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ABSTRACT 

The hydrothermal chemistry of organic compounds influences many critical 

geological processes, including the formation of oil and gas reservoirs, the degradation 

and transport of organic matter in sedimentary basins, metabolic cycles in the deep 

subsurface biosphere, and possibly prebiotic organic synthesis related to the origin of life.  

In most previous studies of hydrothermal organic reactions the emphasis has been mainly 

on determining reaction product distributions, studies that provide detailed mechanistic 

information or direct evidence for specific reaction intermediates are rare.  To develop a 

better understanding, I performed hydrothermal experiments with model ketone 

compound dibenzylketone (DBK), which serves as a quite useful tool to probe the bond 

breaking and forming processes in hydrothermal geochemical transformations.  A careful 

study of reaction kinetics and products of DBK in Chapter 2 of this dissertation reveals 

reversible and irreversible reaction pathways, and provides evidence for competing ionic 

and radical reaction mechanisms.  The majority of the observed products result from 

homolytic carbon-carbon and carbon-hydrogen bond cleavage and secondary coupling 

reactions of the benzyl and related radical intermediates.   

In the third chapter of the dissertation, a novel hydrothermal photochemical 

method is studied, which enabled in situ independent generation of the relevant radicals 

and effectively separated the radical and ionic reactions that occur simultaneously in pure 

thermal reactions.  In the following chapter, I focus on the role of minerals on ketone 

hydrothermal reactions.  Minerals such as quartz and corundum have no detectable effect 

on DBK, whereas magnetite, hematite, and troilite all increase ketone reactivity to 

various extents.  The influence of these iron-bearing minerals can be attributed to the 
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mineral surface catalysis or the solution chemistry change that is presumably caused by 

dissolved inorganic species from minerals.  In addition, some new discoveries on strong 

oxidizing effect of copper (II) ion under hydrothermal conditions are described in the 

latter chapter of the dissertation, where examples of clean and rapid reactions that 

converted alcohols to aldehyde and aldehydes to carboxylic acids are included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 

First of all, I would like to thank my teachers at ASU: my advisor, Everett Shock, 

who brought me to the world of geochemistry, introduced me into the GEOPIG family, 

developed me to be an independent scientific professional, and always inspiring my 

passion on new research challenges; my mentor, Ian Gould, who is always there to help 

me, provided me a unique opportunity to study at ASU, showed me how to give 

professional presentations, gave me useful research suggestions, and pointed me toward a 

successful future career; George Wolf, who provided me valuable mentoring during my 

qualifying exam and dissertation writing; Lynda Williams, who helped me to be equipped 

with the hydrothermal experimental skills and taught me how to think like a geologist in 

the mineral world; Hilairy Hartnett, who taught me how to become a rigorous and true 

analytical chemist; and Bruce Rittmann and Steven Van Ginkel, who kindled my interests 

and developed my skills in the field of environmental engineering. 

           I am very grateful to various colleagues and friends at ASU for helping me with 

my research and leaving me memorable graduate school experiences.  People to 

acknowledge (without a particular order) include: Chris Glein, Jessie Shipp, Kris Fecteau, 

Kirt Robinson, Kristin Johnson, Peter Canovas, Grayson Boyer, Natasha Zolotova, Ariel 

Anbar, Panjai Prapaipong, Pierre Herckes, Jinwei Zhang, Apar Prasad, Jeff Dick, Christa 

Bockisch, Tamal Mukherjee, David Nutt, Mary Zhu, and Martha McDowell.  In addition 

to my ASU colleagues, I would like to thank Dan Giammar, Young-shin Jun, Brent 

Williams, and Daren Chen at Washington University, who taught and mentored me 

during my study at the EECE Department.  I am also thankful to Dimitri Sverjensky, Bob 



iv 

 

Hazen, and George Cody at the Geophysical Lab for many insightful feedback and 

helpful advices on my hydrothermal research.   

Staying away from home for six years and completing the graduate school would 

not be possible without the tremendous love and support from my family.  I would like to 

give special thanks to my parents and my grandparents for raising me up, for always 

believing in me, and for always understanding and helping me through the difficulties.  I 

can even picture a happy smile on my grandpa’s face when he could see me pursue my 

dream this far.  Their great and endless love will require a lifetime for me to repay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES………………………………………………………………………..ix 

LIST OF FIGURES…………………………………………………………………….…xi 

CHAPTER 

 1. INTRODUCTION…………………………………………………………………..1 

   1.1. Hydrothermal Chemistry of Organic Compounds………………………....1 

   1.2. Hydrothermal Organic Functional Group Interconversions…………….…4 

   1.3. Ketone Hydrothermal Chemistry…………………………………….…….6 

   1.4. Dibenzylketone…………………………………………………………….8 

   1.5. Organic-Mineral Hydrothermal Interactions……………………………..10 

   1.6. Subjects of the Current Thesis………………………………………........12 

   1.7. References………………………………………………………………..19 

2. THE CENTRAL ROLE OF KETONES IN REVERSIBLE AND  

IRREVERSIBLE HYDROTHERMAL ORGANIC FUNCTIONAL  

GROUP TRANSFORMATIONS…………………………………………………27 

  2.1. Abstract…………………………………………………………………..27 

  2.2. Introduction………………………………………………………………28 

  2.3. Experimental……………………………………………………………..31 

    2.3.1.   Reagents…………………………………………………………..31 

    2.3.2.   Procedures………………………………………………………...32 

    2.3.3.   Product Analysis……………………………………………….....34 

  2.4. Results and Discussion……………………………………………….......38 



vi 

 

CHAPTER                             Page 

    2.4.1.   Reaction Pathways for Hydrothermal Transformation of 

DBK….……………………………………………………...38 

      2.4.1.1. Reduction Pathway……………………………………….41 

      2.4.1.2. Bond Cleavage Pathways…………………………………43 

    2.4.2.   Mechanisms of the Reduction Pathway…………………………...43 

    2.4.3.   Mechanisms of C-C and C-H Bond Cleavage Pathways………….51 

    2.4.4.   Ionic Reaction Pathways………………………………………….55 

    2.4.5.   Carboxylic Acids………………………………………………….57 

  2.5. Conclusions………………………………………………………………57 

  2.6. References………………………………………………………………..76 

3. HYDROTHERMAL PHOTOCHEMISTRY AS A MECHANISTIC  

TOOL IN ORGANIC GEOCHEMISTRY – THE CHEMISTRY OF  

DIBENZYL KETONE…………………………………………………………….82 

  3.1. Abstract…………………………………………………………………..82 

  3.2. Introduction………………………………………………………………83 

  3.3. Results and Discussion…………………………………………………...87 

    3.3.1.   Hydrothermal Reactions of DBK…………………………………87 

    3.3.2.   Ambient Photochemistry of DBK……….………………………..89 

    3.3.3.   Hydrothermal Photochemistry of DBK…………………………...90 

    3.3.4.   Hydrothermal Dehydration……………………………………….99 

    3.3.5.   Follow-up Ionic Reactions……………………………………....104 

  3.4. Conclusions……………………………………………………………..106 



vii 

 

CHAPTER                             Page 

3.5. Supporting Information…………………………………………………107 

    3.5.1.   Experimental…………………………………………………….107 

      3.5.1.1. Materials………………………………………………...107 

       3.5.1.2. Experimental Procedures………………………………..107 

       3.5.1.3. Electronic Structure Calculations………………………..109 

     3.5.2.   Quantum Yield Calculations…………………………………….110 

     3.5.3.   Product Characterization via Gas Chromatography/Mass  

       Spectrometry……………………………………………….114 

   3.6. References……………………………………………………………....132 

4. INFLUENCE OF MINERALS ON HYDROTHERMAL REACTIONS OF 

KETONES………………………………………………………………………..139 

   4.1. Abstract…………………………………………………………………139 

   4.2. Introduction……………………………………………………………..140 

   4.3. Experimental……………………………………………………………145 

     4.3.1.   Reagents…………………………………………………………145 

     4.3.2.   Procedures……………………………………………………….146 

     4.3.3.   Product Analysis………………………………………………...148 

   4.4. Results and Discussion………………………………………………….150 

     4.4.1.   Decomposition of DBK…………………………..……………...150 

     4.4.2.   Reaction Products with Hematite and Magnetite………………..153 

     4.4.3.   Reaction Products with Troilite………………………………….159 

     4.4.4.   Roles of the Minerals……………………………………………162 



viii 

 

CHAPTER                             Page 

4.5. Conclusions……………………………………………………………..168 

   4.6. References………………………………………………………...…….189 

 5. OXIDATION BY COPPER (II) IN HYDROTHERMAL ORGANIC  

REACTIONS……………………………………………………………………..194 

 5.1. Introduction……………………………………………………………..194 

 5.2. Experimental……………………………………………………………197 

 5.3. Results and Discussion………………………………………………….200 

   5.3.1.  Decomposition of the Carboxylic Acids, Alcohols, and  

Aldehydes…………………………………………………..200 

     5.3.2.  Reaction Stoichiometries………………………………………...203 

     5.3.3.  Ring Substituent Effects………………………………………….205 

     5.3.4.  Oxidation Mechanisms…………………………………………..207 

   5.4. Conclusions……………………………………………………………..214 

   5.5. References………………………………………………………………226 

6. SUMMARY OF CHAPTERS AND OUTLOOK FOR  

FUTURE WORK…………………………………………………………………230 

   6.1. Summary of Current Work……………………………………...………230 

   6.2. What We Learned from the Hydrothermal Organic Reactions…………..232 

   6.3. Recommendation for Future Work…………………………………...…234 

   6.4. References…………………………………………………………...….239 

REFERENCES…………………………………………………………………………240 

 



ix 

 

LIST OF TABLES 

Table                                  Page 

  Chapter 2 

  1.   Concentrations of Products from Experiments with DBK in H2O  

at 300°C and 700 bar………………………………………………….60 

  2.   Concentrations of Products from Experiments with DBK, Alcohol,  

and Alkane in H2O at 300°C and 700 bar……………………………..62 

  Chapter 3 

  S1.  Fractional Chemical Yields of Products from Hydrothermal  

Photolysis of DBK at 300°C and 86 bar……………………………..127 

  Chapter 4 

  1.   Conversions, Reaction Pathways Percentages, and Estimated Mass and  

      Hydrogen Balances from Hydrothermal Reaction of DBK in the  

      Presence of Minerals with a Constant Mineral Surface Area at  

300°C and 700 bar……………………………………………………170 

2.   Conversions, Reacted DBK, and Produced Hydrogen from Hydrothermal  

    Reaction of DBK with Minerals at 300°C and 700 bar……………...172 

3.   Conversions, Reaction Pathways Percentages, and Estimated Mass  

Balances from Hydrothermal Reaction of DBK in the  

Presence of Minerals with Different Mineral Surface Areas at  

300°C and 700 bar……………………………………………………173 

  Chapter 5 

  1.   Abundances of Organic Compounds and Cupric Ions from Experiments  



x 

 

Table                                  Page 

with Phenylacetic Acids and Sodium Phenylacetate…………………219 

  2.   Abundances of Organic Compounds and Cupric Ions from Experiments  

      with Benzyl Alcohols………………………………………………...221 

  3.   Abundances of Organic Compounds and Cupric Ions from Experiments  

      with Benzaldehydes………………………………………………….222 

  4.   Mole Ratios and Stoichiometric Ratios between the Consumed Cupric Ions and 

the Consumed Starting Organic Compounds………………………...223 

  5.   Estimated Redox Potentials for Oxidation of the Carboxylate Anion, Benzyl  

      Radical, Toluene, and Copper (I) Ion………………………………..225 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

LIST OF FIGURES 

Figure                                 Page 

  Chapter 1 

  1.   Calculated Metastable Equilibrium Ratios of Aliphatic Alkenes to Alcohols as  

a Function of Temperature at Water Saturation Pressure……………..16 

  2.   Hydrothermal Reaction Pathways Interconvert Hydrocarbons and Carboxylic  

      Acids by Seewald……………………………………………………...17 

  3.   Schematic Energy Diagram for Formation of a Pair of Radicals for  

      Photochemical Excitation of Dibenzylketone…………………………18 

  Chapter 2 

  1.   Scheme for Hydrothermal Organic Functional Group Interconversions………64 

2.   Schematic C-C Bond Fragmentation Reaction for DBK………………………65 

3.   Gas Chromatogram of Product Distribution of Hydrothermal Reaction of DBK  

in Water at 300°C and 700 bar after 290 h…………………………….66 

  4.   Structures of Major Products Observed for Hydrothermal Reaction of DBK in  

Water at 300°C and 700 bar…………………………………………....67 

  5.   Mass Spectrum and Assigned Fragments for the Four-Benzene-Ring  

Structure 4A…………………………………………………………...68 

  6.   Schematic Representation of the Main Reaction Pathways for Hydrothermal  

Transformation of DBK……………………………………………….69 

  7.   Time Dependencies of the Concentrations of DBK, Alcohol, Alkene, and  

      Alkane at 300°C and 700 bar………………………………………….70 

  8.   Proposed Minimal Mechanism for Reduction of DBK to Alcohol via Hydrogen  



xii 

 

Figure                                 Page 

Atom Addition to the C=O Double Bond……………………………..71 

9.   Time Dependencies of the Concentrations of DBK and Major Product Toluene 

in Water at 300°C and 700 bar…………………………………………72 

  10.  Time Dependencies of the Concentrations of DBK and Product Stilbene and  

Bibenzyl in Water at 300°C and 700 bar………………………………73 

11.  Time Dependencies of the Concentrations of DBK and Three-Benzene- 

Ring Products in Water at 300°C and 700 bar…………………………74 

12.  Time Dependencies of the Concentrations of DBK and Four-Benzene-Ring  

Products in Water at 300°C and 700 bar………………………………75 

  Chapter 3 

  1.   Gas Chromatograms of Product Distributions for DBK Thermal Reaction,  

Hydrothermal Photolysis, and Photolysis at Ambient………………..120 

  2.   Comparison of Product Concentration versus Irradiation time for  

Photolysis of DBK…………………………………………………...121 

  3.   Concentrations of Product 4a and 4b versus time in Photolysis of  

DBK in Water at 300°C and 86 bar………………………………….122 

  4.   Time Dependencies of Toluene Compared to Sum of 3-Ring and 4-Ring  

Products……………………………………………………………...123 

  5.   Electronic Energy versus -Hydrogen-benzylic Carbon Separation Distance  

for H Atom Abstraction from MBK by Benzyl Radical…………….124 

  6.   Time Dependence of Concentration of 4a as a Function of the Sum of the  

4a and 4b concentrations…………………………………………….125 



xiii 

 

Figure                                 Page 

7.   Computed Structures of Dienone 4b2 and Furan 4b1…………………………126 

  S1.  Percentage Conversions of DBK as a Function of Irradiation time under  

      Ambient and Hydrothermal Conditions……………………………...128 

  S2.  Mass Spectra of Products 3a1, 3a2, and 3a3…………………………………..129 

  S3.  Mass Spectra of the Isomeric Products 4a……………………………………130 

  S4.  Mass Spectra of the Isomeric Dehydration Product 4b………………………131 

  Chapter 4 

  1.   Schematic Sequence of Functional Group Interconversions that Link Alkanes  

and Carboxylic Acids………………………………………………..175 

  2.   Percent Conversions as a Function of Time for Hydrothermal Reaction  

of DBK in Water Alone and with Different Minerals at 300°C and  

700 bar……………………………………………………………….176 

  3.   Products from Hydrothermal Reactions of DBK with Minerals…………….177 

  4.   Gas Chromatogram of Product Distribution of DBK Reactions with Hematite  

in Water at 300°C and 700 bar after 5 h……………………………..178 

  5.   Gas Chromatogram of Product Distribution of DBK Reactions with Magnetite  

in Water at 300°C and 700 bar after 5 h……………………………..179 

  6.   Proposed Reaction Scheme for Formation of Coupling Products H5 and  

H6 from DBK………………………………………………………..180 

  7.   Time Dependence of Concentration of Toluene……………………………..181 

  8.   Time Dependence of Concentration of Bibenzyl…………………………….182 

  9.   Percentage Reduction and Fragmentation Pathways for Hydrothermal  



xiv 

 

Figure                                 Page 

Reaction of DBK at 300°C and 700 bar………………………………183 

  10.  Time Dependencies of Concentrations of Alcohol, Alkene, and Alkane in  

Water Alone, with Hematite, and with Magnetite……….……….......184 

11.  Gas Chromatogram of Product Distribution of DBK Reactions with Troilite  

in Water at 300°C and 700 bar after 24 h…………………………….185 

  12.  Time Dependencies of Concentrations of Alcohol, Alkene, and Alkane in 

      Water Alone and with Troilite………………………………………..186 

  13.  DBK Conversion as a Function of Surface Area for the Added Minerals  

      at 300°C and 700 bar after 70 h………………………………………187 

14.  Representation of a Completely Flat DBK Molecule and a Folded DBK  

Molecule……………………………………………………………..188 

  Chapter 6 

  1.   Schematic Illustration of Organic Functional Group Interconversions under  

Hydrothermal Conditions……………………………………………238 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1: 

INTRODUCTION 

 

1.1.  Hydrothermal chemistry of organic compounds 

 

Most of the Earth's organic carbon does not actively participate in the biospheric 

carbon cycle, but is located within the crust, mainly in the continental and marine 

sedimentary basins in the form of kerogen and coal (Falkowski et al., 2000; McSween et 

al., 2003).  It is estimated that more than 15,000,000 Gt of organic matter is located 

beneath the surface of the Earth (McSween et al., 2003).  When this organic matter is 

exposed to and dissolves in water at high temperatures and pressures, geological 

processes such as diagenesis, metamorphism, and hydrothermal alteration might take 

place (McSween et al., 2003).  Transformations of organic compounds under 

hydrothermal conditions play a role in a wide range of important geochemical processes, 

including the degradation and transport of organic matter in marine and continental 

sedimentary systems (e.g., Seewald, 2003), the production of oil and gas reservoirs (Head 

et al., 2003; Larter et al., 2003; Jones et al., 2008), the formation of ore deposits (see 

Shock et al., 2013), the metabolic cycles of microorganisms in subsurface environments 

(Head et al., 2003; D’Hondt et al., 2004; Hinrichs et al., 2006; Horsfield et al., 2006; 

Mason et al., 2010; Shock and Canovas, 2010), and, possibly in prebiotic synthesis and 

self-assembly processes associated with the origin of life (Holm, 1992; Russell and Hall, 

1997; Hazen and Deamer, 2007).  
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The hydrothermal chemistry of a large number of organic structures has now been 

studied both theoretically and experimentally.  Predictive models for thermodynamic 

properties of various organic compounds have been developed at elevated temperatures 

and pressures in aqueous solutions (Shock and Helgeson, 1990; Shock, 1995; Plyasunov 

and Shock, 2000, 2003; Shock, 2000; LaRowe and Helgeson, 2006; Helgeson et al., 

2009; Shock and Canovas, 2010; LaRowe and Dick, 2012; Sverjensky et al., 2014).  

Numerous hydrothermal reactions have been studied experimentally and much of this 

work has been reviewed and summarized by various authors (e.g., Bell and Palmer, 1994; 

Cody et al., 2001; Katritzky et al., 2001; McCollom and Seewald, 2003a, b; Watanabe et 

al., 2004; McCollom, 2013a). 

At elevated temperatures and pressures, the properties of water can be very 

different compared to ambient conditions.  The hydrogen bonds are weaker and fewer 

compared to ambient water (Akiya and Savage, 2002), and the dielectric constant is much 

lower at high temperatures and pressures (Johnson and Norton, 1991).  This means that 

water can be an excellent solvent for many organic compounds under these conditions 

(Siskin and Katritzky, 2001).  In addition, the dissociation constant of water (Kw) 

increases dramatically with increasing temperatures (Watanabe et al., 2004), which 

results in high abundances of H+ and OH- that may facilitate many acid/base-catalyzed 

organic reactions.  Geochemically relevant hydrothermal organic reactions can have a 

wide temperature range, but the majority of the important processes take place between 

ca. 150 - 300°C, i.e., well below the critical point of water at 374°C and 221 bar (e.g., 

Seewald, 2003; McCollom and Seewald, 2007; Tassi et al., 2007). 
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Organic reactions that have now been identified in hot subcritical water (and 

associated confining pressures) include fragmentation into smaller structures, addition to 

make larger structures, and many organic functional group interconversions (see Shock et 

al., 2013).  More importantly, these reactions occur without the addition of any external 

reagents or catalysts (e.g., Siskin and Katritzky, 1991; Katritzky et al., 2001; Watanabe et 

al., 2004).  For these reasons, organic chemical reactions under conditions that mimic 

geochemical conditions are being studied as potential “green chemistry” systems (e.g., 

Avola et al., 2013; Shanab et al., 2013). 

    Many hydrothermal reactions are somewhat surprising when compared to the 

corresponding processes close to ambient conditions.  Examples include the endothermic 

elimination of hydrogen from alcohols and alkanes to form carbonyls and alkenes, and 

the dehydration of alcohols to form alkenes (e.g., Antal et al., 1987; Seewald, 1994; 

Akiya and Savage, 2001; Katritzky et al., 2001).  Alcohol dehydration is particularly 

surprising from the conventional organic chemistry perspective since water is the solvent.  

Organic chemistry textbooks teach that in the presence of water, alkenes are converted 

into alcohols (e.g., Bruice, 2006).  Conversion of alkene plus water into alcohol is 

explained on the basis of the strength of the bonds that are made and broken: one carbon-

carbon (C-C) -bond and an oxygen-hydrogen (O-H) -bond are broken, and one carbon-

hydrogen (C-H) and one carbon-oxygen (C-O) -bonds are made.  Because -bonds are 

weaker than -bonds, the addition of water to an alkene is exothermic (Bruice, 2006).  

This is an argument, based on that enthalpy is commonly used in textbook descriptions of 

conventional organic chemistry close to ambient, since enthalpic changes are usually 

much larger than entropic changes.  Under hydrothermal conditions, however, entropic 
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effects are much more important, primarily due to the increased temperature, and the 

equilibrium can lie on the side of alkene plus water, even water is the solvent (Shock et 

al., 2013).  The equilibrium is strongly temperature dependent, of course, and for butanol, 

the equilibrium is on the side of alkene plus water at temperatures above 200°C at the 

vapor-liquid saturation pressure of water (Figure 1).  In general, hydrothermal organic 

reactions tend to be controlled by thermodynamics and entropy, as opposed to kinetics 

and enthalpy which are the primary controlling factors closer to ambient.   

 

1.2.  Hydrothermal organic functional group interconversions 

 

    The most abundant organic functional groups found in geochemically relevant 

environments are alkanes and carboxylic acids (e.g., Seewald 2003).  Seewald (2001; 

2003) has proposed a reaction scheme that shows how acids and alkanes might be 

connected by a series of reversible and irreversible functional group interconversions 

(Figure 2).  This model of organic compound transformations was developed mainly on 

the basis of hydrothermal experiments that focused on specific functional group 

interconversions along this pathway.  Specifically, reversible hydrogenation/ 

dehydrogenation between alkanes and alkenes under hydrothermal conditions was clearly 

demonstrated by Seewald (1994), who showed that ethane and ethene reached state of 

metastable equilibrium in H2O at 325°C and 350 bar.  The hydrothermal hydration of 

alkenes to form alcohols has been described by Leif and Simoneit (1995), who analyzed 

natural hydrothermal petroleum from the Guaymas Basin and conducted hydrous 

pyrolysis experiments with n-C32H66 at 350°C.  Based on their experimental results, they 
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proposed an alkene to alcohol hydration step prior to formation of ketones.  Similarly, 

Seewald (2001) reported measurable quantities of 2-butanol in hydrothermal studies of 

the reactions of 1-butene at 300°C with mineral buffers, and he indicated 2-butanol as the 

hydration product of 1-butene.  The reverse reaction, dehydration of alcohols, has also 

reported in many hydrothermal experiments, and is perhaps the best studied hydrothermal 

reaction of organic compounds.  Akiya and Savage (2001) studied cyclohexanol 

dehydration in pure water at temperatures between 250 and 380°C and found 

cyclohexene and other isomeric alkenes as essentially the only products.  The 

mechanisms of hydrothermal dehydration of alcohols to form alkenes have been studied 

in detail (Xu et al., 1997; Antal et al., 1998; Akiya and Savage, 2001; Anikeev and 

Ermakova, 2003; Hunter and Savage, 2004).  Kinetic studies confirm an acid catalyzed 

E1 or E2 elimination mechanism for alcohol dehydration where formation of oxonium 

ion is the necessary first step (Antal et al., 1998; Akiya and Savage, 2001).  The role of 

water in hydrothermal alcohol dehydration has been described as a reactant, a product, 

and a catalyst which provides hydronium ions (Akiya and Savage, 2001).  In addition, the 

oxidation/reduction reactions that interconvert alcohols and ketones in hydrothermal 

systems have also been explored (e.g., Leif and Simoneit, 1995; Seewald, 2001; Shen et 

al., 2010), and reversible redox schemes (e.g., hydrogen transfer reduction of ketone) 

were proposed. 
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1.3.  Ketone hydrothermal chemistry  

 

    Compared to hydrocarbons and carboxylic acids, there are only a few reports on 

the hydrothermal chemistry ketones.  This may be because of the low abundances of 

carbonyl compounds such as ketones and aldehydes in natural hydrothermal systems.  

Ketones have been naturally found in sedimentary organic matters, hydrous pyrolysis 

petroleum, and sediment extracts (Regtop et al., 1985; Leif and Simoneit, 1995).  

Possible transformation pathways for ketones, including reversible hydrogenation/ 

dehydrogenation between ketones and alcohols and irreversible oxidation of ketones to 

form carboxylic acids, have been proposed under anoxic or mineral-buffered 

hydrothermal conditions (e.g., Leif and Simoneit, 1995, 2000; Seewald, 2003).   

    According to Figure 2, the reaction pathways expected for ketones are reduction to 

alcohol followed by further reduction to form an alkene and an alkane, and carbon-carbon 

bond breaking to form carboxylic acids.  Experiments have been performed to 

demonstrate hydrothermal oxidation and bond-cleavage reactions of ketones.  For 

instance, when Seewald (2001) injected propene into a hydrothermal environment 

buffered by hematite-magnetite-pyrite mineral assemblage, acetone was observed as a 

reaction product, and its follow-up decomposition reactions were found to be 

accompanied by the increasing concentrations of acetic acid and CO2.  Similar reactions 

starting with 1-butene were also found to generate the corresponding ketone, 2-butanone, 

which decomposed via carbon-carbon bond cleavage to form acetic acid (Seewald, 2001).  

These production distributions suggest that ketones behave as a redox “bridge” between 

the alkenes/alkanes and the carboxylic acids.  Reduction of ketones under hydrothermal 



7 

 

conditions has also been observed.  For example, acetone, butanone, and acetophenone 

were observed to be reduced into the corresponding alcohols when formic acid was used 

as a hydrogen donor in hydrothermal water (Shen et al., 2010).  Formic acid is known as 

a useful precursor of H2 under hydrothermal conditions as a result of decarboxylation 

(Akiya and Savage, 1998; Yu and Savage, 1998).  When Shen et al. (2010) replaced 

formic acid with molecular H2, however, reduction of the ketones to form alcohols was 

no longer observed, which prompted Shen et al. to propose a hydrogen transfer reduction 

mechanism for ketone reduction from formic acid rather than reaction with H2.  

    In addition to redox reactions, however, other reactions of ketones in high 

temperature water have been observed.  Textbook reactions of ketones include Aldol 

condensation, keto-enol tautomerization, isomerization, and decarbonylation.  Aldol 

condensation is a useful reaction for formation of carbon-carbon bonds, although a 

relatively high concentration of base is usually required to catalyze the reaction under 

conditions close to ambient (Smith and March, 2007).  Under hydrothermal conditions, 

however, Aldol condensation products can readily be formed using only trace quantities 

of catalytic base.  Taken as an example, 3-methylcyclopent-2-enone was prepared in over 

80% yield from 2,5-hexanedione using 0.05% aqueous NaOH at 200°C, whereas a 

similar yield under traditional reflux conditions at atomospheric pressure can only be 

obtained using a 20 to 400 times more concentrated hydroxide solution  (An et al., 1997).  

Isomerization reactions of ketones have also been reported to occur in useful yields, for 

example, efficient hydrothermal formation carvacrol from carvone was observed for 

reaction times of hours (An et al., 1997).  One of the fastest hydrothermal reactions 

observed for ketones is hydrogen exchange via keto-enol tautomerism.  A series of 
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ketones, including acetone, pinacolone, cyclopentanone, and acetophenone, were studied 

in deuterium oxide (D2O) as the solvent at temperatures between 200 and 280°C by 

Siskin and Katritzky (2001).  Exhaustive H-D exchange was observed at the α and α’ 

positions relative to the carbonyl groups in just an hour.  This suggests that formation of 

enolate and enol intermediates can readily occur under hydrothermal conditions.  

Formation of these species are usually catalyzed by base and acid, respectively. 

 

1.4.  Dibenzylketone   

 

As discussed in more details in later Chapters, dibenzylketone (DBK) has been 

chosen for the majority of the experimental work in this thesis.  The known chemistry of 

DBK is dominated by cleavage of the benzylic carbon-acyl carbon bond, Eqn. 1a, which 

is the bond cleavage that must occur in this ketone to form carboxylic acids according to 

Figure 2.  This bond dissociation energy has been estimated to be 73 kcal/mol (Luo, 

2007), which is lower than what is expected for a conventional carbon (sp3)-carbon (sp2) 

bond (Smith and March, 2007).  The reason is that the benzyl radical formed upon 

homolysis of DBK is resonance stabilized.   
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The majority of the work on DBK chemistry has involved photochemical 

excitation (e.g., Gould et al., 1984).  Excitation of DBK results in formation of radicals 

with an overall quantum yield of ca. 0.7 (Robbins and Eastman, 1970).  Excitation of 

DBK forms the first excited singlet state, Figure 3, which intersystem crosses to the 

triplet state (3DBK*).  Homolytic bond fragmentation in the triplet state is efficient and 

forms a benzyl radical and phenacyl radical pair in an overall triplet state.  Based on 

orbital symmetry arguments (Michl and Bonacic-Koutecky, 1990), the excited singlet 

state can undergo bond fragmentation to form only a pair of ions, whereas it is the triplet 

state that can fragment to give a pair of radicals.  The fact that the triplet state mainly 

undergoes bond cleavage to give the radicals is confirmed by magnetic field and isotope 

effects studies (Gould et al., 1984), although evidence for a small amount of cleavage 

from the singlet state has also been reported (Noh et al., 1993).  The energy loss that 

accounts for radical formation being less than 100% efficient (the quantum yield is ca. 

0.7) includes fluorescence and non-radiative decay from the less reactive excited singlet 

state (Noh et al., 1993). 

    The phenacyl radical formed in the initial cleavage has been shown to undergo 

further rapid carbon-carbon bond cleavage to generate a second benzyl radical and carbon 

monoxide, Eqn. 1b.  At room temperature, this reaction occurs within ca. 250 ns (Turro et 

al., 1983).  The overall product of photolysis is thus a pair of benzyl radicals. 

    Pyrolysis of DBK at 500 - 700°C was first reported by Hurd et al. (1933).  The 

major product observed was toluene, together with other unidentified aromatic and 

polymeric products.  The toluene was suggested to have been formed by addition of a 

hydrogen atom to a benzyl radical formed upon bond homolysis.  Removal of hydrogen 
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from DBK itself was suggested, although the possible mechanistic pathways were not 

fully explored in this early work.  Thus, from both the reported photochemistry and 

thermochemistry, DBK is anticipated to have relatively facile carbon-carbon bond 

fragmentation under hydrothermal conditions. 

 

1.5.  Organic-mineral hydrothermal interactions 

 

    Geochemical processes involving organic compounds take place not just in an 

aqueous medium, but in the presence of gases and electrolytes, with variable pH, and 

perhaps most importantly, inorganic materials such as minerals and clay substrates.  The 

study of hydrothermal organic-mineral interactions and mineral catalysis of organic 

reactivity is potentially of great interest in a wide range of scientific disciplines, including 

geochemistry, mineralogy, organic catalysis, petrology, and astrobiology.  Suggestions 

that minerals can, and perhaps should, influence organic hydrothermal reactivity have 

been made for decades (Jurg and Eisma, 1964; Shimoyam and Johns, 1971; Espitalié et 

al., 1980; Simoneit, 1992; Seewald, 2001; McCollom and Seewald, 2003), and there have 

been some spectacular reports of the ways in which naturally occurring inorganic 

substrates can influence the stability of organic structures under hydrothermal laboratory 

conditions (Leif and Simoneit, 2000; Cody et al., 2001; Seewald, 2001; Foustoukos and 

Seyfried, 2004; Fu et al., 2008; Williams et al., 2010).  As an example, Cody et al. (2000) 

showed that the presence of iron sulfide and CO enabled the production of decanoic acid 

and organosulfur compounds from nonanethiol, suggesting a catalytic effect of iron 

sulfide minerals and the possible formation of organometallic phases under hydrothermal 
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conditions.  Carboxylation and carbonyl insertion have been well documented for 

alkylthiol compounds in the presence of transition metal sulfides, such as FeS, NiS and 

CoS, and heterogeneous catalysis on the mineral surface was proposed (Huber and 

Wachtershauser, 1997; Cody et al., 2001, 2004). 

Several studies of hydrothermal organic reactions have been reported in the 

presence of mineral assemblages that have been used to control experimental variables 

such as oxidation state, pH, and dissolved sulfur species (Seewald, 1994, 2001; 

Andersson and Holm, 2000; McCollom and Seewald, 2003; McCollom 2013).  For 

instance, pyrite-pyrrhotite-magnetite, hematite-magnetite, and hematite-magnetite-pyrite 

assemblages have been used to regulate the activities of dissolved H2 and H2S in 

hydrothermal solution (e.g., Seewald 2001).  These iron-containing minerals have been 

found playing different roles in organic hydrothermal reactions, including the promotion 

of bond cleavage processes on the mineral surface, and the alteration of solution 

properties such as ionic strength, pH, and dissolved metals and sulfur compounds.  In 

recent work, Reeves et al. (2012) took advantage of a pyrite-pyrrhotite-magnetite 

assemblage to provide a redox-buffered hydrothermal environment for C1-C5 n-alkanes at 

323°C and 350 bar, where they observed reversible and extensive water-derived 

hydrogen incorporation into C2-C5 n-alkanes, but comparatively little exchange for CH4, 

suggesting the occurrence of isotopic exchange should be within reversible equilibration 

between the alkane and the corresponding alkene.  McCollom (2013) studied the 

influence of iron oxide and sulfide minerals on hydrothermal decomposition of amino 

acids norvaline and alanine.  The observed fact that both amino acids decomposed more 

rapidly and with altered product distributions in the presence of minerals compared to 
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water alone, allows him to propose that the mineral effects were due to both surface 

catalysis, and changes in chemical species in the solution phase.   

