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ABSTRACT 

 In order to achieve higher gas turbine efficiency, the main gas temperature 

at turbine inlet has been steadily increased from approximately 900C to about 

1500C over the last few decades. This temperature is higher than the maximum 

acceptable temperature for turbine internals. The hot main gas may get ingested 

into the space between rotor and stator, the rotor-stator disk cavity in a stage 

because of the pressure differential between main gas annulus and the disk cavity. 

To reduce this ingestion, the disk cavity is equipped with a rim seal; additionally, 

secondary (purge) air is supplied to the cavity. Since the purge air is typically bled 

off the compressor discharge, this reducing the overall gas turbine efficiency, 

much research has been carried out to estimate the minimum purge flow 

necessary (cw,min) for complete sealing of disk cavities.  

 In this work, experiments have been performed in a subscale single-stage 

axial turbine featuring vanes, blades and an axially-overlapping radial-clearance 

seal at the disk cavity rim. The turbine stage is also equipped with a labyrinth seal 

radially inboard. The stage geometry and the experimental conditions were such 

that the ingestion into the disk cavity was driven by the pressure asymmetry in the 

main gas annulus. In the experiments, time-averaged static pressure was measured 

at several locations in the main annulus and in the disk cavity; the pressure 

differential between a location on the vane platform close to lip (this being the rim 

seal part on the stator) and a location in the 'seal region' in the cavity is considered 

to be the driving potential for both ingestion and egress. Time-averaged 
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volumetric concentration of the tracer gas (CO2) in the purge air supplied was 

measured at multiple radial locations on the stator surface. The pressure and 

ingestion data were then used to calculate the ingestion and egress discharge 

coefficients for a range of purge flow rates, employing a simple orifice model of 

the rim seal. For the experiments performed, the egress discharge coefficient 

increased and the ingestion discharge coefficient decreased with the purge air 

flow rate. A method for estimation of cw,min is also proposed. 
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NOMENCLATURE 

a: area integral [Fig. 4.2] 

Agap: area of rim seal gap over entire circumference (m
2
) 

C: CO2 time-averaged mass concentration (%) 

Cd: discharge coefficient 

Cdi, Cde: discharge coefficients for ingestion, egress through rim seal 

Cvax: vane axial chord length 

cw: dimensionless mass flow rate of purge air, =             

cw,egress: dimensionless mass flow rate of egress air, =              

cw,fd: dimensionless free disk pumping mass flow rate of air, =        
    

cfm: cubic feet per minute 

    mass flow rate of air (kg/s) 

Gc: dimensionless rim seal radial gap, =sc/Rh 

p: pressure differential between main gas path and rim cavity (Pa) 

Q: volumetric flow rate (m
3
/s, cfm) 

r: radial coordinate with origin at rotor/stator centerline 

r: position vector 
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Rh: vane/blade hub radius (m) 

    
: main air flow Reynolds number based on Rh,            

Revax: main air flow Reynolds number based on Cvax,               

Reφ: rotor disk rotational Reynolds number,      
    

rpm: revolutions per minute 

s: axial gap between rotor and stator disks (mm) 

sc: rim seal radial gap (mm) 

U: blade hub speed (m/s) 

Vax: mixed-mean axial velocity of main air in annulus (m/s) 

Vorifice: velocity of fluid through an orifice (m/s) 

Vrim seal: velocity of air through the rim seal gap (m/s) 

η: time-averaged sealing effectiveness 

     : turbulent flow parameter, =      
     

μ: dynamic viscosity of air (kg/m-s) 

: density (kg/m
3
) 

φ: azimuthal coordinate () 

φ': nondimensionalized azimuthal coordinate, =        
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α:               

τ:             

Ω: rotor disk speed 

SUBSCRIPTS 

1: location of static pressure measurement at 1 mm upstream of seal lip on vane 

platform 

2: location of static pressure measurement in the disk cavity 

egress: egress 

ing: ingestion 

purge: purge air 

vp: one vane pitch 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Gas turbines use air as the working fluid and extract energy from 

combustion gas flow. A gas turbine is comprised of three main components: 

compressor, combustor and turbine (Fig. 1.1). The incoming air is compressed 

before entering the combustor where it is mixed with fuel and the air-fuel mixture 

is ignited. Energy is extracted from the high pressure, high temperature 

combustion gas – a portion of which drives the compressor. Higher gas 

temperature at turbine inlet results in higher overall efficiency. Over the past 

decades, the turbine inlet temperature has risen from about 900C to 1500C 
[1]

.  

Gas turbine operation at such high temperature, which may be well above the 

melting point of turbine component material, has been possible due to effective 

internal cooling systems. 

 

Fig. 1.1 Main Components of a Gas Turbine 
[2]

 

 Figure 1.2 represents the internal secondary air system of a hypothetical 

gas turbine. The high-temperature gas exiting from the combustion chamber flows 
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over vanes and blades in the turbine section and may get transported into the 

wheelspace (disk cavity) between rotor and stator; this phenomenon is termed 

'ingestion'. This ingestion may lead to overheating of turbine internals, especially 

the rotor, and reduction in its durability. Ingestion of hot gas from the main 

annulus into the disk cavity can be rotationally driven as well as main annulus 

flow driven. The latter is caused by the circumferential pressure asymmetry in the 

annulus and is the dominant mechanism of ingestion at engine operating 

condition.  

Ingestion of hot main gas is typically countered by seals installed at the 

rim of stator and rotor and supply of secondary (purge) air bled from the 

compressor to the disk cavities.   

 

Fig. 1.2 Schematic Diagram - Gas Turbine Internal Secondary Air System 

(Courtesy: The Jet Engine, 1986) 

 

 Excessive use of purge air leads to a reduction in gas turbine efficiency. 

On the other hand, insufficient supply of purge air leads to higher ingestion and 
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consequent overheating of the rotor. As such, an important objective of the gas 

turbine designer is to use the purge air optimally. To estimate the minimum purge 

flow necessary for complete sealing of disk cavity, a sound understanding of fluid 

dynamics in the disk cavity as well as in the main gas path is required.  

1.2 Motivation and Overview of the Present Work 

 Experiments have been performed on a subscale single-stage axial turbine 

featuring vanes, blades, an axially-overlapping radial-clearance rim seal and a 

labyrinth seal radially inboard within the disk cavity. The most important use of 

subscale experiments is to obtain bench-mark quality data on basic processes to 

validate CFD (in-house, commercial) codes. 

 The description of this work is organized as follows: 

Chapter 1:  briefly explains the role of gas turbine in an air-breathing engine 

and addresses the problem of ingestion which forms the basis of 

the present work. 

Chapter 2:  provides a brief discussion of the fluid dynamics in a rotor-stator 

disk cavity and cites the major contributions made in the field of 

ingestion research.  

Chapter 3:  describes the experimental facility and the procedure of 

experiments. 
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Chapter 4:  provides detailed derivation of orifice model equations for the 

calculation of ingestion and egress discharge coefficients and 

estimation of cw,min. 

Chapter 5:  contains the experimental results and their discussion. 

Chapter 6:  presents concluding remarks and provides suggestions for future 

research.  
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CHAPTER 2 

LITERATURE REVIEW 

 Theoretical, experimental, and computational research aimed at 

understanding the factors that influence ingestion into rotor-stator disk cavity of 

gas turbine engines have been carried out for many decades. Some of the 

important efforts are briefly discussed in the following. 

2.1 Fluid Dynamics in Rotor-Stator Disk Cavity 

Without Purge Air Flow 

 In 1951 and '53, theories were proposed by Batchelor 
[5]

 and Stewartson 

[6]
, on the fluid flow field in a rotor-stator disk cavity. According to Batchelor, a 

core of fluid in the disk cavity rotates at an angular velocity between zero and the 

rotational speed of rotor disk, Ω; also boundary layers exist on both rotor and 

stator surfaces. 

 Figure 2.1(a) shows the Batchelor model for the fluid flow. The ambient 

air from a quiescent environment is drawn into the disk cavity due to disk 

pumping effect, and flows radially inward in the stator boundary layer, from 

where it gets transported into the rotating core. The fluid in the rotor boundary 

layer is entrained from the rotating core; the flow is in radially outward direction. 

