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ABSTRACT

Stream processing has emerged as an important model of computation especially in

the context of multimedia and communication sub-systems of embedded System-on-

Chip (SoC) architectures. The dataflow nature of streaming applications allows them

to be most naturally expressed as a set of kernels iteratively operating on continuous

streams of data. The kernels are computationally intensive and are mainly character-

ized by real-time constraints that demand high throughput and data bandwidth with

limited global data reuse. Conventional architectures fail to meet these demands

due to their poorly matched execution models and the overheads associated with

instruction and data movements.

This work presents StreamWorks, a multi-core embedded architecture for energy-

efficient stream computing. The basic processing element in the StreamWorks ar-

chitecture is the StreamEngine (SE) which is responsible for iteratively executing a

stream kernel. SE introduces an instruction locking mechanism that exploits the iter-

ative nature of the kernels and enables fine-grain instruction reuse. Each instruction

in a SE is locked to a Reservation Station (RS) and revitalizes itself after execution;

thus never retiring from the RS. The entire kernel is hosted in RS Banks (RSBs) close

to functional units for energy-efficient instruction delivery. The dataflow semantics

of stream kernels are captured by a context-aware dataflow execution mode that ef-

ficiently exploits the Instruction Level Parallelism (ILP) and Data-level parallelism

(DLP) within stream kernels.

Multiple SEs are grouped together to form a StreamCluster (SC) that communi-

cate via a local interconnect. A novel software FIFO virtualization technique with

split-join functionality is proposed for efficient and scalable stream communication

across SEs. The proposed communication mechanism exploits the Task-level par-

allelism (TLP) of the stream application. The performance and scalability of the
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communication mechanism is evaluated against the existing data movement schemes

for scratchpad based multi-core architectures. Further, overlay schemes and architec-

tural support are proposed that allow hosting any number of kernels on the Stream-

Works architecture. The proposed oevrlay schemes for code management supports

kernel(context) switching for the most common use cases and can be adapted for any

multi-core architecture that use software managed local memories.

The performance and energy-efficiency of the StreamWorks architecture is evalu-

ated for stream kernel and application benchmarks by implementing the architecture

in 45nm TSMC and comparison with a low power RISC core and a contemporary

accelerator.
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Chapter 1

INTRODUCTION

In the past decade stream computing has emerged as an important model of

computation. It is particularly suitable for expressing computation in communica-

tion (network processing, wireless communication standards) and multimedia (graph-

ics, video/audio codec) application domains. Streaming applications demonstrate

dataflow behavior at the application level. They can be most naturally expressed as

set of concurrent kernels (or actors) that iteratively operate on streams of data, and

communicate with each other through software FIFOs. They exhibit a stable com-

munication and computation pattern with occasional modification of stream flow.

Streaming applications are typically computation intensive, and have to satisfy high

throughput requirements.
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Figure 1.1: Streaming Specification of 8 x 8 Inverse Discrete Cosine Transform
Derived from StreamIt Benchmark Suite

Figure 1.1 depicts the mapping of a 8x8 inverse Discrete Cosine Transform (iDCT)

to the stream model. Each node (oval) in the figure corresponds to a stream kernel,
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while each arrow represents a data stream transfer. In this case, each data stream

is composed of floating point elements. The FileReader and FileWriter are special

kernels that are responsible to stream data in and out for the application respec-

tively. Also, note the special actors Split and Join that have a fan-out and and fan-in

greater than one respectively. The Split and Join actors can implement a number of

algorithms (e.g. duplicate, weighted round robin etc.) for the divergence and con-

vergence of data streams. In this case, both the Split and Join actors implement

weighted round robin with a weight of 1. Apart from the special actors viz. Fil-

eReader, FileWriter, Split, Join, the overall iDCT application requires 2 stages of 8

iDCT kernels each. Each iDCT kernel belonging to a stage communicates with each

of the iDCT kernel from the other stage. The Join and Split in the center of the

stream graph enable this communication pattern.

A number of programming languages and formats have emerged in academia

(Brook Buck (2001), StreamIt Thies et al. (2002), KernelC, StreamC) and indus-

try (CUDA, OpenCL, OpenGL) for specifying streaming applications.

Due to their inherent dataflow characteristics, stream applications demonstrate

large amounts of parallelism. Streaming applications exhibit task-level parallelism as

the operations within a kernel are performed independently on each stream element.

Therefore, two kernels can be concurrently executed as long as the input/output con-

ditions are satisfied on their respective FIFOs (input FIFO not empty and output

FIFO not full). A kernel is repeatedly executed on independent sets of data items,

and thereby demonstrates data-level parallelism (DLP). One can easily exploit the

DLP exhibited by stateless1 kernels using a SIMD-like execution model allowing mul-

tiple iterations in flight. The kernels themselves are compute intensive, and typically

1A kernel (or actor) is called stateless if its current iteration is independent on any of its previous

iteration(s). A kernel with inter-iteration dependencies is called stateful.
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show large amounts of instruction-level parallelism. The applications do not demon-

strate data locality as they operate on streaming inputs. However, they do posses

large amounts of instruction locality due to their repetitive execution. Another key

characteristic of stream actors is their compact code footprint (typically less than 50

for each actor in the StreamIt benchmark suite).

The stream programming model can be efficiently implemented in hardware be-

cause in addition to exposing the parallelism offered by stream applications, it also

exposes the communication behavior that demands high data bandwidth; thus ex-

hibiting characteristics that are well matched to the capabilities of modern VLSI.

Given the target architecture, the stream programming model also allows the compiler

to perform several high level optimizations. However, without proper architectural

support, it presents new challenges to programming tools. In recent past, several ar-

chitectures have been proposed Khailany et al. (2001); Taylor et al. (2002); Lin et al.

(2006); Yu et al. (2008); Woh et al. (2009); Dally et al. (2008) and commercialized

Pham et al. (2006); Johnson and Kunze (2003); Baines and Pulley (2004) that support

stream computing. As many of these architectures are aimed at embedded comput-

ing domains they are implemented as heterogeneous multi-core or System-on-Chip

(SoC) designs. The top-level architecture consists of a control plane or application

processor (for example an ARM core) that executes the more conventional workloads

such as the operating system, JavaVM and so on. The stream processors that serve

as data plane co-processors implement the computation intensive workloads. Low

power stream computing has received considerable attention in recent years due to

the convergence of communication and multimedia applications on the same smart

mobile device (cell phone or tablet).

In the past, several models of computation have been proposed to capture the

execution semantics of streaming applications. Following are some of the important
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streaming computation models that have gained popularity due to their relevance to

more frequent streaming workloads.

• Kahn Process Network (KPN): KPN is arguably the fundamental com-

putation model for all other streaming computation models Geilen and Basten

(2003). A KPN program is a set of processes that communicate through a net-

work of unidirectional infinite FIFO queues. A read from the queue is blocking

(when queue is empty) while a write is non-blocking (since FIFO is of infinite

size). The key feature of KPNs is that they are determinate i.e. the outcome

does not depend on the execution order of the processes and therefore they can

be scheduled sequentially or in parallel. However, one major drawback of KPNs

is they cannot be scheduled statically. Moreover special care has to be taken

for bounded execution of KPNs.

• Data Flow Networks : A typical implementation of a KPN involves a

process executing until its input FIFO is empty and gets context switched by its

consumer process. This is mainly because of the lack of the notion of a quantum

of computation. Dataflow process networks define a quantum of computation

by decomposing processes into repeated firings of actors. Data Flow networks

are executed by scheduling the actor firings as opposed to context switching.

The following are a few data flow networks relevant to streaming:

1. Synchronous Data Flow (SDF): SDF Lee and et al. (1987); Lee and

Messerschmitt (1987) is a restriction of KPN in which the number of tokens

produced or consumed by each process (node) on each firing is fixed. This

a priori knowledge of the number of tokens allows the processes to be

scheduled statically. Also, SDF programs guarantee memory boundedness

and can therefore be scheduled on limited memory embedded processors.
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Figure 1.2: Syncronous Data Flow

2. Cyclo-static Data Flow (CSDF) : CDSF Bilsen et al. (1995); Parks

et al. (1995) is an extension of SDF with additional support for processes

that implement algorithms which are critically changing in a cyclic manner

with a predefined behavior. To accommodate such processes, the nodes in

CSDF have a set of tokens associated with their input and output channels.

For example, if a node has the set x, y, z associated with its output channel,

this node produces x tokens during its first invocation, y tokens during the

second, z tokens during the third invocation, then again x during the fourth

and so on. Basically the process cycles through this set. For SDF, this set

is a singleton set and thus every invocation produces (and consumes) the

same number of tokens. The weighted round-robin actors in the StreamIt

benchmark suite is best captured by CSDF.

3. Boolean Data Flow (BDF) : Boolean Data Flow Buck and Lee (1993)

networks extend SDF networks to efficiently implement conditionals. BDF

allows nodes in the dataflow graph to have an additional control port. The

actor reads the control port and depending on the value of the token present
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in the control either selectively reads from or writes to one of two input or

output channels respectively. The BDF captures the dynamic behavior of

certain actors that are not known at compile time. Note that it still allows

static scheduling by considering the WCET and worst case memory usage.
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Figure 1.4: Boolean Data Flow

4. Dynamic Data Flow (DDF): DDF allows both static and dynamic

actors and thus the schedule of actor firings is decided at runtime. Unlike
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SDF, CSDF and BDF, deadlock and boundedness are not decidable in

DDF. However, note that unlike process networks, an actor can be sched-

uled as soon as its firing rules are satisfied.

Note: SDF ⊂ CSDF ⊂ BDF ⊂ DDF

BDFCSDFSDF
DDF

Figure 1.5: Venn Diagram Showing the Classification of Dataflow Models

The StreamWorks architecture is best suited for the SDF and CSDF computa-

tional models. However, it doesn’t rely on static scheduling and therefore inherits

some properties of DDF which are beyond the scope of SDF. Essentially, my archi-

tecture captures a special case of deadlock-free and bounded DDF.

1.1 Contributions

My thesis offers different mechanisms to enable energy-efficient stream comput-

ing in the context of dataplane co-processors by identifying the key characteristics of

stream kernels that can be exploited with appropriate architectural support. Specif-

ically, my thesis addresses the following research questions
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1. How to improve the energy-efficiency of instruction hosting and delivery in

stream processors by exploiting the high instruction reuse Panda and Chatha

(2014) prevalent among stream kernels?

2. What execution model can efficiently exploit the ILP and DLP within stream

kernels at runtime Panda and Chatha (2014) and establish a software pipeline

to exploit the high TLP exhibited across kernels?

3. How to efficiently distribute data tokens across stream kernels with high fan-

in/fan-out communication patterns?

4. How to enable efficient synchronization across stream kernels without the pro-

grammer having to schedule the communication patterns?

5. How to schedule large streaming applications without significantly impacting

the throughput of the application?

To the best of my knowledge, the Stream-Engine (SE) is the only architecture that

supports fine-grain instruction reuse; previous reuse mechanisms follow a coarse-grain

reuse approach that limits the parallelism across invocations.

Table 1.1 compares the StreamEngine with other execution models that are used

for stream architectures.

In terms of the different levels parallelism exploited, SE exploits Instruction, Data

and Thread level parallelism. VLIW architectures exploit ILP and can exploit DLP

using explicit unrolling (affecting code size). SIMD architectures can exploit only the

inherent DLP of stream kernels and GPUs exploit ILP and DLP within a kernel and

the thread-level parallelism. Note that ILP exploited using pipeline is not accounted

for in the table.The table reports ILP only for architectures that execute multiple

instructions concurrently.
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In terms of scheduling, VLIW uses a compile-time static schedule (accounting for

WCETs) and therefore cannot benefit from run-time behavior that might result in

better scheduling opportunities. SIMD, GPU and SE all use dynamic scheduling.

VLIW, SIMD and GPUs use wide register files for intermediate operands and

intra-PE data movement. SE distributes the operand store across reservations sta-

tions and uses the broadcast token distribution network to move data. Note that

since the instructions are locked to RS, the mapping is fixed that enables the circuit-

switched token distribution network and therefore is not as power-hungry as conven-

tional broadcast infrastructures.

VLIW architectures use compile-time analysis to schedule instruction and there-

fore doesn’t require synchronization at run-time. SIMD architectures usually lack

synchronization across SIMD lanes and need software methods to implement the

same. GPUs offer atomic operations (atomicCAS etc.) to allow synchronization. SE

uses the broadcast bus for synchronization.

In terms of control-flow, VLIW uses predication to execute both the branch paths

and then discard one of the paths when the predicate value is available. Conventional

SIMD architectures doesn’t support control-flow and GPUs use mask bits to select

active lanes. SE transforms control-flow to data flow and executes a branch path only

after the predicate is available.

In this work, I present architectural support for energy-efficient stream comput-

ing. I envision an entire stream application with multiple kernels mapped across a

multi-core dataplane co-processor. I first present the microarchitecture of the Strea-

mEngine (SE), a processing element (PE) for efficiently executing stream kernels.

Each kernel of the stream application can be mapped to a StreamEngine. I then

present StreamWorks, the multi-core co-processor with architectural support for effi-
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VLIW SIMD GPU (SM) SE

Parallelism ILP, DLP ILP, DLP DLP, TLP ILP, DLP,

(w Unrolling) TLP TLP

Scheduling Static Dynamic Dynamic Dynamic

Synchronization NA Software Atomic ops Broadcast bus

Data movement RF wide-RF wide-RF Broadcast bus

Control-Flow Predication No support Masking Dataflow predication

Table 1.1: Comparison of SE with VLIW, SIMD and GPU(SM)

cient stream communication. The contributions are presented in further detail in the

following chapters.

1. In Chapter 2, we present the SE architecture. The SE features the following

innovations:

• A novel instruction locking mechanism that allows fine-grain instruction

reuse and eliminates the overheads associated with instruction delivery.

• A scalable Context-aware Dataflow Execution (CDE) model that efficiently

exploits ILP and DLP within stream kernels.

2. In Chapter 3, StreamWorks, the multi-core dataplane for stream applications is

presented. StreamWorks introduces a special communication unit in the form of

input channel and push unit pair that enables software FIFO virtualization and

supports the split/join functionality that is abundant in stream applications.

StreamWorks efficiently extends the CDE across SEs and exploits the TLP in

stream applications.
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Finally, in Chapter 4 I identify the current limitations of the StreamWorks archi-

tecture and propose mechanisms to address the limitations.

11



Chapter 2

THE STREAMENGINE ARCHITECTURE

2.1 Introduction

In this chapter, the architectural features and execution model of the Strea-

mEngine are presented. The StreamEngine, or SE, is a single-precision floating-point

streaming core that forms the basic processing element (PE) of the StreamWorks

architecture. Each SE is aimed at implementing a single kernel in the streaming

application. The SE implements a context-aware dataflow architecture that is par-

ticularly conducive for executing stream kernels. The idea is to exploit the iterative

nature and abundant parallelisms exhibited by stream kernels.

The iterative nature of the stream kernels accounts for extremely high instruction

locality. Instruction locality coupled with compact code footprint of the kernels allows

the SE to host an entire kernel close to the functional units; thus enabling instruction

reuse. Instruction reuse amortizes the fetch and decode cost for instructions over

multiple kernel iterations and achieves tremendous energy savings.

The block architecture of a SE along with its communication unit is shown in

Figure 2.1. Each instruction along with its operands (intermediate results) is hosted

within a Reservation Station (RS) close to functional units for efficient instruction

and operand delivery. These RSs are distributed across multiple RS Banks (RSBs) for

improved energy efficiency. The Stream RSBs host streaming instructions that read

from input streams and write into output streams. The Compute RSBs host the core

computation instructions meant for the ALUs and MULs. The LD/ST RSBs host

memory instructions for loading from and writing into the SPM. Each SE also has

12
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Figure 2.1: StreamEngine with Communication Unit

a bunch of Stream Index Generators (SIGs) that generate the indices and addresses

for the stream and LD/ST RSBs respectively. Additionally, the SIGs also decouple

consecutive iterations of kernels or loop within kernels by implementing what we

call loop merging that will presented later in this chapter. All the RSBs are tightly

coupled with each other and the functional units via a low-power token distribution

network (TDN). The SE also has a central Dataflow Monitor (DFM) that regulates

the flow of tokens across the RSBs within a SE.

In Section 2.2, previous work on dataflow architectures and instruction reuse is

presented. Section 2.3 presents the execution model and the architectural support

that enable the SE to efficiently execute a stream kernel. Finally, in Section 2.7 the

evaluation of the SE is presented.

2.2 Related Work

Dataflow architectures have been studied as early as 1970’s and capture a very

powerful formalism for concurrent execution at different levels of granularity. At

instruction level, the abstract dataflow model Kahn (1974) describes a placeholder

for data values as token, which circulates along the arcs connecting instructions in a
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program graph. These arcs are further assumed to be infinite FIFOs. The way in

which tokens are managed on arcs has been identified as one of the key factors that

impacts not only the organization of a dataflow architecture but also the amount of

parallelism that can be exploited in programs Arvind and Culler (1986).

