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ABSTRACT  

   

Structural equation modeling is potentially useful for assessing mean differences 

between groups on latent variables (i.e., factors). However, to evaluate these differences 

accurately, the parameters of the indicators of these latent variables must be specified 

correctly. The focus of the current research is on the specification of between-group 

equality constraints on the loadings and intercepts of indicators. These equality 

constraints are referred to as invariance constraints. Previous simulation studies in this 

area focused on fitting a particular model to data that were generated to have various 

levels and patterns of non-invariance. Results from these studies were interpreted from a 

viewpoint of assumption violation rather than model misspecification. In contrast, the 

current study investigated analysis models with varying number of invariance constraints 

given data that were generated based on a model with indicators that were invariant, 

partially invariant, or non-invariant. More broadly, the current simulation study was 

conducted to examine the effect of correctly or incorrectly imposing invariance 

constraints as well as correctly or incorrectly not imposing invariance constraints on the 

assessment of factor mean differences. The results indicated that different types of 

analysis models yield different results in terms of Type I error rates, power, bias in 

estimation of factor mean difference, and model fit. Benefits and risks are associated with 

imposing or reducing invariance constraints on models. In addition, model fit or lack of 

fit can lead to wrong decisions concerning invariance constraints. 
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CHAPTER 1 

INTRODUCTION 

Social scientists frequently are interested in testing group differences in means on 

multiple dependent variables. Multivariate analysis of variance (MANOVA) has 

commonly been used for evaluating group mean differences; however, it is limiting in 

that it focuses on linear combinations of the variables (Hancock, Lawrence, & Nevitt, 

2000). When the outcome variables are designed to reflect a latent-variable system, 

structural equation modeling (SEM) is considered to be a more appropriate approach 

(Cole, Maxwell, Arvey, & Salas, 1993). One of the advantages of SEM over MANOVA 

techniques is its flexibility in specifying models that are carefully tailored to match 

substantive theories (Byrne & Stewart, 2006; Green & Thompson, 2012). By making 

informed choices about model specification, competing structural equation models can be 

evaluated in terms of model fit. Also certain distributional assumptions that are required 

for traditional multivariate tests, such as normality and homogeneous variance-covaraince 

matrices across groups, can be avoided within SEM.  

Common practice in testing differences in latent means involves initially 

evaluating measurement invariance (Byrne, 1998; Hancock, 1997; Hancock, 2004; 

Kaplan, 2000). A series of increasingly strict measurement invariance assumptions are 

tested in a building-block fashion until a certain level of invariance is achieved. Then, 

one can compare two nested models with and without equality constraints on between-

group factor means. One concludes that the factor means are different in the populations 

if the model with constrained factor means fits significantly worse than the model with 

factors means allowed to vary across groups.  
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Valid comparison of latent means in SEM relies on measurement invariance 

assumptions. Ideally, for any particular latent construct, the factor loadings of each of its 

indicators as well as the intercepts should be invariant across the population groups 

(Bollen, 1989; Horn & McArdle, 1992; Meredith, 1993). This assumption is known as 

scalar invariance (Meredith, 1993; Millsap, 1998). If scalar invariance is violated and the 

non-invariance is ignored for analysis models, estimated differences in factor means 

across groups could be biased (Chen, 2008). Additionally, Type I and Type II error rates 

associated with testing factor mean differences could be distorted (Kaplan & George, 

1995; Whittaker, 2013).  

Unfortunately, rigorous scalar invariance is hard to achieve in practice. As an 

alternative, researchers advocated a partial invariance assumption for making meaningful 

interpretation of latent mean differences when a full collection of scalar invariant 

manifest measures is not available (Bagozzi & Edwards, 1998; Byrne, Shavelson, & 

Muthén, 1989; Reise, Widaman, & Pugh, 1993; Steenkamp & Baumgartner, 1998). 

Partial invariance applies when the invariance assumption may hold for some but not all 

manifest measures across different groups (Vandenberg & Lance, 2000). Invariance 

constraints on non-invariant measures should be relaxed to have interpretable differences 

of factor means. With a partial invariance assumption, researchers need to assess the 

invariance and non-invariance of each specific measure. An omnibus hypothesis test on 

sets of parameters (i.e., equality constraints on all factor loadings or all intercepts) is 

conducted first. If rejected, one conducted a specification search using model 

modification indices to assess which specific parameters within the set are non-invariant.  
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Although the partial invariance assumption has been more frequently adopted in 

testing the equivalency of factor covariance structures and mean structures, it is criticized 

for its exploratory nature (Bollen, 1989; Vandenberg & Lance, 2000). Sample-based 

modification of models should be made based not only on statistical evidence, but also on 

substantive knowledge of the indicators. Purely data-driven modifications are not 

recommended (Bollen, 1989; Steenkamp & Baumgartner, 1998). If specification searches 

are conducted, cross-validation is needed to support the final model. Also, as a post hoc 

test, the specification search procedure used to locate non-invariance is subject to 

capitalization on chance. Sample-based specification searches are found to seldom arrive 

at the true population model with any consistency unless the sample size is very large and 

the number of parameters in the search is small (Green & Thompson, 2012; MacCallum, 

Roznowski, & Necowitz, 1992).  

Both advantages and disadvantages on partial invariance have been discussed in 

the literature (e.g., Bollen, 1989; Byrne et al., 1989; Millsap & Hartog, 1988; Steenkamp 

& Baumgartner, 1998). From one perspective, researchers should carefully assess the 

loadings and intercepts of each indicator to evaluate whether there are differences 

between groups or else they might yield incorrect decisions about their assessment of 

factor means. From an alternative perspective, the assessment based on a single sample is 

fraught with problems in practice, and thus researchers should feel very uncomfortable 

about making any decision in this process. Moreover, to the extent that more indicators 

are allowed to differ, estimation of factor mean differences is based on a limited number 

of measures (Green & Thompson, 2012). A loss of power in testing latent mean 

differences is expected with fewer constraints imposed on parameters.  
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Studies on latent factor mean modeling have been focusing on the impact of 

violating invariance assumptions (Chen, 2008; Kaplan & George, 1995; Wang, 

Whittaker, & Beretvas, 2012; Whittaker, 2013). Specifically, existing studies examined 

the effect of an analysis model with assumed full scalar invariance when data were 

generated with varying levels of non-invariance of measurement parameters. However 

for researchers who take on partial invariance as their assumption and wish to conduct 

model specification search for non-invariance, a clearer understanding is needed about 

the effect of making such model modifications on the assessment of differences in factor 

means.  

This study is designed to examine the impact of modifying correct and incorrect 

invariance constraints on loadings and intercepts on testing factor mean differences 

across groups. More specifically, it focuses on the impact of specifying analysis models 

with varying numbers of cross-group parameter invariance constraints on factor mean 

difference testing given generation models that are measurement invariant, partially 

invariant, or non-invariant. It differs from previous ones in that it examines different 

choices among analysis models given particular generation models. In so doing, the 

results should inform researchers about the implications of decisions making in 

specification searches of cross-group equality constraints of parameters on tests of 

differences in factor means. Evaluation of testing factor mean differences should include 

assessment of Type I and II error rates associated with the tests of differences in factor 

means as well as bias, efficiency, and effect size of estimates of factor mean differences. 

In addition, how model fit is affected when modifying the between-group constraints 
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should be assessed, as it is unclear whether fit indices are valid for comparing models 

before and after they are modified (Hancock, 1997).  

The next section is a brief literature review, starting with general approaches for 

multivariate means modeling. After that, measurement invariance is defined in general 

and at specific levels, followed by the prototypical steps in conducting latent means 

testing using SEM. Problems in conducting these steps and the implications of model 

misspecification are then discussed. A statement of the objectives of the study closes this 

section. 

Multiple Group Comparison 

MANOVA and SEM are considered as alternative approaches for testing 

multivariate mean differences. Both approaches take into account covariances among 

manifest variables in the test of mean differences. But they differ in terms of their null 

hypotheses, model interpretations, and the relationships between composites/factors and 

their indicators (Cole et al., 1993; Hancock et al., 2000).  

The fundamental difference between MANOVA and SEM in testing group mean 

differences is their null hypotheses. MANOVA evaluates group differences by forming a 

composite of the observed variables so that the groups are maximally differentiated on 

the composites in the multivariate space. The observed variables combine to create the 

composite, indicating an emergent variable system. SEM, on the other hand, applies 

when a set of observed variables are believed to reflect a latent variable system rather 

than forming a composite. Consequently, results from the two modeling approaches 

should be interpreted differently. MANOVA involves testing composites of manifest 

variables. These composites, typically determined using discriminant analyses, can be 
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difficult to interpret. In contrast, SEM allows one to interpret differences of means on 

latent factors, which have been conceptualized by the researcher to underlie the measures. 

In terms of factor and indicator relationship, MANOVA implicitly assumed that each 

variable measures the composite in the same way across different population groups, 

which is analogous to measurement invariance. However this assumption often is not 

tested in practice. Using SEM to model latent means, researchers initially must specify 

and evaluate the measurement model. The indicators need to reach a certain level of 

measurement invariance so that a valid comparison on latent means can be made.  

Two SEM modeling approaches are often used in assessing latent mean 

differences: Multiple Indicator Multiple Cause models (MIMIC) and structured means 

models (SMM) (Green & Thompson, 2012; Hancock et al., 2000 Sörbom, 1974; Jöreskog 

& Goldberger, 1975). As stated in the name, MIMIC introduces dummy coded indicators 

to the modeling system to denote group membership. For SMM, structural models are 

specified and evaluated for each of the investigated groups simultaneously. Relationship 

between the two modeling strategies is similar to that between regression and t-test 

approaches to assess univariate differences between two populations (Hancock, 1997). 

However the statistical assumptions underlying the two methods are different in terms of 

parameter constraints across-groups. MIMIC implicitly assumes that the same 

measurement model holds for multiple groups, whereas SMM does allow for differences 

in specifications of the measurement model across groups (Hancock, et al., 2000). 

Because MIMIC models have more restrictive assumptions, they may yield fewer 

parameters to estimate in testing factor mean difference and, in that sense, result in a 

smaller sample size requirement compared to the SMM approach. The two approaches 
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will have the same number of degrees of freedom only if the same constraints are 

imposed. For this study, the SMM method is adopted in that it allows for specifying 

analysis models with varying number of between-group invariance constraints.   

Measurement Invariance 

An important assumption before conducting tests of differences in factor means in 

SEM is measurement invariance. Investigation of measurement invariance is often 

conducted under the framework of Confirmatory Factor Analysis (CFA). In CFA, a linear 

relationship between p observed variables and m latent factors is specified for any subject 

as in the following equation:   

 Xg = τg + Λg ξg + δg, (1) 

where X is a p × 1 vector of observed scores, τ is a p × 1 vector of measurement 

intercepts, Λ is a p × m matrix of factor loadings, ξ is a m × 1 vector of latent factor 

scores, δ is a p × 1 vector of unique factor scores, and g denotes the group membership. 

Accordingly, the mean and variance-covariance matrices of the observed variables can be 

defined as follows: 

 E (Xg) = τg + Λg κg, (2) 

 Σg = Λg Φg Λg' + Θg, (3) 

where E (Xg) is a p × 1 vector of observed means, Σg is a p × p matrix of observed 

variances and covariances, κg is a m × 1 vector of factor means, Φg is a m × m matrix of 

factor variances and covariances, and Θg is a p × p diagonal matrix of unique variances.  

Measurement invariance is usually defined from liberal to strict in a hierarchical manner. 

Common taxonomy of measurement invariance defines four levels of invariance: 

configural invariance, metric invariance, scalar invariance, and strict invariance (e.g., 
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Horn & McArdle, 1992; Meredith, 1993; Millsap, 1997; Steenkamp & Baumgartner, 

1998; Vandenberg & Lance, 2000). Configural invariance requires the same patterns of 

zero and non-zero factor loadings underlying each factor across population groups. A 

model with no invariance constraint on cross-group parameters is fit to data. If the model 

fits data well, configural invariance is considered to hold and the model is taken as a 

baseline model. The next level is metric invariance, under which the factor loadings of 

each indicator should be invariant across all population groups. In other words, the 

matrices of factor loadings should be identical across groups (i.e., Λg = Λ). Next, more 

strictly, scalar invariance requires that all the corresponding intercepts should be invariant 

across population groups, in addition to invariant loadings, (i.e., Λg = Λ and τg = τ). 

Finally, as the most restrictive level, strict invariance, requires that the unique variances 

of each indicator are invariant across groups as well as invariant loadings and intercepts 

(i.e., Λg = Λ, τg = τ, and Θg = Θ).  

Prototypical Procedures for Assessment of Latent Mean Differences 

Assumptions. Traditional opinion states that full metric invariance should hold 

before testing scalar invariance; and only when a full scalar invariance holds, can one 

proceed to analyzing factor mean differences (e.g., Bollen, 1989; Horn & McArdle, 

1992). Different factor loadings across groups would indicate that a unit change in factor 

scores will not result in the same change in the observed indicators for the different 

groups. Similarly, different intercepts would indicate that subjects with same changes in 

factor scores will have different changes in observed scores.  

