identify Victim

Yes

Trace All Zombies

Execute Mitigation Action

DDoS Detection

Zombie Trace

Mitigation Execution

DDoS Traffic

Analysis

monitor_volume

flow_table_expander

attack_source_traceback

CloudArmour API

Identify DDoS Traffic Type

get_packet

traffic_drop

Figure 8.6: DDoS Defensive Solution Construction Flow

to stop the DDoS attacking traffic at all port entries of the OpenFlow devices.

8.4.2 Implementation and Evaluation

I build a comprehensive DDoS defensive system based on our CloudArmour frame-

work and three major components, DDoS Detection Engine, DDoS Traffic Analyzer,

Zombie Tracer and Mitigation Executor are implemented by CloudArmour APIs. Im-

plementation is demonstrated by screenshots and evaluation validates the feasibility

and flexibility of the CloudArmour framework.

102

Volume-based Anomaly Detection Engine

A lightweight DDoS detection engine is designed to detect the anomaly overwhelming

traffic in time. This detection engine choose to apply the non-parametric Cumulative

Sum (CUSUM) [24] algorithm to detect the occurrence of abrupt change of the system

overall traffic volume. To simplify the detection engine and reduce the overhead, this

method only focuses on the system traffic volume and alerts the potential DDoS

attack activities. Similar methods could be found in [81, 67], where [81] watches the

occurrence of large difference between the number of SYNs and FINs and [67] detects

the anomaly increase of new source IP addresses ratio.

I use TSAM API to setup a monitor to watch the system overall traffic volume

and formulate a traffic volume data set X(t) = {x1, x2, .., xn}, where xn is the whole

system ingress traffic volume in the nth time interval. To make the method more

general, I use the Exponential Moving Average (EMA) method to normalize the

traffic volume data set. Thus, given the normalized data set X(t), non-parametric

CUSUM could be simplified by following equation based on [24]:

yt = (yt−1 +X(t))+, y0 = 0, (8.1)

To determine a potential flooded attack to VM i, the decision function can be pre-

sented as follows:

dN(yt) =

0 if yt ≤ N,

1 if yt > N.

(8.2)

N is the flood threshold and yt > N indicates the occurrence of flood traffic in the

system at time stamp t. This threshold can be calculated based on the degree of

detection sensitive, which was explained in [24] and will not be elaborated here.

Seagull[39] is used to generate background traffic at a normal speed and Pktgen[51]

is used to emulate DDoS traffic due to its ability of generating packets at extremely

103

Figure 8.7: DDoS Detection Engine Implementation Screenshot

high speed in the kernel. Implementation scenario can be found in Fig. 8.8. 9 zombie

machines perform DDoS attack by flooding traffic packets to the same victim at the

same time.

Fig. 8.7 is the screenshot of our implemented anomaly-based detection module.

I choose the detection resolution ∆T equals 60 seconds so that the DDoS detection

engine queries the traffic volume, average traffic volume, and CUSUM statistics score

every 60 seconds. When the CUSUM statistics score exceeds the threshold, Traffic

Analyzer and Mitigation Executor will be trigged to protect the system.

IP Spoofing Attack Traceback

Attack Source Traceback module can track all the packets even they are intentionally

modified to spoof security agent and other virtual machines in the cloud environment.

Based on different traceback type, it can target the attackers who are sending mali-

cious packets with specific attacking signature, for example, the Ping of Death attack

is performed by changing the IP fragments information of packets headers and try

to overflow receiver’s memory buffer. It also can trace the distributed attackers, e.g.

zombie machines in DDoS attack, which they always send huge amount of attacking

traffic to victim at the same time and forge the security agent with spoofed IP ad-

