

A Real-Time Vision System for a Semi-Autonomous Surface Vehicle

by

Collin Walker

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2014 by the

Graduate Supervisory Committee:

Baoxin Li, Chair

Pavan Turaga

David Claveau

ARIZONA STATE UNIVERSITY

August 2014

 i

ABSTRACT

 In the sport of competitive water skiing, the skill of a human boat driver can affect

athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it

reduces the fairness and credibility of the sport overall. In response to the stated problem,

this thesis proposes a vision-based real-time control system designed specifically for

tournament waterski boats. The challenges addressed in this thesis include: one, the

segmentation of floating objects in frame sequences captured by a moving camera, two,

the identification of segmented objects which fit a predefined model, and three, the

accurate and fast estimation of camera position and orientation from coplanar point

correspondences. This thesis discusses current ideas and proposes new methods for the

three challenges mentioned. In the end, a working prototype is produced.

 ii

LEGAL

Patent Applied For.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES..x

LIST OF FIGURES...xi

CHAPTER

1 INTRODUCTION .. 1

1.1 Slalom Waterskiing .. 1

1.2 Importance of the Boat Driver ... 3

1.2.1 Physical Effect of the Boat Driver .. 3

1.2.2 Psychological Effect of the Boat Driver ... 4

1.3 Problem Statement ... 5

1.4 Overall Design ... 5

1.4.1 Selection of Sensors .. 5

1.5 Equipment .. 8

2 SEGMENTATION ... 10

2.1 Introduction .. 10

2.1.1 General Goal of the Module ... 10

2.1.2 Significance of the Module ... 10

2.1.3 Assumptions .. 11

2.1.4 Difficulty ... 12

2.2 Review of Related Literature ... 12

2.2.1 UAV Landing.. 13

2.2.2 Floating Mine Detection ... 14

CHAPTER Page

 iv

2.2.2.1 Block-Level Segmentation... 14

2.2.2.2 Pixel-Level Segmentation .. 15

2.2.2.3 Behavior Subtraction ... 16

2.2.2.4 Pixel-Level Background Subtraction ... 18

2.2.2.4.1 Image Differencing ... 18

2.2.2.4.2 Adaptive Mean .. 19

2.2.2.4.3 Adaptive Single Gaussian Model.. 19

2.2.2.4.4 Adaptive Gaussian Mixture Model ... 20

2.2.2.4.5 Adaptive Median Filter ... 22

2.2.2.4.6 Visual Background Extractor .. 22

2.3 Proposed Methods .. 23

2.3.1 Difference of Gaussians .. 23

2.3.2 Color Based Methods .. 25

2.3.2.1 Offline Buoy Color .. 26

2.3.2.1.1 Data Structure ... 27

2.3.2.1.2 Training ... 28

2.3.2.1.3 Data Structure Population ... 28

2.3.2.1.4 Application .. 29

2.3.2.2 Online Water Color .. 29

2.3.2.2.1 Data Structure ... 29

2.3.2.2.2 Data Structure Population ... 30

2.3.2.2.3 Application .. 31

CHAPTER Page

 v

2.3.2.2.4 Error Protection ... 31

2.4 Experiment Design... 32

2.4.1 Experiment Setup .. 32

2.4.2 Data Collection ... 33

2.4.3 Scoring Metric .. 34

2.4.4 Varied Parameters ... 35

2.5 Results .. 36

2.5.1 PCC for Best Parameter Settings .. 37

2.5.2 Precision Recall Plots for Various Parameter Settings 37

2.5.3 Sample Output .. 41

2.5.4 Limitations of Experimental Evidence ... 48

2.5.5 Discussion ... 48

2.6 Conclusion ... 50

3 IDENTIFICATION... 54

3.1 Introduction .. 54

3.2 High Level Overview ... 55

3.3 Assumptions ... 56

3.4 Chapter Notation .. 57

3.4.1 Buoy Notation ... 57

3.4.2 Blob Set Notation .. 59

3.4.3 Buoy and Blob Set Formulas .. 60

3.5 Virtual Buoy States and State Transitions. .. 60

CHAPTER Page

 vi

3.5.1 Blob Labeling Acceptance .. 60

3.5.1.1 Position Consistency .. 61

3.5.1.2 Area Consistency ... 61

3.5.2 Preparing for Frame Occlusion ... 62

3.5.3 States of a Virtual Buoy .. 63

3.5.3.1 Track State ... 64

3.5.3.2 Partially Occluded State ... 64

3.5.3.3 Search State .. 64

3.5.3.4 Occluded State ... 65

3.5.3.5 Done State .. 66

3.6 Blob Assignment .. 67

3.6.1 Constraining Functions ... 67

3.6.1.1 Notation.. 67

3.6.1.2 Single Blob Constraints ... 68

3.6.1.2.1 Unlocked Constraints .. 68

3.6.1.2.2 Locked Constraints ... 73

3.6.1.3 Blob Pair Constraints ... 79

3.6.1.3.1 Left Right .. 79

3.6.1.3.2 At Least One Inside .. 80

3.6.1.3.3 At Least One Outside .. 82

3.6.1.3.4 Distance Less Than ... 83

3.6.1.3.5 Distance Greater Than .. 84

CHAPTER Page

 vii

3.6.1.3.6 Slope Greater Than ... 85

3.6.1.3.7 Slope Less Than .. 87

3.6.1.3.8 One Per Lane... 88

3.6.2 Scoring Functions ... 89

3.6.2.1 Order Independent ... 90

3.6.2.1.1 Similar Slope ... 90

3.6.2.1.2 Similar Area .. 92

3.6.2.1.3 Similar Center ... 93

3.6.2.2 Order Dependent .. 94

3.6.2.2.1 Widest Pair .. 94

3.6.2.2.2 Lowest Pair ... 95

3.6.2.2.3 Largest Pair ... 96

3.6.3 Updating A Usable Blob Set ... 97

3.6.4 Detection And Tracking Algorithms .. 98

3.6.4.1 Detect Pair .. 98

3.6.4.2 Track Pair ... 100

3.6.4.3 Detect Single .. 103

3.6.4.4 Track Single ... 104

3.7 Validation of the labeling system .. 105

3.8 Future Research ... 106

4 POSE ESTIMATION ... 107

4.1 Introduction .. 107

CHAPTER Page

 viii

4.1.1 Formal Statement of the Problem ... 107

4.1.2 Significance of the Research ... 108

4.1.3 Notation... 109

4.1.3.1 Object Space and Camera Space .. 109

4.1.3.2 Image Space ... 110

4.1.4 Fundamental Conversions ... 111

4.1.4.1 The Relationship between Object Space and Camera Space 111

4.1.4.2 The Relationship between Camera Space and Image Space 113

4.2 Review of Related Literature ... 114

4.2.1 Iterative Methods .. 115

4.2.1.1 Posit Coplanar .. 115

4.2.1.2 Levenberg-Marquardt Optimization .. 119

4.2.2 Linear Complexity .. 123

4.2.2.1 Efficient Perspective-n-Point Camera Pose Estimation 123

4.2.3 Vanishing Geometry ... 129

4.2.3.1 Four Parallel Lines ... 129

4.2.3.2 Three or More Parallel Lines ... 132

4.3 Proposed Methods .. 135

4.3.1.1 Problem Formulation ... 135

4.3.1.2 Complete Method... 136

4.3.1.3 Simple Method ... 139

4.4 Experiment Design... 143

CHAPTER Page

 ix

4.4.1 Data Collection and Treatment ... 145

4.4.2 Source Code .. 146

4.5 Results .. 147

4.6 Discussion .. 152

4.6.1 Limitations and Delimitations ... 153

4.7 Conclusion ... 154

5 CONTROL .. 155

5.1 Overall Design ... 155

5.2 Thread Interaction .. 156

5.3 Command Calculation ... 157

5.3.1 Pose Estimate Filtering ... 157

5.3.2 Path Tracking .. 158

5.4 Instruction Translation and Communication ... 159

5.5 Mechanical Motion .. 160

5.6 Overall Experiment and Discussion... 162

6 CONCLUSION ... 164

REFERENCES..167

 x

LIST OF TABLES

Table Page

2.1: Varied Parameters of the Segmentation Experiment. .. 36

4.1: Tolerances for Buoy Position. ... 145

4.2: Varied Parameters in the Pose Estimation Experiment. .. 146

xi

LIST OF FIGURES

Figure Page

1.1: Boat and Skier Paths. ... 2

1.2: Camera Setup for Record Validation. .. 4

1.3: A Diagram of the Entire System. ... 8

2.1: Segmentation Module Goal. .. 10

2.2: Generating Activity Descriptors from a Training Sequence for One Pixel. 17

2.3: The Effect of Scene Geometry on Perceived Spatial Frequencies. 25

2.4: A Frame and Its Associated Color Segmentation Mask Outputs. 26

2.5: Water Color Safe Window. .. 30

2.6: Safe Window Incorrectly Overlapping Shoreline Objects. 31

2.7: The Spread of Points in Tested Poses .. 33

2.8: Scoring Regions. .. 34

2.9: Best PCC Score for each Method. ... 37

2.10: Legend of Plots. ... 37

2.11: Precision-Recall Plot for Methods Tested on All Classes of Video. 38

2.12: Precision-Recall Plot for Methods Tested on Cloudy Class Videos. 38

2.13: Precision-Recall Plot for Methods Tested on Sunny Side Videos........................... 39

2.14: Precision-Recall Plot for Methods Tested on Shadow Side Videos. 39

2.15: Precision-Recall Plot for Methods Tested on Foam Class Videos. 40

2.16: Precision-Recall Plot for Methods Tested on Reflection Class Videos................... 40

2.17: Continued Research. .. 53

3.1: A Frame and Its Associated Blobs. .. 54

Figure Page

 xii

3.2: A Frame Marked in Notation. .. 58

3.3: The Logic Defining Most State Transitions in the System. 63

3.4: The Transition Diagram for a Pair of Virtual Buoys Transitioning out of Search

State. .. 65

3.5: Transitions Diagram for a Pair of Virtual Buoys Transitioning out of Occluded State.

 ... 66

3.6: Transitioning out of Done State. .. 66

3.7: The Result of the Unlocked Dimensionality Constraint. ... 70

3.8: The Result of Applying the Unlocked Area Less Than Constraint. 71

3.9: The Result of the Unlocked Area Greater Than Constraint....................................... 72

3.10: Results of the Shoreline Row Constraint. .. 72

3.11: The Result of the Area Less Than Constraint. ... 74

3.12: The Result of the Area Greater Than Constraint. .. 75

3.13: The Result of the Center Less Than Constraint. .. 76

3.14: An Example of Firing the Center Greater Than Constraint. 77

3.15: A Visual Representation of a Lane. ... 78

3.16: The Result of the In Lane Constraint. .. 79

3.17: The Result of the Left Right Constraint. .. 80

3.18: The Result of the At Least One Inside Constraint. .. 82

3.19: The Result of Testing Blob Pairs under the At Least One Outside Constraint. 83

3.20: The Result of Applying the Distance Less Than Constraint. 84

3.21: The Result of the Distance Greater Than Constraint. .. 85

Figure Page

 xiii

3.22: The Slope Greater Than Constraint. .. 87

3.23: The Result of Applying the Pair Slope Greater Than Constraint. 88

3.24: The Result of the One Per Lane Constraint. .. 89

3.25: Pair Lines Drawn between Image Buoy Pairs. .. 90

3.26: The Output of the Similar Slope Scoring Function. .. 92

3.27: The Output of the Similar Area Scoring Function. .. 93

3.28: Result of the Similar Center Scoring Metric. .. 94

3.29: The Output of the Widest Pair Scoring Function. ... 95

3.30: The Output of the Lowest Pair Scoring Metric.. 96

3.31: The Output of the Largest Pair Scoring Function. ... 97

3.32: The Detect Pair Function's Placement in Relation to Other Functions. 100

3.33: The Placement of the Track Pair Function in Relation to Other Functions and Data

Structures. ... 102

3.34 The Detect Single Function's Placement in Relation to other Functions When

Tracking Then Detecting. ... 104

3.35: The Track Single Function's Placement When Tracking Two Buoys Individually.

 ... 105

4.1: A Valid Point Configuration for the Pose Estimation Module. 108

4.2: An Illustration of the Components That Form the Two Types of Translation Vectors

from Two 3D Axis which Differ by an X-Z Translation and Rotation about the Y-

Axis. .. 112

4.3: Pinhole Camera Model. ... 114

Figure Page

 xiv

4.4: Posit Diagram. ... 115

4.5: Constructing Interpretation Planes from Image Lines. .. 133

4.6: The Geometry Used to Calculate Camera Translation. ... 134

4.7: Coordinate System Orientation. ... 136

4.8: A Pair Line in the Image Plane. ... 140

4.9: A Diagram of the Trigonometry Used to Calculate Yaw and Pitch. 141

4.10: Rotation Operation Preserves the Angles between Points. 142

4.11: Valid and Invalid Configurations. ... 144

4.12: Segments Corresponding to Table ... 145

4.13: Average Error of the X-Axis Translation over 1000 Tests for Various Amounts of

Noise When the Maximum Coordinates per Line Is Two. 147

4.14: Average Error of the X-Axis Translation over 1000 Tests for Various Amounts of

Noise When the Maximum Coordinates per Line Is Four. 148

4.15: Average Error of the X-Axis Translation over 1000 Tests for Various Amounts of

Noise When the Maximum Coordinates per Line Is Six. 148

4.16: Error Standard Deviation of the X-Axis Translation over 1000 Tests for Various

Amounts of Noise When the Maximum Coordinates per Line Is Two. 149

4.17: Error Standard Deviation of the X-Axis Translation over 1000 Tests for Various

Amounts of Noise When the Maximum Coordinates per Line Is Four. 149

4.18: Error Standard Deviation of the X-Axis Translation over 1000 Tests for Various

Amounts of Noise When the Maximum Coordinates per Line Is Six. 150

Figure Page

 xv

4.19: Number of Valid Pose Estimates out of 1000 When the Maximum Points per Line

Is Two. .. 150

4.20: Number of Valid Pose Estimates out of 1000 When the Maximum Points per Line

Is Four. .. 151

4.21: Number of Valid Pose Estimates out of 1000 When the Maximum Points per Line

Is Six. .. 151

5.1: Additional Logic for Steering Control. .. 156

5.2: The Yaw Angles Used in Step Position Calculation. .. 159

5.3: Stepper Motor Mechanical Connection Front View. ... 161

5.4: Stepper Motor Mechanical Connection Top View. ... 162

 1

1 INTRODUCTION

 Vision continues to be an instrumental sense in many forms of robotic

automation. In the field of autonomous vehicles, researchers have made an ongoing effort

to integrate optical sensors into their autonomous machines. While researchers often

utilize other sensors like radar, LIDAR, GPS, etc. [1], there is still a large effort from the

community to use camera based systems due to their low cost. In this thesis, the design of

a semi-autonomous surface vehicle, constructed to operate under a specific set of

constraints, is presented. The design consists of a segmentation, identification, and pose

estimation module. The chapters of the thesis discuss each component.

 The system presented is developed in response to unresolved issues in the sport of

slalom waterskiing. To understand the issues, one must first develop a basic

understanding of the sport itself. With basic knowledge of the sport, one can identify how

certain human influences, specifically human drivers, can cause issues in terms of

competition and training. Once a basic understanding of skiing is developed, it will be

easy to understand the need for an automated system within the sport. The following

sections introduce the sport, discuss the importance of a boat driver in slalom

competition, and provide a high level outline of system design.

1.1 Slalom Waterskiing

 The International Water Ski Federation (IWSF) is the governing body of

competitive water skiing throughout the world. The IWSF specifically defines the

objective of the slalom event as “The contestant shall follow the towboat through the

entrance gate of the slalom course, pass around the outside of any or all six buoys and

proceed through the far end gate” [2]. Figure1.1 illustrates a slalom course. The red

 2

dotted line shows the centerline of the slalom course and expected path of the towboat.

The bold blue line shows the expected path of a skier.

Figure 1.1: Boat and Skier Paths.

 When a skier successfully navigates the slalom course he or she has completed a

pass. If a skier completes a pass, then the skier challenges himself or herself further by:

(1) increasing the boat speed by a predefined amount, or (2) shortening the rope by some

predetermined amount. A skier will continue to challenge himself or herself with the

previous two options until her or she finds the limit of his or her ability. A skier will

 3

normally run anywhere from four to eight passes before tiring. A collection of passes is

referred to as a set.

1.2 Importance of the Boat Driver

 The current method for boat steering control is by human driver. The ability to

properly drive a boat, in terms of slalom driving, is a skill itself. If one wants to drive a

sanctioned waterski tournament, then it is usually required that he or she have a drivers

rating. Ratings are acquired by successfully completing driving clinics. Actual invitations

to drive at tournaments are only given to those who have both the required rating and a

positive reputation. The types of people who receive invitations to drive at tournaments

are usually those who have been involved with the sport for anywhere from years to

decades. Despite the restrictions set by the IWSF and efforts of tournament coordinators

to ensure high quality veteran drivers, the drivers are still human. A human driver may

suffer from distractions, boredom, and fatigue, which may inhibit performance. When a

boat driver's performance suffers, a skier's performance may also suffer due to both

physical and psychological issues associated with low quality boat driving.

1.2.1 Physical Effect of the Boat Driver

 As defined by the IWSF rulebook, the distance from the centerline of the slalom

course to the center of a turn buoy is 11.5 meters. In some situations, an experienced

skier may attempt to complete passes where the rope length is near or even less than 11.5

meters. In these types of situations, it is essential that the boat be as close to the slalom

course centerline as possible. If the boat path deviates from the center line of the slalom

course, then the skier may have an unfair advantage or disadvantage.

 4

 Along the lines of boat path deviation, the IWSF has a specification which

outlines the maximum allowable deviation of a boat path when attempting to set a world

record. When a skier completes a pass that may constitute a world record, the boat path of

all passes in the set are reviewed. A record is only accepted if all boat path deviations in

all passes of the set fall within the allowable tolerances set by the IWSF. In some cases,

records are rejected due to an out of tolerance boat path. At this time, supervised software

is the current method of boat path examination. The software works with video captured

from cameras located on the centerline of the slalom course outside of the course itself.

Figure 1.2 illustrates camera location for boat path validation.

Figure 1.2: Camera Setup for Record Validation.

1.2.2 Psychological Effect of the Boat Driver

 As with any sport, becoming a talented skier involves a fitness element and a skill

element. The skill element is gained through repetition, in this case, completing slalom

passes. As a skiers total water time increases, his or her awareness of minute changes also

increases. Changes of this sort include differences in the composition of the lake water,

ski settings, boat wakes, boat drivers, etc. As with any sport, when the conditions are

familiar, an athlete can expect consistent performance. When conditions vary, an athlete's

performance may suffer.

 5

 When a boat driver with a bad reputation, or no reputation at all, is driving a skier,

the skier may suffer psychological issues which keep he or she from focusing on the task

at hand. This effect may be true regardless of the drivers actual ability or performance.

For example, a skier may perform well behind a highly reputable driver who is actually

driving bad, and perform poorly behind a low reputation driver who is driving perfectly.

The effect is entirely psychological.

1.3 Problem Statement

 The issues surrounding tournament slalom driving all relate to the errors made by

human drivers. By replacing human drivers with some type of automated system, all

previously discussed issues may be circumvented. With an automated system, any person

would be a capable driver, and any skier would be confident in the ability of any machine

assisted human. This thesis aims at providing a basic design for the suggested system.

1.4 Overall Design

 The overall goal of current and future research is to create a machine that resides

inside the boat and can autonomously steer the boat when it is passing through the slalom

course. The decision to place all components of the system inside the boat is made in

order to avoid issues that come with using external components such as the lack of

infrastructure at lakes, the chance of vandalism to shore installed components, and the

challenge of wireless communication between external components and components

residing in the boat.

1.4.1 Selection of Sensors

 The IWSF tournament rulebook specifies the allowable error in buoy position for

each buoy in a slalom course. Since there is an allowable error in buoy placement, it is

 6

expected that position data generated from buoys will also be erroneous. Furthermore, it

is expected that position estimates generated from many buoys will have less error than

estimates generated from fewer buoys. Due to the need for an accurate estimate, and thus

the desire for more buoys, it is necessary to examine sensors that either perceive many

buoys, or do not rely on slalom course buoys at all. Some sensors are examined in terms

of cost, resolution, and required processing power.

 GPS is an example of a sensor that does not rely on slalom course buoys. It is

inexpensive, robust, and thus a potential sensor for the stated steering problem. Current

commercial waterski boat speed control systems rely on GPS and accelerometers. The

control systems have been successful, but the sensors used are not appropriate for the

stated steering problem. The accuracy of a GPS accelerometer combination does not meet

the accuracy requirements of the proposed system at this time.

 In terms of sensors that utilize buoy information, LIDAR, SONAR, and camera

based systems are examined. LIDAR or SONAR based solutions may offer a means of

simple and robust tracking for buoys located near the sensor, however, they lack the cost

effective ability to sense buoys at a distance. Sensing objects at a distance is an ability

that camera based systems can achieve. In terms of camera based systems, there are a

variety of wavelengths that an optical sensor can detect. The most obvious optical

solution is one which uses an infrared or thermal camera. In this type of solution, a water

surface appears in captured frames as one temperature, and buoys appear as a separate

temperature. The identification of floating objects is transformed to a simple task. The

issue with high resolution IR cameras, however, is the considerable cost.

 7

 Cameras which rely on the visual spectrum of EMR avoid the cost issues

associated with IR cameras. Both monocular and stereo systems seem to be the most

appropriate sensors for the stated problem, however, stereo systems appear to have issues

that monocular camera systems avoid. Some difficulties with a stereo setup are: one,

issues associated with calibrating a stereo rig, two, the requirement for more equipment,

and three, the extra computation required for stereo processing. With all considerations, a

monocular system appears to be the best sensor to use.

 A camera, computer, and a mechanical interface provide all necessary hardware

for the system and all physical components can reside inside of a boat itself. Figure 1.3

displays the basic design. The software components driving the first three "Computer"

modules, segmentation, identification, and pose estimation, are the main topics of this

thesis.

 8

Camera
Segmentation

Identification

Pose Estimation

Control

Blobs

Image-Object Coordinate Correspondences

3D Position and Orientation

In
st

ru
ct

io
n

s

Frames

Rudder

Ste
erin

g
 C

ab
le

Computer

Stepper
Motor

Figure 1.3: A Diagram of the Entire System.

1.5 Equipment

 All experiments discussed in the thesis use the same equipment. The boat selected

for experimentation is a 2006 Correct Craft Ski Nautique. Nautique is an competitive

 9

brand in terms of tournament water ski boats. There are many design changes between

the test vehicle and Nautique's current tournament water ski boat model, however, the

changes are negligible in terms of the proposed control system. The computer used in all

experiments is a Dell Vostro 1500. In terms of performance, the machine has 4 GB of

RAM and an Intel Core 2 Duo CPU running each core at 2.0 GHz. The computer runs

Ubuntu 12.10 as its OS and all implemented software is heavily dependent on OpenCV

2.4.8 as well as Boost 1.49.0.1. The selected camera is a Logitech Quickcam Pro 4000.