Static and dynamic (Tagged-token) dataflow architectures encode dependencies

of an instruction in the form of a list of destination instruction tags. In other words,

every producer instruction maintains a list of its consumers. Upon execution, a

separate token is created for each of the consumer and added to a common memory

pool for distribution. Each token carries its destination instruction tag along with

the data value.
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Figure 2.2: Static Dataflow Architecture

Static dataflow restricts the number of tokens per arc to be one; thus an instruction

cannot execute unless there is no token present on any output arc of that instruction

Dennis and Misunas (1975). Such a restriction allows only a single invocation of any

routine to be in flight. When an instruction executes, a token corresponding to each

of its destination instructions is formed and added to the distribution network as

shown in Figure 2.2. Since only a single invocation of any instruction can be in flight,
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the instruction addresses can be static and therefore conventional memory addresses

can be used as the destination tags associated with the tokens. Static instruction

addresses greatly simplifies the token distribution. The distribution network now

becomes equivalent to a memory interface for writing to a conventional directly-

addressed memory. However, the one-token-per-arc restriction seriously limits the

parallelism in the program Arvind and Culler (1986).

Input

Wait-Match

Unit

Instruction

Fetch

Program

Memory

Functional

Unit

Compute

Tag

Token

Formation

Output

From 

Network

To 

Network

Figure 2.3: Tagged-token Dataflow Architecture

Tagged-token dataflow allows unbounded queues on the arcs without any order-

ing. It provides dynamic allocation of token storage out of a common pool and allows

multiple invocations in flight (as long as space is available in the common pool). How-

ever, this complicates the structure of the tag associated with each token. In the MIT

Tagged-token dataflow architecture (TTDA)Arvind and Nikhil (1990), the tags have

an invocation ID, an iteration ID, code-block and instruction address. Code-block

refers to either a routine (acyclic) or a single loop; nested loops are treated as several

code blocks. The invocation ID further designates a triple of registers indicating the

base address of code-block, the base address of local data (similar to frame pointer)
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and mapping information. Upon execution, multiple tokens corresponding to desti-

nation instructions are formed and dispatched to a common pool in the Wait-Match

(WM) unit as shown in Figure 2.3. The WM unit decides when a consumer instruc-

tion is ready to execute by ensuring availability of all its operands belonging to same

tag are present in the pool. In TTDA, the WM unit is an associative memory which

is slow and expensive. In addition to circulating a complex tag structure, the primary

overhead comes from the fact that the memory pool is a centralized unit which needs

to perform parallel tag matches for any combination of tokens present in the pool.

Another major drawback of dynamic dataflow architectures is that if the WM unit

ever gets full the machine will immediately deadlock. This arises from the fact that

Tagged-token dataflow execution doesn’t ensure any ordering of tokens.

Both static and dynamic dataflow lack scalability in the tag-match and token-

supply mechanisms. StreamEngine uses a distributed tag-match mechanism and a

circuit switched token-supply network that allow scalability.

Tomasulo Tomasulo (1967) takes a different approach by not storing consumer

dependencies but storing the producer dependencies as tags in the instruction RS.

When a producer instruction executes, the result and the producer tag is broadcasted

in the Common Data Bus (CDB) and all the waiting consumers update their operands

within their respective RS. However, Tomasulo has limitations on performance arising

from the fact that only one result, tag pair can be broadcasted on the CDB. Scaling

the CDB renders it as a power-hungry CAM. We propose a highly scalable low power

data bus for token supply. Another major drawback of Tomasulo is that it lacks the

notion of a context and thus the only way to allow multiple invocations in flight is by

replicating instructions and thereby increasing the RS pressure.

Table 2.1 summarizes the key differences among the conventional dataflow archi-

tectures and SE on the following grounds.

16



Dataflow Context Tag-Match Token supply Deadlock

Architecture Aware scalability scalability Free

Static 8 8 8 3

TTDA 3 8 8 8

Tomasulo 8 3 8 3

SE 3 3 3 3

Table 2.1: Comparison of SE with Conventional Dataflow Architectures

• Context Awareness refers to the ability of an architecture to distinguish among

multiple sets of operands belonging to different invocations of the same instruc-

tion. This is extremely relevant for dataflow architectures as correctness is

ensured only when instructions execute with operands belonging to the same

invocation context. Static dataflow architectures allow only one data token

per edge (between any pair of producer-consumer instruction). In this case,

context-awareness is not required as only one set of operands are available at

any time. However, restricting the number of tokens to only one seriously limits

the parallelism in the program. The architecture proposed by Tomasulo also

lacks context-awareness as there is no way to distinguish between operands be-

longing to 2 different invocations of the same instruction. The only way to

allow multiple invocations in flight is to replicate the instruction and rename

the registers thus increasing both RS and register pressure. TTDA and SE can

distinguish among multiple contexts by using the tag and context field of the

tokens respectively.

• Tag-Match scalability: Static dataflow and TTDA use a central wait-match

unit for matching the tags from producer to consumer instructions before dis-
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patching the operands. This central unit is implemented as associative memory

and is not scalable for large number of instructions. Tomasulo and SE use dis-

tributed tag-match mechanism within RS which is scalable with the number of

instructions (RSs).

• Token supply scalability: Static dataflow and TTDA again use a central ap-

proach for token supply which doesn’t scale very well with number of tokens in

flight. Tomasulo uses the Common Data Bus (CDB) for token supply. However,

since the mapping from producer to consumer RS is not known a priori (the

RS contains only a moving window of instructions) only one token is allowed

on the CDB at a time. Allowing multiple tokens at the same time renders the

CDB to a power-hungry CAM which doesn’t scale well with the number of to-

kens in flight. In case of SE, as the instructions are locked to RS, the mapping

for each instruction is known at compile-time. The token distribution network

(TDN) uses this mapping information to implement a circuit switched token

supply network which scales very well with the number of tokens in flight. In

the case of SE, the TDN uses a broadcast bus with a slot corresponding to each

token from a Functional unit. At each RS site, the RS scans exactly one slot

per operand using a simple switch. Not having to scan all slots for a tag-match

allows a scalable low-power token supply network.

• Deadlock: The TTDA allows multiple tokens in flight belonging to different

invocation contexts and uses tag to distinguish between them. It uses a central

wait-match unit for storing tokens and waits until all operands of an instruction

belonging to the same context arrive. Only then it dispatches the set of operands

to the consumer instruction. Allowing multiple contexts in flight exploits the

parallelism in the program. However, since a central token store is used, the
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machine can deadlock when the store gets full with only one operand for each

instruction available in the store. SE overcomes this problem by maintaining

the order of invocation and ensuring a placeholder for each operand at the RS

site. Static dataflow and Tomasulo do not deadlock as they allow only a single

token in flight.

The comparison suggests that the SE offers a number of distinct features that

other dataflow architectures lack.

Levo Uht et al. (2003) uses time-tagged Active Stations (AS) organized as a large

Execution Window (EW) to realize speculative data-flow execution. Time-tags cap-

ture the age of an instruction in the EW, allowing dependent instructions to snarf

values from more recent (higher time-tag) instructions in the EW. It is important to

note that time-tags only capture the program order to eliminate register renaming. In

contrast to SE, Levo doesn’t support instruction reuse and uses an expensive CAM-

based Register Forwarding Bus (RFB) for token broadcast. Moreover, speculative

execution introduces the overhead of re-execution upon mis-speculation.

Instruction reuse at coarser granularity has been proposed by Sankaralingam et al.

(2003a) and Swanson et al. (2003). Sankaralingam Sankaralingam et al. (2003a), as

part of TRIPS Burger et al. (2004), proposed instruction revitalization at block level.

The block, which is a loop body, resides on the execution core and decrements a

special counter register (CTR) at the end of each iteration. A setup block needs to

execute repeat instruction that initializes the CTR with a loop bound before the loop

starts executing. A block control logic decides the end of iteration and broadcasts a

global revitalize signal when CTR > 0. Wavescalar Swanson et al. (2003) executes

instructions in-place in memory and uses wave numbers to identify contexts. Since the

atomic unit of execution in Wavescalar is a wave (hyper-block), each instruction in the

wave executes at most once per wave execution. Both Sankaralingam et al. (2003a)
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and Swanson et al. (2003), in contrast to SE, do not allow fine-grain instruction reuse

and therefore limit the parallelism across multiple invocations of loop body and wave

respectively. In Section 2.7 we demonstrate how the SE execution model achieves

higher IPC by exploiting the parallelism across successive kernel iterations.

More recently, Balfour Balfour et al. (2008) proposed the use of instruction reg-

isters in the ELM Dally et al. (2008) architecture to reduce the cost of instruction

delivery. These registers are located close to functional units and capture instruction

reuse and locality. However, in contrast to the SE architecture, ELM still uses a

register organization and incorporates a fetch-decode pipeline.

The DySER (Dynamically Specializing Execution Resources) architecture Govin-

daraju et al. (2012) attempts to unify parallelism and functionality specialization in

a single architecure.

Parallelism specialization refers to techniques that exploit data-level parallelism

for example vector processors, Streaming SIMD extensions, Advanced Vector Exten-

sions (AVX) and GPUs. Parallelism specialization uses lanes of hardware resources

that are homogeneous and are independent of each other. There is no routing among

these lanes. Functionality specialization, on the other hand, uses custom hardware

that target the hotspots of applications. It uses task-specific hardware resources and

custom routing of operands.

The functionality specialization of DySER can be compared to a SE. DySER

achieves functionality specialization by dynamically creating specialized data paths

for only frequently executed regions (hotspots). The configuration requires 64 cycles

and eliminates per-instruction decode, commit and register read/write overheads.

This feature is similar to the instruction locking mechanism of SE.

DySER uses dataflow execution semantics with a fine-grain credit-based mecha-

nism for flow control and context-awareness. Whenever a data token is produced,
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the producer routes the token to its consumers and asserts a forward valid signal.

An instruction executes when all its inputs are valid. Upon consuming the data, the

instruction asserts a back credit signal to its producers. There are 3 key differences

between DySER and SE

1. If an instruction has multiple dependents (consumers) the configured datapath

realised by switches must be able to deliver tokens to all the consumers. A

high fan-out data dependency might be hard to realize using switches. SE

uses broadcast mechanism and thus overcomes the problem of high fan-out

dependencies.

2. In DySER, if the operations in the application hot-spot have variable latencies,

the operation with the highest latency will be a bottleneck as it cannot send a

credit back to its producer thus stalling the datapath. Operand buffers in SE

allow variable latency operations to keep firing by providing placeholders for

the output of the lower latency operations.

3. Mapping the data path to the reconfigurable DySER fabric depends heavily

on the compiler and requires number of transformations as explained in the

DySER manuscript. Although the authors claim that such transformations

can be implemented in a compiler, the evaluation uses manually optimized

benchmarks. SE does not encounter any routing constraints. Moreover, in my

evaluation I have implemented the instruction to RS mapping in the runtime

framework.

2.3 Context-aware Dataflow Execution and Instruction Locking

StreamEngine exploits the iterative nature and compact code size of stream ac-

tors to host the entire actor code within Reservation Stations (RSs) and lock them
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across multiple actor iterations if not for the entire program lifetime. We introduce

a context-aware dataflow model that allows multiple invocations of an instruction in

flight. The tokens carry a context ID tag which in the case of a stream kernel can be

as simple as the kernel’s iteration number. Context-awareness implies an instruction

can execute only upon receiving tokens belonging to the same context. Rather than

using a centralized tag-match mechanism similar to tagged-token dataflow, we imple-

ment a fast and energy-efficient distributed tag-match mechanism. Each instruction

in a RS is responsible for matching the token tags which include the context as well as

the instruction dependency. This can be achieved by maintaining the source depen-

dencies of an instruction as opposed to a list of its destination dependencies suggested

by static and dynamic dataflow architectures. The source dependencies can be easily

restricted to two by enforcing three address generation; thus simplifying the instruc-

tion structure. Each RS has an identifier associated with it that becomes the tag

of the instruction residing in the RS. The instruction tag can be used to encode the

source dependencies.
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Figure 2.4: Structure of a Basic Reservation Station

The structure of a RS is shown in Figure 2.4. Each instruction has an identifier

(Tag) and maintains its source dependencies (Op A tag, Op B tag) along with its

context1. To begin with, all the instructions belong to the same context 0. We

preserve the order of invocation by executing an instruction only upon receiving tokens

1The Op B Tag valid field in the RS indicates if the instruction depends on a second operand or

uses an immediate value.
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that belong to its own context. Upon receiving a token, the instruction matches the

source tag of the token with its Op tags and the context tag of the token with its

own context. If both match then the instruction extracts the data from the token

and stores it as the operand for the corresponding source dependency (If Op A/B

tag matches the data is stored in Op A/B.) and the ready bit for that operand (Op

A/B rdy) is set. If only the source address matches with an Op tag with the token

context being higher than the instruction context, the data of the token is stored in

the corresponding Op buffer along with its context and the buffer valid bit is set.

Thus the SE efficiently distributes not only the tag-match logic but also the token

store memory. Preserving the invocation order, avoids the SE from deadlocking when

the RS buffers get filled.

An instruction is ready to execute when both the operand ready bits (Op A rdy

and Op B rdy) in the RS are set. Upon execution, the instruction updates its context

(increments by one) and resets the operand ready bits. It then searches the RS buffer

for operands belonging to its new context and accordingly sets the Op rdy bits. If

both operands were already present in the buffer the instruction is again ready to fire

in the following cycle. If the buffers do not contain both operands, the instruction

waits on the TDN to deliver the matching token. Thus an instruction never retires

from a Reservation Station.

2.3.1 Token Distribution Network

The locking scheme not only eliminates the overhead of repeatedly fetching the

same set of instructions from program memory but also allows static instruction

mapping. SE utilizes the static instruction mapping to implement an energy-efficient

Token Distribution Network (TDN). The TDN is responsible for delivering tokens

23



from executing producer instructions to the consumer instructions. A token can be

generated at any of the following sites:

• A Functional Unit A functional unit executes an instruction from a RS and

forms a token using the result and the tag and context of the instruction. More

than one instructions in a RSB-Functional Unit pair can be ready at the same

cycle but the Functional Unit is arbitrated and exactly one RS fires its operands

producing one token per compute RSB.

• A Stream Index Generator A Stream Index Generator (SIG) is always one of

the root nodes in a dataflow graph. It fires the ISIG instruction which generates

stream indices. The token is formed by using the tag of the ISIG instruction

and its context along with the generated stream index.

• A Stream RSB A Stream RSB hosts instructions that read from the input

stream. The token is formed by using the tag and context of the read instruction

and the data item that was read from the input stream.

• A Load RSB A Load RSB hosts LD instructions that load data items from the

SPM. It can form a token using the tag and context of the Load inxtruction

along with the data item read from the SPM.

The TDN is partitioned into slots corresponding to each token generation site.

Since the instruction to RS mapping is static for a stream kernel, the TDN imple-

ments a circuit-switched network to route the entering tokens to their respective

destinations. For example, consider a MUL instruction that is mapped to a RS X

in the RSB paired with one of the multipliers (say MUL0). Let one of the operands

of the MUL comes from an ADD instruction that is mapped to a RS in the RSB

corresponding to ALU0. The TDN routes the tokens generated at ALU0 site to RS
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X. It is important to note that tokens generated at site ALU0 are a result of execution

of any of the ALU instructions mapped to the RSB corresponding to ALU0. Thus all

such tokens will be routed to RS X. The tag matching logic at RS X will selectively

store only the relevant tokens. Of course, tokens from a generation site are routed

to multiple RSs. Thus the dependency fan-out is captured by the TDN and not by

maintaining a list of consumer instructions within a RS.

2.3.2 Conditional Dataflow

Dataflow execution demands the conversion of control dependencies to data de-

pendencies. Static dataflow uses special T-gate, F-gate and merge operators to direct

the flow of data tokens based on control tokens which can either be true or false

Dennis and Misunas (1975). A T-gate (F-gate) moves an input data token to its out-

put arc only when the control token received at the control input has a true (false)

value. Otherwise the input data token is simply absorbed. A merge operator has

three inputs corresponding to true, false and control. The token on the input arc

corresponding to the value of control input is passed to the output arc.

Tagged-token dataflow uses a merge operator similar to that of static dataflow.

However, it uses a special switch operator that captures the functionality of both

T-gate and F-gate Arvind and Nikhil (1990). The switch operator has two outputs

corresponding to the true and false path. Depending on the control input, it steers

the input data token into either of the outputs.

The conversion of a control dependence (if-then-else construct) to data dependence

using gate, switch and merge operators is illustrated in Figure 2.5.

As can be observed from Figure 2.5, one of the major drawbacks of using special

control operators is that for every live variable being used in a control path, the

compiler needs to introduce a switch operator or a T-gate, F-gate operator pair. Use of
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Figure 2.5: Conversion of If-then-else Construct

switches or T-gate, F-gate pairs for every input to a control path results in significant

overhead. TTDA calls this set of input tokens as a wave of inputs. Assuming, that

the conditionals are well-behaved, a single wave of tokens will eventually arrive at the

data input of appropriate side of the merge. Since dynamic dataflow allows multiple

invocations in flight, special care needs to be taken for loops in order to distinguish

between two iterations. TTDA employs the D and D reset operators to change the

context of a input token and reset it back to the context of the loop. This is a serious

overhead which is incurred in every iteration of the loop. Also, each nested loop body

requires a distinct code-block ID.

