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ABSTRACT

Reprising the work of Kolpakov and Martelli, a manifold is constructed by face pair-

ings of a four dimensional polytope, the 24-cell. The resulting geometry is a single

cusped hyperbolic 4-manifold of finite volume. A short discussion of its geometry and

underlying topology is included.
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Chapter 1

INTRODUCTION

The construction of hyperbolic finite-volume 4-manifolds appears to have been be-

gun by Michael Davis in 1985, when he constructed such a manifold using the 120-cell

as a starting point (Davis (1985)). The Davis manifold is compact, orientable, and

of volume 104
3
π2. Constructions continued, and at present the most complete clas-

sification of such manifolds is the one given by John Ratcliffe and Steven Tschantz

(Ratcliffe and Tschantz (2000)). In it, they show the minimum volume for such

manifolds is 4
3
π2 and, using computer arithmetic, they classify 1171 minimum vol-

ume manifolds. Leone Slavitch has constructed a minimal volume manifold with two

cusps, and a single cusped, non-orientable manifold of twice minimal volume (Slavich

(2014)). Our goal is to construct a finite-volume, orientable, single-cusped manifold,

and one of as small volume as possible.

One method for constructing manifolds involves the isometric gluing of polytopes

along totally geodesic faces. In dimension two, for instance, we have the familiar

construction of a flat torus by the orientation preserving gluing of opposite sides of

a square. Such a construction is easliy visualized, and is thus convincing; we simply

draw a square on a flat surface, indicate the direction each edge is to be glued to

the opposite edge, and our intuition about how objects move and bend in three di-

mensional space convinces us that the resulting figure is a torus. If necessary we can

physically cut such a figure from paper, glue the edges together, and hold it in our

our hand. Such constructions feel natural.
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In higher dimensions, however, such constructions become more arcane. Most of

us posess some faculty in drawing three-dimensional figures, but not everyone can

draw with the fluency needed to describe complicated manifolds. In dimension four

and higher, sadly, such methods start to fail us entirely. What we need is a method,

based on drawing, that works in higher dimensions. Our starting point will be a four

dimensional polytope called a 24-cell; we will see it has octahedral 3-faces and can be

given a hyperbolic structure with cusps at the vertices. Our gluing, then, occurs on

these octahedral faces, but how can we easily describe the gluing?

Our solution is to draw a horosphere around each vertex, which then intersects its

cusp along a horosection. We will further see such a section is a Euclidean cube, a

familar and easily drawable object. Moreover each gluing of the faces of the cubical

horosections uniquely extends to an orientation preserving isometric gluing of the

octahedral 3-faces. Each 2-face of a horosection is the intersection of the horosection

with a 3-face of the 24-cell, and thus gluing two 2-faces in section determines the

n-faces to be glued between 3-faces of the 24-cell. We then rotate the octahedra so

that the faces to be glued are aligned, and glue corresponding points. Each gluing

between 2-faces of a horosection thus corresponds to a gluing between 3-faces of the

24-cell. This will motivate the rest of the paper.
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Chapter 2

DEFINITIONS AND PRELIMINARIES

Figure 2.1: Sections of the 3-faces Determine How the 3-faces Must Be Glued
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2.1 Definitions

Since we are interested in gluing along the boundary of hyperbolic polytopes, we

begin by defining hyperbolic space.

Definition 2.1.1. Hyperbolic space Hn is the necessarily unique simply-connected

complete Riemannian manifold of constant sectional curvature -1.

We will assume the reader is familiar with the canonical models for Hn, specifically

the ball, Bn, and half-space models. We also define polytopes.

Definition 2.1.2. A half-space is the closure of either component of Hn \S for some

totally geodesic hypersurface S.

Definition 2.1.3. A polytope is a non-empty compact subset of Hn that is the inter-

section of a finite number of half-spaces.

Definition 2.1.4. An ideal polytope is the non-empty intersection of a finite number

of half-spaces of Hn that has no vertices and which intersects the boundary of the ball

model at a finite number of points.