The stock lens is replaced with an aftermarket lens whose focal length is 3025 pixels

when the resolution of the captured frames is set to 320 x 240. The camera is accessed

through OpenCV with the Linux V4L driver.

 10

2 SEGMENTATION

2.1 Introduction

2.1.1 General Goal of the Module

 The system uses a forward mounted camera to capture images of its environment.

Each image, or frame, may contain regions of pixels representing buoys and regions of

pixels corresponding to objects other than buoys. The system's first task, and the goal of

the segmentation module, is to label pixels as representative of either buoys or non-buoy

objects. Figure 2.1 (a) shows a typical frame captured from the system's camera. Figure

2.1 (b) displays an example of the segmentation mask the module aims to produce.

(a) (b)

Figure 2.1: Segmentation Module Goal.(a) A Typical Frame. (b) The Desired

Segmentation Mask. In addition to accurately labeling incoming frames, the system must

also perform the segmentation task in an efficient manner so that real-time constraints

can be met.

2.1.2 Significance of the Module

 The segmentation stage of processing is necessary as modules further in the

processing pipeline, identification, and pose estimation, depend heavily on the blobs

generated from the result of the segmentation stage's segmentation masks. Out of the

 11

three major modules discussed in this thesis, the segmentation module requires the best

performance outcome. Any errors made in the segmentation module will only propagate

through the rest of the processing pipeline. Additionally, the overall frame rate of the

complete system is determined entirely by the computationally intensive algorithms in

the segmentation module.

 To the machine vision community, the problem of segmenting floating objects on

a aquatic surface is not new [3,4,5,6,7]. The knowledge found in developing solutions for

the segmentation module furthers the body of knowledge associated with the task of

segmenting floating objects. Furthermore, if one is to look at the segmentation module's

goal from a slightly higher level of abstraction, then the problem becomes one of

identifying and labeling pixel regions that satisfy a certain set of properties, a

fundamental problem in computer vision.

2.1.3 Assumptions

 Creating a generic solution to satisfy the stated goal which operates under any

circumstance is appealing, however, the time requirements of completing such a task are

outside the scope of this thesis. For this reason, the major focus of this chapter is finding

a solution to a constrained version of the presented problem that operates under a

justifiable set of assumptions. First, any incoming frame is expected to have enough

perceptual contrast such that a human could perform the segmentation operation. At a

minimum, a buoy should appear differently than that of the water surface that surrounds

it. Second, it is assumed that the illumination of all important objects in an incoming

frame sequence will not change dramatically in a small time period. This is a justifiable

assumption as ski lakes are generally large bodies of water with no natural or manmade

 12

light obstructions in the middle of the them. Third, it is assumed that the aquatic surface

under consideration is relatively calm, i.e. no five foot waves or 60 mph winds. This

assumption is acceptable as people generally prefer skiing on calm flat water during the

windless parts of the day. Finally, it is expected that the position and color of the buoys

satisfies the specification set forth in the IWSF tournament rule book [2].

2.1.4 Difficulty

 The segmentation problem presented has two major difficulties associated with it.

First, any usable solution is required to function on power-up regardless of current or

previous lighting conditions. In other words, the system can only assume that the current

lighting conditions fall within the range of conditions specified by the assumptions.

Furthermore, the module must assume that each pass through the slalom course will

present a lighting condition that is independent of all other passes. The system is not

continuously running and therefore cannot rely on the commonly made assumption of

slow illumination changes between passes consecutive runs. Second, any solution used

needs to appropriately deal with shadows and reflections of shoreline objects like trees,

houses, and lights.

2.2 Review of Related Literature

 The problem of accurately segmenting a known grid of buoys for use in a real-

time control system has not been directly dealt with in previous literature, however, work

has been done on challenges similar in nature. Of the analogous problems, two tasks of

similarity are the landing of a UAV [8,9,10,11,12,13] and the detection of floating mines,

marine buoys, or floating objects on a sea surface [3,4,5]. Beyond methods developed

specifically for these problems, the problem of visual lane marker detection shares many

 13

similarities to the presented problem. In lane detection tasks [1], the algorithms usually

try to segment regions of the road that follow certain appearance properties and fit a

specified model. The remainder of this section presents a review of previously proposed

solutions.

2.2.1 UAV Landing

The problem of landing a UAV is similar to the stated steering problem. Usually, the

UAV must recognize either a runway or designated landing area and safely land on it.

Many proposed systems use a multitude of sensors, yet some systems use visual sensors

exclusively. Some vision-based systems are examined due to the considerable

relationship between the UAV landing problem and the stated problem.

 One attempt at UAV landing [8] is made by using a forward mounted camera and

attempting to land the aircraft on a large dome shaped airbag. The authors decide that

position estimates generated by a GPS are not accurate enough to guide an aircraft onto

the airbag and turn their attention to visual processing. Since the landing zone is a large

red dome, the authors process the images by first labeling pixels whose red component is

larger than their green and blue components. This yields an object set containing both the

landing airbag and other red objects. The moments of the objects are analyzed in order to

discriminate between the dome shaped airbag and other red objects. Once the airbag is

identified, control is achieved by applying control commands that orient the aircraft such

that the targeted airbag is in the center of incoming frames. Another attempt at UAV

landing is made in [9]. In this work, the authors attempt to land a helicopter type UAV on

a planar landing pad. They use a specially designed pattern on the landing pad to ease the

 14

complexity of visual computation. Both of these systems are successful vision-based

control systems, however, they both require the addition of specially designed markers.

 Other than systems that rely on specially made markers, some systems attempt to

visually detect and track runways with no extra markers. These types of systems either

use a reference image[10,11] or detect runway edges [12,13]. Since The proposed system

is intended to work with any slalom course, the proposed image registration methods may

not be useful. Furthermore, a slalom course consists of a series of buoys and does not

contain the edges that [12,13] require.

2.2.2 Floating Mine Detection

 A problem that is most similar to the goals of the segmentation module is the

detection of floating mines. There is a body of research associated with this subject and

some of the methods presented in literature are presented in the following section.

2.2.2.1 Block-Level Segmentation

 On the problem of floating mine detection, the authors of [5] approach the task

under the assumption that the appearance of a floating mine will differ from the

appearance of its surrounding area. Because they do not know the exact size of the mine

they are trying to detect, they process each frame on multiple scales by down-sampling

incoming frames by a factor of two. Pixel level segmentation at each scale is achieved by

first dividing their frame and down-sampled frames into 80x80 pixel blocks. Then, after

block formation, the mean, , and standard deviation, , of each block, , is

calculated. Finally the block level statistics are used to identify contrasting pixels within

each block. They use

 15

Equation 2.1

to create a binary segmentation mask representing candidate pixels. In the equation

 is the intensity of the pixel at position (r, c), and is the candidate mask at

position (r, c). The user assigned value of allows the algorithm to select more or less

candidate pixels. If the value of is large, fewer pixels are selected from the block. If

 is small, more pixels are selected.

 After candidate pixel selection is performed, the authors use a motion

correspondence algorithm they name "motion projection" as well as spatial-temporal

smoothening to refine their results. As the motion projection algorithm and spatial-

temporal smoothing require multiple frames as input, they are outside the scope of the

module's frame-by-frame task and not discussed. Furthermore, the authors do not include

details on how they fuse results processed at different scales.

 Overall, the algorithm achieves a high level of accuracy in terms of avoiding false

negatives at each scale. Two key ideas behind the presented algorithm are first, the use of

multiple scales in the process of pixel level segmentation, and second, the use of diverse

features, contrast and motion estimates in their case, to generate more robust results.

2.2.2.2 Pixel-Level Segmentation

 Outside of the work in [5] the authors in [3] present an evaluation of pixel-level

floating object detection methods. They discuss using background subtraction techniques

such as a running mean [15], running single Gaussian [15,16], Gaussian mixture model

[17], and Extended Gaussian mixture model [18,19] as the means to classify pixels as

 16

either representative of sea surface or floating mine. In addition to testing statistical

background based methods, the authors also discuss and experiment with the visual

background extractor algorithm [20,21] and behavior subtraction [22]. Some of the

algorithms tested in [3] are discussed in this thesis, but only a select few are tested due to

results in [3,14,23,24] as well as analysis of the algorithms. Some of the methods will be

discussed in the following sections.

2.2.2.3 Behavior Subtraction

 Upon examination of the proposed method in [22] the authors explicitly provide

frame sequences of aquatic surfaces as a means of demonstrating the strength of the

algorithm and its ability to correctly classify glint and other temporary activity. At first

glance the algorithm seems to be a promising solution to the module's problem but after

inspection it can be seen that it is unsuitable for the presented problem due to its use of

the temporal domain.

 The behavior subtraction algorithm works similarly to any background

subtraction algorithm but employs a temporal window as a means of improving

robustness. It creates a model of normal background activity by using a two step

approach. First, every frame in a training sequence of frames undergoes background

subtraction in order to segment moving foreground objects from the background. Next,

the segmentation masks, or motion detection labels, created by the background

subtraction process are converted into "behavior descriptors" based on the cardinality of

detections at each pixel location over a temporal window. Simply put, behavior

descriptors are created for each pixel based on the number of times a pixel is marked as

foreground over a window of frames. Figure 2.2 shows an example of converting a

 17

training sequence for one pixel into a behavior descriptor. In this case, the "maximum

activity" descriptor could be generated by looking for the maximum number of positive

detections within the window for every possible window position.

Window

0 1 1 1 1 10 1 1 1 1 1 0 00 0 0 0 00 0 0 0 0 0 01 1 1 1 0 0 0

Training Sequence

Background Subtraction

Motion Detection Labels

0

Activity Descriptors

1 0

Figure 2.2: Generating Activity Descriptors from a Training Sequence for One Pixel.

The authors also propose the "average activity" descriptor. This descriptor is simply the

number of positive detections over the entire training sequence divided by the number of

frames in the sequence, or

Equation 2.2

where M is the number of frames in the training sequence, B is the behavior descriptor

image, L is the motion labels produced from a background subtraction algorithm, and r, c

and j are the row, column and frame indexes.

 Once training is complete, an incoming frame sequence can be turned into

synonymous behavior descriptors using methods similar to those used to create the

behavior descriptors from the training sequence. Again, they are based on cardinality of

 18

detections over a window of recent frames. Without getting into further detail about

behavior descriptors, or how the final segmentation mask is produced, it can be seen that

the algorithm relies on the use of a temporal window. The use of the temporal window

mechanism is undesirable for the task of buoy segmentation. It causes the detections of

abnormal behavior, or objects on the water's surface, to arrive at a later time. A delayed

response, and therefore a pose estimate based on old data could be used by the control

module in the system. It is assumed, however, that a control module operating on

younger data will perform better and require a simpler design than a module operating on

older data.

2.2.2.4 Pixel-Level Background Subtraction

 The authors of [3] focus on background subtraction techniques as a means of

segmenting floating mines from sea surface. For this reason, the background subtraction

techniques mentioned in [3] as well as others mentioned in the surveys [14,23,24] are

examined. In the subsequent text will represent the incoming frame at time t. will

represent an image of the background model at time t, and the resulting segmentation

mask produced by each method will be referenced as .

2.2.2.4.1 Image Differencing

 Probably the simplest approach to background subtraction is image differencing.

As the name suggests, the foreground mask is created by simply differencing the

current frame with an image of the current background model . A pixel is said to be

part of the foreground if its difference from the corresponding value in the background is

larger than some threshold T. Equation 2.3 gives the formal definition of image

differencing.

 19

Equation 2.3

2.2.2.4.2 Adaptive Mean

 One problem with image differencing is that it fails to supply a method of

generating or updating a suitable background model. An improvement to image

differencing is made by modeling background pixels as continuously updated averages of

all previous frames. A mention of the adaptive averaging filter described in this text is

made in [14]. A mention of a similar method which takes the average over a window of

frames is made in [25]. A background model that is updated with a running mean is

updated by adding the weighted value of a current pixel to the value in the background

model or

Equation 2.4

 In Equation 2.4, is a learning factor that determines the rate at which the

background model adapts to current conditions. This method is a step above image

differencing as it allows the background image to adapt to events like illumination

changes or background object position changes.

2.2.2.4.3 Adaptive Single Gaussian Model

 Using an adaptive mean to model background pixels improves foreground

segmentation but neglects to define the threshold at which an incoming pixel is said to be

outside of the background model. This problem is alleviated by modeling each pixel as a

continuously updated Gaussian distribution [15,16]. The adaptive single Gaussian

 20

background model updates its mean using Equation 2.4 and updates its variance measure

for each pixel using Equation 2.5.

Equation 2.5

In Equation 2.5 is a learning factor that controls the rate at which the background

model adapts. In using the adaptive single Gaussian model of a background pixel, the

foreground mask is generated by replacing the threshold in Equation 2.1

 with a Mahalanobis distance or

Equation 2.6

where c dictates how many standard deviations away from the mean an incoming value

must be within to be considered background.

2.2.2.4.4 Adaptive Gaussian Mixture Model

 Sometimes a single Gaussian distribution cannot completely describe background

dynamics. To deal with this, a background is modeled as multiple Gaussian distributions

[17]. A background described with the Gaussian mixture model uses k distributions to

model the multiple color ranges a true background pixel can fall into. Each distribution

has a mean μ, standard deviation , and weight ω. The Gaussian mixture model processes

each incoming frame by first sorting all distributions for a pixel in order of decreasing

evidence . A new pixel value is compared to the sorted Gaussian

distributions until a distribution that explains the value is found. If a match is found then

the mean μ and standard deviation of only the matching distribution is updated with

 21

Equation 2.4 and Equation 2.5 respectively. The weight of the matching distribution is

updated with

Equation 2.7

Any unmatched distributions are updated so that their weights decrease. Equation 2.8

gives this updating function.

Equation 2.8

 As consistent background values are added, the weights of the true background

distributions increase while the variance of these distributions decrease resulting in

higher evidence for true background distributions. In the case that a incoming value does

not belong to any of the distributions, the distribution with the lowest evidence is

replaced with a new distribution whose mean is the current pixel value, standard

deviation is set high, and weight is set low.

 Finally, the distributions that describe the background are selected with

Equation 2.9

where the value of T is set to the percentage of the incoming data that is expected to be

background. Once the background distributions for a pixel have been selected, the

foreground mask is created from those pixels that match non-background distributions, or

don't match any distributions at all.

 22

2.2.2.4.5 Adaptive Median Filter

 The adaptive median filter is used and tested in many works [23,24,26,27,28]. It is

similar to the aforementioned pixel-based background subtraction methods, however, its

updating mechanism works by incrementing or decrementing the value in the background

model by one based on the incoming image as in Equation 2.10.

Equation 2.10

The incoming frame is then compared to the background and segmented using the

thresholding method of Equation 2.3.

2.2.2.4.6 Visual Background Extractor

 The Visual Background Extractor (ViBe) [20,21] is an approach to background

subtraction that relies on a set of retained samples rather than statistical information. The

algorithm assigns to each pixel a set s of n samples hereafter indexed as where r

and c are coordinates within sample q. The entire sample set (q = 1..N) is initialized by

setting the values of to a randomly selected neighbor of the corresponding pixel

in an initialization frame or

Equation 2.11

The function randomly selects one of pixel (r, c)'s 8-connected

neighbors. Note that the function is fired independently for each

pixel-sample index.

 23

 Once the background model has been initialized, an incoming frame is

segmented by comparing the values of a pixel in to all values in the sample set

corresponding to the pixel. If the distance, between and some sample is

below a threshold, then the pixel's positive background matches count increments. After

comparing to all of the pixel's samples, if the number of matches is greater than a

threshold, then the pixel is marked as background. If the number of matches does not

break the threshold then the pixel is marked as foreground.

 One distinct difference between this method and previously mentioned methods is

its use of a conservative updating scheme and a spatial updating scheme. In a

conservative updating scheme only data classified as background is used to update the

background model. In a spatial updating scheme, an incoming pixel not only updates its

corresponding background value, but also updates a neighboring pixel's corresponding

background value. In the case of ViBe, if a pixel in an incoming frame is classified as

background, then its value is used to update the corresponding pixel sample set at some

randomly selected sample index. It is also used to update one of the corresponding pixel's

randomly selected neighbors at a random sample index.

2.3 Proposed Methods

 Methods available in literature for floating object detection have been presented.

Methods not specifically purposed for floating object detection will now be presented

with modifications for tackling the problem.

2.3.1 Difference of Gaussians

 While difference of Gaussian (DoG) operators are not specifically edge detectors,

they are related [29]. One benefit of the DoG operator is that it not only detects edges, but

 24

also detects the weight associated with the structure of an edge [29]. Difference of

Gaussian operators are also used, in conjunction with other mechanisms, for dynamic

range compression in images [30]. Difference of Gaussian operators can also be viewed

as band-pass filters in the spatial domain. These characteristics of the operator make it a

potential solution to the module's problem. If the operator can be tuned to reject spatial

frequencies unrelated to possible buoy sizes, then the operator has the potential of

becoming a powerful frame-by-frame segmentation method. For this reason it is

examined in further detail.

 The simplest method of applying a difference of Gaussians operator is to first

smooth an image with two differently sized Gaussian kernels. After smoothing, the

operator output is found by taking the absolute difference of the output of the convolution

between each kernel and the image. A segmentation mask can be generated by looking at

the difference image and comparing it to a threshold.

 One detail evident in all test sequences is that normal water surface activity

produces images in which only changes parallel with the horizon are detected by the

camera. Figure 2.3 shows an example of this property. In the figure, the original image

appears normal, but filtering by a Sobel operator shows that the camera picks up

disturbances that project onto the image plane as horizontal lines. Due to this observation,

only Gaussian kernels built to detect vertical lines are selected for testing.

 25

(a) (b) (c)

Figure 2.3: The Effect of Scene Geometry on Perceived Spatial Frequencies. (a) Original

Image. (b) Output of a Sobel Filter Designed to Respond to Vertical Edges. (c) Output of

a Sobel Filter Designed to Respond to Horizontal Edges.

2.3.2 Color Based Methods

 All segmentation methods presented have depended on differences in color

instead of color itself. Using color contrast rather than specific color is desirable as it

relaxes the assumptions related to specific buoy colors and eases any concern related to

camera specific intrinsic color calibration. Despite these attractive features, segmentation

based on specific colors is still a viable method for image segmentation.

 One of the stated assumptions is that the buoys will follow the color specification

set forth in the current IWWF rulebook. Due to this, segmentation masks can be created

by comparing pixel color values to accepted buoy color values. This is an approach that

has been used to detect buoys in [6]. Using specific buoy colors can have advantages. For

instance, if a segmentation method produces only one mask, and it is noisy, then the

identification module may have a difficult time locking onto buoys. On the other hand, if

multiple segmentation masks are created for each color and only one is noisy, then the

other non-noisy masks can be used to acquire predictive knowledge about the

environment and lock onto buoys in the noisy mask. Figure 2.4 shows this type of

instance.

 26

(a)

(b)

(c) (d) (e)

Figure 2.4: A Frame and Its Associated Color Segmentation Mask Outputs. (a) Original

Image. (b) Combined Segmentation Mask. (c) Green Segmentation Mask. (d) Red

Segmentation Mask. (e) Yellow Segmentation Mask.

 The main question when using color as a feature for segmentation, is what color

space is appropriate? In [31] the author argues that and are too susceptible

to noise. In [32] an illumination invariant color space is used to avoid the

misclassification of shadows. There a wide variety of proposed color spaces [33,34,35],

and a variety of spaces have been utilized [36]. For simplicity RGB space is used in the

following methods as frame data from the camera is retrieved as values in RGB space. In

the subsequent text, two methods are presented based on color. The first is a classifier

that searches for specific buoy colors and is trained prior to system operation. The second

is a pixel classifier that uses water color and is updated online.

2.3.2.1 Offline Buoy Color

 The assumptions state that the color of buoys will be that which is specified in the

IWSF rulebook. Based on this assumption, a classifier can be created which labels each

 27

pixel based on its similarity to known buoy colors. In order to developed such a classifier

two questions must first be answered. First, what data structure is appropriate to precisely

model the wide range of colors a buoy may appear as? And second, how does one

populate the data structure?

2.3.2.1.1 Data Structure

 The classifier is attempting to label pixels based on a set of color indexes in RGB

space. In the background subtraction techniques presented, a minimal representation of

colors was formulated using either second order statistical or similar approaches. This

minimal-memory representation was necessary because each of the pixels needed an

independent model. In the case of classifying buoy color, there is only one system wide

model for each possible buoy color. For this reason, more memory resources can be

allocated to the data structure used to hold buoy color. Instead of using space conserving

statistical models, a bitset is utilized. It provides superior performance in precisely

classifying pixels based on color.

 A bitset is simply an array of bits. It is included in the C standard library. In the

case of classifying color, a

 bit large structure is used, one bit for each possible index

in 8-bit per channel RGB space. As stated before, the module could use a second order

statistics to model possible buoy colors, however, the entire dynamic range of buoy

colors is not describable by one spectral band or by a simple shape in RGB space. A buoy

can appear as a florescent color under sunny front lit conditions, a darker color under

backlit conditions, or a less intense color under low light cloudy conditions. A bitset data

structure can precisely capture these color qualities at fine grain resolution.

 28

2.3.2.1.2 Training

 The 27 test videos can be divided into 6 classes of lighting conditions which vary

on 3 dimensions. These dimensions are: sunny vs. cloudy, front lit vs. backlit buoys, and

camera auto features on vs. off. The video class described by the dimensions cloudy with

automatic exposure control off is missing from the test set, hence only six classes, instead

of eight, exist in the total test set. One video from each of the six video classes is

randomly selected to be the training sequence for that class. For each of the six training

sequences the user manually labels one pixel in each buoy of the next three or more pairs

of buoys every ten frames. The user has the option of labeling buoy color as either green,

red, or yellow.

2.3.2.1.3 Data Structure Population

 After manual labeling is complete, the labels are used to generate RGB indexes by

referencing the frame-row-column index of the label and retrieving the color value at that

pixel. The RGB index is used to populate the label's corresponding bitset according to

Equation 2.12.

Equation 2.12

In Equation 2.12 is the index of a manually labeled pixel located at row r,

column c, frame t, video number V expressing that the point is of buoy color A (green,

red, or yellow).

 29

2.3.2.1.4 Application

 A segmentation mask is produced from a frame and bitsets by checking the RGB

index of individual pixels within the frame against all three buoy color bitsets as in

Equation 2.13.

Equation 2.13

In Equation 2.13, is the foreground mask at time t for buoy color A. After

application, an individual frame produces three separate segmentation masks; one for

each possible buoy color.

2.3.2.2 Online Water Color

 The system's assumptions dictate two rules about buoy color. First, the color of a

buoy must match that which is specified in the IWSF rulebook. Second, the color of a

buoy and the water that surrounds it must appear perceptually different. Following the

second assumption, a pixel level classifier can be created which operates on the belief

that buoy color will be unexplainable by a model built to describe water color. In creating

such a classifier one must answer the same two questions presented for the buoy color

based classifier.

