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ABSTRACT 

 The objective of this small animal pre-clinical research project was to study 

quantitatively the long-term micro- and macro- structural brain changes employing multi-

parametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make 

up the basis of this thesis. The first part focuses on obtaining prognostic information at 

early stages in the case of Traumatic Brain Injury (TBI) in rat animal model using 

imaging data acquired at 24-hours and 7-days post injury. The obtained parametric T2 and 

diffusion values from DTI (Diffusion Tensor Imaging) showed significant deviations in 

the signal intensities from the control and were potentially useful as an early indicator of 

the severity of post-traumatic injury damage. DTI was especially critical in distinguishing 

between the cytotoxic and vasogenic edema and in identification of injury regions 

resolving to normal control values by day-7. These results indicate the potential of 

quantitative MRI as a clinical marker in predicting prognosis following TBI. The second 

part of this thesis focuses on studying the effect of novel therapeutic strategies employing 

dendritic cell (DC) based vaccinations in mice glioma model. The treatment cohorts 

included comparing a single dose of Azacytidine drug vs. mice getting three doses of 

drug per week. Another cohort was used as an untreated control group. The MRI results 

did not show any significant changes in between the two treated cohorts with no 

reduction in tumor volumes compared to the control group. The future studies would be 

focused on issues regarding the optimal dose for the application of DC vaccine. Together, 

the quantitative MRI plays an important role in the prognosis and diagnosis of the above 

mentioned pathologies, providing essential information about the anatomical location, 

micro-structural tissue environment, lesion volume and treatment response. 
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1. MAGNETIC RESONANCE IMAGING (MRI) 

 Magnetic Resonance Imaging or MRI is a medical imaging technique that offers 

the most sensitive non-invasive way to investigate a sample like human or animal body. 

It plays an essential role in understanding about the underlying pathology of the disease 

that can be used to study anatomy, to diagnose a disease or to monitor improvement 

following a treatment. Compared to the Computer Tomography (CT) and x-ray imaging 

techniques, MRI provides excellent soft tissue contrast and resolution (the ability to 

distinguish the differences between two arbitrarily similar but not identical tissues), 

which makes it very useful in the study of different brain pathologies.   

 Further in this chapter a brief introduction to the basic principles of MRI followed 

with quantitative MRI methods used in the present project is provided.  

1.1  Basic Principles 

 Spin is a fundamental property (like electrical charge or mass) of sub-atomic 

particles such as protons, electrons and neutrons. MRI produces images by exploiting the 

interaction between the nuclear spins and an externally applied strong homogenous static 

magnetic field, B0. When the sample is placed in the magnet, the atomic nuclei or protons 

with a non-zero spin (ex. hydrogen with a 
1
/2 spin) present in the body tends to align itself 

in the direction or against the direction of B0 almost cancelling each other out. However, 

a slightly bigger number of protons align in parallel with the applied magnetic field 

generating a net overall equilibrium magnetization, M0. In this equilibrium state only 

longitudinal magnetization (Mz) is present with no transverse magnetization (Mx or My). 

At this stage RF pulses exactly at the Larmor frequency (the resonance frequency of 
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protons) are applied to generate a magnetic field B1 perpendicular to B0 field. This causes 

the spins to excite causing them flip to away from the z-axis and gain x- and y-

components while precessing (rotating) about the z-axis (Figure 1.2). At this stage the 

magnetic field B0 is aligned with the z-axis. The precessing of nuclei in the xy-plane 

generates a detectable alternating RF field. At the end of the applied RF pulse, the 

magnetization field B1 returns to equilibrium from the excited state through interactions 

with the surrounding environment by a process called relaxation. The relaxation process 

follows an exponential curve and can be described by two time constants, T1 and T2. 

From a clinical perspective, they are useful because different tissues appear differently in 

T1 and T2 weighted MR scans. For example, T1 images cause fat to appear bright, fat like 

the myelin in white matter whereas T2 weighted images cause water to appear bright like 

CSF and fat is dark.  

1.2  T1 and T2 Weighted Images 

 All molecules have natural motions in the form of vibration, rotation and 

translation. Smaller molecules like water generally move more rapidly resulting in higher 

natural frequencies compared to larger molecules like proteins that move more slowly. 

 T1 or longitudinal relaxation time (Figure 1.1 (A)) represents the time required 

for a substance to regain its longitudinal magnetization (in the z- direction) following an 

RF pulse. It is usually determined by the thermal interactions between the resonating 

protons and other protons and other magnetic nuclei in the magnetic environment. These 

interactions allow the energy absorbed by the protons during resonance to be dispersed to 

other nuclei. T2 or transverse relaxation time is a measure of how long the resonating 
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protons remain coherent or precess in phase following a RF pulse. Alternatively, it 

represents the loss of magnetization in the xy-plane. T2 relaxation or decay is due to 

random magnetic interactions that occur between proton spins. It depends on the presence 

of static internal fields in the substance, generally due to protons in larger molecules. 

These stationary or slowly fluctuating magnetic fields create local regions of increased or 

decreased magnetic fields, depending on whether the protons align with or against the 

main magnetic field. Local field non-uniformities cause the protons to precess at slightly 

different frequencies. Thus following the 90° pulse, the protons lose coherence and 

transverse magnetization is lost resulting in T2 relaxation. However, there is also a 

dephasing effect caused by local field inhomogeneties, and its characteristic time is 

referred to as T2* relaxation. These additional dephasing fields come from the main 

magnetic field inhomogeneity, the differences in magnetic susceptibility among various 

tissues, chemical shift and gradients applied for spatial encoding [1]. T2* is always faster 

than the T2 decay (Figure 1.1 (B)).    