Clearly, one cannot apply these classical dataflow conversions to context-aware

dataflow. Every instruction in a context-aware dataflow expects a token belonging

to its context. However, the above conversions steer the tokens to a single branch

path which is the taken (branch taken) path. The not-taken path will never receive

a token belonging to its present context and therefore will never execute even when

it becomes the taken path for following kernel iterations.
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In order to efficiently transform control dependencies to data dependencies for

context-aware dataflow we extend the RS with the following:

• Ctrl Tag : The Ctrl tag or Control tag is the tag (RS identifier) of the instruction

that evaluates which branch path is taken.

• Op Ctrl : The Op Ctrl represents the control operand which indicates whether

the path to which the RS belongs was taken or not. It is the result of executing

the instruction at Ctrl Tag. Possible values can be 00 (branch not taken), 01

(branch taken) or 11 (branch skip, discussed later in the section)

• Op Ctrl rdy : This bit indicates whether the control operand is available for the

present context.

• Ctrl Valid : This is a single bit which indicates whether the instruction in ths

RS belongs to a branch path or is independent of any predicate.

• Path: The path bit indicates the branch path to which the instruction belongs.
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Figure 2.6: Structure of the Extended Reservation Station

Figure 2.6 shows the structure of the extended RS. The RS Op buffers are also

extended to allow multiple control tokens in flight. If the Control Tag valid bit is set,

then an instruction can execute only when all the operand valid bits (Op A rdy, Op

B rdy, Op Ctrl rdy) are set. If the Op ctrl value matches with the 0-prepended Path
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value, then the instruction follows the same procedure for firing as in the case without

the control extensions. It dispatches the operands to the functional unit, resets the

operand valid bits (including control op valid) and updates its context. However, if

the Op ctrl value is not the same as Path then the instruction doesn’t dispatch any

operands but simply resets all the operand valid bits and updates the context. Thus

even when a branch path is not taken, the instructions still update their context thus

retaining the context-awareness of the stream kernel.
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#0: SUB $4, $1, $2

#1: BGTZ $4, L1

#2: SUBI $7, $2, $1

  #3: MUL $1, $1, $1

  #4: MUL $2, $2, $2

  #5: SUB $1, $1, $2

  #6: LD $5, N($3)

  #7: SUB $6, $1, $5

  #8: BGTZ $6, L2

#10 MULI $7, $5, 3
#9: MOVE $7, $5

#11: ADDI $8, $7, 1

If (x > y)

{

a = x2 ʹ y2;

s = del_str[N];

if (a > s)

{

delta = 3*s;

}

else

{

delta = s;

}

}

else{

delta = y ʹ x;

}

sqr = delta + 1;

L1

L2

Nested if-then-else 

construct in C

Corresponding SE 

Assembly and CFG 

for nested if-then-

else

Data and Control 

dependency 

encoding in RS

Figure 2.7: Nested Conditional Example

Nested conditionals can easily be handled by using the introduced control exten-

sions. However, the firing mechanism needs a slight modification as we discuss below.

Figure 2.7 illustrates the use of control extensions for a nested if-then-else construct.

The Path field is set for the true path. The operand valid bits and operand values are

not marked as their states keep changing at runtime. Figure 2.7 shows the C-code

along with the equivalent assembly. For the assembly code, lets assume that the

values of variables x and y are available in the registers $1 and $2 respectively. Also,

the base address of the array del str is available in $3. The different fields of the RSs

corresponding to the code are also shown in Figure 2.7. The Inst# field is added just
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for the discussion here. For the RS configurations, it is assumed that the producers

of x, y and base address of del str array have 1, 2 and 3 as their RS Tags respectively.

Depending on the branch path taken during an invocation, the ADDI instruction

just outside the if-then-else construct can receive its token from either of the three

instructions (Inst# 2, 9 and 10 ). However, all the three instructions that produce

the operand for the ADDI have the same RS Tag (=6). In a single invocation, exactly

one RS with Tag 6 will execute to produce the operand for ADDI. The control token

for the instructions in body of the inner if-then-else (Inst# 9 and 10 ) is produced

by the BLTZ with Tag 12 which in turn waits for its control token to be produced

by BLTZ with Tag 5. Thus nested control structures are supported by cascading

the control dependencies. Now consider an invocation (say with context ID n) where

the BLTZ with Tag 5 evaluates to false. Instructions from Inst# 2 through Inst# 8

will receive their control operands. Inst# 2 with Tag 6 will execute and update its

context to n + 1. Instructions from Inst# 3 through Inst# 8 will not execute but

just update their contexts. Inst# 9 and 10 will never receive thier control token for

context n and thus will never be able to move their contexts forward. We solve the

above problem by introducing an opcode BR SKIP. The ALU on evaluating a branch

instruction normally produces either a 0 or 1 (binary). The BR SKIP instruction

doesn’t take any operands and always evaluates to 11 (binary). Any nested branch

instruction that lies in the not-taken path of its outer branch construct sends the

BR SKIP opcode to the ALU. The nested instructions will now receive their control

token (with the proper tag) and the value 11 which will never match any of their

0-prepended path values and therefore all such nested instructions will simply update

their context.

When the branch paths are unbalanced as in our example, the instruction at the

join of branch paths (Inst# 11 in the example) will receive its input tokens out of
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order. However, the operand buffers in the RS already take care of preserving the

order of the tokens as discussed in the previous subsection. Therefore no additional

architectural support is required to deal with unbalanced branch paths.

As we saw in the example, across contexts, an instruction at the join of branch

paths can receive its data tokens from multiple RSs (which have the same tag). If

these RSs are mapped to different RSBs, the TDN now has to route the results of more

than one slot to the operand of the instruction at the join. This cannot be achieved

using a static network. We specify mapping same tag instructions to the same RSB

as a constraint during mapping instructions to RSs. If the same tag instructions have

opcodes that require different functional units (e.g. SUBI, MULI in our example),

we introduce a MOVE instruction per such pair to migrate the result of one of the

instructions to the RSB where the other resides. Both the ALU and the Multiplier

implement the MOVE instruction to allow migration of any instruction including

stream instructions, Ld/St instructions and index generation instructions to either a

ALU RSB or a Multiplier RSB.

2.3.3 Dataflow Monitor and Token regulation

One direct consequence of locking instructions and repeatedly executing them to

operate on a continuous stream of input tokens is Token accumulation. Token accu-

mulation results from the mismatch in the rate at which data or control operands are

received at a RS. In Figure 2.8 Arvind and Culler (1986), for example, the mismatch

is evident from the datapath. Lets assume that the multiplier has a two-stage pipeline

and the ALU is not pipelined. Assuming that the a,b and c operands (belonging to

a new context) are available every cycle, by the time the divide instruction receives

its operand from the preceding multiply, five tokens corresponding to c would have

accumulated at the RS hosting the divide instruction. Unbalanced branch paths, as
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in Figure 2.8. could be another such source of token accumulation. For example if

the longer path is taken for the first invocation (context ID 0) and then the shorter

path is taken for the next k invocations. These k tokens will get accumulated in the

operand buffer of the instruction at the join of the paths since it is yet to receive

the token for context 0. Eventually, the operand buffers at the RS will be full and

consequent tokens of higher contexts will be dropped.

We use a simple yet elegant back-pressure mechanism to stall an instruction in

order to bound the forwarding of its context. The Dataflow Monitor (DFM) maintains

all the data and control dependencies among the RSs. Once the operand buffer

corresponding to a certain operand is on the verge of a spill, the RS signals the

DFM to stall the producer of the corresponding operand. A tricky case is when an

instruction at the join of branch paths, wants to selectively stall a producer belonging

to a particular branch path. The only dependency encoding available in the system is

in terms of RS Tag. However all the producers of this instruction have the same tag.

If the DFM stalls all the producers it will create a deadlock because the instruction

requesting the stall is awaiting a token belonging to its context. Since all the producers
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are stalled, this token will never arrive. This can be resolved by monitoring the context

of the RSs. The rule for the DFM to stall a RS is as follows : ”If RS X requests to

stall RSs with Tag A, stall only the RSs with Tag A that have context ID higher than

that of RS X.”

2.3.4 Stream Index Generator, Iteration Decoupling and Loop Merging

Consider the execution of a loop in any dataflow machine. The invocation of

consequent iterations of a loop depends on the evaluation of a predicate that in

turn depends on the instrucion that updates the trip count of the loop (e.g. i + +,

i = i − 1 etc.). The evaluation of trip-count implicitly infers a data dependency

between consecutive loop iterations. At first, one may tend to overlook the effects of

this inter-iteration data dependency as the datapath for the trip count update (across

iterations) is very simple. However, in modern processors, where each functional unit

is heavily pipelined, this dependency on previous iteration may seriously limit the

parallelism by restricting the number of loop iterations in flight2. This is because the

instruction that updates the trip count cannot execute before it receives the result

of its own previous invocation corresponding to the previous loop iteration. For a

N -stage pipelined ALU that is used to execute the trip count update, the pipeline

will never reach a steady-state unless the loop is unrolled N − 1 times resulting in N

copies of the loop body.

Streaming workloads (multimedia for example) mainly consists of loops that have

bounded trip counts which is known at compile time. StreamEngine exploits this

characteristic of stream actors to implement what we call Iteration decoupling using a

Stream Index Generator (SIG). Iteration decoupling allows multiple loop iterations in

flight by eliminating the inter-iteration dependency due to trip count update without

2Unless, power-hungry branch predictors are used
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unrolling. A SIG hosts a special instruction ISIG that has a format as follows ISIG

$R dst, base, stride, length. The base is the initial trip count of a loop, stride is

the increment and length is the target trip count. The SIG is a fast adder that can

produce a new index every clock cycle to R dst. The ISIG instruction doesn’t wait on

any instruction to forward the trip count of a loop. Of course, the assumption is that

the loop has no other inter-iteration data dependencies The SIG unit also features

special offset registers for peek operations.

2.4 SE Program Execution Example

In this section, a sample kernel execution on the SE architecture is presented.

For the ease of explaining the CDE model, we consider an integer benchmark and

a simpler instance of SE with the configuration listed in Table 2.2. Let the ALU

instances be ALU0 and ALU1 and the MUL instance be MUL0.

Listing 2.1 shows the SE assembly for the sample kernel. Lines 4 and 5 in the SE

assembly correspond to the one time configuration of the SIGs and implement a loop

with a trip count of 64 (0 through 127 with a stride of 2). All the other instructions

get mapped to RS; instructions 8 and 9 get mapped to stream RSs, 11-14 to compute

RSs and 16 to a St RS. Note that the instruction rd $dst, $src is similar to a load

instruction the only difference being the source of the load is the channel and not the

SPM.

As evident from the SE assembly, the sample kernel calculates the difference of

squares of two consecutive input tokens and stores the value in the SPM. The isig

instructions are used to generate the indices of the channel from which the kernel

reads the input tokens. The store address is determined by the sum of the tokens

followed by a bitwise and operation with 63 (effectively a modulus operation with
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Configuration

ALUs 2

MULs 1

Compute RSBs 3

RS per compute RSB 2

Stream RSBs 2

RS per stream RSB 2

Ld/St RSBs 1

RS per Ld/St RSB 2

Operand buffers per RS 1

SIGs 2

Table 2.2: StreamEngine Configuration

RSB RS Op Op A Op A Op A Op B Op B Op B Op B Ctrl

Tag Tag rdy Tag valid rdy Tag

STR RSB 0 3 rd 1 ? 0 - 0 - 1 -

STR RSB 1 4 rd 2 ? 0 - 0 - 1 -

ALU0 RSB 5 add 3 ? 0 4 1 ? 0 -

ALU1 RSB 6 sub 3 ? 0 4 1 ? 0 -

ALU0 RSB 7 andi 5 ? 0 - 0 63 1 -

MUL0 RSB 8 mul 5 ? 0 6 1 ? 0 -

ST RSB0 9 st 8 ? 0 7 1 ? 0 -

Table 2.3: Configuration of Stream (s-RSB), Compute (c-RSB) and Memory (m-
RSB) RSBs

64). A single invocation of this kernel consumes 128 tokens and produces 64 tokens

as the result in the SPM.
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RSB Ctrl Op Op Ctrl Pred- Context

valid Ctrl rdy -icate

STR RSB 0 0 - 1 - 0

STR RSB 1 0 - 1 - 0

ALU0 RSB 0 - 1 - 0

ALU1 RSB 0 - 1 - 0

ALU0 RSB 0 - 1 - 0

MUL0 RSB 0 - 1 - 0

ST RSB0 0 - 1 - 0

Table 2.4: Configuration of Stream (s-RSB), Compute (c-RSB) and Memory (m-
RSB) RSBs

Listing 2.1: SE Assembly for Sample Kernel

1 .text

2 main:

3 # Configure SIGs

4 isig $i0 , 0, 2, 127, 0 #SIG0

5 isig $i1 , 1, 2, 127, 0 #SIG1

6 # read 2 tokens from channel

7 # indices generated by SIGs

8 rd $r4 , $i0

9 rd $r5 , $i1

10 # Compute

11 add $r6 , $r4 , $r5

12 sub $r7 , $r4 , $r5

13 andi $r8 , $r6 , 63 # r8 = r6 % 64

14 mul $r9 , $r6 , $r7

15 # Store into SPM

16 st $r9 , [$r8]

Each SE is configured by the control-plane processor. During configuration phase,

the registers corresponding to base, stride, length and offset of the SIGs are set by
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the isig instruction. The format of the isig instruction is isig $dst, 〈base value〉,

〈stride value〉, 〈length value〉, 〈offset value〉. During execution, each SIG broadcasts

an index starting from its base and incrementing by the stride value till it encounters

the length value. It then adds the offset value both to the base and to the length and

starts generating indices starting from the new base till it encounters the new length.

The destination registers of SIGs ($i0,$i1 etc.) are strictly for encoding dependencies

of other instructions that are dependent on the output of SIGs (For example the rd

instructions in this case). Table 2.5 lists the configuration of the SIGS for the kernel

example.

Figure 2.9 shows the dataflow graph (DFG) of the sample kernel. The nodes of

the DFG are labeled with the instruction numbers corresponding to Listing 2.1.

4 5

8 9

11 12

13 14

16

Figure 2.9: Dataflow Graph (DFG) of the Example Kernel

SIG RS Base Stride Length Offset

Num Tag Reg Reg Reg Reg

0 1 0 2 127 0

1 2 1 2 127 0

Table 2.5: Configuration of Stream Index Generators
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Figure 2.10: DFG Mapping and RS/SIG/TDN State during Execution

The RSBs are also configured during the configuration phase. The RS tags are

assigned and the data and control dependencies are encoded in the Op A Tag, Op

B Tag and Ctrl Tag fields. The configurations of the stream, compute and memory

RSBs are shown in Table 2.3 and Table 2.4. The RSB (first column) indicates the

static mapping of instructions to RSBs. STR RSBs represents the RSBs associated

with the read ports of the channel. Since the channel has 2 read ports, each of the

port is associated with a STR RSB. As Table 2.3 and Table 2.4 suggests instructions

11 (RS Tag 5) and 13 (RS Tag 7) are both mapped to ALU0 RSB and will therefore

contend for ALU0 when both are ready to execute. The RSB entries that are unknown

during configuration phase are represented by ’?’.
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A RS is ready to fire when all the rdy bits (Op A rdy, Op B rdy and Ctrl Op rdy)

are set and there is no stall arising from resource contention or from a dependent

RS. Each RS increases its context and resets its rdy bits upon firing. Note that in

Table 2.3 and Table 2.4, the instructions where the Op B and Ctrl are not valid (Op

B valid and Ctrl valid not set), Op B rdy and Op Ctrl rdy are always set. These RS

never reset the respective bits upon firing. Also note that the all the RS are initialized

with the same context 0.

We now show the activity in the TDN and each of the RSs and SIGs during the

execution phase. Figure 2.10 shows the mapping of the DFG to the RSBs and the

state of all the RSs, SIGs and the TDN during the execution phase. The contents of

each of the RSs and their respective operand buffers are shown alongside the RS Tag

and the operation it hosts. The contents are represented as [Op A Tag, Op A], [Op

B Tag, Op B], Context. As explained in Section 2.3, the operand buffers are used

to store operands belonging to higher contexts. Note that the context of an operand

buffer is always one higher than its respective RS. If a RS is waiting on an operand,

the corresponding placeholder is represented as ’?’. For RSs hosting instructions that

require only a single operand, the placeholder corresponding to the second operand

is represented by ’-’. Note that since instruction 13 uses the value 63 as the second

operand, the placeholder for the second operand will always be occupied by 63. For

each SIG, its index and context are represented as [index], Context beside the Tag of

the SIG.

The activity at each RS is indicated by either W, E, R or S. W denotes the RS

is waiting on one or more operands. E denotes that the RS is firing thus executing

the instruction it hosts. R denotes the RS is ready to fire (execute) but is stalled due

to a structural hazard (in our example when instructions mapped to same RSB are
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contending for the functional unit). S denotes the RS is stalled by one or more of its

consumers. The executing RSs are shaded in the figure.