2.3.2.2.1 Data Structure

 The bitset data structure used for classifying buoy colors is selected to represent

water color as well. It provides superior performance in precisely classifying pixels as a

water surface contains not only the generic blue color one associates with water color, but

also the colors of shoreline object reflections and specularities.

 30

2.3.2.2.2 Data Structure Population

 One must fill a bitset with a complete description of water color possibilities. In a

model based on second order statistics, missing data is usually filled in if neighboring

data (in 3D RGB space) has support. In a bitset type data structure, no such courtesy is

given. Even if there is support from neighboring data, missing data, or holes in the bitset,

are not filled. For this reason, a very complete understanding of possible water colors

must be created.

 Bitset data population for water color is done using safe window methods from

[37,38]. In these works, the authors use a safe window to generate information about

traversable paths. Furthering the ideas in [37,38], safe window construction is dynamic

and relies on feedback from the identification module. It is constructed so that it covers as

much known water surface as possible. For simplicity, however, only a simple

rectangular shaped window is presented. Figure 2.5 shows an example of a simple safe

window.

Figure 2.5: Water Color Safe Window.

 31

2.3.2.2.3 Application

 The water color based classifier works similarly to the buoy color based classifier.

The RGB index of a pixel is tested in the water color bitset. If it corresponding index is

set in the bitset, then the pixel is classified as water. If it is not set, The pixel is classified

as non-water.

2.3.2.2.4 Error Protection

 A tradeoff is made between maximizing safe window size, and thus forming a

more complete model of water color, and increasing the chances of incorrectly setting an

RGB index within the bitset. For example, Figure 2.6 shows a safe window overlapping

shoreline objects prior to boat entrance into the slalom course.

Figure 2.6: Safe Window Incorrectly Overlapping Shoreline Objects.

 To avoid retaining incorrectly set RGB indexes, a small portion of all indexes

within the entire bitset are randomly unset. This procedure is done using the pseudocode

below.

1. numResets =

2. for i = 1:numResets

 32

3. randIndex = random(1,)

4. waterColor[randIndex] = false

The main idea of randomly unsetting bitset indexes is that color indexes with greater

support will persist in the bitset while indexes set in error will reset after a few iterations.

In the pseudocode, the value of k controls the rate of index resetting.

2.4 Experiment Design

 Each of the proposed methods is tested with varied parameter settings on 27

frame sequences. From each test, precision, recall, and "percentage of correct

classification"[21] (PCC) scoring metrics are produced by looking at the differences

between manually labeled and method produced frames. The testing scheme devised

takes into account the ability of higher level modules and the tests are designed with the

intent of feeding the segmentation mask blobs into the next module. The remainder of the

chapter discusses the testing techniques and results of the tests.

2.4.1 Experiment Setup

 Three frames from each of the 27 test sequences are manually labeled. Manual

labeling involves a user selecting all pixels representative of buoys in a frame. The

specific frames selected for manual labeling are not selected at random, they are selected

to maximize the variability of the test. Figure 2.7 shows a diagram of which frames are

selected as those to be manually labeled. In Figure 2.7 a colored point at zero meters

indicates that the frame selected for labeling is the frame in which at least one buoy of the

point's color is completely within the frame bounds. The non-zero meter points show the

 33

relative distances of other buoys in the frame. The colors of the point indicate the colors

of the buoys.

Figure 2.7: The Spread of Points in Tested Poses

From Figure 2.7 it can be seen that the tests are selected so that green, red, and yellow

buoys are tested at short range (0-50 meters) medium range(50-150m), and long range

(150+ meters).

2.4.2 Data Collection

 Each of the presented algorithms is tested by using varied parameter settings for

each algorithm and using each of the 27 video sequences as input. At the manually

labeled frame indexes, the algorithm's segmentation masks are compared to the manually

labeled segmentation masks. From both the method frame and the manually labeled

frame, the number pixels classified as true positive, false positive, true negative, and false

negative are calculated. One important difference between this test and others in related

works is that the region of the image scored is the region below the highest manually

labeled pixel rather than the entire frame. Using the reduced region for scoring ensures

that shoreline objects do not influence the results of the comparison. Figure 2.8 shows an

example of the scoring region.

 34

(a) (b) (c)

Figure 2.8: Scoring Regions. (a) Original Image. (b) Sample Segmentation Mask. (c)

Manually Labeled Segmentation Mask. Scoring Region Denoted By Green Horizontal

Lines.

2.4.3 Scoring Metric

 The experiment is designed to quantitatively test the ability of each proposed

algorithm. Precision and recall measurements are used to provide a numeric

representation of each algorithm's capability. Precision is a ratio that defines what

portion of the selected pixels actually belong to buoys. It is defined in Equation 2.14.

Equation 2.14

Recall is the portion of target pixels actually selected by the algorithm. It is defined in

Equation 2.15.

Equation 2.15

Percentage of correct classification [21] is a score that gives number of correct

classifications compared to the total number of classifications. Equation 2.16 shows how

to produce this score.

 35

Equation 2.16

In all of these equations tp and tn represent true positives and true negatives. fp and fn

represent false positives and false negatives.

2.4.4 Varied Parameters

 The parameters of the tested methods are varied along certain dimensions in order

to ensure a thorough examination of each algorithm's performance. The subsequent table

gives the varied and static parameters of each tested methods.

Running Mean BGS

Varied Parameters Static Parameters
Conservative Update Spatial Update Threshold Distance Learning Factor

{ True, False } { True, False } { 20, 40, 60 } { .05 }

Running Median BGS

Varied Parameters Static Parameters
Conservative Update Spatial Update Threshold Distance Learning Factor

{ True, False } { True, False } { 20, 40, 60 } { .05 }

Running Single Gaussian BGS

Varied Parameters Static Parameters
Conservative Update Spatial Update Mahalanobis

Distance
Learning Factor

{ True, False } { True, False } { 1.5, 2.0, 2.5, 3.0 } { .05 }

Gaussian Mixture Model

Varied Parameters Static Parameters
Mahalanobis

Distance
Learning factor Max Modes Background Percent

{ 1.0, 1.5, 2.0, 2.5,

3.0, 3.5 }
{ .001, .005, .01, .05} { 2, 3, 4 } { .75 }

 36

Visual Background Extractor

Varied Parameters Static Parameters
Radius Subsample

Frequency
Threshold

Distance
Conservative

Update
Spatial

Update
Number of

Samples
{ 1.0, 1.5, 2.0,

2.5, 3.0 }
{ 8, 16 } { 20, 30, 40,

50 }
{ True } { True } { 20 }

Buoy Color

Varied Parameters
Bitset Source

{ Total, Camera Setting Specific}

Water Color

Varied Parameters
Forget Factor Safe Window Width Safe Window Height

{ 0.5/256, 1.0/256, 1.5/256,

2.0/256 2.5/256, 3.0/256 }
{ 10, 40 } { 40, 160 }

Difference Of Gaussians

Varied Parameters

 Threshold Distance

{ 0, 1, 2, 4 } { 0, 1, 2, 4 } { 3, 8, 13 }

Table 2.1: Varied Parameters of the Segmentation Experiment.

2.5 Results

 The precision and recall values are computed for each method using various

parameter settings. The PCC, precision and recall plots for six identified video classes are

presented. Only five sets of sample output are provided due to the similarity of the

"shadow side" and "foam" class videos. The PCC scores presented are the best overall

parameter setting of each method presented.

 37

2.5.1 PCC for Best Parameter Settings

Figure 2.9: Best PCC Score for each Method.

2.5.2 Precision Recall Plots for Various Parameter Settings

Figure 2.10: Legend of Plots.

 38

Figure 2.11: Precision-Recall Plot for Methods Tested on All Classes of Video.

Figure 2.12: Precision-Recall Plot for Methods Tested on Cloudy Class Videos.

 39

Figure 2.13: Precision-Recall Plot for Methods Tested on Sunny Side Videos.

Figure 2.14: Precision-Recall Plot for Methods Tested on Shadow Side Videos.

 40

Figure 2.15: Precision-Recall Plot for Methods Tested on Foam Class Videos.

Figure 2.16: Precision-Recall Plot for Methods Tested on Reflection Class Videos.

 41

2.5.3 Sample Output

 For five of the six video sequence categories presented in the aforementioned

plots, sample output is provided which shows the method's best overall parameter setting

output in comparison to the original frame and ground truth. The "Foam" category of

video sequences is excluded due to its similarity to the "Shadow Side" and "Sunny Side"

class of videos.

Cloudy Video

Original

Image

Ground

Truth

Buoy

Color

Difference

Of

Gaussians

 42

Gaussian

BGS

Gaussian

MM BGS

Mean

BGS

Median

BGS

ViBe

Water

Color

Shadow Side Video

 43

Original

Image

Ground

Truth

Buoy

Color

Difference

Of

Gaussians

Gaussian

BGS

Gaussian

MM BGS

 44

Mean

BGS

Median

BGS

ViBe

Water

Color

Reflections Video

Original

Image

Ground

Truth

 45

Buoy

Color

Difference

Of

Gaussians

Gaussian

BGS

Gaussian

MM BGS

Mean

BGS

Median

BGS

 46

ViBe

Water

Color

Sunny Side Video

Original

Image

Ground

Truth

Buoy

Color

Difference

Of

Gaussians

 47

Gaussian

BGS

Gaussian

MM BGS

Mean

BGS

Median

BGS

ViBe

Water

Color

 48

2.5.4 Limitations of Experimental Evidence

 The method of testing proposed solutions has multiple weaknesses. First, only 27

frame sequences are used in quantitatively scoring the abilities of each algorithm. From

these 27 sequences only a small subset of all possible lighting and weather conditions are

captured. Second, only three frames for each of the 27 sequences are used in testing as

manually labeling frames is an extremely tedious and time intensive. Finally, the

precision and recall scoring schema used may not be the best indicator of each

algorithm's ability when considering the module's purpose within the scope of the

complete system. For example, an algorithm which receives high precision and recall

scores, but tends to segment only one side of a buoy due to lighting conditions may not

be as the best algorithm in comparison to an algorithm that segments buoys from edge to

edge but produces additional unconnected noise. In the first case, a pose estimation

algorithm would bias its result towards the fully segmented side of the buoys. In the

second case, the pose estimation module would not bias its result assuming that the

identification module produces a correct blob-to-buoy mapping.

2.5.5 Discussion

 Upon examination of the experimental results, specifically the precision-recall

plots, it can be seen that the ViBe method appears to be the overall best segmentation

technique. Its superior performance appears to stem from its ability to hold a large

number of color values for each pixel, a property that differentiates the ViBe method

from the other background subtraction techniques. This multi-color mechanism becomes

especially useful in situations where camera jitter, and thus movement of reflections

within the image, is present. Furthermore, the ability to store multiple colors per pixel

 49

allows the algorithm to adequately model the wide variety of color possibilities present

on a aquatic surface.

 Along the same lines as the ViBe technique, the Gaussian mixture model

background subtraction technique also performs well. Its performance is again most

likely due to its ability to hold multiple color models for each pixel. In reviewing the

experimental results, it is understandable that the Gaussian mixture model background

subtraction technique performs comparatively worse than the ViBe method. The

parameter settings used in the experiment allowed the ViBe method to hold up to 20

unique color values per pixel as background possibilities. The Gaussian mixture model

was only able to hold up to four models of color per pixel.

 The mean and median background subtraction algorithms had similar

experimental performance. Surprisingly, the algorithms performed well on the cloudy

class videos. This effect is most likely related to the fact that these algorithms had

statically defined thresholds. The other two related background subtraction techniques

had thresholds that were dependent on the variance of incoming values. The video

sequences categorized as cloudy class had two common properties present in all videos.

They had lower overall contrast in every frame and higher noise per pixel due to the

camera's struggling internal dynamic range compression logic. These two properties,

along with the statically defined threshold, could provide reason for the performance gap

between the methods with statically defined thresholds and the methods with dynamic

thresholds.

 The difference of Gaussians method performed relatively poor in comparison to

the other tested methods. It failed to fill in the inner regions of buoys and its precision

 50

and recall scores suffered. Nevertheless, it did a superb job of segmenting the edges of

buoys in all video classes and allowed for the adjustment of response based on spatial

frequencies. Contrary to most of the other tested algorithms, it functioned as a frame-by-

frame algorithm and required no prior training, something that may be important when

trying to relax more assumptions about full system use.

 The algorithm based solely on buoy color did not perform well. The poor

performance was most likely related to the fact that one data structure was used to hold

all possible buoy color indexes under all possible lighting conditions. The use of one data

structure becomes a major hindrance to the method's performance due to the fact that

buoy color under one lighting condition matches water color under another lighting

condition. Specifically, the color indexes of yellow buoys in sequences in which the

perceived buoy surfaces are illuminated indirectly (shadow side) are almost identical to

the color indexes of water in other sequences. Overall the buoy color based method does

not seem worthy of further pursuit as it does not allow the system to relax assumptions

about buoy color.

 The water color based method appears to be stronger than the buoy color based

method. It could, however, perform better if a smarter safe window was used. A smart

safe window would be a window in which the area of the window is maximized using

feedback from higher level modules. This would allow the algorithm to build a more

complete model of water color.

2.6 Conclusion

 A usable method of buoy segmentation, the ViBe algorithm, has been found by

testing multiple segmentation methods with varied parameter settings on real test

 51

sequences. Each parameter setting for each method was quantitatively evaluated by

finding precision and recall scores. While the strongest method found, ViBe, is not a

perfect solution to the problem, it is a usable solution that will allow for the continued

development the system.

 The experiment relied on 27 test sequences. While these sequences where not

extensive enough to include every possible environment, they were varied enough to

expose the strengths and weaknesses of each of the tested methods. Furthermore, they

were varied enough to reveal possible faults within the algorithms that make them

unsuitable as a long term solutions.

 In general, it appears that using specific, offline trained, colors as the means to

classify pixels is not a robust technique. There will always be situations in which

accepted color in one condition becomes rejected color in another condition. This type of

issue could be dealt with by understanding lighting conditions and their effects on

perceived color, but implementing a system that used this knowledge would shift the

module away from using specific colors and move it towards using the relationships

between colors under lighting conditions.

 The water color based classifier, which relaxes assumptions about specific colors

and determines the classification of colors on the fly, looks like a slightly better solution

in comparison to the buoy color based method. It too, however, is susceptible to

conditions that can cause erroneous output. For example, suppose a large green shoreline

object projected a reflection onto the water surface that the camera perceived as in the

same spatial region as yellow buoys. The safe window would absorb this color and

incorrectly classify any green pair of buoys. A human operator would be able to

 52

understand this situation, but a watercolor based method would not. This leads to the

conclusion that work should go into a water color based algorithm that takes into account

both colors and the spatial location of used colors.

 The background subtraction techniques work well on the presented segmentation

problem. Their success is most likely due to the geometry of the problem itself. In the

problem, a camera experiences significant one-dimensional motion along its optical axis.

Because the shoreline objects are located significantly further away from the camera than

the buoys, the shoreline objects grow at a slower rate become part of the accepted

background. The only issues with background subtraction methods are their need for a

training period, and their inability to deal with camera jitter. A solution for the training

period problem may be to force a high adaptation rate until the system is certain that it

has stabilized and is looking at a scene it can use for further processing. In terms of

camera jitter, an image stabilization procedure prior to segmentation may mitigate the

effects of camera motion.

 The difference of Gaussians method gives the most insight into possibly strong

solutions. It can be seen that the binary masks generated by the difference of Gaussians

method are inadequate at supplying what is truly needed. While the produced binary

masks effectively show changes in image color with respect to spatial location, they do

not show from what color or to what color the change represents. A more appropriate

solution would be one that not only detects color change, but also gives details on the

direction and location of the change within a color space. This would allow the module to

differentiate between a water-to-buoy change and a water-to-reflection change. Figure

2.17 shows how an improved solution may work.

 53

(a) (b) (c)

Figure 2.17: Continued Research. (a) Normal Image. (b) Binary Segmentation Mask. (c)

A More Complex but Robust Solution.

 Overall, it can be seen that all presented methods offer simple solutions to the

problem but suffer from issues that make them unfit as all encompassing solutions. It

appears the output of the segmentation module must move away from binary masks to

more complex masks. Nonetheless, a usable method, ViBe, has been experimentally

found and progress on the entire system can continue.

 54

3 IDENTIFICATION

3.1 Introduction

 In the prior stage of processing, the segmentation module labeled pixels

representative of buoys. A connected-component labeling algorithm then grouped the

pixels into blobs and all blobs were placed in a blob set. The system must now label each

blob according to which buoy it represents. If the blob does not represent a buoy, then it

must be labeled as such. Figure 3.1 (a) displays a typical frame captured by the system's

camera. Figure 3.1 (b) shows the bounding box representation of the blob set produced by

the segmentation module. The identification module is expected to work with sets of

blobs such as the one presented in and Figure 3.1 (b).

(a) (b)

Figure 3.1: A Frame and Its Associated Blobs. (a) A Frame Captured under Normal

Conditions. (b) The Blobs Produced by the Segmentation Module.

 A naive approach to the labeling task would be a brute force solution that attempts

to test every permutation of blob to buoy labeling. This type of approach would be too

computationally expensive to meet real-time constraints. For example, consider Figure

3.1. If there were 18 blobs present, as there are in Figure 3.1 (b), and it was decided that

 55

there were 12 buoys to map to, as in Figure 3.1 (a), then the system would need to test a

total of

 configurations in order to find the best blob to buoy fit. The calculation presented only

represents the required number of tests for mapping 18 blobs to 12 buoys. As seen in

Figure 3.1 some of the blobs do not represent buoys. To ensure the globally best blob

labeling, the system would also need test sets of 17 blobs, sets of 16 blobs, and so on. The

number of actual test necessary is not important. It is only important to realize that this

approach is not computable in real-time with a modern personal computer.

 To avoid the large number of tests associated with the above brute force approach,

the system attempts to label blobs by examining blobs in pairs. Furthermore, constraints

are enforced which limit the actual number of tests. The end result is an algorithm that is

significantly less complex.

3.2 High Level Overview

 At the highest level the entire identification module can be described with the

pseudocode:

1. for pairIndex= 1:num_pairs

2. [buoy0, buoy1] = buoysAtpair(pairIndex)

3. [blob0, blob1] = detectOrTrack(buoy0, buoy1)

4. updateBlobAndState(buoy0, blob0)

5. updateBlobAndState(buoy1, blob1)

6. updateBlobset(blobset, buoy0.newState, buoy0.newBlob)

7. updateBlobset(blobset, buoy1.newState, buoy1.newBlob)

 56

 In the pseudocode, line 1 is a for loop that iterates through all 10 buoy pairs. Line

2 retrieves the data structures associated with the two buoys in the current buoy pair. Line

3 is the execution of a detection or tracking algorithm. The detection and tracking

algorithms use all available knowledge to select the blob pair that best represents the

buoy pair. Lines 3 and 4 update the buoy data structures with the newly selected blobs.

This includes updating a buoy's list of assigned blobs, and assigned states. Finally, lines 6

and 7 remove the blob selected by the detection or tracking algorithm from the set of

usable blobs.

 It is important to note that buoy pairs are processed in the order of closest from

camera to furthest from camera. The ordering is due to the fact that buoys closer to the

camera generally appear in captured frames as objects with higher resolution and better

consistency in terms of size and position.

3.3 Assumptions

 The identification module works under assumptions similar to those already

stated. In terms of camera orientation, it is assumed that the camera has been mounted on

the boat such that: (1) The camera is above the water, (2) The optical axis of the camera

is oriented within five degrees of parallel to the direction of boat travel, and (3) The

camera's rotation about the optical axis is within five degrees of upright. When the

module is searching through blob sets and trying to identify blobs that represent buoys, it

is assumed that the boat position and orientation abides by the following: (1) The boat is

positioned within .5 meters of the slalom course centerline when it is at a distance of 50

meters or less from the first set of pre-gates, and (2) The boat is oriented within five

degrees of parallel to the slalom course when it is within 50 meters of the first set of pre-

 57

gates. Finally, the module assumes that the buoys are: (1) anchored to the world at the

positions specified in the IWSF tournament rulebook, and (2) sized and shaped according

to the rules specified in the IWSF rulebook.

3.4 Chapter Notation

 The remaining sections of this chapter are written in a consistent notation so that

the concepts described are easier to understand. The two primary data types used in the

module are buoys and blobs. Each data type has its own associated predicates, functions,

and symbols. It is important to note that the process of blob labeling is further referred to

as blob assignment or assigning blobs to buoys.

3.4.1 Buoy Notation

 Buoys are referred to as either actual buoys, image buoys, or virtual buoys. Actual

buoys are the tangible objects in the real world, image buoys are the buoys seen in a

frame, and virtual buoys are the abstract, programmatic, data structures used in the

system. All three types of buoys are connected in the sense that they all reference the

same object. The symbols α, β, γ, and δ represent individual virtual buoys. The virtual

buoys α, β, γ, and δ have indexes that range from 0 to 19 as the system works with 20

actual buoys. The symbols ε, θ, λ, and σ represent virtual buoy pairs. Virtual buoy pairs

consist of unique individual virtual buoys, a virtual buoy cannot belong to multiple

virtual buoy pairs. The virtual buoy pairs ε, θ, λ, and σ have indexes that range from 0 to

9 as there are 10 pairs of 20 actual buoys. The predicate is true when virtual

buoy and virtual buoy are in a pair. The notation indicates that virtual

buoy and are in virtual buoy pair . Note that the pair {α, β} is different from the pair

{β, α}. The first set denotes that virtual buoy α is a port side buoy and β is a starboard

 58

side buoy. The second pair denotes the opposite. As seen in Figure 3.2, a pair of buoys is

what the boat travels through while driving through a slalom course.

Figure 3.2: A Frame Marked in Notation. Dotted Boxes Mark Some of the Individual

Buoys and Solid Lines Denote Some of the Buoy Pairs.

 The predicate is true when virtual buoy is in a tracking or

partially occluded state at time t. The function (Least Tracking Index

Greater Than) is a function that finds the individual tracking virtual buoy at time t with

smallest index greater than 's index which is not in 's pair. For example, if in Figure

3.2 the buoys with dotted boxes represented tracking virtual buoys then the function

 would return a reference to a virtual buoy the next furthest virtual buoy pair

from the camera. In this case, either γ or δ . Formally the function is defined as

Equation 3.1

 The function (Greatest Tracking Index Less Than) is the largest

indexed tracking virtual buoy with an index less than 's index not in 's pair. As an

 59

example, if the dotted boxes in Figure 3.2 represented tracking individual virtual buoys,

and the solid lines represented pairs, then virtual buoy references either α or

β. Formally this function is defined as

Equation 3.2

Both of the functions and can be applied to pairs of virtual buoys

rather than individual virtual buoys.

 A virtual buoy has memory of its previously assigned blobs and its previous

states. The function returns the blob selected to represent virtual buoy at

time t. The function similarly returns the state of the virtual buoy at time t.