104

Bridge 2

OVS 1 OVS 2

Bridge 2

1 2 3 4 5

6 1

Z-1 Z-2 Z-3 Z-4 Z-5

2 3 4 5 6

Z-6 Z-7 Z-8 Z-9 V

In_port Src_IP Dst_IP Src_port Dst_port Action

1 10.0.1.2 10.0.2.6 60700 80 Output:6

1 10.0.1.3 10.0.2.6 60700 80 Output:6

1 10.0.1.4 10.0.2.6 60700 80 Output:6

1 10.0.1.5 10.0.2.6 60700 80 Output:6

2 10.0.1.6 10.0.2.6 60700 80 Output:6

3 10.0.1.7 10.0.2.6 60700 80 Output:6

4 10.0.1.8 10.0.2.6 60700 80 Output:6

5 10.0.1.9 10.0.2.6 60700 80 Output:6

5 10.0.1.10 10.0.2.6 60700 80 Output:6

In_port Src_IP Dst_IP Src_port Dst_port Action

1 10.0.1.2 10.0.2.6 60700 80 Output:6

1 10.0.1.3 10.0.2.6 60700 80 Output:6

1 10.0.1.4 10.0.2.6 60700 80 Output:6

1 10.0.1.5 10.0.2.6 60700 80 Output:6

1 10.0.1.6 10.0.2.6 60700 80 Output:6

1 10.0.1.7 10.0.2.6 60700 80 Output:6

1 10.0.1.8 10.0.2.6 60700 80 Output:6

1 10.0.1.9 10.0.2.6 60700 80 Output:6

1 10.0.1.10 10.0.2.6 60700 80 Output:6

2 10.0.2.9 10.0.2.6 60700 80 Output:6

3 10.0.2.10 10.0.2.6 60700 80 Output:6

4 10.0.2.11 10.0.2.6 60700 80 Output:6

5 10.0.2.12 10.0.2.6 60700 80 Output:6

5 10.0.2.13 10.0.2.6 60700 80 Output:6

Figure 8.8: DDoS Attack Scenario and flow table Entries

dresses. In this scenario, I develop a zombie trace application based on CloudArmour

APIs to test the feasibility of our back end framework. I implement this component

fitting in the scenario described in Fig 8.8.

In Fig. 8.8, it can be seen that all the VMs in the system are connected to the

OVS bridge through virtual interface (VIF) and each network interface has attached

to one switch port. It can be found that the number of source IP addresses is more

than current active VMs, which means the IP spoofing attack is performed. This is

based on the assumption that each port can be only connected with one VIF with a

single IP address. Attack zombie host 1 inserts 4 flow entries in the flow table and it

is sending 4 kinds of traffic to victim VM with forged source IP addresses. Zombie

105

Figure 8.9: Screenshot of ASTM in DDoS Attack Scenario

machine 5 and 9 also apply IP Spoofing technique to challenge the traceback of zombie

machines. In this situation, it can not track the zombie machines based on IP address

because they are spoofed and changed intentionally. However, due to the assumption

that OpenFlow port can not be forged, from the flow table of OVS 1, it can be seen

that the source IP address {10.0.1.2, 10.0.1.3, 10.0.1.4, 10.0.1.5} come from the same

ingress port and this ingress port is connected to only one active VM. So when users

traceback the zombie machines, users only call the function attack source traceback

(victim ip,victim ovs,ip proto, port number) in CloudArmour. I set the victim ip as

10.0.2.6 and the detected ip proto as ICMP (I leave the

port number field blank because ICMP does not have port number), and then set the

victim ovs as the dpid of the OVS that victim attaches. This function returns all the

ports of zombie machines.

Fig. 8.9 is the screenshot of the ASTM. it can be seen that the victim IP address

is 10.0.2.6 and attack traffic type is ICMP. It also reports the number of current

active IP addresses, i.e., 23, and the number of active OVS ports, i.e., 5, and then it

tracebacks all the ports of suspect zombie machines in each OVS. From the scrrenshot,

ports 1,2,3,4,5 on OVS1 and ports 2,3,4,5 on OVS2 are determined as the ports that

the zombie machines are connected.

106

CloudAmoure Mitigation Executor

In this section, I evaluate the performance of OVS-based mitigation compared to

the traditional IPS mitigation that is implemented based on the Iptable and Snort. I

setup our test environment based on Fig.8.8. OpenFlow-based solution and IPS-based

solution are deployed separately in two different experiment. Zombie machines are

located at different servers and it can be assumed that the DDoS behavior has been

detected previously. In the OpenFlow-based mitigation, Open vSwitch is planted in

each physical servers and corresponding prevention rules are inserted to the flow table

to tackle the DDoS malicious traffic and protect the normal traffic delivery. In the

IPS solution, an IPS device, e.g. Snort agent is installed in each physical server and it

is configured to drop malicious overwhelming traffic. Among all mitigation options,

I choose drop action as the countermeasure approach to conduct the comparison

evaluation. In this scenario, all the zombie machines are performing DDoS flooding

attack and sending normal traffic at the same time. I evaluate the success rate of

processing normal traffic to measure the mitigation capability of different approach

when they are both under significant stress.