Figure 1.1. Diagram depicting exponential curves of (A) T1 and (B) T2 , T2* relaxation. 
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 Unlike T1 interactions, the T2 interactions do not involve a transfer of energy but 

only a change in phase, which leads to a loss of coherence. The transverse component of 

the magnetization precessing around the z-axis emits radio-waves at the Larmor 

frequency which are then detected and sampled by the receiver.  

1.3  Pulse Sequences 

 MR image contrast allows one to tailor the imaging study to the anatomic part of 

interest and to the disease being studied. Variable MR image contrast is usually achieved 

by using different pulse sequences and by changing the imaging parameters. Some of the 

adjustable sequence parameters are the echo time (TE) which is the time from excitation 

to sampling and the repetition time (TR) which is the time elapsed between the two 

excitations. In general, a T1-weighted sequence uses a short TR and a short TE (TR < 

1000msec, TE < 30msec). With the choice of long TE and long TR the images become 

T2-weighted (TR > 2000msec, TE > 80 msec).  

 There are various pulse sequences, however spin-echo is the most commonly used 

sequence. This sequence includes a slice selective 90degree excitation RF pulse followed 

by one or more 180 degree refocusing RF pulses. The inversion recovery pulse sequence 

is normally used to give heavy T1-weighting. This sequence includes a 180 degree RF 

pulse that inverts the magnetization followed by a 90 degree RF pulse that brings the 

residual longitudinal magnetization into the x-y or transverse plane where it is then 

detected by an RF coil. This sequence makes signal nulling possible. For example, the 

fluid-attenuated inversion recovery (FLAIR) produces heavily T1-weighted images but 

cancels the signal coming from CSF. This type of sequence proves to be particularly 
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useful in the detection of subtle changes at the periphery of the hemispheres and in the 

regions close to CSF. 

1.4  T2 Mapping 

T2 weighted sequences usually suffer from several problems including signal 

intensity variability caused by coils and motion artifacts. T2 mapping is a quantitative 

technique which can be used to overcome the previously mentioned limitations. T2 maps 

are generated by fitting (mono- (Eqn.1) or bi- exponential (Eqn.2)) following Bloch 

equation, where 't' correspond to different T2 weighted scans obtained using different 

TE's or echo times.  

                                                
                   -                            -                                     

To determine T2 we solve the above equations using least square fit for Mecho by 

determining the slope of the intensity plot vs. t. The value of T2 obtained from a single 

exponential fit usually represents an average value of the MR signal coming 

simultaneously from relaxation of protons in different environments and it does not 

account for different relaxation rates in different portions of the curve. Whereas the bi-

exponential fitting operation splits the MR signal obtained from the same study into two 

components accounting for different relaxation rates present within the same voxel. The 

first component is associated with the voxels with a long or high T2 values and the 

second component is associated with the voxels with a short or low T2 values. So, a bi-

exponential function permits best of the data, giving information about the voxels 
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associated with high and low T2 values within the same study. The following example 

Figure 1.2. represents the M0 maps and the corresponding residual sum of squares map 

obtained using mono- and bi-exponential fitting of T2 weighted images acquired at 28 

echo points.  

1.5  Diffusion Imaging 

 Diffusion weighted imaging or diffusion tensor imaging is a form of MR imaging 

which is based upon the diffusion of water molecules within a voxel (it is a combination 

of "volume" and "pixel" where pixel is a single picture element of an MR image). The 

MR image contrast in a DTI is derived from differences in the motion of water molecules 

between tissues which is related to the micro-environment of the tissue. This technique is 

specifically sensitive to the self-diffusion of intracellular water molecules present in the 

Figure 1.2. Figure representing (A) M0 map obtained from mono-exponential fitting;  

(C), (D) M0-High and M0-Low maps obtained from bi-exponential fitting respectively; 

(B), (E) Residual sum of squares map for mono- and bi- exponential fitting respectively. 

Note, the residual sum of square map for bi-exponential fitting has lower values 

compared to mono-exponential fitting indicating a perfect fit using bi-exponential 

equation.  
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sample being imaged. The molecular 

diffusion is based upon the thermally 

driven random Brownian motion of 

water molecules in a fluid 

environment. The movement of 

molecules is represented by the 

diffusion coefficient (D), which 

depends on the viscosity of the media, 

size of the molecules and temperature. 

In an unrestricted environment, like 

water kept inside a glass, the diffusion 

is isotropic i.e. equal in all directions 

(Figure 1.3 (A)), whereas the 

diffusion is unequally restricted in different directions or is anisotropic (Figure 1.3 (B)) 

in the case of a biological tissue due to movement of water molecules by organelles and 

the cell membrane. Therefore, in biological tissues the calculated diffusion is termed as 

Apparent Diffusion Coefficient  (ADC).  

 The DWI is based on the EPI spin-echo sequences in which pairs of diffusion 

sensitizing gradient pulses are applied. In a basic DWI, the diffusion is measured along 

three orthogonal directions providing diffusion weighted images or ADC maps. However, 

to obtain the information about the directional dependence of the diffusion signal, the 

DTI technique is used, which allows the diffusion to be considered in 3D. This technique 

requires a larger number of diffusion sensitizing gradient pulses or diffusion directions 

Figure 1.3. Schematic illustration of (A) 

isotropic diffusion (molecular displacements in 

all directions) with a lower FA values, and (B) 

diffusion (greater molecular diffusion in a 

particular direction) with higher FA values. The 

diffusion is anisotropic due to anatomical 

barriers causing diffusion to be restricted 

perpendicular to the fibre direction. 
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(minimum of 6), which causes phase shifts of the protons along the direction in which 

they are applied. The gradient pulses are usually applied with time interval of 20ms to 

50ms during which the phase refocuses perfectly in the absence of molecular diffusion. 

