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ABSTRACT  

   

 In the sport of competitive water skiing, the skill of a human boat driver can affect 

athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it 

reduces the fairness and credibility of the sport overall. In response to the stated problem, 

this thesis proposes a vision-based real-time control system designed specifically for 

tournament waterski boats. The challenges addressed in this thesis include: one, the 

segmentation of floating objects in frame sequences captured by a moving camera, two, 

the identification of segmented objects which fit a predefined model, and three, the 

accurate and fast estimation of camera position and orientation from coplanar point 

correspondences. This thesis discusses current ideas and proposes new methods for the 

three challenges mentioned. In the end, a working prototype is produced. 
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1 INTRODUCTION 

 Vision continues to be an instrumental sense in many forms of robotic 

automation. In the field of autonomous vehicles, researchers have made an ongoing effort 

to integrate optical sensors into their autonomous machines. While researchers often 

utilize other sensors like radar, LIDAR, GPS, etc. [1], there is still a large effort from the 

community to use camera based systems due to their low cost. In this thesis, the design of 

a semi-autonomous surface vehicle, constructed to operate under a specific set of 

constraints, is presented. The design consists of a segmentation, identification, and pose 

estimation module. The chapters of the thesis discuss each component. 

 The system presented is developed in response to unresolved issues in the sport of 

slalom waterskiing. To understand the issues, one must first develop a basic 

understanding of the sport itself. With basic knowledge of the sport, one can identify how 

certain human influences, specifically human drivers, can cause issues in terms of 

competition and training. Once a basic understanding of skiing is developed, it will be 

easy to understand the need for an automated system within the sport. The following 

sections introduce the sport, discuss the importance of a boat driver in slalom 

competition, and provide a high level outline of system design. 

1.1 Slalom Waterskiing 

 The International Water Ski Federation (IWSF) is the governing body of 

competitive water skiing throughout the world. The IWSF specifically defines the 

objective of the slalom event as “The contestant shall follow the towboat through the 

entrance gate of the slalom course, pass around the outside of any or all six buoys and 

proceed through the far end gate” [2]. Figure1.1 illustrates a slalom course. The red 
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dotted line shows the centerline of the slalom course and expected path of the towboat. 

The bold blue line shows the expected path of a skier. 

 

Figure  1.1: Boat and Skier Paths. 

 When a skier successfully navigates the slalom course he or she has completed a 

pass. If a skier completes a pass, then the skier challenges himself or herself further by: 

(1) increasing the boat speed by a predefined amount, or (2) shortening the rope by some 

predetermined amount. A skier will continue to challenge himself or herself with the 

previous two options until her or she finds the limit of his or her ability. A skier will 
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normally run anywhere from four to eight passes before tiring. A collection of passes is 

referred to as a set. 

1.2 Importance of the Boat Driver 

 The current method for boat steering control is by human driver. The ability to 

properly drive a boat, in terms of slalom driving, is a skill itself. If one wants to drive a 

sanctioned waterski tournament, then it is usually required that he or she have a drivers 

rating. Ratings are acquired by successfully completing driving clinics. Actual invitations 

to drive at tournaments are only given to those who have both the required rating and a 

positive reputation. The types of people who receive invitations to drive at tournaments 

are usually those who have been involved with the sport for anywhere from years to 

decades. Despite the restrictions set by the IWSF and efforts of tournament coordinators 

to ensure high quality veteran drivers, the drivers are still human. A human driver may 

suffer from distractions, boredom, and fatigue, which may inhibit performance. When a 

boat driver's performance suffers, a skier's performance may also suffer due to both 

physical and psychological issues associated with low quality boat driving. 

1.2.1 Physical Effect of the Boat Driver 

 As defined by the IWSF rulebook, the distance from the centerline of the slalom 

course to the center of a turn buoy is 11.5 meters. In some situations, an experienced 

skier may attempt to complete passes where the rope length is near or even less than 11.5 

meters. In these types of situations, it is essential that the boat be as close to the slalom 

course centerline as possible. If the boat path deviates from the center line of the slalom 

course, then the skier may have an unfair advantage or disadvantage.  
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 Along the lines of boat path deviation, the IWSF has a specification which 

outlines the maximum allowable deviation of a boat path when attempting to set a world 

record. When a skier completes a pass that may constitute a world record, the boat path of 

all passes in the set are reviewed. A record is only accepted if all boat path deviations in 

all passes of the set fall within the allowable tolerances set by the IWSF. In some cases, 

records are rejected due to an out of tolerance boat path. At this time, supervised software 

is the current method of boat path examination. The software works with video captured 

from cameras located on the centerline of the slalom course outside of the course itself. 

Figure 1.2 illustrates camera location for boat path validation. 

 

Figure  1.2: Camera Setup for Record Validation. 

1.2.2 Psychological Effect of the Boat Driver 

 As with any sport, becoming a talented skier involves a fitness element and a skill 

element. The skill element is gained through repetition, in this case, completing slalom 

passes. As a skiers total water time increases, his or her awareness of minute changes also 

increases. Changes of this sort include differences in the composition of the lake water, 

ski settings, boat wakes, boat drivers, etc. As with any sport, when the conditions are 

familiar, an athlete can expect consistent performance. When conditions vary, an athlete's 

performance may suffer. 
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 When a boat driver with a bad reputation, or no reputation at all, is driving a skier, 

the skier may suffer psychological issues which keep he or she from focusing on the task 

at hand. This effect may be true regardless of the drivers actual ability or performance. 

For example, a skier may perform well behind a highly reputable driver who is actually 

driving bad, and perform poorly behind a low reputation driver who is driving perfectly. 

The effect is entirely psychological. 

1.3 Problem Statement 

 The issues surrounding tournament slalom driving all relate to the errors made by 

human drivers. By replacing human drivers with some type of automated system, all 

previously discussed issues may be circumvented. With an automated system, any person 

would be a capable driver, and any skier would be confident in the ability of any machine 

assisted human. This thesis aims at providing a basic design for the suggested system. 

1.4 Overall Design 

 The overall goal of current and future research is to create a machine that resides 

inside the boat and can autonomously steer the boat when it is passing through the slalom 

course. The decision to place all components of the system inside the boat is made in 

order to avoid issues that come with using external components such as the lack of 

infrastructure at lakes, the chance of vandalism to shore installed components, and the 

challenge of wireless communication between external components and components 

residing in the boat. 

1.4.1 Selection of Sensors 

 The IWSF tournament rulebook specifies the allowable error in buoy position for 

each buoy in a slalom course. Since there is an allowable error in buoy placement, it is 
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expected that position data generated from buoys will also be erroneous. Furthermore, it 

is expected that position estimates generated from many buoys will have less error than 

estimates generated from fewer buoys. Due to the need for an accurate estimate, and thus 

the desire for more buoys, it is necessary to examine sensors that either  perceive many 

buoys, or do not rely on slalom course buoys at all. Some sensors are examined in terms 

of cost, resolution, and required processing power. 

 GPS is an example of a sensor that does not rely on slalom course buoys. It is 

inexpensive, robust, and thus a potential sensor for the stated steering problem. Current 

commercial waterski boat speed control systems rely on GPS and accelerometers. The 

control systems have been successful, but the sensors used are not appropriate for the 

stated steering problem. The accuracy of a GPS accelerometer combination does not meet 

the accuracy requirements of the proposed system at this time. 

  In terms of sensors that utilize buoy information, LIDAR, SONAR, and camera 

based systems are examined. LIDAR or SONAR based solutions may offer a means of 

simple and robust tracking for buoys located near the sensor, however, they lack the cost 

effective ability to sense buoys at a distance.  Sensing objects at a distance is an ability 

that camera based systems can achieve. In terms of camera based systems, there are a 

variety of wavelengths that an optical sensor can detect. The most obvious optical 

solution is one which uses an infrared or thermal camera. In this type of solution, a water 

surface appears in captured frames as one temperature, and buoys appear as a separate 

temperature. The identification of floating objects is transformed to a simple task. The 

issue with high resolution IR cameras, however, is the considerable cost. 
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  Cameras which rely on the visual spectrum of EMR avoid the cost issues 

associated with IR cameras. Both monocular and stereo systems seem to be the most 

appropriate sensors for the stated problem, however, stereo systems appear to have issues 

that monocular camera systems avoid. Some difficulties with a stereo setup are: one, 

issues associated with calibrating a stereo rig, two, the requirement for more equipment, 

and three, the extra computation required for stereo processing. With all considerations, a 

monocular system appears to be the best sensor to use. 

 A camera, computer, and a mechanical interface provide all necessary hardware 

for the system and all physical components can reside inside of a boat itself. Figure 1.3 

displays the basic design. The software components driving the first three "Computer" 

modules, segmentation, identification, and pose estimation, are the main topics of this 

thesis. 
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Figure  1.3: A Diagram of the Entire System. 

1.5 Equipment 

 All experiments discussed in the thesis use the same equipment. The boat selected 

for experimentation is a 2006 Correct Craft Ski Nautique. Nautique is an competitive 
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brand in terms of tournament water ski boats. There are many design changes between 

the test vehicle and Nautique's current tournament water ski boat model, however, the 

changes are negligible in terms of the proposed control system. The computer used in all 

experiments is a Dell Vostro 1500. In terms of performance, the machine has 4 GB of 

RAM and an Intel Core 2 Duo CPU running each core at 2.0 GHz. The computer runs 

Ubuntu 12.10 as its OS and all implemented software is heavily dependent on OpenCV 

2.4.8 as well as Boost 1.49.0.1. The selected camera is a Logitech Quickcam Pro 4000. 

The stock lens is replaced with an aftermarket lens whose focal length is 3025 pixels 

when the resolution of the captured frames is set to 320 x 240. The camera is accessed 

through OpenCV with the Linux V4L driver. 
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2 SEGMENTATION 

2.1 Introduction 

2.1.1 General Goal of the Module 

 The system uses a forward mounted camera to capture images of its environment. 

Each image, or frame, may contain regions of pixels representing buoys and regions of 

pixels corresponding to objects other than buoys. The system's first task, and the goal of 

the segmentation module, is to label pixels as representative of either buoys or non-buoy 

objects. Figure 2.1 (a) shows a typical frame captured from the system's camera. Figure 

2.1 (b) displays an example of the segmentation mask the module aims to produce. 

(a) (b) 

Figure  2.1: Segmentation Module Goal.(a) A Typical Frame. (b) The Desired 

Segmentation Mask. In addition to accurately labeling incoming frames, the system must 

also perform the segmentation task in an efficient manner so that real-time constraints 

can be met. 

2.1.2 Significance of the Module 

 The segmentation stage of processing is necessary as modules further in the 

processing pipeline, identification, and pose estimation, depend heavily on the blobs 

generated from the result of the segmentation stage's segmentation masks. Out of the 
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three major modules discussed in this thesis, the segmentation module requires the best 

performance outcome. Any errors made in the segmentation module will only propagate 

through the rest of the processing pipeline. Additionally, the overall frame rate of the 

complete system is determined entirely by the computationally intensive algorithms in 

the segmentation module. 

 To the machine vision community, the problem of segmenting floating objects on 

a aquatic surface is not new [3,4,5,6,7]. The knowledge found in developing solutions for 

the segmentation module furthers the body of knowledge associated with the task of 

segmenting floating objects. Furthermore, if one is to look at the segmentation module's 

goal from a slightly higher level of abstraction, then the problem becomes one of 

identifying and labeling pixel regions that satisfy a certain set of properties, a 

fundamental problem in computer vision. 

2.1.3 Assumptions 

 Creating a generic solution to satisfy the stated goal which operates under any 

circumstance is appealing, however, the time requirements of completing such a task are 

outside the scope of this thesis. For this reason, the major focus of this chapter is finding 

a solution to a constrained version of the presented problem that operates under a 

justifiable set of assumptions. First, any incoming frame is expected to have enough 

perceptual contrast such that a human could perform the segmentation operation. At a 

minimum, a buoy should appear differently than that of the water surface that surrounds 

it. Second, it is assumed that the illumination of all important objects in an incoming 

frame sequence will not change dramatically in a small time period. This is a justifiable 

assumption as ski lakes are generally large bodies of water with no natural or manmade 



 

  12 

light obstructions in the middle of the them. Third, it is assumed that the aquatic surface 

under consideration is relatively calm, i.e. no five foot waves or 60 mph winds. This 

assumption is acceptable as people generally prefer skiing on calm flat water during the 

windless parts of the day. Finally, it is expected that the position and color of the buoys 

satisfies the specification set forth in the IWSF tournament rule book [2]. 

2.1.4 Difficulty 

 The segmentation problem presented has two major difficulties associated with it. 

First, any usable solution is required to function on power-up regardless of current or 

previous lighting conditions. In other words, the system can only assume that the current 

lighting conditions fall within the range of conditions specified by the assumptions. 

Furthermore, the module must assume that each pass through the slalom course will 

present a lighting condition that is independent of all other passes. The system is not 

continuously running and therefore cannot rely on the commonly made assumption of 

slow illumination changes between passes consecutive runs. Second, any solution used 

needs to appropriately deal with shadows and reflections of shoreline objects like trees, 

houses, and lights. 

2.2 Review of Related Literature 

 The problem of accurately segmenting a known grid of buoys for use in a real-

time control system has not been directly dealt with in previous literature, however, work 

has been done on challenges similar in nature. Of the analogous problems, two tasks of 

similarity are the landing of a UAV [8,9,10,11,12,13] and the detection of floating mines, 

marine buoys, or floating objects on a sea surface [3,4,5]. Beyond methods developed 

specifically for these problems, the problem of visual lane marker detection shares many 
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similarities to the presented problem. In lane detection tasks [1], the algorithms usually 

try to segment regions of the road that follow certain appearance properties and fit a 

specified model. The remainder of this section presents a review of previously proposed 

solutions. 

2.2.1 UAV Landing 

The problem of landing a UAV is similar to the stated steering problem. Usually, the 

UAV must recognize either a runway or designated landing area and safely land on it. 

Many proposed systems use a multitude of sensors, yet some systems use visual sensors 

exclusively. Some vision-based systems are examined due to the considerable 

relationship between the UAV landing problem and the stated problem. 

 One attempt at UAV landing [8] is made by using a forward mounted camera and 

attempting to land the aircraft on a large dome shaped airbag. The authors decide that 

position estimates generated by a GPS are not accurate enough to guide an aircraft onto 

the airbag and turn their attention to visual processing. Since the landing zone is a large 

red dome, the authors process the images by first labeling pixels whose red component is 

larger than their green and blue components. This yields an object set containing both the 

landing airbag and other red objects. The moments of the objects are analyzed in order to 

discriminate between the dome shaped airbag and other red objects. Once the airbag is 

identified, control is achieved by applying control commands that orient the aircraft such 

that the targeted airbag is in the center of incoming frames. Another attempt at UAV 

landing is made in [9]. In this work, the authors attempt to land a helicopter type UAV on 

a planar landing pad. They use a specially designed pattern on the landing pad to ease the 
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complexity of visual computation. Both of these systems are successful vision-based 

control systems, however, they both require the addition of specially designed markers.  

 Other than systems that rely on specially made markers, some systems attempt to 

visually detect and track runways with no extra markers. These types of systems either 

use a reference image[10,11] or detect runway edges [12,13]. Since The proposed system 

is intended to work with any slalom course, the proposed image registration methods may 

not be useful. Furthermore, a slalom course consists of a series of buoys and does not 

contain the edges that [12,13] require. 

2.2.2 Floating Mine Detection 

 A problem that is most similar to the goals of the segmentation module is the 

detection of floating mines. There is a body of research associated with this subject and 

some of the methods presented in literature are presented in the following section. 

2.2.2.1 Block-Level Segmentation 

 On the problem of floating mine detection, the authors of [5] approach the task 

under the assumption that the appearance of a floating mine will differ from the 

appearance of its surrounding area. Because they do not know the exact size of the mine 

they are trying to detect, they process each frame on multiple scales by down-sampling 

incoming frames by a factor of two. Pixel level segmentation at each scale is achieved by 

first dividing their frame and down-sampled frames into 80x80 pixel blocks. Then, after 

block formation, the mean,   , and standard deviation,   ,  of each block,   , is 

calculated. Finally the block level statistics are used to identify contrasting pixels within 

each block. They use 
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Equation 2.1 

to create a binary segmentation mask representing candidate pixels. In the equation 

       is the intensity of the pixel at position (r, c), and        is the candidate mask at 

position (r, c). The user assigned value of    allows the algorithm to select more or less 

candidate pixels. If the value of    is large, fewer pixels are selected from the block. If 

   is small, more pixels are selected.  

 After candidate pixel selection is performed, the authors use a motion 

correspondence algorithm they name "motion projection" as well as spatial-temporal 

smoothening to refine their results. As the motion projection algorithm and spatial-

temporal smoothing require multiple frames as input, they are outside the scope of the 

module's frame-by-frame task and not discussed. Furthermore, the authors do not include 

details on how they fuse results processed at different scales. 

 Overall, the algorithm achieves a high level of accuracy in terms of avoiding false 

negatives at each scale. Two key ideas behind the presented algorithm are first, the use of 

multiple scales in the process of pixel level segmentation, and second, the use of diverse 

features, contrast and motion estimates in their case, to generate more robust results. 

2.2.2.2 Pixel-Level Segmentation 

 Outside of the work in [5] the authors in [3] present an evaluation of pixel-level 

floating object detection methods. They discuss using background subtraction techniques 

such as a running mean [15], running single Gaussian [15,16], Gaussian mixture model 

[17], and Extended Gaussian mixture model [18,19] as the means to classify pixels as 
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either representative of sea surface or floating mine. In addition to testing statistical 

background based methods, the authors also discuss and experiment with the visual 

background extractor algorithm [20,21] and behavior subtraction [22]. Some of the 

algorithms tested in [3] are discussed in this thesis, but only a select few are tested due to 

results in [3,14,23,24] as well as analysis of the algorithms. Some of the methods will be 

discussed in the following sections. 

2.2.2.3 Behavior Subtraction 

 Upon examination of the proposed method in [22] the authors explicitly provide 

frame sequences of aquatic surfaces as a means of demonstrating the strength of the 

algorithm and its ability to correctly classify glint and other temporary activity. At first 

glance the algorithm seems to be a promising solution to the module's problem but after 

inspection it can be seen that it is unsuitable for the presented problem due to its use of 

the temporal domain. 

 The behavior subtraction algorithm works similarly to any background 

subtraction algorithm but employs a temporal window as a means of improving 

robustness. It creates a model of normal background activity by using a two step 

approach. First, every frame in a training sequence of frames undergoes background 

subtraction in order to segment moving foreground objects from the background. Next, 

the segmentation masks, or motion detection labels, created by the background 

subtraction process are converted into "behavior descriptors" based on the cardinality of 

detections at each pixel location over a temporal window. Simply put, behavior 

descriptors are created for each pixel based on the number of times a pixel is marked as 

foreground over a window of frames. Figure  2.2 shows an example of converting a 
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training sequence for one pixel into a behavior descriptor. In this case, the "maximum 

activity" descriptor could be generated by looking for the maximum number of positive 

detections within the window for every possible window position.

Window

0 1 1 1 1 10 1 1 1 1 1 0 00 0 0 0 00 0 0 0 0 0 01 1 1 1 0 0 0

Training Sequence

Background Subtraction

Motion Detection Labels

0

Activity Descriptors

1 0

 

Figure  2.2: Generating Activity Descriptors from a Training Sequence for One Pixel. 

The authors also propose the "average activity" descriptor. This descriptor is simply the 

number of positive detections over the entire training sequence divided by the number of 

frames in the sequence, or 

       
 

 
         

 

   

 

Equation 2.2 

where M is the number of frames in the training sequence, B is the behavior descriptor 

image, L is the motion labels produced from a background subtraction algorithm, and r, c 

and j are the row, column and frame indexes.  

 Once training is complete, an incoming frame sequence can be turned into 

synonymous behavior descriptors using methods similar to those used to create the 

behavior descriptors from the training sequence. Again, they are based on cardinality of 
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detections over a window of recent frames. Without getting into further detail about 

behavior descriptors, or how the final segmentation mask is produced, it can be seen that 

the algorithm relies on the use of a temporal window. The use of the temporal window 

mechanism is undesirable for the task of buoy segmentation. It causes the detections of 

abnormal behavior, or objects on the water's surface, to arrive at a later time. A delayed 

response, and therefore a pose estimate based on old data could be used by the control 

module in the system. It is assumed, however, that a control module operating on 

younger data will perform better and require a simpler design than a module operating on 

older data. 