 

1.6.  Subjects of the current thesis 

 

As described earlier, ketones occupy an important central location in the reaction 

scheme of Figure 2, since this is the functional group in the reaction scheme where 

carbon-carbon bond cleavage is required.  Although the redox reactions that take the 

ketone toward the alkane are reversible according to the published data in the literature, 

carbon-carbon bond cleavage in the direction of carboxylic acids is unlikely to be so.  It 

is widely observed that carboxylic acids accumulate relative to other functional groups in 

natural environments such as sedimentary basins and hydrothermal fluids (Pittman and 

Lewan, 1994; Shock, 1995; Lang et al., 2010).  Carbon-carbon bond breaking in 

carboxylic acids (e.g., decarboxylation) has been observed under hydrothermal reactions 

(Bell and Palmer, 1994; McCollom and Seewald, 2003), however, bond cleavage in 

ketones has not been studied specifically, and the mechanisms are unknown.  As 

discussed above, the hydrothermal reactions of ketones that have been reported often do 

not relate very well to the entire reaction scheme given in Figure 2.  In addition, several 

of the previous studies were carried out in the presence of minerals buffers or other 

additives (e.g., Seewald, 2001; Shen et al., 2010), but understanding on ketone 

hydrothermal chemistry in pure H2O condition is thus lacking.  Of particular interest is 

the way that carbon-carbon bond cleavage competes with the other redox reactions of 

ketones of Figure 2.   
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Using Figure 2 as the starting point, this work has several specific goals related to 

ketone hydrothermal chemistry: (1) determine whether reversible functional-group 

interconversions along the entire reaction scheme of Figure 2 can be observed and 

characterized within a single chemical system; (2) determine how irreversible C-C bond 

cleavage competes with reversible functional-group interconversions; (3) determine the 

products of the C-C bond cleavage reactions, particularly in relationship to how 

carboxylic acids may ultimately be formed; (4) where possible, obtain mechanistic 

information on the various hydrothermal reactions of ketones; and (5) perform time series 

experiments to give direct experimental support for the reaction sequence of Figure 2, 

and to obtain relative rate data for as many of the reactions of Figure 2 as possible.  To 

address these problems, experiments have been performed using DBK as the model 

ketone in water at high temperatures and pressures.  The details of these experiments are 

given in Chapter 2 of this thesis.  

    Although a large number of hydrothermal organic reactions have been studied, the 

emphasis has been mainly on product distributions, reports of mechanistic studies have 

been less frequent, and direct evidence for proposed intermediates is often lacking.  This 

is partly because many hydrothermal reactions give complex product mixtures, and many 

reactions are reversible (Seewald, 2003; Seewald et al., 2006; Yang et al., 2012; Shipp et 

al., 2013).  The need for high-pressure experimental apparatus can also complicate the 

use of many routine analytical procedures.  Other than kinetic measurements (e.g., Belsky 

et al., 1999; McCollom and Seewald, 2003), and in some cases isotope effects (e.g., 

Hoering, 1984; Yamamoto et al., 2004; McCollom et al., 2010; Reeves et al., 2012), the 

mechanistic toolbox for hydrothermal organic reactions has been somewhat limited to 
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date.  In addition, both ionic and radical organic reactions may occur simultaneously 

under hydrothermal conditions (Katritzky et al., 2001), although it is generally thought 

that ionic reactions are more prevalent at lower temperatures whereas radical reactions 

dominate at higher temperatures (Burdige, 2006; LaRowe and Van Cappellen, 2011).  

Obtaining evidence for reaction mechanisms and identifying primary reaction products 

and intermediates under hydrothermal conditions is thus challenging.  A second objective 

of the thesis work is to develop new and effective experimental probes for hydrothermal 

organic reaction mechanisms.  The novel approach of using hydrothermal photochemistry 

has been found quite useful in unraveling the complex hydrothermal reaction pathways 

and mechanisms for DBK.  Using photochemistry the primary hydrothermal radical 

products can be identified, and the rapid follow-up thermal reactions can be monitored 

much more readily than in a pure hydrothermal experiment.  The hydrothermal photolysis 

of DBK is described in Chapter 3 of this thesis. 

Interactions between organic compounds and minerals should be a major 

component in natural hydrothermal geochemical processes.  As mentioned above, 

mineral assemblages have the advantage of regulating fluid chemistry and may 

effectively simulate geologically relevant environments, nevertheless, an understanding 

of potential contribution of each individual mineral, such as among those common iron 

oxides and sulfides, may remain complicated.  Example important issues include which 

specific minerals enhance, suppress, or do not influence organic hydrothermal reactivity 

and which minerals initiate new reaction pathways?  When minerals influence reactions, 

which mainly promote reactions via surface catalytic effects and which mainly serve as 

reactants and which change the solution chemistry?  Additionally, the specific effects of 



15 

 

minerals on the hydrothermal reactions of ketones have not been addressed.  The third 

main goal of this thesis is to provide an entry into answering some of these questions.  

Using the hydrothermal chemistry of DBK in water alone as a well-defined starting point, 

the ways in which several common minerals including hematite (Fe2O3), magnetite 

(Fe3O4), troilite (FeS), corundum (Al2O3) and quartz (SiO2) influence ketone under 

hydrothermal conditions have been investigated, and the results of these experiments are 

described in Chapter 4.   

    Finally, there is also interest in possible ways in which geochemically relevant 

reactions might be useful in developing new green chemistry.  Geochemically relevant 

reactions take place in water as the solvent and can involve common Earth abundant 

reagents and catalysts.  Hydrothermal oxidation of several organic structures using the 

mild oxidizing reagent copper (II) is described in Chapter 5.  Copper is an abundant metal 

in Earth’s crust in the form of copper-ore deposits (Kesler and Wilkinson, 2008), and 

hydrothermal interactions between copper and organic matter presumably occur in 

nature.  However, little is known about how aqueous copper ions behave in organic-rich 

hydrothermal fluids.  Copper (II) is virtually not well used as an oxidizing agent in 

conventional organic chemistry and represents a potentially useful mild reagent compared 

to those commonly used in organic chemistry that are mainly based on chromium in 

oxidation state VI and manganese in oxidation state VII (Sheldon and Kochi, 1981). 
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Figure 1.  Calculated metastable equilibrium ratios of aliphatic alkenes to alcohols as a 

function of temperature at water saturation pressure (by Shock et al., 2013).  Numbers on 

the curves refer to the number of carbons in alkene and alcohol (e.g., 4 stands for the 

reaction between butanol and butene plus water).  The increasing ratios of alkene/alcohol 

suggest alcohol dehydration becomes thermodynamically favorable as temperature 

increases.   

 

 

 

 

 

 

 



17 

 

Figure 2.  Schematic illustration of the proposed oxidation and reduction (horizontal), 

and hydration/dehydration (vertical) pathways that interconvert hydrocarbon and 

carboxylic acid functionalities under hydrothermal conditions by Seewald (2003).  Note 

the central position of the ketone functional group.  Evidence has been obtained that 

suggests all the reactions are reversible (see text), except the carbon-carbon cleavage 

reaction that forms carboxylic acids.  
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Figure 3.  Schematic energy diagram for formation of a pair of radicals for 

photochemical excitation of dibenzylketone (DBK).  The plot shows the energies of the 

ground singlet (DBK) and excited triplet (3DBK*) states as a function of carbon-carbon 

bond separation distance (rC-C).  The energies of a triplet and a singlet radical pair are 

essentially identical at large rC-C. 
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CHAPTER 2: 

THE CENTRAL ROLE OF KETONES IN REVERSIBLE AND IRREVERSIBLE 

HYDROTHERMAL ORGANIC FUNCTIONAL GROUP TRANSFORMATIONS  

 

Revised with permission from Yang Z., Gould I. R., Williams L. B., Hartnett H. E., and 

Shock E. L. (2012) The central role of ketones in reversible and irreversible hydrothermal 

organic functional group transformations. Geochim. Cosmochim. Acta 98, 48-65. 

Copyright 2012 Elsevier Ltd. 

 

2.1.  Abstract   

 

    Studies of hydrothermal reactions involving organic compounds suggest complex, 

possibly reversible, reaction pathways that link functional groups from reduced alkanes 

all the way to oxidized carboxylic acids.  Ketones represent a critical functional group 

because they occupy a central position in the reaction pathway, at the point where 

carbon-carbon (C-C) bond cleavage is required for the formation of the more oxidized 

carboxylic acids.  The mechanisms for the critical bond cleavage reactions in ketones, 

and how they compete with other reactions are the focus of this experimental study.  We 

studied a model ketone, dibenzylketone (DBK), in H2O at 300°C and 70 MPa for up to 

528 h.  Product analysis was performed as a function of time at low DBK conversions to 

reveal the primary reaction pathways.  Reversible interconversion between ketone, 

alcohol, alkene and alkane functional groups is observed in addition to formation of 

radical coupling products derived from irreversible C-C and carbon-hydrogen (C-H) 
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homolytic bond cleavage.  The product distributions are time-dependent but the bond 

cleavage products dominate.  The major products that accumulate at longer reaction times 

are toluene and larger, dehydrogenated structures that are initially formed by radical 

coupling.  The hydrogen atoms generated by dehydrogenation of the coupling products 

are predominantly consumed in the formation of toluene.  Even though bond cleavage 

products dominate, no carboxylic acids were observed on the timescale of the reactions 

under the chosen experimental conditions. 

 

2.2.  Introduction 

 

    Organic compounds react at high temperatures and pressures in the presence of 

minerals and aqueous solutions during diagenesis, metamorphism, and hydrothermal 

alteration.  Maturation of organic matter occurs during burial in continental and marine 

sedimentary basins, which leads to production of oil and natural gas, and in hydrothermal 

systems driven by igneous processes (Head et al., 2003; Larter et al., 2003; Seewald, 

2003; Hinrichs et al., 2006; McCollom and Seewald, 2007).  In many instances, evidence 

from natural systems can be used to argue for metastable equilibria among organic 

compounds and between organic compounds and their inorganic geologic environments 

(Shock, 1988; 1989; 1994; Helgeson et al. 1993; 2009).  Experimental tests of metastable 

equilibria have led to hypotheses about the reaction pathways that organic compounds 

follow in natural systems (Seewald, 1994; 2001; 2003; McCollom and Seewald, 2003; 

Seewald et al., 2006).  Numerous hydrothermal organic reactions have been explored 

(Siskin and Katritzky, 1991; Bell and Palmer, 1994; Andersson and Holm, 2000; 
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Katritzky et al., 2001; McCollom and Seewald, 2007; Morooka et al., 2007, among many 

others), and thermodynamic properties at elevated temperature and pressures are 

available for many organic compounds as gases, liquids, solids and in aqueous solution 

(Shock and Helgeson, 1990; Shock, 1995; Amend and Helgeson, 1997; 2000; Helgeson 

et al., 1998; Richard and Helgeson, 1998; Plyasunov and Shock, 2000; 2003; Richard, 

2001; Plyasunova et al., 2004; Dick et al., 2006; LaRowe and Helgeson, 2006a, b; 

LaRowe and Dick, 2012).  However, kinetic, and particularly mechanistic, information 

related to individual hydrothermal organic reactions is scarce.  Therefore, the goal of this 

study was to investigate hydrothermal organic reaction mechanisms with a focus on 

ketones, which occupy a key stage in the hypothesized production of carboxylic acids. 

    A series of interrelated reactions that transform functional groups from alkanes to 

carboxylic acids, passing through ketones, as described by Seewald (2003), is 

summarized in Fig. 1.  Seewald (2003) developed this model of organic compound 

transformations based on his pioneering experimental work that allowed him to propose 

which steps in the overall process were reversible and which were irreversible. The 

kinetics and thermodynamics of the dehydrogenation/hydrogenation reactions that 

interconvert alkanes and alkenes were described by Seewald (1994) for hydrothermal 

conditions, and for catalysis by platinum in the gas phase by Adlhart and Uggerud 

(2007).  The hydrothermal hydration of alkenes to form alcohols (Seewald, 2001), and in 

particular the mechanism of dehydration of alcohols to form alkenes, also has been 

studied in detail (Xu et. al, 1997; Antal et. al, 1998; Akiya and Savage, 2001; Anikeev 

and Ermakova, 2003; Hunter and Savage, 2004).  The oxidation/reduction reactions that 

interconvert alcohols and ketones in sedimentary basins have also been studied in 
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previous work (Leif and Simoneit, 1995; Seewald, 2003), but the conversion extents and 

reaction mechanisms were not extensively described.  Ketones occupy an important 

central location in the reaction scheme of Fig. 1, since in order to proceed to carboxylic 

acids, C-C bond cleavage of ketones is required.  Furthermore, although the redox 

reactions that take the ketone toward the alkane are, at least in principle, reversible, C-C 

bond cleavage in the direction of carboxylic acids is unlikely to be so (Fig. 1).  It is 

widely observed that carboxylic acids accumulate relative to other functional groups in 

many natural sedimentary basin and hydrothermal fluids (Pittman and Lewan, 1994; 

Shock, 1995; Windman et al., 2007; Lang et al., 2010).  Although skeletal fragmentation 

can be observed in hydrothermal reactions (Bell et al., 1994; McCollom and Seewald, 

2003), the mechanism of bond cleavage for ketones is unknown, and the extent to which 

C-C bond cleavage competes with the other reactions shown in Fig. 1 has also not been 

studied. 

    Using Fig 1 as the starting point, the project reported here had several specific 

goals: (1) determine whether reversible functional-group interconversions along the 

entire reaction scheme of Fig. 1 can be observed and characterized within a single 

chemical system; (2) determine how irreversible C-C bond cleavage competes with 

reversible functional-group interconversions; (3) determine the products of the C-C bond 

cleavage reactions, particularly in relationship to how carboxylic acids may ultimately be 

formed; (4) where possible, obtain mechanistic information on the various hydrothermal 

reactions of ketones; and (5) perform time-series experiments to give direct experimental 

support for the reaction sequence of Fig. 1, and to obtain relative rate data for as many of 

the reactions of Fig. 1 as possible. 
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    Our experimental approach uses a model ketone, dibenzylketone (DBK) (Fig. 2) 

that was selected to give mechanistic insight.  The experiments rely on extraction of all 

organic products from the aqueous phase after reaction, and the benzene rings in DBK 

ensure that the majority of the products have low volatility and are easily extractable into 

organic solvents.  Importantly, the benzene rings should stabilize both ionic and/or 

radical intermediates involved in C-C bond cleavage at the carbonyl carbon by resonance 

(Fig. 2), which will facilitate this reaction pathway.  Hydrothermal experiments were 

conducted in time-series at low extents of conversion in order to provide relative rate 

information and evidence for the reaction sequence of Fig. 1. 

 

2.3.  Experimental 

 

2.3.1.  Reagents 

 

    Dibenzylketone was purchased from Sigma-Aldrich, and was recrystallized three 

times from diethyl ether (5%)/hexanes (95%) to reach a purity of >99.9%, as determined 

by gas chromatography.  1, 3-Diphenylpropane (99%) was purchased from Frinton 

Laboratories Inc. and was purified (>99.6%) using preparative thin layer 

chromatography.  Dichloromethane (DCM, 99.9%) and deuterium oxide (99.9% D2O) 

were purchased from Fisher Chemical and Cambridge Isotope Laboratories Inc., 

respectively.  Deionized (DI) water was obtained using a Diamond Ultrapure Water 

System (18.2 MΩ∙cm resistivity). Decane (99%) and dodecane (99%), both from Sigma-

Aldrich, were used as internal standards for quantitative analysis using gas 
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chromatography. 1,3-diphenyl-2-propanol and p-methyldibenzylketone, and a mixture of 

cis- and trans-1,3-diphenylpropene, were synthesized as described by Coan and Becker 

(1954; 1963).  The alcohol and the ketone were purified using chromatography to reach 

>99% and >98% purity, respectively. 

 

2.3.2.  Procedures 

 

    Previous laboratory studies of organic reactions in water at elevated temperatures 

and pressures used fixed volume reactors constructed from gold, titanium, stainless steel 

and quartz (Palmer and Drummond, 1986; Bell et al., 1994; McCollom et al., 1999).  

Because hydrothermal reactions may be influenced by the reactor, gold capsules were 

used in this work as gold was shown by Bell et al. (1994) to exhibit the weakest catalytic 

effect.  Gold is also flexible allowing the pressure inside the sample to be controlled 

externally, using water as a pressurizing medium, to avoid generating a vapor phase at 

temperatures below the critical point of H2O.  The capsules were made from gold tubing 

with a 5 mm outer diameter, 4 mm inner diameter and a length of ~37.5 mm.  The 

internal volumes of the capsules were ~1.75 mL.  The capsules were cleaned by rinsing 

with 12 M HCl, followed by boiling in deionized water, and were then annealed at 580°C 

for 12 h before use.  The capsules were first arc-welded at one end using a precision 

welder.  The water and ketone were added and removal of oxygen was accomplished by 

purging with low-pressure ultra-high purity argon for one minute.  Dibenzylketone 

concentrations of one molal in H2O were used to minimize errors associated with loading 

sub-milligram quantities of the ketone into the gold capsules.  42 mg of purified DBK 
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and 200 µL of argon-purged deionized water or deuterium oxide were added to the 

capsules before a second purging of the headspace using argon.  Capsules were then 

cooled using liquid nitrogen to solidify the contents, quickly pinched closed and carefully 

sealed by welding while submerged in a methanol:ice (1:1) cold bath to minimize 

evaporative losses. 

The solubility of DBK under the reaction conditions was confirmed as 

follows.  Around 42 mg of DBK and 200 µL of water were added to a fused silica glass 

tube of 6 mm OD and 2 mm ID.  The sample was evacuated at liquid nitrogen 

temperature and sealed to a length of ca. 13 cm.  The sample occupied ca. 8 cm of the 

tube length, the rest being evacuated headspace.  The silica glass tube was placed into a 

large brass block that was equipped with viewing ports and was heated using cartridge 

heaters.  The sample was observed visually as it was heated, using the ports, or by briefly 

removing the tube from the block.  Undissolved DBK was readily observed as liquid 

droplets in the water.  The DBK was visually observed to start dissolving as the 

temperature was slowly increased above 200°C, and complete dissolution occurred at ca. 

295°C, although it was found that an equilibration period of ca. 1 h was required to 

achieve complete dissolution, which is presumably a consequence of restricted mass 

transport in the narrow silica glass tubing.  In this way, a homogeneous phase was 

confirmed visually at the experimental temperature of 300°C for three independently 

prepared samples. 

The gold capsules were placed into a 51 cm stainless-steel cylindrical pressure 

vessel (Williams et al., 2001) that was filled with DI water and pressurized to 70 MPa 

(10,150 psi) at room temperature.  The reaction vessel was then inserted into a preheated 
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clamshell furnace and allowed to reach 300°C, while maintaining a constant pressure of 

70 MPa.  A thermocouple inside the pressure vessel was used to monitor the temperature 

in the vicinity of the reacting capsules.  Owing to its large heat capacity, the pressure 

vessel typically required 3-4 h for the furnace to heat the sample up to 300°C.  The zero 

time point for each experiment was taken to be the time at which the temperature reached 

298°C, after which the rate of temperature increase to 300°C was about 1.5°C per hour.  

This means that some conversion to products may have occurred during the ramp-up 

heating.  Time-series experiments were performed for up to a maximum time of 528 h 

after the time zero point, under constant temperature and pressure conditions.  The 

maximum uncertainty in the temperature and pressure is estimated to be 5°C in 

temperature and 5 MPa in pressure for the experiments (Williams et al., 2001).  After the 

desired experimental duration, the pressure vessel was quenched quickly in an ice bath 

and the temperature dropped to room temperature within one minute.  Then the gold 

capsules were removed from the vessel.  The weights of the gold capsules were measured 

both before and after each experiment using a 0.01 mg-scale balance to ensure no loss of 

mass.  

 

2.3.3.  Product analysis 

 

    The concentrations used in the Tables and Figures in this work are in millimolal, 

which refer to the samples at the experimental high temperature and pressure, where they 

are solutions with the organic compounds dissolved in the water.  At room temperature, 

the organic compounds will not be completely dissolved in the water.  Before extracting 
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the reaction products, the capsules were first rinsed in dichloromethane and then frozen in 

liquid nitrogen to avoid evaporation of any volatile products upon opening.  The 

extraction solvent dichloromethane (DCM, 99.9%) contained 1.3 mM decane and 11.1 

mM dodecane as gas chromatography internal standards.  The organic products in the 

opened capsules were extracted using 3.0 mL of DCM in a 4 mL silanized glass vial 

(Supelco, Inc.) by shaking using a Vortex Genie 2 for 2 minutes.  The products were 

analyzed using a Varian CP-3800 gas chromatograph (GC) equipped with a polycapillary 

column (5% diphenyl/95% dimethylsiloxane, Supelco, Inc.) and a flame-ionization 

detector.  The GC oven was programmed to start at 80°C, increase in temperature at 10°C 

min-1 to 220°C, at 20°C min-1 to 300°C, and held at 300°C for 15 mins.  The injector 

temperature was set to 275°C.  The reproducibility of GC analyses was found to be ±5% 

by comparing peak area ratios for triplicate autosampler injections (Varian CP-8400) of 

each sample.  Where possible, the reaction products were identified by co-injecting 

authentic samples in the gas chromatograph.  The dodecane and decane internal standards 

were used to quantify concentrations by comparison to calibration curves that were 

generated by plotting the ratio of the peak area of the analyte to that of the internal 

standard vs. concentration of the analyte.  The higher-concentration dodecane was chosen 

as a reference for DBK and the lower concentration decane was used as the reference for 

the lower concentration products.  When authentic samples were not available to identify 

the products, high-resolution gas chromatography-mass spectrometry (GC-MS) in the 

High Resolution-MS Laboratory at Arizona State University was used to determine 

molecular ion masses and to deduce plausible structures by fragmentation pattern 

analysis. 
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    Mass balance at the various reaction times was estimated based on the numbers of 

benzene rings in the products and in the reacted DBK.  Products were identified that 

contained one, two, three and four benzene rings.  The total number of benzene rings in 

the consumed DBK was compared to the total number of benzene rings in the products.  

Because many products were formed at very small yields, not all of them were included 

in the mass balance calculations.  The products that were included in the mass balance 

calculations are those summarized in Table 1.  To be included in Table 1, the minimum 

concentration needed to exceed reliably detectible concentrations at any of the reaction 

times, which were taken to be 0.003, 0.003, 0.002 or 0.002 mM in the 3 mL DCM 

extracts for products that contained one, two, three or four benzene rings, respectively.  

The cutoff concentrations vary because products with different numbers of benzene rings 

had differing response factors by gas chromatography.  Experiments at each point in the 

time-series were run in duplicate, and comparison of peak areas in the gas 

chromatograms of the various products revealed ±10% uncertainty based on triplicate 

analyses.  There is additional uncertainty associated with conversion of peak areas into 

concentrations owing to the need to assume gas chromatogram response factors for some 

of the peaks.  The response factors (RF) were measured relatively to a constant internal 

standard.  The RF for structures with the same number of benzene rings were found to be 

similar.  In addition, the RF for structures that contained two benzene rings were 

essentially twice as large as those that contained one benzene ring.  As an example, 

RF(toluene) = 0.394 and RF(ethylbenzene) = 0.448, compared to RF(bibenzyl) = 0.889 

and RF(1,3-diphenylpropane) = 0.934.  The concentrations of the known products were 

determined using their individual response factors, and the concentrations of the 
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unknown two-benzene-ring products were determined using an RF value of 0.934.  The 

concentrations of the three- and four-benzene-ring products were estimated by assuming 

that RF of the various structures are proportional to the number of benzene rings that they 

contain.  Specifically, RF values of 1.401 and 1.868 were assumed for the three-benzene-

ring and four-benzene-ring structures, which are 1.5 and 2.0 times larger, respectively, 

than the average RF value for the two-benzene-ring structures.  Given these several 

sources of uncertainly, mass balance calculations were only attempted for DBK 

conversions greater than 5%, which correspond to reaction times of at least 168 h.  Errors 

in the mass balance calculations based on benzene rings vary from ±10% to ±15% 

depending on the duration of the experiment. We took the average uncertainty to be 

±12%. 

    The hydrogen balance was estimated by comparing the total number of hydrogen 

atoms in the products to the total number of hydrogen atoms in the consumed DBK.  The 

hydrogen inventory did not include the five hydrogens that are included in the benzene 

rings in the DBK or the products, in order to maximize any differences.  Hydrogen 

balance calculations depend on the mass balance calculations described above, the errors 

are estimated to be ±15%. 
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2.4.  Results and discussion 

 

2.4.1.  Reaction pathways for hydrothermal transformation of DBK 

  

The hydrothermal transformation of DBK was studied for reaction times of 0, 12, 

24, 46, 70, 168, 290 and 528 h.  The conversion of DBK was low (by design) for all 

reaction times, and reached only 14.5% conversion after 528 h.  Even at these low 

conversions, the number of products observed by gas chromatography was large as 

demonstrated by the sample chromatogram shown in Fig. 3.  All of the products that 

attained minimum concentrations, as defined in the Experimental section, are 

summarized in Table 1.  To make characterization of the various products tractable, they 

were categorized based on the number of benzene rings they contain.   

    Most of the lower-retention-time products that contained one and two benzene 

rings could be identified using purchased standards.  These include benzene (1A), toluene 

(1B), ethylbenzene (1C), bibenzyl (2B) and stilbene (2D).  The alphanumerical 

assignments for the various compounds are based on the number of benzene rings they 

possess, 1, 2, 3 etc., and the order in which they elute under the GC conditions, A, B, C, 

etc. (Table 1).  These assignments (Table 1) are also included in the major product 

structure summary shown in Fig. 4, which includes the alcohol 2F, alkene 2E and alkane 

2C products expected for the reaction pathways that is shown in Fig. 1.  The alkene 2E 

formed mainly (>90%) as the trans-stereoisomer.  The identities 2F, 2E, and 2C were all 

confirmed by comparison to standards. 
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    The majority of the higher-retention-time products could not be identified using 

purchased standards.  High-resolution mass spectrometry was used to obtain molecular 

masses, and this information was used to determine the number of benzene rings in each 

structure.  Products with GC retention times between 15 and 20 mins contain three 

benzene rings, and those with retention times between 21 and 25 mins contain four 

benzene rings (Fig. 3).   

    The mass spectrometry data show that, although there are a large number of 

products, many have similar masses and thus probably represent structural and/or 

stereoisomers.  We have been able to assign likely, but tentative structures to many of the 

larger products on the basis of the fragmentation patterns observed in their mass spectra.  

An example is shown in Fig. 5 for the four-benzene-ring structure 4A.  The 

stereochemistry with respect to the C=C double bonds in 4A cannot be determined using 

mass spectrometry, therefore the structure in Fig. 5 is chosen because we expect it to be 

one of the more stable isomers owing to the trans-configuration of the upper double 

bond.  In cases where more than one isomer was detected (i.e., more than one peak with 

the same molecular ion), a single representative structure is included in Fig. 4.  The 

various possible structural and stereoisomers for each molecular mass are not shown. 

    An estimate of the mass balance for the various reaction times can be obtained by 

comparing the number of moles of benzene rings in the consumed DBK to the number of 

moles of benzene rings in all of the products.  As mentioned in the Experimental section, 

this was only attempted for DBK conversions of at least 5%, corresponding to reaction 

times of ≥ 168 h.  The mass balance values for the 168-, 290-, and 528-h experiments are 

88%, 96% and 116%, respectively (see Table 1).  Although the average of these values is 
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almost exactly 100%, the mass balance values increase slightly but systematically with 

increasing reaction time, and beyond the experimental uncertainly.  We have yet to 

establish the reason for the increasing trend in the mass balance determined in this way, 

but it may be a consequence of the requirement to estimate the gas chromatography 

response factors for the three- and four-benzene-ring products, and the fact that the 

product distribution is time-dependent.  At later reaction times the three- and four-

benzene-ring product concentrations tend to increase compared to many of the smaller 

products, with the exception of toluene (discussed below).  An estimate of the hydrogen 

balance was also performed for the later reaction times, considering only the non-benzene 

ring hydrogens in products comparing to the ones in consumed DBK molecules.  The 

hydrogen balance values for the 168-, 290-, and 528-h experiments are 89%, 93% and 

119%, respectively (Table 1).  The average is again near 100%, and there is again a slight 

trend of increasing hydrogen balance with increased reaction time that is outside of the 

estimated experimental uncertainty of ±15%.  As in the case of the benzene-ring mass 

balance, we suspect that the observed trend reflects uncertainties in determining the time-

dependent concentrations of the three- and four-ring compounds. 

    Despite the variations in relative product concentrations with time, two major 

reaction pathways can be identified.  One corresponds to the reversible functional-group 

interconversions shown in Fig. 1.  The other is associated with C-C bond fragmentation 

reactions.  The reversible reaction pathways are shown in the lower left corner of Fig. 6, 

and the primary bond-breaking reactions in the lower right corner.  Additional reaction 

products from interaction of the products of C-C bond breaking with other reaction 

products abetted by C-H bond breaking are shown in the upper panel of Fig. 6.  For the 
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purpose of discussing reaction mechanisms, the products are distributed among reaction 

pathways as shown in Fig. 6.   

 

2.4.1.1.  Reduction pathway   

 

    Starting with DBK, the formation of alkane 2C involves reduction, and so we have 

called the part of the reaction path that links DBK with 2C in Fig. 6 the reduction 

pathway (even though formation of alkene 2E from alcohol 2F is neither an oxidation nor 

a reduction).  Indeed, starting with DBK we observed formation of the alcohol 2F, alkene 

2E and alkane 2C, with strongly time-dependent product distributions (see below).  In 

addition to the products involved in the reduction pathway, many other products were 

formed as a result of bond cleavage reactions.  The extent to which the DBK reactions 

follow the reduction pathway versus bond cleavage pathways can be estimated from the 

ratio of the sum of the concentrations of the reduction pathway products, i.e., alcohol 2F, 

alkene 2E and alkane 2C to the concentration of the consumed DBK.  This ratio 

(expressed as a percentage) is given in Table 2 for two of the reaction times, and is found 

to be time-dependent (ca. 22% for the 24-h reaction and ca. 10% for the 70-h reaction).  

Nevertheless, all of the structures along the reduction pathway were observed at most 

reaction times, and, importantly, the alkane 2C was a major product at all reaction times. 

    We performed experiments that started with the alcohol 2F, which is one 

reduction step down the pathway from DBK.  The alcohol is much more reactive than 

DBK and after 24 h essentially all of the alcohol had been consumed.  The major product 

is this case was the alkane 2C, but the alkene 2E was also observed, and, importantly, so 
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was DBK (see Table 2).  Other bond cleavage products were observed that contain one 

and two benzene rings, similar to those formed when starting with DBK.  In addition, 

coupling products similar to those formed from DBK that contain three and four benzene 

rings were also found, although no attempts were made to characterize these in detail.  

The extent to which the alcohol reaction gave reduction pathway products was estimated 

in a similar manner to that for DBK described above, and was found to be ca. 21% for a 

24-h reaction.  The fact that this is very close to the extent of reduction for DBK in the 

same time frame is probably coincidental, since the product distributions differ, 

especially among the coupling products.   

    Experiments were performed starting with the alkane 2C.  In this case the product 

distribution was quite complex, and again, many bond cleavage and coupling products 

with three and four benzene rings were observed but were not characterized.  After 70 

hours, the major products were toluene (1B) and ethylbenzene (1C).  Products that had 

two benzene rings include bibenzyl and stilbene, as well as the alkene 2E, and DBK 

(Table 2).  An extremely small amount of the alcohol 2F was found, consistent with the 

rapid reactivity of the alcohol under the experimental conditions.  The extent to which the 

alkane reaction products partition along the reduction pathway in the opposite direction 

was estimated as described above, yielding ca. 6% for the 70-h experiment.  These 

experiments support interpretation of the reduction pathway in terms of the reaction 

scheme of Fig. 1, and demonstrate conclusively that interconversion occurs among all of 

the structures in the reduction pathway, from DBK to alkane 2C. 
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2.4.1.2.  Bond cleavage pathways  

 

    Ketones are key functional groups in the reaction sequence shown in Fig. 1 since 

they represent the point at which C-C bond cleavage must occur in order to form 

carboxylic acids.  Under the hydrothermal experimental conditions (300°C, 70 MPa), 

many products were observed that are associated with C-C bond cleavage.  These include 

benzene (1A), toluene (1B), ethylbenzene (1C) and diphenylmethane (2A) (Table 1).  

Significantly, bibenzyl (2B) and trans-stilbene (2D) were also observed, in addition to 

other larger structures such as 3A-3F, 4A, and 4B.  Note that most of the larger products 

require both C-C and C-H bond cleavage. The formation of the larger products is readily 

explained in terms of radical coupling reactions (see further below), which strongly 

suggests that C-C and C-H bond cleavage reactions occur mainly via homolysis to form 

radicals under the conditions of the experiment.   

 

2.4.2.  Mechanisms of the reduction pathway 

 

    To form alkane 2C from DBK, the ketone must first undergo reduction to form 

alcohol 2F followed by dehydration to form alkene 2E followed by further reduction.  

The time dependencies of the concentrations of these four compounds, starting with 

DBK, are shown in Fig. 7, and can be seen to be consistent with this reaction pathway.  

The concentration of the alcohol 2F initially rises quickly, and then decreases to 

essentially zero by ca. 70 h.  The alkene 2E concentration increases on a timescale that 
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corresponds to that for decomposition of the alcohol, and then decreases on a slower 

timescale after the alcohol has mostly reacted. 

    As shown in Fig. 7, the concentration of alkane 2C continuously increases to 

values greater than the maximum concentrations attained by either the alcohol or the 

alkene.  The overall time-dependence of alkane formation corresponds roughly to that for 

DBK decomposition, implying that DBK reduction to form the alcohol is the rate-

determining step for formation of the alkane.  This is consistent with the observation that 

the alkene, and in particular the alcohol, do not build up substantial concentrations.   

The fastest reaction in the pathway when starting with DBK appears to be 

dehydration of the alcohol 2F, since the alcohol reacts most rapidly to the lowest 

maximum concentration.  This is consistent with the observation of rapid reaction when 

starting with alcohol 2F, and consistent with published work on alcohol dehydration 

under hydrothermal conditions (Xu et. al, 1997; Antal et. al, 1998; Akiya and Savage, 

2001; Anikeev and Ermakova, 2003; Hunter and Savage, 2004).  This previous work has 

led to a suggested mechanism for alcohol dehydration that involves acid catalysis, with 

the first step being protonation of the -OH to form -OH2
+, which is a leaving group.  The 

acid is formed in the self-dissociation of H2O under the reaction conditions.  H2O 

elimination then follows either an E1 mechanism, where the -OH2
+ leaves as H2O to give 

a carbon-centered cation that then loses a proton, or an E2 mechanism where the H2O (-

OH2
+) leaves and the proton is lost to H2O simultaneously.  Whether the E1 or the E2 

mechanism is followed for a particular alcohol seems to depend upon the structure of the 

alcohol and the reaction conditions, in particular temperature (Akiya and Savage, 2001).  