2.2 Preliminaries

Our plan is to glue pairs of 3-faces of the 24-cell, and thus we need a method of

determining if the quotient space of such a gluing is a hyperbolic manifold. We cite

the following theorem:

Theorem 2.2.1. Let M be a topological space obtained by gluing a finite collection

P1, · · · , Pk of hyperbolic n-dimensional polytopes or ideal polytopes via isometries be-

tween pairs of (n− 1)-faces. Let P be the disjoint union of P1, · · · , Pk. If each point

4



Figure 2.2: A (Nonideal) Polytope and an Ideal Polytope

x ∈M has a neighborhood Nx and a mapping φx : Nx → Bε(x) ⊂ Bn which is a home-

omorphism onto its image, which sends x to 0, and which restricts to an isometry on

each component of Nx ∩ q(P \ ∂P ), then M inherits a hyperbolic structure.

Proof. See Lackenby (2000)

This theorem has an obvious corollary:

Theorem 2.2.2. Let M be obtained by gluing polytopes as in theorem 2.2.1. If M is

a topological manifold, then M is a inherits a hyperbolic structure.

Proof. See Lackenby (2000)
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What now remains is to define a hyperbolic 24-cell, and provide the specific gluings

that produce a topological manifold on the quotient.
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Chapter 3

THE 24-CELL

3.1 Constructing the Hyperbolic 24-Cell

We begin by constructing a hyperbolic 24-cell. A Euclidean 24-cell is defined to

be the convex hull in R4 of the 24 vertices consisting of all permutations of the coor-

dinates of (±1,±1, 0, 0). As a polytope, it is regular, self-dual, and has:

24 3-faces

96 2-faces

96 1-faces

24 vertices

(Slavich (2014)).

As a regular polytope, we can embed the 24-cell with vertices removed into B4,

the ball model for H4; we rescale each vertex until it has norm 1, and then place

such vertices canonically on the boundary of B4. We then pull back the metric on

B4 to the 24-cell giving us a hyperbolic manifold with boundary on which 3-faces are

totally geodesic. Call such a space C.

Lemma 3.1.1. Each 3-face of the 24-cell is a regular octahedron. Furthermore each

3-face abuts 8 2-faces, 8 1-faces, and 6 vertices.
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Proof. Let x be the number of 2-faces each 3-face abuts. We count 2-faces by multi-

plying x by the number of 3-faces. However we have now overcounted by 2 as each

2-face touches 2 3-faces, one on each side. This gives us:

x · 24 = 96 · 2

and we easily see x = 8. By regularity, each 3-face must be a regular octahedron;

there is only one polyhedron with 8 sides. We then observe the octahedron contains

8 2-faces, 8 1-faces, and 6 vertices.

We color the 3-faces of the 24-cell in red, green or blue as follows:

1) Color the 3-face whose vertices are all permutations of (1, 1, 0, 0) green.

2) The 8 2-faces of the top face can be tiled in red and blue. Color each 3-face

that abuts the top face along a red 2-face red; similarly for blue.

3) Color green the 3-face with vertices consisting of permutations of (-1, -1, 0, 0).

Similarly to (2), color the vertices abutting the bottom face red and blue.

4) We have accounted for 1 + 8 + 8 + 1 = 18 3-faces. Color the remaining 6 green.

No 3-face of the 24-cell now abuts a similarly colored face (Kolpakov and Martelli

(2013)).
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Figure 3.1: A Horosection of a Regular Polytope
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3.2 The Horosections

Choose a vertex v of C. Thurston defines horospheres to be a hypersurface orthog-

onal to all geodesics into v, and notes that they take the form of Euclidean spheres

tangent to the boundary of Bn at v (Thurston (2002)). We make similar definitions.

Definition 3.2.1. Let Sr(v) be a sphere of Euclidean radius r tangent to B4 at v. We

call Sr(v) the horosphere of radius r at v. If r > 0 is sufficiently small to intersect C

as a cusp section, we define the horosection Ur(v) to be this intersection.

Lemma 3.2.2. Each horosection Ur(v) is orthogonal to every geodesic into v.

Proof. See Thurston (2002).