Another example of Batchelor flow model is shown in Fig. 2.1(b), for an enclosed 

rotor-stator disk cavity.  
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(a) 

 

(b) 

Fig. 2.1 Batchelor's Flow Model for a Rotor-Stator Disk Cavity (a) Open to 

Quiescent Atmosphere, (b) Completely Sealed Off From the Ambient (Enclosed 

Cavity) 
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Fig. 2.2 Nondimensional Tangential and Radial Velocity Profiles in a Rotor-

Stator Disk Cavity; (a) and (b): Batchelor's Model, (c) and (d): Stewartson's 

Model 

 

 In the Stewartson model, a boundary layer exists on the rotor surface in 

which the fluid tangential velocity varies from Ωr at the rotor surface to zero at 

locations far from the rotor. It can be seen in Fig. 2.2(a), that the core rotates at a 

uniform tangential velocity whereas Fig. 2.2(c) implies no core rotation exists 

between rotor and stator. On the other hand, in Fig. 2.2(b), negative radial 

velocities in stator boundary layer indicates ingestion of air from the ambient into 

the disk cavity, whereas Fig. 2.2(c), (d) indicate negligible (or very low) 
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tangential and radial fluid velocities near the stator surface; thus no boundary 

layer exists near the stator surface according to Stewartson flow model. 

 It has been shown later experimentally that the fluid flow field in such a 

rotor-stator disk cavity (Fig. 2.1(a)) conforms to the Batchelor model; the 

Stewartson model is valid only for the rotation of a free disk in a quiescent 

environment.  

 Daily and Nece (1960) 
[7]

 conducted experiments in an enclosed rotor-

stator disk cavity and identified four flow regimes based on the gap ratio (G = 

s/Rh) and rotational Reynolds number (Reφ). Figure 2.3 shows the four different 

flow regimes:  

Regime [1]: Laminar flow for small gap ratio; merged boundary layers 

Regime [2]:  Laminar flow for large gap ratio; when the axial gap is greater than 

the collective thickness of boundary layers on rotor and stator 

Regime [3]: Turbulent flow for small gap ratio; for higher Reφ, the flow in the 

small space between rotor and stator becomes turbulent; merged 

boundary layers 

Regime [4]: Turbulent flow for large gap ratio; separate rotor and stator   

  boundary layers 
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With Purge Air Flow 

 The supply of purge air to a disk cavity implies that the net radial flow 

from the cavity is radially outward. However, this does not imply that all of the 

flow is radially outward. If the disk pumping flow rate is greater than the purge air 

flow rate, the fluid in the external environment will be drawn into the disk cavity 

to satisfy the continuity equation: 

                                                                                                     

                                                                                      

 

Fig. 2.3 Flow Regimes Proposed by Daily and Nece – Image Source: 

P.R.N. Childs 
[8]
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Note that all the terms in Eq. 2.2 will have positive values. A qualitative 

representation of flow inside a disk cavity with an axially-overlapping radial-

clearance seal is shown in Fig. 2.4.  

 

Fig. 2.4 Schematic of Flow Inside a Rotor-Stator Disk Cavity With an Axially-

overlapping Radial-clearance Rim Seal With Representation of Seal and Mixing 

Regions 
[9] 

2.2 Ingestion into Disk Cavity 

 Bailey and Owen 
[10, 11]

 were among the first to address the problem of rim 

seal ingestion into the disk cavity. They studied the effect of disk-pumping on the 

fluid flow in a shrouded disk system (quiescent environment, vanes and blades 

absent) with a radial outflow of purge air 
[11]

. The equation of motion for an 

inviscid core of fluid rotating in the cavity was used: 
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 Equation 2.3 was integrated from a radial position within the disk cavity to 

its outer radius to obtain the following equation, 

       
      

                                                                       

where,     is a non-dimensional quantity representing the pressure differential 

between the external environment and a location in the cavity. The authors stated 

that       implies 'zero ingestion'. Using this concept and Eq. 2.4, the 

following correlation was proposed; it was widely accepted: 

                                                                                         

 Phadke and Owen published a series of three papers 
[12-14]

 which described 

experiments conducted with seven different rim seal geometries (no vanes and 

blades) under different external conditions, viz., quiescent environment 
[12]

, quasi-

axisymmetric 
[13]

 and non-axisymmetric 
[13]

 circumferential pressure distribution 

in main annulus.  

 In part-I 
[12]

, flow visualization, pressure measurement and concentration 

measurement were used to study the mechanism of ingestion into the rim cavity 

and to find the dependence of cw,min on Gc and Reφ. It was concluded that the rim 

seal configurations could be ranked on the basis of cw,min. For any given Reφ, 

cw,min was higher for higher values of gap ratios; cw,min was found to be 

proportional to Reφ for any particular gap ratio.  
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 In part-II 
[13]

, the flow in the annulus was called 'quasi-axisymmetric' as 

some asymmetry was observed because of misalignment in the annulus. The 

authors identified two flow regimes - rotationally dominated ingress (RI) 
[38]

 and 

external flow dominated ingress (EI)  
[35]

. RI ingress was observed at low values 

of     
     (cw,min decreased with     

) and EI ingress was observed at high 

values of     
     (cw,min increased with     

), Fig. 2.5.  

 In part-III 
[14]

, for external flow dominated regime, cw,min was related to the 

circumferential pressure asymmetry in the main gas annulus       : 

                
                                                                      

where,      
        

 

   ,       :  being the difference between the maximum 

and minimum pressures measured at 27 circumferential locations spread over 

360. For four different rim seal configurations,        was plotted versus 

        
    (Fig. 2.6), and a linear-fit was obtained adopting K = 0.6.  

 For given main air and purge air flow rates, ingestion through different 

rim seal configurations will be different; more complex the flow path near the rim 

seal, the lower will be cw,min 
[15, 16]

. 

 Ko 
[17] 

investigated the flow in a rotor-stator cavity at engine conditions, 

by numerically solving the elliptic form of Reynolds-Averaged Navier Stokes 

(RANS) equation for compressible turbulent flow. The gap recirculation zone 

(GRZ) formed below the shroud axial gap was considered to be the main cause of  
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Fig. 2.5 Dependence of cw,min on            and     
       [13] 

 

Fig. 2.6 Linear-Fit for Different Values of cw,min for Four Rim Seal 

Configurations 
[14]
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(i) transport of thermal energy from the main flow to the turbine blade root and 

(ii) the large cavity recirculation zone formed in the disk cavity. 

 Daniels et. al 
[18]

 examined four different rim seal configurations, viz. axial 

gap, radial gap (with axial overlap - 2 configurations) and radial gap (without 

axial overlap). Ingestion of mainstream gas, being a mass transfer process was 

investigated using mass transfer analogy 
[42]

. This analogy states that for a 

turbulent flow of a constant property fluid, the mass transfer equation can be 

changed to heat transfer equation, if the turbulent Schmidt number is equal to the 

turbulent Prandtl number in the velocity field. The above approximation was 

considered reasonable for the case where molecular weight of trace element used 

was close to that of the main flow. The four rim seal configurations were 

examined using this analogy and the authors observed that the swirl level of the 

flow above the rim seal had very little influence on ingestion; also decreasing the 

seal radial clearance resulted in better sealing than increasing the axial overlap.   

 Chew et. al 
[19]

 examined an axial-clearance rim seal and two radial-

clearance rim seals in the absence of external flow in a study of rotationally-

dominated ingestion. A mathematical model 
[20]

 developed earlier was used to 

obtain cw,min; the results compared well with their experiments. However for 

axial-clearance rim seals with lower values of Gc, significant deviations were 

observed between their results and those published by Phadke et. al 
[15]

. 

 Chew et. al 
[21]

 carried out experiments in a model single-stage axial 

turbine featuring vanes and axial-clearance rim seal. CFD simulation was also 
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performed in which the vanes were not modeled; the flow condition near the rim 

seal was matched to the experiments by adjusting the inlet condition using an 

approximate analytical solution for a potential flow having periodic 

circumferential pressure variation. At higher purge air flow rates, the CFD 

simulations failed to replicate the extent of ingestion measured in experiments; a 

more detailed modeling of the main annulus flow was recommended. Discharge 

coefficient values were reported for a range of purge air flow rates for the case 

with no disk rotation and no vanes.  