However, it is found that full metric invariance or full scalar invariance is hard to 

achieve in practice. A literature review of cross-cultural and cross-ethnic studies showed 
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that at least 60% of the studies had factor loadings that were not equivalent between 

different cultural groups (Chen, 2008). Factor loadings in the focal group were usually 

higher than those in the reference group. Also, it is found that survey measurement 

instruments typically do not exhibit scalar invariance across populations, especially in 

many large-scale international studies (De Beuckelaer & Swinnen, 2011). As a result, 

partial invariance has been considered an attractive alternative for latent mean modeling, 

given that stringent invariance assumption on loadings and intercepts is not tenable in 

most substantive studies (e.g., Byrne et al., 1989; Byrne & Stewart, 2006; Carle, Millsap, 

& Cole, 2008).  

With a partial invariance assumption, it is assumed that a subset of indicators with 

invariant factor loadings and intercepts is sufficient for assessing factor mean differences. 

As stated by Marsh and Hocevar (1985), comparison of factor means is still feasible 

when most of the indicators are invariant, and under these conditions, failure to achieve 

full factorial invariance is trivial from a practical point of view. More liberally, Byrne et 

al. (1989) argued that, other than the one indicator loading fixed to 1.00 for identification 

purpose, and one indicator intercept constrained to be equal between groups, further 

constraints are unwarranted for testing factor means differences.  

Procedures. A typical procedure for assessment of latent mean differences starts 

with the test of measurement invariance. A specification search procedure could be 

conducted to explore the invariance of specific loading and intercept pairs under a partial 

invariance assumption.  

 Configural invariance is tested first as a baseline model to see whether the same 

indicators represent the same latent factors across groups.  
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 If configural invariance is supported, metric invariance is examined where all 

between-group loading pairs are constrained to be equal. Overall fit of this model 

is evaluated, and the model is then compared to the configural invariance model 

to see whether the model fit decreases significantly using a chi-square difference 

test.  

o If overall fit of the metric invariance model is tenable and there is no 

significant decrease in fit compared to the configural invariance model, 

metric invariance is considered to hold.  

o If there is a significant decrease in fit, metric invariance of models fails. 

One suggestion under this situation is to refer to modification information 

such as the Lagrangian Multiplier (LM) tests, which indicate constraints 

on parameters that can be relaxed to improve model fit in the sample. By 

synthesizing this information as well as substantive knowledge, 

researchers might allow some loadings to differ between groups. The 

updated model is assessed for fit and compared with the metric invariance 

model using a chi-square difference test. If this model is tenable, it is 

believed that partial metric invariance is met.  

 In this step, the between-group intercept constraints are evaluated. Initially, 

intercepts are constrained to be equal between groups for an indicator if the factor 

loadings for that intercept were tested to be equal between groups based on the 

previous step.  

o If the model that imposes between-group intercept constraints is tenable 

and there is no significant decrease in fit compared to the previous model, 
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a full scalar invariance is met and the differences in factor means can be 

assessed.  

o If the model that imposes between-group intercept constraints does not fit 

well, constraints on potential non-invariant intercept pairs can be assessed 

using modification indices and substantive knowledge about the 

indicators. Based on this information, one or more of the constrained 

intercept pairs might be relaxed. At this point, differences in factor means 

can be assessed.  

After determining (partial) scalar invariance, two sets of models are specified to 

test latent mean differences: one with the latent means constrained to be equivalent across 

groups (restricted model) and the other with the means freely estimated (full model). The 

rest of the model is specified as determined through the previous steps of assessing 

measurement invariance. Both models are fitted to the data, and the model fit is compared 

using a chi-square difference test. If the increment of fit is significant from the restricted 

model to the full model, the latent means are considered to be different across groups.  

Issues with Specification Search Methods 

Specification searches are commonly conducted in practice to assess partial 

invariance before testing between-group factor mean differences. Several issues should 

be considered in conducting searches when making decisions about modifying invariance 

constraints on parameters, as modifications based simply on model fit indices might lead 

to misspecified models.  

Preference for Conceptual Choices. Empirical search procedures for assessing 

partial measurement invariance can lead to freeing invariance constraints on parameter 
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pairs that have no clear interpretation.  In theory, researchers should decide when to 

constrain or relax a specific pair of parameters across groups based on their substantive 

knowledge, and then assess these decisions based on model fit. However theory might 

not be available or can be inaccurate, leading to a dependence in practice on empirical 

methods, such as modification indices (i.e., LM tests) and Expected Parameter Change 

(EPC). On the other hand, confidence in making decisions about measurement invariance 

of parameters should come from both understanding investigated constructs and their 

indicators as well as statistical support from empirical data (Hancock, Stapleton, & 

Arnold-Berkovits, 2009). Without theoretical support, relaxing constrained parameters 

based purely on empirical findings should be done very cautiously, perhaps only when 

the modification indices are significant and with a substantial change in parameter 

estimates in a cross validation process (Kaplan, 1989; SteenKamp & Baumgartner, 1998). 

Choice of Referent Variable. Selection of referent indicators (RI) is critical in 

assessing measurement invariance of multi-group models. A referent indicator is the 

variable that is chosen for assigning the metric for a factor, typically by fixing its loading 

to one for all groups. For modeling means, typically the intercepts for that indicator are 

also constrained across groups. A non-invariant RI could lead to biased estimates of 

model parameters and inadequate model fit initially (Vandenberg & Lance, 2008). When 

a selected referent indicator is non-invariant, the discrepancy between the loadings or/and 

intercepts on that indicator is transferred to the parameters of other indicators as well as 

to the factors. For example, Johnson, Meade, & DuVernet (2009) showed that 

inappropriate selection of a referent indicator produced biased results for indicator-level 

tests under partial metric invariance. Several strategies have been proposed to address on 
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how to identify RIs that are truly invariant (Cheung & Rensvold, 1999; Reise et al., 1993; 

Yoon & Millsap, 2007). However the methods has not been widely adopted in practice 

because they either are too labor intensive or have requirements about the data that 

cannot be met in practice (e.g., require large sample sizes) (French & Finch, 2008; Yoon 

& Millsap, 2007).  

Problems with Significance Testing. To conduct model modifications in SEM, 

three asymptotically equivalent significance tests are often used by most researchers: 

Likelihood Ratio (LR) test, Lagrangian Multiplier (LM) test, and Wald (W) test. As 

exploratory tools, these tests have their merits but also limitations briefly in that (a) the 

order in which parameters are freed or restricted can affect the significance tests for the 

remaining parameters; (b) probability levels associated with the W and LM statistics in 

the stepwise procedures are not likely to be accurate (Bollen, 1989); (c) multiple tests are 

conducted with little or no attempt to control for familywise error rates in practice (Green 

& Babyak, 1997); and (d) non-rejection of null hypothesis does not imply that the 

constraints are appropriate (potentially due to a lack of power). Especially in testing 

invariant parameter pairs, Cheung and Rensvold (1999) pointed out that the commonly 

used LM test based on a decomposition of the multivariate LM test is suspect because the 

index for each fixed parameter is calculated in the fully constrained model, where all 

other indicators in the model are assumed to be invariant.  

Implications of Model Misspecification 

Misspecification of measurement models can negatively affect assessment of 

factor mean differences between groups. Simulation studies have been conducted to show 

that incorrectly imposing between-group constraints on factor loadings or intercepts can 
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lead to inaccurate results in estimation of factor mean differences and distorted model fit. 

Bias of Differences in Factor Means. To investigate the impact of incorrectly 

constraining non-invariant loading on factor means, Chen (2008) simulated factor 

loadings in one group that were uniformly larger than their counterparts in the other 

group, while the latent means were equal across groups. When all cross-group loading 

pairs were constrained to be invariant in the model, a pseudo group difference in latent 

means appeared. On the other hand, when the non-invariance of loadings was simulated 

to form a mixed pattern with the average loadings being equal between groups, the 

estimated difference in latent means was close to zero (i.e., the true difference). In the 

same study, Chen also included conditions in which the factor loadings were simulated as 

invariant, but intercepts were non-invariant and the pattern of non-invariance was 

manipulated. In one condition, the intercepts in one group were uniformly larger than the 

intercepts in the second group, whereas in the second condition, the intercepts had a 

mixed pattern in which the average intercept was equivalent between groups. When the 

intercepts incorrectly constrained to be the same, the factor mean differences were biased 

in the first condition and were minimized to zero in the second condition. The study by 

Wang et al. (2012) reached similar conclusion. Additionally, it is found that bias in latent 

mean difference estimates increases as the differences in factor loadings increased across 

groups (in a uniform pattern). Again, when the differences in factor loadings follow a 

mixed pattern and the differences are balanced across groups, the estimated latent mean 

differences are unbiased. Although not explicitly stated in Chen (2008), it appeared that 

incorrectly constraining intercepts might have a greater impact on latent mean estimation 

than incorrectly constraining loadings (when the non-invariance patterns are uniform). 



  15 

Type I Error and Power of Testing Factor Mean Differences. The impact of 

inappropriate invariance constraints on statistical properties of latent mean estimation has 

been studied as well. Kaplan and George (1995) conducted a study to investigate the 

impact of degrees of non-invariance of factor loadings on the power associated with the 

test of factor mean differences. In their study, the proportion and magnitude of uniform 

non-invariance in cross-group loading pairs were manipulated for data generation, while 

all loading pairs were constrained to be equal in model analyses. The results illustrated 

that power is artificially boosted as the proportion and magnitude in factor loading non-

invariance increased. Consistently, Wang et al. (2012) found that both Type I error and 

power associated with latent mean difference testing appear to be slightly inflated when 

all loading pairs were constrained to be equal under partial metric invariance. Further, 

unequal sample sizes and factor variance ratios between-groups caused problematic Type 

I error rate and power. In addition, they found that constraining or not constraining non-

invariant intercepts had a greater impact on Type I error rate and power than constraining 

or not constraining non-invariant loadings. In Whittaker (2013), it was shown that Type I 

error rates were inflated as the proportion of non-invariant intercept pairs increased and 

as the magnitude of the non-invariance in intercepts increased. Similarly, she 

demonstrated that constraining intercepts that were uniformly different could artificially 

increase the power of testing factor mean differences. For conditions with an equal 

proportion of non-invariant intercepts and all intercepts constrained to be equal in the 

analysis model, Type I error rates became more inflated and power artificially increased 

as the total number of indicators became greater. 

Model Fit. Few works have focused on model fit in the measurement invariance 
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literature for latent mean modeling. Whittaker (2013) investigated changes in model fit 

when invariance constraints were misspecified. The results suggested that average CFI 

values tended to decrease as the proportion of misspecified non-invariant intercepts 

increased as well as the magnitude of the between-group differences in intercepts 

increased. RMSEA also demonstrated poorer fit under the same set of conditions.  

Study Objective 

Measurement invariance needs to be tested prior to factor mean modeling. For 

researchers who assume their factor indicators are partially invariant and wish to test the 

invariance for specific parameters, the primary method used to make decisions about 

measurement invariance involves specification searches. These searches could be 

problematic and require researchers to make decisions involving choice of significance 

tests, combining results from both modification indices and ECP, controlling for Type I 

error, and integration of substantive theory and empirical outcome. In making these 

complex decisions, it would be helpful to understand the impact of their decisions on the 

evaluation of factor mean differences.  

In the literature, studies were typically designed to assess a particular analysis 

model given data generated using various models. Results from these studies indicated 

that violation of a full scalar invariance assumption has a profound impact on estimation 

of factor mean differences. However for those who plan to test invariance based on 

specification searches, it stays unclear that what is the impact of modifying analysis 

models in terms of the invariance constraints on factor mean estimation. The current 

study addressed this issue by conducting analysis using multiple analysis models on data 

generated using any one model. The approach is similar to the one faced by applied 



  17 

researchers, who must decide what parameters to constrain or freely estimate for their 

dataset.  

More specifically, the focus of this study is on the impact of correct or incorrect 

decisions about invariance of loadings and intercepts on assessment of factor mean 

differences. Three levels of measurement invariance were simulated in data generation: 

full invariance, partial invariance, and non-invariance. For each generation model, a 

number of analysis models were considered: those with a minimal number of between-

group constraints on intercepts and loadings, those with all between-group constraints 

imposed on intercepts and loadings, and those in-between these two alternatives. In terms 

of results, bias, efficiency, and effect size of the estimates of factor mean differences 

were examined. Type I error rates, and power associated with testing factor mean 

differences were focused on. Also, the magnitude of model fit indices was studied with 

changes in the number of correctly and incorrectly imposed invariance constraints.  
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CHAPTER 2 

METHODS 

A simulation study was conducted to explore the effect of different numbers of 

invariance constraints on factor loadings and intercepts on tests of differences in latent 

factor means between groups. Data were simulated using three types of models: models 

with a) invariant loadings and invariant intercepts for all indicators between groups (full 

invariance, F-IV); b) non-invariant loadings and non-invariant intercepts for half of the 

indicators between groups (partial invariance, P-IV); c) non-invariant loadings and non-

invariant intercepts for all the indicators between groups (non-invariance, N-IV). 