However, in the presence of molecular diffusion the phase does not refocus perfectly 

resulting in an attenuated MR signal. The observed attenuation in the signal is then used 

to build a tensor representation of the diffusion and to estimate the diffusion coefficient in 

each direction. In this model, the diffusion tensor is characterized by the length and 

direction of three major axes, which can be visualized as an ellipsoid, where the axes 

represent the three principal diffusion orientations or eigenvectors (v1, v2, v3) and 

corresponding diffusion coefficients or eigenvalues (1, 2, 3). The degree to which 

diffusion is directionally dependent can be expressed as fraction anisotropy (FA). This 

parameter can be calculated from the eigenvalues using equation I. FA takes values from 

0 to 1 representing isotropic and anisotropic diffusion respectively. Apparent diffusion 

coefficient of ADC can be calculated using equation II.  

    √                                                                     
                                                   
For more information on the principles of MRI and diffusion imaging, reader is referred 

to textbooks on this subject viz. Principles of magnetic resonance imaging: a signal 

processing perspective and Diffusion MRI: From Quantitative Measurement to In vivo 

Neuroanatomy [2, 3]. 
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2. IMAGE PROCESSING 

2.1 Image Segmentation 

 Segmentation is an important technique used for dividing an image into 

meaningful structures and is often an essential step in image analysis. In the segmentation 

process the pixels sharing similar characteristics are assigned a unique label which results 

in a mask for that respective region of interest. Each of the pixels in the defined region 

share similar properties, such as color, intensity or texture and the adjacent pixels outside 

the region are significantly different with respect to the same characteristics.  Based on 

different technologies, there are three general approaches to segmentation, termed 

threshold-based, edge-based methods and region-based methods. 

Threshold based segmentation 

 Thresholding is probably the most frequently used technique to segment an 

image. It is based on partitioning an image into the regions that are similar to predefined 

criteria. The thresholding technique can be defined by following operation. 

        {                                                       
where, T is the selected threshold value; g(x,y) is thresholded output image (binary 

image); f(x,y) are original gray level image pixel values and x,y are the pixel coordinates 

in the image.  

 The thresholded output is a mask or a binary image with pixel values of 1 and 0. 

The pixels with values above the selected threshold from the original gray scales image 
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takes the value 1 in the generated output mask. This mask when multiplied with the 

original image provides the segmented image, in which, all the pixel values inside the 

mask remains same as original image where as outside it is zero. (Figure 2.1) 

k-means clustering 

 k-means is an unsupervised iterative problem and it is based on the intuition that a 

dataset with n observations or data-points can be partitioned into k clusters in which each 

observation belongs to the cluster with the nearest mean.  

 The algorithm tries to minimize the average squared Euclidean distance of n data-

points from their cluster centers. The cluster center is defined as the mean or centroid µ j 

of the data-points in a cluster Sj.  

  ∑  
   ∑              

    

where, xi is a vector representing the n
th

 data point and µ j is the geometric centroid of the 

data points in Sj.   

In k-means algorithm we try to minimize the L quantity through following steps: 

Figure 2.1. Figure illustrating segmentation through thresholding. (A) MR T2-weighted 

image, (B) Mask generated after thresholding, (C) The segmented region is represented 

with-in red contour. 4 
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a. Initialize means µ1, µ2 ... µk randomly in the dataset as centers of K clusters.  

b. Assign each point to the nearest mean by calculating the distance from the data 

point to each cluster.  

c. If the data point is closest to its own cluster, leave it where it is without updating 

the mean. If the data point is not closest to its own cluster, move it into the 

closest cluster and update the mean to the center of its cluster.  

Iterate steps (b) and (c) until convergence i.e. until a complete pass through all the data 

points results in no data point moving from one cluster to another.  

Steps for applying k-means algorithm for image segmentation 

i. Specify a value for k. 

ii. Vectorize the input image.  

iii. Obtain different pixel values present in the image with their frequency. (Generate 

histogram). 

iv. Select random µ1,µ2 ... µk centroids.  

v. Compute the distances of each pixel value from the selected centroids and obtain 

the minimum. Assign the pixel value to k
th

 cluster, where µk is the nearest centroid.  

vi. Compute the means for each cluster and update the centroids.  

vii. If the updated centroids are same as the previous centroids the algorithm ends, else, 

repeat steps (vi) and (viii). 

viii. Obtain the mask for the image by assigning each pixel value to a k
th

 cluster, where 

µk is the nearest centroid.    

For MATLAB implementation of the above algorithm refer Appendix I. 
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Region Growing 

 It is a simple region based image segmentation method. In this technique the first 

step is usually to select a set of seed points based on some user criterion (for example, 

pixels in a certain gray-level range). The regions are then grown from these seed points 

(Figure 2.2(A)) to adjacent points based on the difference between a pixel's intensity 

value and the region's mean which is then further compared with the threshold set by the 

user. The pixel with the smallest difference i.e. less than the threshold, is allocated to the 

region. This process is carried until the intensity difference between region mean and the 

new pixel becomes larger than the threshold. Figure 2.2(B) represents the final 

segmented region after region growing.  

For MATLAB implementation of the above algorithm refer to Appendix I.  