 Johnson et. al 
[22] 

provided a list of factors responsible for mainstream gas 

ingestion based on the then available literature. The mechanisms were - a) disk 

pumping, b) circumferentially periodic vane/blade pressure field, c) existing 

asymmetries in the rim seal geometry, d) turbulent transport in the platform/outer 

cavity region, e) flow entrainment, and f) time-dependent flow structures within 

the cavity.  

 Bayley and Childs 
[23]

 used Eq. 2.3 to understand the flow within the disk 

cavity of a turbine stage with axial-clearance seal, as well as to predict the 

ingestion rates for externally and rotationally induced ingestion. The critical 

parameters for ingestion were: a) tangential velocity fraction (Vφ/Ωr), b) ingestion 

discharge coefficient, and c) egress discharge coefficient. The discharge 

coefficients were found using others' experimental data. The ingestion discharge 

coefficient was found to be strongly dependent on the purge air flow rate whereas 

the egress discharge coefficient did not vary much with the purge air flow rate.  
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 Hills et. al 
[24]

 developed an orifice model of ingestion due to pressure 

asymmetries in the main gas flow annulus assuming that the length scale for 

circumferential variation in the main gas path is much greater than the seal 

clearance, so that the flow across the seal can be treated as locally two-

dimensional. This model was used at locations over the circumference and the 

overall inflow and outflow rates of air were obtained by integration. The authors 

conducted experiments on a single-stage axial turbine with vanes and rotor with 

aluminum pegs (representing blades) attached to its periphery. A commercial 

CFD code, FLUENT5, was used to solve compressible, 3D, unsteady, RANS 

equations. The main factors identified for ingestion were: a) the unsteadiness in 

the main gas path created by the pegs, and b) swirl in the main gas annulus. The 

conclusion of Hills et. al, that the ingestion into the disk cavity depends on the 

unsteadiness in the main gas flow conforms to an earlier study conducted by Roy 

et. al at Arizona State University 
[25]

. 

  Roy et. al 
[25]

 performed experiments in a model single-stage axial turbine 

featuring vanes and blades to measure time-averaged and unsteady pressure 

fields. It was found that 3D steady simulations failed to predict ingestion at 

conditions where ingestion was found by tracer gas concentration measurements. 

The authors concluded that the unsteady pressure field due to vane-blade 

interaction was one of the reasons for main gas ingestion 
[25, 26]

. A 3D unsteady 

simulation was recommended for accurate prediction of ingestion.  
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 Roy et. al 
[27-32]

 examined various rim seal configurations using 

experimental methods such as, PIV, tracer gas concentration measurement, time-

averaged static pressure measurement, and unsteady pressure measurement. The 

objectives were to study the flow field in the rotor-stator disk cavity, interaction 

of cavity egress flow with the main flow, characterization of ingestion through  

rim seal for a range of purge air flow rate.  

 Gentilhomme et. al 
[33]

 conducted experiments on a model single-stage 

axial turbine featuring vanes, blades, and a radial-clearance rim seal with axial 

overlap. CFD simulations were also carried out (without purge air flow) for three 

cases: a) with vanes and no blades, b) with blades and no vanes, and c) with vanes 

and blades. It was found that the k- turbulence model overpredicted the pressure 

asymmetry amplitude whereas the Spalart-Allmaras model provided satisfactory 

results. The pressure asymmetry levels obtained from CFD simulations were 

compared with the experiments, and then used in the 'ingestion model' developed 

by Hills et. al 
[24]

. The authors concluded that at lower purge air flow rates, the 

ingestion of main annulus air leads to increased level of swirl in the rim cavity 

resulting in high pressure gradients in the cavity.  

 Bohn et. al 
[34]

 carried out experiments on a 1.5-stage model axial turbine 

equipped with vanes and blades and examined two rim seal configurations, viz. 

axial clearance seal and axially-overlapping radial clearance seal. It was observed 

that in the case of axial seal clearance, the guide vanes influenced the flow field in 

the rim seal gap as well as in the rim cavity, whereas for radial clearance seal, the 
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influence of guide vanes was restricted to the rim seal gap alone. The radial 

clearance seal with axial overlap had higher sealing performance than the axial 

clearance seal.  

 Johnson et. al 
[9]

 developed an extended rim seal orifice model in which 

the difference between the pressure near the lip of the seal and a 'disk cavity 

pressure' was considered to be the driving potential for ingestion and egress. This 

was the first time when two different discharge coefficients, for ingestion and 

egress, were proposed. The values of ingestion and egress discharge coefficients 

were estimated for an axially-overlapping radial clearance rim seal in a subscale 

axial turbine stage at ASU. 

 Sangan et. al 
[35]

 performed experiments in a model axial turbine stage for 

two rim seal configurations, viz. axially-overlapping radial-clearance seal and an 

axial-clearance seal. Sealing effectiveness, cw,min for externally induced (EI) 

ingestion and the ratio of discharge coefficient were combined in a single 

equation obtained from an orifice model developed at University of Bath which 

was first presented by Owen 
[36]

. The orifice model effectiveness equation features 

two parameters, Γc and φmin. A maximum likelihood estimation method 
[37]

 was 

used to fit model to the sealing effectiveness values obtained from experiments. 

This parameter estimation method provides the two unknowns Γc and φmin. It was 

pointed out that the accuracy of these parameters increased and the variability 

decreased as the number of data points increased, and Γc and φmin were in close 

agreement to the 'true values' (the theoretical curve being the 'true curve' and the 
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then obtained values of Γc and φmin from the orifice model effectiveness equation 

are called 'true values') for all       Ingestion and egress discharge coefficients 

could be subsequently determined using the peak-to-trough pressure differential 

in the main gas annulus measured at zero purge air flow rate. 

 This work was extended for rotationally induced (RI) ingestion by Sangan 

et. al 
[38]

. Experiments were carried out in a turbine stage featuring vanes and 

blades, where the inlet to the annulus was closed off while the outlet was open to 

atmosphere. Thus, the swirl created in the external fluid was only due to the disk 

rotation. Their same orifice model 
[36]

 was modified for RI ingestion, and sealing 

effectiveness,           
 and              were combined in one orifice model 

sealing effectiveness equation. The value of           
 obtained for the axial-

clearance seal was found to be independent of rotational Reynolds number.  
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CHAPTER 3 

EXPERIMENTS 

3.1 Experimental Facility 

The experimental facility is shown in Fig. 3.1. It is an open air facility 

where laboratory ambient air is drawn into the test rig by the centrifugal main 

blower (operating in suction mode) and discharged into the atmosphere via a 

vertical circular duct. The secondary blower also draws air from the laboratory 

ambient and the secondary air is supplied to the disk cavity via a tube. Figure 3.2 

shows the schematic of the test rig on which earlier research work by                

Roy et. al 
[9, 25-32]

 were carried out.  

 

Fig. 3.1 The Experimental Facility 

Secondary air flow 

tube 
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Experiments by Thiagarajan 
[39]

 and Pathak 
[40]

 were carried on the current 

turbine stage; some geometrical modifications (e.g., the labyrinth seal clearance) 

were introduced in the present study. 

 

 

 

 

 

 

Fig. 3.2 Schematic of the Test Rig  

Centrifugal Main Blower 

The test rig is situated on the suction side of the centrifugal blower (22.4 

kW, HAUCK, TBA-20-30). The centrifugal blower can draw air upto 1.42 m
3
/s 

( 3000 cfm). The blower motor is controlled by a Cutler-Hammer Variable-

Frequency Drive (AF-9) rated at 75 HP. The blower inlet has a diameter of 412.7 

mm (16.25") and is connected to a diffuser section (angle of divergence = 5) 

which in turn is connected to a plexiglass circular duct of inlet diameter 292.1 mm 

(11.5"), Fig. 3.2. The main air is discharged to the atmosphere through 2.23 m 

(7'4") long vertical pipe of 311 mm (12.25") inner diameter that connects to an 

exhaust duct on the building roof. 
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Centrifugal Secondary Blower 

The secondary (purge) air is provided by a centrifugal blower (2.24 kW, 

HAUCK, TBA-16-3), which is controlled by a variable-frequency drive 

(Emerson, Prism, rated at 4.84 kW). The blower can draw air upto 0.12 m
3
/s (  

250 cfm). The blower discharge is connected to a 1.67 m (5'6") long, 50.8 mm 

(2") diameter GI pipe on which a turbine flowmeter has been installed at a 

distance of 1.07 m (3'6") from the blower discharge. 