The evaluation result is shown in Fig. 8.10. All the packets are 100% processed

by Open vSwitch even the attack rate reaches to 350,000 packets per second. This

is because Open vSwitch can block all the already known malicious packets before

they are forwarded. However, traditional IPS mitigation can not fully prevent the

interruption of flooding traffic due to the mechanism of Iptables and Snort, traffic

packets are always congested into Iptables Queue. The capability of Snort is not

enough to handle all the traffic when the attack rate higher than 17,550 packets per

seconds. In OpenFlow case, the detection kernel is decoupled from mitigation module,

the mitigation is performed in the data plane of the OVS in line-rate, which guarantees

107

25
00

50
00

75
00

10
00
0

12
50
0

15
00
0

17
50
0

20
00
0

25
00
0

30
00
0

35
00
0

40
00
0

45
00
0

50
00
0

55
00
0

60
00
0

65
00
0

70
00
0

75
00
0

80
00
0

85
00
0

90
00
0

95
00
0

10
00
00

12
50
00

35
00
00

Attack Rate(packets per second)

0

10

20

30

40

50

60

70

80

90

100

110

120

P
a
ck

e
ts
 P
ro
ce

ss
in
g
 R
a
te
 (
%
)

OpenFlow-based Mitigation
Traditional IPS

Figure 8.10: Comparison Evaluation between OpenFlow-based and Traditional Mit-
igation

the packet processing still can work properly even system is under overwhelming

flooding attack.

Fig. 8.11 shows the performance of various mitigation options in terms of the

CPU utilization. Packet generator [51] is used to generate the packets mitigated by

MEM. In all mitigation approaches, TR is implemented by using destination IP &

MAC rewriting; while TR with spoofing reply is implemented by rewriting not only

destination IP & MAC address but also source IP & MAC of victims. Thus, the

attacking traffic can be redirected to a security appliance that is able to spoof the

attacker by replying the packet with victims’ IP & MAC address as source address.

108

1 1000 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 30000

Attack Rate(packets/second)

0

10

20

30

40

50

60

70

C
P
U
 U
ti
li
za
ti
o
n
(%

)

CPU Utilization Performance of Major NRs
Drop
TR
TR with Spoofing
QA

Figure 8.11: Major Mitigation Options Evaluation

TR with spoofing feature consumes a little more resources than the pure TR since

OVS modifies more packet fields to enable the spoofing feature. The default NR, i.e.,

drop packets, consumes less system resource because the OVS does not modify the

matching flow and just simply drop them (output to a non-existing virtual port in

POX controller implementation). In the QA scenario, it has the best performance

among all mitigations because the rate limiting action is performed based on OVS

native mechanism, which means excess packets will be discarded and OVS does not

have to inspect and match the packet with all kinds of fields. Since the mitigation is

same as the NR I discussed in section 7.3, thus the evaluation result of the mitigation

is also the same as the NR evaluation shown in Fig. 7.8.

109

Overall Performance Evaluation

The performance of our implemented DDoS defensive solution is showed in Fig. 8.12.

X axis represent the time after starting the experiment and the Y axis represent

the CUSUM statistics value yt, which could be considered as the score of current

traffic. The blue line shows the curve of CUSUM statistics score during the test

and the red line shows the threshold which is computed based on the method in

[19]. From the results, it can be seen that the detection engine will not generate

alert for the normal traffic even there are some busty increasing and decreasing traffic

1 5 10 15 20 25 30 35 40 45 50

Time (Minutes)

0

2

4

6

8

10

12

14

16

18

C
U
S
U
M
 S
ta
ti
st
ic
s
(y
t)

yt
Threshold N

Figure 8.12: Comprehensive DDoS Defensive Solution Performance Evaluation

110

generated by Seagull. However, when performing DDoS attack at the 26th minutes,

our detection engine swiftly detects the anomaly ingress traffic volume and trigger

the ASTM and MEM for further investigation and mitigation. At the 28th minutes,

CUSUM statistics score goes down under the threshold, which the DDoS attack has

been successfully mitigated. Since the detection resolution is set to 60 seconds, 2

minutes processing time proves the feasibility and efficiency of the CloudArmour

framework on constructing comprehensive defensive solution in virtual networking

environment.

8.5 CloudArmour APIs

Table. 8.1 illustrates all Python-based APIs for TSAM modules. Table. 8.2 illus-

trates all Python-based APIs for service modules including detection engine, ASTM,

and MEM.