By microscopic reversibility, alcohol hydration presumably follows the same 
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mechanism(s) in reverse.  Both reduction reactions (i.e., DBK to alcohol, and alkene to 

alkane) are slower than the alcohol dehydration.  If DBK reduction is rate-determining 

for formation of the alkane, as suggested by the kinetic data, then reduction of the alkene 

is faster than reduction of the DBK.  Compared to alcohol dehydration (and the 

corresponding alkene hydration), the detailed mechanisms of reduction of double bonds 

under hydrothermal conditions have not been extensively studied and potential 

mechanisms are thus discussed in more detail here. 

    It is important to remember that the experimental systems are sealed, which means 

the hydrogen atoms required for the reduction reactions must come from either the 

reactants themselves or from H2O.  As indicated above, although there are uncertainties 

in our estimate of the detailed hydrogen balance for these reactions, evidently the 

majority of the hydrogen atoms required for the reduction reactions come from the other 

organic structures, and ultimately from DBK itself.  An accurate description of the 

kinetics of the reduction reactions is difficult, since the concentrations of the reducing 

species presumably vary with time.  However, the rate of reaction of the reducing species 

with the double bonds must at least contribute to the overall reaction rate to account for 

the observed difference in the reactivities of C=O and C=C bonds, C=O being reduced 

more slowly than C=C.  If the reduction of the C=O and C=C bonds occurs via the same 

mechanism, then the different observed reactivities can be used to give insight into the 

reduction mechanism. 

    The standard mechanisms of hydrogenation reactions in solution involve either 

sequential addition of hydride (H– or equivalent) followed by addition of a proton (H+), 

or sequential addition of two hydrogen atoms (or equivalent; Smith and March, 2007).  
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The hydride/proton mechanism for reduction of either DBK or alkene 2E seems unlikely 

under the experimental conditions for two reasons.  First, there is no reasonable source of 

hydride (or equivalent) in aqueous solution, since under the reaction conditions hydride 

should react very rapidly with H2O.  Second, hydride and its equivalents are nucleophilic, 

and if the rate of reduction were determined by the rate of addition of hydride to the C=C 

and C=O bonds, the more electrophilic C=O bond would be expected to react faster than 

the C=C bond, but the opposite is observed.  From these observations we conclude that 

the mechanism of reduction of C=C and C=O under the experimental conditions is 

unlikely to involve the rate-determining addition of hydride or equivalent. 

    Although there is no obvious source of hydride ions, there is an obvious source of 

hydrogen atoms, i.e., from homolytic C-H bond cleavage.  Indeed, many of the coupling 

products are best understood as being derived from radicals formed via bond homolysis 

reactions.  If the reduction mechanism involves rate-determining addition of a hydrogen 

atom (or equivalent) to the C=C and C=O bonds, then the stronger C=O bond would be 

expected to react more slowly than the weaker C=C bond, as observed.   

If reduction occurs via sequential addition of hydrogen atoms, it is worth asking 

whether such a reduction reaction is reasonable from a kinetic perspective.  A minimal 

mechanism for the reduction reaction of DBK to form the alcohol 2F, which contains the 

essential features of the DBK reactivity under our reaction conditions, is shown in Fig. 8.  

The reactive hydrogen atoms can be generated as a result of C-H bond homolysis in the 

benzylic position of DBK as shown in step (1) of Fig. 8.  The literature value for this 

bond dissociation enthalpy (BDE) has been reported to be 83 kcal mol-1 (Bordwell and 

Harrelson, 1990).  Two such dissociations are required to reduce one molecule of DBK to 
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alcohol 2F.  Although the bond dissociation enthalpies discussed here are for 298 K, their 

values are very weakly temperature dependent.  Specifically, Blanksby and Ellison 

(2003) point out that for many organic structures, bond dissociation enthalpies at 298 K 

are almost numerically equivalent to the corresponding bond dissociation enthalpies at 0 

K.  Therefore, we assume that the enthalpies estimated here are valid at 300°C within the 

range of uncertainly. 

Reduction of DBK also involves dissociation of the -bond component of the 

C=O double bond.  -Bond enthalpies are difficult to measure, however, a recent ab 

initio calculation (Chen et al., 2011) provides a value of 76 kcal mol-1 for C=O bonds, 

which we assume to be valid for DBK.  The literature BDEs for the two bonds to 

hydrogen that are made: the O-H bond of step (2) and the C-H bond adjacent to oxygen 

of step (3), are 104 and 94 kcal mol-1, respectively (Luo, 2007).  The homolytic C-H bond 

dissociation step (1) generates two benzylic radicals, and enthalpy is gained when they 

recombine in step (4).  The BDE for the C-C bond that is formed in this case is not 

known, but can safely be assumed to lie between those for 1,2-diphenylethane (Reaction 

1a) and 1,1,2,2-tetraphenylethane (Reaction 1b),  

 

i.e. greater than 56 kcal mol-1 and less than 65 kcal mol-1 (Pedley et al., 1986; Luo, 2007).  

The overall reaction thus converts 3 molecules of DBK into alcohol 2F and the structure 
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formed in step (4), which is reminiscent of many of the products of the coupling and the 

dimeric pathway for DBK.  Based on the literature BDEs we determine that the reaction 

mechanism outlined in Fig. 8 is enthalpically favorable by between 14 and 21 kcal mol-1.  

This mechanism is oversimplified; for example there are several different possible 

structures that can liberate hydrogen from a benzylic position, and indeed there are 

several reduction reactions involving DBK, its derivatives, and many different coupling 

products.  The contribution of entropy and any medium effects on the BDEs are also 

ignored.  However, the reaction is sufficiently exothermic, and presumably exergonic, 

that the reaction mechanism is at least plausible.   

    The rate-determining step in the mechanism of Fig. 8 is C-H bond dissociation, 

which has an enthalpic barrier of 83 kcal mol-1.  An alternate mechanism for reduction 

via hydrogen atom transfer involves direct transfer to the oxygen atom of the C=O group 

of DBK from the benzylic position of another DBK, or another structure with benzylic 

hydrogens, without the intermediacy of a free hydrogen atom, as illustrated in Reaction 2:  

 

The advantage of the hypothetical hydrogen atom transfer process of Reaction 2 is that 

the kinetic enthalpic requirements are significantly reduced compared to the mechanism 

of Fig. 8, since the enthalpy costs of breaking the C-H and the C=O -bonds (83 and 76 

kcal mol-1, respectively) are offset by the simultaneous gain in enthalpy associated with 

formation the O-H bond (104 kcal mol-1), for a total enthalpy barrier of 55 kcal mol-1.  

Although the hydrogen atom transfer mechanism is more favorable kinetically, and 
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hydrogen atom transfer in various kinds of chemical systems has previously been 

reported in the literature, the specific process shown in Reaction 2 has not been 

described, and there may still be a substantial kinetic barrier to the reaction above the 55 

kcal mol-1 required by the bond dissociation enthalpies (Mayer, 2010).  We cannot 

support or rule out either mechanism based on the product distributions alone. 

    Another possible source of hydrogen atoms is associated with the water/gas shift 

reaction, as illustrated in Reactions 3a-3c: 

 

As discussed further below, dibenzylketone can undergo homolytic C-C bond 

dissociation to form a benzyl radical and a phenacetyl radical (Reaction 3a).  The 

phenacetyl radical may then undergo rapid decarbonylation (Reaction 3b) to form carbon 

monoxide and a second benzyl radical (Gould et al., 1987).  Under the experimental 

conditions, carbon monoxide should react with H2O to form carbon dioxide and hydrogen 

(Reaction 3c; Seewald et al., 2006).  If the molecular hydrogen formed this way is the 

source of hydrogen atoms for the reduction reactions through a mechanism that is similar 

to that of Fig. 8, the rate-determining step will then be homolytic bond cleavage of 

molecular hydrogen to form two hydrogen atoms.  The H-H BDE is 104 kcal mol-1 

(Blanksby and Ellison, 2003), i.e. significantly larger than the benzylic C-H bond 

dissociation enthalpy (83 kcal mol-1).  For this reason, molecular hydrogen may be a less 
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important source of reducing hydrogen atoms than the organic structures with benzylic 

hydrogen atoms.  The hydrogen balance calculations described above that gave values 

around 100% excluded the hydrogen atoms formed in the water gas shift reaction, 

therefore this process is not necessarily a contributor to the reduction process. 

    A final mechanistic possibility that needs to be considered is that the bond 

cleavage reactions are catalyzed by the surface of the gold reaction capsule.  As an 

example, adsorption of the organic structures to the gold surface might weaken covalent 

bonds and facilitate hydrogen atom transfer in a manner similar to conventional metal-

catalyzed hydrogenation reactions (Rylander, 1967).  Gold is generally considered to be 

minimally catalytic in hydrothermal reactions; nevertheless, in their work on 

decarboxylation of acetic acid, Bell et al. (1994) were unable to completely rule out gold 

catalysis. Such catalysis cannot be completely ruled out in the present experiments either, 

although we have independent evidence for freely diffusing carbon-centered radicals that 

formed as a result of bond homolysis (see below). 

    To summarize, the experiments demonstrate reversible interconversion reactions 

of functional groups all the way from ketone to alkane that are able to compete with other 

reactions of the various functional groups.  The time sequence experiments provide direct 

evidence for the reaction sequence.  The most plausible mechanism involves sequential 

addition of hydrogen atoms, although the mechanism for reduction cannot be confirmed 

solely on the basis of the product studies described here. 
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2.4.3.  Mechanisms of C-C and C-H bond cleavage pathways  

 

    One of the goals of the project was to determine the extent to which C-C bond 

cleavage could compete with the reduction and functional-group-interconversion 

pathways.  Dibenzylketone was anticipated to be useful in this regard because cleavage of 

the C-C bond adjacent to the C=O group is facilitated by formation of a resonance-

stabilized benzylic intermediate (Fig. 2).  As mentioned above, the preponderance of 

coupling products points to the formation of radicals via homolytic bond fragmentation, 

i.e. the critical intermediate in Fig. 2 appears to be a resonance-stabilized benzyl radical. 

One of the major products at all reaction times is toluene, indicating that C-C bond 

cleavage is indeed a major reaction pathway.  The toluene concentration grows steadily 

throughout the duration of the experiment and corresponds closely to the decrease in 

concentration of the DBK as shown in Fig. 9. 

    The C-C bond cleavage products can be understood according to the processes 

indicated in Reactions 3a and 3b.  Exactly the same mechanistic steps occur in the 

photochemically induced decompositions of DBK (Robbins and Eastman, 1970; Gould et 

al., 1987): initial fragmentation of the benzylic C-C bond to form a benzyl radical and a 

phenacetyl radical, Reaction 3a, followed by decarbonylation to form a second benzyl 

radical and carbon monoxide, Reaction 3b.  That the thermal and photochemical reactions 

proceed via the same mechanism is understandable since the active excited state in DBK 

photochemistry is the triplet state, and both the triplet and ground states correlate with a 

radical pair upon bond stretching (whereas the excited singlet state correlates with an ion 

pair; Turro, 1991). 
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    The homolytic bond dissociation enthalpy for the benzylic C-C bond in DBK is 

reported to be 65 kcal mol-1 in a review by McMillen and Golden (1982), although 

several other measurements of benzylic carbon-carbonyl carbon BDEs put this number 

closer to 73 kcal mol-1 (Luo, 2007).  The C-C BDE is thus smaller than the C-H BDE, as 

shown in Reaction 4,  

 

 

nevertheless, products associated with both of these bond fragmentations are observed.  

Indeed, essentially all of the bond fragmentation products require both C-C and C-H bond 

cleavage, the only exception is bibenzyl 2B.  The BDE for cleavage of the C-C bond to 

the benzene ring in DBK has not been reported, however, this is almost certainly much 

larger than those in Reactions 4a and 4b.  The larger BDE in this case presumably 

accounts for the fact that the products requiring this bond cleavage, benzene (1A) and 

diphenylmethane (2A), form in significantly lower yields than those that require cleavage 

at the benzylic carbon, such as toluene (see Table 1).   

      Strong evidence in favor of the formation of freely diffusing carbon-centered 

radicals that are formed via homolytic C-C bond cleavage at the benzylic carbon is 

provided by an experiment that starts with an asymmetrical analog of DBK, p-

methyldibenzylketone (p-MeDBK).  In this case, two different kinds of benzyl radicals 

are generated, a simple unsubstituted benzyl radical and one with a p-methyl substituent.  
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It is known that photolysis of p-MeDBK results in formation of freely diffusing benzyl 

radicals that form three different bibenzyl products (Turro and Weed, 1983).  To check 

for freely diffusing benzyl radicals under the conditions of our experiments, we reacted p-

MeDBK under the same hydrothermal conditions as DBK.  Although an even larger 

number of products are formed compared to DBK itself, as a consequence of the 

additional methyl group in many of the products, we focused our attention on the three 

possible bibenzyl products 2B, 2B(i) and 2B(ii), formed according to: 

 

 

 

All three bibenzyls were observed after 70 h, and the product distribution was 

0.42:1.14:0.50 mmolal for 2B:2B(i):2B(ii).  The formation of significant concentrations 

of the cross-coupling products 2B and 2B(ii) in this experiment provides strong support 

for the formation of benzyl radicals that diffuse freely in solution, and couple to form 

bibenzyls.  Indeed, the product distribution is close to the expected 1:2:1 ratio expected 

for completely random radical coupling.  The deviation from the pure statistical ratio is 

presumably a consequence of the fact that the benzyl radicals are involved in other 

reactions in addition to the formation of bibenzyls. 
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    As mentioned above, bibenzyl (2B) is the only product of DBK decomposition 

that requires C-C bond homolysis solely.  Loss of two hydrogen atoms from bibenzyl 

forms stilbene (2D) as shown in Reaction 6, 

 

which is observed as a product, predominantly as the trans-stereoisomer under the 

conditions of the experiments.  The hydrogens are lost from bibenzyl presumably in the 

course of reduction of DBK or alkene 2E or stilbene 2D, according to the mechanisms 

discussed above.  As shown in Fig. 10, the concentration of trans-stilbene 2D is larger 

than that of bibenzyl at earlier reaction times, although this situation reverses at later 

times.  One explanation for this behavior is that at earlier times, bibenzyl provides the 

hydrogen atoms required for the various reduction reactions, and at later times, larger 

structures such as 3C and 4B start to accumulate that have liberated hydrogen atoms that 

can push the reversible reaction (Reaction 6) back towards bibenzyl.  The significance of 

this is that the reversible reactivity observed in the DBK system, specifically the 

bibenzyl/trans-stilbene interconversion (Reaction 6), appears to adjust rapidly to 

changing local conditions, which is one of the reasons for the time-dependent product 

distributions. 

    A plausible first step for formation of the three- and four-benzene-ring coupling 

products is shown in step 4 of Fig. 8.  Further C-C and C-H bond breaking, combined 

with reduction pathway reactions of the kind that DBK itself undergoes, can explain the 

formation of the three- and four-ring structures illustrated in Fig. 4.  The time 
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dependencies of the concentrations of representative three- and four-ring structures are 

given in Figs. 11 and 12, and the dehydrogenated coupling products exhibit steady 

increases in concentration.  These are presumably favored thermodynamically since by 

losing hydrogen atoms they become increasingly conjugated.  The bulk of these 

hydrogens are consumed in the formation of toluene, which is another major product of 

the reaction at later times as shown in Fig. 9.  As shown in Fig. 11, the major coupling 

product that accumulates at later times is the three-ring structure 3C''', which is relatively 

stable since it is highly conjugated.  

 

2.4.4.  Ionic reaction pathways  

 

The cross-coupling experiment provides strong support for carbon-carbon bond 

cleavage via homolysis to form radicals, and the product distribution is also consistent 

with this proposal.  It is important to note that although homolytic C-C bond cleavage is 

favored for DBK because of resonance stabilization of the intermediate benzyl radicals, 

heterolytic cleavage to form a benzyl anion or cation would also be favored for the same 

reason, i.e. resonance stabilization.  Thus, although DBK was chosen specifically to 

enhance the C-C bond cleavage pathway, it is not pre-determined to undergo homolytic 

cleavage, although this does appear to be at least the dominant mechanism for bond 

fragmentation under the present conditions.  However, reactions that proceed via ionic 

mechanisms almost certainly also occur in the DBK system.  Specifically, the 

hydrothermal dehydration of alcohols to form alkenes was previously shown to proceed 

via an ionic mechanism (Xu et. al, 1997; Antal et. al, 1998; Akiya and Savage, 2001; 
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Anikeev and Ermakova, 2003; Hunter and Savage, 2004), and we have no reason to 

believe that the same mechanism does not apply under our experimental conditions.  Of 

course, the principle of microscopic reversibility dictates that the reverse formation of 

alcohol from alkene is also ionic.   

An ionic mechanism for another process is also suggested by experiments on 

DBK performed in deuterated water, where we observe very rapid exchange of hydrogen 

and deuterium.  Hydrothermal reaction of DBK at 300°C and 70 MPa for 24 h resulted in 

a shift of the molecular ion peak for DBK from m/z 210 to m/z 214, which reflects 

hydrogen-deuterium exchange at all four benzylic positions.  The mechanism of this H/D 

exchange almost certainly involves reversible formation of an enol via an acid catalyzed 

ionic mechanism (Smith and March, 2007).   

This observation suggests that reactions of enols should at least be considered.  A 

possible reaction is formation of the aldol condensation product via nucleophilic addition 

of the enol of DBK to a second DBK molecule, followed by dehydration (Smith and 

March, 2007), as illustrated by   

 

However, no evidence for an aldol product was obtained.  Aldol formation is known to be 

reversible, suggesting that the equilibrium lies on the side of DBK under the conditions 

of the experiment.  Although an aldol product was not observed, the rapid dehydration of 

1,3-diphenyl-2-propanol and hydrogen-deuterium exchange of DBK suggest ionic 

reaction pathways co-existed with radical reaction pathways in these experiments. 
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2.4.5.  Carboxylic acids 

 

     As mentioned above, ketones are the functional group in which C-C bond 

cleavage must occur in order to form carboxylic acids in the reaction scheme illustrated 

in Fig. 1.  Results from this study show that C-C bond cleavage is a dominant pathway 

for the hydrothermal reactions of DBK.  However, carboxylic acids were not found in our 

DBK experiments, at least at our GC detection limits of ~0.05 millimolal.  Other less 

oxidized products, such as benzaldehyde and benzyl alcohols, were also not observed.  

Evidently, bond cleavage fails to form the oxygenated carboxylic acids in appreciable 

amounts under the conditions of our experiments.  A possible explanation is that because 

the system is sealed, the primary products of C-C bond homolysis tend to accept the 

hydrogen atoms that are generated in parallel reactions.  Alternatively, the results might 

suggest that to form oxygenated products such as aldehydes or carboxylic acids, a 

heterolytic bond cleavage pathway may be required to form a primary cation intermediate 

that could then react with H2O.  Additional experiments in which the oxidation state is 

externally buffered may help to elucidate these mechanistic details.  

 

2.5.  Conclusions 

 

     There are several major conclusions of this study of hydrothermal reactions of the 

model ketone DBK:  

(1) Time sequence experiments provide direct evidence for the functional group 

interconversion reaction sequence of Fig 1 within a single system, supporting the use of 
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this scheme for interpreting the products of organic hydrothermal reactions.  For the 

reaction sequence ketone to alcohol to alkene to alkane, alcohol dehydration seems to be 

the fastest reaction, followed by alkene reduction, with ketone reduction being slowest of 

all. 

(2) Reversible interconversion over the entire range of functional groups from alkane to 

ketone is observed, with the dominant reaction directions responding quite rapidly to 

changes in the product distribution and thus reaction environment. 

(3) Functional group interconversion occurs together with homolytic bond cleavage 

reactions that result in freely diffusing radicals in the case of C-C bond fragmentation.  

Bond cleavage predominates at longer reaction times, with the products tending toward 

formation of dehydrogenated coupling products and the hydrogen atoms being consumed 

in formation of toluene.   

(4) Ionic reactions are much less important than radical reactions at the conditions of 

these hydrothermal experiments (300°C, 70 MPa).   

(5) Although C-C bond cleavage is the dominant reaction, no carboxylic acids are formed 

under these experimental conditions.  Carboxylic acid formation evidently requires the 

introduction of additional oxidizing agents, or hydrogen loss, either of which may prevail 

in natural systems. 

Additional implications for natural systems require extrapolation from the 

experimental results to conditions that prevail in sedimentary basins and hydrothermal 

systems, many of which operate at lower temperatures and pressures than used in this 

experimental study, and include mineral reactions that have the potential to alter reaction 

pathways. Nevertheless, based on our experimental results for DBK, we can make 
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general observations of relevance to geochemical processes.  Reversibility of reactions 

among ketones, alcohols, alkenes and alkanes provides strong support for the concept that 

metastable equilibria are regularly and commonly attained among aqueous organic 

compounds.  As a consequence, these results support the validity of assumptions 

underlying thermodynamic representations of diverse organic geochemical processes 

(Amend and Shock, 1998; Shock and Schulte, 1998; Amend and Shock, 1998; Shock, 

2000; Schulte and Shock, 2004; Shock and Canovas, 2010).  However, the inability of the 

current experimental efforts to produce carboxylic acids raises questions about the 

irreversible reactions involved in natural organic transformation processes.  The 

conversion of ketones to carboxylic acids may be a rate-limiting step in the overall 

conversion of alkanes, which would be a variation on the scheme proposed by Seewald 

(2001; 2003). 
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Table 1.  Concentrations (mmolal) of various products for DBK in H2O at 300 °C and 70 

MPa, their mass-to-charge values, the mass and hydrogen balances, and percent 

conversion of DBK, at the various reaction times.
a,b

  

 

RT
c
 Product m/z 0 h 12 h 24 h 46 h 70 h 168 h 290 h 528 h 

1.98   1A 78 1.16 1.10 1.52 1.88 2.74 2.88 2.88 2.90 

2.26 1B 92 0.46 2.38 4.52 8.66 16.65 36.32 62.45 146.2 

2.75 1C 106 na na na na 0.16 0.54 1.44 3.62 

9.17 2A 168 na na na na 0.14 0.36 0.40 1.22 

10.25 2B 182 na 0.12 0.30 0.68 1.24 2.68 3.18 5.16 

11.79 2C 196 na 0.40 1.02 1.40 2.20 6.58 8.40 10.65 

12.42 2D  180 0.28 1.16 1.44 1.82 2.06 0.92 0.42 0.42 

12.65 2E 194 0.48 2.42 2.24 1.66 1.66 1.28 0.72 0.62 

13.25  DBK 210 988.9 984.3 981.9 968.5 958.9 931.5 899.1 850.8 

13.58 2F 212 1.70 0.24 0.08 0.06 na na na na 

13.74 - - 2.26 0.74 0.90 0.64 0.32 0.20 0.18 0.48 

13.97 - - na na na na na na 0.26 0.48 

14.16 - - na na na na na 0.40 0.78 1.86 

17.44 3A 284 na 0.06 0.09 0.17 0.18 0.26 0.38 0.57 

17.56 3A' 284 na 0.09 0.12 0.17 0.17 0.23 0.54 0.87 

17.92 - - na na na na na na na 0.30 

18.02 3B 282 na 0.05 0.08 0.17 0.24 0.32 0.47 0.68 

18.15 3C 310 na 0.03 0.05 0.12 0.18 0.54 1.43 3.67 

18.27 3D 298 0.08 0.11 0.26 0.45 0.63 1.04 1.47 3.07 

18.75 3E 300 na na 0.11 0.15 0.20 0.36 0.41 0.62 

18.81 3C' 310 na na na na na 0.57 2.15 3.85 

19.02 3C'' 310 na na na na na 0.36 1.61 4.44 

19.33 3F 312 na na na na 0.08 0.32 1.07 2.26 

19.77 3C''' 310 na 0.23 0.53 1.47 2.84 6.45 14.64 23.24 

19.90 - - na na 0.12 0.20 0.26 0.36 0.47 0.71 

21.68 4A 400 0.35 0.71 1.14 1.97 2.47 3.61 3.99 5.55 
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22.64 4A' 400 na na na na na na 0.32 0.60 

23.41 4B 384 na na na na na 0.18 0.33 0.50 

23.92 4A'' 400 0.08 0.26 0.44 0.69 0.84 0.92 1.02 1.14 

24.50 4A''' 400 na 0.20 0.30 0.51 0.66 0.71 0.84 0.95 

Mass Balance (%)
d
 

Hydrogen Balance (%)
d
 

    88 96 116 

    89 93 119 

Conversion (%)
e
 0.7 1.1 1.4 2.7 3.7 6.4 9.7 14.5 

a
 The products that are included in this table were those detected above minimum 

concentrations in DCM, as defined in the Experimental section.  Products that are given a 

number (see Fig 4) and m/z value are those that were either identified using purchased 

standards, or whose mass was measured and a likely structure determined.  A product that 

is a structural or stereoisomer of another product with an earlier retention time is 

identified using the ' symbol; additional structural and stereoisomers are identified using '' 

and '''. 

b
 na means that the amount formed is too small to be accurately determined at that 

particular reaction time.   

c
 The retention time (in minutes) on GC chromatograms. 

d
 Mass and hydrogen balances are estimated as described in the text, and only for DBK 

conversion greater than 5%. The estimated errors are ±12% and ±15% for the mass and 

hydrogen balances, respectively. 

e
 Percent conversion of DBK. 
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Table 2.  Concentrations (mmolal) of products from hydrothermal reactions starting with 

DBK, alcohol (2F) or alkane (2C) in H2O at 300 °C and 70 MPa, starting concentrations, 

conversions, and percent reduction pathway products for two reaction times.
a,b 

 

Product 
DBK 

(24 h) 

Alcohol (2F) 

(24 h) 

DBK 

(70 h) 

Alkane (2C) 

(70 h) 

1B 4.52 104.3 16.65 351.5 

1C Na 23.61 0.16 56.23 

2B 0.30 18.21 1.24 2.82 

2C 1.02 188.3 2.20 724.2 

2D 1.44 3.40 2.06 1.84 

2E 2.24 1.66 1.66 9.28 

DBK 981.9 21.41 958.9 7.00 

2F 0.08 na na 0.34 

Starting Conc.
c
 996.5 980.5 996.3 1024.5 

% Conversion
d
 1.4 >99 3.7 29 

% Reduction
e
 ~22 ~21 ~10 ~6 

a
 All concentrations are in mmolal.  Only the concentrations of the major products 

containing one and two benzene rings are given, see text.  See Fig 4 for the assignment of 

the structure numbers. 

b
 na means that the amount formed is too small to be accurately determined at that 

particular reaction time.   

c
 Concentrations of the starting compound, DBK, alcohol 2F, and alkane 2C.   

d
 Percent conversion of the starting compound, DBK, alcohol 2F, and alkane 2C.  

e
 Estimated as the percentage of the sum of the concentrations of the structures that 

contribute to the reduction pathway relative to the concentration of the reacted starting 

material.  When starting with DBK, these structures are the alcohol 2F, the alkene 2E and 

the alkane 2C.  When starting with alcohol 2F, the structures are the alkene 2E, the 
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alkane 2C and DBK.  When starting with the alkane 2C, the structures are the alkene 2E, 

the alcohol 2F and DBK. 
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Fig. 1.  Schematic illustration of the proposed oxidation and reduction (horizontal), and 

hydration/dehydration (vertical) pathways that interconvert hydrocarbon and carboxylic 

acid functionalities at hydrothermal conditions (Seewald, 2003).  Note the central 

position of ketones.  Most reactions are thought to be reversible, and that irreversible C-C 

bond breaking in ketones leads to carboxylic acids. 
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Fig. 2.  Dibenzylketone (DBK) and a schematic C-C bond fragmentation reaction to form 

two transient species, where the * represents an ion or radical site.  The transient in the 

box is benzylic and will be resonance stabilized, which should facilitate bond 

fragmentation via homolysis or heterolysis.  
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Fig. 3.  Gas chromatograms showing the products of hydrothermal transformation of 

DBK in water at 300 °C and 70 MPa, after 290 h reaction time (the ordinate corresponds 

to relative intensity).  The upper chromatogram shows the one- and two-benzene-ring 

structures at earlier retention times, the lower chromatogram shows the three- and four-

benzene-ring structures at later retention times.  DCM refers to the dichloromethane 

solvent and the peaks labeled S1 and S2 correspond to decane and dodecane, 

respectively, which are used as relative internal standards for quantification of peak areas.  

The structures of the labeled peaks are given in Fig 4. 
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Fig. 4.  Structures of major product types observed for hydrothermal transformation of 

DBK in H2O at 300 °C and 70 MPa. Structures are categorized by the number of benzene 

rings they contain.  Several of the structures have structural and/or stereoisomers with the 

same molecular mass; where multiple isomers are observed, they are also identified in 

Fig. 3 and in Table 1 using the ' symbol. 
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Fig. 5.  Mass spectrum and assigned fragments for the four-benzene-ring structure 4A.  

Other products have the same molecular ion peak at 400 m/z, and presumably represent 

stereoisomers associated with the carbon-carbon double bonds.  The stereochemistry of 

the structure assigned as 4A, or the other structures that have the same molecular ion 

peak, are not actually known. 
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Fig. 6.  Schematic representation of the main reaction pathways for hydrothermal 

transformations of DBK.  The reduction pathway (lower left) results ultimately in 

formation of the alkane 2C.  The two bond homolysis pathways are necessarily 

interrelated; only bibenzyl, 2B, requires no C-H bond homolysis, all other products 

require some combination of C-C and C-H bond fragmentation. 
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Fig. 7.  Time dependencies of the concentrations of DBK (filled circles) and the products 

of the reduction pathway, alcohol 2F (triangles), alkene 2E (diamonds) and alkane 2C 

(open circles), that are formed in the hydrothermal reactions of DBK in H2O at 300 °C 

and 70 MPa.  The lower panel expands the early time behavior outlined in the box at the 

lower left of the upper panel. 
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Fig. 8.  Proposed minimal mechanism for reduction of DBK to alcohol 2F via hydrogen 

atom addition to the C=O double bond.  The literature bond dissociation enthalpies in 

bold are for bonds that are broken, and those in italics are for bonds that are formed.  The 

bond dissociation enthalpy for the C-C bond formed in Reaction (4) can only be 

estimated (see text).  This reaction scheme is exothermic by between 14 and 21 kcal mol-

1. 
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Fig. 9.  Time dependencies of the concentrations of DBK (filled circles) and toluene 1B 

(open circles), a major product of the reaction of DBK in H2O at 300 °C and 70 MPa. 
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Fig. 10.  Time dependencies of the concentrations of DBK (filled circles), trans-stilbene 

2D (diamonds), bibenzyl 2B (open circles) in H2O at 300 °C and 70 MPa. 
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Fig. 11.  Time dependencies of the concentrations of DBK (filled circles), and the two 

three-ring products 3C''' (open circles), and 3D (diamonds) in H2O at 300 °C and 70 MPa. 
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Fig. 12.  Time dependencies of the concentrations of DBK (filled circles), and four 

isomeric structures with the same molecular ion that correspond to structure 4A of Fig. 4 

in H2O at 300 °C and 70 MPa. 
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CHAPTER 3: 

HYDROTHERMAL PHOTOCHEMISTRY AS A MECHANISTIC TOOL IN 

ORGANIC GEOCHEMISTRY – THE CHEMISTRY OF DIBENZYL KETONE 

 

Revised with permission from Yang Z., Lorance E. D., Bockisch C., Williams L. B., 

Hartnett H. E., Shock E. L. and Gould I. R. (2014) Hydrothermal photochemistry as a 

mechanistic tool in organic geochemistry. The chemistry of dibenzylketone. J. Org. 

Chem.  (Accepted manuscript). 

 

3.1.  Abstract 

 

Hydrothermal organic transformations under geochemically relevant conditions 

can result complex product mixtures that form via multiple reaction pathways.  The 

hydrothermal decomposition reactions of the model ketone dibenylketone (DBK) form a 

mixture of reduction, dehydration, fragmentation, and coupling products that suggest 

simultaneous and competitive radical and ionic reaction pathways under the reaction 

conditions.  This work shows how the photochemistry of DBK can be used to 

independently generate radical intermediates under hydrothermal conditions, and how at 

high temperatures benzyl radicals undergo coupling and radical abstraction reactions that 

do not occur at ambient conditions.  The photochemical method allows the primary 

radical coupling products of the thermal reaction to be identified and the kinetics of the 

follow-up ionic reactions of these primary products to be studied.  In this way the radical 

and ionic thermal reaction pathways can be studied separately. 
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3.2.  Introduction 

 

    Over 99.99% of the Earth's organic carbon does not actively participate in the 

biospheric carbon cycle, but is located within the crust, mainly in continental and marine 

sedimentary basins in the form of kerogen (Falkowski et al., 2000; McSween et al., 

2003).  It is estimated that more than 15,000,000 Gt of organic matter is located beneath 

the surface of the Earth (McSween et al., 2003).  The reactions of this huge quantity of 

organic matter contribute to a wide range of geochemically important processes.  

Specifically, reactions of organic material in the Earth's crust represent an important 

component of the deep, or geochemical, carbon cycle, which is an important factor in 

controlling atmospheric carbon dioxide levels (Dasgupta, 2013).  Subsurface organic 

reactions are critical to petroleum generation and maturation processes (Helgeson et al., 

2009), can provide energy sources for deep microbial communities (e.g., Horsfield et al., 

2006), and have been implicated in the formation of ore deposits (Shock et al., 2013).    

From an organic chemistry perspective, it is interesting that the solvent for most 

of these reactions is water, usually at elevated temperatures and pressures (e.g., 

McCollom et al., 2007; Tassi et al., 2007).  Geochemically relevant hydrothermal organic 

reactions can have a wide temperature range, but the majority of the important processes 

take place between ca. 150 - 300°C, i.e., well below the critical point of water at 374°C 

and 221 bar (e.g., Seewald, 2003; McCollom and Seewald, 2007; Tassi et al., 2007).  A 

wide range of reactions have now been identified in hot subcritical water (and associated 

confining pressures), which include fragmentations into smaller structures, additions to 

make larger structures, and functional group interconversions, and it is also interesting 
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that these reactions occur without the addition of any external reagents or catalysts (e.g., 

Siskin and Katritzky, 1981; Katritzky et al., 2001; Siskin and Katritzky, 2001; Akiya and 

Savage, 2002; Hunter and Savage, 2004; Watanabe et al., 2004).  For these reasons, 

organic chemical reactions under conditions that mimic geochemical conditions are being 

studied as potential “green chemistry” systems (Avola et al., 2013; Shanab et al., 2013). 