The next lemma shows Ur(v) is a cube, and the intersection of Ur(v) with a 3-face

is a square.

Lemma 3.2.3. Each horosection Ur is a Euclidean cube, i.e. a cube with flat sides

and dihedral angle between sides equal to π
2
.

Proof. First consider the intersection of a horosection with a 3-face of C. We have

seen each 3-face is a regular hyperbolic octahedron with vertices corresponding to

cusps of C. We may model this polyhedron in the half-space model for H3 as follows.

Call the vertex to which the horosection is tangent v, and place it at ∞. Call the

opposite vertex −v and the four other vertices v1 · · · v4, these are cusps and so must

be on the boundary. By regularity, the opposite vertex to v, −v, must be placed

at the origin, and the vertices vi will be symmetrically arranged in a square around

−v. Each edge connecting vi to v is a geodesic and hence a vertical line over vi. Our

horosphere is now a plane parallel the the boundary - it is a cusp section orthogo-

nal to geodesics into v. This sections the octahedron as a square with dihedral angle π
2
.
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Figure 3.2: A Horosphere Sectioning a Regular Octahedron
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Recall each 3-face of C abuts 6 vertices. By self-duality, each vertex must abut 6

3-faces, and so our horosection Ur must be a regular 6-sided polyhedron with each

face the square resulting from the intersection of Ur with a facet.

Remember that we have colored each 3-face of C one of three colors. Each 2-face

of Ur is contained in some 3-face of C and thus inherits a coloring. But no coloring

of a 3-face of C abuts another similarly colored 3-face, hence no 2-face of the square

Ur abuts the same color. We conclude Ur has opposite sides of the same color.
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Chapter 4

THE BUILDING BLOCK

Let C be the hyperbolic 24-cell with colored 3-faces as constructed above. We

make four copies of C, say C11, C12, C21, and C22 preserving the colorings of each. We

then glue isometrically and in a orientation preserving fashion:

1) each red 3-face of C11 to the corresponding red 3-face of C12 and each red 3-face

of C21 to the corresponding red 3-face of C22.

2) each blue 3-face of C11 to the corresponding blue 3-face of C21 and each blue

3-face of C12 to the corresponding 3-face of C22

and call this topological space B.

Lemma 4.0.4. B\{green 3-faces of B} is a manifold.

Proof. We need show that B is locally Euclidean. Let q be the quotient map from

the four unglued copies of C to B. Choose x ∈ B

1) If x = q(p) for some p in the interior of some Cij, then p is left unglued by q.

Hence q is a local homeomorphism from a ball around p to a ball around x.

2) If x = q(p) for some p in the interior of some red or blue 3-face, then the fiber

over x consists of two points, one on each similarly colored face of different Cijs. Recall

13



Figure 4.1: The Construction of B by Gluing Faces, in Cusp Section
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each Cij is a manifold with boundary consisting of its 3-faces. We may then choose

a neighborhood of each point in the fiber identical to the half-ball model for mani-

folds with boundary. Then q glues each half-ball to a space containing a ball around x.

3) If x = q(p) for some p on a 2-face or a 1-face and x is contained in a non-

maximal horosection Ur of radius r containing x, we pass to horosections. Recall that

the horosections look like a flat cube with oppositely colored sides. But gluing red to

red and blue to blue glues horosections into a larger cube with x in its interior. This

interior is plainly a manifold; we may therefore choose a 3-ball B around x inside Ur.

Now thicken r by an ε-neighborhood to produce an open neighborhood of x homeo-

morphic to B × (r − ε, r + ε). This contains a ball around x.

So now B is locally Euclidean at x - provided x is close enough to a cusp to

be contained in a horosection. But our gluing along faces is homogeneous, if our

quotient space is locally Euclidean at any point glued along faces, it must have the

same topological property at every point glued along the same faces. We conclude B

is locally Euclidean at every point along a gluing of 2-faces or 1-faces.

4) There are no vertices.