For each token placed on the TDN, we follow the triplet convention of [Rs Tag,

Value, Context]. Also, assume that the value of tokens in channel at address x is 2x

(channel[x] = 2x).

As can be seen from Figure 2.10, SE can achieve a compute IPC of upto 3 (Clk

cycle 3) with an average compute IPC of 2.5 across successive kernel iterations when

compared to the inherent IPC of 2 for a single kernel invocation.

Clk cycle 3 demonstrates the structural hazard due to mapping instructions 11

and 13 to the same RSB. As the figure illustrates, RS Tag 5 is ready to fire but cannot

fire as ALU 0 is busy in executing instruction in RS Tag 7. Thus, RS Tag 5 signals all

its producers (RS Tag 3 and RS Tag 4) to stall in the following cycle. In the following

cycle, both RS Tag 3 and RS Tag 4 stall. However, the results broadcasted by the

producer RSs in the previous cycle are now stored in the operand buffer of RS Tag 5

with context 2.
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2.5 Executing Nested Conditionals

SE uses predication to execute conditional statements as described in Section 2.3.2

of the proposal. Note that as opposed to conventional predication (for e.g. in VLIW

architectures), SE does not execute both the branch paths only to reject the not-taken

path once the predicate is available. Instead, the correct branch path is executed

only upon the availability of the predicate. However, since SE maintains the context

awareness, the not-taken path must advance its context without executing. The

context-awareness, in particular, can become tricky when executing nested conditional

statements.

I will demonstrate, using the example shown in Listing 2.2, how nested condi-

tionals are handled by the SE . The sample kernel in the listing takes 2 streams of

length 16 each, it then compares the tokens from the two streams and outputs the

greater of the two. In the case when the 2 tokens are equal, the kernel outputs the

sum of the tokens. Let us assume that the 2 input streams are interleaved in the

channel (stream 0 occupies channel indices 0, 2, 4 and so on and stream 1 occupies

channel indices 1, 3, 5 and so on). Listing 2.3 shows the equivalent SE assembly and

Figure 2.11 captures the dataflow graph of the kernel. The numbers on the nodes

represent the instruction number in the SE assembly. The red edges represent control

dependencies.
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1 void kernel (int* in_stream , int* out_stream){

2 int i = 0; // loop index

3

4 for (i = 0; i < 32 ; i+=2)

5 {

6 if (in_stream[i] >= in_stream[i+1]) {

7 if (in_stream[i] == in_stream[i+1]) {

8 out_stream[i/2] = in_stream[i] + in_stream[i+1];

9 }

10 else {

11 out_stream[i/2] = in_stream[i];

12 }

13 }

14 else {

15 out_stream[i/2] = in_stream[i+1];

16 }

17 }

18 }

Listing 2.2: C Code for Sample Kernel with Nested Conditional
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1 .text

2 main:

3 # Configure SIGs

4 isig $i0 , 0, 2, 31, 0 #SIG0

5 isig $i1 , 1, 2, 31, 0 #SIG1

6 # read the tokens from the channel

7 rd $r2 , $i0

8 rd $r3 , $i1

9 # branch

10 bge $r2 , $r3 , L1

11 move $r4 , $r3

12 b L2

13 L1: beq $r2 , $r3 , L3

14 move $r4 , $r2

15 b L2

16 L3: add $r4 , $r2 , $r3

17 # Push the result

18 L2: push $r4

Listing 2.3: SE Assembly for Sample Kernel with Nested Conditional

4 5

7 8

10

1113

1614

18

Figure 2.11: Dataflow Graph of the Sample Kernel with Nested Conditional.
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The configuration of the SIGS and RSBs is shown in Table 2.6 and Table 2.8

respectively. Note that in dataflow execution, the unconditional branches (line 12 and

15) do not need to be hosted by any RS. Also, note that the two MOVE instructions

and the ADD instruction that produce the final result ($r4), belong to mutually

exclusive control paths and have the same RS Tag. This is because at the convergence

point of branch paths, the dependent instruction will have to maintain only one tag

dependency (as opposed to having maintain list of all instructions that can produce

its token).

SIG RS Base Stride Length Offset

Num Tag Reg Reg Reg Reg

0 1 0 2 31 0

1 2 1 2 31 0

Table 2.6: Configuration of Stream Index Generators

RSB RS Op Op A Op A Op A Op B Op B Op B Op B Ctrl

Tag Tag rdy Tag valid rdy Tag

STR RSB 0 3 rd 1 ? 0 - 0 - 1 -

STR RSB 1 4 rd 2 ? 0 - 0 - 1 -

ALU0 RSB 5 bge 3 ? 0 4 1 ? 0 -

ALU1 RSB 7 move 4 ? 0 - 0 - 1 5

ALU2 RSB 6 beq 3 ? 0 4 1 ? 0 5

ALU0 RSB 7 move 3 ? 0 - 0 - 1 6

ALU1 RSB 7 add 3 ? 0 4 1 ? 0 6

Table 2.7: Configuration of Stream (s-RSB), Compute (c-RSB) and Memory (m-
RSB) RSBs

Figure 2.12 shows the mapping of the DFG to the RSBs and the state of all the

RSs, SIGs and the TDN during the execution phase. The contents of each of the

RSs and their respective operand buffers are shown alongside the RS Tag and the
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RSB Ctrl Op Op Ctrl Pred- Context

valid Ctrl rdy -icate

STR RSB 0 0 - 1 - 0

STR RSB 1 0 - 1 - 0

ALU0 RSB 0 - 1 - 0

ALU1 RSB 1 ? 0 0 0

ALU2 RSB 1 ? 0 1 0

ALU0 RSB 1 ? 0 0 0

ALU1 RSB 1 ? 0 1 0

Table 2.8: Configuration of Stream (s-RSB), Compute (c-RSB) and Memory (m-
RSB) RSBs

operation it hosts. The contents are represented as [Op A Tag, Op A], [Op B Tag,

Op B], Context. For simplicity, I have shown only one operand buffer per RS. Note

that the context of an operand buffer is always one higher than its respective RS.

If a RS is waiting on an operand, the corresponding placeholder is represented as

’?’. For RSs hosting instructions that require only a single operand, the placeholder

corresponding to the second operand is represented by ’-’. For each SIG, its index

and context are represented as [index], Context beside the Tag of the SIG.

The activity at each RS is indicated by either W, E, I or S. W denotes the RS is

waiting on one or more operands. E denotes that the RS is firing thus executing the

instruction it hosts. I denotes the RS is ready to fire (execute) but it belongs to the

not-taken branch path and therefore just advances its context without executing. S

denotes the RS is stalled by one or more of its consumers. The ready to fire RSs are

shaded in the figure.

Figure 2.12 demonstrates 2 iterations of the sample kernel that take different

branch paths. In the first iteration, the data token from stream 0 is less than that

of stream 1 and therefore only the MOVE instruction corresponding to line 11 is

executed. The BGE instruction evaluates to false (0) in CLK 2. Once the value of
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the control evaluation is available in CLK 3. There are 2 key operations that take

place

1. The MOVE instruction in RS 0 of ALU 1 which corresponds to instruction 11,

fires because the result from BGE matches its predicate

2. The BEQ instruction in RS 0 of ALU 2 (corresponding to instruction 13) fires

with a special result token “11”

Typically, since the BEQ instruction belongs to the not-taken path, it should

have just advanced its context without executing. However, since it is a branch

instruction itself, there are instructions that have the BEQ (instruction# 13) as their

control dependency (instruction# 14 and instruction# 16 in this case.) If the branch

instruction in the not-taken path doesn’t execute. The two dependent instructions

will never receive their control operand corresponding to iteration 0 and can never

advance to iteration 1.

SE uses a special opcode BR SKIP to handle the nested conditionals. BR SKIP

doesn’t take any operands and always evaluates to binary “11”. The control depen-

dent instructions receive “11” as their control operand which is compared against

0-prepended predicate of the dependent instructions. Since “11” is a mismatch for

both predicate 0 and 1 (“00” and “01” after 0-prepending) both the branch paths of

the BEQ instruction will advance their context without executing. This mechanism

is demonstrated in CLK 4.

Note that by CLK 4, the result of BGE for iteration 1 is already available and

since it evaluates to true (1), the MOVE corresponding to instruction# 11 in RS 0 of

ALU 1 must also advance its context (in state I) in CLK 4 as shown in Figure 2.12.

For iteration 1, the BEQ is in the branch-taken path and evaluates to true eventually

allowing the ADD operation to fire in CLK 5.
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Figure 2.12: DFG Mapping and RS/SIG/TDN State During Execution

2.6 Executing Nested Loops

One of the key characteristics of stream kernels is that loops have known trip

counts and therefore allows several compile-time optimizations. The SE compiler
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takes advantage of the available trip counts to merge nested loops into a single loop

using a transformation known as Loop merging. The merged loop has a trip count

which is equal to the number of times the instructions in the innermost loop are

invoked (product of all the trip counts in the nesting). For instance, if a kernel has a

3-level nested loop, each level with a trip count of 5, Loop merging results in a single

loop with a trip count of 125.

The execution semantics post-Loop merging is intuitive when only the innermost

loop has instructions and the outer loops are merely used to index the correct memory

addresses. However, if there are instructions at each level to be executed, SE uses

predication to conditionally execute the instructions at each level.

The Loop merging transformation is demonstrated by the following example. List-

ing 2.4 shows the C-code for the iDCT kernel from the StreamIt benchmark suite.

The iDCT kernel has a 2-level nested loop each with a trip count of 8. Loop merging

would result in a single loop with a trip count of 64 (8× 8). However, note that the

instruction in line 8, where the temp sum is initialized to 0, needs to be executed

every 8th iteration of the new merged loop. Also, the indexing of the coefficient array

and the input stream array needs to be changed.
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1 void kernel (float* in_stream , float* coeff , int* spm_start){

2 float temp_sum;

3 int i = 0; // outer loop index

4 int j = 0; // inner loop index

5

6 for (i = 0; i < 8 ; i++) // begin outer loop

7 {

8 temp_sum = 0; // initialize the accumulate reg

9 for (j = 0; j < 8; j++) // begin inner loop

10 {

11 temp_sum += coeff[i*8 + j] * in_stream[j] // MAC

operation

12 }

13 out_stream[i] = temp_sum;

14 }

15 }

Listing 2.4: C Code for iDCT 8X8 Kernel

Listing 2.5 shows the C-code for the same iDCT kernel after loop merging. The

following key transformations can be observed

• Single loop with a trip count of 64.

• The coefficient array is now indexed from 0 through 63 using only single index.

• The input stream array is indexed iteratively from 0 through 7 using the loop

index.

• On iterations 0 and every multiple of 8, the running sum is discarded by ini-

tializing the temp sum to the product of the input and the coefficient. For all

other iterations the MAC operation is performed.

• The output stream is written to, conditionally.
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1 void kernel (float* in_stream , float* coeff , int* spm_start){

2 float temp_sum;

3 int i = 0; // merged loop index

4 for (i = 0; i < 64 ; i++) // begin merged loop

5 {

6 if (i%8 == 0) {

7 temp_sum = coeff[i] * in_stream[i%8];

8 }

9 else {

10 temp_sum += coeff[i] * in_stream[i%8];

11 }

12 if (i%8 == 7) {

13 out_stream[i>>3] = temp_sum;

14 }

15 }

16 }

Listing 2.5: C Code for iDCT 8X8 Kernel After Loop merging

Listing 2.6 shows the SE assembly code corresponding to Listing 2.5. Note that the

push instruction is implemented by the push unit which takes care of the conditional

execution using the push table. Figure 2.13 shows the DFG of the transformed kernel.

The number on the nodes represent the instruction corresponding to line numbers in

Listing 2.6. The red edges represent control dependencies.
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1 .text

2 main:

3 # Configure SIGs

4 isig $i0 , 0, 1, 63, 0 #SIG0

5 # load the coefficient from SPM

6 ld $r2 , $i0

7 # read the appropriate token from the channel

8 andi $r3 , $i0 , 7

9 rd $r4 , $r3

10 # decide whether to initialize accumulator reg

11 bnez $r3 , L1

12 mult $r5 , $r2 , $r4

13 b L2

14 L1: madd $r5 , $r2 , $r4

15 # Push the result

16 L2: push $r5

Listing 2.6: SE Assembly for iDCT Kernel

4

6

8

911

12

15

14

Figure 2.13: Dataflow Graph of the iDCT Kernel After Loop Merging.

During configuration phase, the registers corresponding to base, stride, length and

offset of the SIGs are set by the isig instruction. The format of the isig instruction

is isig $dst, 〈base value〉, 〈stride value〉, 〈length value〉, 〈offset value〉. One SIG is
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used for the iDCT kernel. Table 2.9 list the configuration of the SIGS for the iDCT

kernel example. The RSBs are also configured during the configuration phase. The

RS tags are assigned and the data and control dependencies are encoded in the Op A

Tag, Op B Tag and Ctrl Tag fields. The configurations of the stream, compute and

memory RSBs are shown in Table 2.10 and Table 2.11. Note that the unconditional

branch instruction (line 13 in Listing 2.6) doesn’t need to be hosted by any RS in the

dataflow execution model.

SIG RS Base Stride Length Offset

Num Tag Reg Reg Reg Reg

0 1 0 1 63 0

Table 2.9: Configuration of Stream Index Generators

RSB RS Op Op A Op A Op A Op B Op B Op B Op B Ctrl

Tag Tag rdy Tag valid rdy Tag

LD RSB 0 2 ld 1 ? 0 - 0 - 1 -

ALU0 RSB 0 3 andi 1 ? 0 - 0 7 1 -

STR RSB 0 4 rd 3 ? 0 - 0 - 1 -

ALU1 RSB 5 bnez 3 ? 0 - 0 - 1 -

MUL0 RSB 6 madd 2 ? 0 4 1 ? 0 5

MUL0 RSB 6 mult 2 ? 0 4 1 ? 0 5

Table 2.10: Configuration of Stream (s-RSB), Compute (c-RSB) and Memory (m-
RSB) RSBs

The execution of this kernel now follows the semantics of the regular predicated

dataflow. Figure 2.14 shows the execution and the state of RSBs, SIGS and the TDN

for the first 4 clock cycles. The representation used is the same as in response to

question 1.
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Ctrl Op Op Ctrl Pred- Context

valid Ctrl rdy -icate

0 - 1 - 0

0 - 1 - 0

0 - 1 - 0

0 - 1 - 0

1 ? 0 1 0

1 ? 0 0 0

Table 2.11: Configuration of Stream (s-RSB), Compute (c-RSB) and Memory (m-
RSB) RSBs

Note: In cases where the trip count is unknown or the loop is based on runtime

values (e.g. while loop), Loop merging cannot be used to transform the original kernel.

I propose to used predicated SIGs along with conditionals to handle such loops.
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Figure 2.14: DFG Mapping and RS/SIG/TDN State During Execution of the iDCT
Kernel

53



2.7 Evaluation

This section presents the evaluation of the StreamEngine. The impact of instruc-

tion locking is evaluated by comparing the energy expended in instruction delivery

by SE with that of embedded RISC cores. The overall impact of the CDE model

and instruction locking on the energy-efficiency is evalauted by comparing the total

energy spent and energy-efficiency (in GFLOPS/W) across a set of stream kernel

benchmarks. Next, the impact (if any) of transforming control dependencies to data

dependencies is evaluated. Finally the performance scaling and VLSI implementation

of SE are discussed.

2.7.1 Experimental Set-up

Benchmark Description

LPF 128-tap Low pass filter

MVD Motion vector decode

Autocor Produces an autocorrelation series of length 1 for a series

of vectors of length 32

FFT Single stage of a 256-point single precision floating point

Fast Fourier Transform

DCT Single stream of a 8 x 8 2D Discrete Cosine Transform

RGB2YUV RGB to YUV conversion algorithm used in MPEG

CRC32 Cyclic Redundancy Check using 32-bit CRC-32 used in

IEEE 802.3

Table 2.12: Benchmarks Representing Stream Kernels

.
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Table 2.12 lists the stream kernel benchmarks that were utilized for the evaluation.

All the benchmarks belong to the StreamIt suite except for CRC32. CRC32 was

included as it is a stateful kernel. A cycle-accurate model was constructed in SystemC

for the performance characterization of the StreamWorks architecture. The power

consumption characteristics of SE were obtained by generating the VLSI layout of the

design. A register-transfer level (RTL) VHDL description of the SE was synthesized

in the TSMC 45nm technology for 500 MHz using Synopsys Design Compiler and

the layout was obtained using Cadence Encounter. The power characterization of

each of the SE components was done by performing a VCD-based power analysis

using Synopsys Primetime PX. This power characterization was used in conjunction

with average component occupancies obtained from the cycle-accurate simulator to

estimate the SE power consumption. The configuration of the synthesized SE is

shown in Table 2.13. The SE has 48 RS, 3 ALUs, 2 MULS and 4 SIGS. Each RS has

5 operand buffers and each of the ALUs and MULs has a 4-stage pipeline. The SE

also includes a 2 kB SPM and a 2 kB channel for input streams.

The SystemC model takes as input the SE assembly for individual stream ker-

nels. We utilize the StreamIt compiler that has been enhanced for generating multi-

threaded C code for heterogeneous architectures to compile the StreamIt specification

of the benchmarks. The SE assembly is generated manually from the C code. In other

words, all the system-level optimizations are automated through the compiler and no

hand optimizations are used for translating C code to assembly.