    Many hydrothermal reactions are somewhat surprising when compared to the 

corresponding processes close to ambient conditions.  Examples include the endothermic 

elimination of hydrogen from alcohols and alkanes to form carbonyls and alkenes and the 

dehydration of alcohols to form alkenes (e.g., Antal et al., 1987; Kuhlmann et al., 1994; 

Seewald, 1994; Xu et al., 1997; Akiya and Savage, 2001; Katritzky et al., 2001; Ott et al., 

2006).  Alcohol dehydration is particularly surprising since water is the solvent.  The 

equilibrium between alcohol and alkene plus water is strongly temperature dependent, 

and for butanol, as an example, the equilibrium is on the side of butene plus water at 

temperatures above 200°C at the vapor-liquid saturation pressure of water (see Shock et 

al., 2013).  At higher temperatures the entropic contribution to the free energy increases, 

so that eventually water elimination, which increases entropy, becomes favorable despite 

being endothermic.  In general, hydrothermal organic reactions tend to be controlled by 

thermodynamics and entropy, as opposed to kinetics and enthalpy which are the primary 

controlling factors closer to ambient.  Hydrothermal reactions are also unlike those at 

ambient conditions in that both ionic and radical reaction mechanisms can occur under 

the same conditions, although it is generally thought that ionic reactions are more 

prevalent at lower temperatures whereas radical reactions dominate at higher 

temperatures (Burdige, 2006; LaRowe and Van Cappellen, 2011).  
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    Although a large number of hydrothermal organic reactions have been studied, the 

emphasis has been mainly on product distributions; reports of mechanistic studies have 

been less frequent, and direct evidence for proposed intermediates is often lacking.  This 

is partly because many hydrothermal reactions give complex product mixtures, and many 

reactions are reversible (e.g., McCollom and Seewald, 2003a, b; Seewald, 2003; Seewald 

et al., 2006; Yang et al., 2012; Shipp et al., 2013).  The need for high-pressure 

experimental apparatus can also complicate the use of many routine analytical 

procedures.  Other than kinetic measurements (Belsky et al., 1999; Li and Brill, 2001; 

McCollom and Seewald, 2003a, b), and in some cases isotope effects (Hoering, 1984; 

Yamamoto et al., 2004; McCollom et al., 2010; Reeves et al., 2012), the mechanistic 

toolbox for hydrothermal organic reactions has been somewhat limited to date.  One of 

the goals of this work is to develop a new experimental probe for hydrothermal organic 

reaction mechanisms. 

    The most abundant organic functional groups found in geochemically relevant 

environments are alkanes and carboxylic acids (Seewald, 2003).  Seewald (2001, 2003) 

has proposed a reaction scheme that shows how acids and alkanes might be linked by a 

series of reversible and irreversible functional group interconversions (Scheme I).  The 

critical structure in this scheme is the ketone, since it occupies the position where 

irreversible carbon-carbon bond cleavage must occur.  The hydrothermal reactions of a 

model ketone, dibenzylketone (DBK), were studied in order to investigate how bond 

cleavage might compete with the functional group interconversions (Yang et al., 2012).  

Under the hydrothermal conditions of 300°C and 700 bar, all of the reactions of Scheme I 

were observed, except that carbon-carbon bond cleavage occurred to give mainly 
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coupling products rather than carboxylic acids (Yang et al., 2012).  The coupling 

products were explained as arising from homolytic bond cleavage of DBK to give benzyl 

and related radicals, although the hydrothermal coupling products and their distributions 

were very different from those expected based on the known DBK-derived radical 

chemistry at ambient temperature (Robbins and Eastman, 1970a, b; Turro, 1982; Gould et 

al., 1987; GarciaGaribay et al., 1991; Turro, 2000).  Independent evidence for the 

intermediacy of radicals in the bond cleavage reactions of DBK under hydrothermal 

conditions was thus sought. 

    The ambient photochemistry of DBK and its analogues has been extensively 

studied in a variety of reaction media (e.g., Robbins and Eastman, 1970a, b) and the 

primary photophysical and chemical processes are well established.  This work found that 

using photochemistry at high temperature and pressure in water to independently 

generate radicals helps to rationalize the product distributions observed in the 

hydrothermal reactions of DBK.  Specifically, an analysis of the product distributions and 

the quantum yields for the corresponding hydrothermal photolysis reaction provides 

convincing evidence for the previously proposed radical mechanisms for the thermal 

reactions of DBK, and reveals how the radical reactions are different under hydrothermal 

compared to ambient conditions.  The shorter timescale of the photochemical 

hydrothermal reaction also allows the primary thermal reaction products to be identified 

and their follow-up reactions to be monitored directly, which is not possible in the closed 

hydrothermal thermal reaction vessel.  In short, hydrothermal photochemistry is found to 

be a very useful mechanistic tool. 
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3.3.  Results and discussion 

 

3.3.1.  Hydrothermal reactions of DBK 

 

    Water at high temperatures and pressures acts as an excellent solvent for many 

organic reactions (Siskin and Katritzky, 2001).  The hydrothermal decomposition 

reactions of DBK give a complex mixture of products that has been described in detail 

previously (Yang et al., 2012).  Scheme II summarizes the main reaction products that are 

relevant to the present work.  One reaction pathway involves reduction, dehydration and 

further reduction to give the corresponding alcohol (2c), alkene (2d) and alkane (2e) 

(although the alcohol 2c does not accumulate significantly due to rapid dehydration to 

form the alkene 2d), which corresponds to the functional group interconversion reactions 

shown in Scheme I.  The majority of the reaction products, however, are derived from 

carbon-carbon and carbon-hydrogen bond cleavage reactions and subsequent coupling 

processes, presumably via radical intermediates.  Cleavage of DBK to give benzyl 

radicals would be expected to give bibenzyl (2a), which is certainly observed, although in 

relatively low yield compared to other three- and four-ring coupling products.  The bond 

cleavage products are most easily categorized in terms of the number of benzene rings 

they contain: specifically, toluene (1); bibenzyl (2a) and stilbene (2b); and products that 

contain three benzene rings (3a - 3d); and products that contain four benzene rings (4a - 

4b).   

    The previously reported thermal reactions were performed by heating and 

pressurizing the samples in small, sealed, gold tubes with an argon headspace.  Most 
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organic reactions that are designed to mimic geochemically relevant conditions are often 

run over extended time periods, from days to months, and avoiding inadvertent catalysis 

by the reaction container is a significant issue (e.g., Palmer and Drummond, 1986).  Gold 

is generally considered to be one of the more inert materials for hydrothermal reactions 

(Palmer and Drummond, 1986) and, because it is malleable, the pressure inside a gold 

tube can be controlled by applying an external pressure using water in a stainless steel 

reaction vessel.  Gold cannot be used for photochemical hydrothermal reactions, and so 

the hydrothermal decomposition of DBK in fused-silica glass tubes was first studied.   

    DBK is essentially insoluble in water at ambient temperature, but the solubility 

increases with increasing temperature so that a 1 molal solution can be obtained at 300°C 

(Yang et al., 2012).  In a sealed fused-silica tube the internal pressure is determined by 

the water vapor pressure at the experiment temperature, which is 86 bar at 300°C 

(Johnson et al., 1992).  A higher pressure was used in the gold tube experiments (700 bar) 

to ensure a single phase under those conditions.  The lower pressure in the fused-silica 

experiments results in a headspace above the solution.  The hydrothermal photochemical 

reactions do not occur in the headspace, as evidenced by the observation that irradiation 

in this region leads to no decomposition of DBK.  The hydrothermal reaction of DBK 

was performed for 3 days at 300°C in a fused-silica tube, in a gold tube at 700 bar, and in 

a gold tube that was sealed inside a fused-silica tube.  This last experiment allows a 

reaction in a gold container but at the same pressure as the experiments run in fused-silica 

tubing.  The reaction time period was selected to minimize secondary follow-up reactions 

(see below).  The observed products are essentially identical for the hydrothermal 

reaction of DBK in fused-silica glass, in gold at high pressure and in gold at the fused-
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silica tube pressure, but the product distributions are slightly different.  As an example, 

the yields of the alkane 2e (Scheme II) formed by reduction of DBK are higher in the 

gold experiments than in the fused-silica tube by a factor of ca. three.  The DBK 

conversions are also somewhat different, being 3.6%, 2.9%, and 2.1% in high-pressure 

gold, low-pressure gold, and fused-silica, respectively. This suggests increased reactivity 

in the gold reaction containers.  The hydrogen balance is close to 100% for the 

hydrothermal reactions of DBK, and the hydrogen atoms that enable DBK reduction to 

alkanes (and other reduced products) should come from dehydrogenation reactions that 

form more oxidized organic products.  A gas chromatogram showing the product 

distribution for a 7-day thermolysis experiment in the fused-silica tube is shown in Figure 

1A.  This longer reaction time period allows direct comparison to the photochemical 

experiments, but the product distribution is similar to that observed after 3 days.   

 

3.3.2.  Ambient photochemistry of DBK 

 

    The products of the 7-day thermal reaction were compared to those from 33-

minute photolysis at room temperature in methanol and 33-minute hydrothermal 

photolysis at 300°C.  The DBK conversions were all 5–8%, allowing direct comparison 

of the product distributions.  Again, conversions were deliberately kept low to minimize 

secondary reactions.  In agreement with the earlier literature (Robbins and Eastman, 

1970a, b), photochemical excitation of DBK in homogeneous methanol solution at 

ambient temperature yields bibenzyl as the only detectable product, Figure 1C.  The 

photochemical reaction of DBK in micelles and other constrained media has been 
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observed to additionally form small quantities of isomers of the starting material as a 

result of coupling of the primary benzyl and phenacyl radicals in the ortho- and para-

positions (Lehr and Turro, 1981).  However, benzyl radical/benzyl radical coupling tends 

to form only bibenzyl and no other isomers.  Although bibenzyl is the only product of 

DBK photolysis at ambient conditions, the hydrothermal photochemistry yields quite 

different products that depend upon the initial DBK concentration. 

 

3.3.3.  Hydrothermal photochemistry of DBK 

 

    Photolysis of 1 molal DBK for 33 minutes at 300°C in water gives the product 

distribution shown in Figure 1B.  Although the bibenzyl (2a) that is formed in the room 

temperature photolysis is observed, the major products are now toluene (1) and some of 

the three- and four-benzene ring coupling products of Scheme II.  The product 

distribution resembles a simpler version of that obtained from the 7-day thermal reaction, 

shown in Figure 1A.  The photochemical conversion of DBK is linear with time, as is 

formation of the toluene, bibenzyl and the coupling products.  Figure 2 shows the product 

yields as a function of irradiation time for the hydrothermal photochemical reaction 

compared to the photochemical reaction in methanol at room temperature, corrected for 

the different DBK conversions under the two conditions.  This plot clearly shows the 

large change in product distribution for the photochemical reaction at the higher 

temperature. 

    A mechanism that accounts for the fragmentation and coupling products under 

hydrothermal conditions is shown in Scheme III.  Based on the known photochemistry of 
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DBK, excitation to the first excited singlet state is followed by intersystem crossing to 

the excited triplet state, which undergoes efficient homolytic bond cleavage to form a 

geminate benzyl and a phenacyl radical.  From the previously measured activation 

parameters (Turro et al., 1983), decarbonylation of the phenacyl radical to yield another 

benzyl radical should occur in less than 2 ns at 300°C.  The geminate benzyl radical pair 

is formed in an overall triplet state, and efficient diffusive separation of this primary 

radical pair is expected to occur in fluid solution, since recombination is spin forbidden 

(Gould et al., 1984).  The non-photochemical thermal reaction forms the same geminate 

benzyl/phenacyl radical pair, in this case with in an overall singlet spin state.  Separated 

benzyl radicals then form by decarbonylation and diffusive separation.   

The hydrothermal reaction of the benzyl radicals that does not take place under 

ambient conditions is hydrogen atom abstraction from DBK to yield toluene (1) and a 

DBK derived radical, DBK•.  Coupling of DBK• with a benzyl radical generates the 

primary three-ring structures 3a, which form as a mixture of three structural isomers 

indicated as 3a1, 3a2 and 3a3 in Figure 1B.  Coupling of two DBK• generates the primary 

four-ring structures 4a (two stereoisomers are formed), which undergo thermal 

dehydration to form structures 4b (again, several isomers are formed).  The primary 

products of the hydrothermal photochemical radical reactions are thus 1 (toluene), 2a 

(bibenzyl), 3a and 4a, Scheme III. 

    The hydrogen atom abstraction process occurs in competition with the 

conventional benzyl radical coupling to form bibenzyl.  Therefore, changing the reaction 

conditions to change the relative rates of the competing processes should influence the 

product distribution.  Formation of bibenzyl is kinetically second-order with respect to 
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benzyl radical concentration, whereas the competing hydrogen atom abstraction with 

DBK is pseudo-first-order.  The relative rates of these reactions should thus depend upon 

the radical concentration, which can be varied by changing the light intensity.  At higher 

light intensities (no attempt was made to quantify the various light intensities) the radical 

concentration is higher and the yield of bibenzyl compared to the coupling products is 

indeed observed to be higher. 

    Support for the mechanism of Scheme III is also obtained from experiments 

performed in the presence of Cu (II) ion, which is known to trap benzyl radicals via 

oxidation (Turro and Weed, 1983).  Hydrothermal photolysis of DBK was performed in 

the presence of 0.5 molal Cu (II) chloride for 15 minutes.  The extent of DBK conversion 

was similar to that without Cu (II), but the yields of all of the radical products 1, 2a, 3a 

and 4a were dramatically reduced by a factor of 80 - 90%.  New oxidized products were 

detected in the presence of Cu (II) by gas chromatography, which included benzaldehyde, 

benzoic acid, and phenylacetic acid.  This provides strong evidence for benzyl and 

benzylic radicals being the precursors to the various coupling products of the 

hydrothermal photochemistry of DBK.   

    Three structural isomers assigned to the coupling products 3a are observed in the 

gas chromatogram/mass spectra of the product mixture from hydrothermal photolysis.  

One, with the shortest retention time in Figure 1B, is formed in significantly higher yield 

compared to the other two.  These products are not isolable (the conversions are low and 

the reaction mixtures are complex), therefore only tentative assignments can be made.  

Coupling of a benzyl and a DBK• radical could in principle occur at various positions 

since the spins are delocalized.  For the benzyl radical the measured spin densities are 
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3.19, 1.0 and 1.22 for the benzylic, ortho- and para-positions, respectively (Dust and 

Arnold, 1983).  These spin densities do not explain the coupling of two benzyl radicals at 

ambient in fluid solution since coupling only occurs at the benzylic position under these 

conditions.  Exclusive formation of bibenzyl is readily understood, however, since 

coupling at other positions initially forms a structure that has lost aromaticity.  On this 

basis it is anticipated that the major coupling product for the DBK• radical would arise 

from coupling at the benzylic position to yield structure 3a1, Scheme IV.  Non-benzylic 

coupling has occasionally been observed, however, in photochemical reactions of DBK 

at ambient (e.g., Lehr and Turro, 1981).  Two equivalent processes for the coupling of a 

benzyl radical and a DBK• radical are shown in Eqns. 1a and 1b, which yield 3a2 and 3a3 

respectively, Scheme IV. 

 

 

 

3a2 and 3a3 are shown as para-coupling isomers, although a mixture of ortho- 

and para- isomers could be formed, and not be detected if they did not separate well 

under the chromatography conditions.  3a2 and 3a3 are formed in lower yields than 3a1 

since they must be formed via intermediates that have lost aromaticity.  Formation of 

non-benzylic coupling products under hydrothermal conditions points to higher reactivity 

and lower selectivity in the reactions of benzylic radicals at the higher temperatures.  The 
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assignments of 3a1, 3a2, and 3a3 to the first, second and third peaks in the gas 

chromatogram of Figure 1 is supported by their mass spectra, and also the observed 

follow-up thermal chemistry discussed below.  The mass spectra for the peaks assigned to 

3a1 and 3a2 are very similar and contain m/z fragments 181 and 209 that are consistent 

with cleavage on both sides of the carbonyl group to give benzyl ions (Scheme IV).  In 

the mass spectrum for the structure assigned to 3a3, however, the 209 m/z fragment is 

very small and the 181 m/z is the base peak, since in the case of 3a3 the 181 m/z 

corresponds to a more stable diarylmethyl ion (see supporting information).   

    Five products assigned to structures that contain four benzene rings are formed at 

the early reaction times in sufficient quantity for mass spectral analysis, Figure 1B.  

Unlike the three-ring products, the time-dependencies of the concentrations of these 

structures are non-linear, see Figure 3.  Two of these structures are formed in equal 

abundance and have identical mass spectra suggesting that they are the meso/(d,l) 

diastereomer pair formed by coupling of two DBK•, indicated as 4a in Figure 1B and 

Scheme III.  The other four-ring products indicated as 4b1 and 4b2 in Figure 1B are 

isomers with a molecular ion mass of 400, consistent with formal loss of water compared 

to the 4a isomers.  The rate of formation of the 4b isomers also increases as a function of 

irradiation time, Figure 3, consistent with formation of the 4b by secondary thermal 

dehydration reactions of 4a. 

    That the 4b1 and 4b2 isomers are derived from the 4a isomers is readily 

demonstrated by an experiment in which hydrothermal photolysis was followed by 

thermolysis without light at 300°C for a further 30 minutes.  In this experiment it was 

found that the two peaks that were formed in the initial photolysis and assigned to 4a had 
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completely disappeared in a follow-up thermal reaction, and the peaks assigned to the 4b 

isomers were correspondingly larger.  This explains the non-linear behavior of the 4a and 

4b1 with time shown in Figure 3.  The dehydration reactions that convert 4a into the 4b 

isomers are discussed in detail below. 

    Further support for the mechanism of Scheme III comes from analysis of the 

product and quantum yields.  According to Scheme III, one molecule of toluene is formed 

for each one of the three-ring coupling structures that are formed, and two molecules of 

toluene are formed for each one of the four-ring coupling structures.  Therefore, the 

concentration of toluene in the product mixture [1] should be equal to the sum of the 

concentrations of all of the three-ring products (three-ring]) plus twice the sum of the 

concentrations of all of the four-ring structures ( [four-ring]), Eqn. 2.  The 

concentrations of toluene and the concentrations of the three and four ring products 

summed according  

 

[1]   =   three-ring]    +    2  [four-ring]    (2) 

 

to Eqn. 2 are shown as a function of time in Figure 4.  The slopes of these plots are 

similar, supporting Eqn. 2 and also the mechanism of Scheme III.  The small differences 

in the slopes are probably consequences of the necessary assumptions for the gas 

chromatography response factors for the various coupling products, which are assumed as 

1.5 and 2.0 times larger than DBK for the three and four ring structures, respectively (see 

supporting information for details).   
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    The formation of toluene and the coupling products requires consumption of more 

DBK molecules per photon compared to the ambient DBK photochemistry.  The 

quantum yield for bibenzyl formation for ambient photochemical excitation of DBK is 

ca. 0.7 and is essentially solvent independent (e.g., Robbins and Eastman, 1970a, b). The 

quantum yield for product formation is the same as the quantum yield for formation of 

separated benzyl radicals since all separated benzyl radicals form coupling products.  

According to Scheme III, formation of a three-ring coupling product and the 

accompanying toluene consumes two DBK molecules.  The quantum yield for formation 

of the three-ring structures should thus be twice as large as that for formation of bibenzyl.  

Formation of a four-ring coupling product (and the accompanying two toluenes) will 

correspondingly have a quantum yield that is three times larger than that for bibenzyl 

formation, since three DBK molecules are consumed in this case.  Based on the observed 

product distribution for hydrothermal photolysis, the quantum yield for DBK 

consumption can thus be calculated relative to that under corresponding conditions where 

bibenzyl is the only product.   

    Bibenzyl formation does not depend upon the DBK concentration whereas the 

hydrogen atom abstraction reaction is pseudo-first-order with respect to DBK.  It was 

found that the product distributions could be varied controllably by changing the DBK 

concentration.  Hydrothermal photolysis of DBK at a concentration of 0.05 molal gave 

bibenzyl as the major product, whereas at 1 molal concentration toluene and the coupling 

products dominated the distribution, Figure 1.  The quantum yields for formation of the 

coupling products can thus be obtained by comparing experiments at different 

concentrations of DBK. 
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    Hydrothermal photolysis of DBK at 0.05 molal and 1.0 molal was compared to 

photolysis of DBK at ambient, where bibenzyl was the only product, and at 

concentrations that had the same light absorption as the two hydrothermal samples 

(details are given in the supporting information).  It was found that the DBK 

consumption for hydrothermal photolysis is higher per absorbed photon at the higher 

DBK concentration compared to the low concentration by a factor of ca. 1.3.  The 

calculated hydrothermal quantum yield at 1 molal concentration, based on the observed 

product distribution and assuming that each of the three- and four-ring structures 

consume 2 and 3 DBK molecules, respectively, is 1.37, which agrees quite well with the 

experimentally determined difference.  The product distributions and quantum yields thus 

both support the mechanism of Scheme III. 

    The critical step in the mechanism is hydrogen atom abstraction from DBK by the 

benzyl radicals.  This process is responsible for the new products and, at the same time, 

consumes more than one DBK molecule per initial photochemically-induced 

fragmentation reaction.  The H-atom abstraction reaction has been examined 

computationally using B3LYP/aug-cc-pVDZ as implemented in Gaussian 09 (Frisch et 

al., 2010).  Methyl benzyl ketone (MBK) was used instead of DBK for computational 

economy.  MBK was optimized both in the gas phase and in solvent (modeled using the 

polarizable continuum model, PCM) at 300°C and 700 bar.  Starting with the optimal 

conformer of MBK, the benzyl radical was fixed at 2.5Å from the -hydrogen of the 

MBK, Figure 5, and the distance-constrained complex was fully optimized.  From this 

geometry, the distance to the benzylic carbon of the radical, Cbenzyl–Hα, was shortened 

by 0.1Å steps to 1.5Å and then by 0.05Å steps until a distance of 1.35Å (optimizing the 
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distance-constrained complex at each distance), at which point the Cα–Hα bond 

separation distance in the MBK became quite large (>3Å), consistent with the breaking 

of this bond.  A search for the transition state located an extremely steep apex to the 

reaction coordinate (Figure 5).  This structure at this apex was characterized by an 

associated vibration frequency of –1528 cm–1, which corresponds to the desired hydrogen 

transfer motion.  The decrease in energy after the transition state is reached is artificially 

steep as a consequence of constraining only the Cbenzyl–Hα coordinate and none of the 

other relevant bond distances.  The reaction is found to be exothermic, as expected for a 

reaction that generates a more resonance-stabilized radical, by a value of 29 kJ/mol.  This 

is in excellent agreement with the differences in the experimentally measured Cbenzyl–Hα 

and Cα–Hα bond dissociation energies of 30 kJ/mol, i.e., 377 kJ/mol for the benzylic C–H 

bond in toluene (Blanksby and Ellison, 2003) and 347 kJ/mol for the benzylic (-) C–H 

bond in MBK (Bordwell and Harrelson, 1990) (bond dissociation enthalpies are 

essentially independent of temperature).  The activation free energy is computed to be 

132.4 kJ/mol at 300°C, which translates into a bimolecular rate constant of 10.3 M-1 s-1 

using transition state theory (Fernandez-Ramos et al., 2006).  The corresponding 

activation energy and rate constant at ambient are calculated to be 119.0 kJ/mol and 8.9 × 

10-9 M-1 s-1.  

    Hydrogen atom abstraction is competitive with benzyl radical recombination at 

300°C, since both bibenzyl and abstraction products are observed.  However, the 

hydrogen atom abstraction rate constant is predicted to be ca. 109 times slower at ambient 

compared to 300°C.  Therefore, it is not surprising that hydrogen atom abstraction cannot 
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compete with radical recombination at ambient and that bibenzyl is the only observable 

product at this temperature. 

 

3.3.4.  Hydrothermal dehydration  

 

    In addition to providing insight into the thermal radical reactions, the 

photochemical technique allows the follow-up ionic thermal reactions to be more easily 

isolated.  The photochemical reaction clearly reveals the primary three-ring and four-ring 

radical coupling products 3a and 4a that are difficult to identify in the thermal reaction 

due to simultaneous formation of secondary products.  In the pure thermal reactions the 

major primary three-ring isomers 3a1 are not among the most abundant products, and the 

primary four-ring isomers 4a are not even observed, Figure 1A.  The secondary products 

can be mostly understood as arising from follow-up dehydration reactions of the 3a and 

4a structures.  Note again that dehydration occurs efficiently despite the fact that the 

solvent is water and there are no added reagents or catalysts.   

    Dehydration of alcohols is perhaps the best-characterized hydrothermal reaction 

from a mechanistic perspective (e.g., Xu et al., 1997; Akiya and Savage, 2001; Ott et al., 

2006).  These reactions proceed by conventional acid-catalyzed elimination of water.  

The acid catalyst is supplied by the water.  Under hydrothermal conditions it is well 

known that the Kw for water increases (Harvey and Friend, 2004), the dielectric constant 

of water decreases (Harvey and Friend, 2004), and, with the increased thermal energy, 

the reactivity of the hydronium and hydroxide ions is increased.  The mechanisms of the 

dehydration reactions of the ketones 3a and 4a are not as obvious, however, since these 
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are not alcohols, but the photochemical approach was again found to provide useful 

mechanistic insight.   

    Further photolysis-followed-by-thermolysis experiments were performed in order 

to obtain a more quantitative description of the dehydration reactions of 3a and 4a.  

Photolysis was performed at 300°C for 2 minutes with high light intensity, followed by 

thermolysis at the same temperature for variable time periods.  A high light intensity was 

used to quickly generate a sufficient concentration of the 3a and the 4a before significant 

thermal dehydration started to occur.  The rates of follow-up thermal dehydration were 

found to be very different for the 3a isomers and the 4a isomers.  Reaction of both 

diastereomers of 4a was complete within ca. 15 minutes after the light was shut off (both 

reacted at the same rate), whereas the reactions of the 3a isomers were much slower.  The 

different isomers of 3a decreased in concentration at different rates, but none decreased 

by more than a factor of ca. 2 over a period of one day.  The reactions of the 3a isomers 

were so slow that accurate measurement of their reaction kinetics was not possible, since 

they were also being forming by thermal (non-photochemical) decomposition of DBK 

during the post-photolysis thermal reaction period.  However, the kinetics of the 

conversions of the diastereomers of 4a to the 4b isomers were readily measured by 

quenching photolysis samples after different follow-up thermolysis periods, Figure 6.  

Dehydration of the 4a isomers to the 4b isomers was remarkably fast, and the pseudo-

first-order rate constant is ca. 0.25 min-1.  Although a corresponding rate constant for the 

3a reactions could not be obtained, it is clear that the reactivities of the 3a and the 4a are 

very different, and that any proposed dehydration mechanism needs to account for the 

different reactivity. 
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    Possible acid-catalyzed dehydration reactions were investigated both 

computationally and by using some model reactions.  For these large structures the 

semiempirical PM6 method was selected (Stewart, 2007; Frisch et al., 2010).  

Calculations were performed at 300°C and 700 bar (the conditions of the original gold 

tube experiments) in simulated hot pressurized water using the PCM (details provided in 

supporting information).  A plausible mechanism for the dehydrations of 4a and 3a 

involves protonation of a carbonyl, followed by formation of the corresponding enols (4e 

and 3e), rearrangement to form alcohol 4f and 3f followed by conventional acid-

catalyzed elimination of water to generate dienones or dienes, 4b2 and 3b, respectively, 

as shown in Scheme V.  Most of these structures could be formed in multiple stereo- or 

structural isomeric forms, as indicated by the (') symbols in Scheme V, and as observed 

in the final dehydration products 3b and 4b2 in the gas chromatograms of Figure 1. 

    Heats of formation for the relevant intermediate structures are summarized in 

Scheme V.  Formation of the enol was found to be slightly endothermic for both 3a and 

4a, as expected, and the isomerization 3e/4e to 3f/4f was almost thermoneutral.  

Deprotonation of the initially protonated carbonyl may skip the enol and form the 

alcohols 3f/4f directly, but the energy changes along the two reaction pathways to the 

dienes 3b and the dienones 4b2, including the final dehydration step, are very similar, and 

cannot account for the large observed difference in reaction rates for 3a and 4a.  One of 

the products of dehydration of 4a is formed in significantly higher yield than the others, 

Figure 1B.  The isomeric dienones 4b2 shown in Scheme V are sterically congested and 

extensive conjugation is not observed in any of the calculated structures, see Figure 7, for 

example.  This lack of conjugation due to steric crowding is also observed in the enol and 
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alkene isomers 3e/4e and 3f/4f.  The heats of formation of the four stereoisomers of the 

dienones 4b2 were found to be similar, although the (3Z,5E)-isomer was the most stable 

computationally and was visually the least crowded, Figure 7.  The uncertainty in the 

heats of formation of isomeric organic structures such as those in Scheme V has been 

estimated to be ca. 16 kJ/mol (Isegawa et al., 2013).  The energy of the (3Z,5E) isomer is 

lower than the others by ca. 30 kJ/mol (i.e. by more than the reported estimated 

uncertainty in the heats of formation), but this energy difference is not enough to account 

for this isomer being formed with significantly higher abundance than the others. 

However, another dehydration pathway is available to the 4a that can form a product that 

is even more stable than the dienones. 

    The protonated 4a can undergo the known Paal-Knorr cyclization to form a furan 

(Amarnath and Amarnath, 1995), whereas the corresponding protonated 3a cannot, 

Scheme V.  This additional reaction pathway readily accounts for the significantly 

increased rate of dehydration of 4a compared to 3a.  The reaction forms a furan 4b1 that 

is a structural isomer of the dienones 4b2 of Scheme V, Figure 7.  Computationally, this 

furan is found to be significantly more stable than the dienones by ca. 60 kJ/mol (at 

300°C and 700 bar), which in turn suggests that it is the major dehydration isomer 

observed with the shortest retention time in the gas chromatograms of Figure 1.  

Although still sterically congested, the furan 4b1 is more conjugated than the least 

hindered dienone, Figure 7, which presumably contributes to its increased stability. 

    Isomers are possible for the dienones, but not for the furan 4b1.  Three 

dehydration isomers are clearly observed in the gas chromatograms shown in Figure 1, 

and smaller peaks due to other isomers can also be detected at longer reaction times.  
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Dehydration may form all of the isomers, or interconversion among the dienone isomers 

could also occur via protonation and deprotonation reactions.  The development of true 

thermodynamic equilibrium among the various isomers is unlikely, however, due to 

further follow-up reactions of the 4b2 dienones discussed below. 

    Studies of model reactions support the mechanisms of Scheme V. Enolization of 

ketones 3a and 4a (illustrated as acid-catalyzed in Scheme V, although base catalysis is 

also possible) can be tested using DBK itself as a model.  As mentioned above, the 

inherent Brønsted acid and base catalytic activity in water is expected to be high at 

300°C.  The hydrothermal reaction of DBK in deuterated water at 300°C for 10 minutes 

resulted in complete incorporation of four deuteriums in the unreacted DBK, as 

determined by mass spectrometry, presumably as a consequence of exchange of the four 

enolizable hydrogens in DBK (e.g., Siskin et al., 1995).  Thus, enolization readily occurs 

on the timescale of the dehydration reaction.  The second isomerization step can also be 

readily understood as proceeding via acid catalysis, protonation followed by 

deprotonation, similar to enolization, Scheme V.  That this process could also be fast on 

the timescale of the 4a dehydration is supported by the calculated heats of formation that 

indicate that the process 4e to 4f is even less endothermic than the enolization step, as 

well as observation of rapid interconversions among isomeric alkenes under similar 

conditions (e.g., Shipp et al., 2013). 

    The final step in the mechanism of Scheme V is dehydration of the alcohol, which 

was modeled by studying the same reaction in 1-phenylethanol, Eqn. 3.  Thermolysis of 

1-phenylethanol for 1 hour at 300°C resulted in conversion of ca. 50% of the alcohol to  
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styrene.  The mechanism of hydrothermal alcohol dehydration has previously been shown 

to proceed via protonation of the oxygen followed by conventional E1 or E2 elimination 

(e.g., Akiya and Savage, 2001).  The rate of this dehydration is intermediate between 

those observed for the overall more complex dehydrations of 3a and 4a, and suggests that 

the reactions of Scheme V are plausible on the observed timescales.  

 

3.3.5.  Follow-up ionic reactions  

 

    The photochemical reaction effectively separates the radical reactions from the 

mainly ionic secondary dehydration reactions that occur simultaneously with the radical 

reactions in the pure thermal reaction, Scheme III.  This separation allowed us to 

construct the reaction scheme for the formation of the fragmentation and coupling 

products, Scheme III, which was not possible from the previous thermal-only studies 

(e.g., Yang et al., 2012). 

    Hydrothermal photolysis followed by thermolysis eventually results in a product 

distribution that resembles that of the pure thermolysis reaction, Figure 1A.  As 

mentioned above, thermolysis after photolysis results in the complete removal of the 4a 

isomers via dehydration.  Thermolysis after photolysis does not completely remove the 

3a isomers, but their product distribution changes compared to that after short-time 
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photolysis alone.  In particular, the major product of hydrothermal photolysis, 3a1, 

becomes the least abundant of the 3a isomers upon thermolysis, and additional three-ring 

structures are observed, although in greater yields than could be accounted for by 

reactions of the 3a alone. 

    This observation is explained by recognizing that the structure assigned to 3a1 can 

undergo the same dehydration reaction as 4a to give 3b isomers, Scheme III.  The 

structures assigned to 3a2 and 3a3, however, cannot undergo the corresponding 

dehydration, but could in principle undergo reactions similar to DBK itself.  Under the 

experimental conditions and timescales, conversion to secondary products would be 

expected to be minimal since the reactions of DBK itself are relatively slow (Yang et al., 

2012).  Toluene would be expected to be a major product of these reactions, but structural 

isomers of bibenzyl (2a) and other coupling products would also be expected to 

eventually form.  In support of this, small peaks in the gas chromatograms, close to 

authentic bibenzyl, are observed upon extended thermolysis and appear to be bibenzyl 

isomers based on mass spectral analysis, Figure 1. 

    After extended thermolysis the major three-ring structure is the aldehyde 3d 

(formed as multiple stereoisomers), Scheme III.  This reaction has not yet be investigated 

in detail, however, the aldehyde yield after extended reaction time is sufficiently large 

that it cannot be formed from reactions of the primary three-ring products 3a.  A potential 

alternate source of 3d is via bond homolysis in the dienones 4b2, Scheme III.  The other 

product of this reaction would be toluene 1, although formation of 3d and 1 from 4b2 

requires two hydrogen atoms.  With extended reaction times, stilbene (2b, mainly the 

trans-isomer) becomes a major product in the two-benzene ring region at the expense of 
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bibenzyl, Figure 1A.  The conversion to stilbene from bibenzyl formally generates 

hydrogen atoms that could be used in the formation of 3d from 4b2.   