Theorem 4.0.5. B is a hyperbolic manifold with totally geodesic boundary consisting

of the 32 green 3-faces of the Cijs

Proof. We now know B\{green 3-faces of B} is a manifold. It is hyperbolic as it is

realized by isometrically gluing totally geodesic boundary components of hyperbolic

manifolds with boundary. B is therefore a manifold with boundary consisting of the 32

unglued green 3-faces of the Cijs which were previously seen to be totally geodesic.

We now count the distinct cusps of B. Each cusp section intersects 8 green 3-faces,
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Figure 4.2: Points on Lower Dimensional Faces Glue to Points in a (Locally Eu-
clidean) Packing of Cubes
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now glued into two groups of four as in figure 3.1. B has 32 such faces, and therefore

4 cusps. We also determine the topology of the cusps.

Theorem 4.0.6. Each cusp of B is homeomorphic to T 2 × [0, 1]× [0,∞)

Proof. As pictured, each horosection decomposes into a cube with one pair of opposite

sides colored red and glued in an orientation preserving manner, and one pair colored

blue and glued similarly. The green sides are unglued. We conclude the horosection

is homeomorphic to S1 × S1 × [0, 1]. The cusp itself is therefore homeomorphic to

T 2 × [0, 1]× [0,∞)

17



Chapter 5

THE CONSTRUCTION

5.1 A single cusped 4-manifold

Our plan is now to construct a manifold without boundary by isometrically gluing

the green 3-faces of B. In each horosection, we have seen that there are two groups of

four green faces which have been glued along edges into a larger square and any fur-

ther gluing must respect this identification. Kolpakov and Martelli produce an entire

menagerie of manifolds by gluing in this manner (Kolpakov and Martelli (2013)); we

can, for instance, glue the front four green faces of a horosection to the back four and

repeat similarly for each section, we can glue the front of the first section to the back

of the second, and continue in a cycle, there are orientation reversing gluings, and so

on. Moreover, we can make n copies of B and glue the 32n resulting green faces in

some similar manner. This paper will attempt to construct only one manifold, one

with a single cusp.

Begin by orienting the four cubes forming a horosection with green faces front and

back, blue up and down, and red left and right. Repeat this for all four horosections.

Now isometrically glue the front four green faces of the first section to the back four

faces of the second section, glue the front of the second to the back of the third, and

repeat cyclically; the natural packing of cubes as in figure 5.1 preserves orientation.

This gives a gluing in horosections, now extend this gluing to the coresponding iso-

metric gluing of 3-faces discussed is the introduction. Call the resulting topological

space M
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We immediately see that such a section is a topological torus - it is a cube with

opposite sides glued in an orientation preserving manner - and hence a manifold.

Each point, therefore, has an open 3-neighborhood B within the section, and, by a

thickening argument similar to that in lemma 4.0.2,M is locally Euclidean. We have

isometrically glued all remaining 3-faces, hence M is a hyperbolic manifold.

Lastly, we note that we have glued cusp sections for each of the four cusps into a

single connected manifold. Since section gluing determines vertex (i.e. cusp) gluing,

we have glued all four cusps into one. M is a single cusped hyperbolic manifold.

5.2 Notes on the geometry of M

We conclude by making a few remarks about the geometry and topology of M.

We have seen that M is a single cusped manifold which is thus homeomorphic to

a closed manifold with a single puncture. It follows that M is complete. Its cusp

section, as we have seen, is homeomorphic to T 3. Considering this section was con-

structed via isometric gluings of flat cubes, this cusp section is flat. The volume of

M must be four times the volume of C - we have constructed M from four copies of

C by identifying 3-faces which have zero volume.

The volume of C can be computed as 4π2

3
(Kolpakov (2012)), making vol(M) =

16π2

3
. Furthermore, one consequence of Chern-Gauss-Bonnet is that every orientable,

finite-volume, complete, hyperbolic manifold M has its volume and Euler character-

istic linked via the formula
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Figure 5.1: The Construction ofM by Front-to-Back Gluing of Green Faces in Cusp
Section
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vol(M) =
4π2

3
χ(M)

Considering our volume calculation, this gives us χ(M) = 4. None of this com-

pletely classifies M up to homeomorphism, but it does give us some useful insights.
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