111

Table 8.1: TSAM API Summarization
Function Parameters Explanation

get active switch return all active connections

get active port dpid return all active ports of specified OpenFlow switch

get port volume dpid, port, start time,

end time, ingress

get history port traffic volume from start time to

end time, time format shoud be python standard time

format, ingress value is true by default and set it to

false to watch the egress traffic volume of the port

monitor port volume dpid, port, start time,

time period, recurring, ingress

monitor port ingress or egress traffic volume from

start time every time period seconds the method mon-

itor ingress traffic by default, when ingress=false, it

will monitor the egress traffic volume

monitor volume match, start time,

time period, recurring

monitor traffic volume from start time every

time period time, user needs to set the attribute

of match to define the flow to be monitored and the

function will return real time data set

get volume match, start time, end time,

time period, ingress

return the history traffic volume information for the

matched flow from start time to end time, by default

ingress value is true and set it to false to monitor the

egress traffic volume

flow table expander in port, out port, ether-

net layer, ip layer, trans-

port layer

expand the raw flow table rules to detail flow rules

automatically, set the ethernet layer, ip layer, trans-

port layer parameter to false to disable the expand for

corresponding layer

get packet match,controller port send all matched packets to controller

traceback IP destination IP, traffic type this function return all the source ip addresses who are

sending specific traffic type to destination ip

customized monitor match, start time,

time period, recurring

set up a monitor, match flow and start time, return

the match flows information every time period

check customized counter match, start time, counter check if the number of matched packets exceed the

counter value

get raw data dpid, start time, end tim get raw traffic statistics information of selected switch

from start time to end time. It returns a python dic-

tionary with dpid and record time as the key

112

Table 8.2: CloudArmour Application Module API Summarization
Function Parameters Explanation

ids connector match, detection engine ip get the matched packet from the OVS and forward it

to the third party detection engine

traffic volume monitor ovs, port, threshold set up a monitor to watch the system traffic volume,

when the traffic exceed the threshold, return a notifi-

cation

customized counter match, start time stamp,

counter

set up a counter for matched flow, when the number

of matched flows reach the threshold, it will return a

notification

attack source traceback victim ip, victim ovs, ip proto,

port number

return the list of port and the attached OVS at-

tack traffic type is needed to traceback the source at-

tackers from victim ovs

traffic drop match drop all the traffic based on the match fields

traffic redirect match, destination ip redirect all the matched traffic to new destination ip

traffic redirect spoof match, destination ip, spoof ip redirect all the matched traffic to new destination ip

and change the source ip to spoof ip

traffic qos dpid, port, qos rate, ingress,

egress

set the port of openvswitch ingress and egress traffic

rate ingress and egress traffic rate is limited by default,

set ingress or egress to false to disable the rate limit

113

Chapter 9

CONCLUSION

9.1 MobiCloud: a Geo-distributed Mobile Cloud Computing Platform

The proposed MobiCloud system is able to provide resources in terms of comput-

ing, storage, and networking that greatly enhances the capability of mobile devices.

It combines network-based storage, Xen virtualization, and OpenFlow based network

management solutions into one smart system, and that has not been seen previously

to our best knowledge. Also, an example of system experience is given to better state

the capabilities of MobiCloud. Finally, the performance evaluation of the MobiCloud

shows expected results.

9.2 Constructing Virtual Networks in a Geo-Distributed Programmable Layer-2

Networking Environment (G-PLaNE)

After the MobiCloud system is design and implemented, I introduce a geo-distributed

cloud resource provisioning system called G-PLaNE that is discussed in terms of sys-

tem components, network architectures, and etc. Virtual network creation, as a major

service provided by G-PLaNE, is explained from two perspectives, intra-domain vir-

tual network and an inter-domain virtual network. A concrete example, SeRViTR,

is given to illustrate how virtual network construction can help in the current re-

search. G-PLaNE posts an efficient and flexible way to construct a virtual network

in a geo-distributed cloud environment to enable more research capabilities.

114

9.3 Mobile Cloud User-Centric Model

After both MobiCloud and G-PLaNE are established, I investigate the service

model of such MCC system. I first explore the motivation of emerging MCC and

summarize three current MCC service models. Then, the transformation from tra-

ditional Internet cloud to mobile cloud is discussed by comprehensively defining the

MCC, which is not merely a combination of cloud computing and mobile computing.

Representative works are also summarized according to service models I classified. Fi-

nally, the future MCC design principle as well as a conceptual Human-centric MaaR

approach including service model and a easy to understand example are proposed.