 

3.4.  Conclusions 

 

    Hydrothermal photolysis of dibenzylketone allows identification of the primary 

radical coupling products in the corresponding thermal reactions and reveals unexpected 

reactions of benzylic radicals in high temperature water.  Hydrothermal photolysis also 

allows separation of the radical and ionic reactions that occur simultaneously in the 

purely thermal experiment without photolysis.  Reactions of the benzyl radicals at high 

temperature that do not occur at ambient include ortho- and para-coupling and hydrogen 

atom abstraction from DBK itself.  The increased thermal energy and increased Kw 

facilitate rapid Brønsted acid- and base-catalyzed reactions that are not observed at 

ambient, specifically dehydration of the ketones 3a and 4a.  Although alcohol 

dehydration has been observed many times in other hydrothermal organic reactions, this 

work points to dehydration as a generally favorable process for different kinds of 

structures in addition to alcohols (Shock et al., 2013).  The follow-up reactions of 

Scheme V are mainly Brønsted acid-catalyzed, and it is well known that natural geologic 

systems are characterized by widely varying pH and distributions of organic materials 

and functional groups (McSween et al., 2003).  Isolation of the ionic pH-dependent 

reactions is thus a valuable tool to aid in the understanding of the complex schemes that 

often characterize geologically relevant organic processes.   
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3.5.  Supporting information 

 

3.5.1.  Experimental 

 

3.5.1.1. Materials  

 

Most of the chemicals were available from previous work (Yang et al., 2012). 

Copper chloride (CuCl2, 98%) was purchased from Sigma-Aldrich and used without 

purification. 

 

3.5.1.2. Experimental procedures 

 

The hydrothermal photolysis experiments were carried out in narrow fused silica 

glass tubes (GM Associates, Inc.) that had a 6 mm outside diameter and a 2 mm inside 

diameter.  Dibenzyl ketone (DBK) was weighed into the tubes and 0.2 mL of argon-

purged deionized water was added, to obtain solutions that, when heated, ranged in 

concentration from 0.035 to 1 molal.  It was previously confirmed that DBK is soluble at 

all experimental concentrations at 300ºC (Yang et al., 2012).  The samples were frozen in 

liquid nitrogen, evacuated using three pump-freeze-thaw cycles and then sealed under 

vacuum with hydrogen flame to a length of ~12 cm.  The sample occupied ~8 cm of the 

tube length at room temperature (RT) and the remainder was evacuated headspace.  The 

volume of the headspace was diminished by water expansion at 300ºC since the density 
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of water decreases ca. 30% from RT to 300ºC.  At 300°C the pressure in the tube is 

determined to be ca. 86 bar using SUPCRT 92 (Johnson et al., 1992).  The sealed fused 

silica tubes were placed vertically in a large brass block that was heated using cartridge 

heaters.  A thermocouple inside the brass block next to the sample tube was used to 

monitor the reaction temperature.  The samples were pre-heated in the brass block at 

300ºC for 5 minutes before irradiation for time periods of 2 to 33 minutes.  The 5-minute 

preheating time was determined to be suitable in an experiment where the temperature 

was measured directly using a thermocouple placed inside the same silica glass tube 

containing silicone oil.  The light source was a 200 watt W mercury arc lamp (Osram 

HBO200W) equipped with Oriel Arc Lamp Power Supply system (model 8500, 

Stamford, Conn, USA).  A filter solution of potassium chromate and sodium carbonate 

was used to isolate the 313 nm emission line and control the light intensity (Murov et al., 

1993).  At the end of the irradiation period the sample tubes were quenched immediately 

in a cold-water bath. 

    For longer timescale (thermolysis only) experiments, the samples were heated in a 

gas chromatograph oven at 300°C for 3, 7, or 12 days.  Thermolysis experiments in gold 

tubes at 300ºC and 700 bar were performed using the apparatus and methods described 

previously (Yang et al., 2012).  A low pressure gold capsule hydrothermal experiment at 

300ºC and 86 bar was performed by sealing a gold capsule inside a larger fused silica 

tube with a 12 mm outside diameter and a 6 mm inside diameter, which was placed in a 

Swagelok pipe that contained water to equalize the pressure inside and outside the fused 

silica tube to prevent fracture.  Room temperature photolysis of DBK were carried out in 
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the same fused silica tubes and apparatus as the high temperature photolysis experiments.  

Radical trapping experiments were performed using 0.5 molal CuCl2 at 300ºC and 86 bar.   

    The extraction and analytical procedures were as described previously (Yang et 

al., 2012).  Gas chromatography with flame ionization detection (FID) was used for 

quantitative analysis of the reaction mixtures in the quantum yield and kinetics 

experiments.  Because of the low conversions and the number of products, it was not 

possible to isolate the coupling products that contained three and four benzene rings.  As 

described previously (Yang et al., 2012), the gas chromatography FID response factors 

for coupling structures for which there was no independent standards were estimated 

based on the number of benzene rings that they contained; specifically, 1.5 and 2.0 times 

larger than that for DBK for the three-benzene-ring and the four-benzene-ring structures, 

respectively.  

 

3.5.1.3  Electronic structure calculations 

 

All calculations were accomplished with Gaussian 09 Rev. A.02 (Frisch et al., 

2009), using either the B3LYP hybrid DFT method (Becke, 1993) as implemented in 

Gaussian (Stephens et al., 1994; Hertwig and Koch, 1997; Scuseria and Staroverov, 

2005) with Dunning’s correlation-consistent double-zeta basis set augmented with diffuse 

functions (aug-cc-pVDZ) (e.g., Dunning, 1989; Kendall et al., 1992; Davidson, 1996), or 

the PM6 method (Stewart, 2007).  All calculations used tight constraints and ultrafine 

integrals in the DFT evaluation and were run at 573.15 K and 700 bar, the conditions of 

the original gold tube thermolysis experiments.  High-temperature, high-pressure water 
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(“hi-PT water”) was simulated in both the DFT and the PM6 calculations using a 

polarizable continuum model via the integral-equation formalism (IEF-PCM) (Scalmani 

and Frisch, 2010).  The relevant solvent parameters and their values were: dielectric 

constant 25.296, density 0.02760533 molecules/Å (Becke, 1993), and molar volume 

21.8146299 cm3/mole.  The data were taken from NIST Thermophysical Properties of 

Physical Systems (http://webbook.nist.gov/chemistry/fluid/), except the dielectric 

constant, which was calculated from interpolation formulas found in Uematsu and Franck 

(1980).  The PCM solvation model was used with Bondi cavity-building radii, evaluated 

at an average point density of 10/Å2, and was corrected for dispersion, repulsion, and 

cavitation terms. 

 

3.5.2.  Quantum yield calculations 

 

The quantum yield for bibenzyl formation for ambient photochemical excitation 

of DBK is ca. 0.7, Eqn. S1, which is also the quantum yield for consumption of DBK 

since bibenzyl is the only product at ambient (e.g., Robbins and Eastman, 1970a, b).  As 
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described in the main text, the quantum yield for consumption of DBK is expected to be 

higher than 0.7 under the hydrothermal experimental conditions since, according to the 

proposed reaction Scheme III in the main text, formation of the three- and four-ring 

coupling products requires consumption of more than one DBK molecule per absorbed 

photon.  Formation of a three-ring coupling product and the accompanying toluene 

consumes two DBK molecules, giving an expected quantum yield for formation (if it is 

the only product) of 1.4, based on a quantum yield of 0.7 for DBK consumption, Eqn. S2.   

Correspondingly, formation of a four-ring coupling product (and the two accompanying 

toluenes) has a quantum yield (if it is the only product) of 2.1, Eqn. S3, since three DBK 

molecules are consumed in this case.  Based on the observed product distribution, a 

prediction of the quantum yield for DBK consumption upon hydrothermal photolysis, 

p, can thus be made by measuring the chemical yields of the biphenyl, the three-ring 

structures and the four-ring structures as a fraction of the sum of the chemical yields of 

these products, f (bibenzyl), f (three-ring) and f (four-ring), respectively, Eqn. S4.   

 

 p = 0.7 f (bibenzyl)  +  1.4 f (3-ring)  +  2.1 f (4-ring)                          (S4) 

 

Chemical yield data were obtained as a function of time for photolysis of 1 molal DBK at 

300°C and 86 bar, and the fractional yields were found to be essentially independent of 

the photolysis time, Table S1.  From this data, together with Eqn. S4, an average 

predicted quantum yield of 1.37 was determined.  

    To determine the experimental quantum yield for DBK consumption, 

hydrothermal photolysis was compared to room temperature photolysis.  Taking into 
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account the expansion of water with temperature, a 1 molal solution of DBK in water at 

300°C and 86 bar has the approximately the same light absorptivity as a 0.7 molal 

solution of DBK in methanol at room temperature.  The conversion with time was thus 

compared for photolysis of these two solutions, Figure S1A.  The DBK conversion is 

higher in high temperature water than in room temperature methanol, consistent with 

destruction of more DBK molecules per photon at the higher temperature.  The ratio of 

the slopes of Figure S1A is 1.23, and taking the quantum yield for decomposition of 

DBK in methanol to be 0.7, the quantum yield in the high temperature water is thus be 

estimated to be 0.86.  However, this does not take into account differences in refractive 

index and other optical effects associated with irradiation of samples in round tubes in the 

brass block apparatus.  To correct for these effects, a 0.05 molal DBK solution in high 

temperature water was compared to a 0.035 molal DBK solution in methanol at room 

temperature.  A solution of 0.035 molal DBK in methanol is assumed to have 

approximately the same light absorbance as a 0.05 molal DBK aqueous solution at high 

temperature, because hydrothermal photolysis of a 0.05 molal DBK solution at 300°C 

generates mainly bibenzyl, and much smaller quantities of the three- and four-ring 

coupling products.  Comparing the two lower DBK concentration solutions, the 

conversion as a function of time is found to be larger in the room temperature methanol 

samples than in the high temperature water, Figure S1B.  It is assumed that the quantum 

yield for DBK consumption is 0.7 in both of these lower concentration solutions, since 

bibenzyl is the major product in each case, and that the different rates of DBK 

consumption shown in Figure S1B reflect optical differences in the two experiments.  

The ratio of the slopes of the plots in Figure S1B is 1.5, and correcting the 0.86 quantum 
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yield determined from the high concentration experiments by this ratio results in a final 

estimated quantum yield of 1.3 for hydrothermal photolysis of the high concentration 

DBK.  This is close to the predicted quantum yield of 1.37 based on Scheme III of the 

main text discussed above. 

    This analysis assumes that the quantum yield for DBK fragmentation in high 

temperature water is the same as in room temperature methanol.  This is a reasonable 

assumption for the following reasons.  Bond cleavage occurs in the first excited triplet 

state, the lifetime of which is much shorter than that of the excited singlet state (Arbour 

and Atkinson, 1989).  Radiative and radiationless decay to ground state and intersystem 

crossing in excited singlets are not activated, and are thus expected to be temperature 

independent (Turro et al., 2010).  The excited triplet state has a very short lifetime 

(Arbour and Atkinson, 1989), which is consistent with an essentially pure repulsive 

energy surface for dissociation.  The bond dissociation process is therefore also likely to 

be temperature independent.  Diffusive separation of the radicals and decarbonylation of 

the primary phenacyl radical will be temperature dependent, however, these processes do 

not influence the quantum yield for DBK destruction, since the geminate radical pair is 

formed in the triplet state and the radicals undergo essentially complete separation in 

fluid solution (Turro et al., 2010).  Thus, any increase in the rate of separation or 

decarbonylation will not increase the final yield of separated benzyl radicals.  

 

 

 



114 

 

3.5.3.  Product characterization via gas chromatography/mass spectrometry 

 

The products observed at early reaction times for hydrothermal photolysis of 

DBK are toluene, 1, bibenzyl, 2a, and the three- and four-ring coupling products 3a, 4a 

and 4b.  The products that contain one and two benzene rings are readily identified in the 

gas chromatogram of the product mixture using authentic standards (Yang et al., 2012).  

The primary three- and four-ring coupling product structures are assigned based on 

analysis of the product distribution, the quantum yields and the follow-up thermal 

chemistry, as described in the main text, and on the mass spectra given in Figures S2 - 

S4. 
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Scheme I.  Schematic representation of functional group interconversions that connect 

simple hydrocarbons and carboxylic acids, proposed by Seewald (2001, 2003) for 

hydrothermal organic reactions. 
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Scheme II.  Summary of the main products of the hydrothermal reaction of DBK at 

300°C and 700 bar (Yang et al., 2012).  Fragmentation and coupling reactions that give 

the products 1, 2a, 2b, 3a-d and 4a,b compete with reduction and dehydration reactions 

that form alcohol 2c, alkene 2d and alkane 2e. The (') symbol means that the product is 

formed in more than one stereo- and/or structural isomeric form (4b1 and 4b2 (') are 

structural isomers). 
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Scheme III.  Proposed mechanism for the formation of the fragmentation and coupling 

products of the hydrothermal reaction of DBK at 300°C.  The steps to the left of the 

dotted line are the radical processes that are observed in the hydrothermal photochemical 

reaction, while those to the right of the dotted line are the follow-up thermal reactions 

that are mainly ionic.  The first step in the photochemical reaction combines excitation of 

DBK to the first singlet state (h), followed by intersystem crossing to the triplet state 

(ISC), and finally homolytic cleavage (C-C) to form a benzyl and a phenacyl radical.  

This radical pair is also formed in the thermal (non-photochemical) reaction, although 

much more slowly and in an overall singlet state. The second step (-CO/sep) includes 

decarbonylation and separation of the radicals in the geminate pair (sep).  A separated 

benzyl radical reacts with DBK via hydrogen atom abstraction (H-abs) to yield toluene 

and a DBK-derived radical DBK•.  The (') symbol associated with a structure indicates 

that more than one stereo- or structural isomer is formed.  The products 4b1 and 4b2 (') 

are structural isomers. 
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Scheme IV.  Structural isomers assigned as products of benzyl/DBK radical (DBK•) 

coupling observed in the gas chromatogram of Figure 1B.  The major product is assigned 

to 3a1.  3a2 and 3a3 are shown as para-coupling isomers, although ortho-coupling 

structures could also form.  The dashed lines indicate the bonds that cleave to yield the 

m/z fragments indicated.  For 3a3 the 181 peak in the mass spectrum is much larger than 

the 209 m/z peak. 
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Scheme V.  The proposed mechanisms for Brønsted acid-catalyzed dehydration of 3a 

and 4a into 3b(') and 4b1 and 4b2(') (the ' symbol indicates stereo and/or structural 

isomers), via enol (3e(') and 4e(')) and conjugated alkene intermediates (3f(') and 4f(')). 

Acid can catalyze each step; only the first protonated intermediate is shown.  Cyclization 

of the primary protonated intermediate is possible for 4a (but not for 3a) to give the furan 

4b1, a structural isomer of the dienones 4b2(').  The numbers in red are the heats of 

formation in kJ/mol at 300°C and 700 bar, calculated using the PM6 method with the 

solvent modeled using PMC as detailed in the supporting information. The values for the 

3b('), the 4b2(') and 4b1 include the heat of formation of the water that is liberated in the 

last reaction, which is calculated to be -271 kJ/mol using the PM6/PCM method.  The 

furan 4b1 is calculated to be more stable than the corresponding dienones 4b2(') by ca. 60 

kJ/mol under these conditions and using this method. 
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Figure 1.  Gas chromatograms showing the product distributions for: (A, black) thermal 

reaction of DBK in water at 300ºC and 86 bar (no light) for a time period of 7 days; (B, 

red) hydrothermal photolysis in water at 300°C and 86 bar for a time period of 33 mins; 

(C, blue) photolysis of DBK in methanol at room temperature (RT) for a time period of 

33 mins. As indicated, the various products separate chromatographically into those that 

contain one, two, there and four benzene rings.   
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Figure 2.  Comparison of product concentration versus irradiation time for the photolysis 

of DBK showing the formation of bibenzyl 2a (blue, closed circles) as the only product 

in methanol at room temperature (RT), and the formation of bibenzyl 2a (red, closed 

circles), toluene 1 (red, open circles), and the three-ring coupling product 3a1 (red, open 

triangles) in water at 300°C and 86 bar.  The concentrations of the products at 300°C are 

corrected for the different conversions of DBK at the two reaction temperatures to allow 

direct comparison of their relative chemical yields to that of bibenzyl at room 

temperature.    
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Figure 3.  Concentration versus time plot for photolysis of DBK in water at 300°C at 86 

bar for (open circles) the primary coupling product 4a with the smaller retention time of 

the two diastereomers in Figure 1B, and (closed circles) the dehydrated four-ring product 

4b1.   
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Figure 4.  The time dependence of the concentration of toluene 1 compared to the sum of 

the concentrations of 3-ring products plus twice the sum of the concentration of the 4-ring 

products.  These should be equal according to Eqn. 2, the small difference may be a 

consequence of assumed gas chromatography response factors for the coupling products 

(see supporting information) or other experimental uncertainties.  
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Figure 5.  Electronic energy versus -hydrogen-benzylic carbon separation distance,  

rC-H, for hydrogen atom abstraction from methylbenzylketone (MBK) by a benzyl 

radical, and the computed transition state structure located at an rC-H of 1.41Å, 

computed using B3LYP/aug-cc-pVDZ and PCM to model the solvent.  The energies are 

referenced to MBK plus benzyl radical at infinite separation distance.  The reaction is 

computed to be exothermic by 29 kJ/mol at 300°C and 700 bar.  The computed free 

energy barrier for the reaction is 132 kJ/mol at 300°C and 700 bar. 
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Figure 6.  The time dependence of the concentration of 4a as a fraction of the sum of the 

4a and 4b1 concentrations, for the dehydration reaction of 4a to form the furan 4b1, in 

water at 300ºC and 86 bar.  The 4a stereoisomer is the one with the shorter gas 

chromatographic retention time in Figure 1B. 4a is formed by hydrothermal photolysis of 

DBK for 2 minutes, followed by thermal dehydration for the various times indicated in 

the graph. The curve through the data corresponds to a pseudo-first order rate constant of 

0.25 min-1.   
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Figure 7.  Computed structures of (left) the (3Z,5E)-isomer of the dienone 4b2, and 

(right) the furan 4b1, using the semi-empirical PM6 method, and using PCM to model 

water as the solvent, showing the lack of planarity and lack of conjugation between the 

carbon-carbon and carbon-oxygen double bonds in the dieneone and increased planarity 

in the furan.  
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Table S1.  Fractional chemical yields of products for hydrothermal photolysis of DBK at 

300°C and 86 bar, at three different irradiation times, and the corresponding predicted 

quantum yields, p, calculated using Eqn. S4.a 

 

Irradiation 

Time 

Fractional yield of 

Bibenzyl 

Fractional yield of 

3-Ring products 

Fractional yield of 

4-Ring products 

p 

5 min 0.28 0.47 0.25 1.38 

15 min 0.28 0.50 0.22 1.36 

33 min 0.26 0.50 0.24 1.38 

aThe fractional yields are defined in the text. 
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Figure S1. (A) Percentage conversion of DBK as a function of irradiation time for (red) 

hydrothermal photolysis of 1 molal DBK in water at 300°C and 86 bar. and (blue) 0.7 

molal DBK in methanol at room temperature.  The ratio of the slopes is 1.23.  (B) 

Percentage conversion of DBK as a function of irradiation time for (red) hydrothermal 

photolysis of 0.05 molal DBK in water at 300°C and 86 bar, and (blue) 0.035 molal DBK 

in methanol at room temperature.  The ratio of the slopes is 1.5.   
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Figure S2. Mass spectra of products 3a1, 3a2, and 3a3, with molecular ion of 300 m/z. The 

gas chromatography (GC) retention times refer to Figure 1B of the main text. 
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Figure S3. Mass spectra of the isomeric products 4a.  The molecular ion peak at 418 m/z 

is very small, but the major fragments with m/z of 327 and 91 sum to 418. The gas 

chromatography (GC) retention times refer to Figure 1B of the main text. 
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Figure S4. Mass spectra of the isomeric dehydration products 4b with a molecular ion of 

400 m/z.  The structure assigned to the furan is 4b1, which has a larger molecular ion 

peak that those of the two dienones indicated here as 4b2, and a smaller fragmentation 

peak of m/z 309.  The gas chromatography (GC) retention times refer to Figure 1B of the 

main text. 
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CHAPTER 4: 

INFLUENCE OF MINERALS ON HYDROTHERMAL REACTIONS OF KETONES 

 

4.1.  Abstract 

 

Hydrothermal organic transformations occurring in geochemical processes can be 

influenced by surrounding environments including minerals.  This work focused on the 

influence of several common iron-containing minerals on the hydrothermal reactions of a 

model ketone, dibenzylketone (DBK).  The ketone group was chosen for study because 

they play a central role in many hydrothermal organic functional group transformations, 

including those between hydrocarbons and oxygen-bearing compounds.  Specific effects 

of the individual mineral were observed from the hydrothermal reactions of DBK.  

Quartz (SiO2) and corundum (Al2O3) had no detectable effect, whereas hematite (Fe2O3), 

magnetite (Fe3O4), and troilite (FeS) all increased DBK reactivity to various extents.  

Under the experimental conditions (300°C, 70 MPa, and up to 168 h), magnetite elevated 

DBK reactivity by almost an order of magnitude, when compared to DBK in H2O alone.  

Primary products distributions were examined at early reaction times, and it indicated 

that the fragmentation products were more dominating in the presence of hematite or 

magnetite than H2O alone, while much more reduced products from DBK were observed 

in the presence of troilite.  Potential roles of the iron-containing minerals were 

additionally explored by attempting the hydrogen balance calculation, the dissolved H2 

measurement, and the experiments as a function of added mineral surface areas.  The 

facilitated DBK decomposition rates with the iron oxides minerals appear to be mainly 



140 

 

attributed to mineral surface-promoted reactions, while troilite was likely to expedite the 

reduction products formation by contributing dissolved inorganic compounds in solution 

and delivering hydrogen atoms from H2O to organic compounds.     

 

4.2.  Introduction 

 

    The hydrothermal chemistry of organic compounds influences a wide range of 

critical geochemical processes, including the degradation and transport of organic matter 

in sedimentary systems (Seewald, 2003), the formation of oil and gas reservoirs (Head et 

al., 2003; Larter et al., 2003; Jones et al., 2008), and as part of the metabolic cycles of 

microbes in subsurface environments (Head et al., 2003; D’Hondt et al., 2004; Simoneit 

et al., 2004; Hinrichs et al., 2006; Horsfield et al., 2006; McCollom and Seewald, 2007; 

Mason et al., 2010; Shock and Canovas, 2010).  The chemistry of a large number of 

organic structures under hydrothermal conditions has been reported (Bell and Palmer, 

1994; Cody et al., 2001; Katrizky et al., 2001; McCollom and Seewald, 2003; Watanabe 

et al., 2004; McCollom, 2013), and thermodynamic properties and models of many 

organic compounds in the gas and aqueous phase are available (Shock and Helgeson, 

1990; Shock, 1995; Helgeson et al., 1998; Plyasunov and Shock, 2000, 2003; Shock, 

2000; LaRowe and Helgeson, 2006; Helgeson et al., 2009; LaRowe and Dick, 2012).  

Attempts to systematically study the chemistry of various organic functional groups have 

also been made at various elevated temperatures and pressures in aqueous media (Savage, 

1999; Andersson and Holm, 2000; Akiya and Savage, 2001; Katrizky et al., 2001; Siskin 
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and Katrizky, 2001; McCollom and Seewald, 2007; Yang et al., 2012; Shipp et al., 2013; 

McCollom, 2013). 

    Geochemical processes involving organic compounds take place not just in an 

aqueous medium, but with gases and electrolytes, variable pH, and perhaps most 

importantly, inorganic materials such as minerals and clay substrates.  Suggestions that 

minerals can, and perhaps should, influence organic hydrothermal reactivity have been 

made for decades (Jurg and Eisma, 1964; Shimoyam and Johns, 1971; Espitalié et al., 

1980; Simoneit, 1992; Seewald, 2001; McCollom and Seewald, 2003).  There have been 

impressive reports of the ways in which naturally occurring inorganic substrates can 

influence the stability of organic structures under hydrothermal conditions (Leif and 

Simoneit, 2000; Cody et al., 2001; Seewald, 2001; Foustoukos and Seyfried, 2004; Fu et 

al., 2008; Williams et al., 2010).  In addition, many hydrothermal studies took the aid of 

mineral assemblages, because variables including the oxidation state, the pH, and the 

dissolved sulfur species of hydrothermal environment can be controlled experimentally 

(Seewald, 1994, 2001; Andersson and Holm, 2000; McCollom and Seewald, 2003; 

Reeves et al., 2012; McCollom 2013).  For instance, pyrite-pyrrhotite-magnetite, 

hematite-magnetite, and hematite-magnetite-pyrite assemblages have been used to 

regulate the activities of dissolved H2 and H2S in hydrothermal solution (e.g., Seewald 

2001).  Different roles of these iron-containing minerals in organic hydrothermal 

reactions have been found, including the promotion of bond cleavage processes on the 

mineral surface, and the alteration of solution properties such as ionic strength, pH, and 

dissolved metals and sulfur inorganic species.  As an example, Reeves et al. (2012) used 

a pyrite-pyrrhotite-magnetite mineral assemblage to provide a redox-buffered 
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hydrothermal environment for C1-C5 n-alkanes at 323°C and 350 bar, where they 

observed reversible and extensive water-derived hydrogen incorporation into C2-C5 n-

alkanes, but comparatively little exchange for CH4.  They suggest that the occurrence of 

isotopic exchange should be within reversible equilibration between the alkane and the 

corresponding alkene.  McCollom (2013) studied the influence of iron oxide and sulfide 

minerals on hydrothermal decomposition of amino acids norvaline and alanine, using 

hematite-magnetite-pyrite and pyrite-pyrrhotite-magnetite assamblages.  The observed 

fact that both amino acids decomposed more rapidly and with altered product 

distributions in the presence of minerals compared water alone, allows him to 

successfully propose that the mineral effects were due to both surface catalysis and 

solution chemistry change.  

Although mineral assemblages own the advantage of regulating hydrothermal 

fluid chemistry, the understanding of potential contribution of each individual mineral, 

such as among those common iron oxides and sulfides, may remain complicated.  Which 

specific minerals enhance, suppress, or do not influence organic hydrothermal reactivity?  

Which minerals initiate new reaction pathways?  When they influence reactions, which 

minerals are responsible for surface-promoted reactions and which behave as reactants by 

changing water chemistry?  Additionally, the mineral effects on hydrothermal reactions 

of ketones have not been addressed yet.  In an attempt to provide an entry to answering 

these questions, here a study of individual mineral influence on the hydrothermal 

chemistry of ketones, has been initiated.  In the previous work, the reaction pathways and 

mechanisms of a model ketone, dibenzylketone (DBK), has been systematically studied 

in the absence of minerals under specific hydrothermal conditions (Yang et al., 2012).  
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As a derived project, this work summarizes the first results from hydrothermal 

experiments with DBK in the presence of common iron-containing minerals, hematite 

(Fe2O3), magnetite (Fe3O4), and troilite (FeS).  For comparison, corundum (Al2O3) and 

quartz (SiO2), which are expected to be insensitive to redox reactions, are also included.  

    The ketone functional group has been selected for study since ketones occupy a 

central role in the reaction pathway proposed by Seewald (2003) that links alkanes with 

carboxylic acids (Fig. 1).  Ketones represent the critical point at which carbon-carbon (C-

C) bond cleavage must occur in order to form carboxylic acids.  It was found that DBK is 

a useful model ketone because the benzylic position adjacent to the carbonyl carbon 

allows relatively facile C-C bond fragmentation, which enables the reactions to occur on 

a reasonable laboratory timescale.  An in-depth analysis of the hydrothermal reaction 

products for DBK reveals extensive C-C bond cleavage, although it is noteworthy that 

carboxylic acids were not formed in detectable quantities in H2O alone under the 

experimental conditions (Yang et al., 2012).  Many of the observed products were 

consistent with radical coupling reactions, which support the interpretation that homolytic 

C-C bond cleavage forms a pair of radicals as primary intermediates (Eqns. 1a, 1b and 

1c). 
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    Toluene was observed as the major C-C bond cleavage product.  Fragmentation of 

the carbon-hydrogen (C-H) bond at the benzylic position was also observed, and this 

process provides a source of hydrogen atoms (Eqn. 1c), which can be used in the 

formation of reduced products.  Reduced products form in the reaction sequence from 

ketone to alcohol to alkene to alkane (Fig. 1), which was previously named as the 

reduction pathway (Yang et al., 2012).  Many oxidized (dehydrogenated) radical coupling 

products are also produced, and approximate hydrogen balance is observed under the 

experimental conditions of a sealed gold capsule.  Two benzyl radicals can be formed via 

homolytic cleavage of a C-C bond in DBK, since the phenacyl radical formed in Eqn. 1a 

decarbonylates rapidly in Eqn. 1b.  Benzyl radicals were precursors to many primary 

coupling products (see Chapter 2).  Many of the primary coupling products can undergo 

further bond cleavage, or functional group transformations, to form secondary alkenes 

and alkanes that are analogous to the DBK reduction pathway.  Almost all of the 

observed products from DBK can be understood arising from Eqns. 1a, 1b and 1c and the 

reversible pathways in Fig. 1. 
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    Building upon the previous observations in the absence of minerals, the goals of 

this work are: (1) to perform hydrothermal reactions with DBK in the presence of 

different kinds of minerals, and to look for changes in DBK decomposition rates, 

products distribution, and the reaction pathways (i.e., the reduction pathway and the bond 

fragmentation pathways); (2) to investigate the potential contribution of individual 

mineral on the reactivity of ketones, whether it initiates surface-promoted reactions or 

serves as a reagent, and (3) to explore new reaction pathways of ketones with the aid of 

minerals, in particular formation of carboxylic acids.  In order to minimize complications 

associated with secondary reactions, the same strategy was applied as in the previous 

work that was to run the reactions to low conversions.  It is thus helpful for interpreting 

the kinetics and product distributions of the reactions at early times, rather than 

establishing and measuring thermodynamic equilibrium at longer reaction durations.   

 

4.3.  Experimental 

 

4.3.1.  Reagents  

 

Most of the organic chemicals were available from previous work (see Chapter 2).  

Minerals used in this work include finely powered synthetic hematite (Fe2O3, 99.5%, 

metals basis, -325 mesh), magnetite (Fe3O4, 97%, metals basis, -325 mesh), corundum 

(Al2O3, 99.9%, metal basis, -325 mesh), and quartz (SiO2, 99.5%, metal basis, -325 

mesh), all purchased from Alfa Aesar.  Troilite (FeS, 99.9%, metal basis, Alfa Aesar) was 

powdered further using a McCone Mill (to reach -325 mesh).  The compositions and 
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purities of all used minerals were verified by X-ray diffraction (XRD) analysis using a 

Siemens D-5000 spectrometer, and the XRD patterns revealed their crystal structures 

were >95% consistence with database.  The surface area of each mineral was measured 

by the Brunauer, Emmett and Teller (BET) gas adsorption technique using N2 as the 

adsorptive species in Tristar II 3020.  The hematite, magnetite, and powdered troilite 

were found to have BET surface areas of 12.90 m2/g, 7.82 m2/g and 9.29 m2/g, 

respectively.  Quartz and corundum were found to be 5.32 m2/g and 5.28 m2/g, 

respectively.  To remove any tiny or nano-sized particulates, a clean-up protocol was 

attempted with a magnetite sample by repeated sonication and centrifugation.  The size 

distribution of the magnetite particles that were treated this way showed a slight decrease 

in the relative number of smaller particles upon scanning electron microscopy (SEM).  

The BET surface area for the treated magnetite was measured to be 7.68 m2/g, which is 

slightly lower than the untreated magnetite, 7.82 m2/g. 

 

4.3.2.  Procedures 

 

    Experiments were performed using gold capsules (5 mm outer diameter, 4 mm 

inner diameter, and length of ~37.5 mm) with an internal volume of roughly 1.75 mL.  

The capsules were cleaned by treating with concentrated HCl, followed by boiling in 

deionized water, and then annealing at 580°C for 12 h before use.  The capsules were first 

arc-welded at one end using a precision welder before loading solids and water.  Oxygen 

was removed by gently purging the empty capsule with ultra-high purity argon for one 

minute.  42 mg of purified DBK and different amounts of minerals were added in 
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separate experiments.  200 μL of argon-purged deionized water was then added to the 

capsules to make the DBK concentration as one molal, followed by a second purging of 

the headspace using argon before pinching the end closed.  Capsules were quickly frozen 

using liquid nitrogen, and submerged in a methanol:ice (1:1) cold bath to minimize 

evaporative losses during the arc welding. 

    The gold capsules were placed into a 51 cm stainless steel cold seal pressure 

vessel (Williams et al., 2001) that was filled with DI water to pressurize the gold capsules 

to 70 MPa (10,150 psi) at 300°C.  Temperature was monitored by a thermocouple inside 

the pressure vessel directly adjacent to the reacting capsules.  Hematite, magnetite and 

troilite experiments were performed in time series up to 168 h, using a constant surface 

area of ~1.29 m2 (Table 1).  Because of the large heat capacity, the pressure vessel 

required ca. 3 h for the furnace to heat the sample up to 300˚C, so the time zero point for 

each experiment was taken to be the time when the temperature reached 298˚C.  

Experiments using various mineral surface areas were also conducted at a fixed reaction 

time of 70 h at 300˚C, 70 MPa (Table 2).  Other than 1.29 m2, surface areas of ~0.53 m2 

and ~0.91 m2 were also used for all the five minerals, and 0.31 m2 was additionally 

selected for magnetite.  After the desired experimental duration, the pressure vessels were 

quenched rapidly in an ice bath and the gold capsules were removed.  The experiments 



148 

 

were determined to be successful only if the gold capsule weights before and after each 

experiment were consistent using a 0.01 mg-scale balance.  

 

4.3.3.  Product analysis 

 

    The extraction procedures of products were similar to those described in the 

previous Chapters.  Briefly, the capsules were frozen in liquid nitrogen before cutting 

open with a scalpel.  The organic products in the opened capsules were extracted using 

3.0 mL of DCM containing decane and dodecane as internal standards in a 4 mL 

silanized glass vial (Supelco Inc.) with shaking using a Vortex Genie 2 for two minutes.  

The suspended mineral powders were allowed to settle before transferring the DCM 

solution into 1.5 mL silanized glass vials for gas chromatography (GC) analysis.  A 

Varian CP-3800 gas chromatograph equipped with a poly capillary column (5% 

diphenyl/95% dimethylsiloxane, Supelco Inc.) and a flame ionization detector was used 

to analyze the organic products.  The detection limit for carboxylic acids was found to be 

near 0.05 mmolal.  The reaction products were identified by co-injecting purchased 

standard samples (if available) in the GC, together with comparing mass spectra data 

obtained from high resolution gas chromatography-mass spectrometry (HR-GC-MS).  