Purge Air Flow Path 

The purge air flow rate is measured by a turbine flowmeter (EG&G 

Technologies) with an uncertainty of ±0.2% of the displayed value. Sufficient 

length (L/d   21) was provided for the flow to become fully developed before 

reaching the turbine flowmeter. A 90 ball valve is located 0.6 m (24") 

downstream of the turbine flowmeter; two 45 elbows align the 1.78 m (5'10") 

long purge flow tube with the centerline of the stator. To straighten the incoming 

air flow, a honeycomb mesh (12.7 mm (0.5") long, 3.2 mm (0.126") hexagonal 

cell size) has been installed in the 1.78 m (5'10") long purge air flow tube. 

Main Air Flow Rate Measurement 

A pitot tube rake comprising of five pitot-static tubes (United Sensor, 

UNSH-N-107) has been installed at    2.23 m (7'4"), Fig. 3.2, downstream of the 

turbine stage in a circular pipe of 292.1 mm (11.5") inner diameter. The rake 

manifold along with a static pressure tap are connected to a digital manometer 
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(Validyne: PS309) which measures the dynamic head of the air flowing in the 

duct.  

                                                                                   

                                                                        

                                   
                               

where,                 are in S.I. units.  

The range of PS309 is 0-2 VDC (1 Volt = 1 inch H2O pressure head). The 

accuracy of the unit is 0.25% of the full scale reading. PS309 also provides an 

analog output which is routed to the DATA6500 via a BNC cable. The 

DATA6500 is programmed so as to display the mean and RMS values of main air 

flow rate based on 1024 data points with a sampling period of 0.1 s. 

3.1.1 Turbine Stage 

The turbine stage is shown schematically in Fig. 3.3. The main air from 

the laboratory ambient enters the turbine stage via a 120.7 mm (4.75") long 

honeycomb section (Polypropylene, 0.315" cell size, black, Plascore, PP30-5) 

installed 152.4 mm (6") upstream of the stator vanes leading edge plane.  
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The Rotor 

The aluminum rotor has a diameter of 391.4 mm (15.41"). It is equipped 

with 28 partial-height, partial-length blades, Figs. 3.3 and 3.4. The blade tip 

clearance from the steel outer shroud is 1.5 mm (0.059").  

The Rotor Drive System 

The rotor is mounted on a 50.8 mm (2") diameter mild-steel shaft on 

which a 22 - teeth pulley has also been mounted; the pulley is rotated by a belt 

which connects to a  72 - teeth pulley installed on a shaft connected to motor 

(3HP, maximum speed: 1750 rpm). The pulley teeth ratio of 3.27 allows a 

maximum rotor speed of 5722 rpm. The motor is controlled by a 5 HP Eaton-

Cutler Hammer Adjustable Frequency Drive (AFD).  

The rotational speed of the motor shaft is measured using a digital 

photoelectric tachometer (Biddle Instruments, accuracy ±1rpm). When the test rig 

is operational, the motor acts as generator because of the energy input from the 

main air flow. The excess energy is transferred to a capacitor in the AFD. A 

current flows from the capacitor to a braking resistor where the excess energy is 

dissipated as heat. The braking resistor is a bank of 7 resistors connected in series 

(65Ω total). It is rated at 2.7 kW with a 50% duty-cycle.  
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Fig. 3.3 Schematic of the Single-Stage Subscale Axial Turbine (C: Concentration Tap on 

the Stator Surface; P: Pressure Tap; T: Thermocouple) 



26 
 

The Stator 

The plexiglass stator has a diameter of 391.4 mm (15.41") and thickness of 19.05 

mm (0.75"). It is equipped with 22 partial-height, full length vanes. The vane 

profile imparts swirl to the incoming flow, turning it by an angle of 68.6. For a 

given main blower operating condition, the partial vane height allows a 

sufficiently high main air axial velocity in the annulus that results in an acceptable 

velocity triangle upstream of the blade row at prescribed rotor speeds. Figure 3.4 

shows the vane and blade arrangement and the resulting velocity triangles. The 

velocity triangles shown are assumed to be undisturbed by the secondary flow as 

the maximum ratio of purge air flow rate to main air flow rate is very small.  

Rotor-stator Disk Cavity 

The disk cavity is divided into rim cavity and inner cavity by a labyrinth 

seal (Fig. 3.3). The labyrinth seal has a single tooth; the part on the rotor extends 

radially from 127.8 mm to 131.8 mm while the part of the seal on stator extends 

radially from 134 mm to 138 mm. This seal provides a radial clearance of 0.5 mm 

±0.01 mm at the tooth and an axial overlap of 5.4 mm.  

The part of the rim seal on the rotor extends radially from 184.7 mm to 

189.2 mm; the part on the stator extends radially from 191.8 mm to the hub radius 

(Rh = 195.7 mm). The rim seal has a radial clearance of 2.6 mm and an axial 

overlap of 2.6 mm.  
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The axial gap between the stator surface and the rotor surface is 16.5 mm.  

 

 

 

 

 

 

Fig. 3.4 Velocity Triangles Downstream of Vanes and Downstream of Blades 

3.1.2 Pressure and Ingestion Measurements 

Static Pressure and Ingestion Measurement Locations 

The turbine stage drawing (Fig. 3.3) shows the locations where time-

averaged static pressure and time-averaged ingestion were measured. In the inner 

cavity, static pressure is measured at four radial locations, viz. 45 mm, 81 mm, 

104 mm and 123 mm. In the rim cavity, static pressure is measured at five radial 

locations, viz. 148 mm, 162 mm, 173 mm, 179 mm and 187 mm. The pressure tap 

circumferential locations in the main gas path at the outer shroud and at the vane 

platform are indicated in Figs. 3.5 and 3.6 respectively. At the radial location 173 

mm, pressure is measured at six circumferential locations spread over one vane 

pitch to check possible variation in the pressure distribution. At the radial location 
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187 mm, pressure is measured at 17 circumferential locations spread over one 

vane pitch. On the vane platform, pressure is measured at two axial locations, viz. 

1 mm downstream of vane trailing edge and 1 mm upstream of rim seal lip. At 

both these axial locations on the vane platform, pressure is measured at 33 

circumferential locations spread over two vane pitches. Static pressure is 

measured at three axial locations at the outer shroud: 1 mm downstream of vane 

trailing edge plane, 5 mm downstream of vane trailing edge plane and 1 mm 

upstream of blade leading edge plane. At these three axial locations, pressure is 

measured at 33 circumferential locations over two vane pitches. Also, pressure is 

measured at the main gas path outer shroud - 20 mm upstream of the vane leading 

edge plane and 24 mm downstream of blade trailing edge plane. These two 

pressures are considered to represent the inlet and exit pressures of the turbine 

stage.  

Time-averaged volumetric concentration of the tracer gas (CO2) is 

measured at the stator surface at four locations in the inner cavity and five 

locations in the rim cavity. The radial locations for these measurements are same 

as the static pressure measurement locations mentioned above. Tracer gas 

concentration is also measured in the purge air flow supply pipe near the disk 

cavity inlet. 

.  
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Fig. 3.5 Circumferential Locations of Static Pressure Taps on the Outer Shroud in Main 

Gas Flow Annulus at 1 mm Downstream of Vane Trailing Edge Plane, 5 mm 

Downstream of Vane Trailing Edge Plane and 1 mm Upstream of Blade Leading Edge 

Plane 
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Fig. 3.6 Circumferential Locations of Static Pressure Taps on Vane Platform in Main Gas    

Flow Annulus at 1 mm Downstream of Vane Trailing Edge Plane and 1 mm Upstream of 

Seal Lip 
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3.2 Time-averaged Static Pressure Measurement 

3.2.1 Components of Pressure Measurement System 

Scanivalve 

Scanivalve is a junction with 48 inlet channels and one output channel. 