 

 

Figure 2.2. Region growing algorithm implementation for the segmentation of tumor on 

a T2-weighted MR image. (A) Figure showing the initial seeds (red dots). (B) Figure 

showing the final segmented tumor image.  Threshold was set to a value of 0.11*(region 

mean). 5 
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Level set based segmentation 

 In level set methods, a contour of interest is represented as a zero level set of a 

higher dimensional function, called a level set function (LSF), and the motion of this 

contour is formulated as the evolution of the LSF. The curve evolution can be expressed 

as                , where F is the speed function that controls the motion of the 

contour, and N is the inward normal vector to the curve C. In level set formulation the 

dynamic contour        is embedded as the zero level contour of a time dependent LSF 

Φ       . The embedding LSF Φ takes negative values inside the zero level contour and 

positive values outside. The normal inward vector can be express as N = ∇Φ / |∇Φ|, 
where ∇ is the gradient operator. The curve evolution can be converted to partial 

differential equation (PDE), also referred to as level set equation,          ∇  . 
 The main advantage of level set methods is that they can represent contours of 

complex topology and are able to handle topological changes, such as splitting and 

merging. In level set formulations, the LSF is typically initialized and periodically 

reinitialized as a signed distance function. The level set evolution can be represented as 

an equation for gradient flow as follows: 

        [∇      ( ∇  ∇  )]           ( ∇  ∇  )           

 (a) (b) (c)  

In the above equation, the first term on the right hand side is associated with the distance 

regularization energy (a), while the second and third terms are associated with the 

external energy terms. The energy functional term (b) is minimized when the zero level 

contour Φ is located at the object boundaries. The energy functional term (c) is 
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introduced to speed up the motion of the zeros level contour in the level set evolution 

process. and are the coefficients of the energy functional terms (a) and (b) 

respectively. A nonzero  value gives additional extra force to drive the motion of the 

contour.  For Images with weak object boundaries a larger value of causes the active 

contour to pass through object boundaries (boundary leakage). So, for images with weak 

boundaries, the value of  should be chosen relatively small to avoid boundary leakage. 

The level set evolution is less sensitive to parameters  and µ, so, they can be fixed for 

most of applications. In the algorithm the value of  and µ are set to a value 5 and (0.2 / 

Timestep) respectively. The parameter Timestep determines the speed of the evolution 

curve as per the following equation:  

                         

where, Φk 
andΦk+1

 are the initial and updated contour (LSF) respectively during the curve 

evolution process.  

Further, the description of variables used in the above equation are as follows : 

įİ , is the Dirac delta function defined as, 

       {    [     ቀ   ቁ]                                                                 

The parameter epsilon or İ is the width of the Dirac delta function and is usually set to a 

value of 1.5.  
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g, is the edge indicator function defined as,  

       ∇         

where, G is the Gaussian kernel with a standard deviation σ. I is the input image. The 

convolution in the edge indicator function is used to smooth the image so as to reduce the 

noise. The function g usually takes smaller values at the object boundaries that at the 

other locations.  

 For further detailed information about the implementation and formulations of 

level set algorithm, the reader is requested to refer to the research paper "Distance 

Regularized Level set Evolution and Its Application to Image Segmentation" by 

Chunming Li and Chenyang Xu. For MATLAB implementation of the above algorithm 

refer to Appendix I.   

2.2  Image Registration 

 Image registration is an automatic or manual process of overlaying two different 

images so as to spatially align them on a common coordinate system. In medical image 

analysis it is a vital step which allows to study and compare two or more images of the 

same scene taken at different times, or from different viewpoints. Registration algorithms 

compute transformations to set correspondence between the two images.   

 In this paper b-spline grid based image registration technique was implemented. 

In this technique a grid of b-spline control points is constructed which controls the 

transformation of the input image. An error measure is then used to compute the 

registration error between the two images.  
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For implementation, the MATLAB algorithm "B-spline Grid, Image and Point based 

Registration" by Dirk-Jan Kroon was used. The user can obtain the above algorithm 

freely from the web. In the initial step of this algorithm the user has to select the 

landmarks / corresponding points in the two images which are then used as reference 

points for the registration. The MATLAB algorithm for the selection of these initial 

points along with the main function is included in the Appendix I.  
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3. MRI STUDY OF TRAUMATIC BRAIN INJURY 

3.1  Introduction 

 Traumatic brain injury (TBI) is one of the most common neurologic disorders and 

a leading cause of disability affecting independence, productivity and quality of life  and 

as a result is an important public health problem in United States [4-6]. The most recent 

estimates of the incidence and prevalence of TBI in USA, indicate that annually 50,000 

deaths, 1.1 million are treated in emergency departments and 235000 are hospitalized for 

nonfatal TBI [7]. TBI is usually caused due to shear forces of impact on head, initiating 

complex biological mechanisms and tissue atrophy. The heterogeneity of resulting TBI 

pathology is considered to be one of the most significant barriers to finding effective 

therapeutic treatments [8, 9]. Primary injury occurs immediately due to the mechanical 

insult and is generally followed by delayed secondary injury events leading to alterations 

in cell function and propagation of injury which accounts for many of the post-TBI 

neurological deficits [10-12]. Development of secondary injury processes potentially 

provides a time frame for therapeutic intervention, which can be utilized to devise 

therapies for preventing the progressive tissue atrophy and improving the long-term 

recovery of the function [13, 14]. 

 To date, the knowledgebase for TBI pathology has been obtained largely from 

regional tissue measurements using histological and immuno-histological methods at a 

single time point (terminal) analysis. Such methods do not allow dynamic assessment of 

tissue abnormalities [15]. Hence, non-invasive characterization of the damage extent is 

very essential to establish effective neuro-protective treatments. Non-invasive 
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characterization of the injury microenvironment is often difficult to achieve through 

conventional neuroimaging methods (CT, MRI (e.g. T1w and T2w)) as they are not 

sensitive enough to identify regions undergoing micro-structural changes [16-19]. 

However, MRI quantitative techniques (e.g. Diffusion weighted and T2 maps) are proved 

to be a highly sensitive and valuable tool in the study of TBI, providing crucial 

information about the spatio-temporal developments of the tissue damage along with 

added insights into the disease mechanisms [17, 20, 21]. Magnetic resonance Diffusion 

Tensor Imaging (DTI), including calculation of the apparent diffusion coefficient (ADC) 

and Fractional anisotropy (FA) are found helpful in distinguishing between cytotoxic and 

vasogenic edema [22-26] and are shown to be correlated well with the injury severity 

[27-30]. 