The embedded RISC cores utilized as the baselines for our comparative studies

are the LeonHabnic and Gaisler (2007) and the ARM Cortex A-15.

The Leon RISC core has a SPARC V8 compliant 32-bit integer unit and is available

as open source from the European Space Agency. It comes with GNU tool chain and

a Bare-C cross compiler (collectively called as the GRLIB toolchain). The core was
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Configuration

Bitwidth 32

Input Channel ports 2

Input Channel capacity 2kB

SPM capacity 2kB

SIGs 4

ALUs 3

Multipliers 2

ALU/Multiplier pipeline depth 4

Stream RSBs 2

Compute RSBs 5

LD/ST RSBs 2

RS per ALU RSB 8

RS per MUL RSB 4

RS per Stream RSB 4

RS per LD/ST RSB 4

Operand buffers per RS 5

Table 2.13: StreamEngine Configuration
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synthesized in the TSMC 45nm technology with two different configurations - one

with an instruction cache and the other with an instruction local store (SPM).

For SE and LEON, the register-transfer level (RTL) VHDL description of the

processors were synthesized in the TSMC 45nm technology for 500 MHz and 200 MHz

respectively. We designed the RTL for SE whereas the RTL for LEON is available

as open source. Synopsys Design Compiler was used for the synthesis to obtain the

gate-level netlist. This netlist was then used to obtain the layout using Cadence

Encounter. The power characterization was done by performing a VCD-based power

analysis using Synopsys Primetime PX. As the LEON comes with the entire toolchain

including the compiler, I was able to compile the benchmarks for LEON and directly

run them on the gate-level netlist using Cadence NCSim. The switching activity was

dumped into a VCD file and Primetime PX was used for the power analysis.

In case of SE, since I do not have the full fledged compiler, I could not run the

benchmarks directly on the gate-level netlist of the SE. I characterized the netlists for

different components with various testbench workloads again using Cadence NCSim

for netlist simulation and Primetime PX for power analysis. I built a cycle-accurate

SystemC simulator of the SE to obtain the average component occupancies while

running the kernel benchmarks. I used the power characterization of the netlist in

conjunction with the component utilizations to obtain the power characterization for

SE.

The power characterization methodology is is shown in Figure 2.15.

The configuration of the Leon core with instruction cache is shown in Table 2.14.

The StreamIt compiler was again used to generate C code which is then compiled for

Leon using the supporting tool chain. The GRLIB tool chain enabled us to perform

VCD based power analysis using gate-level simulations of benchmark workloads to

obtain the power consumption.
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Figure 2.15: Power Characterization Methodology for SE and LEON

Since the ARM core is not open source and neither is the netlist made available,

the ARM Cortex A-15 core was modeled using the gem5 simulator Binkert et al.

(2011). The arm detailed CPU in gem5 models a modern OoO ARM v7 architecture

and can be configured to Cortex A-15 using appropriate parameters. Table 2.15 lists

the configuration of the baseline ARM Cortex-A 15 used for the evaluation.

The major differences between the modeled baseline and commercial ARM Cortex

are the size of the L1 caches, the technology node and the operating frequency. For a

fair comparison between the ARM core and SE, minimal I-cache (1 kB) was used for

ARM that could accommodate the entire stream kernel with only compulsory misses

(commercial ARM Cortex A-15 has 32kB I-cache). Also, the D-cache used for ARM

was 4 kB (equivalent to the sum of capacities of the SPM and input channel on the

SE) as opposed to 32 kB D-cache in the commercial version. The working data set

for ARM was restricted to 4 kB to eliminate any performance hits due to capacity
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misses. Thus, without sacrificing any performance, the ARM core was evaluated for

a low power configuration. While the commercial ARM is at 32nm operating at 1.5

GHz, power and area characterization was performed for 45nm at 500 MHz (same as

SE). McPAT Li et al. (2009) was used for power and area characterizations of the

ARM core. The stream kernel benchmarks were also SIMDized3 to utilize the NEON

SIMD unit in Cortex A-15. Evaluation with and without SIMDization is presented.

The CodeSourcery Graphics (2009) ARM GNU/Linux tool chain was used to cross-

compile the kernel benchmarks for the ARM core.

3CRC32 and MVD were not SIMDized due to inter-iteration dependencies and conditional exe-

cution respectively.

Configuration

Integer ALUs 1

Integer MUL/DIV Unit 1

Branch Predictor 0

LD/ST Unit 2

Floating-Point Units 0

Integer pipeline depth 7

Integer Registers 32

L1 I-cache 1 kB

L1 D-cache 4 kB

L1 Associativity 4

Cacheline size 32

Table 2.14: SPARC V8-based LEON Configuration
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Configuration

Integer ALUs 2

Integer MUL/DIV Unit 1

Branch Unit 1

LD/ST Unit 2

Floating-Point Units 2

Branch Predictor Tournament

BTB entries 256

Integer pipeline depth 15

Integer Registers 128

Single-precision FP Regs 32

Double-precision FP Regs 16

Issue Width 8

L1 I-cache 1 kB

L1 D-cache 4 kB

L1 Associativity 2

Cacheline size 64

Table 2.15: ARM Cortex A-15 Configuration
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2.7.2 Instruction Delivery Energy Savings

This section evaluates the impact of fine-grain instruction reuse enabled by in-

struction locking by comparing the energy expended in instruction delivery for SE

against that of LEON and ARM Cortex A-15.
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Figure 2.16: Instruction Delivery Energy Comparison with Cache-based and SPM-
based LEON

Figure 2.16 demonstrates the energy savings obtained due to instruction locking

by the SE when compared to LEON cores with instruction cache and instruction SPM.

The different components that were included towards the instruction delivery energy

in the cache-based LEON were the cache array, the cache tags, the cache controller

and the pipeline registers. In case of SPM-based LEON, only the scratchpad and

pipeline registers were included. The RSBs are the instruction store for SE and hence

all the RSBs account towards the total instruction delivery energy. As Figure 2.16
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suggests, the SPM-based LEON core, because of its software managed instruction

memory, requires lesser energy than the cache-based LEON core. The SE gives upto

95× energy savings with an average of 58.5× and 41.9× compared to cache-based

and SPM-based LEON cores respectively.
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Figure 2.17: Instruction Delivery Energy Comparison with ARM and ARM NEON

Figure 2.17 presents the energy expended in instruction delivery when executing

kernel benchmarks in SE and the ARM cores without and with NEON SIMD exten-

sions. The different components that were accounted for towards the delivery energy

in ARM were instruction cache, BTB, branch predictor, instruction buffer and in-

struction decoder. Figure 2.17 demonstrates that instruction locking achieves upto

93% reduction in delivery energy when compared to ARM cores.

It is evident that preserving the instruction locality at the functional units thereby

bypassing the fetch and decode stages results in these tremendous energy savings.
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2.7.3 Impact of CDE on IPC

Context-aware Dataflow Execution exploits the inherent DLP across stream ker-

nel iterations by overlapping the execution of successive iterations; thus, essentially

converting DLP to ILP. The respective IPC numbers were utilized to compare the in-

herent ILP of a stream kernel with that acheived by SE using CDE. The inherent ILP

was obtained by executing one iteration of the kernel to completion before initiating

the next iteration.
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Figure 2.18: Impact of CDE on IPC

Figure 2.18 plots stream and compute IPC for the kernel benchmarks due to

the inherent ILP and extracted (SE) ILP. The instructions hosted by the Stream

and Load/Store RSBs were accounted for by the stream IPC, and the compute IPC

includes instructions on the compute RSBs alone. The ISIG instruction was not
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included for any of the IPC calculations. As it is evident from the figure, CDE

coupled with instruction locking efficiently exploits DLP to boost the IPC for all

kernels. As expected, there is no significant boost in the case of CRC32 on account

of its statefulness. For FFT and DCT, the SE achieves a compute IPC of 5 which is

equal to the number of execution units on the SE; thus, achieving 100% utilization.

The average increase in stream and compute IPC is 2.44 and 2.45 respectively with a

standard deviation of 0.92 and 0.94 respectively. It is important to note that unlike

VLIW architectures, this boost in parallelism is achieved purely by the CDE model

without any explicit unrolling.

2.7.4 SE Energy-efficiency

This section evaluates the overall energy savings and efficiency at the core level.
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Figure 2.19: Total Energy per Kernel of the LEON RISC Core Normalized to that
of a SE
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Figure 2.20: Energy-efficiency of SE and SPM-based LEON Normalized to that of
Cache-based LEON

Figure 2.19 presents the total energy of the LEON cores normalized to that of an

SE. As demonstrated by the figure, with the exception of the stateful kernel CRC32,

the SE expends between two to three orders of magnitude less energy than the cache-

based and SPM-based LEON cores. In the case of CRC32, the number of kernel

invocations in flight is limited by the inter-iteration dependencies and therefore the

SE is unable to fully utilize the available functional units. However, even for CRC32

the SE achieves more than an order of magnitude energy savings. The SE expends,

on an average, 293.12 and 240.42 times less energy when compared to cache-based

and SPM-based LEON respectively.

Figure 2.20 depicts the energy-efficiency in GFLOPS/W (GOPS/W for integer

kernel benchmarks CRC32 and MVD) of the SPM-based LEON core and SE normal-

ized to that of a cache-based LEON core. Memory operations are not included in the

GFLOPS calculation. As demonstrated by the figure, with the exception of DCT,

the SE is one to two orders of magnitude more energy-efficient than the cache-based
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LEON core. In case of DCT, the SE is more than three orders of magnitude more

energy-efficient than LEON. On an average, the SE is 243 times more energy-efficient

than LEON.

Figure 2.21 presents the total energy of the ARM cores normalized to that of

an SE. As demonstrated by the figure, SE expends between one to two orders of

magnitude less energy than the ARM cores.

Figure 2.22 depicts the energy-efficiency of the ARM NEON core and SE normal-

ized to that os ARM. The SE delivers. on an average, 62X and 40X more GFLOPS/W

in comparison with ARM without and with SIMD extensions respectively.

It is worth mentioning that even with a low power implementation of SPARC V8

in LEON which consumes power in the range of 15 mW, an ARM core consuming 0̃.5

W is much more energy-efficient than LEON due to the better performance resulting

from its out-of-order execution logic.
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Figure 2.21: Total Energy per Kernel of the ARM Cortex A-15 Core Normalized to
that of a SE
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2.7.5 Impact of Transforming Control-flow to Dataflow

This section evaluates the impact of transforming control dependency to data

dependency via the predicate bit in the RS. As discussed in Section 2.3.2, by control

dependency we refer to the branches encountered at for and while loop boundaries

and any if-then-else constructs.

Figure 2.23 shows the different types of stalls for a range of SE configurations

across the kernel benchmarks. The Y-axis plots the average stalls in clock cycles per

RS in the SE. The operand stall is the number of clock cycles between the firing of

an instruction and the availability of all its data operands corresponding to the next

iteration. The control stall is the number of clock cycles between the firing and the

availability of control information that decides whether the instruction needs to be

executed in the next iteration. It should be noted that operand and control stalls are
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Figure 2.23: Average Stalls per Instruction with Predicate in a SE

exclusive, and can be overlapped in time. The resource stall is the number of clock

cycles between consecutive firings. The resource stall can be broken down as the sum

of the greater of operand and control stalls and stall due to resource arbitration. The

X-axis lists different configurations of the SE for all the kernel benchmarks.

The results demonstrate that our transformation is an efficient way to preserve

the dataflow semantics in kernels with control instructions without incurring any

penalty in performance. With the exception of DCT, MVD ,and CRC the control

stall is always less than the operand stall which implies that the control evaluation

is overlapped and hidden by the operand evaluation. In the case of DCT, MVD and

CRC, we notice that the instruction does not fire immediately upon the availability of

its execution path which implies that the execution is limited by resource availability

and not by the control availability. The FFT and RGB2YUV kernels do not have

any branch instructions, and therefore are not included in the figure.
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2.7.6 Performance Scaling with SE Functional Units
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Figure 2.24: SE Performance Scaling: Stream and Compute Instructions per Cycle

We evaluate the scalability of a single SE by examining the performance of each

of the kernel benchmarks as a function of the compute resources available in the SE.

Figure 2.24 plots the stream and compute instructions per cycle (IPC) achieved for all

the kernel benchmarks. The stream operations that read from the input channel and

write in consumer SE channel (RD, RMV and PUSH, discussed in detail in Chapter 3)

account towards the stream IPC. All other operations account towards the compute

IPC. The ISIG operations were excluded for IPC calculation. Since each multiplier is

associated with a single accumulator, the kernels that use accumulator do not run the

same code for 1-MUL and 2-MUL configurations. Autocor, DCT and LPF are the

kernels that can operate on data from successive iterations of the actor in the presence

of two accumulators but stay limited to a single iteration with one multiplier. The
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results demonstrate that the SE scales very well for all the benchmarks other than

Autocor. The 3-ALU and 2-MUL configuration seems to be the sweet spot. In the

case of Autocor, the scaling is limited due to the number of input channel ports as

observed from the IPC of stream instructions. Autocor consumes two data tokens

from the input channel per iteration. In the case of one multiplier, when the kernel is

operating on a single iteration, it continuously receives input tokens and thus each of

the functional units have new operands every cycle. However, when it operates across

2 iterations with two multipliers (or greater), the computation on each iteration gets

interleaved with the another because only two data tokens can be available from the

channel in one cycle. Hence, the performance scaling is limited.

2.7.7 VLSI Implementation, Area and Power

We created a VLSI implementation of the SE in TSMC 45 nm technology. The

area of the SE was 1 mm2 and the average power consumption was 40 mW at 500

MHz. Figure 2.25 presents the layout and percentage area of the StreamEngine as

obtained from Cadence Encounter.

Figure 2.26 depicts the percentage power consumption of the various units within

the SE. As the figure suggests, maximum power is spent in useful computation in the

datapath. Note that the reservation stations contribute to the datapath as they host

operands in addition to instructions thus playing the role of a Register file.

2.7.8 Comparison with ELM

The ELM processor operates at 200 MHz in TSMC 130nm technology. Compared

to LEON3 with an instruction cache, ELM reduces the cost of supplying instructions

by 49× and acheives an energy-efficiency that is 23× greater than LEON3 Balfour

et al. (2008).
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Using LEON3 with instruction cache as the common baseline, I attempt to com-

pare the energy-efficiency of StreamEngine and ELM. I would like to highlight that

the energy saving numbers reported are an average across a number of kernel bench-

marks. Among the benchmarks used for the evaluation of ELM and SE, three are

common benchmarks (crc, dct and rgb2yuv). Also, note that there can be differences

in the implementation of the same benchmark as they are not derived from a common

benchmark suite. Based on the respective benchmarks, StreamEngine achieves 20%

more energy savings in instruction delivery and expends 10× less total energy than

the ELM processor.
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Chapter 3

THE MULTI-CORE DATAPLANE

3.1 Introduction

In this Chapter, we introduce StreamWorks, a multi-core embedded co-processor

for streaming applications. StreamWorks utilizes StreamEngine (SE) proposed in

Chapter 2 as processing elements to realize a scalable multi-core stream architecture.

StreamWorks is aimed at high performance dataplane processing in System-on-Chip

based heterogeneous multiprocessor architectures.

The top-level view of the StreamWorks architecture is shown in Figure 3.1. Mul-

tiple SEs and scratch-pad memory (SPM) pairs are grouped into a StreamCluster

(or SC). Each intra-cluster SPM is visible within the address range of every SE that

is present within the cluster. An SE can perform inter-SE communication through

either a high bandwidth local communication fabric or through the SPM.

We also introduce the channel and push unit pair that constitute the communica-

tion unit of the SE for inter-SE communication. The input channel and push unit pair

implements specialized stream input/output operations and supports FIFO virtual-

ization, a technique that is used for high fan-in/fan-out communication patterns. A

credit-based back pressure scheme is used for inter-SE communication, which extends

the dataflow semantics across SEs. The channel and push unit pairs are connected

to the local communication fabric, and therefore the fabric is the preferred means

for stream communication. Several SC together along with the a Network-on-Chip

(NoC) fabric define the StreamWorks architecture.
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Figure 3.1: StreamWorks Architecture

In Section 3.2, previous work on multi-core data plane co-processors aimed at

streaming applications is presented. Section 3.3 presents the FIFO virtualization

scheme and its implementation that enables SEs to efficiently communicate across

stream kernel boundaries. Finally, in Section 3.4 the evaluation of StreamWorks is

presented.

3.2 Related Work

Stream processor architectures have gained considerable attention over the last

decade. The Imagine stream processor Khailany et al. (2001); Kapasi et al. (2002)

can be regarded as one of the forerunners in programmable streaming architectures. It
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builds upon several ideas including vector processors, VLIW media processors, DSPs

and sub-word SIMD parallel instruction sets. The main insight of Imagine is that

the execution flow is effectively deterministic and can be managed by software. Only

memory accesses are non-deterministic, and therefore memory accesses are decoupled.