9.4 SDNIPS: Enabling a SDN-Based Intrusion Prevention System in Clouds

I propose an SDN-based Intrusion Prevention System called SDNIPS in the cloud

virtual networking environment. It inherits the intrusion detection capability from

Snort and flexible network reconfiguration from SDN. SDNIPS is firstly compared

with traditional IPS from principle perspective and the real world evaluation. NR

actions are also designed and developed based on OVS and POX controller. The

evaluation such as NIDS performance, performance comparison between the proposed

SDNIPS and Iptables/Snort IPS, validates the superior of proposed solution. I also

evaluate the representative NR actions to prove its feasibility and efficiency. Finally,

NSaaS are proposed to enable the security application as a service with elasticity and

scalability considered.

115

9.5 CloudArmour: Constructing a SDN-based Defensive System in the Virtual

Networking Environment

CloudArmour is a new SDN-based module composition framework to comprehen-

sively construct security defensive solutions in virtual networking environment. It

is to simply deliver the SDN-based security solution by providing efficient service

modules. The proposed TSAM enables users access the customized traffic statistics

information and real traffic sequence so that traffic monitor and detection capability

can be delivered. Several service modules are design and implemented to provide

detection, attack sources traceback, and mitigation services. A DDoS defensive sys-

tem is given as an example to illustrate how to construct the comprehensive security

solution based on the CloudArmour. The implementation and evaluation show the

feasibility and functionality of the proposed system.

9.6 Limitations and Future Works

The limitations and corresponding future works of the proposed research are listed

as follows:

• OAuth 2.0 Integration The OAuth 2.0 [62] authorization protocol enables

a third-party application to obtain limited access to an HTTP service, either

on behalf of a resource owner by orchestrating an approval interaction between

the resource owner and the HTTP service, or by allowing the third-party ap-

plication to obtain access on its own behalf. It helps manage MobiCloud users

accessing both inside and outside services. Besides that, OAuth could work to-

gether with an existing Kerberos based ID management system, such as Active

Directory, which provides more flexible and scalable capability for MobiCloud

ID management.

116

• Dynamic VM Migration. Based on a mobile users’ geographic location in

MobiCloud and G-PLaNE system, its VM can be migrated from its home cluster

to a guest cluster for better performance. The VM migrations are operated using

the inter-cluster networking system. In this way, VMs’ migrations are protected

during the migration procedure, in which the VMs will not be exposed to the

public domain.

• Detection Synchronization. Current SDNIPS does not provide the mul-

tiple detection engines synchronization capability, which means that multiple

detection engines are able to detect one attack behavior. Current IDS, even

multiple IDS distributed at different cluster, can not provide the collaborative

IDS capability.

• RESTful API. Current CloudArmour implementation is based on the POX

in python. All implemented APIs are python-based. To increase the avail-

ability of the proposed system, it is expected to provide the RESTful API so

that all languages supporting the normal HTTP method are compatible with

CloudArmour system.

117

REFERENCES

[1] Back Track Linux. http://www.backtrack-linux.org.

[2] hping3. http://linux.die.net/man/8/hping3.

[3] KVM. http://www.linux-kvm.org.

[4] Mausezahn User’s Guide. http://www.perihel.at/sec/mz/mzguide.htmg.

[5] SourceFire Inc. http://www.snort.org.

[6] Suricata Inc. http://suricata-ids.org.

[7] inMon Flowtrend. http://www.inmon.com/products/sFlowTrend.php.

[8] ManageEngine. http://www.manageengine.com/.

[9] ProtoGENI . http://www.protogeni.net/trac/protogeni.

[10] The Global Environment for Network Innovations (GENI). http://groups.
geni.net.

[11] Vyatta. http://www.vyatta.com/.

[12] Zscaler Inc. http://www.zscaler.com/.

[13] S. Akim, A. Jones, X. Yu, J. Busch, G. Fyffe, P. Graham, and P. Debevec. A
cell phone based platform for facial performance capture. In ACM SIGGRAPH
2012 Posters, page 35. ACM, 2012.

[14] CSA Cloud Security Alliance. Top threats to cloud computing v1.0. In White
Paper, 2010.

[15] Amazon Inc. http://http://aws.amazon.com/ec2/.

[16] Anish Arora, Emre Ertin, Rajiv Ramnath, Mikahil Nesterenko, and William
Leal. Kansei: A high-fidelity sensing testbed. In Proceedings of the DETER
Community Workshop on Cyber-Security and Test, 10:35–47, 2006.

[17] L. Aymerich-Franch, C. Karutz, and J.N. Bailenson. Effects of facial and voice
similarity on presence in a public speaking virtual environment.

[18] Jeffrey R. Ballard, Ian Rae, and Aditya Akella. Extensible and Scalable Network
Monitoring Using OpenSAFE. In INM/WREN, 2010.