Finally, the function returns the set of usable blobs available to virtual

buoy α at time t. Synonymously, the function returns the blobs the module

can map to virtual buoy pair at time t.

3.4.2 Blob Set Notation

 The symbols d, e, f, and g represent individual blobs and the symbols j, k, and m

represent pairs of blobs. While a virtual buoy only belongs to one virtual buoy pair, a

blob may belong to any and all possible blob pairs, even the pair that includes the blob

twice. Like the pair predicate for virtual buoys, the predicate is true when

blobs d and e are in a pair together. The statement states that blobs d and e are

in blob pair j. The pair also expresses that blob d is supposed to represents the port

side blob while blob e represents the starboard side blob.

 60

3.4.3 Buoy and Blob Set Formulas

 The system often uses the Euclidean distance formula to find the distance between

a pair of blobs or a pair of virtual buoys. For a pair of blobs, the distance formula is

defined as

Equation 3.3

For a pair of virtual buoys, the distance between them is the distance between their blob

representations, or

Equation 3.4

3.5 Virtual Buoy States and State Transitions.

 A virtual buoy exists in one of five states. In order to understand buoy states,

transition conditions, assignment acceptance rules and occlusion preparation rules must

first be discussed.

3.5.1 Blob Labeling Acceptance

 A virtual buoy is assigned a unique blob every frame. Sometimes the system

incorrectly labels a blob. Two observable conditions in all video sequences allow the

system to detect incorrect blob assignments. First, image buoys have predictable

velocities and positions through a sequence of frames. Second, the pixel areas of image

buoys are consistent and predictable. Classifiers built on these observations dictate

transitions in and out of tracking states at any point in time.

 61

3.5.1.1 Position Consistency

 An image buoy will traverse a sequence of frames at a slow pixel per frame rate.

The system can classify a virtual buoy's blob history based on this fact. The proposed

system uses a function that checks the position of a virtual buoy's blob at time t against its

blob at time t-1. If the distance between the blob centers is under a threshold, then the

blobs at those times are classified as image buoys. This process is repeated for a distance

R frames in the past. Formally, a virtual buoy is classified as a representative of an image

buoy in terms of center position if

Equation 3.5

A hardcoded value that is small enough to detect jumps in blob positions, yet large

enough to accept normal image buoy motion is assigned to the threshold . In the

tested system, this value is 10 pixels.

3.5.1.2 Area Consistency

 An image buoy's pixel area will grow at a slow and consistent rate until the image

buoy becomes occluded due the frame bounds. The system can detect inconsistent blob

assignments by comparing the area of a virtual buoy's blob at time t to its previous frame

blob. If the ratio of areas is larger than a threshold, then the blob history is classified as

non-representative of an image buoy. Formally, a virtual buoy is classified as a

representative of an image buoy if

 62

Equation 3.6

The member is the area of the blob assigned to buoy α at time t. The use

of the and functions ensure that the ratio produced is always greater than

1. A pixel value large enough to accept an image buoy's area growth, yet small enough to

detect changes in blob selection or merged blobs is assigned to the threshold . A

ratio of 3 is used in the implemented system.

3.5.2 Preparing for Frame Occlusion

 The blobs representing an image buoy become absent from the usable blob sets

over a sequence of frames for two reasons. Either the image buoy itself has traversed off

of the frame or noise in the optical sensor and segmentation module have blocked the

image buoy's blob representation. Knowing the reason for the absence of a representative

blob is used to select the appropriate detection or tracking algorithm. If the image buoy is

known to be close to the frame bounds then an algorithm suited for the possibility of

occlusion is selected. Flagging a virtual buoy as close to the frame bounds can be done by

examining the virtual buoy's currently assigned blob. A flag is set if a virtual buoy's

current blob is close to the frame bounds. The predicate used to denote that a blob is near

the frame bounds is generated with

Equation 3.7

 63

The pixel distance between a blob and frame bounds at which the blob is flagged is

assigned to . A value of 5 pixels is used for in the tested implementation of the

system.

3.5.3 States of a Virtual Buoy

 Virtual buoy states are used throughout the system to select appropriate detection

or tracking algorithms, generate constraints, and select the correct blob set updating

function. A virtual buoy is assigned one of five states at each time interval. The most

common transition between states relies on the logic shown in Figure 3.3. In Figure 3.3

the "Stable" conditional diamond represents the functionality described in the Blob

Labeling Acceptance section. The "In Bounds" conditional diamond represents the

function discussed in the Preparing for Frame Occlusion section.

Stable In Bounds Track

Partially
Occluded

True

False

True

False Occluded

Next State Block

Figure 3.3: The Logic Defining Most State Transitions in the System.

 64

3.5.3.1 Track State

 A virtual buoy enters the tracking state when its recent blob history has been

deemed representative of an image buoy. The system can use information from a buoy in

the track state to increase its chances of correctly tracking or detecting the same or other

buoys. The transition into the track state is shown in Figure 3.3.

3.5.3.2 Partially Occluded State

 The partially occluded state is almost identical to the track state. The only

difference between the two states is the flag that is set when a virtual buoy is near a frame

bound. The separate outcomes of the "In Bounds" condition shown in Figure 3.3

illustrate this difference. This state's main purpose is to signal to the system that the

image buoy associated with a virtual buoy has a higher chance of becoming occluded.

3.5.3.3 Search State

 The system cannot use any information from a virtual buoy in the search state to

detect or track image buoys. Transitions out of a search state occur under two conditions.

Either the system determines that a virtual buoy pair is permanently occluded or both

virtual buoys in a pair pass the stability tests described in the Blob Labeling Acceptance

section. If both virtual buoys in a pair are deemed stable, then the virtual buoy receives

the state described by the general transition block in Figure 3.3. Figure 3.4 displays the

logic for a pair of buoys transitioning out of the search state. One difference between

search state transitions and other transitions is that search state transitions only happen in

pairs.

 65

Search

Further Buoy In Done State?

Search

Stable

Stable

False

True

True

False

Search

Search

Stable In Bounds Track

Partially
Occluded

True

False

True

False Occluded

Next State Block

Stable In Bounds Track

Partially
Occluded

True

False

True

False Occluded

Next State Block

Done Done

OR AND

True

False

Figure 3.4: The Transition Diagram for a Pair of Virtual Buoys Transitioning out of

Search State.

In Figure 3.4 the conditional "Further Buoy In Done State" is similar to the

function with the exception that the condition is looking for the least indexed done state

virtual buoy.

3.5.3.4 Occluded State

 A buoy in an occluded state is similar to a buoy in the search state. The main

difference between the occluded state and the search state is that a virtual buoy in the

search state has not yet been in the track or partially occluded state. A virtual buoy can

only transition into the occluded state from the tracking or partially occluded state. The

purpose of the occluded state is to signal to the system that a virtual buoy has gone

through the expected transitions. Figure 3.5 shows the logic for transitioning out of the

occluded state. Note that only a pair of virtual buoys can enter the done state from the

occluded state.

 66

Done

Nearer Buoy
In Tracking State?

Done

Stable

Stable

False

True

True

False

Occcluded

Occcluded

AND OR

Stable In Bounds Track

Partially
Occluded

True

False

True

False Occluded

Next State Block

Stable In Bounds Track

Partially
Occluded

True

False

True

False Occluded

Next State Block

Search Search

True

True

Figure 3.5: Transitions Diagram for a Pair of Virtual Buoys Transitioning out of

Occluded State.

3.5.3.5 Done State

 The done state signals that the actual buoy is out of the camera's field of view and

will never return until system reset. The system cannot use any information from a virtual

buoy in the done state to track or detect other buoys. Virtual buoys only transition out of

the done state on reset. Resets are performed when the system is no longer tracking any

buoys. Figure 3.6 shows the transition. Whenever one virtual buoy transitions out of the

done state all virtual buoys transition out of the done state.

Any buoys in a track or
partially occluded state?

LTIGT(0,t) ≠null
SearchDone

True

False

Figure 3.6: Transitioning out of Done State.

 67

3.6 Blob Assignment

 The system must assign each virtual buoy a unique blob every frame. The system

attempts to accomplish this goal by processing virtual buoys in pairs. First the usable

blob set(s) are permuted into every possible blob pair. Then every pair is ranked based on

its suitability with the virtual buoy pair under consideration. The system ranks blob pairs

using scoring functions. Scoring functions quantitatively assess blob pair to virtual buoy

pair fitness based on a set of metrics. In addition to the scoring functions, the system also

flags invalid blob pairs with constraint functions.

3.6.1 Constraining Functions

 The segmentation module produces noisy sets of blobs. A blob set is noisy in the

sense that some image buoys do not have representative blobs and some blobs in the set

do not represent image buoys. Regardless of the noise, the blobs must be correctly

labeled. A blob d or a pair of blobs j can be ruled as an invalid representation of virtual

buoy α or pair of virtual buoys ε through the use of constraints. Two types of constraints,

single constraints and pair constraints, are used to determine the validity of a blob or blob

pair. Single constraints invalidate individual blobs, while pair constraints invalidate pairs

of blobs. If a blob fails any of the multiple single blob constraints, it is removed from the

usable set. If a blob pair fails any blob pair constraint, then the pair is removed from the

set of pairs used for scoring. The end result is that only blob pairs that pass all single and

pair constraints get scored.

3.6.1.1 Notation

 The predicate is true (valid) when the blob d passes the constraint type

for virtual buoy at time t. synonymously means that the blob pair j is an

 68

acceptable representation of virtual buoy pair using constraint type at time t. The

symbol is used to describe a constant, usually a threshold, for the virtual buoy

and constraint type at time t. Similarly describes a constant for constraint type

for virtual buoy pair at time t.

3.6.1.2 Single Blob Constraints

 Single blob constraints, also referred to as single constraints, invalidate individual

blobs as potential representations of image buoys. If a single constraint invalidates a blob,

then it is removed from the set of usable blobs available to the virtual buoy it failed

under. Single constraints both optimize the labeling process and improve the consistency

of the labeling module. They optimize the module by reducing the number of blobs the

system must test as pairs and improve the overall robustness of the module by removing

blobs that pair constraints might fail to remove. The single blob constraints presented

were generated by making intuitive rules based on observations about image buoys over

sequences of frames.

3.6.1.2.1 Unlocked Constraints

 The system cannot obtain any useful blob validation information from its virtual

buoys if none of its virtual buoys are in the track or partially occluded state. The system

is said to be in an unlocked state under these circumstances. When the system is in the

unlocked state, it is prone to making two types of errors. The first type of error occurs

when the segmentation module produces a blob set that includes blobs representative of

shoreline objects or significantly sized non-buoy floating objects. These types of objects

often trick the scoring functions into producing scores that, as a result, make the system

believes the objects are image buoys. The second type of error occurs when the incoming

 69

blob set is large. If the incoming blob set is large, then the number of blob pairs to test is

large resulting in the failure to meet real-time processing demands. To reduce these types

of errors, a subclass of the single constraints was developed called unlocked constraints.

Unlocked constraints are fired when the entire system is in an unlocked state. It is

important to note that the unlocked constraints were designed to allow the system to

successfully track only one pair of image buoys. Once the system has acquired tracking

status on a pair of virtual buoys, it is out of the unlocked state and has enough

information to successfully avoid the above two errors. The following unlocked

constraints are used by the implemented system and help deal with the above two issues.

3.6.1.2.1.1 Unlocked Dimensionality

 The blobs representative of the closest actual buoys have proportional widths and

heights due to their assumed constant sizes. This observation is used to make a constraint

that is true regardless of the cameras position and orientation in the world. Formally, a

blob is validated with the rule

Equation 3.8

where is a hardcoded max dimensionality proportion. is

necessary because the blobs given by the segmentation module are almost never

completely square. A value of 3 has been found to be the best value for .

Figure 3.7 illustrates the result of applying the constraint. In this example, oblong blobs

are removed from the set.

 70

(a) (b) (c) (d)

Figure 3.7: The Result of the Unlocked Dimensionality Constraint. (a) Original Frame.

(b) Original Blob Set. (c) Valid Blobs under the Unlocked Dimensionality Constraint. (d)

Invalid Blobs.

3.6.1.2.1.2 Unlocked Area Less Than

 As an actual buoy gets closer to the camera its corresponding image buoy also

grows due to perspective projection. An image buoy can only grow to a specific

maximum pixel area due to the camera's position above the water and the camera's field

of view. Any actual buoys close enough to produce image buoys larger than the

maximum pixel area cannot exist because they fall outside of the camera's field of view.

This observation allows for the construction of an unlocked constraint based on area.

Formally the Unlocked Area Less Than constraint is defined as

Equation 3.9

where is assigned the maximum pixel area the system would ever expect

an image buoy to grow. The tested implementation of the system uses a value off 500

pixels for This value is for a constant frame size of 320 x 240 and a focal

length of 3025 pixels. Figure 3.8 shows the result of applying the unlocked area

constraint. In this example the blobs which are too large to be image buoys are removed

from the usable blob set.

 71

(a) (b) (c) (d)

Figure 3.8: The Result of Applying the Unlocked Area Less Than Constraint. (a)

Original Frame. (b) Original Blobs. (c) Valid Blobs under the Constraint. (d) Invalid

Blobs.

3.6.1.2.1.3 Unlocked Area Greater Than

 The segmentation module generally produces consistently positioned and sized

blobs for actual buoys closer to the camera. Actual buoys at a distance generally are

usually converted into inconsistently positioned and sized blobs. Due to this observation,

the system attempts to assign blobs representative of the closest virtual buoys first. The

Unlocked Area Greater Than constraint is executed in the hope that the system will track

nearer blobs. The cost of using the constraint is the potential rejection of blobs associated

with actual buoys at a distance. Formally this constraint is

Equation 3.10

The system uses the threshold to filter out blobs too small to ever represent

close actual buoys. The tested system uses a value of 9 pixels for . Figure

3.9 shows the resulting sets of blobs before and after applying the constraint. In the

example blobs too small to be image buoys are rejected.

 72

(a) (b) (c) (d)

Figure 3.9: The Result of the Unlocked Area Greater Than Constraint. (a) Original

Frame. (b) Original Blobs. (c) Blobs Valid under the Constraint. (d) Invalid Blobs.

3.6.1.2.1.4 Center Below Shore Line

 Actual buoys in the water are associated with image buoys that appear below the

projected shoreline due to camera position and orientation assumptions. This observation

in conjunction with a consistently estimated shoreline row allows for the system to

invalidate blobs based on their positions relative to the shoreline. The row of the

shoreline in a frame can filter individual blobs by the using the rule

Equation 3.11

The threshold is set to the row returned by the shoreline estimation

algorithm for the frame being processed at time t. Figure 3.10 displays the effect of the

constraint. In the example, blobs above the white shoreline row are rejected.

(a) (b) (c) (d)

Figure 3.10: Results of the Shoreline Row Constraint. (a) Original Frame with the

Shoreline Row Drawn in White. (b) Original blobs. (c) Valid blobs. (d) Invalid blobs.

 73

3.6.1.2.2 Locked Constraints

 The system uses unlocked constraints to help correctly assign blobs and track at

least one image buoy pair. Once a pair of virtual buoys moves into a tracking state, the

unlock constraints are disabled and a new class of constraints fire. The new class of

constraints allows the system to use information from tracking virtual buoy pairs in the

constraining portion of detection and tracking methods.

3.6.1.2.2.1 Area Less Than

 An actual buoy further from the camera always appears as image buoy whose area

is less than the area of an image buoy associated with an actual buoy closer to the camera.

This effect is due to perspective projection and the assumption that all actual buoys are

the same size. If the system is constraining the blob set available to a virtual buoy

associated with an actual buoy in the distance, and in the same frame is tracking an actual

buoy closer to the camera, then the system can use the area assertion to its advantage.

Blobs can be validated using the rule

Equation 3.12

The value is set to the maximum pixel area a blob representative of virtual

buoy can have. is found by using the rule

Equation 3.13

 Figure 3.11 shows the result of this type of constraint on a blob set. In Figure

3.11 (a), the value of comes from the buoys denoted by the solid white

 74

boxes and line. The dotted white line in the distance represents the virtual buoy pair the

system is examining.

(a) (b) (c) (d)

Figure 3.11: The Result of the Area Less Than Constraint. (a) The Original Frame with a

White Solid Line Signifying a Tracking Virtual Buoys Pair and a White Dotted Line

Indicating the Buoy Pair under Consideration. (b) Original Blobs. (c) Valid Blobs under

the Constraint. (d) Invalid Blobs.

3.6.1.2.2.2 Area Greater Than

 Similar to the Area Less Than constraint, the Area Greater Than constraint

invalidates blobs which are too small to be considered buoys based on the positions of

actual buoys relative to the camera. The constraint only fires if the system is tracking a

further actual buoy while constraining blobs for a nearer actual buoy. The actual buoys

closer to the camera appear as image buoys that are larger than images of actual buoys

further from the camera. This property is used to validate blobs with the rule

Equation 3.14

The system finds using a tracking virtual buoy further in the distance or

Equation 3.15

Figure 3.12 demonstrates the result of applying the constraint to individual blobs. In the

example the system is constraining blobs for the image buoy pair marked with dotted

 75

lines. The constraint generates its value of , from the buoys denoted by the

white solid boxes and solid white line.

(a) (b) (c) (d)

Figure 3.12: The Result of the Area Greater Than Constraint. (a) Original Frame. (b)

Original Blobs. (c) Valid Blobs. (d) Invalid Blobs.

3.6.1.2.2.3 Center Less Than

 The system can invalidate blobs based on their positions in the frame relative to

tracking image buoys. If the system is tracking an image buoy, then image buoys

associated with actual buoys further from the camera should appear higher in the frame.

This observation is used to validate individual blobs with the rule

Equation 3.16

The row value of is found by using the rule

Equation 3.17

Figure 3.13 presents an example output of this constraint. The value comes

from the solid white boxes in Figure 3.13 (a). In the example, all blobs below the highest

(in terms of row) white box are removed from the usable set.

 76

(a) (b) (c) (d)

Figure 3.13: The Result of the Center Less Than Constraint. (a) The Original Frame with

a Solid White Line Denoting a Tracking Buoy Pair and a Dotted Line Signifying the Pair

under Consideration. (b) The Original Blob Set. (c) The blobs Valid under the Constraint.

(d) The Invalid Blobs.

3.6.1.2.2.4 Center Greater Than

 Similar to the center less than constraint, blobs representative of actual buoys

closer to the camera appear lower (in terms of row number) in the frame than image

buoys further from the camera. If the system is tracking a virtual buoy in the distance and

processing a closer pair of virtual buoys, then it can validate blobs constrained under the

current pair with the rule

Equation 3.18

The row value of comes from the rule

Equation 3.19

Figure 3.14 shows an example of applying the constraint. In the example the solid white

boxes represent a pair of tracking virtual buoys. In the example the blobs above the

highest white box are removed from the usable set.

 77

(a) (b) (c) (d)

Figure 3.14: An Example of Firing the Center Greater Than Constraint. (a) The Original

Frame with White Boxes Representing the next Furthest Pair of Tracked Buoys and a

Dotted Line Denoting the Pair under Consideration. (b) Original Blobs. (c) The Valid

Blobs under the Constraint. (d) Invalid Blobs.

3.6.1.2.2.5 Lanes

 If not apparent from given images of the slalom course, all buoys are nearly

collinear with two lines. The exception is the gate buoys which are ten cm wide of perfect

collinearity. Due to the near collinear nature of all buoys, the system can assume that the

positions of all actual buoys can be described as points on one of two parallel lines. These

parallel lines in the world project onto the image plane as lines which intersect at the

point at infinity. Intuitively, one can start making rules about the positions of image

buoys based on the observation that all buoys are on one of two parallel image lines. The

system does just this. If the system is tracking two image buoys on one side of the slalom

course, it expects all buoys on that side of the slalom course have positions somewhere

along the line created by the centers of the two tracked buoys. The concept of lanes

enforces this rule. A lane is a region in the frame where the system expects valid image

buoys to exist. Figure 3.15 shows a typical frame captured by the system's camera and a

lane constructed using two tracking image buoys on one side of the slalom course. The

valid region is the region inside the two white lines where all image buoys are found.

 78

Figure 3.15: A Visual Representation of a Lane.

 A lane is constructed by first performing a Deming regression on the centers of all

tracking buoys on one side of the slalom course. The resulting best fit line is padded with

a constant pixel value and angle. In Figure 3.15 the white lane bounds are not parallel

lines due to the addition of the pad angle. In the system, the predicate

i is true if 's center is within the left lane's bounds. denotes the

right lane.

3.6.1.2.2.6 In Lane

 If the system is tracking two or more image buoys on one side of the course then

the system can construct lanes and validate blobs using the rule

Equation 3.20

Figure 3.16 shows the effect of applying the constraint. In the example, blobs outside of

the lanes are rejected.

 79

(a) (b) (c) (d)

Figure 3.16: The Result of the In Lane Constraint. (a) The Original Frame. The Solid

White Boxes Denote Tracking Buoys. The Diagonal Lines Illustrate the Lanes. (b)

Original Blobs. (c) Blobs Validated under the Constraint. (d) Invalid Blobs.

3.6.1.3 Blob Pair Constraints

 The blobs that pass single constraints are permuted into all possible pairs. Since

the system uses blob pairs as it's basis for blob selection, the system must remove blob

pairs that cannot represent image buoy pairs. The removal of invalid blob pairs is done

with pair constraints. Like single constraints, pair constraints are based on observations

made about sequences of frames.

3.6.1.3.1 Left Right

 A blob pair denoted as {d, e} is different than the blob pair indicated by {e, d}.

The first pair signifies that blob d is representative of the left image buoy and that blob e

is representative of the right image buoy. The second pair indicates the opposite. Under

the assumption that the camera is upright, blobs associated with actual buoys on the port

side of the boat should appear on the left side of the frame while blobs representative of

actual buoys on the starboard side of the boat should appear the right side of the frame.

This constraint is enforced by checking the centers of the blobs in a pair and ensuring that

the port side blob is positioned further left in the frame than the starboard side blob. This

constraint is enforced by the rule

 80

Equation 3.21

Figure 3.17 shows the result of applying this constraint to pairs constructed using a

specified port side blob. In the example, the invalidated blobs are the blobs located to the

left of the specified port side blob.

(a) (b) (c) (d)

Figure 3.17: The Result of the Left Right Constraint. (a) Original Frame with a White

Dotted Line between the Buoy Pair under Consideration. (b) The Original Blob Set with

the Blob the System Considers the Left Blob in White. (c) The Blobs That Can Be in a

Pair with the Specified Blob. (d)The blobs That Cannot Be in a Pair with the Specified

Blob.

3.6.1.3.2 At Least One Inside

 Under the assumptions of system operation, at least one image buoy from a pair

of actual buoys further from the camera should lie inside the vertical frame bounds

created with the centers of image buoys associated with a pair of closer actual buoys. In

Figure 3.18, the vertical bounds mentioned are drawn in black on the original frame.