One of the architectural innovations that Imagine introduces is the enormous data

bandwidth supported by a streaming memory system local to the co-processor and a

large amount of on-chip intermediate storage for streams in the form of a wide Stream

Register File (SRF) Rixner et al. (2000). Multiple functional units are grouped in

an arithmetic cluster and 8 such arithmetic clusters form the Imagine compute sub-

system. Each of the arithmetic clusters executes the same VLIW schedule. This

can be regarded as 8-wide SIMD execution where each instruction is a VLIW. Thus

each cluster exploits the ILP exposed by the compiler that forms the VLIW schedule

and the clusters together exploit the DLP across streams. Unlike StreamWorks,

Imagine cannot exploit either Task or Thread level parallelism since all the clusters

execute the same kernel and a VLIW schedule is executed until completion. Imagine

also requires a complicated compiler that can generate an efficient VLIW schedule

and the communication needs to be scheduled by the programmer which is a huge

programming overhead, the authors propose a new programming language (StreamC)

in order to capture the communication pattern. StreamWorks provides hardware

support for inter-kernel communication without the programmer having to schedule

the communication.

MerrimacDally et al. (2003), the successor of Imagine, is aimed at high-performance

scientific applications. The main idea in Merrimac, similar to GPUs, is to hide the

memory latencies using useful computations. This is more suited for applications with

high computation to memory bandwidth ratios. The core of Merrimac is a single-chip

stream processor which is architecturally similar to Imagine. This processor chip along
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with 16 DRAM chips form a single Merrimac node. Merrimac employs a high-radix

interconnection network to connect 16 such nodes to form the entire co-processor.

One can easily draw parallels between Merrimac and present day GPUs. Again, only

instruction and data-level parallelism are exploited by Merrimac at the expense of a

complex compiler and programming overhead. In contrast to StreamWorks, all the

communication in Merrimac is scheduled in software by the programmer. Also, the

static scheduling of VLIW instructions cannot exploit run-time opportunities.

Adres Mei et al. (2003) and TRIPS Sankaralingam et al. (2003b); Burger et al.

(2004) provide a 2-D array of functional units in the processor data path that can be

utilized to execute the compute intensive loops of an application. Morphosys Singh

et al. (2000) integrates an 2-D array of functional units with a RISC core in a SoC

configuration. The SEs in the StreamWorks architecture are much coarser in granu-

larity than individual functional units in Adres, TRIPS and Morphosys. An array of

SE executes independent threads while an array of functional unit in Adres, TRIPS

and Morphosys typically execute a single thread. Further, both Adres and TRIPS

do implement a fetch/decode/execute pipeline while in Morphosys the RISC core

broadcasts the instructions to the functional units. In contrast, StreamWorks exten-

sively utilizes instruction reuse and minimizes power consumption due to instruction

movement.

Soda Lin et al. (2006), Ardbeg Woh et al. (2008) and AnySPWoh et al. (2009) sup-

port wide-issue instructions (including SIMD) to exploit ILP and DLP that is present

in computation intensive loops of signal processing applications. While Soda and

Ardbeg mainly targets software defined radio, AnySP can be regarded as a domain-

specific programmable co-processor for signal processing. Among other architectural

support for signal processing, one of the key features of AnySP is the introduction

of flexible functional units. The proposed flexible functional units allow reconfigu-
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ration and effectively turn two SIMD lanes into a 2-deep execution pipeline; thus,

exploiting pipeline parallelism for workloads that under-utilize the SIMD width. The

major drawback of these architectures is that they support only 16-bit datapaths.

The main insight of using a 16-bit datapath is to eliminate the overheads associated

with data alignment for SIMD execution. However, they still have the overhead of

moving data from scalar to vector register files and vice-versa. StreamWorks, on the

other hand, supports 32-bit integers and single-precision floating point datapaths and

doesn’t incur any of the overheads associated with packing/unpacking data for DLP

extraction.

The *T architecture Nikhil et al. (1992) addresses latency and synchronization is-

sues with remote loads. Fine grained multi-threading, and memory status bits along

with synchronization co-processor are presented as solutions for the two problems re-

spectively. Synchronization between kernels is implemented in StreamWorks through

a credit based scheme as will be described in detail in Section 3.3 whereas *T only

implements a blocking read. Further StreamWorks does not require a dedicated/cen-

tralized synchronization co-processor.

Raw Taylor et al. (2002) is a statically scheduled tiled multi-core architecture

that includes specialized instructions that directly write to the buffers of the router.

The push unit that is discussed in Section 3.3.2 in the StreamWorks architecture also

implements instructions that write to the local interconnection network of the cluster.

The StreamWorks push unit provides additional hardware support for credit based

communication and hardware support for synchronization.

AsAP Yu et al. (2008) and Intel communication processor Chen et al. (2004)

include a 2-dimensional (2D) array of simple processing elements (PEs) along with

instruction memory for data plane processing. The SEs in StreamWorks do not

utilize a separate instruction memory, and use RSB with instruction reuse for kernel
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execution. Also, contrary to the dataflow model in SE, each PE in AsAP implements

a simple pipeline that can only exploit limited ILP.

In recent years a number of embedded processor architectures have been proposed

in industry Johnson and Kunze (2003); Baines and Pulley (2004); Pham et al. (2006)

that are aimed at multimedia and communication applications both of which demon-

strate streaming characteristics. The commercial embedded processor architectures

primarily integrate either an array of RISC Johnson and Kunze (2003) (with SIMD

support in Cell BE Pham et al. (2006)) or VLIW Baines and Pulley (2004) cores

for high performance data plane processing. Elm Dally et al. (2008) from Stanford

utilizes instruction registers and operand forwarding in the fetch-decode-execution

pipeline to minimize the power consumption due to instruction and data movement.

Elm requires the application to be written in Elk which exposes the parallelisms to

the compiler. All of the above mentioned architectures primarily address ILP and

DLP but do not provide any architectural support for exploiting TLP in streaming

workloads which is offered by the StreamWorks architecture.

3.3 FIFO Virtualization

The inter-core communication mechanism is a key factor that determines the

performance of any multi-core architecture. In the context of streaming architectures,

inter-core communication becomes crucial for realising the software pipeline to exploit

the task-level parallelism.

Since streaming applications can be best expressed as Synchronous Data Flow

graphs with well-defined communication patterns, the number of tokens produced

and consumed per kernel firing is predetermined. This a priori knowledge enables

StreamWorks to implement hardware FIFOs as bounded memory arrays. However,

stream applications also commonly exhibit high fan-in and fan-out communication
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patterns that require a kernel to have access to multiple input and output FIFOs.

FIFO virtualization enables the mapping of a single hardware FIFO to multiple virtual

FIFOs.

StreamWorks implements FIFO virtualization using the input channel and the

push unit. The input channel and push unit together constitute the inter-SE com-

munication unit of StreamWorks. They support stream-specific FIFO operations and

enable the extension of the dataflow execution model across SEs. The realisation of

FIFO virtualization is discussed in detail in the following sub-sections.

3.3.1 The Input Channel

The input channel is implemented as a memory array that is operated upon by

the stream instructions in the stream RSBs. The stream RSBs host two specialized

instructions, RD mem and RMV mem. Both the instructions perform a read on

a particular address location in the channel that is specified by mem. The RMV

operation is similar to the pop operation for FIFO. The distinction is that while the

pop operation operates upon the head of FIFO. The channel as implemented in SE

architecture is not a FIFO, but rather a memory array. Thus, the RMV operation can

perform a read on any location of the channel. Similar to pop, the RMV instruction

”consumes” the data in the memory location by invalidating its contents. The RD

instruction is identical to the FIFO peek operation. It reads the contents of a channel

memory location without invalidating its contents. Both the instructions on execution

broadcast the contents of the channel location to all other RSBs.

Each location in the channel is extended with a valid bit that is used to determine

whether or not the data in the location has been invalidated by a RMV instruction fol-

lowing a write. Clearly, a write to a location sets the valid bit and a RMV instruction

resets it.
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Field Description

RS tag Tag of instruction producing the data in the producer SE

Iteration low Lower limit of actor iteration for which push instruction is active

Iteration high Upper limit of actor iteration for which push instruction is active

Consumer SE Address of consumer SE

Channel Start Start address of the consumer SE channel where data is written

Channel End Start address of the consumer SE channel where data is written

Stride The stride of the index at which the data is written

Index Current index from channel start address at which data is written

Credit Start address of the consumer SE channel where data is written

Table 3.1: Description of Push Unit Reservation Station Fields

In the stream computation model, the peek and pop instructions follow a regular

pattern across successive iterations of the actor. Therefore, in a vast majority of the

cases it is possible to statically determine the address of the RD and RMV instructions

at compile time. Consequently, many of the read instructions can be executed in

parallel, and the stream RSBs exploit this parallelism.

3.3.2 The Push Unit

The push unit, as the name suggests, implements the FIFO push operation. The

push unit is also composed of tagged RSBs where each RS entry holds a push instruc-

tion. The push instruction implements split/join operations which are quite common

in streaming applications. The split/join operations in the stream computation model

depict regular patterns, and push instructions provide support for them. The struc-

ture of the push unit RSB is different than the other blocks. The various fields of the
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RS tag Iteration Iteration Consumer Channel Channel Stride Index Credit

low high SE start end

16 0 63 1 0 255 1 31 4

16 64 127 2 0 255 1 0 4

16 128 191 3 0 255 1 0 4

16 192 255 4 0 255 1 0 4

Table 3.2: Push Unit Contents for Weighted Round-robin Split E.g.

push unit RSB and their descriptions is given in Table 3.1. The push instructions are

explained with the help of two examples in the following paragraphs.

Actor 0

Actor 1 Actor 2 Actor 3

SPLIT_WRR (64, 64, 64, 64)

Actor 4

Weighted round robin split

Actor 0 Actor 1 Actor 2

Actor 3

JOIN_WRR (32, 32, 32)

Weighted round robin join

Figure 3.2: Weighted Round-robin Split and Join Examples

Figure 3.2 depicts examples of stream programs that include weighted round robin

split and join operations, respectively. In the split operation the output stream from

actor 0 is split across actors 1 through 4 in a weighted round robin manner. The first

64 data items of the stream from actor 0 are sent to actor 1, the next 64 data items to

actor 2 and so on. Correspondingly, in the join operation the first 32 data items are

consumed from actor 0, the next 32 data items from actor 1 and so on. We assume

that the kernels are programmed on SE whose ID is identical to the actor ID. That

is, actor 1 is mapped to SE 1 and so on.

Table 3.2 shows the contents of the push unit RSB along with the multiple push

instructions for the weighted round robin split example. The producer instruction
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RS tag Iter Iter Consumer Channel Channel Stride Index Credit

low high SE start end

Producer 8 0 31 3 0 31 1 0 1

SE 0 8 32 63 3 96 127 1 96 1

Producer 12 0 31 3 32 63 1 32 1

SE 1 12 32 63 3 128 159 1 128 1

Producer 9 0 31 3 64 95 1 64 1

SE 2 9 32 63 3 160 191 1 160 1

Table 3.3: Push Unit Contents at Producer SE for Weighted Round-robin Join
Example

for the various push instructions has RS tag as 16. The first row represents the push

instructions for actor 1 that is mapped to SE 1 (denoted by entry in consumer SE

field). This particular push instruction is valid for iterations 0 to 63 (inclusive of

the limits) of actor 0 as denoted by iteration low and iteration high fields of the

first RS. The push instruction writes its data starting from channel address 0 of the

consumer SE. Index field in the example denotes the current location (31) to which

the push instruction will write. After each execution of the push instruction, index

is incremented by stride (1 in our example). Finally, index wraps around to the start

channel address when its value becomes greater than the end channel address (255 in

the example). The last entry in the RS represents the credit that the particular push

instruction has, and it is utilized to implement a credit based inter SE communication

scheme. The scheme itself is discussed in the following section. The weighted round

robin split operation is performed by 4 push instructions in the RSB shown in Table

3.2. Notice that the four instructions are valid for non-overlapping iterations of actor

0 and the target SE are also different for each instruction.

Table 3.3 depicts the contents of the weighted round robin join example shown

on the right hand side of Figure 3.2. As the join operation is performed by the three
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Field Description

Start address Start address of channel

End address End address of channel

RMV and RD count Number of RMV or RD instructions performed

Maximum count Total number of RMV or RD instructions to be performed for sending the credit back

Producer SE Address of producer SE

RS tag RS tag of push instruction in producer SE

Table 3.4: Description of Credit Reservation Station Block

actors mapped on distinct SEs, the table gives the RS entries for push units on each

SE (as denoted by the first column). The push instructions in SE 0 (which hosts

actor 0) write to the channel of SE 3 (actor 3) at addresses 0 to 31 and 96 to 127.

Similarly SEs 1 and 2 write at address ranges (32 to 63, 128 to 159) and (64 to 95,

160 to 191), respectively. Notice that the total size of the FIFO as virtualized on the

SE 3 channel is 192, and each actor writes at two distinct ranges within the 0 to 191

address space. The push unit along with the channel is effectively able to virtualize

multiple software FIFOs belonging to the streaming application on limited hardware

space.

3.3.3 Credit-based Back Pressure

The push unit also implements a credit-based push back scheme for inter-SE

streaming communication. The credit based schemes effectively extends the dataflow

execution model across multiple SEs. Each push instruction in the push unit RSB is

initialized with a given amount of credits. Once the push instruction index rolls over

from iteration high to iteration low, the credit is decremented by one. In other words

the credit is not decremented for each execution of the push instruction. Rather, it is

decremented after the index has covered the entire range once. The coarse granularity

of credit deduction reduces the inter-SE credit communication bandwidth. Further,
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it also enables the various actors to execute in largely asynchronous manner, and

effectively limits the impact of isolated instruction stalls and stream data bursts.

The push RS stalls the push instruction once credit reaches zero. It also sends a

signal to the dataflow monitor to stall the instruction that is the producer instruction

for the push RS.

The input channel unit for the consumer SE is responsible for sending a credit

back once the data has been consumed at the channel. The channel also maintains a

RSB whose contents mirror those at the push unit. Table 3.4 describes the fields in

the channel credit RSB. The start and end address denote the range of locations that

constitute the credit. The channel RSB keeps count of the successful RMV or RD

instructions that are performed on the locations within the address range. Once the

total number of instructions is equal to the maximum count value, the channel RSB

sends a credit back to the push instruction (specified by the RS tag) in the producer

SE (whose address is also stored).

3.4 Evaluation

In this section, we evaluate the FIFO virtualization implemented by the push unit

and input channel pairs, and its impact on inter-SE communication. We evaluate our

communication mechanism against the IBM Cell BE Pham et al. (2006) architecture

which also utilizes SPMs for the cores in the dataplane (also called synergistic pro-

cessing units or SPU). Each SPU in Cell BE is equipped with a DMA engine to offload

the inter-core communication. We evaluate our communication mechanism against

three of the widely used software managed and DMA based inter-core communication

schemes. Performance optimization on the IBM Cell BE requires that the application

be software pipelined across the SPUs. Hence, the three schemes described below dis-
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cuss the execution of the actor and the corresponding DMA to the consumer actor

with respect to the steady state of the software pipeline. The three schemes are:

• Scheme 1: The kernel or actor executes for a particular iteration, writes the

result to a buffer and then initiates the DMA to the destination core. Thus,

the kernel execution and DMA occur sequentially in the same iteration of the

software pipeline.

• Scheme 2: This scheme also known as double buffering attempts to hide the

DMA overhead associated with a particular transfer. In this scheme twice the

amount of memory required by the previous scheme is allocated for a particular

DMA operation. In the steady state of the pipeline, the kernel execution for

one iteration overlaps with the DMA operation that transfers data produced by

the actor in the previous iteration.

• Scheme 3: This scheme, also known as block processing, attempts to amortize

the DMA overhead by transferring data belonging to several iterations of the

kernel. Thus, in the steady state of the software pipeline the kernel will fire

several times. The DMA will also concurrently transfer data produced by the

multiple executions of the kernel. However, similar to double buffering the DMA

transfers data produced in the previous iteration of the software pipeline.

Scheme 1, 2 and 3 are arranged in ascending order of the buffer usage, and in descend-

ing order of typically observed throughput. We obtained optimized implementations

of the application level benchmarks on the IBM Cell BE architecture (with 1 PowerPC

and 6 SPUs)1 and a cluster of 8 SEs.

1We utilized the Playstation3 platform which allows the programmer to only access 6 SPUs
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3.4.1 Experimental Setup

Table 3.5 lists the stream application benchmarks that were utilized for the evalu-

ation. All the evaluations are based on cycle-accurate simulations using the SystemC

model. In addition to the SE modeled in the previous chapter, routers and the NoC

was also modeled to capture the system-level behavior. Eight SEs were grouped to-

gether to form a StreamCluster. The router modeled was a 9 by 9 router that connects

8 SEs with each other within a single hop. The 9th port is used to connect to the

next hierarchy of router that connects clusters together within 2 hops.

The DMA schemes were implemented on the Playstation 3 (IBM Cell BE archi-

tecture) running Fedora.