2.2.2.4 Pixel-Level Background Subtraction 

 The authors of [3] focus on background subtraction techniques as a means of 

segmenting floating mines from sea surface. For this reason, the background subtraction 

techniques mentioned in [3] as well as others mentioned in the surveys [14,23,24] are 

examined. In the subsequent text    will represent the incoming frame at time t.     will 

represent an image of the background model at time t, and the resulting segmentation 

mask produced by each method will be referenced as   . 

2.2.2.4.1 Image Differencing 

 Probably the simplest approach to background subtraction is image differencing. 

As the name suggests, the foreground mask    is created by simply differencing the 

current frame    with an image of the current background model   . A pixel is said to be 

part of the foreground if its difference from the corresponding value in the background is 

larger than some threshold T. Equation 2.3 gives the formal definition of image 

differencing. 
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Equation 2.3 

 

2.2.2.4.2 Adaptive Mean 

 One problem with image differencing is that it fails to supply a method of 

generating or updating a suitable background model. An improvement to image 

differencing is made by modeling background pixels as continuously updated averages of 

all previous frames. A mention of the adaptive averaging filter described in this text is 

made in [14]. A mention of a similar method which takes the average over a window of 

frames is made in [25]. A background model that is updated with a running mean is 

updated by adding the weighted value of a current pixel to the value in the background 

model or 

                        

Equation 2.4 

 In Equation 2.4,   is a learning factor that determines the rate at which the 

background model adapts to current conditions. This method is a step above image 

differencing as it allows the background image to adapt to events like illumination 

changes or background object position changes. 

2.2.2.4.3 Adaptive Single Gaussian Model 

 Using an adaptive mean to model background pixels improves foreground 

segmentation but neglects to define the threshold at which an incoming pixel is said to be 

outside of the background model. This problem is alleviated by modeling each pixel as a 

continuously updated Gaussian distribution [15,16]. The adaptive single Gaussian 
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background model updates its mean using Equation 2.4 and updates its variance measure 

for each pixel using Equation 2.5. 

    
       

                 
  

Equation 2.5 

In Equation 2.5   is a learning factor that controls the rate at which the background 

model adapts. In using the adaptive single Gaussian model of a background pixel, the 

foreground mask is generated by replacing the threshold in Equation 2.1 

 with a Mahalanobis distance or 

                      

Equation 2.6 

where c dictates how many standard deviations away from the mean an incoming value 

must be within to be considered background. 

2.2.2.4.4 Adaptive Gaussian Mixture Model 

 Sometimes a single Gaussian distribution cannot completely describe background 

dynamics. To deal with this, a background is modeled as multiple Gaussian distributions 

[17]. A background described with the Gaussian mixture model uses k distributions to 

model the multiple color ranges a true background pixel can fall into. Each distribution 

has a mean μ, standard deviation  , and weight ω. The Gaussian mixture model processes 

each incoming frame by first sorting all distributions for a pixel in order of decreasing 

evidence    . A new pixel value         is compared to the sorted Gaussian 

distributions until a distribution that explains the value is found. If a match is found then 

the mean μ and standard deviation   of only the matching distribution is updated with 
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Equation 2.4 and Equation 2.5 respectively. The weight of the matching distribution is 

updated with 

                

Equation 2.7 

Any unmatched distributions are updated so that their weights decrease. Equation 2.8 

gives this updating function. 

              

Equation 2.8 

  As consistent background values are added, the weights of the true background 

distributions increase while the variance of these distributions decrease resulting in 

higher evidence for true background distributions. In the case that a incoming value does 

not belong to any of the distributions, the distribution with the lowest evidence is 

replaced with a new distribution whose mean is the current pixel value, standard 

deviation is set high, and weight is set low. 

 Finally,  the distributions that describe the background are selected with 

          

 

   

    

Equation 2.9 

where the value of T is set to the percentage of the incoming data that is expected to be 

background. Once the background distributions for a pixel have been selected, the 

foreground mask is created from those pixels that match non-background distributions, or 

don't match any distributions at all. 
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2.2.2.4.5 Adaptive Median Filter 

 The adaptive median filter is used and tested in many works [23,24,26,27,28]. It is 

similar to the aforementioned pixel-based background subtraction methods, however, its 

updating mechanism works by incrementing or decrementing the value in the background 

model by one based on the incoming image as in Equation 2.10. 

         
             

             
  

Equation 2.10 

The incoming frame is then compared to the background and segmented using the 

thresholding method of Equation 2.3. 

2.2.2.4.6 Visual Background Extractor 

 The Visual Background Extractor (ViBe) [20,21] is an approach to background 

subtraction that relies on a set of retained samples rather than statistical information. The 

algorithm assigns to each pixel a set s of n samples hereafter indexed as         where r 

and c are coordinates within sample q. The entire sample set (q = 1..N) is initialized by 

setting the values of         to a randomly selected neighbor of the corresponding pixel 

in an initialization frame    or 

                              

Equation 2.11 

The function                   randomly selects one of pixel (r, c)'s 8-connected 

neighbors. Note that the                   function is fired independently for each 

pixel-sample index. 
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 Once the background model has been initialized, an incoming frame    is 

segmented by comparing the values of a pixel in    to all values in the sample set 

corresponding to the pixel. If the distance, between         and some sample         is 

below a threshold, then the pixel's positive background matches count increments. After 

comparing to all of the pixel's samples, if the number of matches is greater than a 

threshold, then the pixel is marked as background. If the number of matches does not 

break the threshold then the pixel is marked as foreground. 

 One distinct difference between this method and previously mentioned methods is 

its use of a conservative updating scheme and a spatial updating scheme. In a 

conservative updating scheme only data classified as background is used to update the 

background model. In a spatial updating scheme, an incoming pixel not only updates its 

corresponding background value, but also updates a neighboring pixel's corresponding 

background value. In the case of ViBe, if a pixel in an incoming frame is classified as 

background, then its value is used to update the corresponding pixel sample set at some 

randomly selected sample index. It is also used to update one of the corresponding pixel's 

randomly selected neighbors at a random sample index. 

2.3 Proposed Methods 

 Methods available in literature for floating object detection have been presented. 

Methods not specifically purposed for floating object detection will now be presented 

with modifications for tackling the problem. 

2.3.1 Difference of Gaussians 

 While difference of Gaussian (DoG) operators are not specifically edge detectors, 

they are related [29]. One benefit of the DoG operator is that it not only detects edges, but 
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also detects the weight associated with the structure of an edge [29]. Difference of 

Gaussian operators are also used, in conjunction with other mechanisms, for dynamic 

range compression in images [30]. Difference of Gaussian operators can also be viewed 

as band-pass filters in the spatial domain. These characteristics of the operator make it a 

potential solution to the module's problem. If the operator can be tuned to reject spatial 

frequencies unrelated to possible buoy sizes, then the operator has the potential of 

becoming a powerful frame-by-frame segmentation method. For this reason it is 

examined in further detail. 

 The simplest method of applying a difference of Gaussians operator is to first 

smooth an image with two differently sized Gaussian kernels. After smoothing, the 

operator output is found by taking the absolute difference of the output of the convolution 

between each kernel and the image. A segmentation mask can be generated by looking at 

the difference image and comparing it to a threshold. 

 One detail evident in all test sequences is that normal water surface activity 

produces images in which only changes parallel with the horizon are detected by the 

camera. Figure  2.3 shows an example of this property. In the figure, the original image 

appears normal, but filtering by a Sobel operator shows that the camera picks up 

disturbances that project onto the image plane as horizontal lines. Due to this observation, 

only Gaussian kernels built to detect vertical lines are selected for testing. 
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(a) (b) (c) 

Figure  2.3: The Effect of Scene Geometry on Perceived Spatial Frequencies. (a) Original 

Image. (b) Output of a Sobel Filter Designed to Respond to Vertical Edges. (c) Output of 

a Sobel Filter Designed to Respond to Horizontal Edges. 

2.3.2 Color Based Methods 

 All segmentation methods presented have depended on differences in color 

instead of color itself. Using color contrast rather than specific color is desirable as it 

relaxes the assumptions related to specific buoy colors and eases any concern related to 

camera specific intrinsic color calibration. Despite these attractive features, segmentation 

based on specific colors is still a viable method for image segmentation.  

 One of the stated assumptions is that the buoys will follow the color specification 

set forth in the current IWWF rulebook. Due to this, segmentation masks can be created 

by comparing pixel color values to accepted buoy color values. This is an approach that 

has been used to detect buoys in [6]. Using specific buoy colors can have advantages. For 

instance, if a segmentation method produces only one mask, and it is noisy, then the 

identification module may have a difficult time locking onto buoys. On the other hand, if 

multiple segmentation masks are created for each color and only one is noisy, then the 

other non-noisy masks can be used to acquire predictive knowledge about the 

environment and lock onto buoys in the noisy mask. Figure  2.4 shows this type of 

instance. 
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(a) 

 

(b) 

(c) (d) (e) 

Figure  2.4: A Frame and Its Associated Color Segmentation Mask Outputs. (a) Original 

Image. (b) Combined Segmentation Mask. (c) Green Segmentation Mask. (d) Red 

Segmentation Mask. (e) Yellow Segmentation Mask. 

 The main question when using color as a feature for segmentation, is what color 

space is appropriate? In [31] the author argues that        and        are too susceptible 

to noise. In [32] an illumination invariant color space is used to avoid the 

misclassification of shadows. There a wide variety of proposed color spaces [33,34,35], 

and a variety of spaces have been utilized [36]. For simplicity RGB space is used in the 

following methods as frame data from the camera is retrieved as values in RGB space. In 

the subsequent text, two methods are presented based on color. The first is a classifier 

that searches for specific buoy colors and is trained prior to system operation. The second 

is a pixel classifier that uses water color and is updated online. 

2.3.2.1 Offline Buoy Color 

 The assumptions state that the color of buoys will be that which is specified in the 

IWSF rulebook. Based on this assumption, a classifier can be created which labels each 
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pixel based on its similarity to known buoy colors. In order to developed such a classifier 

two questions must first be answered. First, what data structure is appropriate to precisely 

model the wide range of colors a buoy may appear as? And second, how does one 

populate the data structure? 

2.3.2.1.1 Data Structure  

 The classifier is attempting to label pixels based on a set of color indexes in RGB 

space. In the background subtraction techniques presented, a minimal representation of 

colors was formulated using either second order statistical or similar approaches. This 

minimal-memory representation was necessary because each of the pixels needed an 

independent model. In the case of classifying buoy color, there is only one system wide 

model for each possible buoy color. For this reason, more memory resources can be 

allocated to the data structure used to hold buoy color. Instead of using space conserving 

statistical models, a bitset is utilized. It provides superior performance in precisely 

classifying pixels based on color. 

 A bitset is simply an array of bits. It is included in the C standard library. In the 

case of classifying color, a    
 
 bit large structure is used, one bit for each possible index 

in 8-bit per channel RGB space. As stated before, the module could use a second order 

statistics to model possible buoy colors, however, the entire dynamic range of buoy 

colors is not describable by one spectral band or by a simple shape in RGB space. A buoy 

can appear as a florescent color under sunny front lit conditions, a darker color under 

backlit conditions, or a less intense color under low light cloudy conditions. A bitset data 

structure can precisely capture these color qualities at fine grain resolution. 
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2.3.2.1.2 Training 

 The 27 test videos can be divided into 6 classes of lighting conditions which vary 

on 3 dimensions. These dimensions are: sunny vs. cloudy, front lit vs. backlit buoys, and 

camera auto features on vs. off. The video class described by the dimensions cloudy with 

automatic exposure control off is missing from the test set, hence only six classes, instead 

of eight, exist in the total test set. One video from each of the six video classes is 

randomly selected to be the training sequence for that class. For each of the six training 

sequences the user manually labels one pixel in each buoy of the next three or more pairs 

of buoys every ten frames. The user has the option of labeling buoy color as either green, 

red, or yellow. 

2.3.2.1.3 Data Structure Population 

 After manual labeling is complete, the labels are used to generate RGB indexes by 

referencing the frame-row-column index of the label and retrieving the color value at that 

pixel. The RGB index is used to populate the label's corresponding bitset according to 

Equation 2.12. 

                                                             

Equation 2.12 

In Equation 2.12              is the index of a manually labeled pixel located at row r, 

column c, frame t, video number V expressing that the point is of buoy color A (green, 

red, or yellow). 
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2.3.2.1.4 Application 

 A segmentation mask is produced from a frame and bitsets by checking the RGB 

index of individual pixels within the frame against all three buoy color bitsets as in 

Equation 2.13. 

                                               

Equation 2.13 

In Equation 2.13,        is the foreground mask at time t for buoy color A. After 

application, an individual frame produces three separate segmentation masks; one for 

each possible buoy color. 

2.3.2.2 Online Water Color 

 The system's assumptions dictate two rules about buoy color. First, the color of a 

buoy must match that which is specified in the IWSF rulebook. Second, the color of a 

buoy and the water that surrounds it must appear perceptually different. Following the 

second assumption, a pixel level classifier can be created which operates on the belief 

that buoy color will be unexplainable by a model built to describe water color. In creating 

such a classifier one must answer the same two questions presented for the buoy color 

based classifier. 

2.3.2.2.1 Data Structure 

 The bitset data structure used for classifying buoy colors is selected to represent 

water color as well. It provides superior performance in precisely classifying pixels as a 

water surface contains not only the generic blue color one associates with water color, but 

also the colors of shoreline object reflections and specularities. 
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2.3.2.2.2 Data Structure Population 

 One must fill a bitset with a complete description of water color possibilities. In a 

model based on second order statistics, missing data is usually filled in if neighboring 

data (in 3D RGB space) has support. In a bitset type data structure, no such courtesy is 

given. Even if there is support from neighboring data, missing data, or holes in the bitset, 

are not filled. For this reason, a very complete understanding of possible water colors 

must be created.  

 Bitset data population for water color is done using safe window methods from 

[37,38]. In these works, the authors use a safe window to generate information about 

traversable paths. Furthering the ideas in [37,38], safe window construction is dynamic 

and relies on feedback from the identification module. It is constructed so that it covers as 

much known water surface as possible. For simplicity, however, only a simple 

rectangular shaped window is presented. Figure 2.5 shows an example of a simple safe 

window. 

 

Figure  2.5: Water Color Safe Window. 
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2.3.2.2.3 Application 

 The water color based classifier works similarly to the buoy color based classifier. 

The RGB index of a pixel is tested in the water color bitset. If it corresponding index is 

set in the bitset, then the pixel is classified as water. If it is not set, The pixel is classified 

as non-water. 

2.3.2.2.4 Error Protection 

 A tradeoff is made between maximizing safe window size, and thus forming a 

more complete model of water color, and increasing the chances of incorrectly setting an 

RGB index within the bitset. For example, Figure  2.6 shows a safe window overlapping 

shoreline objects prior to boat entrance into the slalom course.

 

Figure  2.6: Safe Window Incorrectly Overlapping Shoreline Objects. 

 To avoid retaining incorrectly set RGB indexes, a small portion of all indexes 

within the entire bitset are randomly unset. This procedure is done using the pseudocode 

below. 

1. numResets =        

2. for  i = 1:numResets 
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3.  randIndex = random(1,     ) 

4.  waterColor[randIndex] = false 

The main idea of randomly unsetting bitset indexes is that color indexes with greater 

support will persist in the bitset while indexes set in error will reset after a few iterations. 

In the pseudocode, the value of k controls the rate of index resetting. 

2.4 Experiment Design 

 Each of the proposed methods is tested with varied parameter settings on 27 

frame sequences. From each test, precision, recall, and "percentage of correct 

classification"[21] (PCC) scoring metrics are produced by looking at the differences 

between manually labeled and method produced frames. The testing scheme devised 

takes into account the ability of higher level modules and the tests are designed with the 

intent of feeding the segmentation mask blobs into the next module. The remainder of the 

chapter discusses the testing techniques and results of the tests. 

2.4.1 Experiment Setup 

 Three frames from each of the 27 test sequences are manually labeled. Manual 

labeling involves a user selecting all pixels representative of buoys in a frame.  The 

specific frames selected for manual labeling are not selected at random, they are selected 

to maximize the variability of the test. Figure  2.7 shows a diagram of which frames are 

selected as those to be manually labeled. In Figure  2.7 a colored point at zero meters 

indicates that the frame selected for labeling is the frame in which at least one buoy of the 

point's color is completely within the frame bounds. The non-zero meter points show the 
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relative distances of other buoys in the frame. The colors of the point indicate the colors 

of the buoys.  

Figure  2.7: The Spread of Points in Tested Poses 

From Figure  2.7 it can be seen that the tests are selected so that green, red, and yellow 

buoys are tested at short range (0-50 meters) medium range(50-150m), and long range 

(150+ meters). 

2.4.2 Data Collection 

 Each of the presented algorithms is tested by using varied parameter settings for 

each algorithm and using each of the 27 video sequences as input. At the manually 

labeled frame indexes, the algorithm's segmentation masks are compared to the manually 

labeled segmentation masks. From both the method frame and the manually labeled 

frame, the number pixels classified as true positive, false positive, true negative, and false 

negative are calculated. One important difference between this test and others in related 

works is that the region of the image scored is the region below the highest manually 

labeled pixel rather than the entire frame. Using the reduced region for scoring ensures 

that shoreline objects do not influence the results of the comparison. Figure  2.8 shows an 

example of the scoring region.
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(a) (b) (c) 

Figure  2.8: Scoring Regions. (a) Original Image. (b) Sample Segmentation Mask. (c) 

Manually Labeled Segmentation Mask. Scoring Region Denoted By Green Horizontal 

Lines. 

2.4.3 Scoring Metric 

 The experiment is designed to quantitatively test the ability of each proposed 

algorithm. Precision and recall measurements are used to provide a numeric 

representation of each algorithm's capability.  Precision is a ratio that defines what 

portion of the selected pixels actually belong to buoys. It is defined in Equation 2.14. 

          
  

     
 

Equation 2.14 

Recall is the portion of target pixels actually selected by the algorithm. It is defined in 

Equation 2.15. 

       
  

     
 

Equation 2.15 

Percentage of correct classification [21] is a score that gives number of correct 

classifications compared to the total number of classifications. Equation 2.16 shows how 

to produce this score. 
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Equation 2.16 

In all of these equations tp and tn represent true positives and true negatives. fp and fn 

represent false positives and false negatives. 

2.4.4 Varied Parameters 

 The parameters of the tested methods are varied along certain dimensions in order 

to ensure a thorough examination of each algorithm's performance. The subsequent table 

gives the varied and static parameters of each tested methods. 

 
Running Mean BGS 

Varied Parameters Static Parameters 
Conservative Update Spatial Update Threshold Distance Learning Factor 

{ True, False } { True, False } { 20, 40, 60 } { .05 } 

 
Running Median BGS 

Varied Parameters Static Parameters 
Conservative Update Spatial Update Threshold Distance Learning Factor 

{ True, False } { True, False } { 20, 40, 60 } { .05 } 

 
Running Single Gaussian BGS 

Varied Parameters Static Parameters 
Conservative Update Spatial Update Mahalanobis 

Distance 
Learning Factor 

{ True, False } { True, False } { 1.5, 2.0, 2.5, 3.0 } { .05 } 

 
Gaussian Mixture Model 

Varied Parameters Static Parameters 
Mahalanobis 

Distance 
Learning factor Max Modes Background Percent 

{ 1.0, 1.5, 2.0, 2.5, 

3.0, 3.5 } 
{ .001, .005, .01, .05} { 2, 3, 4 } { .75 } 

 

 

 



 

  36 

 
Visual Background Extractor 

Varied Parameters Static Parameters 
Radius Subsample 

Frequency 
Threshold 

Distance 
Conservative 

Update 
Spatial 

Update 
Number of 

Samples 
{ 1.0, 1.5, 2.0, 

2.5, 3.0 } 
{ 8, 16 } { 20, 30, 40, 

50 } 
{ True } { True } { 20 } 

 
Buoy Color 

Varied Parameters 
Bitset Source 

{ Total, Camera Setting Specific} 

 
Water Color 

Varied Parameters 
Forget Factor Safe Window Width Safe Window Height 

{ 0.5/256, 1.0/256, 1.5/256, 

2.0/256 2.5/256, 3.0/256 } 
{ 10, 40 } { 40, 160 } 

 
Difference Of Gaussians 

Varied Parameters 

      Threshold Distance 

{ 0, 1, 2, 4 } { 0, 1, 2, 4 } { 3, 8, 13 } 

Table 2.1: Varied Parameters of the Segmentation Experiment. 