Failure to meet this constraint means that either the camera's yaw is outside of the bounds

stated in the assumptions, or the boats lateral displacement relative to the slalom course

centerline is outside the bounds stated in the assumptions. This constraint is enforced by

comparing the centers of a nearer tracking pair to the centers of a further pair. Formally,

this rule is implemented using

 81

Equation 3.22

where the blob pair and the values of and

are produced using

Equation 3.23

Equation 3.24

In these equations and are the buoys from the nearer pair of tracking buoys. The

nearest tracking pair is ordered as { , } meaning that the virtual buoy is expected to

be represented by a blob whose column position is less than that of 's. Figure 3.18

displays the result of applying this constraint to blob pairs which include a specified blob

(in white in Figure 3.18 (b)). In the example, the specified blob is purposefully selected

as a blob outside of the bounds so that the effect of the pair constraint can be seen. The

result is that blob pairs where at least one blob is inside the black vertical bounds of

Figure 3.18 (a) are rejected.

 82

(a) (b) (c) (d)

Figure 3.18: The Result of the At Least One Inside Constraint. (a) The Original Frame

with White Solid Boxes Denoting a Tracking Pair and Black Lines Indicating the

Bounds. (b) The Original Blob Set with a Blob in White Indicating the Specified Blob.

(c) The Blobs That Can Be in a Pair with the Blob in White. (d) The Blobs That Cannot

Be in a Pair with the Specified Blob.

3.6.1.3.3 At Least One Outside

 At least one of the image buoys in a closer pair will lie outside of the vertical

frame bounds constructed with the centers of a image buoys associated with an actual

buoy pair further from the camera. This constraint is valid for the same reason that the At

Least One Inside constraint is valid. Figure 3.19 shows the vertical bounds mentioned in

black. This rule is enforced by checking candidate blob pairs against the centers of

tracking virtual buoys associated with actual buoys further from the camera, or

Equation 3.25

where the blob pair and the virtual buoy pair . The values of

 and are produced using

Equation 3.26

 83

Equation 3.27

where the tracking pair is ordered as { , }.Figure 3.19 shows the result of applying the

constraint to blob pairs that include a specified blob. In the example, the blob selected to

be in all pairs is purposefully picked as a blob inside the bounds so that the effect of the

constraint can be seen. In the example the blobs rejected are the blobs that lie inside the

vertical frame bounds in Figure 3.19 (a).

(a) (b) (c) (d)

Figure 3.19: The Result of Testing Blob Pairs under the At Least One Outside

Constraint. (a) The Original Frame. (b) Original Blobs with the Specified Blob in White.

(c) Blobs That Can Be in a Pair with the Specified Blob. (d) Blobs That Cannot Be in a

Pair with the Specified Blob.

3.6.1.3.4 Distance Less Than

 The distance, in pixels, between a pair of image buoys associated with an actual

buoy pair at a distance from the camera is expected to be less than the pixel distance

between a pair closer to the camera. If the system is tracking a pair of image buoys closer

to the camera than the pair currently under consideration, it can use the distance between

the close pair to filter invalid pairs. This constraint is

Equation 3.28

 84

where the function is defined in the Buoy and Blob Set Formulas section. The

threshold is obtained from a pair of tracking image buoys closer to the

camera than the pair the system is processing, or

Equation 3.29

Figure 3.20 is an example of constraining blob pairs constructed with a specific blob. In

the example, the blobs rejected as potential pair candidates with the blob in white are the

blobs whose distance from the white blob is greater than the distance between the buoys

in the tracking pair.

(a) (b) (c) (d)

Figure 3.20: The Result of Applying the Distance Less Than Constraint. (a) The Original

Frame with a White Solid Line Representing a Tracking Pair and a White Dotted Line

Indicating the Pair under Consideration. (b) The Original Blob Set with the Blob All

Pairs Are Built with in White. (c) The Blobs Allowed to Be in a Pair with the Specified

Blob. (d) The Blobs That Cannot Be in a Pair with the Specified Blob.

3.6.1.3.5 Distance Greater Than

 The Distance Greater Than constraint is the opposite of the Distance Less Than

constraint. It states that an image buoy pair associated with an actual buoy pair closer to

the camera should have a greater distance between its elements than an image buoy pair

associated with actual buoy pair further from the camera. The constraint is enforced with

the rule

 85

Equation 3.30

The threshold is obtained from a further tracking pair as

Equation 3.31

Figure 3.21 shows an example of applying the constraint to all pairs built with a specific

blob. In the example the blobs rejected as potential partners are the blobs whose distance

from the specified blob is less than the distance between the elements of the tracking pair.

(a) (b) (c) (d)

Figure 3.21: The Result of the Distance Greater Than Constraint. (a) The Original Frame

with a White Dotted Box Denoting the Buoy Pair under Consideration and White Solid

Boxes Representing a Tracking Pair.(b) The Original Blob Set with the Blob Tested in

All Pairs in White. (c) The Blobs That Can Be in a Pair with the Specified Blob. (d) The

Blobs That Cannot Be in a Pair with the Specified Blob.

3.6.1.3.6 Slope Greater Than

 The slopes of the lines between members of image buoy pairs are parallel

regardless of the camera's rotation about the optical axis so long as the boat's position is

within the bounds set forth in the assumptions section. The system uses tracking image

buoy pairs to invalidate blob pairs by comparing their pair slopes to one another. If a blob

pair angle, with respect to the frame rows and columns as axis, is far enough away from

 86

the average tracking angle value, then the pair is rejected. To use this constraint, the

system must first find the average slope of all tracking pairs with the formulas

Equation 3.32

Equation 3.33

Once the system finds the average slope of all tracking pairs, it finds the slope of the line

joining elements in a blob pair with

Equation 3.34

The positions of blobs are not exact projections of actual buoys so a buffer angle is

subtracted from the average tracking pair angle to create the threshold bound.

Equation 3.35

Finally, the system uses the threshold to constrain blobs with the formula

Equation 3.36

Figure 3.22 shows an example of firing the constraint. In the example blob pairs created

with the white blob whose connecting line has an angle less than pad radians below the

average tracking pair angle are rejected.

 87

(a) (b) (c) (d)

Figure 3.22: The Slope Greater Than Constraint. (a) The Original Frame. The White

Solid Line Represents the Line Used to Determine the Threshold. The White Dotted Line

Denotes the Pair under Consideration. (b) The Extracted Blob Set with the Specified Blob

in White. (c) The Blobs Allowed to Be in a Pair with the Specified Blob by the

Constraint. (d) The Blobs Rejected by the Constraint.

3.6.1.3.7 Slope Less Than

 The Slope Less Than constraint is the other side of the Slope Greater Than

constraint. The system uses the constraint to reject blobs whose pair angle is too far

above the average pair slope using the formula

Equation 3.37

The threshold value of comes from adding pad radians to the average

tracking pair angle.

Equation 3.38

Figure 3.23 shows an example of the constraint. In the example the blob pairs rejected

are the blobs whose angles are too far above the average tracking pair angle.

 88

(a) (b) (c) (d)

Figure 3.23: The Result of Applying the Pair Slope Greater Than Constraint. (a) The

Original Frame with the Tracking Pair in White Boxes and a Solid White Line. (b)

Original Blob Set with the Blob Tested in All Pairs in White. (c) The Blobs Allowed to

Be in Pairs with the Specified Blob under the Constraint. (d) The Blobs Invalidated by

the Constraint.

3.6.1.3.8 One Per Lane

 Since all buoys are near collinear with one of two parallel lines, the system can

expect that one blob should be on one line, while the other blob is located on the other

line. In other terms, blobs of an image buoy pair will not exist in the same lane. This

constraint is enforced by checking the blobs position and determining which lane the blob

lies in. If both blobs lie in one lane the pair is invalidated.

Equation 3.39

In the equation, signafies the left lane and denotes the right lane. Figure 3.24 shows

an example of applying the constraint to blob pairs constructed with the blob in white

from Figure 3.24 (b). The blobs rejected are the blobs whose centers do not lie in the

opposing lane.

 89

(a)

(b)

(c)

(d)

Figure 3.24: The Result of the One Per Lane Constraint. (a) The Original Frame with

Tracking Image Buoys in White Boxes and White Lines Drawn in Between. (b) The

Original Blob Set with the Specific Blob in White. (c) The Blobs Allowed To Be in a Pair

with the Specified Blob. (d) The Invalid Blobs under the Constraint.

3.6.2 Scoring Functions

 After the constraint functions have removed invalid blobs and blob pairs, the

system uses scoring functions to determine which blob maps to which buoy. A scoring

function decides which blob is the best fit for a buoy by measuring the blob against some

metric. Individually the metrics utilized by the system are weak at classifying the strength

of a blob to buoy mapping. When multiple metrics are combined, however, the scoring

functions consistently label blobs correctly. In this process either a pair of blobs j, k, or

m is mapped to a pair of buoys ε, θ, σ or λ or an individual blob d, e, or f is mapped to an

individual virtual buoy α, β, γ or δ. In a detection or tracking function multiple scoring

metrics are used to create an overall blob to buoy score or blob pair to buoy pair

score . The overall score is created by adding weighted metric based scoring results.

The sum of scores formula is

Equation 3.40

 90

 The two types of scoring functions presented can be logically split into two

groups, order independent and order dependent. The following two sections discuss the

scoring function used.

3.6.2.1 Order Independent

 An order independent scoring function can fire on any blob pair at any time.

Unlike the order dependent scoring functions, the order independent functions do not

require that assigned blobs be removed from the set of usable blobs. The order

independent scoring functions also do not require that the identification module iterate

through buoys in a nearest to furthest manner.

3.6.2.1.1 Similar Slope

 As shown in Figure 3.25 the slope of a line passing through a pair of image buoys

is about the same as the slope of a line passing through other pairs of image buoys.

Figure 3.25: Pair Lines Drawn between Image Buoy Pairs.

An intuitive score criteria based this observation is the following: If blobs are in a pair,

then the slope of the line joining the pair should be the same as the slopes of lines joining

other pairs of image buoys. Formally this type of scoring is expressed as

 91

Equation 3.41

where is the average slope of all tracking pairs at time t and is the slope

between the blobs in pair j. The min and max functions only ensure that the result is

between zero and one. If no pairs of virtual buoys are in tracking states, then is

set to zero since the camera orientation assumptions state that the camera is upright. After

scores are computed for every blob pair, the computed scores are normalized by

comparing each individual score to the maximum score produced by the metric. This

operation is done with

Equation 3.42

where j represents the blob pair whose score is being normalized, and k represents any

blob pair. Figure 3.26 visually illustrates this type of scoring. Figure 3.26 (a) is the

original frame where the white line and boxes denote the tracking pair that

comes from. Figure 3.26 (b) displays the valid blob set to be scored in white and the

unusable blobs in gray. Figure 3.26 (c) shows the scores of valid blob pairs.

 92

(a) (b) (c)

Figure 3.26: The Output of the Similar Slope Scoring Function. (a) The Original Image

with a Solid White Line Denoting the Average Slope Line. (b) The Blobs To Be Scored

in White and Unusable Blobs in Gray. (c) The Result of Scoring Valid Blob Pairs with

the Metric

3.6.2.1.2 Similar Area

 Actual buoys of the same pair should be at about the same distance from the

image sensor. Since actual buoys have the same dimensions, an intuitive scoring metric

based off of this observation is: If blobs are representatives of image buoys from the

same pair, then the blobs should have similar areas. The statement is turned into a scoring

function with

Equation 3.43

where it is assumed that the predicate is true and blob pair . The

score for a blob pair j then is normalized against all other pairs by using a method similar

to Equation 3.42. Figure 3.27 shows the result of this type of scoring metric. The blob

pairs the receive the best scores are the pairs whose elements are closest to the same size.

 93

(a) (b) (c)

Figure 3.27: The Output of the Similar Area Scoring Function. (a) The Original Frame.

(b) The Extracted Blob Set with Usable Blobs in White and Unusable Blobs in Gray. (c)

The Scores Assigned to Valid Blob Pairs Using the Metric.

3.6.2.1.3 Similar Center

 The pair scoring schema can be further used to track buoys through frame

sequences by comparing a blob in the current frame against a tracking virtual buoy's blob

from the previous frame. If it is assumed that d is the tracking virtual buoy's previously

assigned blob, then the score computed for cross-temporal pair j =

{d, e} is

Equation 3.44

The score is normalized against all cross-temporal blob pairs using the function

Equation 3.45

where k is any blob pair and j is the pair being normalized. Note that the score applies to

individual buoys instead of pairs of buoys. How to combine individual scores with pair

scores is discussed in the Track Pair algorithm section. Figure 3.28 displays the results of

scoring an individual blob from the previous frame against blobs in the current frame.

 94

(a) (b) (c)

Figure 3.28: Result of the Similar Center Scoring Metric. (a) The Original Frame with a

White Box Representing the Blob in the Previous Frame. (b) The Extracted Blobs from

the Original Frame in Grey with the Previous Frame Blob in White. (c) The Scores for

Some of the Blobs Using the Metric.

3.6.2.2 Order Dependent

 The Order Dependent scoring functions require that the module map buoy pairs in

the order of nearest pair to furthest pair from the camera. They also require that the

module remove an assigned pair directly after selection. The order dependent scoring

functions use perspective projection and the fact that the nearest buoy pair is under

examination to generate the best mapping scores. Under the condition that buoy pairs are

scored from nearest to furthest, a pair of buoys has the following properties when

compared to other valid pairs: (1) its elements are the furthest apart, (2) its elements are

the lowest in the frame, and (3) its elements are the largest in the frame.

3.6.2.2.1 Widest Pair

 The pair of image buoys closest to the camera, and therefore the corresponding

blobs, should be the widest pair due to perspective projection. The score based on the

widest pair metric is generated for each blob pair j using

Equation 3.46

 95

where is the distance formula. The scores produced are normalized against the

maximum score in a manner similar to that of Equation 3.42. Figure 3.29 illustrates the

result of this type of scoring metric. Figure 3.29 (a) is the original frame with a pair of

tracking buoys in white boxes with a white line drawn in between. Figure 3.29 (b) is the

usable blob set for the image buoy pair following the tracking pair. The white blobs are

the usable blobs while the grey blobs are the unusable blobs. Figure 3.29 (c) is the result

of scoring each of the valid blob pairs using the widest pair metric.

(a) (b) (c)

Figure 3.29: The Output of the Widest Pair Scoring Function. (a) The Original Frame.

(b) The Usable Blobs in White and Unusable Blobs in Gray (c) The Scores Produced

Using the Metric.

3.6.2.2.2 Lowest Pair

 If the camera is upright and facing forward, then the nearest pair of actual buoys

should appear as the lowest pair of image buoys in the frame. A scoring metric based on

this observation gives pairs of blobs with lower positions in the frame a higher score.

Assuming the predicate is true and blob pair , the score for pair j is

computed as

Equation 3.47

 96

and normalized against all other pairs with a method similar to Equation 3.42. Figure

3.30 (a) shows the original frame where the scoring function is being applied to the pair

of buoys following the tracking image buoy pairs. Figure 3.30 (b) shows the usable blobs

in white and the unusable blobs in gray. Figure 3.30 (c) displays the scoring of valid blob

pairs using the lowest pair scoring metric.

(a) (b) (c)

Figure 3.30: The Output of the Lowest Pair Scoring Metric. (a) The Original Frame. (b)

The Extracted Blobs with Usable Blobs in White and Unusable Blobs in Gray. (c) The

Scores Assigned to Valid Blob Pairs Using the Metric.

3.6.2.2.3 Largest Pair

 The pair of actual buoys closest to the optical sensor should appear as the largest

pair of image buoys due to perspective projection and the assumption that all buoys are

nearly the same size. This observation is utilized as a scoring metric by use of the

function

Equation 3.48

The score is normalized using a method similar to Equation 3.42. Figure

3.31 illustrates the scoring metric. Figure 3.31 (a) is the original frame where the white

boxes and lines represent tracking pairs. Figure 3.31 (b) shows the usable blob set for the

 97

image buoy following the furthest tracking pair. Figure 3.31 (c) displays the scores

assigned to valid blob pairs using the largest pair metric.

(a) (b) (c)

Figure 3.31: The Output of the Largest Pair Scoring Function. (a) The Original Frame .

(b) The Blobs Extracted from the Original Frame with Valid Blobs in White and Invalid

Blobs in Grey. (c) The Scores Produced with the Metric.

3.6.3 Updating A Usable Blob Set

 The system would not work correctly if a single blob could be assigned to

multiple buoys. If this were the case, then the proposed constraint and scoring process

would map the same highest scoring blob to every buoy. To avoid this scenario, a blob

assigned to a buoy is removed from the set of usable blobs before another buoy is

processed. Blob set updating occurs after blob assignment and after the virtual buoy's

state is updated using the freshly assigned blob. The blob is removed only if the buoy is

in a tracking, partially occluded, or search state. Formally the rule for blob set updating is

Equation 3.49

where is the next pair of virtual buoys to be processed and pair σ is the virtual buoy

pair just processed. This function usually fires twice, once for each virtual buoy in the

 98

pair σ. Some of the tracking and detection algorithms work one buoy at a time instead of

buoy pair at a time. In this case the blob set updating function is

Equation 3.50

where is the next buoy to be examined. Again, the updating procedure occurs after blob

assignment and buoy state updating .

3.6.4 Detection And Tracking Algorithms

 The system uses two detection algorithms and two tracking algorithms as a means

of labeling blobs. Two versions of each type of algorithm exist to satisfy the necessity for

a single buoy and buoy pair version. All of the four algorithms are similar. The

differences between them are related to the system's need to respond to special cases of

buoy detection and tracking. In all situations, the algorithm to be executed is selected

specifically to incorporate the maxim amount of available information into blob labeling.

The remainder of this section discusses the four algorithms and the conditions that

prompt their execution.

3.6.4.1 Detect Pair

 The system uses the detect pair procedure when it is processing a pair of virtual

buoys that both exist in the search state. The pair detection algorithm is the most

straightforward of the four detection and tracking methods. Its simplicity stems from the

fact that virtual buoys only transition out of the search state in pairs. Due to this

transition, the pair detection algorithm's only goal is to find and report the highest ranking

blob pair. The pseudocode for the algorithm is the following:

 99

 P ε

1. α β ε

2. l S α l S

3. l S β l S

4. validSingles0 = constrainSingles(blobSet0)

5. validSingles1 = constrainSingles (blobSet1)

6. pairs = permutePairs(validSingles0, validSingles1)

7. validPairs = constrainPairs(pairs)

8. pairScores = scorePairs(validPairs)

9. winningPair = getHighestRank(pairScores, validPairs)

In the pseudocode, the constrainSingles() function from lines 4 and 5 uses constraints

mentioned in the Single Blob Constraints section. The function permutePairs() on line 6

constructs every possible blob pair under the restriction that the first element in the pair is

from the first list of valid blobs, and the second element in the pair is from the second list

of valid blobs. This method of pair generation is necessary to accommodate pair building

with two unique blob sets.

 The function constrainPairs() constrains blob pairs with constraints mentioned in

the Blob Pair Constraints section. The blobs are scored based on the scoring functions

mentioned in the Scoring Functions section. The getHighestRank() function returns the

maximum scoring blob pair. If multiple blob pairs tie for the highest score, then one is

selected at random. If no valid blob pairs are present for scoring, meaning all pairs were

removed by the constrainPairs() function, then the null blob pair is returned by the

detection function. The detect pair function's placement in relation to the data structures,

state updating, and blob set updating functions is shown in Figure 3.32.

 100

Virtual Buoy A

New Blob A

New State A

New Blob Set B

New Blob B

New Blob Set A

New State B

New Blob A

New Blob B

Current Blob Set A

Current Blob Set B

Current Blob Set B

Current Blob Set A

New State A

New State B

New Blob A

Blob Set A Virtual Buoy B Blob Set B

New Blob B

Current Blob Set A

Current Blob Set B

Detect Pair

Update State

Update Blob
Set

Figure 3.32: The Detect Pair Function's Placement in Relation to Other Functions.

3.6.4.2 Track Pair

 The track pair function is executed if both elements of a virtual buoy pair are in

the track state. The track pair procedure is very similar to the detect pair function. The

difference between the track pair function and the detect pair function is the addition of

scoring and constraints based on virtual buoy's previous blobs. Furthermore, there is extra

logic to deal with all possible contingencies.

 The basic idea behind the function is to first constrain and score blobs

individually based on comparisons to the virtual buoy's previously assigned blob. If both

sets of blobs are reduced to the empty set, then the function returns the null blob pair. If,

after individual blob set constraints, one of the blob sets has elements while the other is

empty, only the highest scoring blob from the populated list is returned. Finally, if both

blob lists are populated, then the blob pairs are built and scored. The pseudocode for the

track pair function is

 101

trackPair(, t)

1. α β

2. blobSet0 = α l S

3. l S β l S

4. validSingles0 = constrainSingles (blobSet0) //only use locked constraints

5. validSingles1 = constrainSingles (blobSet1)

6. scores0 = scoreSingles(validSingles0) //only use scoring functions meant to test blobs

7. scores1 = scoreSingles(validSingles1) //against virtual buoy blobs from the last frame

8. if(validSingles0. isEmpty && validSingles1. isEmpty)

9. winningPair = [nullSingle, nullSingle]

10. else if(!validSingles0. isEmpty && validSingles1. isEmpty)

11. winningSingle = getHighestRank(scores0, validSingles0)

12. winningPair = [winningSingle,nullSingle]

13. else if(validSingles0.isEmpty && !validSingles1.isEmpty)

14. winningSingle = getHighestRank(scores1, validSingles1)

15. winningPair = [nullSingle, winningSingle]

16. else //both lists of valid blobs have at least one element.

17. pairs = permutePairs(validSingles0, validSingles1)

18. validPairs = constrainPairs(pairs)

19. if(validPairs.isEmpty) //if no valid pairs exist, return the highest ranking individual

20. allSingleScores = merge(scores0,scores1)

21. allValidSingles = merge(validSingles0, validSingles1)

22. winningSingle = getHighestRank(allSingleScores,allValidSingles)

23. winningPair = makePair(winningSingle.side, winningSinle)

24. else

25. pairScores = scorePairs(validPairs)

26. extendedPairScores = addSingleScores(pairScores,leftScores,rightScores)

 102

27. winningPair = getHighestRank(extendedPairScores)

In the pseudocode, the function addSingleScores() adds the individual blob scores to the

blob pairs containing the individual blobs. The pseudocode for this function is

addSingleScores (pairScores, scores0, scores1)

1. for i = 1:pairScores.size()

2. [single0,single1] = pairScores.blobs[i]

3. singleScore0 = getScore(scores0,single0)

4. singelSccore1 = getScore(scores1,single1)

5. pairScore = pairScores[i]

6. newScore = pairScore* singleScore0*singelSccore1

7. extendedScores[i] = newScore

The track pair function is executed relative to other updating functions at a time similar to

the execution time of the detect pair function. Figure 3.33 shows the track pair functions

placement with respect to buoy state updating functions and blob set updating functions.