Benchmark Description Kernels Split/join

pairs

Autocor Produces an autocor series of length 1 8 1

for a series of vectors of length 32

FFT 256-point single precision floating point 15 0

Fast Fourier Transform

iDCT 8 x 8 2D inverse Discrete Cosine Transform 16 2

FM Frequency modulation 26 2

MPEG MPEG-2 Standard block decoding and 21 4

motion vector decoding

DES Data encryption standard 31 8

Table 3.5: Stream Application Benchmarks
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3.4.2 Results

Figure 3.3 shows the communication buffer requirement of the different DMA

schemes normalized to the buffers utilized for communication in StreamWorks. The

numbers on each of the bars denote the total number of software pipeline stages in the

steady state of the implementation. A large number implies very deep pipelining and

consequently larger design latency. It is evident from the figure that the StreamWorks’

hardware assisted communication scheme enables efficient buffer management due to

the finer granularity in data transfers.

Figure 3.4 depicts the normalized throughput (with base in data tokens produced

per clock cycle) for the various applications when implemented on the Cell BE and

the StreamWorks cluster. The ’D’ on the various bars in the plot denote that the

performance is limited by the DMA overhead of the design. As can be observed from

the figure even with the most aggressive DMA amortization scheme, the StreamWorks

cluster is able to outperform the Cell BE by 24.8X (standard deviation of 17.3)2.

Finally, we evaluate the scaling of StreamWorks architecture across stream application-

level benchmarks. We selected the 3 ALU 2 MUL configuration for each SE from the

results obtained in Section 2.7.6. Each cluster had eight SEs and a single 9-port

router whose free port was attached to the neighboring router. Figure 3.5 shows the

normalized throughput of the applications as they scale with the number of clusters.

It is evident from the results that the performance of the StreamWorks architecture

for the set of benchmark applications scales up quite well as the number of clusters

are increased. In the case of DCT the performance is super-linear as the congestion

in the routers reduces due to introduction of additional clusters.

2The comparison is included only to highlight the benefit of FIFO virtualization. A thorough

comparison with IBM Cell BE micro-architecture requires further studies
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Chapter 4

KERNEL OVERLAY AND SCALABILITY

In this chapter, the scalability of the StreamWorks architecture for large stream-

ing applications is addressed. I first identify the limitations of the current archi-

tecture that impact scalability and then propose architectural support and software

approaches to address the identified limitations. I then re-evaluate the StreamWorks

architecture using the proposed techniques.

4.1 Limitations of the Current Architecture

One of the key factors that contributes towards the energy-efficiency of Stream-

Works is the instruction delivery mechanism. The instruction locking mechanism is

built upon the idea that the instruction fetch energy is amortized across several iter-

ations of the kernel. This model involves fetching instructions from the next level of

memory hierarchy (instruction store) just once and locking them close to functional

units for the lifetime of the stream application. While this certainly holds for stream

kernels that fit into the RSBs in SE, the case of over-sized kernels/applications still

needs to be addressed.

The size of a RSB plays a key role in the energy-efficiency of the SE. The prototype

of the StreamEngine that was synthesized contained only 48 reservation stations. Such

a compact instruction store can handle most of the stream kernels because of their

small code footprint. However, consider the following scenarios where the stream

graphs that are mapped to execute on StreamWorks cannot be contained within the

limited RSBs.
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• The number of instructions in a stream kernel exceeds the total number of RSs

in a SE

• The number of stream kernels in the stream graph exceed the total number of

SEs in StreamWorks

Thus, without an efficient mechanism to support code size greater than the RSBs,

the limited RSB size can restrict the scalability of the StreamWorks architecture.

4.2 Kernel Overlay

In the first of the scenarios described in Section 4.1, preserving the one-time RSB

configuration could restrict the natural mapping of a stream kernel to a SE; larger

kernels must be split across multiple SEs at appropriate boundaries. This can be

achieved by redefining the kernel boundaries in such a way that each kernel now fits

in a SE.

The second scenario, however, is trickier. One or more SEs will have to swap the

kernel that is currently executing on the SE with other kernels that result from the

spilling of the application. This violates the fundamental idea of locking instructions

for the lifetime of an application.

The objective of the kernel overlay proposed in this section is to address the

scalability of the StreamWorks architecture by allowing stream applications of any size

to be mapped to StreamWorks without significantly sacrificing the energy-efficiency.

Kernel overlay for StreamWorks works in two phases, each addressing one of the

two limitations highlighted in Section 4.1. The first phase uses a simple kernel fission

mechanisms to split larger kernels into sub-kernels and map the resulting sub-kernels

to SEs. The fission step ensures that each of the sub-kernels can be treated as an

independent kernel for all mapping and RS allocation purposes. The second phase
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identifies the kernesl that must be swapped and derives a schedule for the kernel

overlay.

4.2.1 Kernel Fission

The kernel fission algorithm is applied to the entire stream graph (data flow graph

of the stream application) and not to each of the over-sized kernels in isolation. The

idea is to maximize RSB occupancy (improve average SE utilization) in each SE and

minimize inter-SE communication (lower network traffic). The native stream graph

that a programmer wants to map onto StreamWorks can have multiple over-sized

kernels that might need fission. Upon fission of each candidate kernel, the ones that

are marginally over-sized will result in two kernels; one of which utilizes very few RSs

and therefore impacts the average SE utilization. Also, given a stream graph with n

nodes, k of which are over-sized and fission candidates, a naive fission algorithm at

kernel level will yield at least n+ 2 ∗ k kernels, which requires n+ 2 ∗ k SEs to map

onto. The utilization problem arising from kernel-level fission can be addressed either

by following a fission-fusion approach or by merging all the native kernels and then

identifying new kernel boundaries.

The fission-fusion approach first splits all the over-sized kernels into two or more

sub-kernels and then searches for candidate sub-kernels that can be fused together

with other sub-kernels or native kernels that did not undergo fission.The kernel-based

fission algorithm is heuristic in nature. The key objective is to identify fission points

such that the intermediate data between the newly created sub-kernels is minimal

subject to the constraint that the instruction count of each type of instructions is

within the reservation station budget of SE.1 Kernel fission essentially introduces

new communication edges in the stream graph. Minimizing the intermediate data

1
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that flows between the newly created sub-kernels attempts to avoid congestion in the

system NoC.

Once the over-sized kernels are split using the fission algorithm, the fission-fusion

approach attempts to fuse kernels to maximize RS occupancy. This can be solved by

formulating an appropriate ILP Che and Chatha (2010); Choi et al. (2009); Kudlur

and Mahlke (2008). However, it has been shown that simple and fast heuristics can

achieve sub-optimal solutions that are close to optimal Che and Chatha (2011a) and

thus can be incorporated in the runtime environment.

4.2.2 Overlay Schedule

In order to address the second limitation, the kernel overlay scheme determines a

schedule for executing the kernels. In other words, it determines the point at which

the SE should be re-configured with a kernel and change its context to the new kernel.

As discussed in Section 4.1, one of the major contributors towards the energy-

efficiency of StreamWorks is the set of RSBs that eliminate instruction delivery over-

heads. The primary assumption is that the kernel instructions are loaded into the

RSBs just once and the streaming nature allows infinite iterations of the kernel.

Thus, there is only a one time instruction delivery (RSB configuration) cost that gets

amortized across multiple kernel iterations. With such an assumption, delays and

instruction movement energy associated with the one-time RSB configuration are ac-

ceptable. In the current implementation of the instruction unit (refer to Figure 2.1),

which follows a serial approach, it can take up to 48 clock cycles (one clock per RS)

to configure a 100% utilized StreamEngine. In general, the instruction unit takes x

clock cycles to configure the SE, where x is the number of instructions in the kernel

mapped to the SE.
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Depending on the amount of DLP in a stream application, the programmer can

choose to either run the same kernel concurrently on multiple SE’s or establish a

software pipeline among all the kernels. I first discuss the case of software pipeline

that exploits the task level parallelism in the application and then address the case

of executing same kernel on multiple SEs.

Consider the case where the total number of kernels (say n) is greater than the

total number of SEs (say m) available. In order to preserve the software pipeline, the

kernel deployment now needs to happen in rounds. Each round involves mapping all

the kernels of the stream graph to SEs for a fixed number of kernel iterations. Note

that since n > m, not all kernels can concurrently be mapped to SEs. However, the

kernel to SE mapping can be determined based on the round. For example, in round

0, the kth kernel will be mapped to SE k%m. In general, in round i, the kth kernel

will be mapped to SE ((k%m) + i × s)%m, where s is the spill n%m of the kernels

on StreamWorks. Note that the kernels in this context could be sub-kernels resulting

from a kernel fission.

Table 4.1 and Table 4.2 demonstrate the mappings of 10 kernels to 4 SEs in Round

0 and Round 1 of deployment respectively, where ki denotes the i
th kernel. The stream

graph has 10 kernels 0 through 9 and the available SEs are only 4 in this example.The

numbers in rows 0, 2, 4 and 6 denote the iteration count in steady state execution of

the kernel mapped to SE 0, SE 1, SE 2 and SE 3 respectively. As the table indicates,

the steady-state in the software pipeline is preserved across round boundaries. Of

course, there will be a prologue (iterations 0, 1 and 2 in this case) and epilogue (not

shown) as with any other pipeline.

In steady-state execution, the throughput is dictated by the kernel with the highest

latency. Going back to our example with n kernels on m SEs, by the time kernel m−1

is ready to execute iteration 0, kernel 0 has already executed m− 1 iterations. This
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Iter 0 1 2 3 0 1 2 3 0 1

SE 0 k0 k0 k0 k0 k4 k4 k4 k4 k8 k8

Iter - 0 1 2 3 0 1 2 3 0

SE 1 - k1 k1 k1 k1 k5 k5 k5 k5 k9

Iter - - 0 1 2 3 0 1 2 3

SE 2 - - k2 k2 k2 k2 k6 k6 k6 k6

Iter - - - 0 1 2 3 0 1 2

SE 3 - - - k3 k3 k3 k3 k7 k7 k7

Table 4.1: Kernel Deployment Round 0

Iter 2 3 4 5 6 7 4 5 6 7

SE 0 k8 k8 k2 k2 k2 k2 k6 k6 k6 k6

Iter 1 2 3 4 5 6 7 4 5 6

SE 1 k9 k9 k9 k3 k3 k3 k3 k7 k7 k7

Iter 4 5 6 7 4 5 6 7 4 5

SE 2 k0 k0 k0 k0 k4 k4 k4 k4 k8 k8

Iter 3 4 5 6 7 4 5 6 7 4

SE 3 k7 k1 k1 k1 k1 k5 k5 k5 k5 k9

Table 4.2: Kernel Deployment Round 1

could be a potential overlay point for SE0, where SE 0 could be reconfigured with

the instructions of the mth kernel.

Note that the configuration overhead is still amortized across multiple iterations.

However, the span of iterations across which the kernel code must be swapped with
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subsequent kernels is now limited by the number of SEs. In other words, each SE

needs to be configured for every m iterations of the stream kernels. Note that m

iterations of the stream kernels translates to the m × c clock cycles, where c is the

number of cycles required to complete one iteration of the slowest kernel that is

currently mapped onto StreamWorks.

The above overlay schedule preserves the software pipeline of the application at

the cost of reduced instruction reuse. When the number of SEs is low, the above

scheme might not be able to achieve significant energy savings from instruction lock-

ing. However, one consequence of fewer SEs is the time to reach steady state execution

in the software pipeline. This can be exploited to improve the instruction reuse. For

StreamWorks configurations with fewer SEs, a different strategy is followed to deter-

mine the overlay point. Going back to our example of n kernels and m SEs, SE 0

now needs to be reconfigured only when the buffer of SE 0 gets full as a result of

accumulating output tokens of the kernel mapped on to SE m− 1. This will signifi-

cantly increase the number of iterations for which the SEs can lock the instructions

in the RSBs. Note that unlike the previous scheme where the reconfiguration point

for each SE is different, all the SEs must be reconfigured before the pipeline with the

new kernels is established. This scheme can clearly be applied only for configurations

with low SE count. This overlay scheme can also be applied to the case when the

programmer chooses to deploy the same kernel on all the SEs.

Table 4.3, Table 4.4 and Table 4.5 show the deployment of the 10 kernels k0

through k9 on the 4 available SEs. Note that for each round there is a prologue and

an epilogue for the software pipeline that was setup among the mapped kernels.
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Iter 0 1 2 3 4 5 6 - - -

SE 0 k0 k0 k0 k0 k0 k0 k0 - - -

Iter - 0 1 2 3 4 5 6 - -

SE 1 - k1 k1 k1 k1 k1 k1 k1 - -

Iter - - 0 1 2 3 4 5 6 -

SE 2 - - k2 k2 k2 k2 k2 k2 k2 -

Iter - - - 0 1 2 3 4 5 6

SE 3 - - - k3 k3 k3 k3 k3 k3 k3

Table 4.3: Kernel Deployment Round 0

Iter 0 1 2 3 4 5 6 - - -

SE 0 k4 k4 k4 k4 k4 k4 k4 - - -

Iter - 0 1 2 3 4 5 6 - -

SE 1 - k5 k5 k5 k5 k5 k5 k5 - -

Iter - - 0 1 2 3 4 5 6 -

SE 2 - - k6 k6 k6 k6 k6 k6 k6 -

Iter - - - 0 1 2 3 4 5 6

SE 3 - - - k7 k7 k7 k7 k7 k7 k7

Table 4.4: Kernel Deployment Round 1

4.2.3 Implementation

Efficient kernel overlay will not only allow mapping large applications, but also en-

able temporal and spatial sharing of the StreamWorks architecture among concurrent

stream applications. As discussed in Section 4.2.2, depending on the configuration
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0 1 2 3 4 5 6 7 8 -

SE 0 k8 k8 k8 k8 k8 k8 k8 k8 k8 -

- 0 1 2 3 4 5 6 7 8

SE 1 - k9 k9 k9 k9 k9 k9 k9 k9 k9

7 8 9 10 11 12 13 14 15 -

SE 2 k0 k0 k0 k0 k0 k0 k0 k0 k0 -

- 7 8 9 10 11 12 13 14 15

SE 3 - k1 k1 k1 k1 k1 k1 k1 k1 k1

Table 4.5: Kernel Deployment Round 2

of StreamWorks that is under consideration, one of the two overlay schemes can be

applied to dynamically change the mapping of kernels on StreamWorks. For the

convenience of the following discussion, lets name the overlay schemes as follows

• Overlay Scheme I (OS-I): Preserve the software pipeline created among

the mapped kernels by replacing only the first mapped kernel.(Illustrated in

Table 4.1 and Table 4.2)

• Overlay Scheme II (OS-II): Continue executing all the mapped kernels until

the buffer of the first kernel gets filled by the results of the last kernel in the

pipeline. (Illustrated in Table 4.3, Table 4.4 and Table 4.5)

It is worth mentioning at this point that the implicit assumption for OS-II is that

the output of all the kernels 0 through m − 2 mapped on the m− SEs is consumed

by a following kernel in the pipeline. However, when OS-II is used for data parallel

execution of the same kernel on all SEs, the condition of the full buffer applies to

each SE.
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Let us now examine the architectural support (if any) required for the overlay

schemes along with their pros and cons. As alluded to in Section 4.2.2, OS-I is

useful when the pipeline established among the mapped kernels is deep and therefore

both the epilogue and prologue penalties cannot be ignored especially when incurred

multiple times across several deployments. Consequently, the number of SEs available

is considerably high that enable such a deep pipeline. Given there are a significant

number of SEs available to establish a deep pipeline, it is highly likely that the number

of spilled kernels is less than the number of SEs.The assumption that the number of

spilled kernels is less than the number of SEs only allows for optimizations. Later,

overlay implementation without any assumptions is discussed that can be applied to

arbitrary number of kernels.. In other words, all the kernels of the stream graph can

be mapped onto 2×m SEs, where m is the total number of SEs which is equivalent to

each SE hosting twice its size of kernel. This can be achieved by introducing what is

known as shadow reservation stations or shadow RS. The idea is to host two kernels

within a SE, only one of them being active at any time.
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Figure 4.1 shows the structure of the enhanced reservation station along with its

corresponding shadow RS. Note that only the configuration fields of the RS need to be

replicated for a shadow RS and therefore, incurs very low area and power overheads.

The active bit indicates which of the 2 RS is currently executing. Within a SE,

the active bit can be considered as the kernel ID. Driving the active to 0, enables

execution of kernel configured into the RS (kernel 0) while driving active to 1 enables

the kernel residing in the shadow RS (kernel 1). Allowing 2 kernel configurations

residing concurrently enables instantaneous context switch. As pointed out above,

the key assumption is that n <= 2×m, where n and m are the number of kernels in

the stream graph and number of available SEs in StreamWorks. This, however, is a

reasonable assumption given we have enough SEs and would prefer to maintain the

steady-state in the pipeline.

The OS-II is a more generic scheme that sacrifices the steady state of the estab-

lished kernel pipeline in order to achieve kernel switch. The idea is to utilize the local

buffer (scratchpad memory) to maximize the number of iterations any kernel can

execute before being switched by another kernel. This amortizes the kernel(context)

switch cost across number of iterations. Clearly, this is a function of the local buffer

size. Conceptually, this is similar to the DMA Scheme 3 discussed in Section 3.4, the

difference being, here the kernel fetch cost is amortized across iterations as opposed to

the DMA cost being amortized in the case of DMA Scheme 3. OS-II scheme doesn’t

require any additional architectural support within the SE.