The inlet channels are connected to pressure taps through flexible vinyl tubes 

(Scanivalve, 1.59 mm (0.063") i.d.). The output channel is connected to a pressure 

transducer. A manual control solenoid step-driver is used to switch through the 48 

inlet channels sequentially; the inlet channel number at any particular time is 

displayed on the position display unit. 

The following schematic shows the components of pressure measurement 

system. 

 

Fig. 3.7 Schematic of Components for Static Pressure Measurement  
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Pressure Transducer (DP45 - Validyne) 

DP45 is a differential pressure transducer designed for the pressure range 

of 0-2 psi (0-13.79 kPa). The accuracy of DP45 is 0.5% of full scale (2 psi) and it 

has minimal hysteresis loss. The transducer consists of a magnetically permeable 

stainless steel diaphragm clamped between two blocks of stainless steel (Fig. 3.8). 

At zero pressure differential, the diaphragm is at the center (zero deflection) and 

the distance between the diaphragm and the coil is 0.127 mm (0.005"). 

 

Fig. 3.8 Schematic of the Differential Pressure Transducer (DP45), Front and Side 

View, and E-Core   

When the diaphragm is subjected to a differential pressure, it deflects 

towards the lower pressure cavity resulting in a different gap length. The 

magnetic reluctance varies with the gap length; a change in the magnetic 

reluctance induces a change in the induction of the coils embedded in the E core. 

E core laminations (made of iron) are added to the solenoid coils to direct the 
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magnetic field lines. Based on the change in the inductance of coils, an AC output 

signal linearly dependent on the pressure differential is generated. This output 

signal is routed to a carrier demodulator. 

Carrier Demodulator (CD12 - Validyne) 

The carrier demodulator (CD12) amplifies and demodulates the DP45 

output. With an input sensitivity ranging from 0.9 to 75 mV/V, the CD12 converts 

the output of the differential pressure transducer into a DC voltage signal with a 

full-scale output of 10 Vdc. The carrier demodulator small deviations in the signal 

with respect to a reference level. It features a digital display on its front panel; its 

analog output is routed to the DATA6500 via a BNC cable. 

Data Acquisition System (DATA6500 - Analogic) 

This unit provides the mean and the RMS of the CD12 output signal. It is 

programmed to sample the signal at 2 kHz over a time interval of 15.36 seconds 

for each pressure measurement.  

Static Pressure Tap (TUBN063 - Scanivalve Corp.) 

Figure 3.9 shows the schematic of a stainless steel tubulation (1.59 mm 

(0.063") o.d.) static pressure tap. The interface between the pressure tap and 

plexiglass is sealed with silicone to prevent air leakage.  
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Fig. 3.9 Schematic of Pressure Tap on Stator Disk 

3.2.2 Experimental Procedure for Pressure Measurement 

Firstly, the main blower, secondary blower and the rotor motor are set at 

respective frequencies for operation of the rig at a particular experimental 

condition. Next, the secondary blower and the rotor motor are turned on followed 

by the main blower. After the main blower attains the desired rpm, the rotor motor 

rpm and the main air flow rate are measured via, respectively, a digital tachometer 

and the pitot tube-rake. Once the desired main air flow rate, secondary air flow 

rate and the rotor motor rpm are attained, the rig is allowed to run for about 10 

minutes so that it achieves steady state. The static pressures can now be measured. 

The laboratory ambient pressure and temperature are monitored before the start of 

each experiment. The laboratory ambient pressure typically varies between 101 

kPa to 102 kPa (absolute); the temperature is essentially constant at 23C.  
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The pressure taps are connected to the Scanivalve via flexible vinyl 

tubings and upto 48 pressures can be measured during one run. The DATA6500 is 

programmed such that it displays time-averaged and rms values of static pressure 

for a prescribed time interval. The time-averaged static pressure is: 

   
 

 
        

 

 

  
 

 
   

 

   

                                                            

where, N is the number of samples collected over a time interval T.  

 Since the blade passage frequencies for the two experimental conditions, 

Table 5.1, are 0.887 kHz and 1.12 kHz, the data are sampled at a higher frequency 

(2 kHz). A total of 30720 data points are collected at this sampling rate. Once the 

data for one pressure tap location are recorded, the Scanivalve position is changed 

by a manually controlled solenoid stepper motor. The maximum uncertainty in 

static pressure measurement is ±4% 
[39]

. 

3.3 Time-averaged Mainstream Gas Ingestion Measurement  

3.3.1 Components of the Ingestion Measurement System 

NDIR Gas Analyzer (Ultramat23 - Siemens) 

An NDIR (Non-dispersive Infrared) gas analyzer was used to measure the 

volumetric concentration of the tracer gas (CO2). The gas analyzer consists of an 

IR measuring cell, a safety filter, flow meter and a gas pump. The tracer gas 

absorbs infrared radiation in a particular range of wavelength depending upon its 
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concentration. The radiation intensity is measured by the IR measuring cell, and 

the CO2 concentration is displayed on the LCD. At the analyzer back side, ports 

are provided for inlet and exit of the sample gas, as well as for the inlet of the zero 

gas (N2).  

Tube Connections and Gas Cylinders 

 The ingestion measurement system is shown in Fig. 3.10. Ultra high purity 

(99.9% N2) compressed nitrogen gas was used as the zero gas for AUTOCAL. 

The secondary air was seeded with tracer gas (CO2) at 1.6 m (5'3") upstream of 

the disk cavity entrance using a stainless steel sparger tube (6.3 mm o.d., 4.5 mm 

i.d.) which contains 15 holes (each of 1 mm diameter). The volumetric flow rate 

of tracer gas was maintained at approximately 1 liter/min by controlling the flow 

rate of tracer gas at the point of seeding, using a pressure regulator and a needle 

valve. The temperature of the tracer gas, as it flows from the cylinder, is 

controlled using an electric gas heater between the gas cylinder and the regulator, 

and a band heater at the back side of the regulator. The tracer gas temperature is 

measured by a J-type thermocouple and maintained close to the desired 

temperature.  

The gas sampling taps were connected to toggle valves by vinyl tubes 

(0.1875" i.d., 0.3125" o.d.). The toggle valves were connected to a single-output 

manifold (Fig. 3.10). A needle valve and a filter were connected to the manifold 

output and the sample gas was delivered to the gas analyzer via a vinyl tube.  
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Fig. 3.10 Schematic of Ingestion Measurement System Showing the Measurement 

Locations, Tube Connections, Tracer Gas & Zero Gas Cylinders and their 

Connections 

 

3.3.2 Experimental Procedure for Ingestion Measurements 

The local sealing effectiveness, η, at r, is given by, 
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where, Cpurge is the concentration of carbon dioxide in the purge air measured at 

the innermost radial location (r = 45 mm) on the stator surface in the disk cavity. 

The volumetric concentration of CO2 in purge air was also monitored at 0.38 m 

(14.96") upstream of the disk cavity entrance and always maintained at 4% by 

volume (5.95% by mass). The concentration at the latter location was checked 

multiple times during the experiments. A honeycomb mesh was installed in the 

secondary air flow tube to straighten the flow and help mix the carbon dioxide 

with the secondary air. However, the mixing of CO2 with the purge air was found 

to be incomplete for the three higher purge flow rates, Table 5.1; the 90 turn of 

the secondary air upon entering into the disk cavity led to better mixing. As such, 

the radially innermost location of measurement in the cavity (r = 45 mm) was 

considered to be representative of fully mixed carbon dioxide concentration in the 

purge air. The carbon dioxide volumetric concentration was measured at nine 

radial locations in the disk cavity (including the 45 mm location) utilizing the 

same taps that were used for the static pressure measurements. The measurement 

of carbon dioxide concentration takes some time; hence, it is a time-averaged 

value over many rotor revolutions. However, the concentrations measured are 

local with respect to vane position as well as to the radial positions on the stator 

surface. The flow of sample gas through the test cell (inside NDIR gas analyzer) 

is Steady State Steady Flow (SSSF). A constant flow rate of 1liter/min is 

maintained across the test cell; the test cell pressure (  ) depends upon the 

laboratory ambient pressure and remain the same even when   changes. 
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Fig. 3.11 Schematic of Sampled Gas Flow Across the Test Cell Inside NDIR Gas 

Analyzer 

 

The maximum uncertainty in the tracer gas volumetric concentration 

measurements is ±0.11% carbon dioxide concentration (this translates to ±0.17% 

mass concentration) 
[39]

. 
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CHAPTER 4 

THE ORIFICE MODEL OF INGESTION AND EGRESS 

4.1 Ingestion and Egress Discharge Coefficients 

The ingestion of main air from the annulus into the disk cavity is governed 

by a positive pressure differential between locations 1 and 2, Fig. 4.1. A negative 

pressure differential causes egress from the disk cavity into the main gas annulus. 