2.5 Results 

 The precision and recall values are computed for each method using various 

parameter settings. The PCC, precision and recall plots for six identified video classes are 

presented. Only five sets of sample output are provided due to the similarity of the 

"shadow side" and "foam" class videos. The PCC scores presented are the best overall 

parameter setting of each method presented. 
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2.5.1 PCC for Best Parameter Settings 

 

Figure  2.9: Best PCC Score for each Method. 

2.5.2 Precision Recall Plots for Various Parameter Settings 

 

Figure  2.10: Legend of Plots. 
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Figure  2.11: Precision-Recall Plot for Methods Tested on All Classes of Video. 

 

Figure  2.12: Precision-Recall Plot for Methods Tested on Cloudy Class Videos. 
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Figure  2.13: Precision-Recall Plot for Methods Tested on Sunny Side Videos. 

 

Figure  2.14: Precision-Recall Plot for Methods Tested on Shadow Side Videos. 
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Figure  2.15: Precision-Recall Plot for Methods Tested on Foam Class Videos. 

 

Figure  2.16: Precision-Recall Plot for Methods Tested on Reflection Class Videos. 
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2.5.3 Sample Output 

 For five of the six video sequence categories presented in the aforementioned 

plots, sample output is provided which shows the method's best overall parameter setting 

output in comparison to the original frame and ground truth. The "Foam" category of 

video sequences is excluded due to its similarity to the "Shadow Side" and "Sunny Side" 

class of videos. 

 

Cloudy Video 

Original 

Image 

   

Ground 

Truth 

   

Buoy 

Color 

   

Difference 

Of 

Gaussians 
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2.5.4 Limitations of Experimental Evidence 

 The method of testing proposed solutions has multiple weaknesses. First, only 27 

frame sequences are used in quantitatively scoring the abilities of each algorithm. From 

these 27 sequences only a small subset of all possible lighting and weather conditions are 

captured. Second, only three frames for each of the 27 sequences are used in testing as 

manually labeling frames is an extremely tedious and time intensive. Finally, the 

precision and recall scoring schema used may not be the best indicator of each 

algorithm's ability when considering the module's purpose within the scope of the 

complete system. For example, an algorithm which receives high precision and recall 

scores, but tends to segment only one side of a buoy due to lighting conditions may not 

be as the best algorithm in comparison to an algorithm that segments buoys from edge to 

edge but produces additional unconnected noise. In the first case, a pose estimation 

algorithm would bias its result towards the fully segmented side of the buoys. In the 

second case, the pose estimation module would not bias its result assuming that the 

identification module produces a correct blob-to-buoy mapping. 

2.5.5 Discussion 

 Upon examination of the experimental results, specifically the precision-recall 

plots, it can be seen that the ViBe method appears to be the overall best segmentation 

technique. Its superior performance appears to stem from its ability to hold a large 

number of color values for each pixel, a property that differentiates the ViBe method 

from the other background subtraction techniques. This multi-color mechanism becomes 

especially useful in situations where camera jitter, and thus movement of reflections 

within the image, is present. Furthermore, the ability to store multiple colors per pixel 
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allows the algorithm to adequately model the wide variety of color possibilities present 

on a aquatic surface. 

 Along the same lines as the ViBe technique, the Gaussian mixture model 

background subtraction technique also performs well. Its performance is again most 

likely due to its ability to hold multiple color models for each pixel. In reviewing the 

experimental results, it is understandable that the Gaussian mixture model background 

subtraction technique performs comparatively worse than the ViBe method. The 

parameter settings used in the experiment allowed the ViBe method to hold up to 20 

unique color values per pixel as background possibilities. The Gaussian mixture model 

was only able to hold up to four models of color per pixel. 

 The mean and median background subtraction algorithms had similar 

experimental performance. Surprisingly, the algorithms performed well on the cloudy 

class videos. This effect is most likely related to the fact that these algorithms had 

statically defined thresholds. The other two related background subtraction techniques 

had thresholds that were dependent on the variance of incoming values. The video 

sequences categorized as cloudy class had two common properties present in all videos. 

They had lower overall contrast in every frame and higher noise per pixel due to the 

camera's struggling internal dynamic range compression logic. These two properties, 

along with the statically defined threshold, could provide reason for the performance gap 

between the methods with statically defined thresholds and the methods with dynamic 

thresholds. 

 The difference of Gaussians method performed relatively poor in comparison to 

the other tested methods. It failed to fill in the inner regions of buoys and its precision 
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and recall scores suffered. Nevertheless, it did a superb job of segmenting the edges of 

buoys in all video classes and allowed for the adjustment of response based on spatial 

frequencies. Contrary to most of the other tested algorithms, it functioned as a frame-by-

frame algorithm and required no prior training, something that may be important when 

trying to relax more assumptions about full system use. 

 The algorithm based solely on buoy color did not perform well. The poor 

performance was most likely related to the fact that one data structure was used to hold 

all possible buoy color indexes under all possible lighting conditions. The use of one data 

structure becomes a major hindrance to the method's performance due to the fact that 

buoy color under one lighting condition matches water color under another lighting 

condition. Specifically, the color indexes of yellow buoys in sequences in which the 

perceived buoy surfaces are illuminated indirectly (shadow side) are almost identical to 

the color indexes of water in other sequences. Overall the buoy color based method does 

not seem worthy of further pursuit as it does not allow the system to relax assumptions 

about buoy color. 

 The water color based method appears to be stronger than the buoy color based 

method. It could, however, perform better if a smarter safe window was used. A smart 

safe window would be a window in which the area of the window is maximized using 

feedback from higher level modules. This would allow the algorithm to build a more 

complete model of water color. 

2.6 Conclusion 

 A usable method of buoy segmentation, the ViBe algorithm, has been found by 

testing multiple segmentation methods with varied parameter settings on real test 
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sequences. Each parameter setting for each method was quantitatively evaluated by 

finding precision and recall scores. While the strongest method found, ViBe, is not a 

perfect solution to the problem, it is a usable solution that will allow for the continued 

development the system. 

 The experiment relied on 27 test sequences. While these sequences where not 

extensive enough to include every possible environment, they were varied enough to 

expose the strengths and weaknesses of each of the tested methods. Furthermore, they 

were varied enough to reveal possible faults within the algorithms that make them 

unsuitable as a long term solutions. 

 In general, it appears that using specific, offline trained, colors as the means to 

classify pixels is not a robust technique. There will always be situations in which 

accepted color in one condition becomes rejected color in another condition. This type of 

issue could be dealt with by understanding lighting conditions and their effects on 

perceived color, but implementing a system that used this knowledge would shift the 

module away from using specific colors and move it towards using the relationships 

between colors under lighting conditions. 

 The water color based classifier, which relaxes assumptions about specific colors 

and determines the classification of colors on the fly, looks like a slightly better solution 

in comparison to the buoy color based method. It too, however, is susceptible to 

conditions that can cause erroneous output. For example, suppose a large green shoreline 

object projected a reflection onto the water surface that the camera perceived as in the 

same spatial region as yellow buoys. The safe window would absorb this color and 

incorrectly classify any green pair of buoys. A human operator would be able to 
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understand this situation, but a watercolor based method would not. This leads to the 

conclusion that work should go into a water color based algorithm that takes into account 

both colors and the spatial location of used colors. 

 The background subtraction techniques work well on the presented segmentation 

problem. Their success is most likely due to the geometry of the problem itself. In the 

problem, a camera experiences significant one-dimensional motion along its optical axis.  

Because the shoreline objects are located significantly further away from the camera than 

the buoys, the shoreline objects grow at a slower rate become part of the accepted 

background. The only issues with background subtraction methods are their need for a 

training period, and their inability to deal with camera jitter. A solution for the training 

period problem may be to force a high adaptation rate until the system is certain that it 

has stabilized and is looking at a scene it can use for further processing. In terms of 

camera jitter, an image stabilization procedure prior to segmentation may mitigate the 

effects of camera motion. 

 The difference of Gaussians method gives the most insight into possibly strong 

solutions. It can be seen that the binary masks generated by the difference of Gaussians 

method are inadequate at supplying what is truly needed. While the produced binary 

masks effectively show changes in image color with respect to spatial location, they do 

not show from what color or to what color the change represents. A more appropriate 

solution would be one that not only detects color change, but also gives details on the 

direction and location of the change within a color space. This would allow the module to 

differentiate between a water-to-buoy change and a water-to-reflection change. Figure  

2.17 shows how an improved solution may work.
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(a) (b) (c) 

Figure  2.17: Continued Research. (a) Normal Image. (b) Binary Segmentation Mask. (c) 

A More Complex but Robust Solution. 

 Overall, it can be seen that all presented methods offer simple solutions to the 

problem but suffer from issues that make them unfit as all encompassing solutions. It 

appears the output of the segmentation module must move away from binary masks to 

more complex masks. Nonetheless, a usable method, ViBe, has been experimentally 

found and progress on the entire system can continue. 
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3 IDENTIFICATION 

3.1 Introduction 

 In the prior stage of processing, the segmentation module labeled pixels 

representative of buoys. A connected-component labeling algorithm then grouped the 

pixels into blobs and all blobs were placed in a blob set. The system must now label each 

blob according to which buoy it represents. If the blob does not represent a buoy, then it 

must be labeled as such. Figure 3.1 (a) displays a typical frame captured by the system's 

camera. Figure 3.1 (b) shows the bounding box representation of the blob set produced by 

the segmentation module. The identification module is expected to work with sets of 

blobs such as the one presented in and Figure 3.1 (b). 

(a) (b) 

Figure  3.1: A Frame and Its Associated Blobs. (a) A Frame Captured under Normal 

Conditions. (b) The Blobs Produced by the Segmentation Module. 

 A naive approach to the labeling task would be a brute force solution that attempts 

to test every permutation of blob to buoy labeling. This type of approach would be too 

computationally expensive to meet real-time constraints. For example, consider Figure  

3.1. If there were 18 blobs present, as there are in Figure 3.1 (b), and it was decided that 
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there were 12 buoys to map to, as in Figure  3.1 (a), then the system would need to test a 

total of 

  

      
 

   

        
          

 configurations in order to find the best blob to buoy fit. The calculation presented only 

represents the required number of tests for mapping 18 blobs to 12 buoys. As seen in 

Figure  3.1 some of the blobs do not represent buoys. To ensure the globally best blob 

labeling, the system would also need test sets of 17 blobs, sets of 16 blobs, and so on. The 

number of actual test necessary is not important. It is only important to realize that this 

approach is not computable in real-time with a modern personal computer. 

 To avoid the large number of tests associated with the above brute force approach, 

the system attempts to label blobs by examining blobs in pairs. Furthermore, constraints 

are enforced which limit the actual number of tests. The end result is an algorithm that is 

significantly less complex. 

3.2 High Level Overview 

 At the highest level the entire identification module can be described with the 

pseudocode: 

1. for pairIndex= 1:num_pairs 

2.  [buoy0, buoy1] = buoysAtpair(pairIndex) 

3.  [blob0, blob1] = detectOrTrack(buoy0,  buoy1) 

4.  updateBlobAndState(buoy0, blob0) 

5.  updateBlobAndState(buoy1, blob1) 

6.  updateBlobset(blobset, buoy0.newState, buoy0.newBlob) 

7.  updateBlobset(blobset, buoy1.newState, buoy1.newBlob) 



 

  56 

 In the pseudocode, line 1 is a for loop that iterates through all 10 buoy pairs. Line 

2 retrieves the data structures associated with the two buoys in the current buoy pair. Line 

3 is the execution of a detection or tracking algorithm. The detection and tracking 

algorithms use all available knowledge to select the blob pair that best represents the 

buoy pair. Lines 3 and 4 update the buoy data structures with the newly selected blobs. 

This includes updating a buoy's list of assigned blobs, and assigned states. Finally, lines 6 

and 7 remove the blob selected by the detection or tracking algorithm from the set of 

usable blobs. 

 It is important to note that buoy pairs are processed in the order of closest from 

camera to furthest from camera. The ordering is due to the fact that buoys closer to the 

camera generally appear in captured frames as objects with higher resolution and better 

consistency in terms of size and position. 

3.3 Assumptions 

 The identification module works under assumptions similar to those already 

stated. In terms of camera orientation, it is assumed that the camera has been mounted on 

the boat such that: (1) The camera is above the water, (2) The optical axis of the camera 

is oriented within five degrees of parallel to the direction of boat travel, and (3) The 

camera's rotation about the optical axis is within five degrees of upright. When the 

module is searching through blob sets and trying to identify blobs that represent buoys, it 

is assumed that the boat position and orientation abides by the following: (1) The boat is 

positioned within .5 meters of the slalom course centerline when it is at a distance of 50 

meters or less from the first set of pre-gates, and (2) The boat is oriented within five 

degrees of parallel to the slalom course when it is within 50 meters of the first set of pre-
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gates. Finally, the module assumes that the buoys are: (1) anchored to the world at the 

positions specified in the IWSF tournament rulebook, and (2) sized and shaped according 

to the rules specified in the IWSF rulebook. 

3.4 Chapter Notation 

 The remaining sections of this chapter are written in a consistent notation so that 

the concepts described are easier to understand. The two primary data types used in the 

module are buoys and blobs. Each data type has its own associated predicates, functions, 

and symbols. It is important to note that the process of blob labeling is further referred to 

as blob assignment or assigning blobs to buoys. 

3.4.1 Buoy Notation 

 Buoys are referred to as either actual buoys, image buoys, or virtual buoys. Actual 

buoys are the tangible objects in the real world, image buoys are the buoys seen in a 

frame, and virtual buoys are the abstract, programmatic, data structures used in the 

system. All three types of buoys are connected in the sense that they all reference the 

same object. The symbols α, β, γ, and δ represent individual virtual buoys. The virtual 

buoys α, β, γ, and δ have indexes that range from 0 to 19 as the system works with 20 

actual buoys. The symbols ε, θ, λ, and σ represent virtual buoy pairs. Virtual buoy pairs 

consist of unique individual virtual buoys, a virtual buoy cannot belong to multiple 

virtual buoy pairs. The virtual buoy pairs ε, θ, λ, and σ have indexes that range from 0 to 

9 as there are 10 pairs of 20 actual buoys. The predicate           is true when virtual 

buoy   and virtual buoy   are in a pair. The notation          indicates that virtual 

buoy   and   are in virtual buoy pair  . Note that the pair {α, β} is different from the pair 

{β, α}. The first set denotes that virtual buoy α is a port side buoy and β is a starboard 
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side buoy. The second pair denotes the opposite. As seen in Figure  3.2, a pair of buoys is 

what the boat travels through while driving through a slalom course. 

 

Figure  3.2: A Frame Marked in Notation. Dotted Boxes Mark Some of the Individual 

Buoys and Solid Lines Denote Some of the Buoy Pairs. 

 The predicate               is true when virtual buoy   is in a tracking or 

partially occluded state at time t. The function            (Least Tracking Index 

Greater Than) is a function that finds the individual tracking virtual buoy at time t with 

smallest index greater than  's index which is not in  's pair. For example, if in Figure  

3.2 the buoys with dotted boxes represented tracking virtual buoys then the function 

           would return a reference to a virtual buoy the next furthest virtual buoy pair 

from the camera. In this case, either γ or δ . Formally the function is defined as 

                                                             

                                                             

Equation 3.1 

 The function            (Greatest Tracking Index Less Than) is the largest 

indexed tracking virtual buoy with an index less than  's index not in  's pair. As an 
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example, if the dotted boxes in Figure  3.2 represented tracking individual virtual buoys, 

and the solid lines represented pairs, then virtual buoy            references either α or 

β. Formally this function is defined as 

                                                               

                                                             

Equation 3.2 

Both of the functions        and         can be applied to pairs of virtual buoys 

rather than individual virtual buoys. 

 A virtual buoy   has memory of its previously assigned blobs and its previous 

states. The function           returns the blob selected to represent virtual buoy   at 

time t. The function            similarly returns the state of the virtual buoy   at time t. 

Finally, the function              returns the set of usable blobs available to virtual 

buoy α at time t. Synonymously, the function              returns the blobs the module 

can map to virtual buoy pair   at time t. 

3.4.2 Blob Set Notation 

 The symbols d, e, f, and g represent individual blobs and the symbols j, k, and m 

represent pairs of blobs. While a virtual buoy only belongs to one virtual buoy pair, a 

blob may belong to any and all possible blob pairs, even the pair that includes the blob 

twice. Like the pair predicate for virtual buoys, the predicate           is true when 

blobs d and e are in a pair together. The statement         states that blobs d and e are 

in blob pair j. The pair       also expresses that blob d is supposed to represents the port 

side blob while blob e represents the starboard side blob.  



 

  60 

3.4.3 Buoy and Blob Set Formulas 

 The system often uses the Euclidean distance formula to find the distance between 

a pair of blobs or a pair of virtual buoys. For a pair of blobs, the distance formula is 

defined as 

                                                                      

           

Equation 3.3 

For a pair of virtual buoys, the distance between them is the distance between their blob 

representations, or 

                                                          

Equation 3.4 

3.5 Virtual Buoy States and State Transitions. 

 A virtual buoy exists in one of five states. In order to understand buoy states, 

transition conditions, assignment acceptance rules and occlusion preparation rules must 

first be discussed. 

3.5.1 Blob Labeling Acceptance 

 A virtual buoy is assigned a unique blob every frame. Sometimes the system 

incorrectly labels a blob. Two observable conditions in all video sequences allow the 

system to detect incorrect blob assignments. First, image buoys have predictable 

velocities and positions through a sequence of frames. Second, the pixel areas of image 

buoys are consistent and predictable. Classifiers built on these observations dictate 

transitions in and out of tracking states at any point in time. 
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3.5.1.1 Position Consistency 

 An image buoy will traverse a sequence of frames at a slow pixel per frame rate. 

The system can classify a virtual buoy's blob history based on this fact. The proposed 

system uses a function that checks the position of a virtual buoy's blob at time t against its 

blob at time t-1. If the distance between the blob centers is under a threshold, then the 

blobs at those times are classified as image buoys. This process is repeated for a distance 

R frames in the past. Formally, a virtual buoy is classified as a representative of an image 

buoy in terms of center position if 

                                      

  

   

 

Equation 3.5 

A hardcoded value that is small enough to detect jumps in blob positions, yet large 

enough to accept normal image buoy motion is assigned to the threshold        . In the 

tested system, this value is 10 pixels. 

3.5.1.2 Area Consistency 

 An image buoy's pixel area will grow at a slow and consistent rate until the image 

buoy becomes occluded due the frame bounds. The system can detect inconsistent blob 

assignments by comparing the area of a virtual buoy's blob at time t to its previous frame 

blob. If the ratio of areas is larger than a threshold, then the blob history is classified as 

non-representative of an image buoy. Formally, a virtual buoy is classified as a 

representative of an image buoy if 



 

  62 

  
                                    

                                    
       

 

   

 

Equation 3.6 

The member                is the area of the blob assigned to buoy α at time t. The use 

of the         and         functions ensure that the ratio produced is always greater than 

1. A pixel value large enough to accept an image buoy's area growth, yet small enough to 

detect changes in blob selection or merged blobs is assigned to the threshold      . A 

ratio of 3 is used in the implemented system. 

3.5.2 Preparing for Frame Occlusion 

 The blobs representing an image buoy become absent from the usable blob sets 

over a sequence of frames for two reasons. Either the image buoy itself has traversed off 

of the frame or noise in the optical sensor and segmentation module have blocked the 

image buoy's blob representation. Knowing the reason for the absence of a representative 

blob is used to select the appropriate detection or tracking algorithm. If the image buoy is 

known to be close to the frame bounds then an algorithm suited for the possibility of 

occlusion is selected. Flagging a virtual buoy as close to the frame bounds can be done by 

examining the virtual buoy's currently assigned blob. A flag is set if a virtual buoy's 

current blob is close to the frame bounds. The predicate used to denote that a blob is near 

the frame bounds is generated with 

                                                            

                                                                          

Equation 3.7 
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The pixel distance between a blob and frame bounds at which the blob is flagged is 

assigned to     . A value of 5 pixels is used for      in the tested implementation of the 

system. 