Analysis models with different numbers of invariance constraints were applied to datasets 

simulated using the three types of models. Type I error rates and power of tests of 

between-group latent mean differences were assessed, as well as bias, efficiency, and 

effect size in the estimates of factor mean differences. In addition, model fit indices were 

evaluated. These indices included CFI, RMSEA, and SRMR.  

A two-group, single-factor model with 8 measured indicators was investigated in 

the current study. The choice of 8 indicators was consistent with the design of the study 

by Chen (2008), who examined bias in factor mean difference estimation under non-

invariance of factor loadings and intercepts. A path diagram of the model is presented in 

Figure 1. The triangle containing 1 in each of the groups represented the unit predictor. 

Coefficients from the unit predictors represented the indicator intercepts and factor 

means. A number of simulation and analysis conditions were manipulated, as described 

in the following section.   
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A Two-Group Single-Factor Model 

 

 
 

 

 
 

Figure 1. A Two-Group Single-Factor Model with Mean Structure.  

 

Simulation Conditions 

Five simulation variables were manipulated: (a) proportion of indicators with non-

invariant parameters, (b) pattern of non-invariant parameters, (c) magnitude of between-

group differences in factor loadings and intercepts (d) magnitude of between-group 

difference in latent factor means, and (e) sample size.  
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Proportion of indicators with non-invariant parameters. As described earlier, 

three levels of non-invariance were considered regarding factor loadings and intercepts: 

full invariance (F-IV), partial invariance (P-IV), and non-invariance (N-IV). For an 

invariant indicator, both its loadings and intercepts were invariant between groups; and 

for a non-invariant indicator, both the loadings and intercepts were non-invariant. In the 

F-IV conditions, all the indicators were invariant; in the P-IV conditions, half of the 

indicators were invariant and the other half of the indicators were non-invariant; and, in 

the N-IV conditions, all indicators were non-invariant.  

Pattern of non-invariance. P-IV and N-IV conditions were combined with 

uniform and mixed patterns of non-invariance in the design of the study. For a uniform 

pattern of non-invariance, the differences in parameter values between the two groups 

were the same across all non-invariant indicators. Specifically, factor loadings in group 1 

were always greater than the loadings in group 2, and correspondingly, intercepts in 

group 1 were always lower than intercepts in group 2. For a mixed pattern of non-

invariance, the between-group differences in parameter values were the same, and, in one 

direction for half of the non-invariant indicators and in the opposite direction for the other 

half of the non-invariant indicators. For example, in the mixed P-IV condition with 4 

invariant indicators and 4 non-invariant indicators, 2 of the 4 non-invariant indicators had 

higher loadings and lower intercepts in group 1 and the other 2 non-invariant indicators 

had higher loadings and lower intercepts in group 2.  

Between-group differences in factor loadings and intercepts (DIF). For all 

invariant indicators, the loadings were set to be .50 and the intercepts were 1.0. For all 

non-invariant indicators, two levels of between-group differences in loadings and 
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intercepts were considered: 10% and 20%. Either 10% or 20% difference in loadings was 

created by a proportional rescaling method where a higher loading was reduced by either 

10% or 20% to yield a lower loading (Yoon & Millsap, 2007). Thus the loading 

differences were comparable across conditions and did not depend on loading size. The 

magnitude of any non-invariant loading pair was balanced around .50. For the 10% DIF 

level, loadings were set to be .56 and .45 (.56 – 10% × .56 = .50 and .50 – 10% × .50 = 

.45); for the 20% level, loadings were .625 and .40. Intercept differences were created by 

simply subtracting .05 or .10 (corresponding to 10% or 20% loading differences) from 

1.0 in one group and adding .05 or .10 to 1.0 in the other group. It should be noted that 

any non-invariant indicator is simulated to have a higher loading and a lower intercept in 

one group, and, a lower loading and a higher intercept in the other group. Combination of 

a higher loading and a lower intercepts for any indicator reflected the relationship 

between parameters in substantive research. Analogously, increasing slopes of predictors 

in regression models leads to decreases in intercepts, holding everything else constant. In 

a P-IV condition where 4 indicators were invariant and 4 indicators were non-invariant, 

with 10% DIF, Λ1 = [.50, .50, .50, .50, .56, .56, .56, .56], 1 = [1.00, 1.00, 1.00, 1.00, .95, 

.95, .95, .95] for group 1, and Λ2 = [.50, .50, .50, .50, .45, .45, .45, .45], 2 = [1.00, 1.00, 

1.00, 1.00, 1.05, 1.05, 1.05, 1.05] for group 2. In Table 1, population loadings and 

intercepts were presented for conditions with 10% DIF. 
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Table 1 

Population Factor Loadings and Intercepts for conditions with 10% differences in factor loadings 

Pattern and proportion of non-

invariance 
Loadings 

 
Intercepts 

F-IV Group 1 [.50, .50, .50, .50, .50, .50, .50, .50] 
 

[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00] 

 
Group 2 [.50, .50, .50, .50, .50, .50, .50, .50] 

 
[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00] 

     
Uniform P-IV Group 1 [.50, .50, .50, .50, .56, .56, .56, .56] 

 
[1.00, 1.00, 1.00, 1.00, .95, .95, .95, .95] 

 
Group 2 [.50, .50, .50, .50, .45, .45, .45, .45] 

 
[1.00, 1.00, 1.00, 1.00, 1.05, 1.05, 1.05, 1.05] 

     
Mixed P-IV Group 1 [.50, .50, .50, .50, .45, .45, .56, .56] 

 
[1.00, 1.00, 1.00, 1.00, 1.05, 1.05, .95, .95] 

 
Group 2 [.50, .50, .50, .50, .56, .56, .45, .45] 

 
[1.00, 1.00, 1.00, 1.00, .95, .95, 1.05, 1.05] 

     
Uniform N-IV Group 1 [.56, .56, .56, .56, .56, .56, .56, .56] 

 
[.95, .95, .95, .95, .95, .95, .95, .95] 

 
Group 2 [.45, .45, .45, .45, .45, .45, .45, .45] 

 
[1.05, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05, 1.05] 

     
Mixed N-IV Group 1 [.45, .45, .45, .45, .56, .56, .56, .56] 

 
[1.05, 1.05, 1.05,1 .05, .95, .95, .95, .95] 

 
Group 2 [.56, .56, .56, .56, .45, .45, .45, .45] 

 
[.95, .95, .95, .95, 1.05, 1.05, 1.05, 1.05] 
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Between-group difference in latent factor means. Factor means for group 1 (κ1) 

were set to 0 across all conditions; factor mean for group 2 (κ2) were set either to 0 or .20. 

Consequently the differences in latent factor means were equal to the factor means for 

group 2 (i.e., ∆κ = κ2). Type I error rates were examined for conditions with ∆κ = 0, 

whereas power was assessed for conditions with ∆κ = .20. Variances of factors were 1.00 

for both groups across all conditions. A pilot study was conducted to ensure that power 

was sensitive to variation across conditions and did not suffer from ceiling effects.  

Sample size. Total sample size was set to 300 or 500 in an attempt to mimic small 

and moderate sample sizes in practice. For simplicity, sample sizes were designed to be 

same for the two groups for all conditions. Thus each group had either 150 or 250 

simulated subjects.  

In summary, for F-IV, there were a total of 4 simulation conditions (2 between-

group differences in factor means × 2 sample sizes); for P-IV and N-IV, there were a total 

of 32 simulation conditions (2 proportions of non-invariant parameters × 2 patterns of 

non-invariance × 2 DIFs × 2 between-group differences in factor means × 2 sample 

sizes). Over all manipulated simulation variables, the design included 36 simulation 

conditions. For each condition, 1000 replications were generated.  

Analysis Conditions 

Regardless of the choice of analysis models, the following constraints were 

imposed on all analysis models for identification purpose: (a) the loadings for one 

indicator were constrained to be equal across two groups; (b) factor variance was fixed at 

1.00 in group 1; (c) the intercepts of the selected indicator in step (a) were constrained to 
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be equal across groups; and (d) the factor mean was fixed at 0 in group 1. Indicator 

selection in (a) depended on the specification of analysis models. 

Four sets of analysis models were conducted on each dataset from the 36 

simulation conditions. Within each set of the models, there could be one or multiple 

analysis models, depending on the condition. Table 2 showed the four different sets of 

models used to analyze each of the simulated datasets. They differed in terms of the 

number of invariance constraints imposed on the loading and intercept pairs. An X in the 

table indicated these constraints were imposed on the parameters of an analysis model. 

As shown in the table, analysis models had one of four sets of between-group equality 

constraints on parameters: a) constraints on 1 loading and 1 intercept, b) constraints on 4 

loadings and 4 intercepts, c) constraints on 8 loadings and 8 intercepts, and d) constraints 

on 8 loadings and 1 intercept. For model sets a, b, and c, intercepts of indicators were 

constrained to be equal whenever the loadings of these indicators were constrained to be 

equal. For model set d, between-group invariant constraints were imposed on all loading 

pairs, but only on one of the intercept pairs. Analysis results from model sets a, b, and c 

reflected the effect of increasing/decreasing the number of invariance constraints on 

model estimation. Comparison between model sets a and d reflected the effect of 

changing the number of loading invariance constraints, while keeping the number of 

intercept constraints constant. The comparison between model sets d and c reflected the 

effect of the number of intercept invariance constraints, while keeping number of loading 

constraints constant. Analysis models represented by the top-right cell of Table 2 were 

excluded in the study because the intercept of an indicator is usually not constrained once 
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the loading of the indicator is considered to be non-invariant in the measurement 

invariance specification search.  

Table 2 

Model Sets with Different Numbers of Between-Group Invariance Constraints on Factor 

Loadings and Intercepts 

 

Number of constraints on loading 

pairs 

Number of constraints on intercept pairs 

1 intercept 2 intercepts 4 intercepts 8 intercepts 

1 loading X (a) - - - 

2 loadings - - - - 

4 loadings - - X (b) - 

8 loadings X (d) - - X (c) 

 

Models with same numbers of invariant constraints can be specified differently 

for particular datasets. Each model set in Table 2 included one or multiple analysis 

models, depending on the generation model. Analysis models across model sets were 

categorized into five types. Before defining the five model types, a few terms are defined: 

an appropriate invariance constraint is an invariance constraint imposed on parameters 

for an indicator that were generated to be equal between groups; and an inappropriate 

invariance constraint is an invariance constraint imposed on parameters for an indicator 

that were generated to be unequal between groups. Furthermore, inappropriate 

invariance constraints on unbalanced parameters across multiple indicators occur if 

these parameters were generated to have greater values in one of the groups. In contrast, 

inappropriate invariance constraints on balanced parameters across multiple indicators 

occur if half of the constrained parameters for indicators were generated to have greater 

values in one group and the other half had greater values in the other group; the absolute 

magnitude of differences between parameters across indicators were the same.  
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Using these four terms, we next define five types of analysis models. We differentiated 

among these five types of models in terms of the invariance constraints imposed on 

parameters, but not in terms of the parameters that were not constrained to be equal 

between groups.   

(1) An appropriate model is an analysis model in which all invariance constraints 

are imposed on parameters that were generated to be equal.  

(2) A 100% unbalanced model is an analysis model in which all invariance 

constraints are imposed on unbalanced parameters. 

(3) A 50% unbalanced model is a model in which 50% of the invariance 

constraints are on unbalanced parameters and 50% of the invariance constraints are on 

parameters that were generated to be equal. 

(4) A 100% balanced model is a model in which all invariance constraints are 

imposed on balanced parameters.  

(5) A 50% balanced model is a model in which 50% of the invariance constraints 

are on balanced parameters and 50% of the invariance constraints are on parameters that 

were generated to be equal.  

For F-IV simulation data, all analysis models are appropriate models (regardless 

of the number of invariance constraints) because all indicators were generated to be 

equal. Likewise, all analysis models are 100% unbalanced models for uniform N-IV data 

because all indicators were generated to be uniformly unequal. Different types of analysis 

models exist when generation models were mixed N-IV, uniform P-IV, and mixed P-IV. 

Table 3 and Table 4 elucidated the model types for data from these generation models. As 

shown in Table 3, the model with a total of 8 constraints on loadings and 8 constraints on 
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intercepts when fitting mixed N-IV data is a 100% balanced model because all the 

constraints were on balanced parameters. Also, when generation model is mixed P-IV 

(shown in the right half of Table 4), a model with 8 constraints on loadings and 8 

constraints on intercepts is a 50% balanced model because half of the constraints are 

appropriate and half are on balanced parameters.  