In the orifice model of ingestion and egress, the radial rim seal clearance (or gap) 

is considered as an orifice through which either ingestion or egress can occur at 

different azimuthal locations. 

 

Figure 4.1 The Rim Seal Radial Clearance Considered as an Orifice, along with 

Locations 1 And 2 (2 is Only a Representative Location in the Rim Cavity) 
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The volumetric flow rate of a fluid through an orifice is given by, 

                                                                                         

                    
          

 
 
   

                                              

In terms of mass flow rate, Eq. (4.2) can be re-written as, 

                                           
                          

Since the rim seal radial gap is modeled as an orifice, 

                               
                           

The pressure differential across rim seal is: 

                                                          

An appropriate location for    is in the 'seal region'
[9]

; other locations in 

the rim seal cavity can be considered for parametric study. The location 1, which 

is 1 mm upstream of the seal lip on the vane platform, is an appropriate 

representative location for static pressure of the main annulus air when 

considering ingestion and egress.  

In Fig. 4.2, the ingestion and egress region (area integrals) are, 
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where   
 
 is the azimuthal location where    changes sign. 

 

Fig. 4.2 A Schematic of Ingestion and Egress Regions Over One Vane Pitch 

In Fig. 4.2, the area integrals are given by Eqs. (4.4a) and (4.4b) are calculated by 

trapezoidal method of integration.  

Equation (4.3) can be re-written as: 

                      
                                                                

                            
                                                      

The sealing effectiveness, η, at location 2 is given by, 
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Substituting Eqs. (4.7a) and (4.7b) in Eqs. (4.5a) and (4.5b) respectively, the 

ingestion and egress discharge coefficients are given by, 

     
 

 
   

       

                
                                                     

     
 

 
 

       

                   
                                                        

4.2 Estimation of the Minimum Sealing Flow Required 

For both set of experiments,        for the five experimental secondary air 

flow rates were determined from Eq. (4.7a) based on the best-fit values of   

shown in Figs. 5.13(a) and (b). Subsequently, the plot of       was extrapolated to 

zero with respect to cw to obtain cw,min.  

Estimation of Asymptote Value of Egress Discharge Coefficient at cw = cw,min 

From Eq. (4.7a), when    ,        . From Eq. (4.5a), when        , 

     . From Eq. (4.8b), at cw = cw,min,  
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In the above equation,                        
is the only unknown. The plot of 

         vs    was extrapolated to cw = cw,min to obtain the value of 

                       
. 

4.3 Estimation of Discharge Coefficients at Zero Purge Flow Rate 

The sealing effectiveness is zero at zero purge flow rate. Ingestion and 

egress will occur because of pressure asymmetry in the main gas annulus and disk 

pumping. The ingestion and egress discharge coefficients will have definite 

values. 

 Using Eq. (4.6) in Eq. (4.8a),  

     
             

       
   

       

                
                                  

At       

    
      

                
                                                                          

For estimating             , the plots of       and       were extrapolated to 

     to obtain the values               
 and               

. The corresponding 

ingestion discharge coefficient is therefore given by, 
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Similarly, the egress discharge coefficient is given by, 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Pressure and ingestion experiments were carried out at the conditions 

listed in Table 5.1 to characterize ingestion through the rim seal of the axial flow 

turbine stage (Fig. 3.3). For the two different main air flow conditions,    was  

 

Table 5.1 Experimental Conditions 

maintained at about the same value. The flow coefficient (       values of 0.74 

and 0.78 for expt. set I and II respectively, are close to the value for an older-

model aircraft engine (JT9D) stage from where the blade and vane shapes have 

been obtained. The rotational Reynolds       number is an order lower than the 

actual engine conditions.
 

The average laboratory ambient pressure was 101860 Pa (absolute) and 

the average laboratory temperature 23ºC during the experiments. The estimated 

uncertainties in the values of the nondimensional parameters         
        

are ±0.5%, ±1% and ±1.5% respectively 
[32]

.  
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5.1 Time-averaged Static Pressure Measurement Results 

 The air drawn by the centrifugal main blower from laboratory ambient 

flows through the honeycomb section and enters the vane row which turn the flow 

by 68.6º. A circumferential pressure asymmetry is created because of blockage of 

the flow by the vanes; this asymmetry decays downstream of the vane trailing 

edge plane. This circumferential pressure asymmetry is a major driver of 

ingestion and the dependence of ingestion on the peak-to-trough pressure 

asymmetry amplitude is discussed later in this chapter.  

Static pressure is measured over two vane pitches at two axial locations on 

the vane platform, viz. 1 mm downstream of the vane trailing edge plane and 1 

mm upstream of the seal lip. On the outer shroud, static pressure is measured over 

two vane pitches, at 1 mm downstream of vane trailing edge plane, 5 mm 

downstream of vane trailing edge plane and 1 mm upstream of blade leading edge 

plane.  

For brevity, only the results for expt. set I and II at         are 

presented in Figs. 5.1(a), (b) and 5.2(a), (b). The circumferential-average pressure 

at vane platform 1 mm downstream of vane trailing edge plane is seen to be lower 

than that at the corresponding location on the outer shroud. The swirl imparted to 

the flow by the vanes cause a radial pressure gradient, and this pressure increases  
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Fig. 5.1(a) Circumferential Distributions of Static Pressure at Main Gas Annulus 

Outer Shroud Over Two Vane Pitches for Three Axial Positions - Expt. Set I 

Condition cw = 1538 

 

Fig. 5.1(b) Circumferential Distributions of Static Pressure at Vane Platform and 

in Rim Cavity at Stator Surface - Expt. Set I Condition cw = 1538 
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Fig. 5.2(a) Circumferential Distributions of Static Pressure at Main Gas Annulus 

Outer Shroud Over Two Vane Pitches for Three Axial Positions - Expt. Set II 

Condition cw = 1538 

 

Fig. 5.2(b) Circumferential Distributions of Static Pressure at Vane Platform and 

in Rim Cavity at Stator Surface - Expt. Set II Condition cw = 1538 
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radially. The same trend is observed for the peak-to-trough pressure amplitude; 

also, this amplitude decays downstream of the vane trailing edge plane.  

 The peak-to-trough pressure asymmetry amplitude decreases with 

decrease in the main air flow rate. In the rim cavity, a very small circumferential 

pressure asymmetry exists at the radial location 187 mm (this is the seal region), 

while there is none at the radial location 173 mm.  

Figures 5.3 and 5.4 show the effect of purge air flow rate on the static 

pressure distribution at the outer shroud for three axial locations. Although the 

ratio of purge air flow rate to the main air flow rate is quite small (Table 5.1), the 

pressure levels decrease slightly with increase in the purge air flow rate. 

The purge air flow rate has noticeable effect on the static pressure level 

and the peak-to-trough pressure asymmetry amplitude at 1 mm upstream of the 

seal lip. In the rim cavity, at radial location 187 mm, the pressure level increases 

with the purge flow rate. These two pressure locations are important as the 

ingestion and egress are considered to be driven by the pressure differential 

between these locations, Fig. 4.1. Figures 5.5 and 5.6 contain the circumferential 

distributions of static pressure over one vane pitch at five purge air flow rates at r 

= 187 mm and at 1 mm upstream of seal lip. As mentioned earlier, the peak-to-

trough pressure asymmetry in the main annulus decreases and the static pressure 

level in the rim cavity at r = 187 mm increases as the purge air flow rate increases. 