[19] Michle Basseville and Igor V. Nikiforov. Detection of abrupt changes: Theory
and application, 1993.

[20] Andrey Belenky and Nirwan Ansari. Ip traceback with deterministic packet
marking. IEEE Communications Letters, 7(4):162–164, 2003.

118

[21] Terry Benzel, Robert Braden, Dongho Kim, and Clifford Neuman. Design, de-
ployment, and use of the deter testbed. In In Proceedings of the DETER Com-
munity Workshop on Cyber-Security and Test, August 2007.

[22] M. Billinghurst and H. Kato. Collaborative augmented reality. Communications
of the ACM, 45(7):64–70, 2002.

[23] R. Braga, E. Mota, and A. Passito. Lightweight ddos flooding attack detec-
tion using nox/openflow. In Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, pages 408–415, Oct 2010.

[24] E. Brodsky and B.S. Darkhovsky. Nonparametric Methods in Change Point
Problems. Mathematics and Its Applications. Springer, 1993.

[25] Roy Campbell, Indranil Gupta, Mike Heath, Steve Ko, Michael Kozuch, Marcel
Kunze, Thomas Kwan, Kevin Lai, Hing Yan Lee, Martha Lyons, Dejan Milo-
jicic, David OHallaron, and Yeng Chai Soh. Open cirrus: Cloud computing
testbed: Federated data centers for open source systems and services research.
In Proceedings of the USENIX Hotcloud, June 2009.

[26] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson. Seattle: A
platform for educational cloud computing. In The 40th Technical Symposium
of the ACM Special Interest Group for Computer Science Education (SIGCSE),
2009.

[27] Yanghee Choi. Implementation of content-oriented networking architecture
(cona): A focus on DDoS countermeasure.

[28] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: Elastic
execution between mobile device and cloud. In Proceedings of the sixth conference
on Computer systems, pages 301–314. ACM, 2011.

[29] Chun-Jen Chung, Pankaj Khatkar, Tianyi Xing, Jeongkeun Lee, and Dijiang
Huang. Nice: Network intrusion detection and countermeasure selection in vir-
tual network systems. In IEEE Transactions on Dependable and Secure Com-
puting (TDSC), Special Issue on Cloud Computing Assessment, 2013.

[30] Citrix System Inc. http://www.citrix.com/.

[31] Adrian Covert. Google Drive, iCloud, Dropbox and More Compared: Whats the
Best Cloud Option? In Technical Review, 2012.

[32] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl. Maui: Making smartphones last longer with code offload. In MobiSys,
2010.

[33] Christos Douligeris and Aikaterini Mitrokotsa. DDoS attacks and defense mech-
anisms: classification and state-of-the-art. Computer Networks, 44(5):643 – 666,
2004.

119

[34] Rasool Fakoor, Mayank Raj, Azade Nazi, Mario Di Francesco, and Sajal K. Das.
An Integrated Cloud-based Framework for Mobile Phone Sensing. In Proceedings
of the ACM SIGCOMM MCC workshop, 2012.

[35] Jrme Franois, Issam Aib, and Raouf Boutaba. Firecol: a collaborative protection
network for the detection of flooding ddos attacks. IEEE/ACM Trans. Netw.,
20(6):1828–1841, 2012.

[36] Michael T. Goodrich. Probabilistic packet marking for large-scale ip traceback.
IEEE/ACM Trans. Netw., 16(1):15–24, February 2008.

[37] Google Inc. http://www.google.com/wallet.

[38] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenkes. Nox: Towards an operating system for networks. In ACM SIG-
COMM Computer Communication Review, July 2008.

[39] HP Opencall Software. http://gull.sourceforge.net/.

[40] D. Huang, S. Ata, and D Medhi. Establishing secure virtual trust routing and
provisioning domains for future internet. In Proc. of IEEE Globecom 2010 Con-
ference (Next Generation Networking Symposium), 2010.

[41] Dijiang Huang, Tianyi Xing, and Huijun Wu. Mobile cloud computing service
models: A user-centric approach. In IEEE networks, 2013.

[42] Network Instruments. Extending network visibility by leveraging NetFlow and
sFlow technologies, February 2011. White Paper.

[43] David Irwin, Navin Sharma, Prashant Shenoy, and Michael Zink. Towards a
virtualized sensing environment. In Conference on Testbeds and Research In-
frastructures for the Development of Networks and Communities (TridentCom),
2010.