Table 3 

Model Specifications When Generation Model Is Mixed N-IV 

Generation Model: Mixed N-IV 

Analysis Models 

Total 

Invariance 

Constraints 

Constraints on non-

invariant parameters 

(V1 - V4) 

Constraints on non-

invariant parameters 

(V5 - V8) 

Model Type 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced Model 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced Model 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced Model 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced Model 

 

According to Tables 3 and 4, a total of 22 analysis models were analyzed for these 

three simulation conditions. There were also 4 analysis models for F-IV conditions, and 4 

analysis models for uniform N-IV conditions. Combining with 2 levels of DIF, 2 levels of 

between-group differences in latent factor means, and 2 levels of sample size, a total of 

224 analysis models were conducted in the study. 
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Table 4 

Model Specifications when generation models are Uniform P-IV and Mixed P-IV 

Generation Model: Uniform P-IV 
 

Generation Model: Mixed P-IV 

Analysis Models 
 

Analysis Models 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type 
 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced Model 
 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced Model 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate Model 
 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate Model 

- 4 λ and 4 τ 100% Unbalanced Model 
 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced Model 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced Model 
 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced Model 

     
- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced Model 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

 8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

4 λ and 0 τ 4 λ and 1 τ - 
 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate Model 

 1 λ + 1 τ 
1 λ and 1 τ - - Appropriate Model 

- 1 λ and 1 τ 100% Unbalanced Model 
 

- 1 λ and 1 τ - 100% Unbalanced Model 
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Summarizing Results 

Mplus 6.11 and R 3.0 were used for data generation and model analysis. The 

results are summarized in terms of empirical Type I error rates and power rates associated 

with latent factor mean difference testing between groups. Empirical Type I error rates 

and power were computed from Wald tests of factor mean differences based on critical z 

values at .05 level. A pilot study indicated that Type I error and power rates obtained by 

the Wald test and chi-square difference test of factor mean differences were consistent to 

the third decimal places. Bias, efficiency, and effect size of factor mean difference 

estimates also were examined. Bias was defined as the mean of the differences between 

the estimated factor mean differences and the population factor mean differences. For 

conditions with factor mean differences simulated to be .20, relative bias was also 

examined. Relative bias was defined as bias in mean difference estimates dividing by the 

difference in population means. A standardized effect size statistic was computed by 

dividing the difference between the factor means by the square root of the pooled 

variance of the latent variables from each group (Hancock, 2001). Efficiency is defined 

as the standard deviation of estimated factor mean differences. In addition, model fit was 

assessed based on three indices: CFI, RMSEA, and SRMR.  
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CHAPTER 3 

RESULTS 

Results were presented based on the models used to generate the data: full 

invariance, uniform non-invariance, mixed non-invariance, uniform partial invariance, 

and mixed partial invariance. For each generation model, results from selected conditions 

were presented. Results from all conditions for the five generation models were included 

in Appendix A.  

Full Invariance Conditions (F-IV) 

The generation model for F-IV data had equal loadings and equal intercepts 

across groups. As described in Table 2, the generated data were analyzed using four 

models that varied in the number of between-group invariance constraints imposed on 

loadings and intercepts. All four models were appropriate models. Figure 2 presented the 

Type I error rates and power for the tests of factor mean differences based on the four 

analysis models. The means of three model fit indices from these analysis models were 

displayed in Figure 3.  

As shown in panel (a) of Figure 2, Type I error rates fell between .04 and .06 for 

all but one of the analysis models. Conditions with a larger sample size tended to have 

more conservative Type I error rates. For conditions with the same sample size, the most 

inflated Type I error rates occurred when the analysis model had 8 loading constraints 

and 1 intercept constraints. Overall, Type I error rates from analysis models with 

different numbers of invariance constraints were deemed acceptable under F-IV 

conditions according to the liberal cutoff criterion of robustness (α ± α/2) (Bradley, 

1978).  
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(a) Generation Models: F-IV, ∆κ = 0 

 

 

(b) Generation Models: F-IV, ∆κ = .20 

 

Figure 2. Type I Error Rates and Power Associated with Factor Mean Difference Testing 

from Various Analysis Models When Data Are Generated from F-IV Conditions. 

 

In panel (b) of Figure 2, it was observed that power decreased as invariance 
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appeared to have a greater effect on power than constraints on factor loadings.  For 

example, with N = 500, power dropped from .46 to .19 when 7 intercept invariance 

constraints were removed, whereas the decrease in power was from .19 to .18 when 7 

loading constraints were removed. The greater effect of invariance constraints on 

intercepts was consistent with prior results (Chen, 2008; Wang et al., 2012), although not 

explicated. 

Table 7 in Appendix A presented the average bias and relative bias in estimates of 

factor mean differences, as well as efficiency and estimated effect size. Bias was 

relatively small across all conditions under F-IV. Absolute value of the average bias 

ranged from .0004 to .0263, with most values being positive. Average relative bias 

ranged from 3.55% to 13.15%. Within each generation condition, removing appropriate 

invariance constraints in analysis models led to increasing in estimate bias. Similarly, the 

inflation in estimated effect size increased and the efficiency of estimation decreased 

when appropriate invariance constraints were removed. Again, it was found greater effect 

of constraining intercepts than loadings on all these quantities.  

According to Figure 3, all analysis models fit the data adequately for F-IV 

conditions: the mean CFIs were above .98, the mean SRMRs were below .06, and the 

mean RMSEAs were below .02. The mean values for CFI and SRMR indicated better fit 

with fewer invariance constraints. On the other hand, the mean RMSEAs tended to 

increase slightly as fewer invariance constraints were imposed on the analysis model 

within each generation condition. Based on RMSEA, models with fewer appropriate 

constraints showed worse fit. In other words, changes in RMSEA indicated that more 
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(a) Average CFI (b) Average SRMR 

  

(c) Average RMSEA  

 

Figure 3. Model Fit Indices from Various Analysis Models When Data Are Generated from F-IV Conditions.  
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parsimonious models are preferred when all imposed constraints are appropriate. 

Generally, models fitting on data with larger sample size yield better fit 

Uniform Non-Invariance Conditions (Uniform N-IV) 

For uniform N-IV generated data, all loadings for indicators were greater in group 

1and all intercepts for indicators were greater in group 2. Four analysis models were fit to 

each simulated dataset. All analysis models for uniform N-IV generated data were 100% 

unbalanced models.  

Type I error rates from all analysis models were highly inflated for uniform N-IV 

data, as shown in Figure 4. Conditions with higher DIF and/or larger sample size had 

higher inflated Type I error rates. Within each generation condition, the magnitude of 

inflation became smaller as more inappropriate invariance constraints were removed from 

analysis models. Type I error rates decreased more dramatically as a function of the 

number of intercept constraints in comparison with the number of loading constraints. 

Interestingly, this effect of intercept constraints on Type I error mimicked the effect of 

intercept constraints on power for F-IV generated data. Estimates and effect size of factor 

mean differences are highly biased when generated data were uniform N-IV (see Table 9 

in Appendix A). Similarly with F-IV, average bias and inflation in estimated effect sized 

increased and efficiency became lower as invariance constraints were removed in 

analysis models, although they are inappropriate.  

CFI, SRMR, and RMSEA from all analysis models under uniform N-IV 

conditions were presented in Figure 5. The performance of the three indices indicated that 

the models fitted uniform N-IV data fairly well, although they were all misspecified to 

some extent. Counterintuitively, CFI and SRMR indicate better model fit as more 
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inappropriate invariance constraints are removed from the model. The plots of the three 

indices for uniform N-IV data were similar to those for F-IV data. For uniform N-IV 

data, the original non-invariant indicators are rescaled as “invariant” indicators in 

analysis models with invariance constraints because the group differences in loadings and 

intercepts are simulated to be exactly the same across all indicators. With this 

readjustment in scale, analysis models fit data under uniform N-IV conditions as well as 

they fit data under F-IV conditions. The scale readjustment was also observed and 

illustrated mathematically in Yoon & Millsap (2007). 

 

Generation Models: N-IV, Uniform, ∆κ = 0 

 

Figure 4. Type I Error Rates Associated with Factor Mean Difference Testing from 

Various Analysis Models When Data Are Generated from Uniform N-IV Conditions. 
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(a) Average CFI (b) Average SRMR 

  

(c) Average RMSEA  

 

Figure 5. Model Fit Indices from Various Analysis Models When Data Are Generated from Uniform N-IV Conditions.
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Mixed Non-Invariance Conditions (Mixed N-IV) 

For mixed N-IV generated data, half of the non-invariant loadings (intercepts) 

were higher (lower) in group 1 and half were higher in group 2. Analysis models for 

mixed N-IV data were either 100% unbalanced models or 100% balanced models 

depending on the number and specification of invariance constraints (see Table 3). For 

ease of interpretation, the model with 8 loading constraints and 1 intercept constraint was 

excluded from the figures. As a result, for mixed N-IV data, there were four analysis 

models, two of them being 100% balanced models and two being 100% unbalanced 

models.  

Figure 6 displayed Type I error rates and power for the different analysis models. 

In panel (a), Type I errors clustered around .05 for 100% balanced analysis models, 

regardless of the number of invariance constraints. On the other hand, Type I error rates 

were inflated to varying degrees for 100% unbalanced analysis models. For either 100% 

balanced or unbalanced models, the magnitude of inflation of Type I error rate correlated 

positively with DIF. For 100% balanced models, inflation of Type I error rates was 

negatively related to sample size; the correlation turned positive when 100% unbalanced 

models were fitted. In panel (b), the powers for the 100% balanced analysis models (with 

4 or 8 constraints imposed on the loadings and intercept constraints) were comparable to 

the powers for the same models fitting the F-IV data. Powers for the 100% unbalanced 

analysis model were much lower than those for the 100% balanced model. The 

constrained indicators in the 100% unbalanced analysis models have higher intercepts 

(although lower loadings) in group 1 than in group 2. But the factor means were 

simulated to be higher in group 2. As a result, difference in constrained intercepts were  
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(a) Generation Models: N-IV, Mixed, ∆κ = 0 

 

 

(b) Generation Models: N-IV, Mixed, ∆κ = .20 

 

Figure 6. Type I Error Rates and Power Associated with Factor Mean Difference Testing 

from Various Analysis Models When Data Are Generated from Mixed N-IV Conditions. 

 

transferred to factor means, but in an opposite direction, leading to loss in power. Still, 

conditions with higher DIF and sample size tended to have higher power. Table 11 in 

Appendix A showed how average bias, effect size, and efficiency performed with varying 
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models. As expected, bias and effect size were relatively minimal when analysis models 

were 100% balanced models; while the estimations were highly inflated when analysis 

models were 100% unbalanced. With either 100% unbalanced or 100% balanced 

models, these quantities became less optimal as invariance constraints were removed, 

regardless of the appropriateness. 

For simplicity, Figure 7 presents model fit indices for the four analysis models 

fitted to data generated with ∆κ = 0, DIF = 20% N = 300. Complete results of fit indices 

for all conditions can be found in Table 10 in Appendix A. All three fit indices indicated 

adequate fit when analyzed with 100% unbalanced models, regardless of the number of 

constraints. In contrast, the 100% balanced models fit the data poorly. With 8 loading and 

8 intercept constrained, the mean CFI was .82, the mean SRMR was .10, and the mean 

RMSEA was .08, all exceeding the commonly accepted cutoff criteria of good fit (Hu & 

Bentler, 1999). Also, the 100% balanced model with 4 loading and intercept constraints 

fit significantly worse than the 100% unbalanced model with 4 invariance loading and 

intercept constraints. It should be noted that these models had the same amount of 

misspecification. Consistent with previous conditions, for 100% unbalanced models, 

removing inappropriate constraints led to increasing CFIs and decreasing SRMRs, with 

RMSEA remaining at approximately the same level. For 100% balanced models, all three 

indices indicated better model fit as inappropriate constraints were removed. 
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Generation Models: N-IV, Mixed, ∆κ = 0, DIF=20%, N = 300 

  

 

Figure 7. Model Fit Indices from Various Analysis Models When Data Are Generated from Mixed N-IV Conditions. 
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Uniform Partial Invariance Conditions (Uniform P-IV) 

With uniform P-IV generated data, half of the indicators were invariant and half 

had greater loadings (smaller intercepts) in group 1. As specified in Table 4, a total of 

eight analysis models were conducted on each simulated dataset, including appropriate 

models, 50% unbalanced models and 100% unbalanced models. Results for six of the 

eight analysis models for these data were plotted in Figures 8 and 9. Complete results can 

be found in Table 12 and Table 13 in Appendix A.  

As expected, Type I error, power, and the model fit indices for appropriate 

models analyzing uniform P-IV data (1 or 4 invariance constrains) were similar to those 

for the appropriate models analyzing F-IV data. Type I errors were at acceptable levels 

and model fit indices indicated good fit. For 100% unbalanced models, Type I error rates 

were highly inflated, and powers were artificially high due to the inappropriate 

constraints on non-invariant loadings and intercepts. Consistent with the results of model 

fit from F-IV and uniform N-IV data, 100% unbalanced models fitted uniform P-IV data 

as well as appropriate models when they had the same number of constraints. Results 

from the 50% unbalanced analysis models were similar to those for the 100% 

unbalanced models, but with weaker effects in magnitude.  