For those ambiguous products with relatively high molecular weights, possible structures 

were deduced both from molecular ion fragmentation patterns on the mass spectra and 

comparing to multi-benzene-ring structures determined in the DBK in water alone results. 

    The mass balance for the reactions was estimated using the same method 

described in Chapter 2, i.e., comparing the total number of benzene rings in the products 
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to the total number of benzene rings in the consumed DBK molecules.  The 

concentrations of the products containing multi-benzene-rings were quantified based on 

the measured or estimtated GC response factors (see Chapter 2).  Because of the 

increasing complexity and large number of products observed in longer hydrothermal 

experiments in the presence of iron-beraing minerals, some small unidentified products 

were not included in the mass balance calculations.  Errors in the mass balance 

calculations vary from ±10-20% depending on the duration of the experiment, as well as 

the extent of conversion of DBK.  The average uncertainty was estimated to be ±15%. 

    Hydrogen balance was estimated based on the numbers of hydrogen atoms in the 

organic products and the reacted DBK.  To maximize the differences, the five hydrogen 

atoms on the benzene rings of consumed DBK and the aromatic products were not 

counted.  Since the accuracy of the hydrogen balance calculation essentially depends on 

the accuracy of the mass balance, and the average uncertainty of hydrogen balance was 

estimated to be ±18%.  In the presence of the minerals, the hydrogen balance calculations 

were only attempted at early reaction times, when the DBK conversion was relatively low 

and the product distributions were relatively simple.   

    To test the validity of hydrogen balance calculations, measurements of dissolved 

H2 have been attempted using gas chromatography with reducing compound photometer 

detection (GC-RCP, Peak Laboratories, LLC).  Once the desired duration was reached, 

the hydrothermal experiment was quickly quenched, and the gold capsule was transferred 

into a sealed and argon-purged gas vial (Labco Exetainer®) with a known empty volume 

(~12 mL).  The background concentration of H2 in the argon-purged vial was pre-

determined by triplicate injections of 25 μL gas samples, and the percent error was found 
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less than 5%.  Calibration cuves that were built using H2 gas standards were used to 

quantify the concentration of H2 in the vial.  A solid needle inserted through the septum 

on the vial cap was used to puncture the gold capsule and to release the gases at room 

temperature.  After one-minute shaking and equilibrating, three 25 μL of gas mixture 

were taken from the sample vial using a gas-tight syringe and injected into the GC.  The 

actual concentration of H2 was calculated by subtracting the background concentration 

from the measured value.  With ideal gas assumption, moles and molality of H2 in the 

gold capsule can thus be estimated (Table 2).  The standard detection limit of molecular 

hydrogen in GC-RCP can reach as low as 800 ppt (part per trillion).  Several repeated H2 

measurement experiments were also conducted using separate gold capsules, and the 

average analytical uncertainty was estimated to be ±25%. 

 

4.4.  Results and discussion 

 

4.4.1.  Decomposition of DBK 

 

    Hydrothermal reactions of DBK were performed in the presence of five different 

minerals: hematite, magnetite, troilite, corundum and quartz, with varying masses of 

mineral in the gold capsule, but with a constant surface area of ~1.29 m2.  This surface 

area is dictated by the quantity of mineral that could be loaded into the capsule.  Of these, 

hematite, magnetite, and troilite substantially influenced the rates of DBK decomposition 

and the reaction product distributions, whereas corundum and quartz had no detectable 

influence under the conditions of the experiment.  The effects are easily seen in the DBK 
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percent conversion as a function of reaction time, as shown in Fig. 2.  It appears that the 

decomposition of DBK is much faster in the presence of the three iron-containing 

minerals compared to water alone, with magnetite in particular being most effective.  As 

an example, after a 70-h reaction progress, the DBK conversion with magnetite was ca. 

24%, whereas only a ca. 3.7% of DBK decomposed in hydrothermal water alone.  More 

experimental data for the time-dependent experiments for magnetite, hematite and troilite 

are summarized in Table 1. 

The DBK conversion in the presence of magnetite is sufficiently large to attempt 

a kinetic analysis.  Shown as an inset in Fig. 2 is the yield of DBK plotted versus time.  

The yield is determined as the percentage of the DBK that is remaining (e.g., 100% yield 

at time zero by definition).  By assuming a pseudo-first-order reaction with respect to 

DBK and a complete conversion, the reaction rate constant was estimated to be 3.7 ± 0.3 

× 10-3 hr-1 in the magnetite experiments, where the observed maximum DBK conversion 

was ca. 46.8% over 168 hours (Table 1).  Similarly, the reaction rate constant in the 

absence of minerals was found to be 3.0 ± 0.6 × 10-4 hr-1, where the maximum DBK 

conversion was only 14.5% over 528 h (Table 1).  Under the assumptions, the increase in 

pseudo-first-order rate constant is at least an order of magnitude in the presence of 

magnetite compared to water alone.  If assigning this rate constant increase to the 

influence of magnetite, the absolute rate constant of the DBK-magnetite reaction will be 

ca. 3.4 × 10-3 hr-1 for a mineral surface area of 1.29 m2, or an area ratio (DBK molecules 

surface area/mineral surface area) of ca. 33 (see further below). 

    In common with many hydrothermal reactions of organic structures, DBK can 

form rather a large number of products, although many of them were possibly from 
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secondary or follow-up reactions.  Interpretation of product distributions is thus most 

readily accomplished at the early reaction times before the accumulation of appreciable 

quantities of secondary products.  Shown in Fig. 3 are the main hydrothermal reaction 

pathways for DBK, with an abbreviated summary of the main product structure types.  

Three major reaction pathways are included: the fragmentation pathway, the reduction 

pathway, and the acid pathway.  The products in the fragmentation pathway are 

associated with the C-C and C-H hemolytic cleavage and radical coupling reactions.  The 

main difference between Fig. 3 and Fig. 1 is that the fragmentation pathway is expanded 

to show the various structure types that are formed via bond cleavage.  The reduction 

pathway gives the alcohol R1, the alkene R2 through alcohol dehydration, and alkane R3 

through further reduction of the alkene.  The acid pathway yields benzoic acid A1 and 

phenylacetic acid A2, when magnetite is present.  A major product under all conditions is 

toluene, C1, which requires C-C bond fragmentation, followed by addition of a hydrogen 

atom.  The only product that requires only C-C bond fragmentation is bibenzyl, C2, 

which is formed by coupling of two benzyl radicals, as shown in Eqns. 1a and 1b above.  

Dehydrogenation of bibenzyl forms stilbene, C3.  The other main products (H1 – H7, 

with isomers) are included in the C-H cleavage pathway, although many of them may 

also require C-C bond fragmentation and coupling to form structures that contain three or 

four benzene rings.  At short reaction durations, the primary product distributions in the 

presence of minerals can be seen in the gas chromatograms (see below). 
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4.4.2.  Reaction products with hematite and magnetite  

 

    Shown in Figs. 4 and 5 are gas chromatograms showing the products of 

hydrothermal reaction of DBK with hematite and magnetite after a 5-h reaction time, 

compared to H2O alone after a 46-h reaction time.  The reaction durations with hematite 

and magnetite are shorter, because they were chosen to match as closely as possible the 

DBK conversion in H2O alone.  It is evident that the product distribution is simpler in the 

presence of hematite or magnetite.  Specifically, the abundances of the products in the 

reduction pathway (R1 - R3) were much lower than in water alone.  Toluene (C1) was 

still a major product, but bibenzyl (C2) was formed in very small quantity compared to its 

dehydrogenated equivalent stilbene (C3) at this early reaction time.  In the three- and 

four-benzene-ring regions of the gas chromatograms (i.e., GC retention time between 15 

and 25 mins), two of the major structure types that are formed in water alone were 

observed, specifically H5' (three isomers formed) and H6' (two or three isomers formed).  

A new five-ring product, H7, was discovered in both hematite and magnetite 

experiements, but it was not detected in the water alone experiments.   

Formation of the products H5' and H6' can be understood starting with C-H bond 

fragmentation, followed by radical coupling to form intermediate structure D1, as shown 

in steps 1 and 2 in Fig. 6.  A series of functional group transformations, specifically 

reduction to the alcohol, dehydration to the alkene, and further dehydrogenation, steps 3, 

5 and 6, convert D1 into H5'.  Steps 3 and 5 in Fig. 6 are analogous to those in the 

reduction pathway, although step 6 in this case is dehydrogenation (oxidation) instead of 

the hydrogenation (reduction).  The C-C bond cleavage in D1, step 4, is similar to that in 
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DBK itself, and it results in product H6' via the same functional group transformations.  

Nevertheless, the order of the functional group transformation and C-C bond cleavage 

reactions that form H5' and H6' cannot be determined only from the observations of 

product distributions.  As an example, H6' could be either generated from H5' via C-C 

bond cleavage or derived from any other intermediates in the D1 to H5' path.  Both H5' 

and H6' structures are highly conjugated and are relatively stable towards further 

reaction. 

The five-benzene-ring product, H7, was observed in the gas chromatograms with 

hematite and magnetite (Figs. 4 and 5).  GC-MS analysis gave a molecular ion peak at 

398 for H7, with virtually no fragmentation observed in the mass spectrum.  The 

molecular ion is smaller by two mass units than that for H5', suggesting that H7 was 

probably formed from structure H5' by losing two hydrogen atoms (Eqn. 2).  Loss of two 

hydrogen atoms in H5' can occur with formation of a six-membered cyclohexadiene ring, 

which may rapidly tautomerize (rearrange) into tetraphenylphenol (Eqn. 2) under the 

experimental conditions.  Although the assignment of H7 to tetraphenylphenol has not 

been confirmed by an authentic standard, aryl-substituted phenols typically undergo 

almost no fragmentation in mass spectrometry, which seems consistent with the observed 

mass spectrum of H7 (Kuck, 2004).  The four-benzene-ring product H5' is one of the 

most dehydrogenated products observed in hydrothermal reactions of DBK in H2O alone, 

the further C-H bond breaking of H5' to give H7 thus implies that the bond fragmentation 

pathway was greatly promoted by the presence of hematite and magnetite. 
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Another piece of evidence that supports C-H bond fragmentation promotion is 

that at early reaction times, the C-C bond cleavage product bibenzyl, C2, was formed in 

much lower and even undetectable yield compared to its dehydrogenated form stilbene, 

C3, when hematite or magnetite was present (Fig. 4 and 5).  In water alone, however, the 

bibenzyl/stilbene ratio looks much higher.  It again suggests that more C-H bond 

cleavage occurred with the aid of the oxide minerals under the studied hydrothermal 

conditions. 

    Hematite and magnetite not only facilitated C-H bond cleavage, but also expedited 

formation of C-C bond fragmentation products, such as toluene, C1, and bibenzyl, C2.  

Fig. 7 illustrates the production of C1 as a function of reaction progress in the presence of 

the minerals, compared to in H2O alone.  It clearly shows that magnetite and hematite 

substantially enhanced the toluene production over the same reaction times as studied in 

water alone, and particularly for magnetite, the toluene concentration was almost an order 

of magnitude higher than that in water alone through the 168-h duration.  Similar 

observation can be seen in Fig. 8, where the accumulation of bibenzyl was plotted time-

dependently.  Again, both hematite and magnetite dramatically increased the bibenzyl 

concentration in comparison with H2O alone, and the follow-up C-H bond fragmentation 

also occurred to convert bibenzyl to stilbene as another bond cleavage product. 

O

-H2

O

tautomerization

OH

H5'   MW = 400 Intermediate H7   MW = 398

(2)
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    Despite it seems likely that many observed products were formed through C-H 

bond fragmentation with loss of hydrogen atoms in the presence of hematite and 

magnetite, the whole organic system was not necessarily hydrogen deficient because the 

formation of major/dominant products such as toluene would need consume many 

hydrogen atoms, presumably via H-abstraction reactions by benzyl radicals.  Indeed, as 

implied by the hydrogen balance calculations (Table 1), the DBK-hematite/magnetite 

system could reach approximate hydrogen balance just as the DBK in water alone 

system.  Additional evidence to support hydrogen balance was obtained from the H2 

measurement experiments, where the amount of dissolved molecular hydrogen in gold 

capsules were quantified using GC-RCP.  As shown in Table 2, when no minerals were 

added, the detected amounts of dissolved H2 in water alone hydrothermal experiments 

were ca. 46.1 and 47.7 nanomoles after 46 h and 168 h, respectively.  In contrast to the 

micromoles of DBK reacted in each experiment (Table 2), the amount of molecular 

hydrogen present in hydrothermal solution was substantially small.  In hematite and 

magnetite hydrothermal experiments, the dissolved H2 were measured at shorter reaction 

times.  As examples, 5- and 24-h reaction durations were chosen to match up with the 

DBK conversions in 46- and 168-h water alone experiments, respectively.  Control 

experiments were also conducted by loading only minerals and water in gold capsules 

without DBK, where the detected molecular hydrogen was approximate 1 nanomole 

during the studied reaction durations.   

  When DBK was added, 7.2 and 10.9 nanomoles of molecular hydrogen were 

detected in the 5-h hematite and magnetite experiments respectively.  These values were 

both smaller than the 46.1 nanomoles observed in the 46-h H2O alone experiment.  In the 
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24-h hydrothermal experiments, the detected H2 were 23.6 and 14.8 nanomoles for 

hematite and magnetite respectively, which again were smaller than the 47.6 nanomoles 

in the 168-h water alone experiment (Table 2).  It implies that hematite and magnetite 

might interact with some dissolved hydrogen in solution under the studied experimental 

conditions.  However, even at a longer reaction time, when the DBK conversion was ca. 

20% after 70 h, both hematite and magnetite experiments still yielded nanomoles of 

molecular hydrogen, comparing to micromoles of DBK that was consumed.  It seems 

likely that the DBK-hematite/magnetite hydrothermal system maintained a relatively low 

level of dissolved hydrogen, although the formation of C-C and C-H bond cleavage 

products were greatly facilitated by the minerals.  The fact that these iron oxide minerals 

did not promote molecular hydrogen generation suggests a balance of organic hydrogen 

atoms in the hydrothermal system, which also seems consistent with the hydrogen 

balance calculations as described before. 

    The DBK hydrothermal product distributions were time dependent and became 

more complex at longer durations.  Two carboxylic acids, benzoic acid A1 and 

phenylacetic acid A2, were first observed in the presence of magnetite when reaction 

progress was greater than 70 h (Table 1).  Although the yields of the acids were as low as 

ca. 1% among all the organic products, it is a new finding since no appreciable amounts 

of carboxylic acids were detected in water alone for reaction timescales of up to 528 h 

(Yang et al., 2012).  Interestingly, the acids were not detected at earlier reaction times 

(less than 70 h) for magnetite or hematite, implying that they were probably not the 

primary products from DBK, but were formed through secondary reactions.  The 

observed yield of benzoic acid was always higher than that of phenylacetic acid at all 
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studied reaction times, and after 168 h, the concentration of phenylacetic acid was even 

undetectable while the benzoic acid still continued to accumulate.  This probably 

suggests that phenylacetic acid decarboxylated faster than benzoic acid under the 

hydrothermal conditions, presumably as a consequence of the facile C-C bond cleavage 

at its benzylic position (e.g., Glein et al., 2012). 

To look for changes in different reaction pathways of DBK, it was informative to 

compare the reduction pathway versus the fragmentation pathway in the studied 

hydrothermal systems.  This can be done by comparing the total yields of the reduction 

pathway products (R1, R2, and R3) to the total yields of all the other products, assuming 

a mass balance of 100%.  In purpose of this comparison, the carboxylic acids were 

considered as fragmentation products, since they also require the C-C bond breaking.  

The reduction pathway percentage was calculated via dividing the sum of benzene rings 

in products R1 - R3 by the sum of benzene rings in all the products (DBK excluded).  

The acid pathway percentage was calculated the same way, counting the total number of 

benzene rings in the formed acids, A1 and A2.  The fragmentation pathway percentage 

was simply 100% minus the reduction pathway percentage.  The calculated data were 

included in Tables 1 and 3, and the pathway percentage versus reaction time was plotted 

in Fig. 9.  In the presence of hematite and magnetite, the fragmentation pathway was 

dominating more than 95% of total reaction pathways all the time from 5 h to 168 h, 

whereas in H2O alone it took more than 46 h to reach 90%.  It thus suggests that the C-C 

and C-H bond fragmentation was more favorable when hematite and magnetite were 

added, compared to water alone.  Although the reduction pathway percentage for 

hematite/magnetite was extremely low (Fig. 9), the absolute yields of the reduction 
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products (R1 - R3) were found similar to those in water alone (Fig. 10).  The decreased 

percentage of reduction pathway does not mean the reduction was prohibited, but means 

that fragmentation and coupling products were formed more abundantly than those in the 

water alone condition.  As an example illustrated in Figs. 7 and 8, both toluene and 

bibenzyl concentrations increased dramatically compared to water alone.  It is thus 

consistent with the fact that the accumulation of both smaller (e.g., C1 and C2) and larger 

(e.g., H5' and H6') cleavage products from DBK is facilitated by the presence of hematite 

and magnetite.  

 

4.4.3.  Reaction products with troilite 

 

    The product distributions in DBK-troilite (FeS) hydrothermal experiments are 

diverge from those in water alone, with hematite and magnetite, particularly at early 

reaction times (Figs. 4 and 5).  After a 24 h reaction, shown in Fig. 11, the DBK 

reduction products R1 (alcohol), R2 (alkene), and R3 (alkane) were formed almost 

exclusively, whereas the bond cleavage products were hardly observed.  The reduction of 

DBK seems preferable to occur compared to the bond fragmentation at the early 

durations, which is opposite to what observed in the iron oxides experiments.  Fig. 12 

shows the time dependence of the reduction pathway products in the presence of troilite, 

comparing to H2O alone under the same concentration scale.  The yield of the reduced 

alkane R3 grows substantially with troilite, and more surprisingly, the alcohol R1 

concentration remains high (>16 mmolal) even after 168 h, whereas in pure water, R1 

reacts very rapidly and no appreciable concentration was detected in 24 h (Yang et al., 
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2012).  As reduction products of DBK, R1 and R3 were formed much more efficiently 

with troilite than in H2O alone and than in the presence of hematite or magnetite.  Fig. 9 

compares the percentage of reduction and fragmentation for troilite, and it clearly shows 

that the reduction pathway was preferred over fragmentation at early reaction times.  

However, at extended reaction progress, the fragmentation products eventually 

accumulate and become dominant.  As an example, after 70 h, the concentration of major 

fragmentation product toluene, C1, became higher than that in water alone (Fig. 7).  An 

explanation to this is that the reactions along the reduction pathway are reversible, 

whereas the cleavage products are formed irreversibly (see Chapter 2).  The products 

from the irreversible fragmentation pathway would ultimately accumulate at the expense 

of the reversible reduction pathway products.   

In troilite early time experiments, the fact that the reduction products are much 

more abundant suggests that DBK actually needs additional source of hydrogen atoms to 

compensate for the reduction products formation.  The calculated hydrogen balance in 

Table 1 were estimated as 172%, 144%, and 136% for the 5-, 24-, and 70-h troilite 

experiments, respectively, which are all greater than the ±18% experimental uncertainty.  

This means that there were more hydrogen atoms in the organic products than those in 

the reacted DBK molecules, and in other words, the incorperated hydrogen atoms should 

come from sources other than the organic compounds.  The most likely and the only 

hydrogen source in the hydrothermal system should be water, and troilite presumably 

played a role in delivering hydrogen atoms from water through geochemical reactions.  In 

hot water, it is known that iron sulfide minerals such as pyrrhotite (Fe1-xS) can potentially 

elevate concentrations of dissolved inorganic sulfur species (primarily H2S and HS-) as 
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the reducing power, and in some cases when H2S is added, some H2 could also form in 

the processes such as pyrite formation (Drobner et al., 1990; Cody, 2004; McCollom, 

2013).  As an example, Drobner et al. (1990) demonstrated that starting with 200 mg 

pyrrhotite and 2 mmol H2S in aqueous solution at 100°C for 14 days under a CO2 

atmosphere resulted in production of ca. 20 µmol of H2 and pyrite formation, whereas in 

the control experiment without H2S, only a ca. 0.2 µmol of H2 was produced in the 

pyrrhotite alone experiment.  As an analogous mineral to pyrrhotite, troilite at elevated 

temperature could also be expected to make H2S and H2, so attempts have been made to 

measure dissolved molecular hydrogen in the DBK hydrothermal experiments with 

troilite.  When DBK was not added, the detected amounts of H2 in the presence of troilite 

were 66.6 and 17.4 nanomoles after 5 and 70 h respectively, which are much greater than 

the ca. 1 nanomole in hematite/magnetite water alone experiments.  The fact that the 

measured H2 concentrations were not constant at different reaction times is probably 

because the systems had not reached equilibria within such short durations.  Although it 

seems likely that troilite produced small quantities of hydrogen under these hydrothermal 

conditions, the amount of hydrogen looks too small to be the main reducing reagent or 

hydrogen donor for the DBK reduction products, since as much as ca. 1.7 and 10.8 

µmoles of molecular hydrogen would be required to compensate for a 100% hydrogen 

balance in the 5 and 70 h experiments, respectively.  Also to be noted, the experiments of 

troilite with DBK after 5 and 70 h yielded 78.8 and 22.6 nanomoles of H2, which are 

similar to those found in troilite without DBK.  It might imply that the produced 

dissolved H2 from troilite was not much affected or used by the DBK organic system 
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inside the gold capsules, but it is more likely that dissolved sulfur species should act as 

the main hydrogen contributors for the DBK reduction in the hydrothermal solutions. 

    To briefly summarize, for DBK with troilite during short reaction times (< 24 h), 

the reduction pathway mainly occurs, whereas at longer times, the fragmentation pathway 

begins to lead.  Additional source of hydrogen atoms is required to generate the reduction 

pathway products, where the reaction between troilite and water is most likely to be 

responsible.  For DBK with hematite and magnetite, on the contrary, the fragmentation 

pathway always dominates.  Although hematite and magnetite greatly promote the bond 

cleavages, an approximate 100% hydrogen balance presumably suggests that these iron 

oxides potentially serve as a mineral catalyst rather than a reagent.   

 

4.4.4.  Roles of the minerals 

 

    Potential roles of minerals in hydrothermal organic reactions can include changing 

the inorganic components in the aqueous solution, and providing mineral surface to 

promote organic bond breaking and forming (e.g., McCollom, 2013).  The results from 

the time-dependent experiments indicate that the studied iron-bearing minerals exert an 

evident influence on the DBK decomposition rates, reaction pathways, and product 

distributions.  The product distributions described above indicate that much more C-C 

and C-H bond fragmentation products were formed apparently in the presence of 

hematite and magnetite than in water alone.  The expedited decomposition rates and 

increased production of fragmentation products suggest the iron oxides greatly facilitate 

homolytic bond cleavage, however, the analysis of the hydrogen atom distributions did 
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not illustrate a hydrogen deficit in the yielded organic products relative to the starting 

DBK (Table 1).  It implies that hematite and magnetite serve principally as catalytic 

surfaces for the organic transformation processes.  Nevertheless, possibility that the 

minerals can act partially as a reagent could not be totally ruled out, because the H2 

measurement results also showed that the detected molecular hydrogen were lower with 

hematite and magnetite than in water alone, when DBK conversions were comparable 

(Table 2).  It seems likely that these minerals could influence or maybe buffer the 

reaction conditions by taking away the hydrogens liberated from the organics.  Possible 

ways that hematite and magnetite potentially regulate or consume dissolved H2 can be 

through reactions such as: 

 

3Fe2O3 (hematite) + H2(aq)  →  2Fe3O4 (magnetite) + H2O              (3) 

Fe3O4 (magnetite) + 6H+ + H2(aq)  →  3Fe2+ + 4H2O                       (4) 

 

Because of the very low level of H2 concentration, small volume of aqueous solution (0.2 

mL), and the high mineral-to-water ratio, it was difficult to observe or identify any small 

changes in the mineral phase or in the solution, the mineral transformations still remained 

unclear under the experimental conditions.  The fact that the detected hydrogen were 

higher in hematite experiments than in magnetite (24 and 70 h, Table 2) probably suggest 

that magnetite was more efficient to slightly decrease the hydrogen levels for the DBK 

hydrothermal system, although it is generally thought that hematite exists in a more 

oxidized form compared to magnetite in nature.  It also seems to be evident from the 

product distributions in the reduction pathway (Fig. 10), where the most reduced product 
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alkane (R3) accumulated faster in the presence of hematite than magnetite.  Possible 

explanations are (1) magnetite could be more susceptible to molecular hydrogen 

reduction than hematite in this specific hydrothermal system, so there would be less 

dissolved hydrogen present in the magnetite environment that can react in the DBK 

reduction pathway; (2) although magnetite was more powerful to facilitate C-C bond 

cleavage than hematite, it is possible that hematite could be more helpful in breaking C-H 

bonds on its surface and making more dissolved hydrogen in the system; and (3) it is also 

likely that the DBK reduction pathway was not controlled by the redox states of the 

minerals, but by the network organic reactions such as bond fragmentation and addition, 

where the minerals only played a catalytic role rather than a reactant.  

    Troilite plays a quite different role from hematite and magnetite.  Instead of 

promoting bond fragmentation, it accelerates the reduction of DBK, especially at early 

reaction times.  The abundant reduction pathway products not only suggest troilite is a 

reducing reagent, the greatly increased hydrogen balance numbers also indicate H2O 

should be heavily involved as a hydrogen contributor.  Although the exact reducing 

power for DBK has not been identified, formation of dissolved H2S or other sulfur 

species from troilite can be speculated via reactions such as: 

 

FeS (troilite) + 2H+  →  Fe2+ + H2S (aq)                                                     (5) 

3FeS (troilite) + 4H2O  →  Fe3O4 (magnetite) + H2(aq) + 3H2S (aq)            (6) 

 

In fact, in troilite hydrothermal experiments, there was always a “rotten egg” smell when 

opening the gold capsules, and it possibly suggests the presence of H2S.  H2S is a well-
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known reducing reagent used in organic synthesis (Smith and March, 2007), and 

experiments using H2S and FeS in hot aqueous solutions have also been conducted to 

explore whether the mineral-involved reactions could promote model organic reactions 

under geologically relevant conditions (Cody et al., 2004).  A variety of organic 

structures have been investigated, as an example, Blochl et al. (1992) reported that the 

reduction of nitrate to form ammonia, reduction of ethyne and acetaldehyde to both form 

ethylene and ethane, and reduction of thiol compounds to form ethene, all occurred in 

aqueous media at 100°C in the presence of FeS/H2S, and an intermediary and reductive 

role for H2S was proposed.  Although these organic reduction by FeS/H2S could be 

subject to specific conditions, it seems very likely that dissolved sulfide species were 

formed in the troilite hydrothermal experiments, serving as the source of the reducing 

power for DBK.  

  Other than acting as a reducing reagent, surface-promoted reaction mechanism by 

troilite cannot be eliminated as an alternative possibility, since some bond fragmentation 

products also accumulated more quickly than water alone, toluene C1 for instance (Fig. 

7).  Troilite may serve both as a reactant and a catalytic surface in the DBK hydrothermal 

system. 

Summarized in Table 3 and illustrated in Fig. 13 are the results of hydrothermal 

experiments in which the surface areas of the minerals were varied, for a fixed reaction 

time of 70 h.  The purpose of conducting the mineral surface area-dependent experiments 

is to investigate the surface effects on DBK hydrothermal transformation, considering a 

potential surface-promoted reaction mechanism.  Fig. 13 shows that the iron-bearing 

minerals all promoted the extent of DBK conversion at various mineral surface areas, 
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whereas the non-iron minerals, quartz and corundum, had no detecable effects on DBK at 

any of the surface areas studied (0.53 and 0.91 m2).  It suggests that the iron may be 

required in the mineral structures for accelerating DBK decomposition.  Of the minerals 

that influence the reactions, magnetite, hematite, and troilite show a roughly linear 

dependence on the surface areas (Fig. 13), or more exactly, the quantities of the mineral 

that were loaded into the gold capsule.  Note that the lines through the data points are to 

guide the eyes only, not meant to imply a strictly linear relationship.  The fact that the 

conversion efficiency depends almost linearly upon the added mineral surface area is 

evident in favor of a surface-promoted reaction mechanism, which again suggests the 

potential catalytic roles of these iron-containing minerals. 

    The area ratio between DBK and the minerals in the gold capsules experiments is 

large.  The area of a single DBK molecule, when it is completely flat (Fig. 14), is ca. 75 

Å2.  If DBK is allowed to fold into a minimum energy conformation, the largest area 

accessible to a surface is ca. 35Å2.  The number of DBK molecules started in the mineral 

experiments is ca. 1020, which means that the area DBK can cover is between ca. 42 m2 

(folded) to 90 m2 (flat) (Fig. 14).  These numbers are much larger than the surface areas 

of any of the minerals used (see section 4.3.1.).  If assuming an optimum situation, where 

all the DBK molecules are folded and the measured mineral surface area accessible to N2 

(BET method) is equally accessible to DBK, the theoretical minimum area ratio (DBK 

molecules/1.29 m2 mineral surface) is ca. 33, which means the mineral surface will need 

at least 33 turnovers to be able to cover all the DBK molecules loaded in the gold 

capsule.  As shown in Fig. 13, the roughly linear dependence on the mineral surface area 

suggests a model of mineral action that requires DBK binding to the surface.  If the 



167 

 

surface chemistry or structure of the minerals is altered after the first interplay with DBK, 

the roughly linear conversion curve would not be expected under the conditions of an 

excess of DBK.  In other words, it is more likely that the minerals promote the reactivity 

of DBK on the same surface over and over again, but without changing the mineral 

surface properties.  It could be especially practical for hematite and magnetite, which 

elevated a much higher DBK conversion than troilite. 

In addition, to eliminate any possible effects of nano-sized mineral particulates in 

the purchased synthetic minerals powders, a 70 h DBK experiment with a sample of 

magnetite that was further cleaned by repeated sonication and centrifugation (see 

experimental section) was conducted under the same hydrothermal conditions.  The 

specific surface area of the treated magnetite was measured to be 7.68 m2/g, and the 

estimated total area was ~1.18 m2.  As shown in Table 3 and Fig. 13, the DBK 

conversion with cleaned magnetite was ~26.7%, which falls closely to the DBK 

conversion curve with untreated magnetite.  The product distribution of the treated 

magnetite is almost identical to that obtained using the untreated magnetite under the 

same experimental conditions.  It seems that if there were any nano-sized particles 

present in the magnetite sample, they are not mainly responsible for the observed effects 

on DBK transformations. 

    In summary, both surface-promoted and reagent roles of the studied iron-

containing minerals have been observed in the DBK hydrothermal reactions.  Magnetite 

and hematite strongly promoted the DBK decomposition, most likely through catalytic 

effect by the mineral surface.  The primary effects of magnetite and hematite are to 

facilitate bond fragmentation processes by generating the dominating C-C and C-H bond 
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cleavage products.  The reduction of DBK was substantially facilitated by the presence of 

troilite, which presumably provided inorganic species, such as dissolved sulfur 

compounds, to the aqueous solutions, and took a role in supplying reducing hydrogen 

source from the water.  Surface-promoted organic reactions may have also occurred on 

the troilite surface, but obviously not as strong as on hematite or magnetite. 

 

4.5.  Conclusions 

 

    This study initiates an exploration on the potential impact of common iron-bearing 

minerals on the behavior of ketones in hydrothermal geochemical systems.  Specific 

influences of minerals on the hydrothermal reactions of ketones have been found under 

the experimental conditions.  Quartz and corundum had virtually no influence on DBK 

transformations compared to that in the absence of minerals, while hematite, magnetite, 

and troilite, in contrast, exhibited strong effects on both the DBK conversion and the 

reaction pathways.  The overall ketone conversion increases most dramatically with 

magnetite, followed by hematite and troilite.  At early reaction times, the product 

distributions were examined in the presence of the different iron-bearing minerals, where 

selective formation of specific products was observed.  In the case of hematite and 

magnetite, the products are mostly included in the fragmentation pathway, whereas for 

troilite, the products are more reduced and the reduction pathway is preferred.  

Carboxylic acids were formed in the presence of magnetite only at longer reaction times, 

probably not through primary reactions of DBK.  Potential roles of the minerals can be a 

combination of mineral surface promoting and solution chemistry changing, and this 
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study suggests the ketone decomposition mostly depends on the mineral surface for 

hematite and magnetite, but mainly relies on the dissolved reducing species generated by 

troilite in the solution.  The organic model system provides a useful method for studying 

mineral-ketone-water interactions under hydrothermal conditions.  In natural 

hydrothermal environments, factors such as pH, ionic strengths, may also be involved in 

controlling ketones and other organic matter transformations, and these factors should be 

considered in the future study. 
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Table 1.  Conversions, reaction pathways percentages, and estimated mass and hydrogen 

balances from the hydrothermal reaction of the ketone DBK at 300°C and 70 MPa, in the 

absence and presence of the minerals.  Experiments are taken at various reaction times, 

with a constant mineral surface area of ~1.29 m2. 

 

Time 

(hr) 

Conversion 

(%) 

Reduction 

pathway a 

(%) 

Fragmentation 

pathway b 

(%) 

Acid 

pathway c 

(%) 

Mass 

balance d 

(%) 

Hydrogen 

balance e 

(%) 

 no mineral 

0 0.7 26.0 74.0 n.a. 89 n.a. 

12 1.1 22.9 77.1 n.a. 86 n.a. 

24 1.4 16.7 83.3 n.a. 108 n.a. 

46 2.7 10.4 89.6 n.a. 85 88 

70 3.7 8.1 91.9 n.a. 88 90 

168 6.4 8.8 91.2 n.a. 88 89 

290 9.7 6.3 93.7 n.a. 96 98 

528 14.5 3.9 96.1 n.a. 112 104 

 hematite 

0 0.8 8.5 91.5 n.a. 94 n.a. 

5 2.3 2.5 97.5 n.a. 109 87 

24 7.1 1.8 98.2 n.a. 90 93 

70 17.3 1.9 98.1 n.a. 84 108 

96 21.0 2.3 97.7 n.a. 82 n.a. 

168 26.4 2.2 97.8 n.a. 80 n.a. 

 magnetite 

5 2.1 3.3 96.7 n.a. 84 83 

24 8.4 1.1 98.9 n.a. 83 94 

70 24.1 0.7 99.3 0.9 89 102 

96 28.7 1.5 98.5 1.7 80 n.a. 