 TBI model of controlled cortical impact (CCI) used in the present study, involves 

a rigid impact or that produces the mechanical energy onto the dura with the head of the 

animal kept restrained during the impact [31, 32]. The key advantage of this model 

includes the ability to control deformation parameters such as time, velocity and depth of 

the impact. This model is used to mimic whole spectrum of focal-type damage and 

diffuse axonal injury [33]. 

 The objective of this work was to acquire the prognostic information at early 

stages of TBI in rats using Diffusion Tensor Imaging (DTI) and quantitative mapping of 

T2 relaxation properties by identifying the regions undergoing micro-structural changes 

from 24-hours to 7-days post injury. Further, to verify the MRI findings, the obtained 

quantitative MRI information was correlated with the immuno-histochemistry data. 
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3.2  Materials and Methods 

3.2.1 Model 

  

 Arizona State University’s Institute of Animal Use and Care Committee (IACUC) 

approved all procedures described in this study. Traumatic brain injury (TBI) was 

modeled with the well- established controlled cortical impact (CCI) injury models 

(Impact One; Leica Biosystems, IL) [32]. Briefly, Adult Long Evans Hooded male rats 

(245-265 g; n = 15) were anesthetized with isoflurane (5% induction, 2% maintenance) 

and placed in stereotaxic frame. The fronto parietal cortex was exposed via 5mm 

craniotomy. The impactor tip diameter was 3 mm, the impact velocity was 4.0 m/s and 

the depth of cortical deformation was 2 mm. Low viscosity composite Wave (SDI 

limited, Bensenville, IL) was applied and light cured for 20 seconds, casing the 

craniotomy and the impact site after the injury. The skin was sutured and the animals 

were placed in an incubator (37°C) until consciousness was regained. Injured animals 

were randomly assigned to either 24-hours or 7-days survival group. The sham group had 

the same surgical procedure, but with no injury and was sacrificed after 7-days (n=3).  

3.2.2 MRI Measurements and Analysis 

 Rat brain MRI images were acquired using ParaVision software on a Bruker-

Biospin 7-Tesla system with 30 cm bore magnet, (BrukerBiospin, BNI, AZ). A volume 

transmitter coil (72 mm) was placed inside the magnet for radio frequency excitation, and 

a rat brain radio frequency (RF) surface coil was used for signal detection. Animals were 

placed at prone position on a nonmagnetic holder with the teeth bar as an aid to fix the 

head position. During image acquisition, anesthesia was maintained using isoflurane 

(1.5%), respiration was monitored using SAII system and rectal temperature was 
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maintained at 37
o
C. Each animal was imaged at two time points viz. 24-hours and 7-days 

after induction of CCI. Diffusion Tensor Images (DTI) were acquired using a spin-echo 

pulse sequence with repetition time (TR) of 4750 msec and echo time (TE) of 25 msec. 

Diffusion encoding gradients were applied in six directions using a b-value of 500 s/mm
2
. 

The obtained DTI images were then used to generate Apparent Diffusion Coefficient 

(ADC) and Fractional Anisotropy (FA) maps in MATLAB (R2012b, The MathWorks, 

MA) using the equations I and II (Chapter 1). T2–weighted images were obtained during 

the same imaging session and at the same neuro-anatomical level as the diffusion 

weighted images, using a multislice–multiecho pulse sequence with TR = 6000 msec and 

TE = 22 msec. All the images were acquired with the following acquisition parameters: 

number of slices, 19; slice thickness, 0.5 mm; interslice distance, 0.5 mm; field of view 

30 x 30 mm; matrix dimensions 192 x 192 (resulting in 156 x 156 µm in plane 

resolution). The T2 maps were generated using the ParaVision software with TEs of 22, 

44, 66, 88, 110, 132, 154, 176, 198, 220 msec and TR of 6000 msec with the same field 

of view, matrix size and slice number as T2–weighted images.  

 The rat brains were segmented by manually outlining the ipsilateral and 

contralateral hemispheres. To analyze and quantify the MR parameters, two regions of 

interests (ROIs) were selected on the injured brain slices of the 24-hours and 7-days T2 

map images. The lesion or injury area (ipsilateral ROI) was identified on the ipsilateral 

hemisphere using the threshold of mean plus one-standard deviation of T2 values in the 

contra-lateral hemisphere of the same brain slice. Obtained ROIs were then flipped on to 

the corresponding contralateral hemispheres of the same rat brain slice. Flipping 

operation ensured that the contralateral ROI generated is of the same size and at the same 
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anatomical location as the ipsilateral ROI. These ROIs were then saved and transferred to 

corresponding slices of ADC and FA maps and the mean, standard deviation, and number 

of pixels for each ROI was extracted. The mean values were obtained by averaging the 

pooled means (the average of all the pixel intensities inside the selected ROIs, computed 

across all the slices) of individual parametric map for each rat. To compare the variations 

in the MR parametric maps, the pooled means obtained from the contralateral ROIs are 

used as the control and were plotted against the pooled means of the ipsilateral ROIs. To 

study the injury evolution and the volume comparison, 24-hours MR images and 7-days 

histological sections were registered to the 7-days MR images using the non-rigid 

transformation and B-spline grid manual warping methods. Calculation of injury volume 

was computed by multiplying the number of voxels inside the ipsilateral ROI of each 

slice by the slice thickness and resolution of the image. All analysis and quantification of 

MR data was performed using MATLAB (R2012b, The MathWorks, MA). 