3.5.3 States of a Virtual Buoy 

 Virtual buoy states are used throughout the system to select appropriate detection 

or tracking algorithms, generate constraints, and select the correct blob set updating 

function. A virtual buoy is assigned one of five states at each time interval. The most 

common transition between states relies on the logic shown in Figure  3.3. In Figure  3.3 

the "Stable" conditional diamond represents the functionality described in the Blob 

Labeling Acceptance section. The "In Bounds" conditional diamond represents the 

function discussed in the Preparing for Frame Occlusion section. 

Stable In Bounds Track

Partially 
Occluded

True

False

True

False Occluded

Next State Block

 

Figure  3.3: The Logic Defining Most State Transitions in the System. 
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3.5.3.1 Track State 

 A virtual buoy enters the tracking state when its recent blob history has been 

deemed representative of an image buoy. The system can use information from a buoy in 

the track state to increase its chances of correctly tracking or detecting the same or other 

buoys. The transition into the track state is shown in Figure  3.3. 

3.5.3.2 Partially Occluded State 

 The partially occluded state is almost identical to the track state. The only 

difference between the two states is the flag that is set when a virtual buoy is near a frame 

bound. The separate outcomes of the "In Bounds" condition shown in Figure  3.3 

illustrate this difference. This state's main purpose is to signal to the system that the 

image buoy associated with a virtual buoy has a higher chance of becoming occluded. 

3.5.3.3 Search State 

 The system cannot use any information from a virtual buoy in the search state to 

detect or track image buoys. Transitions out of a search state occur under two conditions. 

Either the system determines that a virtual buoy pair is permanently occluded or both 

virtual buoys in a pair pass the stability tests described in the Blob Labeling Acceptance 

section. If both virtual buoys in a pair are deemed stable, then the virtual buoy receives 

the state described by the general transition block in Figure  3.3. Figure  3.4 displays the 

logic for a pair of buoys transitioning out of the search state. One difference between 

search state transitions and other transitions is that search state transitions only happen in 

pairs. 
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Figure  3.4: The Transition Diagram for a Pair of Virtual Buoys Transitioning out of 

Search State. 

In Figure  3.4 the conditional "Further Buoy In Done State" is similar to the            

function with the exception that the condition is looking for the least indexed done state 

virtual buoy. 

3.5.3.4 Occluded State 

 A buoy in an occluded state is similar to a buoy in the search state. The main 

difference between the occluded state and the search state is that a virtual buoy in the 

search state has not yet been in the track or partially occluded state. A virtual buoy can 

only transition into the occluded state from the tracking or partially occluded state. The 

purpose of the occluded state is to  signal to the system that a virtual buoy has gone 

through the expected transitions. Figure  3.5 shows the logic for transitioning out of the 

occluded state. Note that only a pair of virtual buoys can enter the done state from the 

occluded state. 
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Figure  3.5: Transitions Diagram for a Pair of Virtual Buoys Transitioning out of 

Occluded State. 

3.5.3.5 Done State 

 The done state signals that the actual buoy is out of the camera's field of view and 

will never return until system reset. The system cannot use any information from a virtual 

buoy in the done state to track or detect other buoys. Virtual buoys only transition out of 

the done state on reset. Resets are performed when the system is no longer tracking any 

buoys. Figure 3.6 shows the transition. Whenever one virtual buoy transitions out of the 

done state all virtual buoys transition out of the done state. 

Any buoys in a track or
partially occluded state?

LTIGT(0,t) ≠null
SearchDone

True

False

 

Figure  3.6: Transitioning out of Done State. 
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3.6 Blob Assignment 

 The system must assign each virtual buoy a unique blob every frame. The system 

attempts to accomplish this goal by processing virtual buoys in pairs. First the usable 

blob set(s) are permuted into every possible blob pair. Then every pair is ranked based on 

its suitability with the virtual buoy pair under consideration. The system ranks blob pairs 

using scoring functions. Scoring functions quantitatively assess blob pair to virtual buoy 

pair fitness based on a set of metrics. In addition to the scoring functions, the system also 

flags invalid blob pairs with constraint functions. 

3.6.1 Constraining Functions 

 The segmentation module produces noisy sets of blobs. A blob set is noisy in the 

sense that some image buoys do not have representative blobs and some blobs in the set 

do not represent image buoys. Regardless of the noise, the blobs must be correctly 

labeled. A blob d or a pair of blobs j can be ruled as an invalid representation of virtual 

buoy α or pair of virtual buoys ε through the use of constraints. Two types of constraints, 

single constraints and pair constraints, are used to determine the validity of a blob or blob 

pair. Single constraints invalidate individual blobs, while pair constraints invalidate pairs 

of blobs. If a blob fails any of the multiple single blob constraints, it is removed from the 

usable set. If a blob pair fails any blob pair constraint, then the pair is removed from the 

set of pairs used for scoring. The end result is that only blob pairs that pass all single and 

pair constraints get scored. 

3.6.1.1 Notation 

 The predicate               is true (valid) when the blob d passes the constraint type 

for virtual buoy   at time t.               synonymously means that the blob pair j is an 
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acceptable representation of virtual buoy pair   using constraint type at time t. The 

symbol             is used to describe a constant, usually a threshold, for the virtual buoy   

and constraint type at time t. Similarly             describes a constant for constraint type 

for virtual buoy pair   at time t. 

3.6.1.2 Single Blob Constraints 

 Single blob constraints, also referred to as single constraints, invalidate individual 

blobs as potential representations of image buoys. If a single constraint invalidates a blob, 

then it is removed from the set of usable blobs available to the virtual buoy it failed 

under. Single constraints both optimize the labeling process and improve the consistency 

of the labeling module. They optimize the module by reducing the number of blobs the 

system must test as pairs and improve the overall robustness of the module by removing 

blobs that pair constraints might fail to remove. The single blob constraints presented 

were generated by making intuitive rules based on observations about image buoys over 

sequences of frames. 

3.6.1.2.1 Unlocked Constraints 

 The system cannot obtain any useful blob validation information from its virtual 

buoys if none of its virtual buoys are in the track or partially occluded state. The system 

is said to be in an unlocked state under these circumstances. When the system is in the 

unlocked state, it is prone to making two types of errors. The first type of error occurs 

when the segmentation module produces a blob set that includes blobs representative of 

shoreline objects or significantly sized non-buoy floating objects. These types of objects 

often trick the scoring functions into producing scores that, as a result, make the system 

believes the objects are image buoys. The second type of error occurs when the incoming 
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blob set is large. If the incoming blob set is large, then the number of blob pairs to test is 

large resulting in the failure to meet real-time processing demands. To reduce these types 

of errors, a subclass of the single constraints was developed called unlocked constraints. 

Unlocked constraints are fired when the entire system is in an unlocked state. It is 

important to note that the unlocked constraints were designed to allow the system to 

successfully track only one pair of image buoys. Once the system has acquired tracking 

status on a pair of virtual buoys, it is out of the unlocked state and has enough 

information to successfully avoid the above two errors. The following unlocked 

constraints are used by the implemented system and help deal with the above two issues. 

3.6.1.2.1.1 Unlocked Dimensionality 

 The blobs representative of the closest actual buoys have proportional widths and 

heights due to their assumed constant sizes. This observation is used to make a constraint 

that is true regardless of the cameras position and orientation in the world. Formally, a 

blob is validated with the rule 

                                                            

                                        

Equation 3.8 

where                   is a hardcoded max dimensionality proportion.                   is 

necessary because the blobs given by the segmentation module are almost never 

completely square. A value of 3 has been found to be the best value for                  . 

Figure  3.7 illustrates the result of applying the constraint. In this example, oblong blobs 

are removed from the set. 
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(a) (b) (c) (d) 

Figure  3.7: The Result of the Unlocked Dimensionality Constraint. (a) Original Frame. 

(b) Original Blob Set. (c) Valid Blobs under the Unlocked Dimensionality Constraint. (d) 

Invalid Blobs. 

3.6.1.2.1.2 Unlocked Area Less Than 

 As an actual buoy gets closer to the camera its corresponding image buoy also 

grows due to perspective projection. An image buoy can only grow to a specific 

maximum pixel area due to the camera's position above the water and the camera's field 

of view. Any actual buoys close enough to produce image buoys larger than the 

maximum pixel area cannot exist because they fall outside of the camera's field of view. 

This observation allows for the construction of an unlocked constraint based on area. 

Formally the Unlocked Area Less Than constraint is defined as 

                                            

Equation 3.9 

where                 is assigned the maximum pixel area the system would ever expect 

an image buoy to grow. The tested implementation of the system uses a value off 500 

pixels for                  This value is for a constant frame size of 320 x 240 and a focal 

length of 3025 pixels. Figure  3.8 shows the result of applying the unlocked area 

constraint. In this example the blobs which are too large to be image buoys are removed 

from the usable blob set. 
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(a) (b) (c) (d) 

Figure  3.8: The Result of Applying the Unlocked Area Less Than Constraint. (a) 

Original Frame. (b) Original Blobs. (c) Valid Blobs under the Constraint. (d) Invalid 

Blobs. 

3.6.1.2.1.3 Unlocked Area Greater Than 

 The segmentation module generally produces consistently positioned and sized 

blobs for actual buoys closer to the camera. Actual buoys at a distance generally are 

usually converted into inconsistently positioned and sized blobs. Due to this observation, 

the system attempts to assign blobs representative of the closest virtual buoys first. The 

Unlocked Area Greater Than constraint is executed in the hope that the system will track 

nearer blobs. The cost of using the constraint is the potential rejection of blobs associated 

with actual buoys at a distance. Formally this constraint is 

                                            

Equation 3.10 

The system uses the threshold                 to filter out blobs too small to ever represent 

close actual buoys. The tested system uses a value of 9 pixels for                . Figure  

3.9 shows the resulting sets of blobs before and after applying the constraint. In the 

example blobs too small to be image buoys are rejected. 
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(a) (b) (c) (d) 

Figure  3.9: The Result of the Unlocked Area Greater Than Constraint. (a) Original 

Frame. (b) Original Blobs. (c) Blobs Valid under the Constraint. (d) Invalid Blobs. 

3.6.1.2.1.4 Center Below Shore Line 

  Actual buoys in the water are associated with image buoys that appear below the 

projected shoreline due to camera position and orientation assumptions. This observation 

in conjunction with a consistently estimated shoreline row allows for the system to 

invalidate blobs based on their positions relative to the shoreline. The row of the 

shoreline in a frame can filter individual blobs by the using the rule 

                                                    

Equation 3.11 

The threshold                   is set to the row returned by the shoreline estimation 

algorithm for the frame being processed at time t. Figure  3.10 displays the effect of the 

constraint. In the example, blobs above the white shoreline row are rejected. 

(a) (b) (c) (d) 

Figure  3.10: Results of the Shoreline Row Constraint. (a) Original Frame with the 

Shoreline Row Drawn in White. (b) Original blobs. (c) Valid blobs. (d) Invalid blobs. 
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3.6.1.2.2 Locked Constraints 

 The system uses unlocked constraints to help correctly assign blobs and track at 

least one image buoy pair. Once a pair of virtual buoys moves into a tracking state, the 

unlock constraints are disabled and a new class of constraints fire. The new class of 

constraints allows the system to use information from tracking virtual buoy pairs in the 

constraining portion of detection and tracking methods. 

3.6.1.2.2.1 Area Less Than 

 An actual buoy further from the camera always appears as image buoy whose area 

is less than the area of an image buoy associated with an actual buoy closer to the camera. 

This effect is due to perspective projection and the assumption that all actual buoys are 

the same size. If the system is constraining the blob set available to a virtual buoy 

associated with an actual buoy in the distance, and in the same frame is tracking an actual 

buoy closer to the camera, then the system can use the area assertion to its advantage. 

Blobs can be validated using the rule 

                                          

Equation 3.12 

The value                is set to the maximum pixel area a blob representative of virtual 

buoy   can have.                is found by using the rule 

                                                      

Equation 3.13 

 Figure  3.11 shows the result of this type of constraint on a blob set. In Figure  

3.11 (a), the value of                comes from the buoys denoted by the solid white 
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boxes and line. The dotted white line in the distance represents the virtual buoy pair the 

system is examining.  

(a) (b) (c) (d) 

Figure  3.11: The Result of the Area Less Than Constraint. (a) The Original Frame with a 

White Solid Line Signifying a Tracking Virtual Buoys Pair and a White Dotted Line 

Indicating the Buoy Pair under Consideration. (b) Original Blobs. (c) Valid Blobs under 

the Constraint. (d) Invalid Blobs. 

3.6.1.2.2.2 Area Greater Than 

 Similar to the Area Less Than constraint, the Area Greater Than constraint 

invalidates blobs which are too small to be considered buoys based on the positions of 

actual buoys relative to the camera. The constraint only fires if the system is tracking a 

further actual buoy while constraining blobs for a nearer actual buoy. The actual buoys 

closer to the camera appear as image buoys that are larger than images of actual buoys 

further from the camera. This property is used to validate blobs with the rule  

                                          

Equation 3.14 

The system finds                using a tracking virtual buoy further in the distance or 

                                                      

Equation 3.15 

Figure  3.12 demonstrates the result of applying the constraint to individual blobs. In the 

example the system is constraining blobs for the image buoy pair marked with dotted 
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lines. The constraint generates its value of               , from the buoys denoted by the 

white solid boxes and solid white line. 

(a) (b) (c) (d) 

Figure  3.12: The Result of the Area Greater Than Constraint. (a) Original Frame. (b) 

Original Blobs. (c) Valid Blobs. (d) Invalid Blobs. 

3.6.1.2.2.3 Center Less Than 

 The system can invalidate blobs based on their positions in the frame relative to 

tracking image buoys. If the system is tracking an image buoy, then image buoys 

associated with actual buoys further from the camera should appear higher in the frame. 

This observation is used to validate individual blobs with the rule 

                                            

Equation 3.16 

The row value of               is found by using the rule 

                                                           

Equation 3.17 

Figure  3.13 presents an example output of this constraint. The value               comes 

from the solid white boxes in Figure  3.13 (a). In the example, all blobs below the highest 

(in terms of row) white box are removed from the usable set.  
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(a) (b) (c) (d) 

Figure  3.13: The Result of the Center Less Than Constraint. (a) The Original Frame with 

a Solid White Line Denoting a Tracking Buoy Pair and a Dotted Line Signifying the Pair 

under Consideration. (b) The Original Blob Set. (c) The blobs Valid under the Constraint. 

(d) The Invalid Blobs. 

3.6.1.2.2.4  Center Greater Than 

 Similar to the center less than constraint, blobs representative of actual buoys 

closer to the camera appear lower (in terms of row number) in the frame than image 

buoys further from the camera. If the system is tracking a virtual buoy in the distance and 

processing a closer pair of virtual buoys, then it can validate blobs constrained under the 

current pair with the rule 

                                              

Equation 3.18 

The row value of               comes from the rule 

                                                           

Equation 3.19 

Figure  3.14 shows an example of applying the constraint. In the example the solid white 

boxes represent a pair of tracking virtual buoys. In the example the blobs above the 

highest white box are removed from the usable set. 
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(a) (b) (c) (d) 

Figure  3.14: An Example of Firing the Center Greater Than Constraint. (a) The Original 

Frame with White Boxes Representing the next Furthest Pair of Tracked Buoys and a 

Dotted Line Denoting the Pair under Consideration. (b) Original Blobs. (c) The Valid 

Blobs under the Constraint. (d) Invalid Blobs. 

3.6.1.2.2.5 Lanes 

 If not apparent from given images of the slalom course, all buoys are nearly 

collinear with two lines. The exception is the gate buoys which are ten cm wide of perfect 

collinearity. Due to the near collinear nature of all buoys, the system can assume that the 

positions of all actual buoys can be described as points on one of two parallel lines. These 

parallel lines in the world project onto the image plane as lines which intersect at the 

point at infinity. Intuitively, one can start making rules about the positions of image 

buoys based on the observation that all buoys are on one of two parallel image lines. The 

system does just this. If the system is tracking two image buoys on one side of the slalom 

course, it expects all buoys on that side of the slalom course have positions somewhere 

along the line created by the centers of the two tracked buoys. The concept of lanes 

enforces this rule. A lane is a region in the frame where the system expects valid image 

buoys to exist. Figure  3.15 shows a typical frame captured by the system's camera and a 

lane constructed using two tracking image buoys on one side of the slalom course. The 

valid region is the region inside the two white lines where all image buoys are found. 
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Figure  3.15: A Visual Representation of a Lane. 

 A lane is constructed by first performing a Deming regression on the centers of all 

tracking buoys on one side of the slalom course. The resulting best fit line is padded with 

a constant pixel value and angle. In Figure  3.15 the white lane bounds are not parallel 

lines due to the addition of the pad angle. In the system, the predicate 

i                     is true if  's center is within the left lane's bounds.    denotes the 

right lane. 

3.6.1.2.2.6 In Lane 

 If the system is tracking two or more image buoys on one side of the course then 

the system can construct lanes and validate blobs using the rule 

                                                             

Equation 3.20 

Figure  3.16 shows the effect of applying the constraint. In the example, blobs outside of 

the lanes are rejected. 
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(a) (b) (c) (d) 

Figure  3.16: The Result of the In Lane Constraint. (a) The Original Frame. The Solid 

White Boxes Denote Tracking Buoys. The Diagonal Lines Illustrate the Lanes. (b) 

Original Blobs. (c) Blobs Validated under the Constraint. (d) Invalid Blobs. 

3.6.1.3 Blob Pair Constraints 

 The blobs that pass single constraints are permuted into all possible pairs. Since 

the system uses blob pairs as it's basis for blob selection, the system must remove blob 

pairs that cannot represent image buoy pairs. The removal of invalid blob pairs is done 

with pair constraints. Like single constraints, pair constraints are based on observations 

made about sequences of frames. 

3.6.1.3.1 Left Right 

 A blob pair denoted as {d, e} is different than the blob pair indicated by {e, d}. 

The first pair signifies that blob d is representative of the left image buoy and that blob e 

is representative of the right image buoy. The second pair indicates the opposite. Under 

the assumption that the camera is upright, blobs associated with actual buoys on the port 

side of the boat should appear on the left side of the frame while blobs representative of 

actual buoys on the starboard side of the boat should appear the right side of the frame. 

This constraint is enforced by checking the centers of the blobs in a pair and ensuring that 

the port side blob is positioned further left in the frame than the starboard side blob. This 

constraint is enforced by the rule 



 

  80 

                                                       

Equation 3.21 

Figure  3.17 shows the result of applying this constraint to pairs constructed using a 

specified port side blob. In the example, the invalidated blobs are the blobs located to the 

left of the specified port side blob. 

(a) (b) (c) (d) 

Figure  3.17: The Result of the Left Right Constraint. (a) Original Frame with a White 

Dotted Line between the Buoy Pair under Consideration. (b) The Original Blob Set with 

the Blob the System Considers the Left Blob in White. (c) The Blobs That Can Be in a 

Pair with the Specified Blob. (d)The blobs That Cannot Be in a Pair with the Specified 

Blob. 

3.6.1.3.2 At Least One Inside 

 Under the assumptions of system operation, at least one image buoy from a pair 

of actual buoys further from the camera should lie inside the vertical frame bounds 

created with the centers of image buoys associated with a pair of closer actual buoys. In 

Figure  3.18, the vertical bounds mentioned are drawn in black on the original frame. 

Failure to meet this constraint means that either the camera's yaw is outside of the bounds 

stated in the assumptions, or the boats lateral displacement relative to the slalom course 

centerline is outside the bounds stated in the assumptions. This constraint is enforced by 

comparing the centers of a nearer tracking pair to the centers of a further pair. Formally, 

this rule is implemented using 
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Equation 3.22 

where the blob pair         and the values of                     and                     

are produced using  

                                                                     

Equation 3.23 

                                                                      

Equation 3.24 

In these equations   and   are the buoys from the nearer pair of tracking buoys. The 

nearest tracking pair is ordered as { ,  } meaning that the virtual buoy   is expected to 

be represented by a blob whose column position is less than that of  's. Figure  3.18 

displays the result of applying this constraint to blob pairs which include a specified blob 

(in white in Figure  3.18 (b)). In the example, the specified blob is purposefully selected 

as a blob outside of the bounds so that the effect of the pair constraint can be seen. The 

result is that blob pairs where at least one blob is inside the black vertical bounds of 

Figure  3.18 (a) are rejected. 
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(a) (b) (c) (d) 

Figure  3.18: The Result of the At Least One Inside Constraint. (a) The Original Frame 

with White Solid Boxes Denoting a Tracking Pair and Black Lines Indicating the 

Bounds. (b) The Original Blob Set with a Blob in White Indicating the Specified Blob. 