4.3 Evaluation

In this section, I demonstrate how the overlay schemes impact the energy-efficiency

of the SE architecture. For OS-I, the shadow RS was implemented as an extension of

the RS for power characterization. For OS-II, the assumption is that the StreamWorks
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shares the LLC with the host processor. In present day architectures, this is a valid

assumption as heterogeneous architectures are moving towards sharing the memory

space.

4.3.1 Experimental Setup

Configuration

Bitwidth 32

Input Channel ports 2

Input Channel capacity 2kB

SPM capacity 2kB

SIGs 4

ALUs 3

Multipliers 2

ALU/Multiplier pipeline depth 4

Stream RSBs 2

Compute RSBs 5

LD/ST RSBs 2

RS per ALU RSB 8

RS per MUL RSB 4

RS per Stream RSB 4

RS per LD/ST RSB 4

Operand buffers per RS 5

Table 4.6: StreamEngine Configuration
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Power characterization of the shadow RS was done using Synopsys Primetime PX

on the gate-level netlist generated from synthesis of the RTL VHDL description. The

design flow followed is similar to the one illustrated in Figure 2.15. The configuration

of SE used for the characterization of shadow RS as well as characterizing OS-II is

given in Table 4.6. As the table suggests, the SE has 48 RSs, each with its own

shadow RS. Only the Input Channel was considered as the buffer for OS-II. Conse-

quently, only 2kB was used as the buffer size that needs to be filled at which point

the kernel is swapped.Since the configuration energy of the SE depends on the kernel

that is being mapped onto it, for worst case analysis, it was assumed that for each

reconfiguration of the SE in OS-II, all the 48 RSs needed to be reconfigured. Further,

each RSS configuration word was assumed to be 128-bits with 32-bit bus used for

reconfiguration. Essentially, 192 (48× (128/32)) clock cycles were assumed for every

SE reconfiguration.

4.3.2 Results

Figure 4.2 shows the energy expended to deliver a single instruction to the com-

pute pipeline. The different components that were included towards the instruction

delivery energy in the cache-based LEON were the cache array, the cache tags, the

cache controller and the pipeline registers. In case of SPM-based LEON, only the

scratchpad and pipeline registers were included. The RSBs are the instruction store

for SE and hence all the RSBs account towards the total instruction delivery en-

ergy. For OS-II (SE w LLC access), additional cache access energy was included to

account for the kernel fetch across multiple iterations. As the figure suggests, intro-

ducing shadow RS doesn’t increase the energy significantly. This was expected, as the

shadow RS are light weight extension of the RS involving only the static configuration

bits. For OS-II, however, the access to LLC does have a significant impact on the
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Figure 4.2: Instruction Delivery Energy Comparison

energy expended. When compared to LEON3, the SE performs better on both the

overlay schemes. SE with shadow RS expends up to 82× less energy than LEON3

with cache with an average of 49.1×. With SE implementing OS-II, the SE spends

up to 54.6× less energy than the LEON3 w cache with an average of 18.9×

The total energy consumption of LEON3 and SE with different configurations

is shown in Figure 4.3. The total energy of the LEON cores and SE with overlay

schemes is normalized to that of SE without any overlay. Compared to LEON3 with

instruction cache, SE with shadow RS expends, on an average, 280× less energy while

SE with LLC access expends about 220× less energy. Note that in the case of FFT,

SE with access to LLC expends only 87× less energy when compared to LEON3.
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Figure 4.3: Total Energy Comparison of Various Overlay Schemes with RISC

This is particularly low when compared to the average. The reason behind the poor

performance of SE using OS-II for FFT is the high throughput of the FFT kernel. In

general , for high throughput kernels, the buffer gets filled much sooner and therefore

restricts the total number of iterations across which the kernel switch energy can be

amortized.

Figure 4.4 depicts the energy-efficiency in GFLOPS/W (GOPS/W for integer

kernel benchmarks CRC32 and MVD) of the SPM-based LEON core and SE with

and without overlay implementation normalized to that of a cache-based LEON core.

Memory operations are not included in the GFLOPS calculation. As demonstrated

by the figure, on an average, the SE with shadow RS is 232 times more energy-efficient
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Figure 4.4: Energy-efficiency of SE Configurations Normalized to that of RISC

than LEON3 while SE implementing OS-II is 226× more energy efficient than the

cache based LEON3. Again, SE with access to LLC performs worst for the high

throughput FFT kernel.

Figure 4.5, Figure 4.6 and Figure 4.7 compare the instruction delivery energy, the

total energy and the energy efficiency of the SE implementing the overlay schemes

against the SE without overlay. As expected, the overhead of shadow RS is minimal

and therefore SE with shadow RS marginally differs from SE without any overlay.

Accessing LLC for OS-II, on the other hand, is much less energy-efficient than the

OS-I scheme. I would like to highlight that the experimentation uses only 2kB of local

memory and as pointed out earlier, the efficiency of OS-II is linearly dependent on
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Figure 4.5: Instruction Delivery Energy of the Overlay Schemes Normalized to SE
without Overlay

the amount of buffer (local storage). OS-II when adapted for embedded accelerators

with higher local store will yield better energy efficiency. Also, OS-I comes with

the limitation of restricting kernel migration whereas OS-II is a more general overlay

scheme that can be applied under any circumstances.

4.3.3 Discussion

Implementing the OS-I scheme with a shadow RS restricts the flexibility of kernel

migration from one SE to the other and consequently may limit the load balancing

opportunities. The kernel mapping is statically decided and the SEs configured with

their respective kernels. The runtime environment is responsible to utilize fusion and
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Figure 4.6: Total Energy of the OS-I and OS-II Normalized to that of SE without
Overlay

fission mechanisms to create a stream graoh that can match the rate of the kernels

with acceptable margins. This is a well studied problem and there are several ILP

and heuristics that have been proposed to address the same Che et al. (2010); Che

and Chatha (2012); Lee et al. (2012); Che and Chatha (2011b); Jung et al. (2010).

Several light-weight schedulers Baker and Chatha (2010); Baker et al. (2010) have

also been proposed that satisfy the aforementioned criterion. The programmer can

adapt any of the existing schemes to iteratively fuse and split kernels to achieve rate

matching and 2×m kernels for maximum utilization.
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Chapter 5

CONCLUSION

The failure of Dennard scaling has not only curtailed single-core scaling but is soon

limiting multi-core scaling as well. Given the constant chip-level power budgets, the

percentage utilization of a chip has been decreasing with each technology generation

and has led to the creation of dark silicon. Heterogeneous architectures that introduce

specialized cores, each of which are tuned for specific application domains and 10 −

100× more energy-efficient, have been identified as one of the promising solutions for

dark silicon. With the emergence of streaming workloads for mobile devices, energy-

efficient stream computing has become the need of the hour.

In this dissertation, I presented the StreamWorks architecture for energy-efficient

stream computing. The processing element in StreamWorks is the StreamEngine

that implements a context-aware data flow execution model and utilizes fine-grain

instruction reuse to exploit the instruction locality in stream kernels. Instruction

reuse coupled with the dataflow execution model eliminates the fetch and decode

stages and thus achieves higher energy-efficiency. The energy-efficiency of Strea-

mEngine was demonstrated against simple and contemporary RISC cores across a set

of stream kernel benchmarks. The StreamWorks architecture also introduces a novel

push/channel unit pair that includes specialized instructions for stream processing.

These units include a credit-based communication scheme that can be utilized to scale

the data flow architecture across multiple processing elements. As can be observed

from the experimental results, StreamWorks architecture makes a compelling case for

adopting a dataflow oriented approach for implementing streaming workloads.
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Finally, the scalability of the StreamWorks architecture is addressed by discussing

kernel fission and overlay schemes that enables mapping stream graphs of arbitrary

size on to StreamWorks. The overlay techniques discussed are not specific to Stream-

Works and can be adapted for any multi-core accelerator with software controlled

local memories.
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A.1 EVALUATION OF SE WITH GPU SM AS BASELINE

A state-of-art GPU with Kepler GK110 architecture has been added as another
baseline for comparison with the SE. I implemented the StreamIt kernel benchmarks
on the GPU adopting different parallelization strategies and chose the implementation
with highest performance and energy-efficiency for the comparison.

The parallelization strategy is important particularly for kernels like Autocor and
LPF where the kernel uses MAC operations to maintain a running sum across the
loop iterations. One approach is to assign each iteration of the loop to a thread
and then use a single thread to sum the resulting product from each thread. This
approach requires a syncthreads() operation before taking the sum.

A second approach is to assign each iteration to a thread and also to assign the
final sum to multiple threads. With the first approach, the sum is done by a single
thread which takes n cycles for n add operations (assuming one cycle per add). In
this approach, the sum can be done in log(n) cycles. However, this approach requires
log(n) syncthreads() and thus adversely affects the performance.

Another approach (bulk synchronous model) is to assign the entire kernel to a sin-
gle thread and execute multiple kernel instances spanning across all the SIMT lanes in
the GPU. This approach doesn’t require any synchronization and was experimentally
found to deliver maximum throughput.

I want to highlight that due to the throughput-oriented nature of GPU archi-
tectures, they are not suited for real-time streaming applications where only limited
number of input streams are available at any time. SE, on the other hand, can oper-
ate as efficiently on single input stream as with multiple streams. In my experiment,
I have used sufficient number of input streams to ensure maximum GPU utilization
and thus maximum performance and energy-efficiency.

A.1.1 Experimental Setup

The kernel benchmarks were implemented in CUDA for evaluating the GPU.
The GPU used was a Nvidia Tesla K20m card which is based on the Kepler GK110
architecture. The Kepler architecture is among the higher energy-efficient GPU ar-
chitectures available. The kernel execution time was obtained using CUDA events
and the NVML API was used to obtain the power and temperature readings available
as hardware counters on the GPU card. Only the kernel execution time was taken
into account for GOPS calculation, time taken for moving data to and from the host
and GPU were excluded. The kernel execution time was averaged across multiple
(2k − 10k) runs.

As discussed above, maximum threads were used to ensure maximum GPU uti-
lization. Allowing maximum threads resulted in the working data set to exceed the
L1 cache in some cases. For such cases, I conducted another set of experiments using
only as many threads that require data that fits into the L1 cache. The kernel exe-
cution latency certainly dropped, however, the throughput was higher in the former
case even when the data exceeds the local cache. This again confirms the GPU’s
massively parallel execution model and its capability to hide memory latencies by
exploiting thread -level parallelism.
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With the objective of comparing the StreamEngine with a single Streaming Mul-
tiprocessor (SM, also known as SMX), a single thread block with maximum threads
(1024) was used to ensure only one SM is active. One limitation in the exprimenta-
tion arises from the fact that the power number obtained using the hardware counters
includes power drawn by SMs, memory and the memory controller. Since no data
is availabe for the power breakdown in Kepler GPU cards, I used the power break-
down for the previous generation GT200 architecture as reported in a ISLPED 2012
publication. As per the breakdown, 40% of the total power is drawn by SMs and
cache and the rest is drawn by memory and the memory controller. This breakdown
assumes 35% memory bandwidth utilization.

I carried out a simple validation procedure to ensure that my estimates are reli-
able. The validation procedure involves running 2 sets of experiments for each kernel
benchmark. One set spawns only one thread block and the other eight thread blocks
thereby utilizing 1 SM and 8 SMs respectively. I used the following simple breakdown
formula to estimate the power of 1 SM

Total Power = x+13∗y+N ∗z, where x is the total power drawn by the memory
and the memory controller, y is the static power of each SM, z is the dynamic power
of each SM and N is the number of SMs utilized by the experiment (number of thread
blocks spawned). x was calculated using the ISLPED estimate (60% of total power).
For the estimate to be reliable, I expected the SM static power to be constant across
the different benchmarks. The SM static power (averaged across the 7 benchmarks)
was found to be 746mW with a standard deviation of only 3.5mW.

A.1.2 Results

Figure A.1 shows the performance of SE normalized to that of the Kepler GK110.
As the figure demonstrates, SE delivers on an average 4.8× more GOPS than the
GPU. SE scores over the GPU mainly due to the lack of explicit synchronization
among threads. A typical stream kernel starts with input and output stream base
pointers and maintains a pointer to the data token that it needs to read from the input
stream and write to the output stream. In case of GPU, the base pointers passed
to all the threads is the same (which is an argument to the kernel during invocation
from the host). The threads then add their respective thread ids (as offsets) to read
and write data. However before modifying the base pointer to the new base pointer
of the streams all the threads need to reach a synchronization point after all the reads
and writes are performed. In case of SE, no such synchronization is required as the
SIGs take care of the correct index of the input stream and the push unit takes care
of the output stream pointer.

As expected, SE doesn’t perform well when compared to GPU in the case of
CRC32 due to limited parallelism arising from the statefulness. However, GPU takes
advantage of the thread level parallelism and its very wide architecture to execute
1024 threads operating on 1024 streams.

Figure A.2 shows the energy efficiency of SE normalized to that of the GPU. The
SE is on an average 103.8 times more energy-efficient than the GPU with a standard
deviation of 58.5. As expected, the wide SIMD lanes with multiple functional units
in GPU account for the high power drawn thus affecting the energy-efficiency.
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Figure A.1: Performance (Throughput) Comparison of SE with Kepler GK110
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Figure A.2: Energy-efficiency Comparison of SE with Kepler GK110
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A.2 EVALUATION OF SW WITH GPU AS BASELINE

For energy-efficiency comparison, the evaluation of StreamWorks against the Ke-
pler GK110 based GPU with 13 SMs is presented below. This evaluation was per-
formed during the comprehensive examination and due to time constraints, only 3
of the 6 application benchmakrs were evaluated. However, the 3 benchmarks ex-
hibit different communication patterns and represent most of the other application
benchmarks. Autocor benchmark uses 8 concurrent kernels without inter-kernel com-
munication. FFT has 15 kernels with each kernel communicating to at most two
other kernels (one input and one output). In other words, each kernel in FFT has
input/output ports with single fan-in/fan-out. The third benchmark iDCT has 16
kernels and exhibits a point-to-point communication pattern. 8 of the 16 iDCT ker-
nels have a fan-in of 8 and the other 8 have a fan-out of 8. The dataflow of the iDCT
can be found in Figure 1.1 in the introduction of the proposal.

A.2.1 Experimental Setup

The benchmarks were implemented in CUDA to allow software pipelining on the
Kepler architecture. Since there is no explicit hardware support for synchronization,
atomic operations were used to implement global locks. The synchronization mecha-
nism was optimized for minimum overhead. Instead of all the threads spinning on the
global lock, a hierarchical locking mechanism was used. All the threads in a thread
block spin on a local lock in the shared memory and only the thread with thread id 0
spins on the global lock competing with threads from other thread blocks (one thread
per thread block).

Note: When concurrent thread blocks are spawned on the GPU, the Nvidia
scheduler attempts to schedule as many thread blocks as possible until it runs out
of resources (the order in which the blocks are scheduled is not deterministic). For
example, in the Kepler GK110 architecure with 13 SMs, if I spawn 27 thread blocks
with 1024 threads each, not all of them can be scheduled concurrently because the
architecture limits the MAX threads on a SM to be 2048. In this case the number
of threads becoms the bottleneck for scheduling. Similarly, the bottleneck could be
the register usage, shared memory usage etc. The Nvidia scheduler always executes
a thread block to completion and threfore might lead to deadlocks and timeout when
some thread blocks are spinning on global locks and all the spawned thread blocks
cannot be scheduled concurrently on the available SMs. For the evaluation, deadlocks
have been avoided by ensuring no resouce spill occurs when scheduling all thread
blocks.

A 2-cluster (16 SEs) configuration was used for the StreamWorks evaluation. How-
ever, for a fair comparison, all the kernels were scheduled only on 13 SEs. All the 13
SMs were used in the case of the GPU. The power characterization of the Stream-
Works and GPU followed the same methodology as used in StreamEngine evaluation.

A.2.2 Results

Figure A.3 shows the performance (GFLOPS) comparison of the StreamWorks
and the Kepler GK110. The performance of StreamWorks has been normalized to
that of the GPU. As expected, the performance scales very well for Autocor as no
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synchronization is used. However, for iDCT and FFT, a performance degradation of
28% and 70% was observed respectively as compared to when executing only a single
kernel. The higher degradation in the case of FFT is most likely because of higher
number of synchronization stages. Each kernel in the 15-stage pipeline of the FFT
needs to synchronize once with its producer and again with its consumer (a total of
14 synchronization points) as opposed to iDCT which is implemented as a 2-stage
pipeline with 8 concurrent (independent) kernels in each stage and requires only 8
synchronization points. StreamWorks, on an average, delivers 11.6× more GFLOPS
than the GPU.
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Figure A.3: Performance Comparison of StreamWorks with GPU (Kepler GK110)

Figure A.4 shows the energy-efficiency (GFLOPS/W) comparison of the Stream-
Works and the Kepler GK110. As the figure demonstrates, StreamWorks is over a
couple of orders (average 263.22×) more energy-efficient than the GPU.
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Figure A.4: Energy-efficiency Comparison of StreamWorks with GPU (Kepler
GK110)
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