3.2.3 Immunohistochemistry Measurements and Analysis 

According to the experimental groups - 24-hours and 7-days post-injury, the 

animals were deeply anesthetized with sodium pentobarbital until a tail pinch produced 

no reflex movement. Animals were transcardially perfused with cold Phosphate-Buffered 

Saline (PBS), followed by 4% buffered paraformaldehyde solution. Brain samples were 

removed and fixed overnight in 4% buffered paraformaldehyde followed by immersion in 

30% sucrose solutions in 1X PBS for cryoprotection for 24-hours. Samples were 

embedded within optimal cutting temperature medium and frozen on dry ice. Samples 

were stored at -80°C until sectioned on a Leica CM3050 S Cryostat (Leica Microsystems, 

Buffalo Grove, IL). Serial cryosections (16μm thick) were collected between 3.70 mm 



22 

anterior and -0.40 mm posterior to Bregma were used for analysis. The sections were 

placed on subbed (positively charged) glass slides; with two sections per slide and were 

stored at -80
o
C.  

For measurements, the slides containing the frozen sections were first equilibrated 

in -20°C for 15 minutes and then at room temperature for another 20 minutes in 1X PBS. 

Sections were permeabilized with 0.5% Triton X-100 and blocked in PBS containing 4% 

horse serum for an hour. Monoclonal mouse IgG glial fibrillary acidic protein, GFAP 

(Millipore;Billerica, MA, USA) and polyclonal rabbit IgG CD68 (Abcam;Cambridge, 

MA, USA) was used to double stain the slides. The primary antibodies, mouse anti-

GFAP (1:250 dilution) and rabbit anti-CD68 (1:100 dilution) was diluted using 0.2% 

Triton X-100 and 2% horse serum with PBS and were incubated overnight at 4
°
C. After 

washing with 1X PBS, the sections were incubated with appropriate secondary 

antibodies, Alexa Fluor 555 goat anti-mouse IgG (Invitrogen; Carlsbad, CA, USA; 1:200 

dilution) and 488 goat anti-rabbit IgG (Invitrogen; 1:200 dilution), for 2 hours at room 

temperature. Sections were then washed in PBS buffer. DAPI (Invitrogen; 1 μl/1000 μl) 

was diluted with 1X PBS and was incubated for 10 minutes. Anti-fading media and 

coverslip were applied, after the sections were washed with PBS. A negative control was 

included with the same procedure as above, except for use of the primary antibodies 

(instead 1X PBS was used). 

Immunostained sections were imaged using Leica DMI 6000B (Leica 

Microsystems, Buffalo Grove, IL; 10X magnification). The images were analyzed using 

MATLAB (R2012b, The MathWorks, MA). The program used a threshold value 
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(background value plus one standard deviation) specific to each stain to remove the 

background stain of the images. In order to quantify the positive GFAP and CD68 stains; 

the pixel values above the threshold values in the background-subtracted images were 

considered. Another program was used to quantify the total area of brain tissue by 

manually drawing ROIs to select the ipsilateral and the contralateral hemispheres of the 

brain sample. Total pixel values within the each ROI were considered as the total area of 

each hemisphere. The positive GFAP and CD68 were then expressed as a percentage of 

the total brain tissue. 

3.2.4 Statistics 

  

 Statistical analyses were performed using Prism v6 (GraphPad, CA) with 

statistical significance level set to a p-value of 0.05. One-way Analysis of Variance 

(ANOVA) was used to test the significance between the results obtained for MRI data at 

each time point. If significance was noticed, the means were compared using unpaired 

student’s t-test to assess the differences within the group. Paired student’s t-test was then 

used to compare the observed means at each time point for each subject. Linear 

Regression was used to model and observe the relationship between the obtained 24-

hours and 7-days post injury MRI results. To analyze IHC, the percentage of astrocytes 

and macrophages for each time point was statistically compared by two-tailed t-test. 

3.3  Results 

 

 Changes in MR signal in TBI animals were noticed in the T2, ADC and FA 

parametric maps as deviations in the pixel intensities at both the time points. 
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 At 24-hours post TBI, high intensity pixel values were observed at the lesion site 

on the T2 maps with a mean of 76.59 ± 5.5 msec and had a significant difference from the 

mean T2 value (51.95 ± 1.6 msec) of the control ROIs (P <0.0001). By 7-days, increase 

in the T2 values were noted for most of the animals indicating formation of edema, (mean 

T2 of 94.70 ± 27.7 msec) and was statistically significant from the control mean T2 

(P<0.001), Figure 3.1(A), Table 3.1. However, no significant difference was observed 

between the 24-hours and 7-days ipsilateral (lesion) T2 values. The lesion volumes were 

found to be 25.83 ± 12.2 mm
3 

at 24-hours which was considerably reduced to 3.73 ± 2.7 

mm
3
 by 7-days (P<0.001). Furthermore, a significant correlation was observed between 

the 24-hours and 7-days T2 values (R2 = 0.86, P< 0.05, slope = 4.7 ± 0.83), and the 

lesion volumes (R2 = 0.59, P<0.05, slope = 0.17 ± 0.06), Figure 3.2(A), 3.2(B). The 

slopes and the Y intercept of the volumes at 24-hours provide a good prediction of injury 

observed at day-7. 