168 46.8 0.7 99.3 1.1 76 n.a. 

 troilite 

5 0.6 76.5 23.5 n.a. 86 172 

24 2.4 69.4 30.6 n.a. 91 144 

70 7.6 47.3 52.7 n.a. 83 136 

168 14.5 31.0 69.0 n.a. 80 125 

a Percentage of the products that are assigned to the reduction reaction pathway, as 

defined in the text and illustrated in Fig. 8. 

b Percentage of the products that are assigned to the fragmentation reaction pathway, as 

defined in the text and illustrated in Fig. 8.  Note that the acid percentage is included in 

the fragmentation pathway percentage since the acids also require C-C bond cleavage. 
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c Percentage of the products that are assigned to the acid reaction pathway, as defined in 

the text.  n.a. means the yield of the acids is too small to be detected under the 

experimental conditions. 

d Mass balance calculated according to the method described in the experimental section.  

n.a. means the data is unavailable due to low accuracy. 

e Hydrogen balance calculated according to the method described in the experimental 

section.  n.a. means the data is unavailable due to low accuracy. 
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Table 2.   Conversions, micromoles of DBK reacted, nanomoles of hydrogen detected, 

dissolved concentration of H2, and estimated hydrogen balances from the hydrothermal 

reaction of the ketone DBK at 300°C and 70 MPa, in the absence and presence of the 

minerals.  Experiments are taken at various reaction times, with a constant mineral 

surface area of ~1.29 m2.  Controls for H2 measurements were conducted for the three 

iron-bearing minerals without DBK added. 

 

Time 

(hr) 

Conversion 

(%) 

Reacted DBK 

(μmoles) 

H2 

(nmoles) 

Log activity 

of H2 

Hydrogen balance 

(%) 

no mineral 

46 2.7 5.4 46.1 -3.64 88 

168 6.4 12.5 47.6 -3.62 89 

hematite without DBK 

5 - - 0.7 -5.47 - 

hematite with DBK 

5 2.3 4.5 7.2 -4.45 87 

24 7.1 13.9 23.6 -3.93 93 

70 17.3 34.1 33.2 -3.78 108 

magnetite without DBK 

5 - - 1.0 -5.30 - 

70 - - 1.0 -5.31 - 

magnetite with DBK 

5 2.1 4.2 10.9 -4.27 83 

24 8.4 16.1 14.8 -4.13 94 

70 24.1 47.4 15.8 -4.10 102 

troilite without DBK 

5 - - 66.6 -3.48 - 

70 - - 17.4 -4.06 - 

troilite with DBK 

5 0.6 1.2 78.8 -3.40 172 

70 7.6 15.0 22.6 -3.95 136 
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Table 3.  Conversions, reaction pathways percentages, and estimated mass balances from 

the hydrothermal reaction of the ketone DBK at 300°C and 70 MPa, in the absence and 

presence of minerals.  Experiments are taken at a fixed reaction time of 70 hours, but 

with different mineral surface areas. 

 

Mineral 

surface area 

(m2) 

Conversion 

(%) 

Reduction 

pathway a 

(%) 

Fragmentation 

pathway b 

(%) 

Acid 

pathway c 

(%) 

Mass 

balance d 

(%) 

 no mineral 

0 3.7 8.1 91.9 n.a. 88 

 quartz 

0.53 3.1 8.3 91.7 n.a. 101 

0.90 3.5 5.9 94.1 n.a. 90 

 corundum 

0.53 3.3 11.0 89.0 n.a. 83 

0.91 2.7 8.1 91.9 n.a. 84 

 hematite 

0.54 9.7 2.1 97.9 n.a. 115 

0.91 14.4 1.8 98.2 n.a. 92 

1.29 17.3 1.9 98.1 n.a. 81 

 magnetite 

0.30 12.2 0.4 99.6 n.a. 108 

0.57 17.6 0.4 99.7 0.3 103 

0.91 23.1 0.6 99.7 0.4 94 

1.18e 26.7 1.2 98.8 1.3 101 

1.27 27.9 0.9 99.1 1.0 83 

 troilite 

0.53 5.5 43.9 56.1 n.a. 94 

0.91 6.2 46.2 53.8 n.a. 84 

1.29 7.6 47.3 52.7 n.a. 83 

a Percentage of the products that are assigned to the reduction reaction pathway, as 

defined in the text.   

b Percentage of the products that are assigned to the fragmentation reaction pathway, as 

defined in the text.  Note that the acid percentage is included in the fragmentation 

pathway percentage since the acids also require C-C bond cleavage. 
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c Percentage of the products that are assigned to the acid reaction pathway, as defined in 

the text.  n.a. means that the yield of the acids is too small to be detected under the 

experimental conditions. 

d Mass balance calculated according to the method described in the experimental section. 

e Experimental data of DBK with the cleaned magnetite, shown as the used mineral 

surface area, the calculated DBK conversion, percentage of pathways, and the mass 

balance.  The conversion is also plotted in Fig. 12 to compare with the data points for the 

untreated magnetite with different surface areas. 
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Figure 1.  Schematic sequence of functional group interconversions that link alkanes to 

carboxylic acids, shown as oxidation/reduction reactions (horizontal arrows) and non-

redox reactions (vertical arrows).  Ketones, in the grey box, occupy an important position 

in this reaction sequence since they represent the point at which C-C bond fragmentation 

reactions occur, accompanied either by oxidation to give carboxylic acids, or with radical 

fragmentation and coupling reactions, such as in the case of the model ketone studied 

here. 
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Figure 2.  Percent conversion as a function of time for hydrothermal reaction of the 

ketone DBK at 300°C and 70 MPa, in H2O alone (open circles), and in the presence of 

ferrous sulfide (closed diamonds), hematite (open diamonds), and magnetite (closed 

circles).  The added iron-bearing minerals have different masses but the same surface 

area, ~1.29 m2.  Single time points of 70 hours are shown in the presence of quartz 

(closed inverted triangle) and corundum (open triangles), which are indistinguishable 

from the corresponding conversion in H2O alone.  The mineral surface areas for quartz 

and corundum are both ~0.91 m2.  The data points with error bars represent repeated 

experiments.  The inset is a first-order kinetic fit to the magnetite data, which yields a 

pseudo first-order rate constant of ~3.7 × 10-3 hr-1 (see text for details).   
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Figure 3.  Summary of the products from the hydrothermal reactions of the ketone DBK 

at 300°C and 70 MPa.  The prime symbol (') in the product designation indicates the 

presence of more than one structural or stereoisomer isomer of that particular structure.  

Four main reaction pathways can be identified, i.e., the reduction pathway, the C-C 

cleavage and C-H cleavage pathways, and the acid pathway.  The reduction pathway is 

the same as in Fig. 1 and connects the ketone with the alkane.  The C-C and C-H 

pathways are the fragmentation pathways in Fig. 1, and are highly interconnected.  

Reduction pathway type products are also observed in the cleavage pathways.  The acid 

pathway yields carboxylic acids as shown in Fig 1.  In the presence of the minerals, the 

major products are indicated by the outlined boxes.  
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Figure 4.  Gas chromatograms comparing the products of hydrothermal reactions of the 

ketone DBK at 300°C and 70 MPa, in the presence of hematite with a surface area of 

~1.29 m2 after a 5-hour reaction time, and in H2O alone after a reaction period of 46 

hours.  The DBK conversions are similar, which are ~2.3% in the presence of hematite 

and ~2.7% in H2O alone.  The upper chromatograms show the one- and two-benzene-ring 

products at earlier retention times, the lower chromatograms show the three-, four- and 

five-benzene-ring products at later retention times. 
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Figure 5.  Gas chromatograms comparing the products of hydrothermal reactions of the 

ketone DBK at 300°C and 70 MPa, in the presence of magnetite with a surface area of 

~1.29 m2 after a 5-hour reaction time, and in H2O alone after a reaction period of 46 

hours.  The DBK conversions are similar, which are ~1.5% in the presence of magnetite 

and ~2.7% in H2O alone.  The upper chromatograms show the one- and two-benzene-ring 

products at earlier retention times, the lower chromatograms show the three-, four- and 

five-benzene-ring products at later retention times. 

 



180 

 

Figure 6.  Proposed reaction scheme for formation of the coupling products H5' and H6' 

from DBK (the ' symbol indicates structural and/or stereoisomers).  The C-H bond 

cleavage (step 1) forms two benzylic radicals that can couple into a ketone dimer, D1 

(step 2), which probably undergoes either functional groups transformations that start 

with hydrogenation (step 3) to reach the conjugated H5', or C-C bond cleavage (step 4) to 

eventually form H6' via the same functional group transformations.  The order of step 3 

and step 4 to produce H6' can be reversed, and step 4 could also occur at other 

intermediates along the path from D1 to H5'. 
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Figure 7.  Time dependence of concentrations of the C-C bond cleavage and the major 

product toluene, C1, from hydrothermal decomposition of DBK at 300°C and 70 MPa, in 

H2O alone (dashed line and open circles), in the presence of hematite (solid line and open 

diamonds), magnetite (solid line and closed circles), and ferrous sulfide (solid line and 

closed diamonds), using a constant mineral surface area of ~1.29 m2.   
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Figure 8.  Time dependence of concentrations of the C-C bond cleavage and the major 

product bibenzyl, C2, from hydrothermal decomposition of DBK at 300°C and 70 MPa, 

in H2O alone (dashed line and open circles), in the presence of hematite (solid line and 

open diamonds), magnetite (solid line and closed circles), and troilite (solid line and 

closed diamonds), using a constant mineral surface area of ~1.29 m2.   
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Figure 9.  Percentage reduction and fragmentation pathways for hydrothermal reactions 

of DBK at 300°C and 70 MPa, in H2O alone on the left hand side, and in the presence of 

hematite (triangles), magnetite (inverted triangles), and ferrous sulfide (diamonds) on the 

right hand side.  In both figures, the closed symbols indicate the fragmentation pathway 

percentage, and the open symbols indicate the reduction pathway percentage.  For the 

oxides minerals, the fragmentation dominates at all reaction times.  For the ferrous 

sulfide, the reduction dominates at early reaction times, but at later times, the 

fragmentation overtakes.  Note that the decrease of the reduction percentage does not 

mean a decrease in the amount of the reduction pathway products; it should represent a 

slower accumulation of the reduction pathway products comparing to the fragmentation 

pathway. 
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Figure 10.  Time dependence of concentrations of the reduction pathway products, 

alcohol (R1), alkene (R2), and alkane (R3), from hydrothermal transformation of DBK in 

H2O alone (left), in the presence of hematite (center), and magnetite (right) with a 

constant mineral surface area of ~1.29 m2.  The yields of the reduction pathway products 

with hematite and magnetite are roughly comparable to H2O alone over the reaction time 

period, although their time dependencies are different (see text).  
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Figure 11.  Gas chromatograms comparing the products of hydrothermal reactions of the 

ketone DBK at 300°C and 70 MPa, in the presence of ferrous sulfide (troilite) with a 

surface area of ~1.29 m2 after a 24-hour reaction time, and in H2O alone after a reaction 

period of 46 hours.  The DBK conversions are similar, which are ~2.4% in the presence 

of ferrous sulfide and ~2.7% in H2O alone.  The upper chromatograms show the one- and 

two-benzene-ring products at earlier retention times, the lower chromatograms show the 

three-, four- and five-benzene-ring products at later retention times. 
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Figure 12.  Time dependence of concentrations of the reduction pathway products, 

alcohol (R1), alkene (R2), and alkane (R3), from hydrothermal transformation of DBK in 

H2O alone (left), and in the presence of ferrous sulfide (right) with a constant mineral 

surface area of ~1.29 m2.  The same vertical scale emphasizes the fact that the yields of 

the reduction pathway products with ferrous sulfide are much larger than the yields in 

H2O alone.  The H2O alone data are plotted on an expanded scale in Fig. 9. 
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Figure 13.  DBK conversion at a fixed reaction period of 70 hours as a function of the 

surface area for the added mineral, corundum (open triangles), quartz (closed inverted 

triangles), ferrous sulfide (closed diamonds), hematite (open diamonds), and magnetite 

(closed circles).  The cleaned-magnetite experiment is indicated as the open circle.  The 

horizontal dashed line at bottom represents the conversion in H2O alone. The other 

straight dashed lines through the data points are for guidance, they do not essentially 

imply a linear relationship (see text).  The data points with error bars represent repeated 

experiments. 
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Figure 14.  Representations of a completely flat DBK molecule (bottom), which covers 

an area of ca. 75 Å2, and a folded DBK molecule (top) that covers an area of ca. 35 Å2.  

Each experiment used ca. 1.2 × 1020 DBK molecules, which give a total area of DBK 

coverage between ca. 62 (folded) and 29 (flat) m2. 
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CHAPTER 5: 

OXIDATION BY COPPER (II) IN HYDROTHERMAL ORGANIC REACTIONS 

 

5.1.  Introduction 

 

    Copper is an abundant metal in the Earth’s crust and has been extensively used in 

industrial society and daily life with great economic value (Marshall and Fairbridge, 

1999).  The geochemistry of copper plays important roles in the transport and deposit of 

copper in the crustal environment, and influences ore formation in related hydrothermal 

systems (Marshall and Fairbridge, 1999).  It is thought that copper ore is predominantly 

derived from porphyry copper deposits, which are mostly associated with hydrothermal 

processes (e.g., Candela and Holland, 1986; Marshall and Fairbridge, 1999; Kesler and 

Wilkinson, 2008).  Also, principal copper sulfide minerals such as chalcocite (Cu2S) and 

chalcopyrite (CuFeS2) are commonly observed in natural hydrothermal fluids (e.g., 

Tivey, 1995).   

The understanding of the geochemistry of copper under hydrothermal conditions 

comes from a variety of subjects, among which solubility and speciation have been a 

significant research focus for copper.  Copper readily goes into solution, and two 

common valence states exist in aqueous solution, the +2 (cupric) state and the +1 

(cuprous) state.  At ambient temperature, the solubility of cuprous salts is normally much 

lower than cupric salts.  As an example, cupric chloride is highly soluble in aqueous 

solution, whereas cuprous chloride is normally considered to be insoluble in pure water, 

with a solubility product constant (Ksp) of ca. 1.72 × 10-7 at 25°C (Patnaik, 2003).  At 
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elevated temperatures, however, cuprous species become more soluble and stable in 

water, and various soluble cuprous complexes have been characterized under 

hydrothermal conditions (e.g., Crerar and Barnes, 1976; Var’yash, 1992; Liu et al., 2001).  

Solubility experiments of elemental copper and copper minerals including chalcopyrite, 

bornite, and chalcocite have been performed in hydrothermal sodium chloride and sulfide 

solutions as early as 1976 by Crerar and Barnes, who concluded that the main dissolved 

form of Cu is aqueous CuCl in the temperature range of 200 - 350°C.  Many follow-up 

studies also indicated that copper mainly exists in the form of cuprous (CuI ) in 

hydrothermal solutions (e.g., Hemley et al., 1992; Seyfried and Ding, 1993; Xiao et al., 

1998).  Chloride is usually considered to be the critical counter ion in ore-forming 

hydrothermal fluids (Barnes, 1979; Heinrich et al., 1989).  Copper-chloride complexes at 

high temperatures have thus been a particular focus in geochemical studies (Haynes and 

Bloom, 1987; Sverjensky, 1987; Liu et al., 2001), although uncertainties remain as to the 

exact structure of the predominant copper chloride complexes in hydrothermal solutions 

(Xiao et al., 1998; Archibald et al., 2002; Migdisov et al., 2014).  In addition to chloride, 

aqueous complexation of copper with organic anions (e.g., acetate) has been investigated 

under hydrothermal conditions.  Shock and Koretsky (1993) predicted that the 

dissociation of copper-acetate aqueous complexes become less thermodynamically 

favorable at higher temperature, and Liu et al. (2001) experimentally confirmed this by 

measuring the thermodynamic properties of cuprous acetate complexes in hydrothermal 

water up to 250°C. 

    Another important property of aqueous copper that is not well understood under 

geochemically relevant conditions is potential redox chemistry.  The stability of cuprous 
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species in water at elevated temperatures and pressures suggests a relatively high 

potential for oxidation of copper (I) to copper (II).  There is strong evidence in the 

inorganic chemistry literature that complexes of copper (II) can be involved in redox 

chemistry with organic structures under hydrothermal conditions (e.g., Zhang, 2005; 

Chen and Tong, 2007).  There is also a suggestion in the literature that aqueous copper 

(II) can be reduced to copper (I) in the presence of aromatic ligands (Yaghi and Li, 1995), 

although the mechanism of the reduction has not been investigated, specifically whether 

it involves single electron transfer or not.  Under conditions close to ambient, copper has 

been widely used in various oxidations of organic structures, including alkanes, alkenes, 

alcohols, aldehydes/ketones, and nitrogen containing compounds (Nigh, 1973; Gamez et 

al., 2001).  In essentially all of these reactions, however, oxygen or hydrogen peroxide is 

the oxidizing reagent and the role of copper (II) is usually a catalyst (Allen et al., 2013).  

Taken as an example, cupric ions (CuCl2 or CuBr2)-facilitated oxidation of benzyl 

alcohol to benzaldehyde can be achieved with good yields in hours only in the presence 

of molecular oxygen and other inorganic or ligand additives, such as CsCO3 and TEMPO 

(2,2,6,6-tetramethylpiperidine-1-oxyl) (e.g., Gamez et al., 2003; Liang et al., 2010).  

Oxidation reactions using copper (II) have been reported, but these reactions also require 

the presence of strong bases, also, the reactions only proceed if enolizable hydrogens are 

present (Nigh, 1973).  To the best of my knowledge, there are no reports of the pure use 

of aqueous copper (II) ions to oxidize organic compounds under anaerobic hydrothermal 

solution.  Copper (II) is a considerably milder oxidizing agent than those conventionally 

used in organic chemistry, which are based on Cr (VI) and Mn (VI) reagents (Smith and 

March, 2007), and the ability to perform oxidations in water using copper (II) would be 
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of great interest to both the geochemistry and the green chemistry communities.  In this 

Chapter, novel reactions are reported in which aqueous copper (II) ions are found to 

oxidize model aromatic compounds, including phenylacetic acids, benzyl alcohols, and 

benzaldehydes, with good chemical yields in deoxygenated H2O at 250°C and 40 bar, 

during reaction times as short as hours or even minutes.   

 

5.2.  Experimental 

 

    The following materials were obtained from the commercial sources indicated: 

phenylacetic acid (Aldrich, 99%), p-fluorophenylacetic acid (Alfa Aesar, 98%), p-

methylphenylacetic acid (Alfa Aesar, 99%), p-tert-butylphenylacetic acid (Matrix 

Scientific, 98%), p-trifluoromethyl-phenylacetic acid (Aldrich, 97%), p-

methoxyphenylacetic acid (Aldrich, 99%), benzaldehyde (Sigma-Aldrich, 99%), p-

trifluoromethyl-benzaldehyde (Acros Organics, 98%), p-methylbenzaldehyde (Aldrich, 

97%), benzylalcohol (Sigma-Aldrich, 99.8%), p-trifluoromethyl-benzylalcohol (Sigma-

Aldrich, 98%), p-methylbenzylalcohol (Aldrich, 98%), p-methoxybenzylalcohol 

(Aldrich, 98%), hydrochloric acid (Alfa Aesar), sodium hydroxide (Alfa Aesar, 98%), 

cupric chloride (Aldrich, 97%), dichloromethane (Fisher Scientific, 99.9%), n-decane 

(Sigma-Aldrich, 99%).  Fresh solutions of cupric chloride with concentrations from 0.05 

to 0.2 molal were prepared using high-purity water obtained from Diamond Ultrapure 

water system (18.2 MΩ∙cm resistivity).  Sodium phenylacetate was prepared by 

neutralizing phenylacetic acid with sodium hydroxide.  The purity of all used organic 

materials were verified by gas chromatography. 



198 

 

    Hydrothermal experiments were performed in fused silica glass tubes (GM 

Associates, Inc.) with a 6mm inside diameter and a 12mm outside diameter.  The 

relatively large diameter tubes allow easy loading of the solid starting materials and also 

guarantee an adequate quantity of the organic structures for analysis after the 

experiments.  The starting organic structure (0.10 mmol) together with 2.0 mL argon-

purged cupric chloride solution were loaded into each tube to obtain a molality of 0.05 

for the organic species.  The samples were frozen in liquid nitrogen, degassed using 

pump-freeze-thaw cycles, and then sealed with a hydrogen flame under vacuum.  Each 

fused silica glass tube (~15 cm long) was placed into a small steel pipe (~21 cm long) 

before heating in a gas chromatography (GC) oven at 250°C.  At 250°C the pressure in 

the silica glass tube is calculated to be ca. 40 bar using SUPCRT 92 (Johnson et al., 

1992).  A thermocouple inside the GC oven next to the sample tubes was used to verify 

the reaction temperature.  The estimated uncertainty in the temperature of the sample was 

within ±2°C over the experimental duration.  It was found that 10 mins of pre-heating 

time was necessary for the samples to reach the experimental temperature of 250°C.     

    The experimental reaction times ranged from 10 mins to 8 hrs at 250°C and 40 

bar, depending on the particular reaction.  When the desired reaction time was reached, 

the experiment was quenched by placing the steel pipe into a room temperature water 

bath.  The extraction procedure was similar to that described in the previous chapters.  

After the fused silica tube was opened using a tube cutter, the sample was transferred into 

a 20 mL glass vial, and the reaction tube was then rinsed twice with 10.0 mL 

dichloromethane solution containing the GC internal standard n-decane (0.067% by 

volume).  The water and dichloromethane phases were combined in the 20 mL vial.  For 
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the phenylacetic acids and the sodium phenylacetate samples, two drops of one molar 

aqueous HCl was added to the reaction tubes after opening to ensure protonation of any 

organic acid species and extraction into the organic layer.  The 20 mL vials were capped 

and shaken repeatedly to facilitate extraction of the organics into the dichloromethane 

phase.  The aqueous layer was separated into a small centrifuge tube, and any suspended 

solid particles (e.g., CuCl) were separated by centrifugation before the analysis of cupric 

ion in clear aqueous solutions. 

    Quantitative analysis was performed for both the organic species in the 

dichloromethane and the aqueous species that remained in the water.  The organic species 

were analyzed using a Varian CP-3800 gas chromatography with a flame ionization 

detector.  Reproducibility was ensured by triplicate injections with a Varian CP-8400 

autosampler.  The identities of the organic products were verified by using authentic 

standards, and their quantities were determined based on the calibration curves that were 

referenced to the internal standard.  Mass balance was calculated in the same way as 

described in previous Chapters by comparing the number of benzene rings in the products 

and the reactants.  The aqueous samples were analyzed quickly after centrifugation, in 

order to minimize any air oxidation of cuprous ions to cupric.  UV-Vis photospectrometer 

was used to measure the light absorption due to the copper (II) ions in solution at 700 nm 

at room temperature.  The concentrations of copper (II) were determined using a 

calibration curve that was built with known copper (II) standards, from 0.01 to 0.20 

molal.  The 700 nm wavelength was selected to ensure a measurable absorbance (< 1.0) 

for the concentrations of copper (II) that were studied.  Measurement of the copper (I) 

concentration in the aqueous sample was not attempted since the solubility of copper (I) 



200 

 

chloride is low at room temperature (Patnaik, 2003).  Triplicate measurements were taken 

to ensure reproducibility of the copper (II) measurements using the photospectrometer.  

 

5.3.  Results and discussion 

 

5.3.1.  Decomposition of the carboxylic acids, alcohols, and aldehydes 

 

  The effect of copper (II) on the hydrothermal chemistry of phenylacetic acid, 

benzyl alcohol and benzaldehyde (and their derivatives) was investigated.  The 

reactivities of these species were first measured in water alone under the experimental 

conditions of 250°C in the fused silica tube.  It was reported previously that the 

conversions of one molal phenylacetic acid and sodium phenylacetate in water at 300°C 

and 1034 bar in gold capsules were ca. 20% and 60% after 6 hours, respectively (Glein, 

2012).  In both cases, toluene was observed as the dominant organic product.  In contrast, 

the conversions of both phenylacetic acid and the sodium salt were found to be less than 

8% in water alone at 250°C and 40 bar in a fused silica tube after a 6-h duration.  

Similarly, the reactivities of benzaldehyde and benzylalcohol were also quite low at 

250°C.  The conversions were less than 3% after 6 hours.  

     In the presence of cupric chloride (0.05 – 0.20 molal in H2O), however, the 

hydrothermal reactivities of all of these compounds are dramatically increased.  Data 

from hydrothermal experiments with phenylacetic acids at 250°C are summarized in 

Table 1.  Data for reactions of benzyl alcohols and benzaldehydes are given in Tables 2 

and 3, respectively.  The conversion of 0.05 molal phenylacetic acid in the presence of 
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0.20 molal copper (II) was ca. 68% after only 0.17 hours, whereas in water alone, the 

conversion was less than ca. 2%.  The conversion of the carboxylate salt of phenylacetic 

acid, sodium phenylacetate, for the same reaction time was even greater at 85%.  For 0.05 

molal benzylalcohol in the presence of 0.10 molal copper (II) the conversion was 65% 

after 1 hour, and that of benzaldehyde was ca. 14% after 2 hours.  The presence of cupric 

ion enhances the rate of decomposition of these organic compounds by orders of 

magnitude compared water alone at the experimental conditions. 

  More impressively, these reactions in the presence of copper (II) did not generate 

complex mixture of products.  For the phenylacetic acids and sodium phenylacetates, 

benzaldehydes were observed as the dominant organic product (ca. >90%).  Small 

quantities of benzyl alcohol were observed as a minor product, depending upon the 

reaction conditions, but always less than 5% of the total moles of products.  The 

corresponding reaction of the benzyl alcohols in the presence of copper (II) was also 

selective.  Conversions of the benzyl alcohols greater than 17% were obtained for 

reaction times of 0.5 and 1 h (depending upon the particular alcohol and initial cupric ion 

concentration, Table 2) that gave the corresponding benzaldehyes in yields of more than 

80%.  Small quantities (ca. <20%) of the corresponding benzoic acids were also observed 

when higher cupric ion concentrations (e.g., 0.20 molal) were used.  The experiments 

starting with the benzaldehydes were exceptionally clean in that the corresponding 

benzoic acids were mostly observed as the only detectable products for an 8-h reaction 

time at 250°C and 40 bar.  Satisfactory mass balance was observed for all the 

experiments (>90%), as shown in Tables 1 - 3.  Replicate experiments were also 

performed to check the reproducibility of the experiments.  For benzaldehyde as an 
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example, the conversion was found to be reproducible within less than 4% for multiple 

experiments (Table 3).   

  The reactions of phenylacetic acid and benzyl alcohol with copper (II) both yield 

benzaldehyde as the common major product, suggesting a linked reaction pathway among 

these functional groups.  A plausible reaction pathway starting with phenylacetic acid is 

shown in Scheme I.  Starting with phenylacetic acid, copper (II) can act as a one-electron 

oxidant for the deprotonated carboxylate, which forms a carboxyl radical that is known to 

undergo very rapid decarboxylation in less than microseconds at room temperature 

(Hilborn and Pincock, 1991).  Decarboxylation forms a benzyl radical, which is known to 

be oxidized by copper (II) to form a benzyl cation (Turro et al., 1981), which will react 

with water to form a benzyl alcohol.  Benzyl alcohol is proposed as a reaction 

intermediate in the conversion of phenylacetic acid to benzaldehyde because a small 

amount of benzyl alcohol was observed in short-time phenylacetic acid experiments, and 

it was found to be highly reactive in the presence of copper (II) under the studied 

conditions.  Observations that are consistent with benzyl radicals being the precursors to 

benzyl alcohol, benzaldehyde, and benzoic acid comes from the DBK hydrothermal 

photolysis described earlier in this thesis, where these products were detected in 

abundance when benzyl radicals were generated independently in the presence of cupric 

chloride (Chapter 3).  Further evidence in support of Scheme I was obtained from studies 

of the reaction stoichiometries and the ring substituent effects. 
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5.3.2.  Reaction stoichiometries 

 

In order to determine the stoichiometry of the reactions, experiments were 

performed with varying concentration ratios between the starting organic compound and 

the copper (II) ions (Tables 1, 2, and 3).  With the constant starting concentration for the 

organic structures of 0.05 molal, initial concentrations of copper (II) were selected to be 

0.05, 0.10, and 0.20 molal, i.e., 1, 2, and 4 equivalents compared to the quantity of the 

organic compounds.  Although measurement of reaction kinetics was not the focus of this 

study, the rates of disappearance of the carboxylic acids, alcohols, and aldehydes all 

increased with increasing copper (II) concentration.  As examples, after 0.5 hours at 

250°C and 40 bar, the conversions of benzyl alcohol were ca. 18, 29, and 43% in the 

presence of 1, 2, and 4 equivalent moles of copper (II), respectively (Table 2).  Starting 

with benzaldehyde, conversions were ca. 14 and 23% in the presence of 2 and 4 

equivalents copper (II), respectively, after 2 hours at 250°C (Table 3).  These 

observations suggest that the copper (II) ion is involved in the rate-determining step for 

these reactions in Scheme I.   

    The conversions of phenylacetic acid to benzaldehyde, benzyl alcohol to 

benzeldehyde, and benzaldehyde to benzoic acid are all oxidation reactions.  Each of 

these reactions was observed to occur with corresponding reduction of cupric ions.  The 

disappearance of cupric ions in solution could be readily observed as a change in solution 

color from sky blue to colorless.  In addition, white solid precipitates were usually found 

in the unopened fused silica tubes after the reactions at room temperature.  The white-

colored precipitate seems consistent with formation of solid copper (I) chloride in an 
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oxygen-free environment (Greenwood and Earnshaw, 1997), but inconsistent with 

formation of copper oxides (yellow or red for Cu2O, black or brown for CuO), copper 

hydroxide (pale blue or green), or elemental copper (orange or red).  Oxidation of the 

organics appears to be associated with conversion of soluble cupric chloride into 

insoluble cuprous chloride in the aqueous solutions. 

Summarized in Table 4 are the ratios of the number of moles of consumed copper 

(II) ions to the number of moles consumed of the starting organic.  The moles of 

consumed copper (II) were calculated by measuring the concentration of copper (II) ions 

that remained in the aqueous solution photospectrometrically.  The number of moles of 

consumed organics was quantified by gas chromatography, as discussed in the 

experimental section.  The computed mole ratios (cupric ion/organic) fall in the range 3.5 

- 3.9 for conversion of phenylacetic acid to benzaldehyde, 1.8 - 2.4 for conversion of 

benzyl alcohol to benzaldehyde, and 2.0 - 2.4 for conversion of benzaldehyde to benzoic 

acid (Table 4).  Possible reasons why the mole ratios exhibited some variation include: 

(1) formation of minor products that may consume copper (II) but were not quantified; 

(2) impurities in the starting organic structures may react with copper (II); (3) small 

amounts of dissolved copper (I) ions may have undergone disproportionation into 

elemental copper and cupric ions in air (Greenwood and Earnshaw, 1997), although the 

spectrophotometric measurements were performed as quickly as possible to minimize this 

potential problem; and (4) any reduction of Cu (I) to Cu (0) under the reaction conditions 

would lower the apparent Cu (II) consumption (however, no obvious black solid Cu (0) 

was visually observed after the hydrothermal experiments).  Although these minor factors 

would lead to small uncertainties, the rounded stoichiometric ratios for the acid, alcohol, 
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and aldehyde reactions were 4, 2, and 2, respectively (Table 4), which seem consistent 

with the balanced equations for the reactions shown in Eqns. 1 - 3. 

 

Ph-CH2OH + 2Cu2+  →  Ph-CHO + 2H+ + 2Cu+               (1) 

Ph-CHO + 2Cu2+ + H2O  →  Ph-COOH + 2H+ + 2Cu+            (2) 

Ph-CH2COOH + 4Cu2+ + H2O  →  Ph-CHO + 4H+ + 4Cu+ + CO2     (3) 

 

5.3.3. Ring substituent effects 

 

Ring substituent effects were investigated using both electron donating 

substituents (e.g., CH3, CH3O and tert-butyl) and electron withdrawing substituents (e.g., 

F and CF3) in the para-positions for the benzyl alcohol, benzaldehyde, and phenylacetic 

acid reactions.  An increase in reaction rate with an electron donating substituent (and/or 

decease with an electron withdrawing substituent) would suggest formation of a 

positively charged intermediate in the rate-determining step where the charge is 

delocalized into the benzene ring, since electron donating groups stabilize cations and 

radical cations.  A lack of substituent effect would suggest that the rate-determining step 

does not delocalize charge into the benzene ring.  The substituent effects observed for the 

three kinds of functional group, alcohol, aldehyde, and carboxylic acid, were quite 

different. 

Experiments with ring-substituted benzyl alcohols revealed a strong influence of 

the para-substituents, Table 2.  Reaction at 250°C and 40 bar with 2 equivalents of 

copper (II) for 0.5 hours resulted in a conversion of ca. 17% for the -CF3 substituent, 
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compared to 29% conversion of the unsubstituted alcohol (i.e., slower reaction with the 

electron withdrawing substituent).  With the -CH3 and -OCH3 substituents, however, the 

corresponding conversions were ca. 92% and 99% (i.e., much faster reaction with 

increasing donating ability of the substituent).  These results clearly suggest formation of 

a cation or a radical cation intermediate in the rate-determining step for the benzyl 

alcohol reaction. 

Experiments with the carboxylic acids revealed a very different effect of the 

substituents.  Reaction at 250°C and 40 bar with 4 equivalents of copper (II) for 0.17 

hours resulted in a conversion of ca. 66-69% for the -F, -t-butyl, -CH3 and -CF3 

substituents, compared to a 68% conversion of the unsubstituted acid.  It indicates that 

neither electron-donating nor -withdrawing substituents substantially influenced the rate 

of the reaction, which in turn suggests that development of charge on the benzene ring 

does not occur in the rate-determining step.  The reactivity of the deprotonated form of 

phenylacetic acid, however, was measurably higher than that of the acid itself.  An 85% 

conversion was found for sodium phenylacetate compared to 68% for the acid.  This 

probably suggests that it was the deprotonated form of the carboxylic acid that is reactive 

in the copper (II) reaction (Scheme I).  

Ring-substituted benzaldehydes experiments revealed an intermediate influence 

of the para-substituents, Table 3.  Reaction at 250°C and 40 bar with 4 equivalents of 

copper (II) for 6 hours resulted in a conversion of ca. 31% for the -CF3 substituent, 

compared to 39% conversion of the unsubstituted aldehyde.  Reaction under the same 

conditions with -CH3 substituted benzaldehyde resulted in a conversion of ca. 45%.  

Reaction for 8 hours with 2 equivalents copper (II) gave ca. 41% for the unsubstituted 
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aldehyde compared to ca. 29% for the p-CF3-benzaldehyde.  These results somewhat 

suggest a slower reaction with the electron withdrawing -CF3 substituent and a faster 

reaction with the electron donating -CH3 substituent, although the substituent effects 

seem to be somewhat smaller than those observed in benzyl alcohols experiments.  