[44] Jafar Haadi Jafarian, Ehab AI-Shaer, and Qi Duan. Openflow random host
mutation: Transparent moving target defense using software defined networking.
In HotSDN, 2012.

[45] Rishi Kappor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. Chronos: Predictable low latency for data center applications. In SOCC,
2012.

[46] Kevin Kell. Ec2 security revisited. In Online Blog, 2013.

[47] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
Sep 1990.

[48] Boris Koldehofe, Frank Durr, Muhammad Adnan Tariq, and Kurt Rothermel.
The power of software-defined networking: Line-rate content-based routing using
openflow. In MW4NG, 2011.

120

[49] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
ThinkAir: Dynamic resource alloation and parallel execution in cloud for mobile
code offloading. In Proceedings of The 31st Annual IEEE International Confer-
ence on Computer Communications (IEEE INFOCOM), 2012.

[50] Dijiang Huang Le Xu, Vijayakrishnan Nagarajan and Wei-Tek Tsai. Secure Web
Referral Services for Mobile Cloud Computing. In IEEE International Sym-
posium on Mobile Cloud, Computing, and Service Engineering (IEEE Mobile-
Cloud), 2013.

[51] Linux Foundation. http://www.linuxfoundation.org/collaborate/
workgroups/networking/pktgen.

[52] Xuan Liu, Akira Wada, Tianyi Xing, Parikshit Juluri, Yasuhiro Sato, Shingo Ata,
Dijiang Huang, and Deep Medhi. SeRViTR: A framework for trust and policy
management for a secure Internet and its proof-of-concept implementation. In
Proc. of 4th IEEE/IFIP International Workshop on Management of the Future
Internet (ManFI’2012), Maui, Hawaii, April 2012.

[53] Mark Walshy. Gartner: Mobile to outpace desktop web by 2013, January.

[54] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling
innovation in campus networks. In ACM SIGCOMM Computer Communication
Review, April 2008.

[55] Mininet. http://mininet.org/.

[56] Winston Morton. Intrusion prevention straitegies for cloud computing. 2011.

[57] Murphy McCauley. http://www.noxrepo.org/pox/.

[58] Marcelo Ribeiro Nascimento, Christian Esteve Rothenberg, Marcos Rogeris Sal-
vador, and Mauricio Ferreira Magalhaes. Quagflow: Partnering quagga with
openflow. In SIGCOMM Poster, 2010.

[59] NetPerf. http://www.netperf.org.

[60] Dirk Neumann, Christian Bodenstein, Omer F. Rana, and Ruby Krishnaswamy.
Stacee:enhancing storage clouds using edge devices. In Proceedings of the 1st
ACM/IEEE workshop on Autonomic computing in economics, 2010.

[61] Nike Inc. http://www.nike.com.

[62] OAuth Community. http://oauth.net.

[63] Jon Oberheide, Evan Cooke, and Farnam Jahanian. CloudAV: N-Version An-
tivirus in the Network Cloud. In Proceedings of the 17th USENIX Security Sym-
posium, San Jose, CA, July 2008.

121

[64] OpenFlow. Openflow switch specification 1.4. In Open Networking Fundation,
2013.

[65] OSGi Alliance. http://www.osgi.org/.

[66] P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfieldh. Xen and the art of virtualization. In Proceedings of
the nineteenth ACM symposium on Operating systems principles (SOSP), 2003.

[67] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Proactively de-
tecting distributed denial of service attacks using source ip address monitoring.
In In Proceedings of the Third International IFIP-TC6 Networking Conference
(Networking 2004, pages 771–782. Springer, 2004.

[68] Larry Peterson, Andy Bavier, Marc Fiuczynski, and Steve Muir. Experiences
building planetlab. In Proceedings of the Seventh Symposium on Operating Sys-
tem Design and Implementation (OSDI), November 2006.

[69] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the orbit radio grid testbed for
evaluation of next-generation wireless network protocols. In Proceedings of the
IEEE Wireless Communications and Networking Conference (WCNC), 2005.

[70] Seungwon Shin and Guofei Gu. Cloudwatcher: Network security monitoring us-
ing openflow in dynamic cloud networks (or: How to provide security monitoring
as a service in clouds?). In Proceedings of the 2012 20th IEEE International Con-
ference on Network Protocols (ICNP), ICNP ’12, pages 1–6, Washington, DC,
USA, 2012. IEEE Computer Society.

[71] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-
guard: Scalable and vigilant switch flow management in software-defined net-
works. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 413–424, 2013.