Table 3.1. Mean values of T2, ADC and FA parameter maps with statistical comparisons 

between ipsilateral and contralateral region of interests at 24-hours and day-7 post TBI. 1 

 Ipsilateral vs. Contralateral 

T2 

24-hours 76.6 ± 5.49 52.0 ± 1.67, (P<0.0001) 

day-7 94.7 ± 27.7 49.4 ± 2.41, (P<0.001) 

ADC (x10
-3

) 

24-hours 0.94 ± 0.14 0.83 ± 0.04 

day-7 1.83 ± 0.51 0.81 ± 0.07, (P<0.0002) 

FA 

24-hours 0.51 ± 0.08 0.60 ± 0.05, (P<0.05) 

day-7 0.46 ± 0.07 0.60 ± 0.13, (P<0.05) 
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Figure 3.1. Quantitative T2 (A), ADC (B) and FA (C) values of the ipsilateral and 

contralateral ROIs observed at the 24-hours and day-7 post injury. Note that there was 

no statistical difference between the ipsilateral and contralateral ROIs for ADC values 

on 24-hours post TBI. Data presented here as mean ± SD, (* P <0.05). 6 

Figure 3.2.Whole group correlations between 24-hours and day-7 observations of (A) 

T2 values (P <0.05, R
2
 = 0.7616, slope = 3.404); and (B) Lesion Volumes (P <0.05, R

2
 

= 0.7128, slope = 0.2327). 7 
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 The mean apparent diffusion 

coefficient (ADC) and fractional 

anisotropy (FA) values were 

calculated from the diffusion maps 

across ipsilateral and contralateral 

ROIs as detailed under methods 

section. At 24-hours post TBI, both 

hyper-intensity and hypo-intensity 

pixels were observed in the 

ipsilateral ROIs on the ADC maps. 

Unlike the T2 maps, this anomaly in 

pixel intensities was unique to ADC 

maps (Figure 3.3(C)) and had no 

significant differences between the 

mean ADC values of lesion (0.94 ± 0.14 x10
-3

) and control regions (0.83 ± 0.04 x10
-3

), 

Figure 3.1(B). However, 7-days after injury, hypo-intensity pixels were not detected and 

statistically significant ADC hyper-elevations were observed between the ROIs (lesion: 

1.83 ± 0.51 x10
-3

; control: 0.81 ± 0.07 x10
-3

 ,  P<0.0002). For further analysis of the 24-

hours ADC maps, the area within the ipsilateral ROI was segmented into two regions 

using the threshold as mean plus 2 standard-deviations of the pixel intensities in the 

control ROIs. The proximal or hypo-intensity region (pixel values below the threshold) 

was labeled as Sub-region-1 (R1) where as the distal or hyper-intensity region (pixel 

values above the threshold) was labeled as Sub-region-2 (R2), Figure 3.3.  

Figure 3.3. T2 (A and B) and ADC (C and D) 

maps of a single slice from a representative 

animal at 24-hours and 7-days post injury 

respectively. At 24-hours homogenous hyper-

intensity pixels were observed through-out the 

lesion ROI in T2 map (A) when compared to 

ADC map (C); R1 (Sub-region-1) and R2 (Sub-

region-2) corresponds to the hypo- and hyper- 

intensity region respectively. At 7-days only 

hyper-intensity pixels were observed in both T2 

(B) and ADC (D) maps. 8 
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 Interestingly, when the sub-regions were compared with the control values at 24 

hours post injury, a significant difference was observed only for the distal (hyper-

intensity) region R2 (1.3 ± 0.12 x10
-3

, P <0.0001), indicating the ADC values in the 

proximal region R1 approximately equal to that of normal ADC values, Figure 3.4(B). 

This deviation in the ADC pixel intensity values between the regions highly correlated 

with the observed deviation in the FA values at 24-hours. It was observed that the mean 

FA values were significantly higher (P <0.05) in the proximal region (0.56 ± 0.13) 

compared to that of the distal region (0.41 ± 0.11), Figure 3.4(C). Using registration 

techniques, the sub-regions R1 and R2 obtained from the 24-hour ADC maps were 

transferred on to the day-7 T2, ADC and FA maps. It was observed that the day-7lesion 

area significantly overlaps with the proximal region (overlap ≈ 72%) and the T2 and FA 

pixel values in the distal region reduce to control values, marking the resolution of the 

injury (Figure 3.4(C)). For mean values of sub-regions refer Table 3.2. 

Table 3.2. Mean values of T2, ADC and FA parameter maps with statistical comparisons 

between contralateral region of interest, sub-region 1 and sub-region 2 at 24-hours and 

day-7 post TBI. 2 

 
Contralateral  

ROI 

vs. Sub-region 1 (R1) 

(Proximal) 

vs. Sub-region 2 (R2) 

(Distal) 

T2 

24-hours 52.0 ± 1.67 78.2 ± 8.67, (P<0.0001) 79.0 ± 5.65, (P<0.0001) 

day-7 49.4 ± 2.41 59.1 ± 7.95, (P<0.01) 54.4 ± 6.56 

ADC 
 (x10

-3
) 

24-hours 0.83 ± 0.04 0.73 ± 0.12 1.30 ± 0.12, (P<0.0001) 

day-7 0.81 ± 0.07 1.12 ± 0.18, (P<0.002) 0.94 ± 0.11, (P<0.05) 

FA 

24-hours 0.60 ± 0.05 0.56 ± 0.13 0.41 ± 0.11, (P<0.002) 

day-7 0.60 ± 0.13 0.58 ± 0.06 0.64 ± 0.08 
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Histological Results 

 The GFAP positive stain significantly increased in the ipsilateral hemisphere as 

compared to the contralateral hemisphere for both 24-hours and day-7 time points 

(Figure 3.5(A), and 3.6). The reactive astrocytes, marked by GFAP, were activated on 

24-hours of injury and sustained through day-7 post TBI. There was no significant 

increase in the ipsilateral hemisphere from 24-hours to day-7 time point. However, the 

CD68 activation significantly increased at day-7 as compared to 24-hours (Figure 3.5(B), 

3.6) near the injury site. The histological evidence of tissue damage correlated well with 

the observed MR signal changes. The MRI at day-7 detected the brain contusion and 

edema as markedly increased T2, ADC and decreased FA values. This observation was 

associated with the regions of cavity or the grossly visible tissue loss on the histological 

sections (Figure 3.6). 