Virtual Buoy A

New Blob A

New State A

New Blob Set B

New Blob B

New Blob Set A

New State B

Current State A

Current State B

New Blob A

New Blob B

Current Blob Set A

Current Blob Set B

Current Blob Set B

Current Blob Set A

New State A

New State B

New Blob A

New Blob B

Track Pair

Blob Set A Virtual Buoy B Blob Set B

Current State A
Current Blob Set A

Current State B
Current Blob Set B

Current Blob A

Update Blob
Set

Update State

Current Blob B

Figure 3.33: The Placement of the Track Pair Function in Relation to Other Functions

and Data Structures.

 103

3.6.4.3 Detect Single

 The system executes the Detect Single buoy function when a pair of virtual buoys

exists in the occluded and tracking state. In this case, the function uses as much

information from the tracking buoy as possible when searching for the occluded buoy.

First, it checks the state of the partner virtual buoy. If the other buoy is in a tracking state,

then pairs are generated where at least one of the blobs is the tracking blob representing

the tracking buoy. These pairs are then constrained and scored normally using pair

constraints and pair scoring functions. The scores are ordered and the winning blob pair

contains the tracking buoy's blob and the correct representation of the occluded blob. The

pseudocode for the function is

detectSingle(, currentSide , t)

1. α β ε

2. if(currentSide == port)

3. γ α , δ β γ u l u y fu u

4. else

5. γ β, δ α

6. l S γ l S

7. blobSet1 = δ l // blob set is one element, the partner buoy's selected blob

8. f γ

9. validBlobs0 = constrainSingles(blobSet0)

10. validBlobs1 = constrainSingles(blobSet1)

11. pairs = permutePairs(validBlobs0,validBlobs1)

12. validPairs = constrainPairs(pairs)

13. pairScores = scorePairs(validPairs)

14. winningPair = getHighesRank(pairScores, validPairs)

 104

15. winningSingle = getSingleFromSide(winningPair,currentSide)

16. else //the other virtual buoy is not in a tracking state, nothing can be done

17. winningSingle = nullSingle

The Placement of the detect single function in relation to other components of the system

is shown in Figure 3.34. The function will always be executed after the track single

function has been executed due to its reliance on a partner buoy's current information.

New Blob B
New State B

Current State B

New Blob Set A

New Blob A
New State A

Current State B

New Stat A
New Blob A

Current Blob Set B

New Blob Set ANew Blob Set A

Current Blob Set B

C
u

rre
n

t Sta
te

 B

New State A

C
u

rre
n

t B
lo

b
 B

New Blob A

N
ew

 B
lo

b
 Se

t A

New Blob Set B

Update Blob
Set

Track Single

Virtual Buoy A

Current State A

Blob Set BVirtual Buoy BBlob Set A

Current State B
Current Blob Set B

Current Blobs A

Update State
Current Blob B

New Blob A

Current State A
Current Blob Set A

New State A
New Blob A

Current Blob Set A

Update Blob
Set

Update State Detect Single

C
u

rre
n

t B
lo

b
 Se

t B

N
ew

 B
lo

b
 A

N
ew

 Sta
te

 A

New Blob B
Current Blob Set B

Current State B
Current Blob Set B

New Blob B
New State B

Current Blob A

Current Blob B Current Blob B

Figure 3.34 The Detect Single Function's Placement in Relation to other Functions When

Tracking Then Detecting.

3.6.4.4 Track Single

 The system uses the Track Single function when one of two conditions are met.

First, if one virtual buoy in a pair has been marked as occluded, from the previous frame,

and the other is tracking, then the Track Single function is executed in the hopes that the

tracking buoy can still be found in the current frame. Second, if one virtual buoy in the

pair has become partially occluded, then the system uses the Track Single function twice

in a row instead of the Track Pair function. This approach is used in order to handle the

case in which the partially occluded buoy has become occluded. The pseudocode for the

function is

 105

trackSingle(α, t)

1. blobSet0 = α l S t(t)

2. l S α l -1) //the other blob set is the previous frame blob.

3. validBlobs0 = constrainSingles(blobSet0)

4. validBlobs1 = constrainSingles(blobSet1)

5. pairs = permutePairs(validBlobs0,validBlobs1)

6. pairScores = scorePairs(validPairs) //only cross-temporal scoring functions are used.

7. winningPair = getHighesRank(pairScores, validPairs)

8. winningSingle = winningPair[0]

The placement of the track single function in the first aforementioned case is shown in

Figure 3.34. The placement for the second case is shown in Figure 3.35.

New Blob B
New State B

Current State B

New Blob Set A

New Blob A
New State A

Current State B

New Stat A
New Blob A

Current Blob Set B

New Blob Set ANew Blob Set A

Current Blob Set B

C
u

rre
n

t Sta
te

 B

New State A

C
u

rre
n

t B
lo

b
 B

New Blob A

N
ew

 B
lo

b
 Se

t A

New Blob Set B

Update Blob
Set

Track Single

Virtual Buoy A

Current State A

Blob Set BVirtual Buoy BBlob Set A

Current State B
Current Blob Set B

Current Blobs A

Update State
Current Blob B

New Blob A

Current State A
Current Blob Set A

New State A
New Blob A

Current Blob Set A

Update Blob
Set

Update State Track Single

C
u

rre
n

t B
lo

b
 Se

t B

N
ew

 B
lo

b
 A

N
ew

 Sta
te

 A

New Blob B
Current Blob Set B

Current State B
Current Blob Set B

New Blob B
New State B

Current Blob A

Current Blob B Current Blob B

Figure 3.35: The Track Single Function's Placement When Tracking Two Buoys

Individually.

3.7 Validation of the labeling system

 Validation of the identification module can be found in the Control chapter of the

thesis. In the Control chapter, a full system experiment is presented in which the entire

system operates as intended. Real system operation can be seen as evidence that the ideas

presented in the Identification chapter correctly fit blobs to buoys.

 106

3.8 Future Research

 The generate and constrain method presented uses many intuitive and

mathematically simple constraint and scoring metrics. Improvement to the module can be

made by using more complex constraint and scoring metrics. An example of such a

constraint is one that uses a predicted pose estimate, most likely from a Kalman filter, to

estimate the position of buoys in images.

 Outside of what is available to the current system, it is also important to consider

augmenting the system with other sensors such as a GNSS receiver, accelerometer,

gyroscope, or digital compass. If the accelerometer, gyroscope and digital compass were

calibrated with the system's camera such that the camera's orientation and height above

water could be determined from non-camera sensor data, and the planar position of the

camera was found via a GNSS, then it would be possible to estimate the position of

buoys in incoming frames. The integration of more sensors could improve the robustness

and possibly the processing time requirement of the identification module.

 107

4 POSE ESTIMATION

4.1 Introduction

 The two modules presented so far will turn a frame into a set of blobs and a set of

correspondences between those blobs and buoys in the world. The task now is to use the

blob-buoy mapping to estimate the position and orientation of the camera.

4.1.1 Formal Statement of the Problem

 The pose estimation module is given three pieces of information from which it

needs to find camera pose: (1) a set of image coordinates extracted from the blobs

produced by the identification module, (2) a set of world coordinates, and (3) a mapping

between image coordinates and world coordinates. Using these three pieces of

information, the pose estimation module needs to estimate the position and orientation, in

reference to the world, of the camera when the original frame was captured. The generic

version of this type of problem is often called the Perspective-n-Point (PnP) problem

[39].

 The pose estimation module's problem can be viewed as a degenerate case of the

PnP problem. The problem is degenerate due to its extra constraints on both the

configuration of object coordinates as well as the allowable camera positions and

orientations. In terms of the object coordinate configuration, the presented problem has

four extra constraints. First, all object coordinates are coplanar. Second, all object

coordinates lie on one of two parallel lines. Third every object coordinate a on line l1 has

a corresponding "pair" coordinate b on l2. b is located at the intersection of l2 and a line

that perpendicularly intersects l1 at a. Finally, the distance between two points on the

 108

same line, , is significantly larger than the distance between pair points on opposing

lines, . Figure 4.1 shows an example of this type of configuration.

L1

L2

c a

b

d

Figure 4.1: A Valid Point Configuration for the Pose Estimation Module.

It is important to note that the object coordinate configuration constraints do not include

the constraint .

 The camera orientation and position constraints for the degenerate version of the

problem are similar to those that have been expressed in other chapters of this thesis.

These constraints are the following: (1) the camera is located between line l1 and l2, (2)

the camera's optical axis is near parallel to l1 and l2, and (3) the distance between the

camera and the object coordinate plane is nonzero and less than the distance .

 Beyond the goal of finding a pose estimate for the degenerate PnP problem

presented above, the pose estimate module must also make its computations in a minimal

amount of time and produce robust and consistent results. The time requirement is

necessary to meet real-time constraints and to allow other modules more processing time.

The robustness expectation is necessary so that post processing methods that detect

invalid pose estimates can be avoided.

4.1.2 Significance of the Research

 Pose estimation is a fundamental problem in computer vision. Many applications

require some form of camera pose estimation in their processing pipeline so that the

systems can interact with the world. This chapter contributes to the breadth of knowledge

 109

associated with pose estimation in two ways. First, it introduces two new methods

designed specifically for the degenerate PnP problem presented. Second, it provides a

quantitative, problem specific analysis of both preexisting methods and proposed

methods.

4.1.3 Notation

 Before presenting pose estimation methods, the common notation used throughout

the rest of the chapter must be presented. The ideas and important concepts behind object,

camera, and image space, as well as their relationships will also be discussed. In general,

a lowercase bold letter such as "v" represents a column vector. A scalar element within

vector v is expressed with subscripts such as " ". An uppercase bold letter such as "A"

represents a matrix. A matrix is also indexed with subscripts such as " " denoting the

a'th row and b'th column of the matrix. Any superscript on a scalar, vector, or matrix

usually represents the space in which the value resides. For example, " " represents

vector element p which is a member of image space. Superscripts are also sometimes

concatenated with other letters to denote special elements within the space. For example,

" " may represent a vanishing image coordinate. The superscript "T" such as that in

" " denotes the transpose operation. Any other special points, or spaces will be

introduced prior to their use.

4.1.3.1 Object Space and Camera Space

 In all of the following pose estimation methods, there are two 3D coordinate

systems. These are the camera coordinate system and the object coordinate system.

Elements of these coordinate systems are sometimes referred to as elements of "object

space" or "camera space." Sometime the term "world" is used to describe object space.

 110

The interchangeability of these two words stems from the fact that the goal of the pose

estimation module is to calculate the pose relation between the camera and a slalom

course object, an object that is anchored to the world. In general, the object system has its

origin at some user or method defined coordinate and the camera coordinate system has

its origin at the camera's center of projection .

 Any coordinate in the object coordinate system is denoted by
 . The superscript

"o" denotes that the coordinate is an object space coordinate and the subscript "a" indexes

the coordinate. The object coordinate
 has three scalar components

 ,
 , and

 .

Any coordinate in the camera coordinate system is denoted as
 . Synonymous with

object coordinates, the superscript "c" denotes that a coordinate is a camera space

coordinate and the subscript "a" indexes the coordinate.
 has 3D components

 ,
 ,

and
 .

4.1.3.2 Image Space

 Camera space an object space represent 3D coordinates in the world. Image

coordinate are best expressed as either 2D coordinates or 3D homogeneous coordinates.

All image coordinates are expressed with a superscript "i" which represent membership

to image space, and a subscript "a" which indexes the element. In general, any image

coordinate
 has two

, or in the homogeneous case three,

, components.

 One important image coordinate is the principal point of the image plane. This is

the point at which the optical axis of the camera lens intersects the image plane. This

 111

point is referenced as

. Another important image space term that is not

an image coordinate but a value expressed in image space units is the focal length .

4.1.4 Fundamental Conversions

 With some notation now established, the relationship between object, camera, and

image space will be discussed. Transformations from one space to another will be

presented and any needed elements involved with the transformations will be defined.

4.1.4.1 The Relationship between Object Space and Camera Space

 The relationship between the camera coordinate system and the object coordinate

system can be described with equations that model rigid transformations. A rigid

transformation maps one space to another and ensures that the distances between

elements are preserved. A rigid transform in 3D requires three rotation and three

translation elements.

 Rotation is often designated by the rotation matrix R. The rotation matrix R is

equivalent to the matrix

Equation 4.1

where each row of R equivalent to the unit vectors , , and . The row vectors in R are

orthonormal vectors that express the direction of the camera coordinate system's x-, y-,

and z-axis in object space. If the desired that rotation be in terms of Euler angles rather

than unit vectors, methods such as [40] can be used to convert between the two

representations.

 112

 Translation is denoted by the three element vector t. The pose estimation methods

presented further in this thesis will produce two types of translation vectors. The first is

the translation vector . It represents the translation of a camera expressed in the object

coordinate system. It has object space components , , and . The second type of

translation vector is . It signifies the translation of the object in the camera coordinate

system. The vector has camera space components , , and . A illustration of each

type of translation vector is depicted in Figure 4.2.

oo

xobj

zobj

yobj

oc

zcam xcam

tc.zctc.xc

ycam

(a)

oo

xobj

yobj

oc

ycam

to.zo

to.xo
xcam

zcam

zobj

(b)

Figure 4.2: An Illustration of the Components That Form the Two Types of Translation

Vectors from Two 3D Axis which Differ by an X-Z Translation and Rotation about the

Y-Axis. (a) The t
c
 Vector Components. (b) The t

o
 Vector Components.

 The rigid transformation equations that use each type of translation vector are the

following:

Equation 4.2

Equation 4.3

 113

 Both types of translation vectors are useful, however, the type used in Equation

4.2, , is not desirable for a system that requires the position of the camera expressed in

world coordinates. The two types of translation vectors and are related by the

rotation matrix R. The relation between and is

Equation 4.4

4.1.4.2 The Relationship between Camera Space and Image Space

 The classic pinhole camera model is used to model the system's camera. For all of

the following pose estimation methods, it is assumed that the focal length is known and

the camera is intrinsically calibrated. With this assumption, the relationship between

camera space and image space can be described with perspective projection or

Equation 4.5

The pinhole model of the camera can be seen in Figure 4.3.

 114

oc
i

j

wo

wo

wo

ipi

k

a

b

i

c

i
i a

b

c

fi

I
i

i

i

Figure 4.3: Pinhole Camera Model. Object Coordinates
 ,

 and
 Project onto the

Image Plane I by Perspective Projection to Points
 ,

 and
 Respectively.

4.2 Review of Related Literature

 The machine vision community has dealt with the problem of calculating camera

pose numerous times. Some methods are for the generic case [41,42,43] and some

methods are specially built for degenerate cases of the problem. These include methods

for coplanar points [44], methods that rely on vanishing geometry[45,46,47], and

methods which look for a specified number of point correspondences [48,49].With that

being said, the problem faced by the system does not appear to have any specifically

tailored methods associated with it. In the subsequent text, tested methods, or methods

that significantly contribute to the two proposed methods are reviewed in depth.

 115

4.2.1 Iterative Methods

4.2.1.1 Posit Coplanar

 The posit algorithm [41,44] is an iterative algorithm that initially estimates object

pose by making assumptions about the depth of object coordinates along the optical axis

of the camera. The pose of the object is estimated with assumed values, and the resulting

estimate provides improved assumption values. The algorithm repeats and the pose

estimate parameters often converge on their true values.

Oc i
j

Wo

Wo

p

k

0

a

i0

iPa

Po

No
a

a

ia

I

G

i

i
i

i

Figure 4.4: Posit Diagram. The World Coordinates
 and

 , Their Image Coordinates

 and

 , the Scaled Orthographic Projection
 of

 , and Its Corresponding Image

Point
 .

 116

 A pose estimation problem interpreted by the posit algorithm is described as

follows: An object has a set of n known object coordinates {
 ,

 , ...,
 } that

correspond to camera coordinates {
 ,

 , ...,
 } and image coordinates {

 ,
 , ...,

 }. The object coordinate

 is designated as the "reference point" of the object

coordinate system. The translation vector computed by the algorithm, , is the camera

space coordinates of the reference point. The algorithm begins by assuming that an image

coordinate
 is in fact the scaled orthographic projection image point

 . As seen in

Figure 4.4, the point
 is the perspective projection of point

 onto the image plane I.

 is the orthographic projection of

 onto the plane G. The plane G is a plane that lies

at the same optical depth,
 of reference point

 and is parallel to the image plane I.

Any orthographically projected point
 in camera coordinates is

 .

 The authors of the posit algorithm develop two functions for generating the

images,
 , of the orthographic points,

 . The two equations correspond to the left and

right sides of the equations in Equation 4.6.

Equation 4.6

The term in these equations is

Equation 4.7

In Equation 4.7 the " " operator expresses the dot product between the two 3D vectors.

For an in depth proof and derivation of these equations reference [41,44]. The equations

 117

are manipulated into a form that allows all point correspondences to create a system of,

usually overdetermined, linear equations.

Equation 4.8

Equation 4.9

Equation 4.10

Equation 4.11

The vectors and are solved for by finding the pseudoinverse of A. The author

recommends that the pseudoinverse is found with singular value decomposition [50].

Equation 4.12

 Once the components of vectors I and J have been found, the rotation components

 , and can be extracted by dividing the solved I and J vectors by the scaling factor

 .

This operation is equivalent to taking the norm of I or J. The orthonormal vector is

found with the cross product as . The newly equated and
 can be used to

update the value of in Equation 4.7. Running the algorithm again with a new value of

 yields improved estimates.

 118

 Once the algorithm has converged, the rotation matrix components will already be

present in the orthonormal vectors , , and . The values of the translation vector ,

equivalent to

 , come from Equation 4.13, Equation 4.14, and the scaling

factor

 .

Equation 4.13

Equation 4.14

 The explanation presented so far is for the version of POSIT that computes a pose

estimate with non-coplanar object coordinates. Extra steps must be taken in order to

compute pose with coplanar coordinates. It is first necessary to notice that the vectors I

and J computed in the POSIT algorithm with coplanar points lead to vectors that, if

placed such that their tails lie on
 , point to some point Q lying within the same plane

as the object points. It is also necessary to note that the true values of I and J are any

vectors whose projection onto the object plane is similar to
 .

 In order to find the correct I and J, the vectors are first rewritten as

Equation 4.15

where and are the true vectors. Using the new equations, the following two constraints

are imposed: (1) the lengths of and must be the same, (2) and must be

perpendicular. These constraints lead to the two equations

 119

Equation 4.16

Equation 4.17

Using these two equations, it is possible to find the correct values of and using

Equation 4.18.

Equation 4.18

Terms in Equation 4.18 can be substituted with the terms of Equation 4.16 and Equation

4.17 so that Equation 4.18 becomes

Equation 4.19

Since and are known, and are found as the real and imaginary parts of the roots of

Equation 4.19. For the complete method to derive the roots as well as a proof, reference

[44].

4.2.1.2 Levenberg-Marquardt Optimization

 The problem of estimating camera pose can be interpreted as a nonlinear least

squares optimization problem. In this type of interpretation, the extrinsic parameter

configuration that yields minimum reprojection errors provides the ideal pose estimate.

Before revealing how a pose estimation problem is translated into a nonlinear least

squares problem, the basics of nonlinear least squares problems will be examined.

Nonlinear least squares problems have the form

 120

Equation 4.20

and the goal of the optimization operation is to minimize the scalar value . In

Equation 4.20, each function is known as a residual function and maps

adjustable model parameters and given values to a scalar error value. In most

cases, contains static parameters and observation pairs for which the adjustable

parameters are being tuned to fit. A residual function takes the form

Equation 4.21

where and are components of the observed pair and is a function

that uses adjustable model parameters, static parameters, and one component of the

observed pair to generate a parameter dependent estimate of the other component in the

observed pair. The difference between the observed value and the parameter dependent

value represents how well the adjustable model parameters fit the observed pair.

 Methods for minimizing Equation 4.20 most often depend on some derived

components of the original nonlinear least squares problem. One of the derived

component necessary is the gradient of a function. A gradient of a function is a matrix of

partial derivatives of the function with respect to parameter components of that function.

It applies to functions that map . The gradient of a residual function is

Equation 4.22

 121

Like the gradient, the hessian of a function applies to functions that map and is a

matrix of second order partial derivatives. The hessian of the error function

would be something like

Equation 4.23

 Building on the gradient and hessian, the last derived component needed for

nonlinear optimization is the Jacobian of a vector of functions. A Jacobian is like a

gradient, but applies to functions that map . If the residual functions of the

original nonlinear least squares problem are combined into one vector r

Equation 4.24

then the Jacobian of that matrix is the matrix of partials of each residual function.

Equation 4.25

 With a basis of nonlinear least squares problems and knowledge of some of the

derived components, the Levenberg-Marquardt algorithm can be discussed. The

Levenberg-Marquardt optimization algorithm is a means to find the parameter setting p

that minimizes the scalar error . It is composed of a mixture of gradient descent

 122

and Gauss-Newton optimization. The Levenberg-Marquardt algorithm uses the update

equation

Equation 4.26

where "b" indexes the iteration number and the function represents a zeroed

matrix whose dimensions are the same as A, and whose diagonal elements are the same

as the diagonal elements of A. The parameter of the update equation controls the

behavior of the update method. If is large, then the update equation acts like gradient

descent, if is small then the update equation acts like Gauss-Newton Iteration [51,52].

The value of is dynamically controlled by the algorithm with the following pseudocode:

1.

2.

3.

4.

5.

6.

One detail when thinking about computational cost of the algorithm is the cost evaluating

the hessian of a function. Like the Gauss-Newton method, the hessian is estimated with

the Jacobian as producing the optimized update equation:

Equation 4.27

 123

A pose estimation problem can be translated into a nonlinear least squares problem if the

value is set to represent reprojection errors. In such an interpretation, the residual

functions would take the form

Equation 4.28

Equation 4.29

where
 and

 are the components of the observed image coordinates. The

function
 would look like

Equation 4.30

which provides image coordinates corresponding to a rigid transformation and

perspective projection of known coordinate
 . This is only an example of how the LM

algorithm works. Another example can be found in [53] and in the end, the OpenCV

2.4.8 implementation of the algorithm for pose estimation is used.

4.2.2 Linear Complexity

4.2.2.1 Efficient Perspective-n-Point Camera Pose Estimation

 One of the goals for the overall system is real-time performance. In pursuit of this

goal it is necessary to examine pose estimation algorithms that have bounds on their

complexity. One such method is the EPnP algorithm [42], which has an O(n) bound. In

 124

the subsequent sections, it is discussed in detail as a potential solution to the pose

estimation problem.

 The first step in the EPnP algorithm involves generating coordinates, in object

space, for four virtual control points. The locations of the control points are selected such

that one point is positioned at the centroid of the incoming object coordinate set, and the

other three points, in combination with the centroid point, form a basis for 3D object

space that aligns with the object system axis. Once the positions of the four control points

have been generated, the weighting factors that express each object coordinate in terms of

the control points are selected such that Equation 4.31 and Equation 4.32 are satisfied.

Equation 4.31

Equation 4.32

 Equation 4.31 and Equation 4.32 state that all object coordinates can be expressed

as a mixture of the four control points. One important detail to notice about the mixing

weights, , in Equation 4.31 and Equation 4.32 is that the same mixing weights that

express object coordinates can also express camera coordinates, but only if the camera

space locations of the virtual control points are known. This is expressed in Equation

4.33.