(c) The Blobs That Can Be in a Pair with the Blob in White. (d) The Blobs That Cannot 

Be in a Pair with the Specified Blob. 

3.6.1.3.3 At Least One Outside 

 At least one of the image buoys in a closer pair will lie outside of the vertical 

frame bounds constructed with the centers of a image buoys associated with an actual 

buoy pair further from the camera. This constraint is valid for the same reason that the At 

Least One Inside constraint is valid. Figure  3.19 shows the vertical bounds mentioned in 

black. This rule is enforced by checking candidate blob pairs against the centers of 

tracking virtual buoys associated with actual buoys further from the camera, or 

                                                                                            

                                                                         

Equation 3.25 

where the blob pair         and the virtual buoy pair        . The values of 

                     and                      are produced using  

                                                                       

Equation 3.26 
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Equation 3.27 

where the tracking pair is ordered as { ,  }.Figure  3.19 shows the result of applying the 

constraint to blob pairs that include a specified blob. In the example, the blob selected to 

be in all pairs is purposefully picked as a blob inside the bounds so that the effect of the 

constraint can be seen. In the example the blobs rejected are the blobs that lie inside the 

vertical frame bounds in Figure  3.19 (a). 

(a) (b) (c) (d) 

Figure  3.19: The Result of Testing Blob Pairs under the At Least One Outside 

Constraint. (a) The Original Frame. (b) Original Blobs with the Specified Blob in White. 

(c) Blobs That Can Be in a Pair with the Specified Blob. (d) Blobs That Cannot Be in a 

Pair with the Specified Blob. 

3.6.1.3.4 Distance Less Than 

 The distance, in pixels, between a pair of image buoys associated with an actual 

buoy pair at a distance from the camera is expected to be less than the pixel distance 

between a pair closer to the camera. If the system is tracking a pair of image buoys closer 

to the camera than the pair currently under consideration, it can use the distance between 

the close pair to filter invalid pairs. This constraint is 

                                          

Equation 3.28 
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where the function         is defined in the Buoy and Blob Set Formulas section. The 

threshold                is obtained from a pair of tracking image buoys closer to the 

camera than the pair the system is processing, or  

                                                        

Equation 3.29 

Figure  3.20 is an example of constraining blob pairs constructed with a specific blob. In 

the example, the blobs rejected as potential pair candidates with the blob in white are the 

blobs whose distance from the white blob is greater than the distance between the buoys 

in the tracking pair. 

(a) (b) (c) (d) 

Figure  3.20: The Result of Applying the Distance Less Than Constraint. (a) The Original 

Frame with a White Solid Line Representing a Tracking Pair and a White Dotted Line 

Indicating the Pair under Consideration. (b) The Original Blob Set with the Blob All 

Pairs Are Built with in White. (c) The Blobs Allowed to Be in a Pair with the Specified 

Blob. (d) The Blobs That Cannot Be in a Pair with the Specified Blob. 

3.6.1.3.5 Distance Greater Than 

 The Distance Greater Than constraint is the opposite of the Distance Less Than 

constraint. It states that an image buoy pair associated with an actual buoy pair closer to 

the camera should have a greater distance between its elements than an image buoy pair 

associated with actual buoy pair further from the camera. The constraint is enforced with 

the rule 
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Equation 3.30 

The threshold                is obtained from a further tracking pair as 

                                                        

Equation 3.31 

Figure  3.21 shows an example of applying the constraint to all pairs built with a specific 

blob. In the example the blobs rejected as potential partners are the blobs whose distance 

from the specified blob is less than the distance between the elements of the tracking pair. 

(a) (b) (c) (d) 

Figure  3.21: The Result of the Distance Greater Than Constraint. (a) The Original Frame 

with a White Dotted Box Denoting the Buoy Pair under Consideration and White Solid 

Boxes Representing a Tracking Pair.(b) The Original Blob Set with the Blob Tested in 

All Pairs in White. (c) The Blobs That Can Be in a Pair with the Specified Blob. (d) The 

Blobs That Cannot Be in a Pair with the Specified Blob. 

3.6.1.3.6 Slope Greater Than 

 The slopes of the lines between members of image buoy pairs are parallel 

regardless of the camera's rotation about the optical axis so long as the boat's position is 

within the bounds set forth in the assumptions section. The system uses tracking image 

buoy pairs to invalidate blob pairs by comparing their pair slopes to one another. If a blob 

pair angle, with respect to the frame rows and columns as axis, is far enough away from 
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the average tracking angle value, then the pair is rejected. To use this constraint, the 

system must first find the average slope of all tracking pairs with the formulas 

           
 

              
  

                            

                             
 

        

   

 

Equation 3.32 

                 
                              

                             
 

        

   

 

Equation 3.33 

Once the system finds the average slope of all tracking pairs, it finds the slope of the line 

joining elements in a blob pair with  

   
                     

                     
 

Equation 3.34 

The positions of blobs are not exact projections of actual buoys so a buffer angle is 

subtracted from the average tracking pair angle to create the threshold bound. 

                                            

Equation 3.35 

Finally, the system uses the threshold to constrain blobs with the formula 

                                        

Equation 3.36 

Figure  3.22 shows an example of firing the constraint. In the example blob pairs created 

with the white blob whose connecting line has an angle less than pad radians below the 

average tracking pair angle are rejected. 
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(a) (b) (c) (d) 

Figure  3.22: The Slope Greater Than Constraint. (a) The Original Frame. The White 

Solid Line Represents the Line Used to Determine the Threshold. The White Dotted Line 

Denotes the Pair under Consideration. (b) The Extracted Blob Set with the Specified Blob 

in White. (c) The Blobs Allowed to Be in a Pair with the Specified Blob by the 

Constraint. (d) The Blobs Rejected by the Constraint. 

3.6.1.3.7 Slope Less Than 

 The Slope Less Than constraint is the other side of the Slope Greater Than 

constraint. The system uses the constraint to reject blobs whose pair angle is too far 

above the average pair slope using the formula 

                                      

Equation 3.37 

The threshold value of                 comes from adding pad radians to the average 

tracking pair angle. 

                                            

Equation 3.38 

Figure  3.23 shows an example of the constraint. In the example the blob pairs rejected 

are the blobs whose angles are too far above the average tracking pair angle. 
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(a) (b) (c) (d) 

Figure  3.23: The Result of Applying the Pair Slope Greater Than Constraint. (a) The 

Original Frame with the Tracking Pair in White Boxes and a Solid White Line. (b) 

Original Blob Set with the Blob Tested in All Pairs in White. (c) The Blobs Allowed to 

Be in Pairs with the Specified Blob under the Constraint. (d) The Blobs Invalidated by 

the Constraint. 

3.6.1.3.8 One Per Lane 

 Since all buoys are near collinear with one of two parallel lines, the system can 

expect that one blob should be on one line, while the other blob is located on the other 

line. In other terms, blobs of an image buoy pair will not exist in the same lane. This 

constraint is enforced by checking the blobs position and determining which lane the blob 

lies in. If both blobs lie in one lane the pair is invalidated. 

                                                              

Equation 3.39 

In the equation,    signafies the left lane and    denotes the right lane. Figure  3.24 shows 

an example of applying the constraint to blob pairs constructed with the blob in white 

from Figure  3.24 (b). The blobs rejected are the blobs whose centers do not lie in the 

opposing lane. 
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(a) 

  

(b) 

 

(c) 

 

(d) 

Figure  3.24: The Result of the One Per Lane Constraint. (a) The Original Frame with 

Tracking Image Buoys in White Boxes and White Lines Drawn in Between. (b) The 

Original Blob Set with the Specific Blob in White. (c) The Blobs Allowed To Be in a Pair 

with the Specified Blob. (d) The Invalid Blobs under the Constraint. 

3.6.2 Scoring Functions 

 After the constraint functions have removed invalid blobs and blob pairs, the 

system uses scoring functions to determine which blob maps to which buoy. A scoring 

function decides which blob is the best fit for a buoy by measuring the blob against some 

metric. Individually the metrics utilized by the system are weak at classifying the strength 

of a blob to buoy mapping. When multiple metrics are combined, however, the scoring 

functions consistently label blobs correctly. In this process either a pair of blobs j, k, or 

m is mapped to a pair of buoys ε, θ, σ or λ or an individual blob d, e, or f is mapped to an 

individual virtual buoy α, β, γ or δ. In a detection or tracking function multiple scoring 

metrics are used to create an overall blob to buoy score          or blob pair to buoy pair 

score         . The overall score is created by adding weighted metric based scoring results. 

The sum of scores formula is 

               
                      

               
   

Equation 3.40 
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 The two types of scoring functions presented can be logically split into two 

groups, order independent and order dependent. The following two sections discuss the 

scoring function used. 

3.6.2.1 Order Independent 

 An order independent scoring function can fire on any blob pair at any time. 

Unlike the order dependent scoring functions, the order independent functions do not 

require that assigned blobs be removed from the set of usable blobs. The order 

independent scoring functions also do not require that the identification module iterate 

through buoys in a nearest to furthest manner. 

3.6.2.1.1 Similar Slope 

 As shown in Figure  3.25 the slope of a line passing through a pair of image buoys 

is about the same as the slope of a line passing through other pairs of image buoys. 

 

Figure  3.25: Pair Lines Drawn between Image Buoy Pairs. 

An intuitive score criteria based this observation is the following: If blobs are in a pair, 

then the slope of the line joining the pair should be the same as the slopes of lines joining 

other pairs of image buoys. Formally this type of scoring is expressed as 
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Equation 3.41 

where          is the average slope of all tracking pairs at time t and    is the slope 

between the blobs in pair j. The min and max functions only ensure that the result is 

between zero and one. If no pairs of virtual buoys are in tracking states, then          is 

set to zero since the camera orientation assumptions state that the camera is upright. After 

scores are computed for every blob pair, the computed scores are normalized by 

comparing each individual score to the maximum score produced by the metric. This 

operation is done with 

               
              

                   
 

Equation 3.42 

where j represents the blob pair whose score is being normalized, and k represents any 

blob pair. Figure  3.26 visually illustrates this type of scoring. Figure  3.26 (a) is the 

original frame where the white line and boxes denote the tracking pair that          

comes from. Figure  3.26 (b) displays the valid blob set to be scored in white and the 

unusable blobs in gray. Figure  3.26 (c) shows the scores of valid blob pairs. 
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(a) (b) (c) 

Figure  3.26: The Output of the Similar Slope Scoring Function. (a) The Original Image 

with a Solid White Line Denoting the Average Slope Line. (b) The Blobs To Be Scored 

in White and Unusable Blobs in Gray. (c) The Result of Scoring Valid Blob Pairs with 

the Metric 

3.6.2.1.2 Similar Area 

 Actual buoys of the same pair should be at about the same distance from the 

image sensor. Since actual buoys have the same dimensions, an intuitive scoring metric 

based off of this observation is: If blobs are representatives of image buoys from the 

same pair, then the blobs should have similar areas. The statement is turned into a scoring 

function with 

                
                  

                  
 

Equation 3.43 

where it is assumed that the predicate           is true and blob pair        . The 

score for a blob pair j then is normalized against all other pairs by using a method similar 

to Equation 3.42. Figure  3.27 shows the result of this type of scoring metric. The blob 

pairs the receive the best scores are the pairs whose elements are closest to the same size. 
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(a) (b) (c) 

Figure  3.27: The Output of the Similar Area Scoring Function. (a) The Original Frame. 

(b) The Extracted Blob Set with Usable Blobs in White and Unusable Blobs in Gray. (c) 

The Scores Assigned to Valid Blob Pairs Using the Metric. 

3.6.2.1.3 Similar Center 

 The pair scoring schema can be further used to track buoys through frame 

sequences by comparing a blob in the current frame against a tracking virtual buoy's blob 

from the previous frame. If it is assumed that d is the tracking virtual buoy's previously 

assigned blob,               then the score computed for cross-temporal pair j = 

{d, e} is 

                    
 

           
 

Equation 3.44 

The score is normalized against all cross-temporal blob pairs using the function 

                    
                        

                   

 

Equation 3.45 

where k is any blob pair and j is the pair being normalized. Note that the score applies to 

individual buoys instead of pairs of buoys. How to combine individual scores with pair 

scores is discussed in the Track Pair algorithm section. Figure  3.28 displays the results of 

scoring an individual blob from the previous frame against blobs in the current frame.  
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(a) (b) (c) 

Figure  3.28: Result of the Similar Center Scoring Metric. (a) The Original Frame with a 

White Box Representing the Blob in the Previous Frame. (b) The Extracted Blobs from 

the Original Frame in Grey with the Previous Frame Blob in White. (c) The Scores for 

Some of the Blobs Using the Metric. 

3.6.2.2 Order Dependent 

 The Order Dependent scoring functions require that the module map buoy pairs in 

the order of nearest pair to furthest pair from the camera. They also require that the 

module remove an assigned pair directly after selection. The order dependent scoring 

functions use perspective projection and the fact that the nearest buoy pair is under 

examination to generate the best mapping scores. Under the condition that buoy pairs are 

scored from nearest to furthest, a pair of buoys has the following properties when 

compared to other valid pairs: (1) its elements are the furthest apart, (2) its elements are 

the lowest in the frame, and (3) its elements are the largest in the frame. 

3.6.2.2.1 Widest Pair 

 The pair of image buoys closest to the camera, and therefore the corresponding 

blobs, should be the widest pair due to perspective projection. The score based on the 

widest pair metric is generated for each blob pair j using 

                        

Equation 3.46 
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where         is the distance formula. The scores produced are normalized against the 

maximum score in a manner similar to that of Equation 3.42. Figure  3.29 illustrates the 

result of this type of scoring metric. Figure  3.29 (a) is the original frame with a pair of 

tracking buoys in white boxes with a white line drawn in between. Figure  3.29 (b) is the 

usable blob set for the image buoy pair following the tracking pair. The white blobs are 

the usable blobs while the grey blobs are the unusable blobs. Figure  3.29 (c) is the result 

of scoring each of the valid blob pairs using the widest pair metric. 

(a) (b) (c) 

Figure  3.29: The Output of the Widest Pair Scoring Function. (a) The Original Frame. 

(b) The Usable Blobs in White and Unusable Blobs in Gray (c) The Scores Produced 

Using the Metric. 

3.6.2.2.2 Lowest Pair 

 If the camera is upright and facing forward, then the nearest pair of actual buoys 

should appear as the lowest pair of image buoys in the frame. A scoring metric based on 

this observation gives pairs of blobs with lower positions in the frame a higher score. 

Assuming the predicate           is true and blob pair        , the score for pair j is 

computed as 

                                       

Equation 3.47 
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and normalized against all other pairs with a method similar to Equation 3.42. Figure  

3.30 (a) shows the original frame where the scoring function is being applied to the pair 

of buoys following the tracking image buoy pairs. Figure  3.30 (b) shows the usable blobs 

in white and the unusable blobs in gray. Figure  3.30 (c) displays the scoring of valid blob 

pairs using the lowest pair scoring metric. 

(a) (b) (c) 

Figure  3.30: The Output of the Lowest Pair Scoring Metric. (a) The Original Frame. (b) 

The Extracted Blobs with Usable Blobs in White and Unusable Blobs in Gray. (c) The 

Scores Assigned to Valid Blob Pairs Using the Metric. 

3.6.2.2.3 Largest Pair 

 The pair of actual buoys closest to the optical sensor should appear as the largest 

pair of image buoys due to perspective projection and the assumption that all buoys are 

nearly the same size. This observation is utilized as a scoring metric by use of the 

function 

                               

Equation 3.48 

The score                  is normalized using a method similar to Equation 3.42. Figure  

3.31 illustrates the scoring metric. Figure  3.31 (a) is the original frame where the white 

boxes and lines represent tracking pairs. Figure  3.31 (b) shows the usable blob set for the 
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image buoy following the furthest tracking pair. Figure  3.31 (c) displays the scores 

assigned to valid blob pairs using the largest pair metric. 

(a) (b) (c) 

Figure  3.31: The Output of the Largest Pair Scoring Function. (a) The Original Frame . 

(b) The Blobs Extracted from the Original Frame with Valid Blobs in White and Invalid 

Blobs in Grey. (c) The Scores Produced with the Metric. 

3.6.3 Updating A Usable Blob Set 

 The system would not work correctly if a single blob could be assigned to 

multiple buoys. If this were the case, then the proposed constraint and scoring process 

would map the same highest scoring blob to every buoy. To avoid this scenario, a blob 

assigned to a buoy is removed from the set of usable blobs before another buoy is 

processed. Blob set updating occurs after blob assignment and after the virtual buoy's 

state is updated using the freshly assigned blob. The blob is removed only if the buoy is 

in a tracking, partially occluded, or search state. Formally the rule for blob set updating is 

                                        

                                                                          

Equation 3.49 

where   is the next pair of virtual buoys to be processed and pair σ is the virtual buoy 

pair just processed. This function usually fires twice, once for each virtual buoy in the 
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pair σ. Some of the tracking and detection algorithms work one buoy at a time instead of 

buoy pair at a time. In this case the blob set updating function is 

                                       

                                                                          

Equation 3.50  

where   is the next buoy to be examined. Again, the updating procedure occurs after blob 

assignment and buoy state updating . 

3.6.4 Detection And Tracking Algorithms 

 The system uses two detection algorithms and two tracking algorithms as a means 

of labeling blobs. Two versions of each type of algorithm exist to satisfy the necessity for 

a single buoy and buoy pair version. All of the four algorithms are similar. The 

differences between them are related to the system's need to respond to special cases of 

buoy detection and tracking. In all situations, the algorithm to be executed is selected 

specifically to incorporate the maxim amount of available information into blob labeling. 

The remainder of this section discusses the four algorithms and the conditions that 

prompt their execution. 

3.6.4.1 Detect Pair 

 The system uses the detect pair procedure when it is processing a pair of virtual 

buoys that both exist in the search state. The pair detection algorithm is the most 

straightforward of the four detection and tracking methods. Its simplicity stems from the 

fact that virtual buoys only transition out of the search state in pairs. Due to this 

transition, the pair detection algorithm's only goal is to find and report the highest ranking 

blob pair. The pseudocode for the algorithm is the following:  
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      P    ε     

1.  α  β    ε 

2.  l  S      α  l  S      

3.  l  S      β  l  S      

4. validSingles0 = constrainSingles(blobSet0) 

5. validSingles1 = constrainSingles (blobSet1) 

6. pairs = permutePairs(validSingles0, validSingles1) 

7. validPairs = constrainPairs(pairs) 

8. pairScores = scorePairs(validPairs) 

9. winningPair = getHighestRank(pairScores, validPairs) 

In the pseudocode, the constrainSingles(  ) function from lines 4 and 5 uses constraints 

mentioned in the Single Blob Constraints section. The function permutePairs(  ) on line 6 

constructs every possible blob pair under the restriction that the first element in the pair is 

from the first list of valid blobs, and the second element in the pair is from the second list 

of valid blobs. This method of pair generation is necessary to accommodate pair building 

with two unique blob sets.  

 The function constrainPairs(  ) constrains blob pairs with constraints mentioned in 

the Blob Pair Constraints section. The blobs are scored based on the scoring functions 

mentioned in the Scoring Functions section. The getHighestRank(  ) function returns the 

maximum scoring blob pair. If multiple blob pairs tie for the highest score, then one is 

selected at random. If no valid blob pairs are present for scoring, meaning all pairs were 

removed by the constrainPairs(  ) function, then the null blob pair is returned by the 

detection function. The detect pair function's placement in relation to the data structures, 

state updating, and blob set updating functions is shown in Figure  3.32. 
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Figure  3.32: The Detect Pair Function's Placement in Relation to Other Functions. 

3.6.4.2 Track Pair 

 The track pair function is executed if both elements of a virtual buoy pair are in 

the track state. The track pair procedure is very similar to the detect pair function. The 

difference between the track pair function and the detect pair function is the addition of 

scoring and constraints based on virtual buoy's previous blobs. Furthermore, there is extra 

logic to deal with all possible contingencies. 