Mixed Partial Invariance Conditions (Mixed P-IV) 

Results for mixed P-IV were consistent with those based on data for other 

generation models. For mixed P-IV, half of the indicators were invariant and half of them 

were non-invariant in a mixed pattern. Nine different models were applied to each mixed 

P-IV dataset, as detailed in Table 4. All five types of analysis models were included and 

compared for these data: appropriate models, 50% and 100% unbalanced models, and  
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(a) Generation Model: P-IV, Uniform, DIF = 20%, ∆κ = 0, N = 300 

 

 

(b) Generation Model: P-IV, Uniform, DIF = 20%, ∆κ = .20, N = 300 

 

Figure 8. Type I Error Rates and Power Associated with Factor Mean Difference Testing 

from Various Analysis Models When Data Are Generated from Uniform P-IV Conditions. 
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Generation Model: P-IV, Uniform, DIF = 20%, ∆κ = 0, N = 300 

  

 

Figure 9. Model Fit Indices from Various Analysis Models When Data Are Generated from Uniform P-IV Conditions.  
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50% and 100% balanced models. Figures 10 and 11 display results for varying analysis 

models when data were generated with DIF = 20% and N = 300. Table 14 and Table 15 

in Appendix A included results from all generation conditions under mixed P-IV.  

As shown in panel (a) of Figure 10, Type I error rates ranged from .054 to .077 

when analysis models were appropriate models and balanced models. In contrast, 50% 

and 100% unbalanced models had inflated Type I error rates, with the alphas for 100% 

unbalanced model showing greater inflation. With the same number of invariance 

constraints (4 constraints), Type I error rates were controlled best when analyses were 

conducted with an appropriate model (α = .055). Type I error rates for the 50% and 

100% balanced model were somewhat inflated (α = .068 and .077, respectively), and 

Type I error for the 50% unbalanced model was most highly inflated (α = .247).  

Powers for 100% balanced models were close to the powers for appropriate 

models given the same number of constraints. The low power rates for 50% and 100% 

unbalanced models were due to the inappropriate constraints on the parameters for the 

non-invariant indicators, with higher intercepts (and smaller loadings) in group 1.  

As illustrated in previous conditions, unbalanced models fit the data as well as 

appropriate models; and balanced models fit the data relatively poorly (see Figure 11). 

Specifically, given the same number of invariance constraints (1 or 4 constraints), 100% 

unbalance model fit the data as well as the appropriate model; 50% unbalanced model 

fitted worse than the appropriate model and the 100% unbalanced model; the 50% 

balanced model fit worse than the 50% unbalanced model; and the 100% balanced model 

fit worst. The results indicated that, with the same amount misspecification, a model has 

Type I error rates closer to the nominal level and more substantial power if the 
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inappropriately constrained non-invariance have a mixed pattern, although the model will 

suffer from a poor fit 

 

(a) Generation Model: P-IV, Mixed, DIF = 20%, ∆κ = 0, N = 300 

 

 

(b) Generation Model: P-IV, Mixed, DIF = 20%, ∆κ = .20, N = 300 

 

Figure 10. Type I Error Rates and Power Associated with Factor Mean Difference 

Testing from Various Analysis Models When Data Are Generated from Mixed P-IV 

Conditions. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

8 λ + 8 τ 4 λ + 4 τ 1 λ + 1 τ

T
y
p
e 

I 
E

rr
o
r

Analysis Models: Number of Invariance Constraints

Appropriate Models

100% Unbalanced Model

50% Unbalanced Model

100% Balanced Model

50% Balanced Models

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

8 λ + 8 τ 4 λ + 4 τ 1 λ + 1 τ

P
o
w

er

Analysis Models: Number of Invariance Constraints

Appropriate Models

100% Unbalanced Model

50% Unbalanced Model

100% Balanced Model

50% Balanced Models



 

   

4
6 

Generation Model: P-IV, Mixed, DIF = 20%, ∆κ = 0, N = 300 

  

 

Figure 11. Model Fit Indices from Various Analysis Models When Data Are Generated from Mixed P-IV Conditions. 
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Summary of Results 

Analysis models were categorized into five types according to the amount and 

pattern of misspecification. It was found that analysis model type affected the error rates, 

estimation of factor mean differences, and model fit. A brief summary comparing the 

results from different model types were presented in Table 5. The 50% and 100% models 

were collapsed because they had similar results patterns but only differed in magnitude.  

Table 5 

Results Summary by Model Types 

  
Type I Error Power 

Estimate 

Bias 
Model Fit 

Appropriate 

Models 

Highly 

Constrained 
Acceptable Sufficient Not biased Adequate 

Remove 

Constraints 

Relatively 

unaffected 

Decreased 

substantially 

Slightly 

increased 

Relatively 

unaffected 

Unbalanced 

Models 

Highly 

Constrained 
Inflated - Biased Adequate 

Remove 

Constraints 

Inflation 

decreased 
- Increased 

Relatively 

unaffected 

Balanced 

Models 

Highly 

Constrained 
Acceptable Sufficient Not biased Inadequate 

Remove 

Constraints 

Relatively 

unaffected 

Decreased 

substantially 

Slightly 

increased 
Improved 

 

As shown in the first section of Table 5, appropriate models had well-controlled 

Type I error rates, sufficient power, non-biased estimates, and adequate model fit when 

the model is highly constrained. As invariance constraints were removed in analysis 

model, these properties stay relatively unaffected except that power rates decreased 

substantially.   

Unbalanced models had inflated Type I error rates, spuriously high or low level of 

powers, and highly biased estimates of factor mean differences. Removing inappropriate 
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constraints led to decreases in inflation of Type I error rates but more inflated bias. The 

inflation cannot be eliminated unless the measures were correctly scaled. Model fit of 

unbalanced models was as good as appropriate models given the same number of 

invariance constraints.  

Balanced models also had well-controlled Type I error rates, sufficient level of 

power, and relatively unbiased estimates, as for appropriate models. However model fit 

for balanced models was relatively poor. As inappropriate invariance constraints were 

removed, model fit improved; Type I error, power, and bias behaved the same as for 

appropriate models.  

Across all generation models, invariance constraints on intercepts had a greater 

effect on factor mean differences than invariance constraints on loadings. Also, for 

uniform non-invariant or partial non-invariant data, greater DIF was correlated with 

higher inflated Type I error rates, greater bias, and greater inflation of effect size. 

Increase in sample size led to higher power and stable estimates when models were 

appropriate or balanced. When analysis models were unbalanced, increase in sample size 

exacerbated problem in estimating and testing factor mean differences. 
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CHAPTER 4 

DISCUSSION 

Previous studies on testing factor mean differences using SEM have been 

focusing on the impact of different levels and patterns of non-invariance in generated 

data (Chen, 2008; Kaplan & George, 1995; Wang et al., 2012; Whittaker, 2013). One 

common feature of these studies is that the analysis models fit to data were fixed in terms 

of their specifications of invariance constraints. Results from the studies informed 

researchers the robustness of factor mean difference testing when the invariance 

assumption is violated. The current study differed from previous ones in that it focused 

on the impact of different specifications of invariance constraints for analysis models, 

given various patterns of non-invariance in generated data. The generation models and 

analysis models investigated in the study mimicked the typical model misspecification 

types in practice. Therefore, the results should inform researchers who are conducting 

specification searches and are facing with choosing among different model specifications 

for their decision making.  

Researchers who wish to test between-group differences in means on factors need 

to know whether the indicators of these factors are invariant across groups so that they 

can make informed choices about model specification (Green & Thompson, 2010; Horn 

& McArdle, 1992; Meredith, 1993). SEM can be conducted to assess measurement 

invariance, and the statistical results from this assessment can be combined with 

substantive knowledge to determine the specification of the model that is used to test 

factor mean differences. Potentially though, absence of related theory and potential 

problems with statistical analyses involving measurement invariance might discourage 
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researchers from conducting tests of factor means, as a limited number of studies were 

found to apply such strategies on real data analysis (as opposed to simulation data) 

(Marsh & Grayson, 1994; Reise et al., 1993; Widaman & Reise, 1997). As an alternative, 

they may choose to conduct MANOVA and multiple ANOVAs because these methods 

are “less controversial” and thus are “more comfortable”. However, the use of MANOVA 

and multiple ANOVAs is even more problematic in that researchers are likely to face 

similar issues, knowingly or unknowingly, when they are reaching conclusions about the 

constructs underlying their measures, but in an ad hoc manner. Accordingly, the goal of 

my study was to develop guidelines that would be helpful to researchers when they 

conduct factor mean differences so that they find the SEM approach less onerous and will 

choose it over MANOVA and multiple ANOVAs. Based on the results of my study, 

several suggestions are offered for assessing measurement invariance in the test of factor 

mean differences across groups.  

First, factor indicators should be carefully selected when designing a study to 

minimize potential problems with equivalency in loadings and intercepts across groups. 

Based on the current study and the previous ones (Chen, 2008; Kaplan & George, 1995; 

Wang et al., 2012; Whittaker, 2013), non-invariant loadings and/or intercepts is likely to 

lead to biased estimates of factor mean differences and other undesired model estimation 

properties if researchers fail to adequately model non-invariance in parameters. The 

effect of misspecification of models with non-invariance of indicator intercepts is 

particularly problematic on the assessment of factor mean differences. The implication is 

that a few “good” indicators (i.e., with minimal differences in loadings and intercepts) is 

preferable to a few “good” indicators and a bunch of “mediocre or bad” indicators.  When 



 

  51 

such indicators are not available in practice, it is suggested to select indicators based on a 

broad spectrum of cross-group differences, rather than to use indicators that uniformly 

favor one of the groups over the other(s). Researchers might choose a collection of 

indicators that are balanced across groups in the sense that positive differences in 

parameters with respect to one group are offset by negative differences in the parameters 

with respect to the same group. If successful, the benefit is maintaining the nominal Type 

I error rate associated with testing factor mean differences and minimizing bias in mean 

difference estimates.  

Second, decisions about measurement invariance should not be based only on 

statistical results. Results from this study indicate that a pure empirically driven decision 

process is dangerous in two ways. First, adequate model fit does not guarantee the 

appropriateness of a model. As shown by the current study and Yoon & Millsap (2007), 

the inappropriateness of invariance constraints will not reflected by model fit when the 

constrained indicators are uniformly non-invariant. Consequently, applied researchers are 

likely to identify uniformly non-invariant indicators as invariant under these conditions. 

Unfortunately, this type of misspecification due to scale readjustment cannot be detected 

by using purely modeling strategies, as illustrated by Hancock et al. (2009). Researchers 

must rely on their understanding of substantive theories to make judgment about 

indicators. Second, inadequate model fit does not lead necessarily to appropriate model 

modification either. As shown, appearance of inadequate model fit indicated that at least 

two of the three types of indicator are present: invariant indicators, indicators with non-

invariance in one direction, indicators with non-invariance in the opposite direction. 

Correct identification of non-invariance relies heavily on whether or not one has a truly 
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invariant referent indicator. Thus, researchers are recommended to consider all potential 

conditions of indicator compositions that might lead to the observed results, and compare 

these considerations with their substantive knowledge and experience to make a 

specification judgment.  

In summary, we suggest researchers to integrate the thought processes of 

choosing measurement indicators and specifying invariance constraints when testing 

factor mean differences across groups. Before gathering measures to form an instrument 

and data collection, the invariance properties of all available indicators should be 

thoroughly studied in the context theory and based on previous related studies. With a 

preliminary understanding of the indicators, the assessment of measurement invariance 

becomes a tool to verify researchers’ assumptions rather than post hoc decisions about 

model respecification (MacCallum, 1986; Vandenberg & Lance, 2000). Observed results 

should be compared to the researchers’ hypotheses about the composition of invariant 

and non-invariant indicators to see if they are consistent. For example, if the indicators 

were purposely selected to have a mixture direction of non-invariance, relatively poor 

model fit should be expected and invariance constraints should be respecified with fully 

knowing what statistical consequences might occur. On the other hand, it is possible in 

practice that all available indicators uniformly favor one population group relative to 

others, such as in many cross-cultural studies (Chen, 2008; van de Vijver & Leung, 2000; 

Vandenberg & Lance, 2000). In this situation, a deceivingly good model fit should be 

expected, and researchers should be able to realize that it is not an assurance of 

measurement invariance. 
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Researchers are also recommended to try models with different specifications of 

invariance constraints along the process of testing measurement invariance, especially 

when the indicators’ invariance properties are not well known. In such cases, switching 

referent indicators might be helpful in identifying the patterns of invariance and non-

invariance in a relative sense. Also, trying out different specifications on invariance 

constraints enables researchers to compare the results with their assumptions about the 

indicators so that decisions based on a systematic thinking process could be made.  