 125

Equation 4.33

 Again, determining the position in camera space of object coordinates is only

possible if the camera coordinates of the four control points,
 , are known. From this

point, it can be seen that the pose estimation problem now lies in determining the location

of the control points in camera space. Once this information is known, 3D fitting methods

such as [54,55,56] can recover the rotation and translation values necessary for a

complete camera pose estimate.

 The authors find that known image coordinates, object coordinate weights, and

the unknown location of the control points are related by Equation 4.34 and Equation

4.35.

Equation 4.34

Equation 4.35

In these two equations each is the known mixing weight determined in Equation

4.31, and are the known focal lengths, and are the known image coordinates

of the principal point, and
 and

 are the known image coordinates corresponding to

object coordinate
 . With some manipulation, the two equations can be reformed into a

linear system which looks like Equation 4.36.

 126

Equation 4.36

In more detail, Equation 4.36's terms can be expanded to those in Equation 4.37.

Equation 4.37

 From Equation 4.34 to Equation 4.37 it can be seen that the vector x is a 12x1

vector equivalent to

 , where the semicolon denotes row concatenation.

The true value of the camera space positions of the control points is therefore somewhere

in the null space of M. The null space of M can be efficiently found as the span of the

eigenvectors corresponding to zeroed eigenvalues of the matrix .

 In practice there may be anywhere from one to four null eigenvectors of .

The correct value of x is therefore some linear combination of the null eigenvectors as in

Equation 4.38.

Equation 4.38

In Equation 4.38, is the number of null eigenvectors of , is the d'th null

eigenvector, and the values of are the constants that generate the correct linear

combination needed to find x.

 127

 As said before, there are anywhere from one to four vectors that represent the null

space of M. The authors of EPnP examine each of the four cases. They derive methods of

finding the correct values of each in each of the four cases. The simple case is that in

which the number of null eigenvectors is just one. In this case the vector x is found as

Equation 4.39

The correct value of is found by ensuring that the distances between virtual control

points in object space is equivalent to the distances between control points in camera

space, or

Equation 4.40

where
 denotes the 3x1 subvector corresponding to virtual control point "a" from the

single vector
 . In this simple case, the value of can be found directly. In the case

that the null space is the span of 2 vectors, a similar distance constraint, as seen in

Equation 4.41, is used.

Equation 4.41

Equation 4.42

 128

In this case each equation of the form of Equation 4.41 can be rewritten into the form of

Equation 4.42 and it can be seen that finding the values of and becomes a problem

of solving a system of 6 quadratic equations.

 To extract the correct values of and a technique called linearization [43] is

used. The linearization technique takes the terms
 , , and

 and replaces them

with linear terms , , and so that the system can be easily solved as a linear

system. The linear system takes the form.

Equation 4.43

which expanded looks like

Equation 4.44

In Equation 4.44, and is composed of the components of each of the two null

eigenvectors as seen in Equation 4.42. The system is solved with the pseudoinverse of

and the correct sign of and are selected such that the control points in camera space

are positioned in front of the camera. When the number of vectors that span the null

space of M is three, the solution to , , and are found again using linearization. In

this case, the inverse of , which is now a 6x6, is used to solve the linear system.

 When there are four null eigenvectors of , the distance constraints looks like

Equation 4.45.

 129

Equation 4.45

In this case, the distance constraints produce a system of six equations with ten 2nd

degree polynomial terms. To find the correct values of , , and , a technique

called relinearization [57] is applied. The relinearization technique is similar to the

linearization technique. First, all 2nd degree terms are replaced with linear terms. This

leaves a underdetermined system of six linear equations with ten terms. The method

resolves the underdetermined linear system by converting it into a parametric system with

four new variables. The result is that each of the 2nd degree terms has the form of

Equation 4.46

Equation 4.46

where is some constant and is a term introduced in the parameterization process.

The relinearization technique then uses the constraints such as:

Equation 4.47

to generate enough quadratic equations such that the linearization technique can be

applied.

4.2.3 Vanishing Geometry

4.2.3.1 Four Parallel Lines

 In [46] the author attempts to find the pose of a UAV-mounted camera relative to

four equally space parallel lines on the ground plane. The world coordinate system is

 130

configured such that its x-axis is parallel with the ground lines and the author attempts to

estimate all but one of the parameters of pose. The neglected parameter, translation along

the x-axis, is deemed uncomputable due to the lack of reference points along its direction.

Nevertheless, the author derives a method that retrieves all rotation parameters and the

two computable translation parameters.

 The method presented in [46] makes the assumption that the x-axis of the world

coordinate system is parallel with the ground lines, the positive values of the z-axis

indicate height above the ground plane, and by right-hand convention, the y-axis is left

when looking in the direction of the positive x-axis. The method presented in the paper is

for this specific configuration, but is easily adaptable to any coordinate system axis

configuration.

 The vanishing point, , of the world system x-axis is calculated as the

intersection of the images of the parallel ground lines. From the image coordinate, the

vector indicating the orientation of the world system x-axis in the camera space is found

with

Equation 4.48

where K is the 3x3 intrinsic camera parameter matrix.

 The vanishing line of the ground plane, an x-y plane, is calculated with the DLT

[58] and the equation for a projective line map presented in [59]. Two important steps

before calculating the vanishing line are: (1) normalizing the image line vectors such that

 131

they change from
 to

 , and (2) creating the points
 as .

The components of the line map matrix A are found with the linear system:

Equation 4.49

where
 is the 2x1 column vector corresponding to the first row of A. As described in

[59], the first column A corresponds the vanishing line of the x-y ground plane, ,

whose components, , correspond to the coefficients of a line in general form,

 . Once the vanishing line is found, the orientation of the world

coordinate system axis normal to the ground plane, the z-axis in this case, can be found as

Equation 4.50

The third orientation vector, is found with the cross product using right hand

convention, . With all rotation vectors computed, the rotation matrix R,

which expresses the rotation of the camera coordinate system axis in its rows, is

 .

 Before continuing to translation recovery, it is important to point out two

unexplained yet trivial issue in the algorithm. First, if any image line passes through the

origin of the image coordinate system, then its third component becomes zero, or

 . If the third component of the line is zero, then the vector can never be

scaled to form and the method produces unstable results. A simple workaround

 132

for this type of problem is to use the three line method presented in [59] for computing

the line at infinity. The three line method computes the line at infinity as

Equation 4.51

where
 is any line that makes the determinants non-zero. The second issue is the sign of

the ground plane normal axis, . It is ambiguous but can be trivially found if an

assumption is made about the orientation of the camera. A normal assumption is that the

camera is upright and the sign of is selected such that 's 3rd component is positive.

 Now that the rotation matrix has been compute, the translation vector can be

found. Again the DLT is used, but only one equation is generated from each line

correspondence.

Equation 4.52

In the equation, the scalar is the third component of the object space line

corresponding to the image line
 . In this case,

 is the positions on the y-axis of the

ground line. It should be noted that the translation parameters found are the type that

work with rigid transformation expressed by Equation 4.3.

4.2.3.2 Three or More Parallel Lines

 In [47], the problem of pose estimation from parallel lines is resolved through the

use of geometric clues about the problem. The authors find that a ground line, its

projection on the image plane, and the center of projection are all coplanar. Because a

line and a point in 3D space contain enough information to define a plane, the planes

 133

corresponding to each line, interpretation planes, can be estimated in camera space from

images of the lines and their relationship to the center of projection. Figure 4.5 shows this

type of construction.

Oc

b

c

d

v∞i

ici

Figure 4.5: Constructing Interpretation Planes from Image Lines.

In Figure 4.5 is the vanishing point on the image plane, is the center of projection,

and is the origin of the image coordinate system. Once equations of the interpretation

planes have been estimated, the dihedral angles between the planes can be estimated. The

dihedral angles correspond to the angles between lines from the center of projection to

ground lines as seen in Figure 4.5 and Figure 4.6 as , , and .

 134

b

c d

Oc

α
β

γ

Figure 4.6: The Geometry Used to Calculate Camera Translation.

The object space distances between lines b, c, and d are known, and by both law of

cosines and inscribed angles, the position of the center of projection, in object space, can

be estimated.

 Rotation parameters are found using the normal vectors of the interpretation

planes. The normal vectors in camera space,
 , are computed from the plane equations

found when calculating translation parameters. The normal vectors in object space,
 ,

are found using the now known translation . From the vectors , , as well

as their unit vector forms
 ,

 ,
 are easily computable. The object space normal

vectors to the interpretation planes can be found as

Equation 4.53

 135

where
 is a unit vector in the same direction as the parallel lines. Once the normal

vectors in both object and camera space are known, the rotation can be found using 3D

fitting methods such as [54,55].

4.3 Proposed Methods

 In the following two sections, two methods of finding camera pose for the

degenerate PnP problem presented at the start of this chapter will be presented. One

method makes use of linear systems and is called "complete" due to its mathematical

correctness. The other method, named "simple," is not mathematically valid yet produces

accurate pose estimates using only basic geometry. Before introducing the methods, the

formulation of the problem will be presented.

4.3.1.1 Problem Formulation

 The camera coordinate system z-axis is parallel with the optical axis and in the

same direction as the vector which has its tail at the center of projection and head at the

principal point of the image plane. The camera system's x-axis aligns with the rows of the

image sensor and is considered positive in the right direction if looking in the positive z-

axis direction. The y-axis aligns with the columns of the image sensor and is positive in

the downward direction. The origin of the system is taken to be the center of projection.

This configuration is shown in Figure 4.7 (b) and is selected so that the image coordinate

system axis align with the camera coordinate system x-axis and y-axis in orientation.

 The z-axis of the world coordinate system lies in the same direction as the two

given parallel lines. The y-axis corresponds to the height above the ground plane and is

positive as one moves underground or underwater. The x-axis, by right hand convention,

is oriented right when looking in the direction of the z-axis. The origin of the world

 136

coordinate system is selected to be the midpoint between the first object coordinate pair.

This configuration is shown in Figure 4.7 (a) and is selected so that it matches the

camera coordinate system when the system is operating under normal conditions.

xo

yo

zo

(a)

xc

zc

yc

Oc

Lens

(b)

Figure 4.7: Coordinate System Orientation. (a) The Object Coordinate System

Placement. (b) The Camera Coordinate System Placement.

4.3.1.2 Complete Method

 The method in [46] is extended to fit the aforementioned coordinate system

configurations and to provide a complete pose estimate. One significant difference

between the proposed method and the method in [46] is that the latter depends on four

parallel ground lines whereas the former requires two parallel ground lines and known

coordinates along those lines.

 Suppose that there are two parallel lines,
 ,

 , in world space that align with the

z-axis of the world coordinate system and lie on the x-z world plane. Each of the lines are

represented in vector form as
 where "d" indexes the line number and each

 137

component corresponds to the parts of a line in general form, . Along

these lines are reference points,
 , where "a" indexes coordinate number. The

reference points have the form

 . For each reference coordinate on
 , there is a

corresponding coordinate on
 with the same z component. The parallel lines project

onto the image plane as
 and the references project to the image plane as

 .

 The orientation of the object system's z-axis is found in a similar manner to [46]

with

Equation 4.54

In [46], the presence of three or more parallel lines allowed for vanishing line

computation from just the lines. In this version of the problem, the references that lie on

the ground lines provide the information needed to compute the x-z ground plane

vanishing line, . As stated previously, a pair of coordinates is the duplet of

coordinates that share a common z component in their corresponding object coordinates.

A pair line is the line between these coordinates. In the case that there are two pair lines

available in a frame, the x-axis vanishing coordinate is computed as the intersection of

the pair lines. The vanishing line is the line between the z-axis and x-axis vanishing

coordinates. In the case that there are three or more pair non-coincident pair lines, the x-

axis vanishing coordinate is found with the linear system

Equation 4.55

 138

where

 are the coefficients of the a'th pair line's image line. If the pair lines are

parallel, or if only one exists, the vanishing line is found as a line that passes through the

z-axis vanishing coordinate, ,with a slope similar to the pair line(s). The orientation of

the object system y-axis in camera space is found using a method similar to that

presented in [46].

Equation 4.56

It is assumed that the camera is upright and the sign ambiguity of the y-axis orientation

can be resolved by ensuring that the orientation of is similar to the camera's y-axis

orientation. The x-axis is computed with the cross product, .

 The translation parameters orthogonal to the parallel lines are found using the

method presented [46] with different axis components.

Equation 4.57

In Equation 4.57, is the common x coordinate of all points on line
 .

 In [46] the translation down the parallel lines is deemed uncomputable. In the

problem presented, the known object coordinates along the parallel lines allow for the

computation of the z component of translation. In the assumptions, it was stated that the

object-image correspondences provided to the module contained at least one pair. The z-

axis translation is found by modifying Equation 4.57 to use lines oriented in the x-axis

 139

direction and to include the previously found height component
 . The modified form of

Equation 4.57 that accounts for x-axis direction ground lines is

Equation 4.58

Since
 is known, the linear system can be rewritten as

Equation 4.59

4.3.1.3 Simple Method

 The Complete Method requires knowledge of linear algebra, the DLT, and

projective space. The Simple Method estimates pose using basic trigonometry and

statistics. The problem formulation is identical to that of the Complete Method, however,

the approach is different.

 First, the optical axis rotation of the camera is retrieved using the average slope of

all pair lines.

Equation 4.60

In Equation 4.60, "n" is the number of available image coordinate pairs in the frame and

 is the slope of the line that traverses both elements of the pair.

 140

y

x

I

(a)

θz x

y I

(b)

Figure 4.8: A Pair Line in the Image Plane. (a) As viewed in a Frame. (b) Angle .

 Knowing optical axis rotation allows for incoming image coordinates to be

corrected of their z-axis rotation. A corrected image coordinate,

, is found by

counter-rotating the original coordinates about the image system origin with a 2D rotation

transformation

Equation 4.61

 The problem now is more degenerate than what was previously presented because

the camera z-axis rotation is known to be zero. Using the corrected image coordinates,

the z-axis vanishing coordinate may be recalculated as

and used to find yaw

and pitch angles. Equation 4.62 and Equation 4.63 derive the angles from the roll

corrected vanishing coordinate. Figure 4.9 illustrates the geometry of the equations.

Equation 4.62

 141

Equation 4.63

fi

y

x

v∞

x∞

y∞
θy

θx

Oc

I

Figure 4.9: A Diagram of the Trigonometry Used to Calculate Yaw and Pitch.

 The z-axis rotation corrected points are fitted with lines, and the resulting lines

have slopes
 and

 . The x-axis and z-axis object space translations are computed

from the slopes as

Equation 4.64

Equation 4.65

Equation 4.66

The pitch of the camera is filtered from the coordinates in the same manner as the roll

was filtered. Filtering pitch amounts to aligning the vanishing coordinate with the row of

 142

the principal point, and ensuring that all angles between image coordinates are conserved.

Equation 4.67 is the equation needed to compute the row component of pitch corrected

points. Figure 4.10 illustrates how the angles between image points are conserved in the

transformation.

Equation 4.67

Figure 4.10: Rotation Operation Preserves the Angles between Points.

The z-axis translation is found using roll and pitch corrected image coordinates simply as

Equation 4.68

 143

 There are many shortcuts one can apply to the Simple Method, however, the

shortcuts yield less intuitive methods. The method is not mathematically valid, however,

it does produce good results.

4.4 Experiment Design

 Each pose estimation method is tested with a procedure that aims to mimic the

conditions present in real world situations. First, Gaussian noise is added to a model of

the slalom course. The course model consists of 3D coordinates that represent buoys in

the slalom course and adding noise to the coordinates is synonymous with moving a

buoy. The IWSF rulebook defines a minimum and maximum allowable tolerance for

every buoy in every dimension. The tolerances used in the test are given in Table 4.1.

The tolerances, in conjunction with a dependent, test varied parameter supply a standard

deviation to the normal distribution used to generate noisy object coordinates. The

process for generating noise in the x dimension of coordinate p is defined in the

following three equations.

Equation 4.69

Equation 4.70

Equation 4.71

In the equation set, k is the "Noise Standard Deviation Multiplier". When k is zero, the

distribution does not add noise to the coordinates. When k is one the distribution has a

 144

standard deviation equivalent to the maximum tolerance. A noisy coordinate is only

accepted if it falls within its corresponding tolerances. In the third equation,

generates a random point from a distribution whose mean is and standard deviation is

 .

 The noisy course model and a randomly generated ground truth pose, which is

comes from a uniform distribution, are combined to produce image coordinates using an

ideal pinhole camera model. The image coordinates are inspected to ensure that they

conform to the assumptions that: (1) at least one image coordinate pair exists, and (2) at

least two points exist on each line. Figure 4.11 shows some valid and invalid

configurations.

(a)

(b)

(c)

(d)

Figure 4.11: Valid and Invalid Configurations. (a)(b) Valid Test Configurations. (c)(d)

Invalid Test Configurations. (c) No Pairs Present. (d) A line Fails to Have at Least Two

Reference Points.

 If the image coordinates pass all constraints, then they are further inspected to

conform with the "maximum points per line" test parameter. If the pose-course

combination produces more image coordinates per line than the maximum, then the

furthest are removed. If the image coordinates pass all constraints and fit the test

 145

parameters, then the original model, noisy image coordinates, and ground truth pose are

passed into on to a pose estimation method.

 Pre-Gate (F, C) Gate (E, A) Guide (F, B)

X(width) 1.035 1.15 1.265 1.188 1.25 1.313 1.035 1.15 1.265

Y(height) .075 .1125 .15 .05 .0575 .085 .075 .1125 .15

Z(depth) 54.725 55 55.275 26.865 27 27.135 40.795 41 41.205

Table 4.1: Tolerances for Buoy Position.

B

A

B B B B B B BB

D

E
F

FE

D

C A C

Figure 4.12: Segments Corresponding to Table 4.1.

4.4.1 Data Collection and Treatment

 The generate and test process is repeated 1000 times for every combination of

pose estimation method and test parameter shown in Table 4.2.

 146

Parameter Name Value(s)

Minimum Points Per Line 2

Minimum Pairs 1

Maximum Points Per Line 2, 4, 6

Noise Standard Deviation Multiplier 0, .005, .01, ... , .990, .995, 1

Table 4.2: Varied Parameters in the Pose Estimation Experiment.

In some cases, the methods produce pose estimates that are obviously incorrect. Incorrect

pose estimates are detected by examining the average reprojection error. If the average

reprojection error is greater than a threshold, 9 pixels for all tests, the pose estimate does

not contribute to the calculated statistics. It only affects the outlier count for the method.

4.4.2 Source Code

 All algorithms are implemented in C++. The source code for Posit Coplanar

comes from the author's website. Upon testing Posit Coplanar, it was found that one of

the code's functions, pseudoinverse, had a memory issue. The issue was resolved by

replacing pseudoinverse function calls with calls to the OpenCV equivalent function.

Two implementations of EPNP were found. One is provided by the authors, and one is

included with OpenCV 2.4.8. A preliminary test of the two implementations showed that

the OpenCV version was more robust than the author provided version. For this reason,

all tests reflect the performance of the OpenCV version of the algorithm. The Levenberg-

Marquardt optimization algorithm is also from OpenCV 2.4.8. The two proposed

algorithms are encoded by the author of the thesis.

 147

4.5 Results

 It is believed that the most important pose parameter for a system attempting to

drive the boat in a straight line is the deviation about the world coordinate system x-

axis(side to side motion). While the algorithms tested produce all pose parameters, only

statistics about the x-axis deviation are presented.

 In the following graphs, 'Noise Standard Deviation Multiplier' is the parameter

discussed in the design section that controls the standard deviation of the normal

distribution used to generate noisy coordinates. The simulated units are in meters and the

unit of the y-axis for each of the first six graphs is in meters. Each graph represents a

separate "maximum points per line" parameter.

Figure 4.13: Average Error of the X-Axis Translation over 1000 Tests for Various

Amounts of Noise When the Maximum Coordinates per Line Is Two.

 148

Figure 4.14: Average Error of the X-Axis Translation over 1000 Tests for Various

Amounts of Noise When the Maximum Coordinates per Line Is Four.

Figure 4.15: Average Error of the X-Axis Translation over 1000 Tests for Various

Amounts of Noise When the Maximum Coordinates per Line Is Six.

 149

Figure 4.16: Error Standard Deviation of the X-Axis Translation over 1000 Tests for

Various Amounts of Noise When the Maximum Coordinates per Line Is Two.

Figure 4.17: Error Standard Deviation of the X-Axis Translation over 1000 Tests for

Various Amounts of Noise When the Maximum Coordinates per Line Is Four.

 150

Figure 4.18: Error Standard Deviation of the X-Axis Translation over 1000 Tests for

Various Amounts of Noise When the Maximum Coordinates per Line Is Six.

Figure 4.19: Number of Valid Pose Estimates out of 1000 When the Maximum Points

per Line Is Two.

 151

Figure 4.20: Number of Valid Pose Estimates out of 1000 When the Maximum Points

per Line Is Four.

Figure 4.21: Number of Valid Pose Estimates out of 1000 When the Maximum Points

per Line Is Six.

 152

4.6 Discussion

 The above graphs do not include the results of the EPNP and Posit Coplanar

algorithms. The exclusion is due to the poor, incomparable performance of the algorithms

on this type of object configuration. The poor performance of these two algorithms was

not expected. As a precaution, the algorithms were tested with noiseless grid type object

configurations to ensure that the errors were not implementation dependent. It was found

that both algorithms performed as expected with the grid patterns. The poor performance

of these algorithms is most likely due to the slalom course object configuration, the

introduction of noise to the object coordinates, and the camera configuration (large focal

length).

 As for the three tested algorithms, the first three graphs presented, average error

graphs, indicate that the algorithms are not predisposed to favor error in any certain

direction. The shape of the data, narrow when the standard deviation multiplier is zero,

and wide then it is one, indicates that in noiseless conditions, the algorithms have average

errors near zero, and with more noise, the offsets become greater. This type of behavior is

to be expected.

 The graphs of the error standard deviation show that LM optimization procedure

can outperform both proposed methods, however, its performance gain is not universal.

The LM method's data shows that the algorithm is hit or miss while the proposed

methods have predictable error bounds. This behavior is explainable by the mechanics of

LM algorithm itself. The method may become trapped in a local minima while searching

for optimum parameter settings. It is somewhat unexpected that the simple method

outperforms the complete method in terms of error standard deviation. This may be due

 153

to the fact that the graphs only display the x-axis translational error statistics. In terms of

the other parameters, especially the z-axis translational error, the complete method

generally outperforms the simple method.

 The number of outliers, as shown in the last three graphs, also supports the idea

that the LM optimization method is less stable than the two proposed methods. While the

two proposed methods can generate less accurate parameter estimates, they generally are

more robust than the LM algorithm. This behavior again is explainable by the fact that

LM method can get stuck in a local minima.

 The result of these tests indicate that a universally optimum pose estimation

method may be obtained by first generating a pose estimate with one of the two proposed

methods, and then using the LM algorithm to improve the accuracy of the estimate. This

type of algorithm would give positive gains both in terms of stability and accuracy.