[72] G. Singh, J.E. Swan, J.A. Jones, and S.R. Ellis. Depth judgments by reaching
and matching in near-field augmented reality. In Virtual Reality Workshops
(VR), 2012 IEEE, pages 165–166. IEEE, 2012.

[73] Dawn Xiaoding Song and A. Perrig. Advanced and authenticated marking
schemes for ip traceback. In INFOCOM 2001. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 878–886 vol.2, 2001.

[74] Hamed Soroush, Nilanjan Banerjee, Aruna Balasubramanian, Mark D. Corner,
Brian Neil Levine, and Brian Lynn. Dome: A diverse outdoor mobile testbed.
In Workshop on Hot Topics of Planet-Scale Mobility Measurements (HotPlanet),
June 2009.

[75] Lincoln D. Stein and John N. Stewart. In The World Wide Web Security FAQ,
Version 3.1.2, Feb 2002.

122

[76] J.P.G. Sterbenz, D. Medhi, B. Ramamurthy, C. Scoglio, D. Hutchison, B. Plat-
tner, T. Anjali, A. Scott, C. Buffington, G.E. Monaco, D. Gruenbacher,
R. McMullen, J.P. Rohrer, J. Sherrell, P. Angu, R. Cherukuri, H. Qian, and
N. Tare. The Great Plains Environment for Network Innovation (GpENI): A
programmable testbed for future Internet architecture research. In Proc. of 6th
International Conference on Testbeds and Research Infrastructures for the De-
velopment of Networks & Communities (TridentCom), pages 428–441, Berlin,
Germany, May 2010.

[77] Patrick Stued, Iqbal Mohomed, and Doug Terry. Wherestore: location-based
data storage for mobile devices interacting with the cloud. In MCS ’10 Proceed-
ings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, 2010.

[78] Ming-Yang Su, Gwo-Jong Yu, and Chun-Yuen Lin. A real-time network intru-
sion detection system for large-scale attacks based on an incremental mining
approach. In Computers & Security, pages 301–309, Feb 2009.

[79] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer
Rexford. Network architecture for joint failure recovery and traffic engineering.
In SIGMETRICS, 2011.

[80] Niels LM van Adrichem, Christian Doerr, and Fernando A Kuipers. Opennet-
mon: Network monitoring in openflow software-defined networks.

[81] Haining Wang, Danlu Zhang, and K.G. Shin. Detecting syn flooding attacks. In
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1530–1539,
June 2002.

[82] Huijun Wu and Dijiang Huang. Personal on-demand execution environment for
mobile cloud computing. In http: // poem. mobicloud. asu. edu , 2013.

[83] Tianyi Xing, Dijiang Huang, Deep Medhi, and Shingo Ata. Mobicloud: a geo-
distributed mobile cloud computing platform. In Proceedings of 8th International
Conference on Network and Service Management, 2012.

[84] Tianyi Xing, Dijiang Huang, Le Xu, Chun-Jen Chung, and Pankaj Khatkar.
Snortflow: A openflow-based system in cloud environment. In GENI Research
and Educational Experiment Workshop, GREE, 2013.

[85] Tianyi Xing, Xuan Liu, Chun jen Chung, Akira Wada, Shingo Ata, Dijiang
Huang, and Deep Medhi. Constructing virtual networking environment in a geo-
distributed programmable layer-2 networking environment (g-plane. In in IEEE
5th International Workshop on the Network of the Future (FutureNet-V, 2012.

[86] Tianyi Xing, Zhengyang Xiong, Dijiang Huang, and Deep Medhi. Sdnips: En-
abling software-defined networking based intrusion prevention system in clouds.
In Proceedings of 8th International Conference on Network and Service Manage-
ment, 2014.

123

[87] A. Yaar, A. Perrig, and D. Song. Stackpi: New packet marking and filtering
mechanisms for ddos and ip spoofing defense. Selected Areas in Communications,
IEEE Journal on, 24(10):1853–1863, Oct 2006.

[88] Guanhua Yan, Ritchie Lee, Alex Kent, and David Wolpert. Towards a bayesian
network game framework for evaluating DDoS attacks and defense. In Proceed-
ings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 553–566, New York, NY, USA, 2012. ACM.

[89] S. Yu, Y. Tian, S. Guo, and D. Wu. Can we beat DDoS attacks in clouds?, 2013.

[90] Shui Yu, Wanlei Zhou, Robin Doss, and Weijia Jia. Traceback of ddos attacks
using entropy variations. Parallel and Distributed Systems, IEEE Transactions
on, 22(3):412–425, 2011.

124