In the future this study could be extended in a variety of ways. First, fitting 

models with decreasing numbers of invariance constraints to datasets is not the same as 

conducting a model search process. Comparison of statistics and parameter estimates 

from the independent models in my study may not reflect changes that occur in empirical 

specification searches. Future simulation studies should include specification searches to 

explore more fully decisions that are made in the modification process. In addition, future 

studies should include a more appropriate CFI in their analyses rather than the one 

generated automatically by the software. Calculation of CFI is based on the increment of 

the target model in comparison with the null model. The null model is specified to allow 

variances and means of manifest variables to be freely estimated in most software. 

However the default standard null model is inappropriate because this null model is not 

nested in models with invariance constraints on both loadings and intercepts (Widaman & 

Thompson, 2003). As a result, these incorrect CFIs are likely to be slightly liberal. 

Finally, the study only investigated generation conditions with equal sample sizes and 

small non-invariance between groups. Future studies should consider conditions with 

unequal sample sizes and greater non-invariance in loadings and intercepts.   
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Table 6 

 

Model Fit Indices, Type I and Type II Error Rates Associated with Factor Mean 

Difference Testing, and Estimates of Factor Mean Differences When Generation Models 

are F-IV (All Analysis Models are Appropriate Models) 

 

1. Generation Model: F-IV, Δκ = 0, N = 300 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9834 .0166 .0554 .0039 .0540 

4 λ + 4 τ 46 .9854 .0168 .0477 .0053 .0550 

1 λ + 1 τ 40 .9867 .0171 .0410 .0168 .0540 

8 λ + 1 τ 47 .9848 .0170 .0514 .0167 .0650 

        

2. Generation Model: F-IV, Δκ = .20, N = 300 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9833 .0166 .0555 .2071 .3300 

4 λ + 4 τ 46 .9854 .0168 .0478 .2093 .2680 

1 λ + 1 τ 40 .9867 .0171 .0410 .2263 .1280 

8 λ + 1 τ 47 .9848 .0170 .0515 .2231 .1440 

        

3. Generation Model: F-IV, Δκ = 0, N = 500 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9907 .0120 .0427 -.0006 .0450 

4 λ + 4 τ 46 .9917 .0123 .0369 .0012 .0440 

1 λ + 1 τ 40 .9923 .0124 .0317 -.0004 .0510 

8 λ + 1 τ 47 .9915 .0123 .0397 .0006 .0570 

        

4. Generation Model: F-IV, Δκ = .20, N = 500 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9907 .0120 .0429 .2012 .4580 

4 λ + 4 τ 46 .9917 .0122 .0369 .2033 .3850 

1 λ + 1 τ 40 .9923 .0124 .0317 .2045 .1770 

8 λ + 1 τ 47 .9915 .0123 .0398 .2032 .1900 
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Table 7 

 

Estimates of Factor Mean Differences, Bias, Relative Bias, Efficiency, and Effect Size of 

Estimated Factor Mean Differences When Generation Models are F-IV (All Analysis 

Models are Appropriate Models) 

 

1. Generation Model: F-IV, Δκ = 0, N = 300 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .0039 .0039 - .1373 .0031 

4 λ + 4 τ 46 .0053 .0053 - .1560 .0041 

1 λ + 1 τ 40 .0168 .0168 - .2454 .0121 

8 λ + 1 τ 47 .0167 .0167 - .2392 .0120 

        

2. Generation Model: F-IV, Δκ = .20, N = 300 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .2071 .0071 3.5470 .1383 .1454 

4 λ + 4 τ 46 .2093 .0093 4.6615 .1575 .1463 

1 λ + 1 τ 40 .2263 .0263 13.1505 .2493 .1552 

8 λ + 1 τ 47 .2231 .0231 11.5260 .2413 .1564 

        

3. Generation Model: F-IV, Δκ = 0, N = 500 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 -.0006 -.0006 - .1056 -.0004 

4 λ + 4 τ 46 .0012 .0012 - .1196 .0009 

1 λ + 1 τ 40 -.0004 -.0004 - .1848 .0003 

8 λ + 1 τ 47 .0006 .0006 - .1818 .0002 

        

4. Generation Model: F-IV, Δκ = .20, N = 500 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .2012 .0012 .5930 .1063 .1417 

4 λ + 4 τ 46 .2033 .0033 1.6605 .1207 .1429 

1 λ + 1 τ 40 .2045 .0045 2.2715 .1872 .1422 

8 λ + 1 τ 47 .2032 .0032 1.6120 .1831 .1429 



 

  62 

Table 8 

 

Model Fit Indices, Type I and Type II Error Rates Associated with Factor Mean 

Difference Testing, and Estimates of Factor Mean Differences When Generation Models 

are Uniform N-IV (All Analysis Models are 100% Unbalanced Models) 

 

1. Generation Model: Uniform N-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9838 .0167 .0552 .1852 .3190 

4 λ + 4 τ 46 .9859 .0169 .0475 .1868 .2690 

1 λ + 1 τ 40 .9873 .0171 .0408 .2002 .1360 

8 λ + 1 τ 47 .9853 .0170 .0512 .1988 .1410 

        

2. Generation Model: Uniform N-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9838 .0167 .0555 .3482 .7900 

4 λ + 4 τ 46 .9859 .0169 .0476 .3502 .7000 

1 λ + 1 τ 40 .9873 .0171 .0408 .3668 .3720 

8 λ + 1 τ 47 .9853 .0170 .0513 .3641 .3840 

        

3. Generation Model: Uniform N-IV, Δκ = 0, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9850 .0168 .0549 .3284 .8190 

4 λ + 4 τ 46 .9869 .0169 .0473 .3298 .7210 

1 λ + 1 τ 40 .9883 .0169 .0407 .3431 .4080 

8 λ + 1 τ 47 .9864 .0169 .0509 .3419 .4160 

        

4. Generation Model: Uniform N-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9849 .0168 .0552 .4581 .9740 

4 λ + 4 τ 46 .9869 .0169 .0474 .4596 .9440 

1 λ + 1 τ 40 .9883 .0169 .0407 .4748 .6750 

8 λ + 1 τ 47 .9864 .0169 .0509 .4731 .6800 

 

5. Generation Model: Uniform N-IV, Δκ = 0, DIF = 10%, N = 500 

 
Total 

Invariance 
df 

Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

Type I 

Error 



 

  63 

Constraints of Δκ Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9910 .0120 .0426 .1795 .4580 

4 λ + 4 τ 46 .9920 .0122 .0368 .1813 .3790 

1 λ + 1 τ 40 .9926 .0124 .0316 .1816 .1840 

8 λ + 1 τ 47 .9919 .0122 .0395 .1811 .1880 

        

6. Generation Model: Uniform N-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9910 .0120 .0428 .3415 .9520 

4 λ + 4 τ 46 .9920 .0122 .0369 .3434 .8840 

1 λ + 1 τ 40 .9926 .0124 .0316 .3454 .5430 

8 λ + 1 τ 47 .9919 .0122 .0396 .3437 .5510 

        

7. Generation Model: Uniform N-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9917 .0120 .0423 .3219 .9580 

4 λ + 4 τ 46 .9926 .0122 .0366 .3235 .9040 

1 λ + 1 τ 40 .9932 .0124 .0315 .3245 .5910 

8 λ + 1 τ 47 .9925 .0122 .0392 .3237 .5930 

        

8. Generation Model: Uniform N-IV, Δκ = .20, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 54 .9917 .0120 .0425 .4509 1.0000 

4 λ + 4 τ 46 .9926 .0122 .0367 .4524 .9950 

1 λ + 1 τ 40 .9932 .0124 .0315 .4543 .8590 

8 λ + 1 τ 47 .9925 .0122 .0393 .4530 .8630 
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Table 9 

 

Estimates of Factor Mean Differences, Bias, Relative Bias, Efficiency, and Effect Size of 

Estimated Factor Mean Differences When Generation Models are Uniform N-IV (All 

Analysis Models are 100% Unbalanced Models) 

 

1. Generation Model: Uniform N-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .1852 .1852 - .1245 .1435 

4 λ + 4 τ 46 .1868 .1868 - .1410 .1443 

1 λ + 1 τ 40 .2002 .2002 - .2189 .1527 

8 λ + 1 τ 47 .1988 .1988 - .2154 .1539 

        

2. Generation Model: Uniform N-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .3482 .1482 74.1040 .1265 .2697 

4 λ + 4 τ 46 .3502 .1502 75.0790 .1437 .2704 

1 λ + 1 τ 40 .3668 .1668 83.3945 .2250 .2794 

8 λ + 1 τ 47 .3641 .1641 82.0325 .2195 .2818 

        

3. Generation Model: Uniform N-IV, Δκ = 0, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .3284 .3284 - .1157 .2753 

4 λ + 4 τ 46 .3298 .3298 - .1305 .2759 

1 λ + 1 τ 40 .3431 .3431 - .1999 .2840 

8 λ + 1 τ 47 .3419 .3419 - .1975 .2864 

        

4. Generation Model: Uniform N-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .4581 .2581 129.0675 .1180 .3839 

4 λ + 4 τ 46 .4596 .2596 129.8200 .1334 .3844 

1 λ + 1 τ 40 .4748 .2748 137.3845 .2057 .3929 

8 λ + 1 τ 47 .4731 .2731 136.5595 .2022 .3962 

 

5. Generation Model: Uniform N-IV, Δκ = 0, DIF = 10%, N = 500 

 
Total 

Invariance 
df 

Average 

Estimates 

Average 

Bias 

Average 

Relative 
Efficiency 

Effect 

Size 
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Constraints of Δκ Bias (%) 

Analysis 

Models 

8 λ + 8 τ 54 .1795 .1795 - .0958 .1396 

4 λ + 4 τ 46 .1813 .1813 - .1083 .1407 

1 λ + 1 τ 40 .1816 .1816 - .1658 .1399 

8 λ + 1 τ 47 .1811 .1811 - .1638 .1405 

        

6. Generation Model: Uniform N-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .3415 .1415 70.7520 .0973 .2655 

4 λ + 4 τ 46 .3434 .1434 71.7010 .1103 .2665 

1 λ + 1 τ 40 .3454 .1454 72.6755 .1700 .2656 

8 λ + 1 τ 47 .3437 .1437 71.8600 .1667 .2669 

        

7. Generation Model: Uniform N-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .3219 .3219 - .0891 .2706 

4 λ + 4 τ 46 .3235 .3235 - .1003 .2716 

1 λ + 1 τ 40 .3245 .3245 - .1519 .2705 

8 λ + 1 τ 47 .3237 .3237 - .1504 .2719 

        

8. Generation Model: Uniform N-IV, Δκ = .20, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 54 .4509 .2509 125.4280 .0909 .3790 

4 λ + 4 τ 46 .4524 .2524 126.2160 .1025 .3799 

1 λ + 1 τ 40 .4543 .2543 127.1740 .1560 .3786 

8 λ + 1 τ 47 .4530 .2530 126.5175 .1537 .3806 
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Table 10 

 

Model Fit Indices, Type I and Type II Error Rates Associated with Factor Mean Difference Testing, and Estimates of Factor 

Mean Differences When Generation Models are Mixed N-IV 

 

1. Generation Model: Mixed N-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .9479 .0396 .0685 .0027 .0570 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9859 .0168 .0477 -.2216 .2330 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9698 .0300 .0554 .0084 .0630 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9871 .0172 .0409 -.2166 .1020 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9710 .0287 .0591 -.1882 .1120 

           

2. Generation Model: Mixed N-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .9528 .0371 .0678 .2097 .3400 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9859 .0168 .0477 .0330 .0580 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9721 .0284 .0550 .2165 .2990 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9871 .0172 .0409 .0468 .0520 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9710 .0287 .0591 .0412 .0630 

           

3. Generation Model: Mixed N-IV, Δκ = 0, DIF = 20%, N = 300 
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Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .8185 .0841 .0985 -.0017 .0870 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9866 .0169 .0478 -.5068 .6650 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9086 .0632 .0750 .0045 .0880 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9877 .0172 .0409 -.5157 .2820 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9145 .0604 .0786 -.3924 .3420 

           

4. Generation Model: Mixed N-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .8399 .0788 .0963 .2203 .3940 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9866 .0168 .0478 -.1861 .1560 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9190 .0591 .0735 .2264 .3300 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9877 .0172 .0409 -.1804 .0760 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9145 .0604 .0788 -.1368 .0900 

           

5. Generation Model: Mixed N-IV, Δκ = 0, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .9520 .0402 .0588 -.0014 .0500 
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Models 
4 λ + 4 τ 

4 λ and 4 τ - 100% Unbalanced 
46 

.9919 .0123 .0368 -.2235 .3850 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9742 .0293 .0466 -.0031 .0490 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9925 .0125 .0316 -.2293 .1660 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9762 .0274 .0493 -.2007 .1790 

           

6. Generation Model: Mixed N-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .9572 .0374 .0580 .2041 .4760 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9919 .0123 .0369 .0283 .0530 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9766 .0274 .0461 .2032 .3970 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9925 .0125 .0316 .0272 .0440 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9762 .0274 .0494 .0247 .0560 

           

7. Generation Model: Mixed N-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .8197 .0841 .0924 -.0045 .0750 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9922 .0123 .0370 -.5053 .8930 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9092 .0641 .0689 -.0071 .0690 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9928 .0126 .0316 -.5192 .5520 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9158 .0611 .0719 -.4007 .5790 