The peak-to-trough pressure asymmetry decrease with the increase in purge air  



50 
 

 

Fig. 5.3 Effect of Purge Air Flow Rate on the Circumferential Distributions of 

Time-averaged Static Pressure at Main Gas Annulus Outer Shroud Over Two 

Vane Pitches for Three Axial Positions - Expt. Set I  

 

Fig. 5.4 Effect of Purge Air Flow Rate on the Circumferential Distributions of 

Time-averaged Static Pressure at Main Gas Annulus Outer Shroud Over Two 

Vane Pitches for Three Axial Positions - Expt. Set II  
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Fig. 5.5 Effect of cw on the Circumferential Distributions of Time-averaged Static 

Pressure on Vane Platform (1 mm Upstream of Seal Lip) and Radial Location 187 

mm (r/Rh = 0.955) for Expt. Set I  

 

Fig. 5.6 Effect of cw on the Circumferential Distributions of Time-averaged Static 

Pressure on Vane Platform (1 mm Upstream of Seal Lip) and Radial Location 187 

mm (r/Rh = 0.955)  for Expt. Set II  
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Fig. 5.7 Radial Distributions of Static Pressure in Rim and Inner Cavities at Stator 

Surface - Expt. Set I Conditions 

 

Fig. 5.8 Radial Distributions of Static Pressure in Rim and Inner Cavities at Stator 

Surface - Expt. Set II Conditions 
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flow rate possibly because of the interaction of rim cavity egress flow with the 

main flow.  

 Figures 5.7 and 5.8 contain the radial distributions of static gage pressure 

for expt. set I and II respectively. The distributions of static pressure in the inner 

cavity are essentially uniform. The pressure level rises in the inner cavity with the 

increase in purge air flow rate, primarily because of the restriction of flow due to 

the labyrinth seal. Although the pressure in the rim cavity does not vary 

appreciably with change in purge air flow rate, the shape of the pressure 

distribution near the rim seal radially outboard of r   172 mm qualitatively points 

to the potential for ingestion of main air from the annulus into the rim cavity (see 

inset in Fig. 5.7). The potential for ingestion at higher purge air flow rate is lower 

than at lower purge air flow rate as the radial gradient of pressure radially inboard 

of the rim seal is lower for higher purge air flow rate.  

5.2 Time-averaged Ingestion Measurement Results 

 The ingestion of main air from the annulus into the disk cavity is 

countered by the combined effects of rim seal and purge air. The time-averaged 

local sealing effectiveness,     , is defined by Eq. (3.5). As discussed earlier, the 

volumetric concentration of tracer gas (CO2) in purge air was measured 0.38 m 

upstream of the disk cavity entrance. For the two lowest purge air flow rates, this 

tracer gas concentration was measured to be the same as the concentration at the 

innermost radial location (r = 45 mm) in the disk inner cavity, indicating full 

mixing of tracer gas with the purge air prior to entering the cavity. However, for 
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the three higher purge air flow rates, the concentrations at these two locations 

were different, indicating incomplete mixing. For the calculation of     , the η-

value at r = 45 mm was considered to represent Cpurge, for all purge air flow rates; 

this implies that mixing was complete post-90º turn of the purge air in reaching 

the r = 45 mm location.  

Figures 5.9 and 5.10 show the radial distributions of local sealing 

effectiveness at the stator surface for the expt. sets I and II respectively. For both 

sets, the distributions are uniform in the inner cavity which is completely sealed 

as well. It is observed that the sealing effectiveness in the rim cavity is lower for 

expt. set I as compared to expt. set II. Experiment set I features higher main air 

flow rate and higher disk rotational speed; this leads to greater peak-to-trough 

pressure asymmetry amplitude in the main gas path and greater disk-pumping for 

expt. set I. As such, the lower sealing effectiveness in the rim cavity for expt. set I 

is reasonable. Figure 5.11(a) shows the variation of local sealing effectiveness on 

the stator surface at radial location 179 mm (r/Rh = 0.915) with purge air flow rate 

for expt. sets I and II. The 179 mm location is thought to be at the interface 

between the ‘mixing region’ and the ‘beginning of the stator boundary layer’ 
[9]

.  

It is also observed that the sealing effectiveness increases sharply at lower values 

of cw and then increases only by small amounts at higher values of cw.  

Figure 5.11(b) shows the distribution of sealing effectiveness 

versus               for both sets of experiments at three radial locations, viz.  
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Fig. 5.9 Radial Distributions of Local Sealing Effectiveness in Rim and Inner 

Cavities at Stator Surface - Expt. Set I Conditions 

 

 

Fig. 5.10 Radial Distributions of Local Sealing Effectiveness in Rim and Inner 

Cavities at Stator Surface - Expt. Set II Conditions 
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Fig. 5.11(a) Sealing Effectiveness at r = 179 mm (r/Rh = 0.915) on Stator Surface 

Versus Purge Flow Rate 

 

Fig. 5.11(b) Sealing Effectiveness at r = 173 mm, 179 mm and 187 mm (r/Rh = 

0.884, 0.915 and 0.955 respectively) on Stator Surface Versus           . 

Also Shown are the Best-Fit Lines for the Data 
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Fig. 5.12(a) Egress from Rim Cavity Versus Purge Air Flow Rate Based on η-

Values at r = 179 mm (r/Rh = 0.915) 

 

Fig. 5.12(b) Egress from Rim Cavity Versus Purge Air Flow Rate Based on η-

Values at r = 187 mm (r/Rh = 0.955) 
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173 mm, 179 mm and 187 mm. The sealing effectiveness values for the two sets 

collapse on a single curve (shown by dashed lines) at each thee radial location. 

Some scatter is seen at lower values of              at the 187 mm location, 

quite possibly because this location is in the seal region where the flow is more 

disturbed than at the two radially inboard locations. 

The egress flow from the rim cavity into the annulus is comprised of the 

ingested air and the purge air. Equation (4.7b), can be re-written as, 

          
  

 
                                                                                   

 Figures 5.12(a), (b) show plots, versus the purge flow rate, of egress from 

the rim cavity for both experiment sets calculated using sealing effectiveness 

values at r = 179 mm and 187 mm. The plots are concave up, implying that 

          increases monotonically with the purge air flow rate. Also, the           

for expt. set I is consistently higher than for expt. set II for all purge flows; this is 

because for a given purge flow, the ingestion in expt. set I is greater than expt. set 

II. For higher    values,           for the two sets show a converging trend; note 

that the corresponding sealing effectivenesses also converge at higher values of 

   (Fig. 5.11(a)). 

5.3 Ingestion and Egress Discharge Coefficients 

 The ingestion and egress discharge coefficients are calculated using Eqs. 

(4.8a) and (4.8b) respectively. Figures 5.13(a), (b) and 5.14(a), (b) show the  
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(a) Expt. set I 

 

(b) Expt. set II 

Fig. 5.13 Ingestion and Egress Discharge Coefficients Based on Rim Cavity 

Location r = 187 mm (r/Rh = 0.955) (The η-Values Obtained from the Best-Fit 

Line in Fig. 5.11(b) (Inset Table) are used to Calculate the Discharge 

Coefficients. Note: The Lines Drawn Through the Discharge Coefficient Values 

Only Indicate the Data Trend) 
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(a) Expt. set I 

 

 (b) Expt. set II 

Fig. 5.14 Ingestion and Egress Discharge Coefficients Based on Rim Cavity 

Location r = 179 mm (r/Rh = 0.915) (The Measured η-Values (Figs. 5.9 and 5.10) 

are used to Calculate the Discharge Coefficients. Note: The Lines Drawn Through 

the Discharge Coefficient Values Only Indicate the Data Trend) 
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variation of             with purge air flow rate calculated on the basis of sealing 

effectiveness and static pressure values at the rim cavity radial locations 187 mm 

(r/Rh = 0.955) and 179 mm (r/Rh = 0.915), respectively. In both cases, main gas 

path pressure at 1 mm upstream of seal lip was used. 

 In Fig. 5.11(b), a considerable scatter is observed in the η-values at the 

location 187 mm for the lower two purge air flows. As such, the η-values 

obtained from the best-fit line are used for the calculation of discharge 

coefficients shown in Figs. 5.13(a), (b); the η-values used are given in the inset 

table of each figure. For the calculation of             corresponding to the 

location 179 mm, the measured values of sealing effectiveness were used as the 

scatter in η-values at this radial location is small even for the lower purge air flow 

rates. For both experiment sets, the egress discharge coefficient increases with 

purge air flow rate whereas the ingestion discharge coefficient decreases with 

purge air flow rate. The egress discharge coefficients shown in Figs. 5.14(a), (b) 

have a similar trend to those in Figs. 5.13(a), (b); the ingestion discharge 

coefficient decreases only slightly now.  