 The basic idea behind the function is to first constrain and score blobs 

individually based on comparisons to the virtual buoy's previously assigned blob. If both 

sets of blobs are reduced to the empty set, then the function returns the null blob pair. If, 

after individual blob set constraints, one of the blob sets has elements while the other is 

empty, only the highest scoring blob from the populated list is returned. Finally, if both 

blob lists are populated, then the blob pairs are built and scored. The pseudocode for the 

track pair function is 
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trackPair( , t) 

1.  α  β      

2. blobSet0 = α  l  S      

3.  l  S      β  l  S      

4. validSingles0 = constrainSingles (blobSet0) //only use locked constraints 

5. validSingles1 = constrainSingles (blobSet1) 

6. scores0 = scoreSingles(validSingles0) //only use scoring functions meant to test blobs 

7. scores1 = scoreSingles(validSingles1) //against virtual buoy blobs from the last frame 

8. if(validSingles0. isEmpty && validSingles1. isEmpty) 

9.  winningPair = [nullSingle, nullSingle] 

10. else if(!validSingles0. isEmpty && validSingles1. isEmpty) 

11.  winningSingle = getHighestRank(scores0, validSingles0) 

12.  winningPair = [winningSingle,nullSingle] 

13. else if(validSingles0.isEmpty && !validSingles1.isEmpty) 

14.  winningSingle = getHighestRank(scores1, validSingles1) 

15.  winningPair = [nullSingle, winningSingle] 

16. else  //both lists of valid blobs have at least one element. 

17.  pairs = permutePairs(validSingles0, validSingles1) 

18.  validPairs = constrainPairs(pairs) 

19.  if(validPairs.isEmpty) //if no valid pairs exist, return the highest ranking individual 

20.   allSingleScores = merge(scores0,scores1) 

21.   allValidSingles = merge(validSingles0, validSingles1) 

22.   winningSingle = getHighestRank(allSingleScores,allValidSingles) 

23.   winningPair = makePair(winningSingle.side, winningSinle) 

24.  else 

25.   pairScores = scorePairs(validPairs) 

26.   extendedPairScores = addSingleScores(pairScores,leftScores,rightScores) 
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27.   winningPair = getHighestRank(extendedPairScores) 

In the pseudocode, the function addSingleScores(  ) adds the individual blob scores to the 

blob pairs containing the individual blobs. The pseudocode  for this function is 

addSingleScores (pairScores, scores0, scores1) 

1. for i = 1:pairScores.size() 

2.  [single0,single1] = pairScores.blobs[i] 

3.  singleScore0 = getScore(scores0,single0) 

4.  singelSccore1 = getScore(scores1,single1) 

5.  pairScore = pairScores[i] 

6.  newScore = pairScore* singleScore0*singelSccore1 

7.  extendedScores[i] = newScore 

The track pair function is executed relative to other updating functions at a time similar to 

the execution time of the detect pair function. Figure  3.33 shows the track pair functions 

placement with respect to buoy state updating functions and blob set updating functions. 
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Figure  3.33: The Placement of the Track Pair Function in Relation to Other Functions 

and Data Structures. 
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3.6.4.3 Detect Single 

 The system executes the Detect Single buoy function when a pair of virtual buoys 

exists in the occluded and tracking state. In this case, the function uses as much 

information from the tracking buoy as possible when searching for the occluded buoy. 

First, it checks the state of the partner virtual buoy. If the other buoy is in a tracking state, 

then pairs are generated where at least one of the blobs is the tracking blob representing 

the tracking buoy. These pairs are then constrained and scored normally using pair 

constraints and pair scoring functions. The scores are ordered and the winning blob pair 

contains the tracking buoy's blob and the correct representation of the occluded blob. The 

pseudocode for the function is 

detectSingle( , currentSide , t) 

1.  α  β    ε 

2. if(currentSide == port) 

3.  γ   α , δ   β    γ            u l  u y     fu           u         

4. else 

5.  γ   β, δ   α 

6.  l  S      γ  l  S      

7. blobSet1 = δ  l      // blob set is one element, the partner buoy's selected blob 

8.  f           γ     

9.  validBlobs0 = constrainSingles(blobSet0) 

10.  validBlobs1 = constrainSingles(blobSet1) 

11.  pairs = permutePairs(validBlobs0,validBlobs1) 

12.  validPairs = constrainPairs(pairs) 

13.  pairScores = scorePairs(validPairs) 

14.  winningPair = getHighesRank(pairScores, validPairs) 
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15.  winningSingle = getSingleFromSide(winningPair,currentSide) 

16. else //the other virtual buoy is not in a tracking state, nothing can be done 

17.  winningSingle = nullSingle 

The Placement of the detect single function in relation to other components of the system 

is shown in Figure  3.34. The function will always be executed after the track single 

function has been executed due to its reliance on a partner buoy's current information. 
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Figure  3.34 The Detect Single Function's Placement in Relation to other Functions When 

Tracking Then Detecting. 

3.6.4.4 Track Single 

 The system uses the Track Single function when one of two conditions are met. 

First, if one virtual buoy in a pair has been marked as occluded, from the previous frame, 

and the other is tracking, then the Track Single function is executed in the hopes that the 

tracking buoy can still be found in the current frame. Second, if one virtual buoy in the 

pair has become partially occluded, then the system uses the Track Single function twice 

in a row instead of the Track Pair function. This approach is used in order to handle the 

case in which the partially occluded buoy has become occluded. The pseudocode for the 

function is 
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trackSingle(α, t) 

1. blobSet0 = α  l  S t(t) 

2.  l  S      α  l    -1) //the other blob set is the previous frame blob. 

3. validBlobs0 = constrainSingles(blobSet0) 

4. validBlobs1 = constrainSingles(blobSet1) 

5. pairs = permutePairs(validBlobs0,validBlobs1) 

6. pairScores = scorePairs(validPairs) //only cross-temporal scoring functions are used. 

7. winningPair = getHighesRank(pairScores, validPairs) 

8. winningSingle = winningPair[0] 

The placement of the track single function in the first aforementioned case is shown in 

Figure  3.34. The placement for the second case is shown in Figure  3.35. 
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Figure  3.35: The Track Single Function's Placement When Tracking Two Buoys 

Individually. 

3.7 Validation of the labeling system 

 Validation of the identification module can be found in the Control chapter of the 

thesis. In the Control chapter, a full system experiment is presented in which the entire 

system operates as intended. Real system operation can be seen as evidence that the ideas 

presented in the Identification chapter correctly fit blobs to buoys. 
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3.8 Future Research 

 The generate and constrain method presented uses many intuitive and 

mathematically simple constraint and scoring metrics. Improvement to the module can be 

made by using more complex constraint and scoring metrics. An example of such a 

constraint is one that uses a predicted pose estimate, most likely from a Kalman filter, to 

estimate the position of buoys in images. 

 Outside of what is available to the current system, it is also important to consider 

augmenting the system with other sensors such as a GNSS receiver, accelerometer, 

gyroscope, or digital compass. If the accelerometer, gyroscope and digital compass were 

calibrated with the system's camera such that the camera's orientation and height above 

water could be determined from non-camera sensor data, and the planar position of the 

camera was found via a GNSS, then it would be possible to estimate the position of 

buoys in incoming frames. The integration of more sensors could improve the robustness 

and possibly the processing time requirement of the identification module. 
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4 POSE ESTIMATION 

4.1 Introduction 

 The two modules presented so far will turn a frame into a set of blobs and a set of 

correspondences between those blobs and buoys in the world. The task now is to use the 

blob-buoy mapping to estimate the position and orientation of the camera. 

4.1.1 Formal Statement of the Problem 

 The pose estimation module is given three pieces of information from which it 

needs to find camera pose: (1) a set of image coordinates extracted from the blobs 

produced by the identification module, (2) a set of world coordinates, and (3) a mapping 

between image coordinates and world coordinates. Using these three pieces of 

information, the pose estimation module needs to estimate the position and orientation, in 

reference to the world, of the camera when the original frame was captured. The generic 

version of this type of problem is often called the Perspective-n-Point (PnP) problem 

[39]. 

 The pose estimation module's problem can be viewed as a degenerate case of the 

PnP problem. The problem is degenerate due to its extra constraints on both the 

configuration of object coordinates as well as the allowable camera positions and 

orientations. In terms of the object coordinate configuration, the presented problem has 

four extra constraints. First, all object coordinates are coplanar. Second, all object 

coordinates lie on one of two parallel lines. Third every object coordinate a on line l1 has 

a corresponding "pair" coordinate b on l2. b is located at the intersection of l2 and a line 

that perpendicularly intersects l1 at a. Finally, the distance between two points on the 
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same line,          , is significantly larger than the distance between pair points on opposing 

lines,           . Figure  4.1 shows an example of this type of configuration. 

L1

L2

c a

b

d

 

Figure  4.1: A Valid Point Configuration for the Pose Estimation Module. 

It is important to note that the object coordinate configuration constraints do not include 

the constraint                 . 

 The camera orientation and position constraints for the degenerate version of the 

problem are similar to those that have been expressed in other chapters of this thesis. 

These constraints are the following: (1) the camera is located between line l1 and l2,  (2) 

the camera's optical axis is near parallel to l1 and l2, and (3) the distance between the 

camera and the object coordinate plane is nonzero and less than the distance           . 

 Beyond the goal of finding a pose estimate for the degenerate PnP problem 

presented above, the pose estimate module must also make its computations in a minimal 

amount of time and produce robust and consistent results. The time requirement is 

necessary to meet real-time constraints and to allow other modules more processing time. 

The robustness expectation is necessary so that post processing methods that detect 

invalid pose estimates can be avoided. 

4.1.2 Significance of the Research 

 Pose estimation is a fundamental problem in computer vision. Many applications 

require some form of camera pose estimation in their processing pipeline so that the 

systems can interact with the world. This chapter contributes to the breadth of knowledge 
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associated with pose estimation in two ways. First, it introduces two new methods 

designed specifically for the degenerate PnP problem presented. Second, it provides a 

quantitative, problem specific analysis of both preexisting methods and proposed 

methods. 

4.1.3 Notation 

 Before presenting pose estimation methods, the common notation used throughout 

the rest of the chapter must be presented. The ideas and important concepts behind object, 

camera, and image space, as well as their relationships will also be discussed. In general, 

a lowercase bold letter such as "v" represents a column vector. A scalar element within 

vector v is expressed with subscripts such as "  ". An uppercase bold letter such as "A" 

represents a matrix. A matrix is also indexed with subscripts such as "    " denoting the 

a'th row and b'th column of the matrix. Any superscript on a scalar, vector, or matrix 

usually represents the space in which the value resides. For example, "  " represents 

vector element p which is a member of image space. Superscripts are also sometimes 

concatenated with other letters to denote special elements within the space. For example, 

"   " may represent a vanishing image coordinate. The superscript "T" such as that in 

"  " denotes the transpose operation. Any other special points, or spaces will be 

introduced prior to their use. 

4.1.3.1 Object Space and Camera Space 

 In all of the following pose estimation methods, there are two 3D coordinate 

systems. These are the camera coordinate system and the object coordinate system. 

Elements of these coordinate systems are sometimes referred to as elements of "object 

space" or "camera space." Sometime the term "world" is used to describe object space. 
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The interchangeability of these two words stems from the fact that the goal of the pose 

estimation module is to calculate the pose relation between the camera and a slalom 

course object, an object that is anchored to the world. In general, the object system has its 

origin at some user or method defined coordinate and the camera coordinate system has 

its origin at the camera's center of projection   . 

 Any coordinate in the object coordinate system is denoted by   
 . The superscript 

"o" denotes that the coordinate is an object space coordinate and the subscript "a" indexes 

the coordinate. The object coordinate   
  has three scalar components   

 ,   
 , and   

 . 

Any coordinate in the camera coordinate system is denoted as   
 . Synonymous with 

object coordinates, the superscript "c" denotes that a coordinate is a camera space 

coordinate and the subscript "a" indexes the coordinate.   
  has 3D components   

 ,   
 , 

and   
 . 

4.1.3.2 Image Space 

 Camera space an object space represent 3D coordinates in the world. Image 

coordinate are best expressed as either 2D coordinates or 3D homogeneous coordinates. 

All image coordinates are expressed with a superscript "i" which represent membership 

to image space, and a subscript "a" which indexes the element. In general, any image 

coordinate   
  has two   

     
    

  
 
, or in the homogeneous case three,   

  

    
     

    
 
, components. 

 One important image coordinate is the principal point of the image plane. This is 

the point at which the optical axis of the camera lens intersects the image plane. This 
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point is referenced as              
 
. Another important image space term that is not 

an image coordinate but a value expressed in image space units is the focal length   . 

4.1.4 Fundamental Conversions 

 With some notation now established, the relationship between object, camera, and 

image space will be discussed. Transformations from one space to another will be 

presented and any needed elements involved with the transformations will be defined. 

4.1.4.1 The Relationship between Object Space and Camera Space 

 The relationship between the camera coordinate system and the object coordinate 

system can be described with equations that model rigid transformations. A rigid 

transformation maps one space to another and ensures that the distances between 

elements are preserved. A rigid transform in 3D requires three rotation and three 

translation elements.  

 Rotation is often designated by the rotation matrix R. The rotation matrix R is 

equivalent to the     matrix 

   

         

         

         

  

Equation 4.1 

where each row of R equivalent to the unit vectors   ,   , and   . The row vectors in R are 

orthonormal vectors that express the direction of the camera coordinate system's x-, y-, 

and z-axis in object space. If the desired that rotation be in terms of Euler angles rather 

than unit vectors, methods such as [40] can be used to convert between the two 

representations. 
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 Translation is denoted by the three element vector t. The pose estimation methods 

presented further in this thesis will produce two types of translation vectors. The first is 

the translation vector   . It represents the translation of a camera expressed in the object 

coordinate system. It has object space components   ,   , and   . The second type of 

translation vector is   . It signifies the translation of the object in the camera coordinate 

system. The vector    has camera space components   ,   , and   . A illustration of each 

type of translation vector is depicted in Figure  4.2. 
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(b) 

Figure  4.2: An Illustration of the Components That Form the Two Types of Translation 

Vectors from Two 3D Axis which Differ by an X-Z Translation and Rotation about the 

Y-Axis. (a) The t
c
 Vector Components. (b) The t

o
 Vector Components. 

 The rigid transformation equations that use each type of translation vector are the 

following:  

           

Equation 4.2 

             

Equation 4.3 
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 Both types of translation vectors are useful, however, the type used in Equation 

4.2,   , is not desirable for a system that requires the position of the camera expressed in 

world coordinates. The two types of translation vectors    and    are related by the 

rotation matrix R. The relation between    and    is 

           

Equation 4.4 

4.1.4.2 The Relationship between Camera Space and Image Space 

 The classic pinhole camera model is used to model the system's camera. For all of 

the following pose estimation methods, it is assumed that the focal length is known and 

the camera is intrinsically calibrated. With this assumption, the relationship between 

camera space and image space can be described with perspective projection or 

  
  

 

  
 
   

    
  

 

  
 
   

  

Equation 4.5 

The pinhole model of the camera can be seen in Figure  4.3. 
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Figure  4.3: Pinhole Camera Model. Object Coordinates   
 ,   

  and   
  Project onto the 

Image Plane I by Perspective Projection to Points   
 ,   

  and   
  Respectively. 

4.2 Review of Related Literature 

 The machine vision community has dealt with the problem of calculating camera 

pose numerous times. Some methods are for the generic case [41,42,43] and some 

methods are specially built for degenerate cases of the problem. These include methods 

for coplanar points [44], methods that rely on vanishing geometry[45,46,47], and 

methods which look for a specified number of point correspondences [48,49].With that 

being said, the problem faced by the system does not appear to have any specifically 

tailored methods associated with it. In the subsequent text, tested methods, or methods 

that significantly contribute to the two proposed methods are reviewed in depth. 
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4.2.1 Iterative Methods 

4.2.1.1 Posit Coplanar 

 The posit algorithm [41,44] is an iterative algorithm that initially estimates object 

pose by making assumptions about the depth of object coordinates along the optical axis 

of the camera. The pose of the object is estimated with assumed values, and the resulting 

estimate provides improved assumption values. The algorithm repeats and the pose 

estimate parameters often converge on their true values. 

Oc i
j

Wo

Wo

p

k

0

a

i0

iPa

Po

No
a

a

ia

I

G

i

i
i

i

 

Figure  4.4: Posit Diagram. The World Coordinates   
  and   

 , Their Image Coordinates 

  
  and   

 , the Scaled Orthographic Projection   
  of   

 , and Its Corresponding Image 

Point    
 . 
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 A pose estimation problem interpreted by the posit algorithm is described as 

follows: An object has a set of n known object coordinates {  
 ,   

 , ...,   
 } that 

correspond to camera coordinates {  
 ,   

 , ...,   
  } and image coordinates {  

 ,   
 , ..., 

  
 }. The object coordinate   

  is designated as the "reference point" of the object 

coordinate system. The translation vector computed by the algorithm,   , is the camera 

space coordinates of the reference point. The algorithm begins by assuming that an image 

coordinate   
  is in fact the scaled orthographic projection image point    

 . As seen in 

Figure  4.4, the point    
  is the perspective projection of point   

  onto the image plane I. 

  
  is the orthographic projection of   

  onto the plane G. The plane G is a plane that lies 

at the same optical depth,   
   of reference point   

  and is parallel to the image plane I. 

Any orthographically projected point   
  in camera coordinates is    

    
    

   .  

 The authors of the posit algorithm develop two functions for generating the 

images,    
 , of the orthographic points,   

 . The two equations correspond to the left and 

right sides of the equations in Equation 4.6. 

  
   

               
  

  
                   

   
               

  

  
                 

Equation 4.6 

The term    in these equations is  

    
 

  
    

   
                 

Equation 4.7 

In Equation 4.7 the " " operator expresses the dot product between the two 3D vectors. 

For an in depth proof and derivation of these equations reference [41,44]. The equations 
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are manipulated into a form that allows all point correspondences to create a system of, 

usually overdetermined, linear equations.  

   
 

  
        

 

  
     

Equation 4.8 

  
   

                  
          

    
   

                  
          

  

Equation 4.9 

  
   

                     
   

                   

Equation 4.10 

            

Equation 4.11 

The vectors   and   are solved for by finding the pseudoinverse of A. The author 

recommends that the pseudoinverse is found with singular value decomposition [50]. 

              

Equation 4.12 

 Once the components of vectors I and J have been found, the rotation components 

  , and    can be extracted by dividing the solved I and J vectors by the scaling factor  
 

  
  . 

This operation is equivalent to taking the norm of I or J.  The orthonormal vector    is 

found with the cross product as         . The newly equated    and   
  can be used to 

update the value of    in Equation 4.7. Running the algorithm again with a new value of 

   yields improved estimates. 
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 Once the algorithm has converged, the rotation matrix components will already be 

present in the orthonormal vectors   ,   , and    . The values of the translation vector   , 

equivalent to    
    

    
   , come from Equation 4.13, Equation 4.14, and the scaling 

factor  
 

  
  . 

  
    

  
  
 

 
    

    
  

  
 

 
  

Equation 4.13 

  
  

 

   
 

 

   
 

Equation 4.14 

 The explanation presented so far is for the version of POSIT that computes a pose 

estimate with non-coplanar object coordinates. Extra steps must be taken in order to 

compute pose with coplanar coordinates. It is first necessary to notice that the vectors I 

and J computed in the POSIT algorithm with coplanar points lead to vectors that, if 

placed such that their tails lie on   
 , point to some point Q lying within the same plane 

as the object points. It is also necessary to note that the true values of I and J are any 

vectors whose projection onto the object plane is similar to   
            . 

 In order to find the correct I and J, the vectors are first rewritten as 

                  

Equation 4.15 

where    and    are the true vectors. Using the new equations, the following two constraints 

are imposed: (1) the lengths of    and    must be the same, (2)    and    must be 

perpendicular. These constraints lead to the two equations 
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Equation 4.16 

                

Equation 4.17 

Using these two equations, it is possible to find the correct values of    and    using 

Equation 4.18. 

                    

Equation 4.18 

Terms in Equation 4.18 can be substituted with the terms of Equation 4.16 and Equation 

4.17 so that Equation 4.18 becomes 

                            

Equation 4.19 

Since   and   are known,    and    are found as the real and imaginary parts of the roots of 

Equation 4.19. For the complete method to derive the roots as well as a proof, reference 

[44]. 

4.2.1.2 Levenberg-Marquardt Optimization 

 The problem of estimating camera pose can be interpreted as a nonlinear least 

squares optimization problem. In this type of interpretation, the extrinsic parameter 

configuration that yields minimum reprojection errors provides the ideal pose estimate. 

Before revealing how a pose estimation problem is translated into a nonlinear least 

squares problem, the basics of nonlinear least squares problems will be examined. 