 

5.3.4.  Oxidation mechanisms 

 

    Carboxylic Acids.  Decarboxylation is perhaps one of the best studied reaction of 

carboxylic acids (March, 1985).  One of the simplest form of decarboxylations that occur 

under oxidative conditions is the Kolbe electrolysis (Vijh and Conway, 1967): the 

carboxylic acid is in equilibrium with the carboxylate, and the carboxylate undergoes 

one-electron oxidation at an electrode to form a carboxyl radical, which undergoes very 

rapid decarboxylation to form an alkyl radical.  Two of these alkyl radicals then dimerize 

to form an alkane.  Side products will form in the Kolbe electrolysis reaction when the 

intermediate carbon radicals can experience one-electron oxidation at the electrode.  

Radical oxidation generates carbocations, which in water would rapidly undergo 

nucleophilic addition with ultimate formation of an alcohol.  One-electron oxidation is 

also frequently encountered in metal ion oxidations of a variety of organic structures 

(Sheldon and Kochi, 1981), and it has been shown that copper (II) was more effective 

than other metals in oxidation of radicals to corresponding carbocations (Kochi, 1967; 

1974).  Based on the mechanisms of the known Kolbe electrolysis and other metal ion 

oxidations, one-electron transfer mechanism can be proposed as the basis for the copper 
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(II) oxidation of the phenylcetic acids.  A detailed proposed reaction sequence is given in 

Scheme II for hydrothermal conversion of the carboxylic acid to benzyl alcohol. 

    Analogous to Kolbe electrolysis reaction, it can be expected that carboxylate 

anion would undergo one-electron oxidation to form a carboxyl radical.  This is 

consistent with the observation that the hydrothermal reaction proceeds more rapidly 

when starting with the carboxylate compared to the acid.  The kinetics of one-electron 

transfer reactions are determined from the energy change associated with electron 

transfer, which in turn can be determined from the difference in the potentials for the 

appropriate redox couples.  Accurate measurements of the potentials cannot be made for 

many of the redox couples relevant to the copper (II) oxidations discussed here, since 

redox equilibrium cannot be attained due to rapid follow-up or competing reactions of 

one or both partners in the couples, especially for the organic species.  Nevertheless, 

some estimates can be found in the literature, and they are summarized in Table 5. 

    From Table 5 it can be seen that one-electron transfer from the carboxylate anion 

to the copper (II) ion (et1) is endothermic by ca. 1.9 eV.  Electron transfer from the 

benzyl radical to copper (II) is also endothermic (et2), but significantly less, ca. 0.7 eV.  

One-electron oxidation of benzyl radicals should thus be much faster than oxidation of 

the carboxylate anion.  Copper (II) is known to trap carbon-centered radicals efficiently 

(Sheldon and Kochi, 1981), and benzyl radicals in particular have been shown to be 

trapped efficiently even at room temperature in water (Turro et al., 1981).  Furthermore, 

evidence of trapping of benzyl radicals under hydrothermal conditions has also been 

collected in hydrothermal photolysis of DBK (see Chapter 3), where benzyl radicals were 

trapped with Cu (II) and generated the oxidized products such as benzyl alcohol, 
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benzaldehyde and benzoic acid.  The experimental observations are thus consistent with 

the rapid electron transfer from benzyl radicals to copper (II) under the experimental 

conditions. 

    As mentioned previously, decarboxylation of the carboxyl radical (–CO2) is 

expected to be very fast.  Addition of water to the benzyl cation (+H2O) should also be 

fast (Anslyn and Dougherty, 2005), as should the final deprotonation step (–H+) in hot 

water.  It thus suggests that the rate-determining step in Scheme II should be the first 

electron transfer reaction (et1) from the carboxylate to copper (II). 

    Estimation of the rate constant, ket, for this electron transfer process, can be 

attemped using Marcus electron transfer theory (Marcus and Sutin, 1985).  In Eqn. 4a, k 

is Boltzmann’s constant, h is Planck’s constant, and G‡ is the activation free energy for 

the electron transfer reaction.  The activation free energy is given by Eqn. 4b, where G 

is the free energy for the reaction, given by the difference in the redox potentials (Table 

5), and  is the reaction reorganization energy.  The reorganization energy is not 

precisely known, but for ionic reactions in water,  is presumably large, perhaps around 

40 kcal/mol (Eberson, 1988).  If using this value for the reorganization energy in Eqns. 4, 

ca. 0.01 hr-1 can be estimated for ket at the experimental temperature of 250°C.  Based on 

the observation of ca. 68% conversion of the phenylacetic acid in 0.17 hours, the actual 

rate constant was estimated as ca. 2 hr-1.  However, it is found that the calculated rate 

constant is very sensitive to the values of the redox potentials, and those in Table 5  
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almost certainly do not apply to the experimental conditions, particularly that for the 

Cu(I)/Cu(II) couple.  The Cu(I)/Cu(II) value in Table 5 is for fully solvated ions in water 

at room temperature, and at 250°C the copper (II) ions should be more associated with 

anions (e.g., Shock and Koretsky, 1993), which will probably raise the electron transfer 

rate constant.  Furthermore, if the Cu (II) is associated with the carboxylate anion, weak 

ionic bonds will be formed between them, and an additional increase in the rate constant 

would be expected, because the electron transfer across weak bonds should be faster than 

via bimolecular collision (Marcus and Sutin, 1985).  Hence, the rate-determining single 

electron transfer seems plausible on the reaction timescale. 

      Also consistent with rate-determining carboxylate one-electron oxidation is the 

observed substituent effects.  The carboxylate anion is not directly conjugated with the 

benzene ring, so benzene-ring substituents should not much influence the oxidation for 

the carboxylate anion.  One-electron oxidation of the phenylacetate anion should occur at 

the carboxylate rather than the benzene ring, since the carboxylate has a lower redox 

potential than toluene (Table 5), which can be a reasonable model for the benzene ring of 

phenylacetic acid.  Finally, the stoichiometry experiments suggest that two Cu (II) ions 

should be consumed to generate each benzyl alcohol, which is also consistent with 

Scheme II. 
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    Benzyl Alcohols.  One-electron transfer is a common mechanism for metal cation 

oxidations of organics (Sheldon and Kochi, 1981), and a mechanism for copper (II) 

oxidation of benzyl alcohol can be written based on one-electron transfer that is 

consistent with the experimental observations, Scheme III.  The oxidation potential for 

benzyl alcohol is not known, but the potential for a model mono-benzene substituted 

toluene has been reported to be ca. 2.6 V vs. Standard Hydrogen Electrode (SHE), Table 

5.  Electron transfer from benzyl alcohol to copper (II) is thus more endothermic than 

from the carboxylate anion.  Oxidation of benzyl alcohol can generate an aromatic radical 

cation.  Aromatic radical cations with benzylic hydrogens are known to be strong 

Brønsted acids (Nicholas and Arnold, 1982), so deprotonation should be rapid, to 

generate a benzylic radical (Scheme III).  As discussed previously, one-electron oxidation 

of benzyl radicals by copper (II) was rapid and efficient.  The product of one-electron 

oxidation of this benzyl radical is the protonated benzaldehyde, which will also 

deprotonate rapidly as a strong Brønsted acid.  The rate-determining step for Scheme III 

is thus the initial one-electron oxidation of the alcohol (et1). 

  Although an accurate oxidation potential for benzyl alcohol has not been 

documented, it is presumably larger than that for phenyl acetate because of the inductive 

effect of the oxygen in the -OH group.  Benzyl alcohol oxidation using copper (II) can 

thus be predicted to be slower than the corresponding reaction with phenyl acetate, and 

this is indeed observed in the hydrothermal experiments.  Furthermore, since oxidation of 

benzyl alcohol will generate a positive charge directly on the benzene ring, substituent 

effects are expected to be substantial, and this is also observed.  Electron-donating 

substituents greatly accelerated the reaction and the electron-withdrawing substituents 
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slowed the reaction down, again are consistent with Scheme III.  In addition, the 

measured reaction stoichiometry also supports the proposed oxidation scheme for benzyl 

alcohol. 

  Benzaldehydes.  A possible reaction sequence for hydrothermal conversion of 

benzaldehyde to benzoic acid with copper (II) is proposed in Scheme IV.  Oxidation of 

aldehydes to carboxylic acids in aqueous media almost always involves the intermediacy 

of a hydrate (Smith and March, 2007).  Hydrate formation occurs by addition of H2O to 

the C=O bond of the aldehyde (Scheme IV).  This addition is usually Brønsted acid or 

base catalyzed (Smith and March, 2007), and such catalysts are readily available in high 

temperature water where establishment of aldehyde/hydrate equilibrium should be rapid.  

Once formed, conversion of the hydrate to the benzoic acid could follow the same 

mechanism as oxidation of benzyl alcohol to the aldehyde (Scheme III), so the rate-

determining step in Scheme IV will again be expected to be the first one-electron 

oxidation reaction (et1).  However, there is a pre-equilibrium situation in this case, 

because the overall rate of the reaction will be modified by the equilibrium concentration 

of the hydrate.  Although little is known about the equilibrium concentration of hydrates 

under hydrothermal conditions, the equilibrium should lie on the side of the aldehyde in 

the case of benzaldehyde in water close to ambient conditions (Smith and March, 2007), 

and since dehydration seems to be favored at higher temperatures (Shock et al., 2013), a 

low equilibrium concentration of hydrate would be expected under the experimental 

conditions.  For this reason, oxidation of benzaldehyde will probably be slower than 

oxidation of benzyl alcohol, and this is indeed observed. 
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  Although the relative reactivities of the aldehyde and the alcohol seem consistent 

with the proposed Schemes, the experimental data did not provide direct evidence for the 

intermediacy of a hydrate.  Substituent effects were observed for the benzaldehyde 

oxidations.  Electron-donating substituents are expected to increase the rate of the first 

electron transfer reaction, as observed with the benzyl alcohols, however, the formation 

of hydrate should be less favorable for benzaldehyes that have electron-donating groups.  

In fact, in some oxidation reactions of benzaldehydes that involve hydrate formation, 

electron-donating substituents can decrease the reaction rate due to a lower equilibrium 

concentration of the hydrate (Stewart, 1964).  Wiberg and Richardson (1961) reported 

that donating substituents accelerated the oxidations of benzaldehydes using manganese 

(III or IV) ions as the oxidant, but the opposite effect was observed using chromic acid as 

the oxidant, which involves formation of a chromate ester but not via a one-electron 

oxidation process.  Therefore, according to Scheme IV, there will probably be opposing 

effects of substituents in the benzene ring of benzaldehydes.  The observed substituent 

effects for the benzaldehydes were in the same direction as for the benzyl alcohols, but 

the effects were diminished compared to the alcohols.  This observation seems consistent 

with the opposing substituent effects predicted by Scheme IV, but concreting the reaction 

mechanisms should require more information such as equilibrium concentrations of 

hydrates under the hydrothermal conditions. 
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5.4.  Conclusions 

 

    This work describes new oxidation reactions using the mild oxidant copper (II) 

under hydrothermal conditions.  The excellent conversions and high selectivity of these 

reactions have implications in both organic chemistry and geochemistry.  From a 

perspective of conventional organic chemistry, the reactions use an inexpensive and mild 

oxidant in water solvent, with no need for oxygen or any other additives.  From a 

geochemist perspective, the results suggest that the hydrothermal chemistry of copper and 

other metal ions may be involved in many other geological processes in addition to ore 

formation, such as controlling natural organic hydrothermal transformations.  Some 

remaining questions from this study may include understanding the scope of the copper 

(II) oxidation in more organic hydrothermal reactions, and to what extent other di- and 

tri-valent metal cations might do similar reactions.  More detailed investigation of 

reaction kinetics and studies of the possible role of hydrates in the aldehyde oxidations 

would be desirable.  Finally, a study of the speciation of copper (II) ions under the 

reaction conditions will also be necessary in order to develop a full understanding of the 

mechanisms of these interesting reactions.  
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Scheme I.  Proposed cupric ion hydrothermal oxidation pathway from phenylacetic acid 

through benzyl alcohol, benzaldehyde to benzoic acid in H2O at 250°C and 40 bar. 
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Scheme II.  Proposed reaction sequence for hydrothermal conversion of phenylacetic 

acid to benzyl alcohol with copper (II) ions.  Each single electron transfer reaction (et) 

results in conversion of one copper (II) ion into one copper (I) ion. 
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Scheme III.  Proposed reaction sequence for hydrothermal conversion of benzyl alcohol 

to benzaldehyde with copper (II) ions.  Each single electron transfer reaction (et) results 

in conversion of one copper (II) ion into one copper (I) ion. 
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Scheme IV.  Proposed reaction sequence for hydrothermal conversion of benzaldehyde 

to benzoic acid with copper (II) ions.  Each single electron transfer reaction (et) results in 

conversion of one copper (II) ion into one copper (I) ion. 
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Table 1.  Abundances of organic compounds and cupric ion from experiments with 

phenylacetic acids and sodium phenylacetate in H2O (2.0 mL) at 250°C and 40 bar in 

fused silica tubes.  Initial acid/acetate stands for the appropriate phenylacetic acid (non-

substituted or substituted) and sodium phenylacetate, final acid represents for the 

dichloromethane extracted phenylacetic acids after acidifying with one molar aqueous 

HCl, and final aldehyde means the corresponding benzaldehyde which was produced as 

the dominant product in these experiments.  ND means not detected (<1 µmol), and NA 

means not available.  To be noted that other products with small quantity such as benzyl 

alcohol and benzoic acid were observed but not included in this table. 

 

Starting 

Material 

Temp. 

(°C) 
Time 

(hrs) 

Conv. 

(%) 

Initial 

Acid/acetate 

(µmol) 

Initial 

Cu2+ 

(µmol) 

Final 

Acid 

(µmol) 

Final 

Cu2+ 

(µmol) 

Final 

Aldehyde 

(µmol) 

Mass 

Balance 

(%) 

Phenylacetic 

acid 
250 8 <5 100 0 97 0 ND 98 

Phenylacetic 

acid 
250 8 25 101 100 75.2 10 20.4 97 

Phenylacetic 

acid 
250 8 98 100 400 1.4 44 89 95 

Phenylacetic 

acid 
250 2 96 99 400 2.4 <10 97 99 

p-F-

phenylacetic 

acid 

250 2 97 99 400 2.9 <10 84 94 

p-tert-Butyl-

phenylacetic 

acid 

250 2 98 99 400 1.8 <10 92 95 

Sodium 

phenylacetate 
250 2 99 100 400 ND <10 96 102 

Phenylacetic 

acid 
250 0.5 98 100 400 1.2 <10 95 101 

p-F-

phenylacetic 

acid 

250 0.5 98 101 400 1.5 <10 94 97 

p-tert-Butyl-

phenylacetic 

acid 

250 0.5 97 100 400 2.1 <10 87 94 

p-CH3-

phenylacetic 

acid 

250 0.5 96 100 400 3.2 <10 92 97 
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Sodium 

phenylacetate 
250 0.5 99 100 400 1.1 <10 96 101 

Phenylacetic 

acid 
250 0.17 68 100 400 32.6 140 64.2 101 

p-F-

phenylacetic 

acid 

250 0.17 66 101 400 35.1 152 63.4 100 

p-tert-Butyl-

phenylacetic 

acid 

250 0.17 68 102 400 32.1 142 65.5 98 

p-CH3-

phenylacetic 

acid 

250 0.17 67 100 400 32.8 159 63.6 97 

p-CF3-

phenylacetic 

acid 

250 0.17 69 100 400 30.1 NA 62.5 96 

Sodium 

phenylacetate 
250 0.17 85 101 400 15.6 88 82.3 98 
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Table 2.  Abundances of organic compounds and cupric ion from experiments with 

benzyl alcohols in H2O (2.0 mL) at 250°C and 40 bar in fused silica tubes.  Initial and 

final alcohol stand for the appropriate benzyl alcohol (non-substituted or substituted), 

final aldehyde means the corresponding benzaldehyde which was produced as the 

dominant product in these experiments.  ND means not detected (<1 µmol), and NA 

means not available.  To be noted that other products with small quantity such as benzoic 

acid were observed but not included in this table. 

 

Starting 

Material 

Temp. 

(°C) 

Time 

(hrs) 

Conv. 

(%) 

Initial 

Alcohol 

(µmol) 

Initial 

Cu2+ 

(µmol) 

Final 

Alcohol 

(µmol) 

Final 

Cu2+ 

(µmol) 

Final 

Aldehyde 

(µmol) 

Mass 

Balance 

(%) 

Benzyl alcohol 250 1 41 100 100 58.1 22 36.7 92 

Benzyl alcohol 250 1 65 100 200 34.4 42 62.2 97 

p-CF3-benzyl 

alcohol 
250 1 27 100 200 68.7 NA 25.8 95 

p-CH3-benzyl 

alcohol 
250 1 92 100 200 8.2 NA 87.5 97 

p-CH3O-

benzyl alcohol 
250 1 99 100 200 ND NA 78.3 93 

Benzyl alcohol 250 0.5 18 100 100 81.8 68 16.8 98 

Benzyl alcohol 250 0.5 29 100 200 70.6 NA 27.2 97 

Benzyl alcohol 250 0.5 43 100 400 56.6 298 36.2 96 

p-CF3-benzyl 

alcohol 
250 0.5 17 100 200 82.6 NA 14.7 99 

p-CH3-benzyl 

alcohol 
250 0.5 78 100 200 31.7 NA 66.8 98 

p-CH3O-

benzyl alcohol 
250 0.5 99 100 200 ND NA 77.1 92 
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Table 3.  Abundances of organic compounds and cupric ion from experiments with 

benzaldehydes in H2O (2.0 mL) at 250°C and 40 bar in fused silica tubes.  Initial and 

final aldehyde stand for the appropriate benzaldehyde (non-substituted or substituted), 

final acid means the corresponding benzoic acid which was produced as the dominant 

product in these experiments.  NA means not available. 

 

Starting 

Material 

Temp. 

(°C) 

Time 

(hrs) 

Conv. 

(%) 

Initial 

Aldehyde 

(µmol) 

Initial 

Cu2+ 

(µmol) 

Final 

Aldehyde 

(µmol) 

Final 

Cu2+ 

(µmol) 

Final 

Acid 

(µmol) 

Mass 

Balance 

(%) 

Benzaldehyde 250 8 41 100 200 55.3 108 40.4 96 

p-CF3-

benzaldehyde 
250 8 29 100 200 71.6 136 25.5 98 

Benzaldehyde 250 6 38 100 400 61.3 316 37.1 98 

Benzaldehyde a 250 6 39 100 400 60.6 NA 38.2 99 

p-CF3-

benzaldehyde 
250 6 32 100 400 65.7 322 40.2 96 

p-CF3-

benzaldehyde a 
250 6 30 100 400 67.3 NA 29.8 97 

p-CH3-

benzaldehyde 
250 6 44 100 400 54.4 302 41.8 98 

p-CH3-

benzaldehyde a 
250 6 45 100 400 53.5 NA 42.4 97 

Benzaldehyde 250 2 12 100 200 87.2 174 10.4 97 

Benzaldehyde a 250 2 16 100 200 83.8 162 15.6 99 

Benzaldehyde 250 2 23 100 400 76.5 344 21.2 98 

a, Experiments were performed in the same run to ensure reproducibility. 
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Table 4.  Mole ratios and stoichiometric ratios between the consumed cupric ions and the 

consumed starting organic compounds in H2O (2.0 mL) at 250°C and 40 bar in fused 

silica tubes.  The starting moles of the organic compounds were all ca. 100, whereas the 

starting moles of cupric ions were varied between 100 and 400 in these hydrothermal 

experiments.  The stoichiometric ratios were estimated as 4, 2, and 2 for the reactions 

between phenylacetic acid and Cu2+, benzyl alcohol and Cu2+, and benzaldehyde and 

Cu2+, respectively. 

 

Starting 

Material 

Temp. 

(°C) 

Time 

(hrs) 

Conv. 

(%) 

Consumed 

Cu2+ 

(µmol) 

Consumed 

Organics 

(µmol) 

Consumed 

mole ratio 

Estimated 

Stoichiometric 

ratio 

Acid/acetate 

Phenylacetic 

acid a 
250 8 25 90 25.8 3.5 4 

Phenylacetic 

acid b 
250 8 98 356 98.6 3.6 4 

Phenylacetic 

acid b 
250 0.17 68 260 67.4 3.9 4 

p-F-

phenylacetic 

acid b 

250 0.17 66 248 65.9 3.8 4 

p-tert-Butyl-

phenylacetic 

acid b 

250 0.17 68 258 69.9 3.7 4 

p-CH3-

phenylacetic 

acid b 

250 0.17 67 241 67.2 3.6 4 

Sodium 

phenylacetate b 
250 0.17 85 312 85.4 3.7 4 

Alcohol 

Benzyl alcohol a 250 1 41 78 41.9 1.9 2 

Benzyl alcohol c 250 1 65 158 65.6 2.4 2 

Benzyl alcohol a 250 0.5 18 32 18.2 1.8 2 

Benzyl alcohol b 250 0.5 43 102 43.4 2.3 2 

Aldehyde 

Benzaldehyde c 250 8 41 92 44.7 2.1 2 
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p-CF3-

benzaldehyde c 
250 8 29 64 28.4 2.3 2 

Benzaldehyde b 250 6 38 84 38.7 2.2 2 

p-CF3-

benzaldehyde b 
250 6 32 78 34.3 2.3 2 

p-CH3-

benzaldehyde b 
250 6 42 98 45.6 2.1 2 

Benzaldehyde c 250 2 12 26 12.8 2.0 2 

Benzaldehydec,d 250 2 16 38 16.2 2.3 2 

Benzaldehyde b 250 2 23 56 23.5 2.4 2 

a, Experiments were started with 1 equivalent of copper (II) chloride;  

b, Experiments were started with 4 equivalents of copper (II) chloride; 

c, Experiments were started with 2 equivalents of copper (II) chloride; 

d, Experiments were performed in the same run to ensure reproducibility. 
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Table 5.  Estimated redox potentials for oxidation of the carboxylate anion, the benzyl 

radical, toluene, and copper (I) ion that are relevant to single electron transfer processes.  

The redox potentials are relative to the standard hydrogen electrode (SHE) as a reference. 

 

Structure 
   

Cu(I) / Cu(II) 

Eredox 

(V vs. SHE) 
~2.1 a ~0.9 b ~2.6 c ~0.2 d 

 

a See reference (Eberson, 1988);  

b See reference (Wayner and Griller, 1985);  

c See reference (Howell et al., 1984); 

d See reference (James and Williams, 1961). 
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CHAPTER 6: 

SUMMARY OF CHAPTERS AND OUTLOOK FOR FUTURE WORK 

 

6.1.  Summary of current work 

 

    One of the main themes of the work described in this dissertation is the use of 

conventional mechanistic and physical organic techniques to provide insight into 

geochemically relevant hydrothermal organic transformations.  As detailed in the 

previous Chapters, model organic structures have been used as tools to probe 

hydrothermal reaction mechanisms, dibenzylketone (DBK) in particular.  The benzylic 

positions of DBK stablize reaction intermediates which facilitate fragmentation and 

formation of coupling products.  Ketones are not as abundant as alkanes/alkenes and 

carboxylic acids in natural systems, but they link these functional groups via functional 

group interconversions (e.g., Seewald, 2003).  A detailed experimental study of DBK in 

hydrothermal water alone identified both reversible and irreversible reactions for this 

specific ketone.  Many of the products are consistent with previously proposed reaction 

schemes, but some are different.  For DBK, reversibility was observed across the ketone, 

alcohol, alkene and alkane functional groups within a single chemical structure family for 

the first time, in support of the Seewald reaction scheme (Figure 1).  Irreversible bond 

fragmentation occurred to generate a range of smaller fragmentation and larger coupling 

products.  Nevertheless, no carboxylic acids were observed in water alone for 

hydrothermal reaction of a ketone that is specifically designed to facilitate bond 

fragmentation, at least under the conditions of the experiments described in this thesis. 
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    The complexity of hydrothermal organic products has always been a challenge for 

organic geochemists, and DBK is not an exception in this regard.  Chapter 3 of this thesis 

describes the use of hydrothermal photochemistry as a novel tool for organic 

geochemistry, which was particularly useful in unraveling the complex reaction pathways 

for DBK.  For ketones, photochemistry represents a good method for generating radical 

species.  Conducting photolysis of DBK under hydrothermal allowed the primary radical 

products of conventional hydrothermolysis to be isolated.  Photolysis followed by 

thermolysis further allowed the follow-up ionic reactions to be studied, which is not 

possible in pure hydrothermal reactions.   

    Having mapped out the detailed reaction pathways, the hydrothermal chemistry of 

DBK in water alone represented a firm foundation for studying the interactions between 

ketones and inorganic species, specifically minerals and metal ions, under hydrothermal 

conditions.  Some dramatic and selective mineral effects were observed for the model 

ketone DBK.  The iron-bearing oxide minerals magnetite and hematite had a very 

different effect than the iron sulfide mineral troilite.  Magnetite and hematite were found 

to facilitate carbon-carbon bond breaking at the benzylic position of DBK, so that bond 

fragmentation and radical coupling products were predominant with these minerals.  

Additionally, small quantities of carboxylic acids were found with the oxide minerals, 

possibly suggesting that mineral interactions are required for formation of these 

functional groups.  Troilite also increased ketone hydrothermal reactivity, but in this case 

reduced products formed via functional group interconversions were the predominant 

products.  Compared to water alone, the reduced alcohol, alkene, and alkane products 

were formed abundantly.  In addition to solid minerals, the aqueous metal ion Cu2+ was 
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found to be a strong hydrothermal oxidant for various organic functional groups.  Clean 

and rapid reactions that converted alcohols to aldehyde and aldehydes to carboxylic acids 

were observed.  Very rapid decarboxylation accompanied by oxidation of phenylacetic 

acids was also observed in cupric hydrothermal solutions.  These results are surprising 

since the cupric ion is generally considered to be unreactive towards organic structures at 

ambient.  This work points towards possible extensions of hydrothermal geochemistry 

into conventional organic chemistry. 

 

6.2.  What we learned from the hydrothermal organic reactions  

 

    Two different kinds of natural hydrothermal organic environments can be 

envisioned.  One includes long-term transformations that allow organic matter to reach 

metastable equilibria in a geological time scale, examples include sedimentary basins 

where the reactions are under thermodynamic control.  The other includes shorter-time 

transformations such as might occur upon the initial mixing of organic matter with 

hydrothermal fluids, where the reactions may be under kinetic control.  The work 

described in this thesis focused on shorter timescale experiments in order to identify 

primary reaction products and to allow mechanistic analysis, and thus may be more 

relevant to the second scenario.   

In the Seewald scheme (Figure 1), the interconversions between alkanes, alkenes, 

alcohols, ketones, and carboxylic acids were proposed.  Much of what was known about 

the various functional group interconversions came from the work of Siskin and 

Katrizky, McCollom and Seewald and others, as described in the preceding Chapters. 
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Many individual reactions have previously been described, but little was known about the 

relative rates for the various reactions.  Alcohols were known to dehydrate quickly under 

hydrothermal conditions (e.g., Akiya and Savage, 2002), but exactly how fast compared 

to the other reactions of the Seewald scheme was not clear.  The kinetic study of 

hydrothermal decomposition of model ketone DBK confirmed the order of the functional 

group interconversions should be that alcohol dehydration was faster than alkene 

reduction, which was faster than ketone reduction, which was comparable to carbon-

carbon bond cleavage, in water alone at 300°C and 700 bar (Chapter 2).  These results 

suggest that under conditions of kinetic control, alcohol and alkene concentrations will be 

low due to high reactivity, and that alkane should accumulate, as observed.  An additional 

important observation, however, is that a wide range of conjugated and larger structures 

formed by radical coupling were observed in DBK irreversible carbon-carbon bond 

cleavage reactions, and their abundances increased as the reaction progressed.  The 

formation of conjugated structures is accompanied by elimination of water (the 

dehydration mentioned above) and also molecular hydrogen.  Much of the molecular 

hydrogen is presumably consumed to generate the large quantities of fragmentation 

product (e.g., toluene) to maintain a hydrogen balance within the organic system.  At 

longer reaction times it is clear that large conjugated structures with multiple benzene 

rings become the major product type, structures that are reminiscent of kerogen and coal 

structures rather than alkanes and carboxylic acids.   

The results in the mineral experiments, however, point to large influences on 

chemical reactivity compared to water alone.  Even on the timescales of the current 

experiments, which were designed to be short to identify primary products, the starting 
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material conversions and product distributions were found to be quite different in some 

cases.  Extrapolation to longer timescales will amplify these differences, so that on 

geochemically relevant timescales the reactions in water alone could be essentially 

irrelevant.  What is also learned from this work is that specific minerals or metal ions can 

promote bond cleavage reactions via surface catalysis, reduce organic structures with 

multiple bonds, and oxidize different functional groups in hydrothermal solutions.  In 

other words, it will be necessary to take into account the mineral environment when 

considering geochemically relevant hydrothermal organic reactions.  However, this does 

not mean that water alone studies are not important, because without them, the 

interpretation of organic reactivity in the presence of additives would be very difficult.  

Further investigations into organic-mineral/metal hydrothermal interactions are clearly 

needed to allow development of predictive models, as detailed in the next section.  

   

6.3.  Recommendation for future work 

 

The work described in this thesis contributes to an emerging area of organic 

geochemistry, characterized by the transition from surveys of reactions products to 

detailed studies of reaction mechanisms.  A key to developing a comprehensive 

understanding of hydrothermal organic transformations is uncovering mechanisms that 

will allow reactions to become more predictable.  The combination of model organic 

systems with mechanistic and physical organic chemistry methodologies appears to be a 

useful tool in this regard.  Based on this thesis work, some suggested topics for future 

studies are summarized below. 
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(1) Dibenzylketone has served as a useful model compound to study hydrothermal 

chemistry of ketones.  DBK, however, has a special structure with two benzylic carbons 

that facilitates bond-breaking.  In natural systems, the mechanisms for ketone reactions 

may be more diverse than those discovered for DBK.  More diverse ketone structures 

should be investigated in terms of relative hydrothermal reactivity and stability.  

Aliphatic ketones such as dodecanone and cyclohexanone would be good candidates 

since they do not have reactive benzylic positions and should be amenable to the current 

analytical procedures. 

(2) Carbon-carbon bond and carbon-hydrogen bond cleavage is clearly an 

important hydrothermal reaction pathway for the ketones included in this study.  Iron 

oxide minerals have been found to exhibit surface-catalytic effects in promoting these 

reactions.  From a mechanistic perspective, however, it is not clear exactly how the bonds 

are broken on the mineral surface.  A very large number of organic reactions that undergo 

heterogeneous catalysis, such as C-H activation, have been described in the literature 

(e.g., Labinger and Bercaw, 2002; Gallezot, 2003).  Review articles on heterogeneous 

catalysis, however, almost uniformly point to the difficulties in determining detailed 

mechanisms for reactions that occur on surfaces (e.g., Smith and Notheisz, 1999).  A 

common simple approach suggested by the heterogeneous catalysis literature to quantify 

simple C-H bond breaking processes is to measure the rate of isotope exchange for 

reactions performed in deuterated water (D2O).  An obvious starting point would be to 

compare the rates of exchange in structures with C-H bonds of differing strengths in 

hydrothermal D2O, to see if this, or other structural features such as the ability to adsorb 

to the mineral surface are the critical factors controlling bond activation. 
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(3) Hydrothermal reduction of ketones to alkanes has been demonstrated for DBK 

in the presence of the sulfide mineral troilite.  Other transition metal sulfide minerals, 

such as pyrite (FeS2), sphalerite (ZnS), NiS, and CoS, may exhibit similar reducing 

abilities since they can presumably also produce dissolved sulfur species such as H2S and 

S2- that can act as reducing reagents.  Heterogeneous catalysis using sulfide minerals of 

hydrothermal carboxylation and carbonyl insertion with alkylthiol compounds has been 

well documented (e.g., Huber and Wachtershauser, 1997; Cody et al., 2001, 2004).  It 

would be interesting to systematically study these sulfide minerals as potential 

hydrothermal reducing agents for ketones, and to differentiate surface and solution phase 

effects by varying surface area to compare with existing data from this thesis and 

elsewhere.   

(4) Hydrogenation of alkenes and dehydrogenation of alkanes are perhaps among 

the least understood hydrothermal reactions from a mechanistic perspective, compared to 

hydration of alkenes and dehydration of alcohols that are much better mechanistically 

studied under hydrothermal conditions.  Hydrogenation of ketones and alkenes are of 

interests because they are expected to be widespread in reducing geological 

environments.  Both reactions involve molecular hydrogen incorporation by breaking a π-

bond and forming a new C-H σ-bond.  Just as the iron oxides minerals can active C-C 

bond cleavage reactions (see Chapter 4), the minerals could potentially catalyze the 

addition of hydrogen to C=C and C=O bonds on the mineral surface.  Similar to 

industrial hydrogenation of alkenes that uses common solid catalysts such as palladium 

and the Lindlar catalyst (Smith and March, 2007), minerals seem likely to form surface-H 

and surface-C bonds that will lower the activation energy for hydrogen addition across 
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the double bonds.  So it would be worth exploring the catalytic effects of iron oxides 

minerals on hydrogenation of model alkene and ketone compounds, such as stilbene and 

cyclohexanone, in H2(aq)-rich hydrothermal solutions.  

(5) Copper (II) is found to be a surprisingly useful oxidizing reagent for organic 

structures under hydrothermal conditions, as described in Chapter 5, so further 

investigation on the scope and mechanisms of these reactions should be continued.  

Additional alcohol, aldehyde, and carboxylic acid structures (e.g., cyclohexanol, 

acetaldehyde, and hydrocinnamic acid) will be useful to explore copper (II) hydrothermal 

oxidations.  More detailed kinetic measurements will also be useful to verify the 

mechanisms that are proposed in Chapter 5.  Specifically, more accurate and systematic 

analyses of substituent effects by construction of Hammett plots for compounds with a 

benzene ring (Johnson, 1973) is a classic textbook mechanistic approach that has recently 

been applied to hydrothermal decarboxylations (Glein, 2012).  The construction of 

Hammett plots requires absolute rate constant data for a series of related organic 

reactions with different electron withdrawing and donating groups, which will require 

more detailed kinetic studies of the copper-organic hydrothermal reactions.  In addition to 

copper, other metal ions with similar redox potentials such as the ferric ion could also be 

good candidate for such hydrothermal organic redox transformations.  The experiments 

described in Chapter 5 could serve as a basis for a systematic study of metal ions of 

varying redox potentials in hydrothermal organic transformations. 
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Figure 1.  Schematic illustration of functional group interconversions that connect simple 

hydrocarbons and carboxylic acids, proposed by Seewald (2003) for hydrothermal 

organic reactions. 
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