 The purpose of the preceding comparison is to point out the role of the 

radial location chosen in the rim cavity for sealing effectiveness and pressure 

values in the calculation of discharge coefficients. The choice of the rim cavity 

radial location is somewhat subjective; however, the radial location 187 mm (in 

the seal region) is preferred over 179 mm (in the cavity mixing region) in the 

present study. It is important to mention also that the choice of pressure location 
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in the main gas path is also subjective; a location very close to the vane platform 

lip is preferred in this study. 

 In an experimental study, there are geometrical constraints which render 

the pressure measurement at some critical locations in the stage impractical. On 

the other hand, a computational study (CFD) allows freedom of choice of the 

locations, such as anywhere on the vane platform and in the rim cavity. Steady 

state CFD simulations may be used in conjunction with the pressure and ingestion 

measurements in the laboratory. For a particular turbine stage set-up, a large set of 

discharge coefficient values corresponding to different combinations of main gas 

path location and rim cavity location can provide some guidelines for the most 

suitable locations for the calculation of discharge coefficients.  

 Figures 5.15(a), (b) show the variation of the ratio         (discharge 

coefficients based on 187 mm location in the rim cavity) versus the purge air flow 

rate for the two experiment sets. The ratio is given by, 

   

   
      

        

     
                                                                   

 As the ratio varies between the values 0.04 to 0.70, its dependence on purge air 

flow rate cannot be ignored. 

 The method of estimation of        is explained in section 4.2. Cdi is equal 

to zero; the egress discharge coefficient at           is calculated using Eq. 
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(4.9). Table 5.2 gives the value of        and the values of discharge coefficients 

at this secondary air flow rate, for both experiment sets. 

 

Table 5.2 cw,min Values along with Corresponding Discharge Coefficients for Both 

Experiment Sets 

The method of estimation of discharge coefficients at zero secondary air flow rate 

is explained in section 4.3. η is equal to zero now; the ingestion and egress 

discharge coefficients are calculated using Eqs. 4.11 and 4.12, respectively. The 

discharge coefficient ratio calculated using Eq. 5.2 is given by, 

 
   

   
 
    

  
        

     
 

    

                                                       

Note that the ingestion and egress discharge coefficient ratio at zero purge air 

flow rate can be found simply from the time-averaged static pressure 

measurements. Table 5.3 provides the values of discharge coefficients and their 

ratio at zero secondary air flow rate for both experiment sets.  

 

Table 5.3 Discharge Coefficients and their Ratios at Zero Purge Air Flow Rate for 

both Experiment Sets 
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(a) Expt. set I 

 

(b) Expt. set II 

Fig. 5.15 Discharge Coefficient Ratio Versus Purge Air Flow Rate Based on Rim 

Cavity Location r = 187 mm (r/Rh = 0.955) 
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 Ingestion and egress discharge coefficients for the two experiment sets are 

represented by a single curve (quadratic fit) in Fig. 5.16 in which the coefficients 

are plotted versus              . In Fig. 5.17, the ingestion and egress discharge 

coefficients are plotted versus            . The discharge coefficients plots, Figs. 

5.16 and 5.17, exhibit similar trends with respect to the non-dimensional 

parameters                 and            . 

 

Fig. 5.16(a) Ingestion Discharge Coefficients Based on Radial Location r = 187 

mm (r/Rh = 0.955) Versus               
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Fig. 5.16(b) Egress Discharge Coefficients Based on Radial Location r = 187 mm 

(r/Rh = 0.955) Versus               

 

Fig. 5.17(a) Ingestion Discharge Coefficients Based on Radial Location r = 187 

mm (r/Rh = 0.955) Versus             
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Fig. 5.17(b) Egress Discharge Coefficients Based on Radial Location r = 187 mm 

(r/Rh = 0.955) Versus             
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CHAPTER 6 

CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE 

RESEARCH 

6.1 Concluding Remarks 

 Experiments were performed on a subscale single-stage axial turbine 

featuring vanes, blades, an axially-overlapping radial rim seal clearance, and a 

labyrinth seal inboard of the disk cavity. The labyrinth seal divides the disk cavity 

into a rim cavity and an inner cavity. Time-averaged static pressure distributions 

at multiple locations in main gas annulus and disk cavity as well as local sealing 

effectiveness values based on tracer gas volumetric concentration measurements 

at several radial locations on the stator surface are reported.    

 The static pressure was essentially uniform radially in the inner cavity; 

variation was observed in the rim cavity, however. The radial pressure 

distribution near the rim seal qualitatively point toward the potential for main gas 

ingestion. In the 'cavity mixing region', the pressure distribution was 

circumferentially uniform; a small asymmetry was observed in the distribution in 

the 'seal region'. This is possibly caused by the interaction between the ingested 

air from the main annulus and the egress flow from the rim cavity. In the main 

annulus, circumferential pressure asymmetry was due to the presence of vanes 

and blades. The peak-to-trough pressure amplitude on the vane platform and the 

outer shroud decayed downstream from the vane trailing edge plane. 
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 The radial distributions of local sealing effectiveness were uniform in the 

inner cavity; the inner cavity was completely sealed as well at the purge flow rates 

studied. In the rim cavity, the sealing effectiveness values for the experiment set 

featuring lower main air flow rate were consistently higher than those for the 

condition featuring higher main air flow rate. This was true for all radial locations 

and all purge flow rates. 

 The pressure and ingestion measurements were subsequently used to 

calculate the ingestion and egress discharge coefficients (Cdi and Cde). Two sets of 

Cdi and Cde values are reported for the rim seal - both use the pressure at the vane 

platform 1 mm upstream of seal lip along with the pressure and sealing 

effectiveness values at two radial locations in the rim cavity, one in the seal 

region and the other slightly inboard in the cavity mixing region. For both 

experiment sets, Cdi decreased and Cde increased with purge air flow rate; Cdi 

decreased only slightly for the radial location in the cavity mixing region. The 

location in the seal region is preferred over the location in the cavity mixing 

region for discharge coefficient calculations. 

 The ratio of discharge coefficients (Cdi/Cde) varied significantly with purge 

air flow rates for both the experimental conditions. It is noteworthy that their ratio 

depends only on the pressure values in the main annulus and rim cavity for zero 

purge air flow. 
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 It is acknowledged that the choice of pressure location in the main gas 

path, is to some extent, subjective; a location on the vane platform, very close to 

the lip of the seal is considered to be appropriate in this study. 

 A method of estimating cw,min was proposed; the values of cw,min for the 

experiments are reported. The cw,min values were only slightly higher than the 

maximum purge air flow rates for both set of experiments. Also, the egress 

discharge coefficient values at cw = cw,min are reported. 

 The non-dimensional ratio,                     , includes important rig 

dimensions which define the annulus area and rim seal clearance, along with the 

air properties at laboratory ambient condition. A plot between sealing 

effectiveness (η) and α for different experimental conditions collapse on to a 

single curve; this curve can be extrapolated to η = 1, and the corresponding value 

of α (=α0) can be used in the determination of cw,min for a range of     
 values. 

The relation between cw,min and     
 is given by,              

, where 

         . Note that    is a rig-specific parameter and hence, it has a unique 

value for a particular test rig. It is important to point out that this method of 

estimation of cw,min can be used only for the case of external flow dominated 

ingestion, wherein cw,min is independent of rotational Reynolds number (Reφ) and 

depends only on the main air flow Reynolds number (    
 . Since at engine 

conditions, hot mainstream gas ingestion into the disk cavity is externally 

induced, one value of    can be helpful in the estimation of cw,min for a range of 

    
 values without actually conducting experiments at each value of     

.  
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6.2 Suggestions for Future Research 

The following should be considered: 

 Unsteady pressure measurements for more accurate determination of 

ingestion. 

 Use of steady CFD simulation pressure results in conjunction with time-

averaged tracer gas concentration measurements, for the calculation of 

discharge coefficients based on different combinations of locations on 

vane platform and in the rim cavity. This may provide a guideline for the 

most suitable locations in main gas path and in the rim cavity for pressure 

and sealing effectiveness. 
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