Nonlinear least squares problems have the form 
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Equation 4.20 

and the goal of the optimization operation is to minimize the scalar value       . In 

Equation 4.20, each function          is known as a residual function and maps 

adjustable model parameters        and given values    to a scalar error value. In most 

cases,    contains static parameters and observation pairs for which the adjustable 

parameters are being tuned to fit. A residual function          takes the form 

                        

Equation 4.21 

where      and      are components of the observed pair and           is a function 

that uses adjustable model parameters, static parameters, and one component of the 

observed pair to generate a parameter dependent estimate of the other component in the 

observed pair. The difference between the observed value and the parameter dependent 

value represents how well the adjustable model parameters fit the observed pair. 

 Methods for minimizing Equation 4.20 most often depend on some derived 

components of the original nonlinear least squares problem. One of the derived 

component necessary is the gradient of a function. A gradient of a function is a matrix of 

partial derivatives of the function with respect to parameter components of that function.  

It applies to functions that map      . The gradient of a residual function          is 

           
         

   

 
         

   

  

Equation 4.22 
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Like the gradient, the hessian of a function applies to functions that map      and is a 

matrix of second order partial derivatives. The hessian of the error function        

would be something like 

          

 
 
 
 
 
 
         

      

 
         

      

  
         

      

 
         

       
 
 
 
 
 

 

Equation 4.23 

 Building on the gradient and hessian, the last derived component needed for 

nonlinear optimization is the Jacobian of a vector of functions. A Jacobian is like a 

gradient, but applies to functions that map      . If the residual functions of the 

original nonlinear least squares problem are combined into one vector r 

        
        

 
        

  

Equation 4.24 

then the Jacobian of that matrix is the matrix of partials of each residual function. 

       

 
 
 
 
 
 
         

   

 
         

   

  
         

   

 
         

    
 
 
 
 
 

 

Equation 4.25 

 With a basis of nonlinear least squares problems and knowledge of some of the 

derived components, the Levenberg-Marquardt algorithm can be discussed. The 

Levenberg-Marquardt optimization algorithm is a means to find the parameter setting p 

that minimizes the scalar error       . It is composed of a mixture of gradient descent 
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and Gauss-Newton optimization. The Levenberg-Marquardt algorithm uses the update 

equation 

                                  
  

         

Equation 4.26 

where "b" indexes the iteration number and the function         represents a zeroed 

matrix whose dimensions are the same as A, and whose diagonal elements are the same 

as the diagonal elements of A. The parameter   of the update equation controls the 

behavior of the update method. If   is large, then the update equation acts like gradient 

descent, if   is small then the update equation acts like Gauss-Newton Iteration [51,52]. 

The value of   is dynamically controlled by the algorithm with the following pseudocode: 

1.                                   
  

          

2.                 

3.             

4.                 

5.      

6.    
 

  
                            

One detail when thinking about computational cost of the algorithm is the cost evaluating 

the hessian of a function. Like the Gauss-Newton method, the hessian is estimated with 

the Jacobian as                 producing the optimized update equation: 

                                                
  

                

Equation 4.27 
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A pose estimation problem can be translated into a nonlinear least squares problem if the 

value        is set to represent reprojection errors. In such an interpretation, the residual 

functions would take the form 

               
         

                       
   

Equation 4.28 

               
         

                       
   

Equation 4.29 

where       
  and       

  are the components of the observed image coordinates. The 

function                     
   would look like 

 
      

 

      
   

 
 
 
 
 
             

        
        

  

         
        

        
 

             
        

        
  

         
        

        
  

 
 
 
 

 

Equation 4.30 

which provides image coordinates corresponding to a rigid transformation and 

perspective projection of known coordinate   
 . This is only an example of how the LM 

algorithm works. Another example can be found in [53] and in the end, the OpenCV 

2.4.8 implementation of the algorithm for pose estimation is used. 

4.2.2 Linear Complexity 

4.2.2.1 Efficient Perspective-n-Point Camera Pose Estimation 

 One of the goals for the overall system is real-time performance. In pursuit of this 

goal it is necessary to examine pose estimation algorithms that have bounds on their 

complexity. One such method is the EPnP algorithm [42], which has an O(n) bound. In 
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the subsequent sections, it is discussed in detail as a potential solution to the pose 

estimation problem. 

 The first step in the EPnP algorithm involves generating coordinates, in object 

space, for four virtual control points. The locations of the control points are selected such 

that one point is positioned at the centroid of the incoming object coordinate set, and the 

other three points, in combination with the centroid point, form a basis for 3D object 

space that aligns with the object system axis. Once the positions of the four control points 

have been generated, the weighting factors that express each object coordinate in terms of 

the control points are selected such that Equation 4.31 and Equation 4.32 are satisfied. 

  
        

 

 

   

 

Equation 4.31 

    

 

   

   

Equation 4.32 

 Equation 4.31 and Equation 4.32 state that all object coordinates can be expressed 

as a mixture of the four control points. One important detail to notice about the mixing 

weights,    , in Equation 4.31 and Equation 4.32 is that the same mixing weights that 

express object coordinates can also express camera coordinates, but only if the camera 

space locations of the virtual control points are known. This is expressed in Equation 

4.33. 
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Equation 4.33 

 Again, determining the position in camera space of object coordinates is only 

possible if the camera coordinates of the four control points,   
 , are known. From this 

point, it can be seen that the pose estimation problem now lies in determining the location 

of the control points in camera space. Once this information is known, 3D fitting methods 

such as [54,55,56] can recover the rotation and translation values necessary for a 

complete camera pose estimate. 

 The authors find that known image coordinates, object coordinate weights, and 

the unknown location of the control points are related by Equation 4.34 and Equation 

4.35. 

        
       

     
    

   

 

   

 

Equation 4.34 

        
       

     
    

   

 

   

 

Equation 4.35 

In these two equations each     is the known mixing weight determined in Equation 

4.31,    and    are the known focal lengths,     and     are the known image coordinates 

of the principal point, and   
  and   

  are the known image coordinates corresponding to 

object coordinate   
 . With some manipulation, the two equations can be reformed into a 

linear system which looks like Equation 4.36. 
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Equation 4.36 

In more detail, Equation 4.36's terms can be expanded to those in Equation 4.37. 

 
 
 
 
 
 
           

     
  

           
     

  
   
 
    

           
     

  

           
     

  

 
           

     
  

           
     

  

     
        

           
     

  

           
     

   
 
 
 
 
 

 
 
 
 
 
 
 
  

 

  
 

  
 

 
  

 

  
 

  
  
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

  

Equation 4.37 

 From Equation 4.34 to Equation 4.37 it can be seen that the vector x is a 12x1 

vector equivalent to    
     

     
     

  , where the semicolon denotes row concatenation. 

The true value of the camera space positions of the control points is therefore somewhere 

in the null space of M. The null space of M can be efficiently found as the span of the 

eigenvectors corresponding to zeroed eigenvalues of the matrix    .  

 In practice there may be anywhere from one to four null eigenvectors of    . 

The correct value of x is therefore some linear combination of the null eigenvectors as in 

Equation 4.38. 

       

  

   

 

Equation 4.38 

In Equation 4.38,    is the number of null eigenvectors of    ,    is the d'th null 

eigenvector, and the values of    are the constants that generate the correct linear 

combination needed to find x. 
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 As said before, there are anywhere from one to four vectors that represent the null 

space of M. The authors of EPnP examine each of the four cases. They derive methods of 

finding the correct values of each    in each of the four cases. The simple case is that in 

which the number of null eigenvectors is just one. In this case the vector x is found as  

       

Equation 4.39 

The correct value of    is found by ensuring that the distances between virtual control 

points in object space is equivalent to the distances between control points in camera 

space, or 

       
        

  
 
    

    
    

Equation 4.40 

where     
  denotes the 3x1 subvector corresponding to virtual control point "a" from the 

single vector   
 . In this simple case, the value of    can be found directly. In the case 

that the null space is the span of 2 vectors, a similar distance constraint, as seen in 

Equation 4.41, is used.  

        
        

          
        

   
 
    

    
    

Equation 4.41 

  
      

      
  

 
     

      
             

      
  

 
     

      
     

      
      

  
 
     

      
  

    
    

      
    

   

Equation 4.42 
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In this case each equation of the form of Equation 4.41 can be rewritten into the form of 

Equation 4.42 and it can be seen that finding the values of     and    becomes a problem 

of solving a system of 6 quadratic equations.  

 To extract the correct values of    and    a technique called linearization [43] is 

used. The linearization technique takes the terms   
 ,     , and   

  and replaces them 

with linear terms     ,     , and      so that the system can be easily solved as a linear 

system. The linear system takes the form. 

      

Equation 4.43 

which expanded looks like 

  

   

   

   

   
   

    
   

 
   

    
   

  

Equation 4.44 

In Equation 4.44,        and is composed of the components of each of the two null 

eigenvectors as seen in Equation 4.42. The system is solved with the pseudoinverse of   

and the correct sign of    and    are selected such that the control points in camera space 

are positioned in front of the camera. When the number of vectors that span the null 

space of M is three, the solution to   ,   , and    are found again using linearization. In 

this case, the inverse of  , which is now a 6x6, is used to solve the linear system. 

 When there are four null eigenvectors of    , the distance constraints looks like 

Equation 4.45.  
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Equation 4.45 

In this case, the distance constraints produce a system of six equations with ten 2nd 

degree polynomial terms. To find the correct values of   ,   ,    and   , a technique 

called relinearization [57] is applied. The relinearization technique is similar to the 

linearization technique. First, all 2nd degree terms are replaced with linear terms. This 

leaves a underdetermined system of six linear equations with ten terms. The method 

resolves the underdetermined linear system by converting it into a parametric system with 

four new variables. The result is that each of the 2nd degree terms has the form of 

Equation 4.46 

                        

Equation 4.46 

where    is some constant and    is a term introduced in the parameterization process. 

The relinearization technique then uses the constraints such as: 

                     

Equation 4.47 

to generate enough quadratic equations such that the linearization technique can be 

applied. 

4.2.3 Vanishing Geometry 

4.2.3.1 Four Parallel Lines 

 In [46] the author attempts to find the pose of a UAV-mounted camera relative to 

four equally space parallel lines on the ground plane. The world coordinate system is 
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configured such that its x-axis is parallel with the ground lines and the author attempts to 

estimate all but one of the parameters of pose. The neglected parameter, translation along 

the x-axis, is deemed uncomputable due to the lack of reference points along its direction. 

Nevertheless, the author derives a method that retrieves all rotation parameters and the 

two computable translation parameters. 

 The method presented in [46] makes the assumption that the x-axis of the world 

coordinate system is parallel with the ground lines, the positive values of the z-axis 

indicate height above the ground plane, and by right-hand convention, the y-axis is left 

when looking in the direction of the positive x-axis. The method presented in the paper is 

for this specific configuration, but is easily adaptable to any coordinate system axis 

configuration. 

 The vanishing point,    , of the world system x-axis is calculated as the 

intersection of the images of the parallel ground lines. From the image coordinate, the 

vector indicating the orientation of the world system x-axis in the camera space is found 

with 

    
       

         
 

Equation 4.48 

where K is the 3x3 intrinsic camera parameter matrix. 

 The vanishing line of the ground plane, an x-y plane, is calculated with the DLT 

[58] and the equation for a projective line map presented in [59]. Two important steps 

before calculating the vanishing line are: (1) normalizing the image line vectors such that 
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they change from           
  to          

  , and (2) creating the points   
  as      . 

The components of the line map matrix A are found with the linear system: 

 
    

     
 

  
       

   

  
 

  
 

  
 

    

Equation 4.49 

where   
  is the 2x1 column vector corresponding to the first row of A. As described in 

[59], the first column A corresponds the vanishing line of the x-y ground plane,      , 

whose components,         , correspond to the coefficients of a line in general form, 

         . Once the vanishing line is found, the orientation of the world 

coordinate system axis normal to the ground plane, the z-axis in this case, can be found as 

     
       

         
 

Equation 4.50 

The third orientation vector,     is found with the cross product using right hand 

convention,            . With all rotation vectors computed, the rotation matrix R, 

which expresses the rotation of the camera coordinate system axis in its rows, is   

             .  

 Before continuing to translation recovery, it is important to point out two 

unexplained yet trivial issue in the algorithm. First, if any image line passes through the 

origin of the image coordinate system, then its third component becomes zero,  or 

           . If the third component of the line is zero, then the vector can never be 

scaled to form          and the method produces unstable results. A simple workaround 
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for this type of problem is to use the three line method presented in [59] for computing 

the line at infinity. The three line method computes the line at infinity as 

  
         

    
    

     
         

    
    

     
  

Equation 4.51 

where   
  is any line that makes the determinants non-zero. The second issue is the sign of 

the ground plane normal axis,    . It is ambiguous but can be trivially found if an 

assumption is made about the orientation of the camera. A normal assumption is that the 

camera is upright and the sign of     is selected such that    's 3rd component is positive. 

 Now that the rotation matrix has been compute, the translation vector can be 

found. Again the DLT is used, but only one equation is generated from each line 

correspondence. 

      
           

        
  
 

  
      

      
       

Equation 4.52 

In the equation,  the scalar    is the third component of the object space line 

corresponding to the image line   
 . In this case,   

  is the positions on the y-axis of the 

ground line. It should be noted that the translation parameters found are the type that 

work with rigid transformation expressed by Equation 4.3. 

4.2.3.2 Three or More Parallel Lines 

 In [47], the problem of pose estimation from parallel lines is resolved through the 

use of geometric clues about the problem. The authors find that a ground line, its 

projection on the image plane, and the center of projection are all coplanar. Because a 

line and a point in 3D space contain enough information to define a plane, the planes 
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corresponding to each line, interpretation planes, can be estimated in camera space from 

images of the lines and their relationship to the center of projection. Figure 4.5 shows this 

type of construction. 
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Figure  4.5: Constructing Interpretation Planes from Image Lines. 

In Figure 4.5     is the vanishing point on the image plane,    is the center of projection, 

and     is the origin of the image coordinate system. Once equations of the interpretation 

planes have been estimated, the dihedral angles between the planes can be estimated. The 

dihedral angles correspond to the angles between lines from the center of projection to 

ground lines as seen in Figure 4.5 and Figure  4.6 as         ,         , and         . 
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Figure  4.6: The Geometry Used to Calculate Camera Translation. 

The object space distances between lines b, c, and d are known, and by both law of 

cosines and inscribed angles, the position of the center of projection, in object space, can 

be estimated. 

 Rotation parameters are found using the normal vectors of the interpretation 

planes. The normal vectors in camera space,    
 , are computed from the plane equations 

found when calculating translation parameters. The normal vectors in object space,    
 , 

are found using the now known translation   . From   the vectors            ,           ,             as well 

as their unit vector forms    
 ,    

 ,    
  are easily computable. The object space normal 

vectors to the interpretation planes can be found as 

   
     

     
  

Equation 4.53 
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where    
  is a unit vector in the same direction as the parallel lines. Once the normal 

vectors in both object and camera space are known, the rotation can be found using 3D 

fitting methods such as [54,55]. 

4.3 Proposed Methods 

 In the following two sections, two methods of finding camera pose for the 

degenerate PnP problem presented at the start of this chapter will be presented. One 

method makes use of linear systems and is called "complete" due to its mathematical 

correctness. The other method, named "simple," is not mathematically valid yet produces 

accurate pose estimates using only basic geometry. Before introducing the methods, the 

formulation of the problem will be presented. 

4.3.1.1 Problem Formulation 

 The camera coordinate system z-axis is parallel with the optical axis and in the 

same direction as the vector which has its tail at the center of projection and head at the 

principal point of the image plane. The camera system's x-axis aligns with the rows of the 

image sensor and is considered positive in the right direction if looking in the positive z-

axis direction. The y-axis aligns with the columns of the image sensor and is positive in 

the downward direction. The origin of the system is taken to be the center of projection. 

This configuration is shown in Figure  4.7 (b) and is selected so that the image coordinate 

system axis align with the camera coordinate system x-axis and y-axis in orientation. 

 The z-axis of the world coordinate system lies in the same direction as the two 

given parallel lines. The y-axis corresponds to the height above the ground plane and is 

positive as one moves underground or underwater. The x-axis, by right hand convention, 

is oriented right when looking in the direction of the z-axis. The origin of the world 
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coordinate system is selected to be the midpoint between the first object coordinate pair. 

This configuration is shown in Figure  4.7 (a) and is selected so that it matches the 

camera coordinate system when the system is operating under normal conditions. 
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(b) 

Figure  4.7: Coordinate System Orientation. (a) The Object Coordinate System 

Placement. (b) The Camera Coordinate System Placement. 

4.3.1.2 Complete Method 

 The method in [46] is extended to fit the aforementioned coordinate system 

configurations and to provide a complete pose estimate. One significant difference 

between the proposed method and the method in [46] is that the latter depends on four 

parallel ground lines whereas the former requires two parallel ground lines and known 

coordinates along those lines. 

 Suppose that there are two parallel lines,   
 ,   

 , in world space that align with the 

z-axis of the world coordinate system and lie on the x-z world plane. Each of the lines are 

represented in vector form as         
    where "d" indexes the line number and each 
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component corresponds to the parts of a line in general form,          . Along 

these lines are reference points,     
 , where "a" indexes coordinate number. The 

reference points have the form    
      

   . For each reference coordinate on   
 , there is a 

corresponding coordinate on   
  with the same z component. The parallel lines project 

onto the image plane as   
  and the references project to the image plane as     

 . 

 The orientation of the object system's z-axis is found in a similar manner to [46] 

with  

    
       

         
 

Equation 4.54 

In [46], the presence of three or more parallel lines allowed for vanishing line 

computation from just the lines. In this version of the problem, the references that lie on 

the ground lines provide the information needed to compute the x-z ground plane 

vanishing line,      . As stated previously, a pair of coordinates is the duplet of 

coordinates that share a common z component in their corresponding object coordinates. 

A pair line is the line between these coordinates. In the case that there are two pair lines 

available in a frame, the x-axis vanishing coordinate is computed as the intersection of 

the pair lines. The vanishing line is the line between the z-axis and x-axis vanishing 

coordinates. In the case that there are three or more pair non-coincident pair lines, the x-

axis vanishing coordinate is found with the linear system 

         
    

    

 

    

Equation 4.55 
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where    
    

    
   are the coefficients of the a'th pair line's image line. If the pair lines are 

parallel, or if only one exists, the vanishing line is found as a line that passes through the 

z-axis vanishing coordinate,    ,with a slope similar to the pair line(s). The orientation of 

the object system y-axis in camera space is found using a method similar to that 

presented in [46]. 

     
       

         
 

Equation 4.56 

It is assumed that the camera is upright and the sign ambiguity of the y-axis orientation 

can be resolved by ensuring that the orientation of     is similar to the camera's y-axis 

orientation. The x-axis is computed with the cross product,            . 

 The translation parameters orthogonal to the parallel lines are found using the 

method presented [46] with different axis components. 

      
           

        
  
 

  
        

   
       

Equation 4.57 

In Equation 4.57,    is the common x coordinate of all points on line   
 . 

 In [46] the translation down the parallel lines is deemed uncomputable. In the 

problem presented, the known object coordinates along the parallel lines allow for the 

computation of the z component of translation. In the assumptions, it was stated that the 

object-image correspondences provided to the module contained at least one pair. The z-

axis translation is found by modifying Equation 4.57 to use lines oriented in the x-axis 
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direction and to include the previously found height component   
 . The modified form of 

Equation 4.57 that accounts for x-axis direction ground lines is 

      
           

        
  
 

  
        

   
       

Equation 4.58 

Since   
  is known, the linear system can be rewritten as 

      
          

        
   

         
      

       

Equation 4.59 

4.3.1.3 Simple Method 

 The Complete Method requires knowledge of linear algebra, the DLT, and 

projective space. The Simple Method estimates pose using basic trigonometry and 

statistics. The problem formulation is identical to that of the Complete Method, however, 

the approach is different. 

 First, the optical axis rotation of the camera is retrieved using the average slope of 

all pair lines. 

          
 

 
    

 

 

   

  

Equation 4.60 

In Equation 4.60, "n" is the number of available image coordinate pairs in the frame and 

  
  is the slope of the line that traverses both elements of the pair. 
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Figure  4.8: A Pair Line in the Image Plane. (a) As viewed in a Frame. (b) Angle   . 