           

8. Generation Model: Mixed N-IV, Δκ = .20, DIF = 20%, N = 500 
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Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .8411 .0789 .0899 .2159 .5350 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.9922 .0123 .0369 -.1886 .2150 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9198 .0600 .0673 .2135 .4360 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .9928 .0126 .0316 -.1947 .1000 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9158 .0611 .0721 -.1499 .1130 
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Table 11 

 

Estimates of Factor Mean Differences, Bias, Relative Bias, Efficiency, and Effect Size of Estimated Factor Mean Differences 

When Generation Models are Mixed N-IV 

 

1. Generation Model: Mixed N-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .0027 .0027 - .1381 .0027 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
-.2216 -.2216 - .1775 -.1359 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .0084 .0084 - .1574 .0065 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 -.2166 -.2166 - .2822 -.1290 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 -.1882 -.1882 - .2398 -.1316 

           

2. Generation Model: Mixed N-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .2097 .0097 4.8400 .1385 .1478 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.0330 -.1670 -83.4945 .1757 .0207 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2165 .0165 8.2420 .1580 .1519 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .0468 -.1532 -76.6140 .2779 .0289 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .0412 -.1588 -79.3925 .2384 .0291 

           

3. Generation Model: Mixed N-IV, Δκ = 0, DIF = 20%, N = 300 
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Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 -.0017 -.0017 - .1420 .0020 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
-.5068 -.5068 - .2119 -.2669 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .0045 .0045 - .1635 .0068 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 -.5157 -.5157 - .3482 -.2614 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 -.3924 -.3924 - .2462 -.2743 

           

4. Generation Model: Mixed N-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .2203 .0203 10.1740 .1396 .1581 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
-.1861 -.3861 -193.0375 .2038 -.0977 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2264 .0264 13.2150 .1605 .1621 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 -.1804 -.3804 -190.1855 .3256 -.0907 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 -.1368 -.3368 -168.3775 .2405 -.0955 

           

5. Generation Model: Mixed N-IV, Δκ = 0, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 -.0014 -.0014 - .1061 -.0008 
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Models 
4 λ + 4 τ 

4 λ and 4 τ - 100% Unbalanced 
46 

-.2235 -.2235 - .1358 -.1387 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced -.0031 -.0031 - .1206 -.0021 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 -.2293 -.2293 - .2110 -.1393 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 -.2007 -.2007 - .1824 -.1415 

           

6. Generation Model: Mixed N-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .2041 .0041 2.0445 .1064 .1442 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
.0283 -.1717 -85.8500 .1344 .0177 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2032 .0032 1.6200 .1210 .1430 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 .0272 -.1728 -86.4020 .2077 .0172 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .0247 -.1753 -87.6370 .1811 .0172 

           

7. Generation Model: Mixed N-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 -.0045 -.0045 - .1090 -.0018 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
-.5053 -.5053 - .1615 -.2694 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced -.0071 -.0071 - .1253 -.0034 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 -.5192 -.5192 - .2562 -.2700 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 -.4007 -.4007 - .1870 -.2820 

           

8. Generation Model: Mixed N-IV, Δκ = .20, DIF = 20%, N = 500 
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Total 

Invariance 

Constraints 

Constraints 

on non-

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias 

(%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 100% Balanced 54 .2159 .0159 7.9530 .1071 .1545 

4 λ + 4 τ 
4 λ and 4 τ - 100% Unbalanced 

46 
-.1886 -.3886 -194.2925 .1555 -.1005 

2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2135 .0135 6.7455 .1228 .1523 

1 λ + 1 τ 1 λ and 1 τ - 100% Unbalanced 40 -.1947 -.3947 -197.3555 .2408 -.1009 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 -.1499 -.3499 
-

174.9475 
.1826 -.1057 
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Table 12 

 

Model Fit Indices, Type I and Type II Error Rates Associated with Factor Mean Difference Testing, and Estimates of Factor Mean 

Differences When Generation Models are Uniform P-IV 

 

1. Generation Model: Uniform P-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9762 .0221 .0588 .1009 .1260 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9857 .0168 .0476 .0054 .0550 

- 4 λ and 4 τ 100% Unbalanced .9854 .0169 .0477 .1847 .2590 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9824 .0196 .0496 .1063 .1120 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9870 .0171 .0409 .0168 .0540 

- 1 λ and 1 τ 100% Unbalanced .9870 .0171 .0409 .1876 .1250 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9818 .0197 .0534 .0159 .0660 

4 λ and 0 τ 4 λ and 1 τ - .9818 .0197 .0534 .1960 .1340 

           

2. Generation Model: Uniform P-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9772 .0214 .0588 .2832 .5640 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9857 .0168 .0477 .2093 .2680 

- 4 λ and 4 τ 100% Unbalanced .9854 .0169 .0478 .3486 .6950 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9829 .0193 .0496 .2895 .5090 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9870 .0171 .0409 .2260 .1280 

- 1 λ and 1 τ 100% Unbalanced .9870 .0171 .0409 .3547 .3410 

8 λ + 1 τ 4 λ and 1 τ 4 λ and 0 τ - 47 .9818 .0197 .0534 .2123 .1440 
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4 λ and 0 τ 4 λ and 1 τ - .9818 .0197 .0534 .3701 .3550 

           

3. Generation Model: Uniform P-IV, Δκ = 0, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9508 .0387 .0678 .1932 .3550 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9861 .0168 .0476 .0054 .0550 

- 4 λ and 4 τ 100% Unbalanced .9859 .0168 .0477 .3286 .7310 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9713 .0294 .0550 .1986 .3150 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9874 .0171 .0409 .0168 .0540 

- 1 λ and 1 τ 100% Unbalanced .9874 .0171 .0409 .3327 .3840 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9717 .0285 .0588 .0154 .0660 

4 λ and 0 τ 4 λ and 1 τ - .9717 .0285 .0588 .3586 .3890 

           

4. Generation Model: Uniform P-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9564 .0356 .0670 .3552 .8130 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9861 .0168 .0476 .2092 .2690 

- 4 λ and 4 τ 100% Unbalanced .9859 .0168 .0479 .4589 .9510 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9738 .0275 .0545 .3613 .7150 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9874 .0171 .0409 .2258 .1280 

- 1 λ and 1 τ 100% Unbalanced .9874 .0171 .0409 .4649 .6500 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9717 .0285 .0589 .2045 .1450 

4 λ and 0 τ 4 λ and 1 τ - .9717 .0285 .0589 .5010 .6560 

           

5. Generation Model: Uniform P-IV, Δκ = 0, DIF = 10%, N = 500 
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Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9831 .0195 .0471 .0959 .1590 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9918 .0123 .0368 .0013 .0440 

- 4 λ and 4 τ 100% Unbalanced .9917 .0123 .0368 .1786 .3830 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9881 .0164 .0395 .0949 .1260 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9924 .0125 .0317 -.0003 .0520 

- 1 λ and 1 τ 100% Unbalanced .9924 .0125 .0317 .1887 .1930 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9883 .0160 .0423 .0005 .0570 

4 λ and 0 τ 4 λ and 1 τ - .9883 .0160 .0422 .1959 .2000 

           

6. Generation Model: Uniform P-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9842 .0185 .0470 .2770 .7910 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9918 .0122 .0369 .2033 .3880 

- 4 λ and 4 τ 100% Unbalanced .9917 .0123 .0369 .3412 .8840 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9886 .0159 .0394 .2765 .6850 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9924 .0125 .0317 .2045 .1770 

- 1 λ and 1 τ 100% Unbalanced .9924 .0125 .0317 .3545 .5680 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9883 .0160 .0423 .1935 .1910 

4 λ and 0 τ 4 λ and 1 τ - .9883 .0160 .0423 .3678 .5750 

           

7. Generation Model: Uniform P-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

Constraints 

on non-

invariant 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 
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(V1 - V4) parameters 

(V5 - V8) 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9551 .0390 .0580 .1879 .4960 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9921 .0122 .0368 .0013 .0420 

- 4 λ and 4 τ 100% Unbalanced .9919 .0123 .0369 .3218 .9060 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9756 .0286 .0462 .1870 .4160 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9927 .0125 .0317 -.0002 .0540 

- 1 λ and 1 τ 100% Unbalanced .9927 .0125 .0317 .3328 .6020 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9770 .0272 .0490 .0003 .0570 

4 λ and 0 τ 4 λ and 1 τ - .9770 .0272 .0490 .3562 .6030 

           

8. Generation Model: Uniform P-IV, Δκ = .20, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .9611 .0357 .0570 .3488 .9570 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.9921 .0122 .0368 .2032 .3870 

- 4 λ and 4 τ 100% Unbalanced .9919 .0124 .0369 .4512 .9940 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .9784 .0263 .0456 .3484 .9030 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.9927 .0125 .0317 .2044 .1770 

- 1 λ and 1 τ 100% Unbalanced .9927 .0125 .0317 .4642 .8730 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.9770 .0272 .0491 .1864 .1910 

4 λ and 0 τ 4 λ and 1 τ - .9770 .0272 .0491 .4968 .8730 
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Table 13 

 

Estimates of Factor Mean Differences, Bias, Relative Bias, Efficiency, and Effect Size of Estimated Factor Mean Differences 

When Generation Models are Uniform P-IV 

 

1. Generation Model: Uniform P-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .1009 .1009 - .1303 .0749 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.0054 .0054 - .1559 .0041 

- 4 λ and 4 τ 100% Unbalanced .1847 .1847 - .1410 .1431 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .1063 .1063 - .1481 .0786 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.0168 .0168 - .2447 .0121 

- 1 λ and 1 τ 
100% 

Unbalanced 
.1876 .1876 - .2192 .1438 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.0159 .0159 - .2275 .0120 

4 λ and 0 τ 4 λ and 1 τ - .1960 .1960 - .2266 .1452 

           

2. Generation Model: Uniform P-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .2832 .0832 41.6050 .1319 .2097 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.2093 .0093 4.6340 .1574 .1463 

- 4 λ and 4 τ 100% Unbalanced .3486 .1486 74.3060 .1438 .2698 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .2895 .0895 44.7485 .1503 .2136 
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1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.2260 .0260 13.0035 .2484 .1552 

- 1 λ and 1 τ 100% Unbalanced .3547 .1547 77.3615 .2252 .2712 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.2123 .0123 6.1480 .2295 .1570 

4 λ and 0 τ 4 λ and 1 τ - .3701 .1701 85.0740 .2310 .2738 

           

3. Generation Model: Uniform P-IV, Δκ = 0, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .1932 .1932 - .1242 .1512 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.0054 .0054 - .1559 .0041 

- 4 λ and 4 τ 100% Unbalanced .3286 .3286 - .1306 .2754 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .1986 .1986 - .1413 .1550 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.0168 .0168 - .2442 .0121 

- 1 λ and 1 τ 100% Unbalanced .3327 .3327 - .2004 .2764 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.0154 .0154 - .2191 .0122 

4 λ and 0 τ 4 λ and 1 τ - .3586 .3586 - .2143 .2791 

           

4. Generation Model: Uniform P-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .3552 .1552 77.6050 .1260 .2776 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.2092 .0092 4.6040 .1573 .1463 

- 4 λ and 4 τ 100% Unbalanced .4589 .2589 129.4410 .1336 .3844 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .3613 .1613 80.6255 .1435 .2818 
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1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.2258 .0258 12.8810 .2477 .1553 

- 1 λ and 1 τ 100% Unbalanced .4649 .2649 132.4255 .2064 .3860 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.2045 .0045 2.2630 .2210 .1593 

4 λ and 0 τ 4 λ and 1 τ - .5010 .3010 150.5135 .2198 .3898 

           

5. Generation Model: Uniform P-IV, Δκ = 0, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .0959 .0959 - .1002 .0713 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.0013 .0013 - .1195 .0010 

- 4 λ and 4 τ 100% Unbalanced .1786 .1786 - .1083 .1388 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .0949 .0949 - .1136 .0702 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
-.0003 -.0003 - .1845 .0004 

- 1 λ and 1 τ 100% Unbalanced .1887 .1887 - .1679 .1448 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.0005 .0005 - .1731 .0002 

4 λ and 0 τ 4 λ and 1 τ - .1959 .1959 - .1730 .1453 

           

6. Generation Model: Uniform P-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .2770 .0770 38.5080 .1014 .2059 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.2033 .0033 1.6330 .1206 .1429 

- 4 λ and 4 τ 100% Unbalanced .3412 .1412 70.6140 .1104 .2650 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .2765 .0765 38.2480 .1151 .2049 
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1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.2045 .0045 2.2310 .1868 .1423 

- 1 λ and 1 τ 100% Unbalanced .3545 .1545 77.2300 .1725 .2718 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.1935 -.0065 -3.2530 .1743 .1435 

4 λ and 0 τ 4 λ and 1 τ - .3678 .1678 83.8950 .1763 .2729 

           