4.6.1 Limitations and Delimitations

 The experiment mentioned has limitations. First, each method is only tested on

synthetically generated data rather than real data. The synthetic data does account for

noisy conditions, but does so in a manner that assumes an ideal pinhole camera model.

This limitation is due to the fact that testing with real data would require an alternative

method of estimating camera pose, and consequently the position and orientation of a

boat on a lake, to provide ground truth data. Second, the experiment is designed to test

ideal, high probability, slalom course configurations. Some configurations, such as a

configuration in which a slalom course is out of tolerance, are not tested.

 154

4.7 Conclusion

 Five algorithms have been presented in depth and tested with a model tailored to

simulate real slalom course conditions. It was found that two of the tested algorithms,

EPNP and Posit Coplanar, struggle with the conditions, object coordinates, noise

introduction, and camera intrinsic parameters, that mimic the complete system. The other

three algorithms are comparable in terms of both the average and variance of error. Of the

three acceptable algorithms, one is an iterative method, and the other two are vanishing

geometry based methods constructed specifically for the problem of pose from points on

two parallel lines.

 One of the proposed methods is built such that linear systems allow all data points

to contribute to the best possible result. The other method is constructed for maximum

simplicity and only relies on basic trigonometry and basic statistics. The performance of

the complete method, as displayed in the graphs in the results section, appears to be

slightly less than the performance of the simple method. This is due to the fact that only

x-axis translational error is examined. Both the two proposed methods have performance

comparable with the LM optimization method and as a result, an algorithm which makes

its initial guess with a geometry based method and optimizes with the LM method is

proposed.

 155

5 CONTROL

 The prior three modules can generate a noisy pose estimates in real-time. The task

now is converting noisy pose estimates into mechanical motion within the boat's steering

system. A few additional steps are added in order to accomplish this task. First, pose

estimates from the pose estimation module are filtered. Next, the filtered estimates are

converted into stepper motor step positions. Finally, the step positions are transmitted to

the stepper motor. A high level overview of each component necessary for steering

control is given. Each control specific component is also discussed.

5.1 Overall Design

 The additional logic required to convert pose estimates into mechanical motion is

shown in Figure 5.1 as the Command Calculation, Instruction Translation,

Communication, Physical Motion, and Control Instruction blocks.

 156

Image Aquisition

Segmentation

Identification

Pose Estimation

Command Calculation

Instruction Translation

Communication

Physical Motion

Lo
o

p

Lo
o

p

Control Instruction

Image Processing Thread Group Control Thread Group

Figure 5.1: Additional Logic for Steering Control.

 In terms of the entire system, determining and communicating the desired stepper

motor step position can be divided into a two logical groups. The division is made based

on thread synchronization. In Figure 5.1, the two main parts of the system are illustrated

as the Image Processing Thread Group and Control Thread Group. The next section

explains the need for two asynchronous thread groups.

5.2 Thread Interaction

 Image acquisition, Segmentation, Identification, Pose estimation, and Instruction

Calculation form one processing pipeline that utilizes one or more synchronized threads.

The other processing blocks, Instruction Translation, Communication, and Physical

 157

Motion form a separate processing pipeline. The two asynchronous pipelines exist due to

the difference in execution time of one iteration. The image processing group is expected

to iterate every 33 milliseconds or faster. The control group iterates at about five Hz. If

the image processing pipeline included the elements in the control pipeline, the system

would never meet real-time demands. The system would spend all of its time waiting for

stepper motor commands to complete.

 The two thread groups interact with each other via the Control Instruction block.

The Control Instruction block is an allocated memory block accessible by both thread

groups. It has no synchronization mechanisms associated with it. The image processing

pipeline always writes the Control Instruction block with the a desired step position and

the Control Thread group only reads the block when it is ready to execute a new

command.

5.3 Command Calculation

 Pose estimates are generated by the pose estimation module. The estimates are

then converted into stepper motor step positions in the Command Calculation block. The

computational time required by the block is insignificant. For this reason, and to keep the

actual implementation as simple as possible, the Command Calculation block is part of

the Image Processing Thread Group. Calculating a desired step position is a two part

process. First, pose estimates are filtered. Then, they are converted into step positions.

5.3.1 Pose Estimate Filtering

 There is existing work on modeling the dynamics of a surface vehicle and

integrating sensor data into the model [60,61]. Due to the fact that this thesis is aimed at

the vision components of the proposed control system rather than the control

 158

components, a quick and easy implementation is used. A recursive averaging filter is

used to filter all six components of the current pose estimate. The filter is simply

Equation 5.1

In the equation, is the current six dimensional pose estimate and

 is the filtered pose

estimate at time t. is the smoothing factor that controls which frequencies pass through

the filter. Typically a value of allows the filter to act as a good low-pass filter.

5.3.2 Path Tracking

 The smoothed data is the input to a controller that is based off the pure pursuit

method [62, 63]. The pure pursuit method can be applied to curved paths, however, the

desired path for the boat, a straight line collinear to the slalom course centerline, is a

simple shape that allows for a simplified method. Calculating the step position is done

with

Equation 5.2

where represents the desired stepper motor step position at time t, k is the proportional

gain, is x-axis displacement found from the filtered pose estimate, is the lookahead

distance, and is the current yaw angle. Figure 5.2 illustrates a typical situation and the

source of the angles used in Equation 5.2. In the figure the term

 .

 159

Sl
al

o
m

 C
o

ur
se

 C
en

te
rl

in
e

xt

Ze
ro

 Y
aw

L

θy

φ

φ

Figure 5.2: The Yaw Angles Used in Step Position Calculation.

5.4 Instruction Translation and Communication

 The Stepper motor and computer interact via serial connection. Setting the stepper

motor to a desired step position requires that the computer following the stepper motor's

communication protocol. For simplicity, only the broad details of the communication

protocol are provided. In the current implementation, the protocol includes querying,

setting, and acknowledging values associated with the direction of motion, and number of

steps. The computer also has to issue a "go" command and wait until the stepper motor

finishes executing the loaded instruction.

 160

5.5 Mechanical Motion

 The stepper motor's connection to the boat's steering system is illustrated in

Figure 5.3 and Figure 5.4. All components in the illustrations undergo three types of

motion: non-moving, rotating, and linear. In terms of non-moving parts, the rack housing,

shaft bearings, and stepper motor are all rigidly connected to the boat. In terms of

rotational motion, the shaft pulley, steering shaft, pinion, and steering wheel all rotate

together and ride on the shaft bearings. When the pinion spins, the rack moves, one-

dimensionally, from side to side. This motion is rigidly transferred to the steering cable

and eventually the boat's rudder.

 161

Steering Wheel

Steering Cable

Stepper Motor

Rack
Rack

Housing

B
e

lt

Figure 5.3: Stepper Motor Mechanical Connection Front View.

 162

Rack

Ste
e

rin
g

 C
a

b
le

Shaft
Pully

Steering Shaft

Rack
Housing

Stepper Motor

Pinion

Steering W
heel

Sh
aft B

ea
rin

g

Sh
aft B

ea
rin

g

Figure 5.4: Stepper Motor Mechanical Connection Top View.

5.6 Overall Experiment and Discussion

 The system was tested on multiple occasions. The tests took place around noon on

sunny days. This time frame was selected because it offered the best lighting conditions.

In the tests, the system successfully locked onto the slalom course and engaged stepper

motor control at a distance of 35 meters from the first set of pre-gates. The system

 163

remained in control until the boat was about a 25 meters from the last pair of gate buoys.

While in control, the system appeared to slowly respond to lateral deviation. As a result,

the boat seemed to oscillate from side to side as it traveled the length of the slalom

course. Despite the oscillations, the system's camera was always able to view buoys and

the boat never deviated out of the slalom course. It is estimated that the lateral offset of

the boat from slalom course centerline never exceeded 30 cm. This estimate, however, is

a human estimate, and a method of generating ground truth pose estimates for

comparison is an area of further research. During the tests, the average and slowest frame

rates were recorded as a metric of system throughput. It is found that the average frame

rate of the system was 45 frames per second, and that the longest frame processing time

was equivalent to a frame rate of 20 fps.

 164

6 CONCLUSION

 The thesis set out to develop a real-time boat steering control system for use in a

waterski slalom course. The desire to build the system came from the need to resolve

issues pertaining to boat driving in waterski competition and training. A design consisting

of a segmentation, identification, pose estimation, and control module has been

presented. The specific inputs, outputs, and goals of each module have also been defined.

Finally, methods that appear to be capable of accomplishing module goals, as well as

experiments that validate method performance, have been presented. A brief summary of

findings, implications, and new questions are given in subsequent text.

 An attempt to find a robust segmentation algorithm was made using background

subtraction methods, color based methods, and a difference of Gaussians method.

Experiments showed that the Visual Background Extractor provided stronger

performance in comparison to other tested methods. In the end, the ViBe algorithm was

selected as the segmentation algorithm of the system due to its simplicity and low

computational complexity. The identification module chapter outlined a design, specific

to slalom course configurations, that used intuitive to complex classifiers to find the

optimum blob-to-buoy mapping. The ability of the identification module was validated

by the successful real world test of the system presented in the control chapter. The pose

estimation chapter presented and tested three publically available and two proposed pose

estimation methods. In the end it was found that the two proposed algorithms had

comparable performance to the iterative Levenberg-Marquardt optimization scheme. It

was also determined that an even stronger pose estimation method could be created using

a proposed method in conjunction with the Levenberg-Marquardt scheme.

 165

 The findings of the segmentation chapter align with the findings of [3] even

though the authors of [3] used video sequences captured by infrared cameras. The ViBe

algorithm appears to be a suitable segmentation algorithm in applications where camera's

motion is primarily in the direction of the camera's optical axis and the camera views a

uniformly colored and textured surface. The identification module is custom built for

slalom courses but has the potential to operate in similar applications such as that of

identifying markers along the edges of an airport runway or identifying lane markers on

straight roadways. The proposed pose estimation algorithms are also custom tailored for a

slalom course but are applicable to problems where object configuration can be described

as points along two parallel lines. Interestingly, it is found that the publicly available

implementation of Posit Coplanar and EPNP struggled to generate valid estimates when

tested with slalom course object coordinate configurations.

 There are a wide variety of questions opened by the thesis. As with any

algorithmic research, any valid future research effort is one that aims to gain

improvements in terms of robustness, simplicity, and time complexity. Specific to this

thesis, however, there are questions that have more importance than others. What

modifications are necessary so that the segmentation module handle images of low

contrast such as those of the cloudy video sequences? Is background subtraction a good

enough segmentation method or could other types of image segmentation methods

provide better performance? In terms of the identification module, is there a simpler

design that offers the same robustness? Finally, can other ideas such as a Kalman filter or

inertial sensor integration improve position estimates? These are the questions that, if

answered, would provide the bases of a much stronger overall machine.

 166

 A real-time vision based control system has been designed, defined and tested in

the hopes of resolving problems in waterskiing. This thesis can serve as a guide for others

who face problems that align with either the overall goal of the system or the chapter

specific problems.

 167

REFERENCES

[1] Hillel, Aharon Bar, et al. "Recent progress in road and lane detection: a

survey."Machine vision and applications 25.3 (2014): 727-745.

[2] Corson, Robert K., ed. "International Waterski and Wakeboard Federation 2013

Tournament Water Ski Rules." (2013).

 [3] Alexander, Borghgraef, et al. "An evaluation of pixel-based methods for the

detection of floating objects on the sea surface." EURASIP Journal on Advances

in Signal Processing 2010 (2010).

[4] Suzukawa Jr, Henry H., and Morton S. Farber. "Long-range airborne detection of

small floating objects." SPIE's 1995 Symposium on OE/Aerospace Sensing and

Dual Use Photonics. International Society for Optics and Photonics, 1995.

[5] Wei, Zhao-Yi, et al. "Motion projection for floating object detection." Advances

in Visual Computing (2007): 152-161.

[6] Tall, M. H., et al. "Visual-Based Navigation of an Autonomous Surface

Vehicle."Marine Technology Society Journal 44.2 (2010): 37-45.

[7] Dunbabin, Matthew, Alistair Grinham, and James Udy. "An autonomous surface

vehicle for water quality monitoring." Australasian Conference on Robotics and

Automation (ACRA). 2009.

[8] Huh, Sungsik, and David Hyunchul Shim. "A vision-based automatic landing

method for fixed-wing uavs." Journal of Intelligent and Robotic Systems 57.1-4

(2010): 217-231.

[9] Sharp, Courtney S., Omid Shakernia, and S. Shankar Sastry. "A vision system for

landing an unmanned aerial vehicle." Robotics and Automation, 2001.

Proceedings 2001 ICRA. IEEE International Conference on. Vol. 2. IEEE, 2001.

[10] Olivares-Méndez, Miguel A., et al. "Fuzzy controller for uav-landing task using

3d-position visual estimation." Fuzzy Systems (FUZZ), 2010 IEEE International

Conference on. Ieee, 2010.

[11] Miller, Andrew, Mubarak Shah, and Don Harper. "Landing a UAV on a runway

using image registration." Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on. IEEE, 2008.

[12] Liu, Xinhua, and Yunfeng Cao. "Research on the application of vision-based

autonomous navigation to the landing of the UAV." Fifth International

Symposium on Instrumentation and Control Technology. International Society for

Optics and Photonics, 2003.

 168

[13] Wang, Xiaobing, Baokui Li, and Qingbo Geng. "Runway detection and tracking

for unmanned aerial vehicle based on an improved canny edge detection

algorithm." Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012

4th International Conference on. Vol. 2. IEEE, 2012.

[14] Piccardi, Massimo. "Background subtraction techniques: a review." Systems, man

and cybernetics, 2004 IEEE international conference on. Vol. 4. IEEE, 2004.

[15] Wren, Christopher Richard, et al. "Pfinder: Real-time tracking of the human

body." Pattern Analysis and Machine Intelligence, IEEE Transactions on 19.7

(1997): 780-785.

[16] Intille, Stephen S., James W. Davis, and Aaron F. Bobick. "Real-time closed-

world tracking." Computer Vision and Pattern Recognition, 1997. Proceedings.,

1997 IEEE Computer Society Conference on. IEEE, 1997.

[17] Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models

for real-time tracking." Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on.. Vol. 2. IEEE, 1999.

[18] Zivkovic, Zoran. "Improved adaptive Gaussian mixture model for background

subtraction." Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th

International Conference on. Vol. 2. IEEE, 2004.

[19] Zivkovic, Zoran, and Ferdinand van der Heijden. "Efficient adaptive density

estimation per image pixel for the task of background subtraction." Pattern

recognition letters 27.7 (2006): 773-780.

[20] Barnich, Olivier, and Marc Van Droogenbroeck. "ViBe: a powerful random

technique to estimate the background in video sequences." Acoustics, Speech and

Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. IEEE,

2009.

[21] Barnich, Olivier, and Marc Van Droogenbroeck. "ViBe: A universal background

subtraction algorithm for video sequences." Image Processing, IEEE

Transactions on 20.6 (2011): 1709-1724.

[22] Jodoin, P., Janusz Konrad, and Venkatesh Saligrama. "Modeling background

activity for behavior subtraction." Distributed Smart Cameras, 2008. ICDSC

2008. Second ACM/IEEE International Conference on. IEEE, 2008.

[23] Cheung, Sen-Ching S., and Chandrika Kamath. "Robust techniques for

background subtraction in urban traffic video." Proceedings of SPIE. Vol. 5308.

No. 1. 2004.

 169

[24] Parks, Donovan H., and Sidney S. Fels. "Evaluation of background subtraction

algorithms with post-processing." Advanced Video and Signal Based

Surveillance, 2008. AVSS'08. IEEE Fifth International Conference on. IEEE,

2008.

[25] Walther, Dirk, Duane R. Edgington, and Christof Koch. "Detection and tracking

of objects in underwater video." Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on.

Vol. 1. IEEE, 2004.

[26] McFarlane, Nigel JB, and C. Paddy Schofield. "Segmentation and tracking of

piglets in images." Machine Vision and Applications 8.3 (1995): 187-193.

[27] Remagnino, Paolo, et al. "An Integrated Traffic and Pedestrian Model-Based

Vision System." BMVC. 1997.

[28] Jung, Young-Kee, and Yo-Sung Ho. "Traffic parameter extraction using video-

based vehicle tracking." Intelligent Transportation Systems, 1999. Proceedings.

1999 IEEE/IEEJ/JSAI International Conference on. IEEE, 1999.

[29] Winnemöller, Holger, Jan Eric Kyprianidis, and Sven C. Olsen. "XDoG: an

extended difference-of-Gaussians compendium including advanced image

stylization." Computers & Graphics 36.6 (2012): 740-753.

[30] Rahman, Zia-ur, Daniel J. Jobson, and Glenn A. Woodell. "Multiscale retinex for

color rendition and dynamic range compression." SPIE's 1996 International

Symposium on Optical Science, Engineering, and Instrumentation. International

Society for Optics and Photonics, 1996.

[31] Song, Keng Yew, Josef Kittler, and Maria Petrou. "Defect detection in random

colour textures." Image and Vision Computing 14.9 (1996): 667-683.

[32] Alvarez, José M., A. López, and Ramon Baldrich. "Illuminant-invariant model-

based road segmentation." Intelligent Vehicles Symposium, 2008 IEEE. IEEE,

2008.

[33] Moreno-Noguer, Francesc, Alberto Sanfeliu, and Dimitris Samaras. "A target

dependent colorspace for robust tracking." Pattern Recognition, 2006. ICPR

2006. 18th International Conference on. Vol. 3. IEEE, 2006.

[34] Moreno-Noguer, Francesc, and Alberto Sanfeliu. "Integration of shape and a

multihypotheses fisher color model for figure-ground segmentation in non-

stationary environments." Pattern Recognition, 2004. ICPR 2004. Proceedings of

the 17th International Conference on. Vol. 4. IEEE, 2004.

 170

[35] Chong, Hamilton Y., Steven J. Gortler, and Todd Zickler. "A perception-based

color space for illumination-invariant image processing." ACM Transactions on

Graphics (TOG) 27.3 (2008): 61.

[36] Yilmaz, Alper, Omar Javed, and Mubarak Shah. "Object tracking: A survey."Acm

computing surveys (CSUR) 38.4 (2006): 13.

[37] Lorigo, Liana M., Rodney A. Brooks, and W. E. L. Grimsou. "Visually-guided

obstacle avoidance in unstructured environments." Intelligent Robots and

Systems, 1997. IROS'97., Proceedings of the 1997 IEEE/RSJ International

Conference on. Vol. 1. IEEE, 1997.

[38] Katramados, Ioannis, Steve Crumpler, and Toby P. Breckon. "Real-time

traversable surface detection by colour space fusion and temporal

analysis."Computer Vision Systems (2009): 265-274.

[39] Fischler, Martin A., and Robert C. Bolles. "Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartography." Communications of the ACM 24.6 (1981): 381-395.

[40] Slabaugh, Gregory G. "Computing Euler angles from a rotation matrix."Retrieved

on August 6 (1999): 2000.

[41] Dementhon, Daniel F., and Larry S. Davis. "Model-based object pose in 25 lines

of code." International journal of computer vision 15.1-2 (1995): 123-141.

[42] Lepetit, Vincent, Francesc Moreno-Noguer, and Pascal Fua. "Epnp: An accurate o

(n) solution to the pnp problem." International journal of computer vision 81.2

(2009): 155-166.

[43] Ansar, Adnan, and Konstantinos Daniilidis. "Linear pose estimation from points

or lines." Pattern Analysis and Machine Intelligence, IEEE Transactions on25.5

(2003): 578-589.

[44] Oberkampf, Denis, Daniel F. DeMenthon, and Larry S. Davis. "Iterative pose

estimation using coplanar feature points." Computer Vision and Image

Understanding 63.3 (1996): 495-511.

[45] Orghidan, Radu, et al. "Camera calibration using two or three vanishing

points."Computer Science and Information Systems (FedCSIS), 2012 Federated

Conference on. IEEE, 2012.

[46] Wang, Yuxiang. "An Efficient Algorithm for UAV Indoor Pose Estimation Using

Vanishing Geometry." MVA (2011): 361-364.

 171

[47] Ying, Xianghua, and Hongbin Zha. "Camera pose determination from a single

view of parallel lines." Image Processing, 2005. ICIP 2005. IEEE International

Conference on. Vol. 3. IEEE, 2005.

[48] Zhi, Lihong, and Jianliang Tang. "A complete linear 4-point algorithm for camera

pose determination." AMSS, Academia Sinica 21.239-249 (2002): 18.

[49] Quan, Long, and Zhongdan Lan. "Linear n-point camera pose

determination."Pattern Analysis and Machine Intelligence, IEEE Transactions

on 21.8 (1999): 774-780.

[50] Baker, Kirk. "Singular value decomposition tutorial." The Ohio State

University(2005).

[51] Roweis, Sam. "Levenberg-marquardt optimization." Notes, University Of

Toronto(1996).

[52] Ranganathan, Ananth. "The levenberg-marquardt algorithm." Tutoral on LM

Algorithm (2004): 1-5.

[53] Mittrapiyanuruk, Pradit. "A memo on how to use the levenberg-marquardt

algorithm for refining camera calibration parameters." Website, http://cobweb.

ecn. purdue. edu/∼ kak/courses-i-teach/ECE661/HW5 LM handout. pdf (2006).

[54] Arun, K. Somani, Thomas S. Huang, and Steven D. Blostein. "Least-squares

fitting of two 3-D point sets." Pattern Analysis and Machine Intelligence, IEEE

Transactions on 5 (1987): 698-700.

[55] Horn, Berthold KP, Hugh M. Hilden, and Shahriar Negahdaripour. "Closed-form

solution of absolute orientation using orthonormal matrices." JOSA A 5.7 (1988):

1127-1135.

[56] Umeyama, Shinji. "Least-squares estimation of transformation parameters

between two point patterns." IEEE Transactions on pattern analysis and machine

intelligence 13.4 (1991): 376-380.

[57] Kipnis, Aviad, and Adi Shamir. "Cryptanalysis of the HFE public key

cryptosystem by relinearization." Advances in cryptology—CRYPTO’99. Springer

Berlin Heidelberg, 1999.

[58] Abdel-Aziz, Y. I. "Direct linear transformation from comparator coordinates in

close-range photogrammetry." ASP Symposium on Close-Range Photogrammetry

in Illinois, 1971. 1971.

[59] Schaffalitzky, Frederik, and Andrew Zisserman. "Planar grouping for automatic

detection of vanishing lines and points." Image and Vision Computing 18.9

(2000): 647-658.

 172

[60] Sonnenburg, Christian, et al. "Control-oriented planar motion modeling of

unmanned surface vehicles." OCEANS 2010 (2010): 1-10.

[61] Riggins, Jamie N. "Location Estimation of Obstacles for an Autonomous Surface

Vehicle." (2006).

[62] Snider, Jarrod M. "Automatic steering methods for autonomous automobile path

tracking." Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08(2009).

[63] Amidi, Omead, and Chuck E. Thorpe. "Integrated mobile robot control." Fibers'

91, Boston, MA (1991): 504-523.