 Knowing optical axis rotation allows for incoming image coordinates to be 

corrected of their z-axis rotation. A corrected image coordinate,     
     

  
 
, is found by 

counter-rotating the original coordinates about the image system origin with a 2D rotation 

transformation 

 
   

 

   
    

                   
                  

  
  

 

  
   

Equation 4.61 

 The problem now is more degenerate than what was previously presented because 

the camera z-axis rotation is known to be zero. Using the corrected image coordinates, 

the z-axis vanishing coordinate may be recalculated as            
 
and used to find yaw 

and pitch angles. Equation 4.62 and Equation 4.63 derive the angles from the roll 

corrected vanishing coordinate. Figure  4.9 illustrates the geometry of the equations. 

         
    

  
  

Equation 4.62 
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Equation 4.63 
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Figure  4.9: A Diagram of the Trigonometry Used to Calculate Yaw and Pitch. 

 The z-axis rotation corrected points are fitted with lines, and the resulting lines 

have slopes    
  and    

 . The x-axis and z-axis object space translations are computed 

from the slopes as 

  
  

    
     

 

   
     

 
    

Equation 4.64 

   
        

      
     

         
      

  

Equation 4.65 

   
    

     
  

 
 

Equation 4.66 

The pitch of the camera is filtered from the coordinates in the same manner as the roll 

was filtered. Filtering pitch amounts to aligning the vanishing coordinate with the row of 
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the principal point, and ensuring that all angles between image coordinates are conserved. 

Equation 4.67 is the equation needed to compute the row component of pitch corrected 

points. Figure  4.10 illustrates how the angles between image points are conserved in the 

transformation. 

   
           

   
 

  
         

Equation 4.67 

 

Figure  4.10: Rotation Operation Preserves the Angles between Points. 

The z-axis translation is found using roll and pitch corrected image coordinates simply as 

  
   

 

 
  

  

   
 
   

 

 

   

 

Equation 4.68 
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 There are many shortcuts one can apply to the Simple Method, however, the 

shortcuts yield less intuitive methods. The method is not mathematically valid, however, 

it does produce good results. 

4.4 Experiment Design 

 Each pose estimation method is tested with a procedure that aims to mimic the 

conditions present in real world situations. First, Gaussian noise is added to a model of 

the slalom course. The course model consists of 3D coordinates that represent buoys in 

the slalom course and adding noise to the coordinates is synonymous with moving a 

buoy. The IWSF rulebook defines a minimum and maximum allowable tolerance for 

every buoy in every dimension. The tolerances used in the test are given in Table 4.1. 

The tolerances, in conjunction with a dependent, test varied parameter supply a standard 

deviation to the normal distribution used to generate noisy object coordinates. The 

process for generating noise in the x dimension of coordinate p is defined in the 

following three equations. 

      

Equation 4.69 

                              

Equation 4.70 

  
           

Equation 4.71 

In the equation set, k is the "Noise Standard Deviation Multiplier". When k is zero, the 

distribution does not add noise to the coordinates. When k is one the distribution has a 
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standard deviation equivalent to the maximum tolerance.  A noisy coordinate is only 

accepted if it falls within its corresponding tolerances. In the third equation,        

generates a random point from a distribution whose mean is   and standard deviation is 

 . 

 The noisy course model and a randomly generated ground truth pose, which is 

comes from a uniform distribution, are combined to produce image coordinates using an 

ideal pinhole camera model. The image coordinates are inspected to ensure that they 

conform to the assumptions that: (1) at least one image coordinate pair exists, and (2) at 

least two points exist on each line. Figure  4.11 shows some valid and invalid 

configurations. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure  4.11: Valid and Invalid Configurations. (a)(b) Valid Test Configurations. (c)(d) 

Invalid Test Configurations. (c) No Pairs Present. (d) A line Fails to Have at Least Two 

Reference Points. 

 If the image coordinates pass all constraints, then they are further inspected to 

conform with the "maximum points per line" test parameter. If the pose-course 

combination produces more image coordinates per line than the maximum, then the 

furthest are removed. If the image coordinates pass all constraints and fit the test 
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parameters, then the original model, noisy image coordinates, and ground truth pose are 

passed into on to a pose estimation method. 

 Pre-Gate (F, C) Gate (E, A) Guide (F, B) 

X(width) 1.035 1.15 1.265 1.188 1.25 1.313 1.035 1.15 1.265 

Y(height) .075 .1125 .15 .05 .0575 .085 .075 .1125 .15 

Z(depth) 54.725 55 55.275 26.865 27 27.135 40.795 41 41.205 

Table 4.1: Tolerances for Buoy Position. 
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Figure  4.12: Segments Corresponding to Table 4.1. 

4.4.1 Data Collection and Treatment 

 The generate and test process is repeated 1000 times for every combination of 

pose estimation method and test parameter shown in Table  4.2. 
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Parameter Name Value(s) 

Minimum Points Per Line 2 

Minimum Pairs 1 

Maximum Points Per Line 2, 4, 6 

Noise Standard Deviation Multiplier 0, .005, .01, ... , .990, .995, 1 

Table  4.2: Varied Parameters in the Pose Estimation Experiment. 

In some cases, the methods produce pose estimates that are obviously incorrect. Incorrect 

pose estimates are detected by examining the average reprojection error. If the average 

reprojection error is greater than a threshold, 9 pixels for all tests, the pose estimate does 

not contribute to the calculated statistics. It only affects the outlier count for the method.  

4.4.2 Source Code 

 All algorithms are implemented in C++. The source code for Posit Coplanar 

comes from the author's website. Upon testing Posit Coplanar, it was found that one of 

the code's functions, pseudoinverse, had a memory issue. The issue was resolved by 

replacing pseudoinverse function calls with calls to the OpenCV equivalent function. 

Two implementations of EPNP were found. One is provided by the authors, and one is 

included with OpenCV 2.4.8. A preliminary test of the two implementations showed that 

the OpenCV version was more robust than the author provided version. For this reason, 

all tests reflect the performance of the OpenCV version of the algorithm. The Levenberg-

Marquardt optimization algorithm is also from OpenCV 2.4.8. The two proposed 

algorithms are encoded by the author of the thesis. 



 

  147 

4.5 Results 

 It is believed that the most important pose parameter for a system attempting to 

drive the boat in a straight line is the deviation about the world coordinate system x-

axis(side to side motion). While the algorithms tested produce all pose parameters, only 

statistics about the x-axis deviation are presented.  

 In the following graphs, 'Noise Standard Deviation Multiplier' is the parameter 

discussed in the design section that controls the standard deviation of the normal 

distribution used to generate noisy coordinates. The simulated units are in meters and the 

unit of the y-axis for each of the first six graphs is in meters. Each graph represents a 

separate "maximum points per line" parameter. 

 

Figure  4.13: Average Error of the X-Axis Translation over 1000 Tests for Various 

Amounts of Noise When the Maximum Coordinates per Line Is Two. 
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Figure  4.14: Average Error of the X-Axis Translation over 1000 Tests for Various 

Amounts of Noise When the Maximum Coordinates per Line Is Four. 

 

Figure  4.15: Average Error of the X-Axis Translation over 1000 Tests for Various 

Amounts of Noise When the Maximum Coordinates per Line Is Six. 
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Figure  4.16: Error Standard Deviation of the X-Axis Translation over 1000 Tests for 

Various Amounts of Noise When the Maximum Coordinates per Line Is Two. 

 

Figure  4.17: Error Standard Deviation of the X-Axis Translation over 1000 Tests for 

Various Amounts of Noise When the Maximum Coordinates per Line Is Four. 
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Figure  4.18: Error Standard Deviation of the X-Axis Translation over 1000 Tests for 

Various Amounts of Noise When the Maximum Coordinates per Line Is Six. 

 

Figure  4.19: Number of Valid Pose Estimates out of 1000 When the Maximum Points 

per Line Is Two. 
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Figure  4.20: Number of Valid Pose Estimates out of 1000 When the Maximum Points 

per Line Is Four. 

 

Figure  4.21: Number of Valid Pose Estimates out of 1000 When the Maximum Points 

per Line Is Six. 
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4.6 Discussion 

 The above graphs do not include the results of the EPNP and Posit Coplanar 

algorithms. The exclusion is due to the poor, incomparable performance of the algorithms 

on this type of object configuration. The poor performance of these two algorithms was 

not expected. As a precaution, the algorithms were tested with noiseless grid type object 

configurations to ensure that the errors were not implementation dependent. It was found 

that both algorithms performed as expected with the grid patterns. The poor performance 

of these algorithms is most likely due to the slalom course object configuration, the 

introduction of noise to the object coordinates, and the camera configuration (large focal 

length). 

 As for the three tested algorithms, the first three graphs presented, average error 

graphs, indicate that the algorithms are not predisposed to favor error in any certain 

direction. The shape of the data, narrow when the standard deviation multiplier is zero, 

and wide then it is one, indicates that in noiseless conditions, the algorithms have average 

errors near zero, and with more noise, the offsets become greater. This type of behavior is 

to be expected. 

 The graphs of the error standard deviation show that LM optimization procedure 

can outperform both proposed methods, however, its performance gain is not universal. 

The LM method's data shows that the algorithm is hit or miss while the proposed 

methods have predictable error bounds. This behavior is explainable by the mechanics of 

LM algorithm itself. The method may become trapped in a local minima while searching 

for optimum parameter settings. It is somewhat unexpected that the simple method 

outperforms the complete method in terms of error standard deviation. This may be due 
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to the fact that the graphs only display the x-axis translational error statistics. In terms of 

the other parameters, especially the z-axis translational error, the complete method 

generally outperforms the simple method. 

 The number of outliers, as shown in the last three graphs, also supports the idea 

that the LM optimization method is less stable than the two proposed methods. While the 

two proposed methods can generate less accurate parameter estimates, they generally are 

more robust than the LM algorithm. This behavior again is explainable by the fact that 

LM method can get stuck in a local minima. 

 The result of these tests indicate that a universally optimum pose estimation 

method may be obtained by first generating a pose estimate with one of the two proposed 

methods, and then using the LM algorithm to improve the accuracy of the estimate. This 

type of algorithm would give positive gains both in terms of stability and accuracy. 

4.6.1 Limitations and Delimitations 

 The experiment mentioned has limitations. First, each method is only tested on 

synthetically generated data rather than real data. The synthetic data does account for 

noisy conditions, but does so in a manner that assumes an ideal pinhole camera model. 

This limitation is due to the fact that testing with real data would require an alternative 

method of estimating camera pose, and consequently the position and orientation of a 

boat on a lake, to provide ground truth data. Second, the experiment is designed to test 

ideal, high probability, slalom course configurations. Some configurations, such as a 

configuration in which a slalom course is out of tolerance, are not tested. 
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4.7 Conclusion 

 Five algorithms have been presented in depth and tested with a model tailored to 

simulate real slalom course conditions. It was found that two of the tested algorithms, 

EPNP and Posit Coplanar, struggle with the conditions, object coordinates, noise 

introduction, and camera intrinsic parameters, that mimic the complete system. The other 

three algorithms are comparable in terms of both the average and variance of error. Of the 

three acceptable algorithms, one is an iterative method, and the other two are vanishing 

geometry based methods constructed specifically for the problem of pose from points on 

two parallel lines. 

 One of the proposed methods is built such that linear systems allow all data points 

to contribute to the best possible result. The other method is constructed for maximum 

simplicity and only relies on basic trigonometry and basic statistics. The performance of 

the complete method, as displayed in the graphs in the results section, appears to be 

slightly less than the performance of the simple method. This is due to the fact that only 

x-axis translational error is examined. Both the two proposed methods have performance 

comparable with the LM optimization method and as a result, an algorithm which makes 

its initial guess with a geometry based method and optimizes with the LM method is 

proposed. 
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5 CONTROL 

 The prior three modules can generate a noisy pose estimates in real-time. The task 

now is converting noisy pose estimates into mechanical motion within the boat's steering 

system. A few additional steps are added in order to accomplish this task. First, pose 

estimates from the pose estimation module are filtered. Next, the filtered estimates are 

converted into stepper motor step positions. Finally, the step positions are transmitted to 

the stepper motor. A high level overview of each component necessary for steering 

control is given. Each control specific component is also discussed. 

5.1 Overall Design 

 The additional logic required to convert pose estimates into mechanical motion is 

shown in Figure  5.1 as the Command Calculation, Instruction Translation, 

Communication, Physical Motion, and Control Instruction blocks. 
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Figure  5.1: Additional Logic for Steering Control. 

 In terms of the entire system, determining and communicating the desired stepper 

motor step position can be divided into a two logical groups. The division is made based 

on thread synchronization. In Figure  5.1, the two main parts of the system are illustrated 

as the Image Processing Thread Group and Control Thread Group. The next section 

explains the need for two asynchronous thread groups. 

5.2 Thread Interaction 

 Image acquisition, Segmentation, Identification, Pose estimation, and Instruction 

Calculation form one processing pipeline that utilizes one or more synchronized threads. 

The other processing blocks, Instruction Translation, Communication, and Physical 
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Motion form a separate processing pipeline. The two asynchronous pipelines exist due to 

the difference in execution time of one iteration. The image processing group is expected 

to iterate every 33 milliseconds or faster. The control group iterates at about five Hz. If 

the image processing pipeline included the elements in the control pipeline, the system 

would never meet real-time demands. The system would spend all of  its time waiting for 

stepper motor commands to complete.  

 The two thread groups interact with each other via the Control Instruction block. 

The Control Instruction block is an allocated memory block accessible by both thread 

groups. It has no synchronization mechanisms associated with it. The image processing 

pipeline always writes the Control Instruction block with the a desired step position and 

the Control Thread group only reads the block when it is ready to execute a new 

command. 

5.3 Command Calculation 

 Pose estimates are generated by the pose estimation module. The estimates are 

then converted into stepper motor step positions in the Command Calculation block. The 

computational time required by the block is insignificant. For this reason, and to keep the 

actual implementation as simple as possible, the Command Calculation block is part of 

the Image Processing Thread Group. Calculating a desired step position is a two part 

process. First, pose estimates are filtered. Then, they are converted into step positions. 

5.3.1 Pose Estimate Filtering 

 There is existing work on modeling the dynamics of a surface vehicle and 

integrating sensor data into the model [60,61]. Due to the fact that this thesis is aimed at 

the vision components of the proposed control system rather than the control 
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components, a quick and easy implementation is used. A recursive averaging filter is 

used to filter all six components of the current pose estimate. The filter is simply 

  
 
                

 
 

Equation 5.1 

In the equation,    is the current six dimensional pose estimate and   
 
 is the filtered pose 

estimate at time t.   is the smoothing factor that controls which frequencies pass through 

the filter. Typically a value of       allows the filter to act as a good low-pass filter. 

5.3.2 Path Tracking 

 The smoothed data is the input to a controller that is based off the pure pursuit 

method [62, 63].  The pure pursuit method can be applied to curved paths, however, the 

desired path for the boat, a straight line collinear to the slalom course centerline, is a 

simple shape that allows for a simplified method. Calculating the step position is done 

with  

          
  

 
      

Equation 5.2 

where    represents the desired stepper motor step position at time t, k is the proportional 

gain,    is x-axis displacement found from the filtered pose estimate,   is the lookahead 

distance, and    is the current yaw angle. Figure  5.2 illustrates a typical situation and the 

source of the angles used in Equation 5.2. In the figure the term      
  

 
   . 
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Figure  5.2: The Yaw Angles Used in Step Position Calculation. 

5.4 Instruction Translation and Communication 

 The Stepper motor and computer interact via serial connection. Setting the stepper 

motor to a desired step position requires that the computer following the stepper motor's 

communication protocol. For simplicity, only the broad details of the communication 

protocol are provided. In the current implementation, the protocol includes querying, 

setting, and acknowledging values associated with the direction of motion, and number of 

steps. The computer also has to issue a "go" command and wait until the stepper motor 

finishes executing the loaded instruction.  
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5.5 Mechanical Motion 

 The stepper motor's connection to the boat's steering system is illustrated in 

Figure  5.3 and Figure  5.4. All components in the illustrations undergo three types of 

motion: non-moving, rotating, and linear. In terms of non-moving parts, the rack housing, 

shaft bearings, and stepper motor are all rigidly connected to the boat. In terms of 

rotational motion, the shaft pulley, steering shaft, pinion, and steering wheel all rotate 

together and ride on the shaft bearings. When the pinion spins, the rack moves, one-

dimensionally, from side to side. This motion is rigidly transferred to the steering cable 

and eventually the boat's rudder. 
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Figure  5.3: Stepper Motor Mechanical Connection Front View. 
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Figure  5.4: Stepper Motor Mechanical Connection Top View. 

5.6 Overall Experiment and Discussion 

 The system was tested on multiple occasions. The tests took place around noon on 

sunny days. This time frame was selected because it offered the best lighting conditions. 

In the tests, the system successfully locked onto the slalom course and engaged stepper 

motor control at a distance of 35 meters from the first set of pre-gates. The system 
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remained in control until the boat was about a 25 meters from the last pair of gate buoys. 

While in control, the system appeared to slowly respond to lateral deviation.  As a result, 

the boat seemed to oscillate from side to side as it traveled the length of the slalom 

course. Despite the oscillations, the system's camera was always able to view buoys and 

the boat never deviated out of the slalom course. It is estimated that the lateral offset of 

the boat from slalom course centerline never exceeded 30 cm. This estimate, however, is 

a human estimate, and a method of generating ground truth pose estimates for 

comparison is an area of further research. During the tests, the average and slowest frame 

rates were recorded as a metric of system throughput.  It is found that the average frame 

rate of the system was 45 frames per second, and that the longest frame processing time 

was equivalent to a frame rate of 20 fps. 
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6  CONCLUSION 

 The thesis set out to develop a real-time boat steering control system for use in a 

waterski slalom course. The desire to build the system came from the need to resolve 

issues pertaining to boat driving in waterski competition and training. A design consisting 

of a segmentation, identification, pose estimation, and control module has been 

presented. The specific inputs, outputs, and goals of each module have also been defined. 

Finally, methods that appear to be capable of accomplishing module goals, as well as 

experiments that validate method performance, have been presented. A brief summary of 

findings, implications, and new questions are given in subsequent text. 

 An attempt to find a robust segmentation algorithm was made using background 

subtraction methods, color based methods, and a difference of Gaussians method. 

Experiments showed that the Visual Background Extractor provided stronger 

performance in comparison to other tested methods. In the end, the ViBe algorithm was 

selected as the segmentation algorithm of the system due to its simplicity and low 

computational complexity. The identification module chapter outlined a design, specific 

to slalom course configurations, that used intuitive to complex classifiers to find the 

optimum blob-to-buoy mapping. The ability of the identification module was validated 

by the successful real world test of the system presented in the control chapter. The pose 

estimation chapter presented and tested three publically available and two proposed pose 

estimation methods. In the end it was found that the two proposed algorithms had 

comparable performance to the iterative Levenberg-Marquardt optimization scheme. It 

was also determined that an even stronger pose estimation method could be created using 

a proposed method in conjunction with the Levenberg-Marquardt scheme. 
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 The findings of the segmentation chapter align with the findings of [3] even 

though the authors of [3] used video sequences captured by infrared cameras. The ViBe 

algorithm appears to be a suitable segmentation algorithm in applications where camera's 

motion is primarily in the direction of  the camera's optical axis and the camera views a 

uniformly colored and textured surface. The identification module is custom built for 

slalom courses but has the potential to operate in similar applications such as that of 

identifying markers along the edges of an airport runway or identifying lane markers on 

straight roadways. The proposed pose estimation algorithms are also custom tailored for a 

slalom course but are applicable to problems where object configuration can be described 

as points along two parallel lines. Interestingly, it is found that the publicly available 

implementation of Posit Coplanar and EPNP struggled to generate valid estimates when 

tested with slalom course object coordinate configurations. 

 There are a wide variety of questions opened by the thesis. As with any 

algorithmic research, any valid future research effort is one that aims to gain 

improvements in terms of robustness, simplicity, and time complexity. Specific to this 

thesis, however, there are questions that have more importance than others. What 

modifications are necessary so that the segmentation module handle images of low 

contrast such as those of the cloudy video sequences? Is background subtraction a good 

enough segmentation method or could other types of image segmentation methods 

provide better performance? In terms of the identification module, is there a simpler 

design that offers the same robustness? Finally, can other ideas such as a Kalman filter or 

inertial sensor integration improve position estimates? These are the questions that, if 

answered, would provide the bases of a much stronger overall machine. 
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 A real-time vision based control system has been designed, defined and tested in 

the hopes of resolving problems in waterskiing. This thesis can serve as a guide for others 

who face problems that align with either the overall goal of the system or the chapter 

specific problems. 
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