7. Generation Model: Uniform P-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .1879 .1879 - .0956 .1473 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.0013 .0013 - .1195 .0010 

- 4 λ and 4 τ 100% Unbalanced .3218 .3218 - .1004 .2704 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .1870 .1870 - .1084 .1462 

1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
-.0002 -.0002 - .1843 .0004 

- 1 λ and 1 τ 100% Unbalanced .3328 .3328 - .1541 .2770 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.0003 .0003 - .1668 .0001 

4 λ and 0 τ 4 λ and 1 τ - .3562 .3562 - .1637 .2781 

           

8. Generation Model: Uniform P-IV, Δκ = .20, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 4 λ and 4 τ 50% Unbalanced 54 .3488 .1488 74.4230 .0969 .2735 

4 λ + 4 τ 

4 λ and 4 τ - Appropriate 

46 

.2032 .0032 1.6095 .1205 .1429 

- 4 λ and 4 τ 100% Unbalanced .4512 .2512 125.5760 .1027 .3791 

2 λ and 2 τ 2 λ and 2 τ 50% Unbalanced .3484 .1484 74.1915 .1101 .2726 
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1 λ + 1 τ 
1 λ and 1 τ - Appropriate 

40 
.2044 .0044 2.2120 .1865 .1423 

- 1 λ and 1 τ 100% Unbalanced .4642 .2642 132.1095 .1587 .3864 

8 λ + 1 τ 
4 λ and 1 τ 4 λ and 0 τ - 

47 
.1864 -.0136 -6.7990 .1680 .1455 

4 λ and 0 τ 4 λ and 1 τ - .4968 .2968 148.4075 .1678 .3879 
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Table 14 

 

Model Fit Indices, Type I and Type II Error Rates Associated with Factor Mean Difference Testing, and Estimates of Factor Mean Differences 

When Generation Models are Mixed P-IV 

 

1. Generation Model: Mixed P-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9680 .0279 .0621 .0035 .0560 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9856 .0168 .0477 .0053 .0540 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9696 .0297 .0553 .0009 .0580 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9824 .0199 .0496 -.0999 .0960 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9788 .0228 .0514 .0046 .0560 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9869 .0171 .0410 .0169 .0540 

- 1 λ and 1 τ - 100% Unbalanced .9869 .0171 .0410 -.2337 .0990 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9785 .0226 .0553 .0167 .0650 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9785 .0226 .0553 -.2034 .1180 

           

2. Generation Model: Mixed P-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9701 .0265 .0618 .2083 .3370 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9856 .0168 .0477 .2093 .2670 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9718 .0281 .0549 .2092 .2690 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9828 .0195 .0495 .1297 .1290 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9798 .0220 .0511 .2116 .2770 

1 λ + 1 τ 1 λ and 1 τ - - Appropriate 40 .9869 .0171 .0410 .2263 .1280 
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- 1 λ and 1 τ - 100% Unbalanced .9869 .0171 .0410 .0297 .0410 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9785 .0226 .0554 .2229 .1440 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9785 .0226 .0554 .0268 .0500 

           

3. Generation Model: Mixed P-IV, Δκ = 0, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9052 .0581 .0796 .0021 .0650 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9859 .0168 .0476 .0052 .0550 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9066 .0627 .0743 -.0041 .0770 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9704 .0299 .0554 -.2303 .2470 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9512 .0422 .0622 .0029 .0680 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9871 .0171 .0410 .0170 .0540 

- 1 λ and 1 τ - 100% Unbalanced .9871 .0171 .0410 -.5347 .3010 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9532 .0407 .0661 .0166 .0650 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9532 .0407 .0661 -.4080 .3630 

           

4. Generation Model: Mixed P-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9160 .0542 .0783 .2127 .3530 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9859 .0168 .0477 .2092 .2660 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9174 .0585 .0728 .2190 .3170 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9722 .0286 .0549 .0338 .0610 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9562 .0394 .0613 .2159 .2930 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9871 .0171 .0410 .2263 .1280 

- 1 λ and 1 τ - 100% Unbalanced .9871 .0171 .0410 -.2000 .0560 



 

   

8
5 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9532 .0407 .0663 .2228 .1440 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9532 .0407 .0663 -.1517 .0890 

           

5. Generation Model: Mixed P-IV, Δκ = 0, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9732 .0274 .0514 -.0008 .0500 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9918 .0123 .0369 .0013 .0440 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9739 .0294 .0465 -.0032 .0450 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9882 .0164 .0394 -.1100 .1360 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9834 .0211 .0422 .0002 .0390 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9924 .0125 .0317 -.0004 .0510 

- 1 λ and 1 τ - 100% Unbalanced .9924 .0125 .0317 -.2267 .1710 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9846 .0199 .0447 .0006 .0570 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9846 .0199 .0447 -.1980 .1860 

           

6. Generation Model: Mixed P-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9756 .0256 .0510 .2026 .4620 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9918 .0123 .0369 .2034 .3860 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9764 .0274 .0460 .2031 .3960 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9887 .0159 .0393 .1173 .1440 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9845 .0202 .0419 .2049 .4040 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9924 .0125 .0317 .2045 .1770 

- 1 λ and 1 τ - 100% Unbalanced .9924 .0125 .0317 .0332 .0430 

8 λ + 1 τ 4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 47 .9846 .0199 .0448 .2032 .1900 
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4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9846 .0199 .0448 .0294 .0500 

           

7. Generation Model: Mixed P-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Type I 

Error 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9060 .0591 .0719 -.0016 .0610 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9919 .0124 .0368 .0013 .0440 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9066 .0638 .0684 -.0060 .0650 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9752 .0289 .0466 -.2391 .4020 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9523 .0439 .0553 -.0009 .0500 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9926 .0125 .0317 -.0005 .0520 

- 1 λ and 1 τ - 100% Unbalanced .9926 .0125 .0317 -.5206 .5140 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9561 .0415 .0579 .0006 .0570 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9561 .0415 .0579 -.4003 .5540 

           

8. Generation Model: Mixed P-IV, Δκ = .20, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 
Average 

CFI 

Average 

RMSEA 

Average 

SRMR 

Average 

Estimates 

of Δκ 

Power 

Rates 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .9171 .0553 .0703 .2076 .4870 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.9919 .0124 .0369 .2034 .3880 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .9178 .0597 .0667 .2146 .4340 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .9771 .0273 .0460 .0222 .0530 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .9577 .0408 .0542 .2096 .4240 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.9926 .0125 .0317 .2044 .1770 

- 1 λ and 1 τ - 100% Unbalanced .9926 .0125 .0317 -.1915 .0990 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.9561 .0415 .0580 .2031 .1900 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .9561 .0415 .0580 -.1470 .1160 
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Table 15 

 

Estimates of Factor Mean Differences, Bias, Relative Bias, Efficiency, and Effect Size of Estimated Factor Mean Differences When Generation 

Models are Mixed P-IV 

 

1. Generation Model: Mixed P-IV, Δκ = 0, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .0035 .0035 - .1376 .0030 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.0053 .0053 - .1560 .0040 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .0009 .0009 - .1572 .0017 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced -.0999 -.0999 - .1663 -.0654 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .0046 .0046 - .1573 .0039 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.0169 .0169 - .2452 .0121 

- 1 λ and 1 τ - 100% Unbalanced -.2337 -.2337 - .2824 -.1397 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.0167 .0167 - .2392 .0120 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - -.2034 -.2034 - .2406 -.1420 
           

2. Generation Model: Mixed P-IV, Δκ = .20, DIF = 10%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .2083 .0083 4.1490 .1384 .1466 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.2093 .0093 4.6385 .1575 .1462 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2092 .0092 4.5880 .1578 .1474 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .1297 -.0703 -35.1315 .1662 .0856 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .2116 .0116 5.7890 .1584 .1480 

1 λ + 1 τ 1 λ and 1 τ - - Appropriate 40 .2263 .0263 13.1650 .2491 .1551 
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- 1 λ and 1 τ - 100% Unbalanced .0297 -.1703 -85.1585 .2775 .0188 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.2229 .0229 11.4600 .2413 .1563 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .0268 -.1732 -86.6005 .2389 .0194 
           

3. Generation Model: Mixed P-IV, Δκ = 0, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .0021 .0021 - .1391 .0029 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.0052 .0052 - .1560 .0040 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced -.0041 -.0041 - .1638 .0011 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced -.2303 -.2303 - .1815 -.1397 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .0029 .0029 - .1599 .0038 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.0170 .0170 - .2450 .0122 

- 1 λ and 1 τ - 100% Unbalanced -.5347 -.5347 - .3486 -.2722 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.0166 .0166 - .2391 .0119 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - -.4080 -.4080 - .2468 -.2855 
           

4. Generation Model: Mixed P-IV, Δκ = .20, DIF = 20%, N = 300 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .2127 .0127 6.3425 .1069 .1507 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.2092 .0092 4.5910 .1196 .1461 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2190 .0190 9.5225 .1252 .1575 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .0338 -.1662 -83.1085 .1389 .0215 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .2159 .0159 7.9275 .1222 .1522 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.2263 .0263 13.1535 .1846 .1551 

- 1 λ and 1 τ - 100% Unbalanced -.2000 -.4000 -199.9785 .2595 -.1011 

8 λ + 1 τ 4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 47 .2228 .0228 11.4005 .1816 .1561 
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4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - -.1517 -.3517 -175.8735 .1885 -.1058 
           

5. Generation Model: Mixed P-IV, Δκ = 0, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 -.0008 -.0008 - .1058 -.0004 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.0013 .0013 - .1196 .0010 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced -.0032 -.0032 - .1205 -.0019 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced -.1100 -.1100 - .1274 -.0730 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .0002 .0002 - .1203 .0002 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
-.0004 -.0004 - .1847 .0003 

- 1 λ and 1 τ - 100% Unbalanced -.2267 -.2267 - .2135 -.1375 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.0006 .0006 - .1817 .0002 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - -.1980 -.1980 - .1838 -.1396 
           

6. Generation Model: Mixed P-IV, Δκ = .20, DIF = 10%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .2026 .0026 1.3105 .1063 .1430 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.2034 .0034 1.6835 .1207 .1429 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2031 .0031 1.5650 .1209 .1435 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .1173 -.0827 -41.3445 .1272 .0776 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .2049 .0049 2.4395 .1211 .1439 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.2045 .0045 2.2370 .1871 .1422 

- 1 λ and 1 τ - 100% Unbalanced .0332 -.1668 -83.4105 .2104 .0204 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.2032 .0032 1.5940 .1831 .1429 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - .0294 -.1706 -85.3115 .1825 .0207 
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0 

7. Generation Model: Mixed P-IV, Δκ = 0, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 -.0016 -.0016 - .1069 -.0005 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.0013 .0013 - .1196 .0010 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced -.0060 -.0060 - .1252 -.0023 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced -.2391 -.2391 - .1389 -.1469 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced -.0009 -.0009 - .1222 < .0001 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
-.0005 -.0005 - .1846 .0003 

- 1 λ and 1 τ - 100% Unbalanced -.5206 -.5206 - .2595 -.2694 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.0006 .0006 - .1816 .0002 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - -.4003 -.4003 - .1885 -.2822 
           

8. Generation Model: Mixed P-IV, Δκ = .20, DIF = 20%, N = 500 

 

Total 

Invariance 

Constraints 

Constraints 

on 

invariant 

parameters 

(V1 - V4) 

Constraints 

on non-

invariant 

parameters 

(V5 - V6) 

Constraints 

on non-

invariant 

parameters 

(V7 - V8) 

Model Type df 

Average 

Estimates 

of Δκ 

Average 

Bias 

Average 

Relative 

Bias (%) 

Efficiency 
Effect 

Size 

Analysis 

Models 

8 λ + 8 τ 4 λ and 4 τ 2 λ and 2 τ 2 λ and 2 τ 50% Balanced 54 .2076 .0076 3.7780 .1066 .1473 

4 λ + 4 τ 

4 λ and 4 τ - - Appropriate 

46 

.2034 .0034 1.7060 .1206 .1429 

- 2 λ and 2 τ 2 λ and 2 τ 100% Balanced .2146 .0146 7.3235 .1226 .1539 

2 λ and 2 τ 2 λ and 2 τ - 50% Unbalanced .0222 -.1778 -88.9155 .1364 .0138 

2 λ and 2 τ 1 λ and 1 τ 1 λ and 1 τ 50% Balanced .2096 .0096 4.8090 .1219 .1481 

1 λ + 1 τ 
1 λ and 1 τ - - Appropriate 

40 
.2044 .0044 2.1785 .1870 .1422 

- 1 λ and 1 τ - 100% Unbalanced -.1915 -.3915 -195.7645 .2440 -.0989 

8 λ + 1 τ 
4 λ and 1 τ 2 λ and 0 τ 2 λ and 0 τ - 

47 
.2031 .0031 1.5320 .1829 .1427 

4 λ and 0 τ 2 λ and 1 τ 2 λ and 0 τ - -.1470 -.3470 -173.5090 .1841 -.1037 

 