Figure 3.4. Quantitative T2 (A), ADC (B) and FA (C) values of the sub-regions (R1 

and R2) and contralateral ROIs observed at the 24-hours and 7-days post injury. Note 

that compared to 24-hours, at 7-days no significant differences were observed between 

the Sub-region 2 and contralateral ROI for quantitative T2, ADC and FA values, 

indicating the resolution of the injury within the distal region (p > 0.5). 9 
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Figure 3.6. Representative IHC images of injured rat brain (A) 24 hours and (B) 7 days 

post injury. The zoomed in view of ipsilateral and contralateral hemisphere are shown in 

A(i), B(i) and A(ii), B(ii) respectively. Color code: GFAP in red, CD68 in green and 

DAPI in blue. 10 

Figure 3.5.(A) Quantification of GFAP (astrocyte marker) positive GFAP expressed as a 

percentage of the total brain tissue. *p<0.05, ***p<0.0001; (B) Quantification of CD68 

(microglia/macrophage marker) positive CD68 expressed as a percentage of the total 

brain tissue. ***p< 0.0001. 11 
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3.4  Discussion 

 

The present study examined the temporal evolution of quantitative MR signal 

changes from 24-hours to 7-days post TBI (induced by controlled cortical impact) and 

then was compared to histology evaluations. The MR imaging techniques provide 

potential information on the viability of the brain tissue. The quantitative mapping 

technique especially DTI is very sensitive to micro-structural alterations and has been 

found to reveal TBI lesions that are not visible by conventional MRI [24, 28, 34, 35]. 

In the present study, regions of hyper-intensities were observed at 24-hours after 

trauma on the T2 map images with a 50% increase above the normal T2 values. These 

hyper-intense T2 pixel values were mainly associated with the hemorrhage caused due to 

the mechanical impact during trauma [36, 37]. Contrasting to T2 maps, pixel values on 

ADC maps were associated with hyper- and hypo-intensities within the same TBI lesion. 

The decrease in ADC values reflects decreased water diffusion which was mainly 

associated with the cytotoxic edema; where cytotoxic edema is caused by the disruption 

in the cellular metabolism impairing the functioning of the sodium (Na) and potassium 

(K) ion pumps in the glial cell membrane leading to cellular retention of Na and water 

where water mobility is restricted [25]. This was highly supported with the observed FA 

results depicting high anisotropy values in the hypo-intensity regions of the ADC (Figure 

3.4(C)). Interestingly, these hypo-intensity regions were observed near the contusion site, 

which eventually deteriorated into the injury observed on 7-days, with significantly 

higher T2 and ADC values compared to control. In contrast, the pixels in the hyper-

intensity region at 24-hour ADC maps resolved to normal values by 7-days as observed 

in all the quantitative parametric maps (Figure 3.4). There was approximately a two-fold 
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increase in the ADC and an 80% increase in the T2 values compared to control on day-7 

lesion sites. This observed increase in T2 and ADC at 7-days was found to be associated 

with a decrease in tissue cellularity (disrupted cells) and cavity formation, usually 

attributed to vasogenic edema [25, 26]. These areas of hyper-intensity give a good 

correlation with the lesion size as obtained from the histology. The T2 hyper-intensity and 

early decrease in ADC observed at 24-hours followed by increased diffusion by 7-days 

post trauma was in agreement with other experimental MRI findings [27, 38-40]. 

The cerebral hemodynamic abnormality after TBI generally includes three stages: 

hypo perfusion (during the day of the injury), hyperemia (during the next 3 days), and 

vasospasm (lasting the next 2 weeks/thereafter) [41]. The activation of microglia and 

astrocytes and the infiltration of circulating monocytes can be important sources of toxic 

substances including proinflammatory cytokines [42]. I hypothesize that the activated 

astrocytes may be a critical contributing factor for elevation in T2 at 24-hours (Figure 

3.1, 3.5(A)). Increased edema and breakdown of the extracellular matrix occur due to 

increased vascular permeability, leads to progressive vascular injuries [42]. Microglial 

cells marked by CD68 get fully activated where the tissue damage is extensive. Focal 

TBI typically results in the rapid accumulation of microglia/macrophages within the 

cortical penumbra, with activated microglia surrounding the cortical contusion, which is 

thought to promote tissue degeneration and repair [43]. In a study on inflammation after 

ischemia, it was found that at early times the CD68 was confined in the border zone of 

the lesion and at day-7 it increased greatly, and invaded the ischemic core [44], which 

correlates well with our study (Figure 3.5(B), 3.6). I also hypothesize that expression of 

CD68 plays a role in the elevation in ADC on day-7 (Figure 3.1, 3.5(B)). 
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4. MRI STUDY OF BRAIN TUMOR 

4.1  Introduction 

 Dendritic cells (DC) are the master regulators of the adaptive immune response in 

the human body, and much effort has been focused upon the development of these 

specialized cells to be used in stem cell based vaccine therapy. In the 17 years that have 

elapsed since the publication of the first DC vaccine therapy trial, much progress has 

been made toward the goal of using DC as a legitimate vaccine therapy approach for the 

treatment of cancers. A clinical review of 38 Glioblastoma (a type of brain tumor) 

patients by Wheeler et al. found that patients vaccinated with DC prior to chemotherapy 

exhibited significantly longer two year overall survival (OS) (42%) than patients treated 

with either vaccination or chemotherapy alone (8%). Additional review of 20 DC-based 

vaccine trials for the treatment of brain tumors also has indicated some potential 

successes. Cho et al. demonstrated that addition of DC vaccine pulsed with protein, to 

standard of care therapy for newly diagnosed Glioblastoma doubled OS to 31.9 months 

(n=18) in comparison to contemporary controls (n=16) who did not receive the vaccine 

(OS = 15.0 months). Ardon et al. vaccinated 45 pediatric patients with relapsed brain 

tumors including three patients with Atypical Teratoid Rhabdoid Tumor (ATRT). The 

patients with relapsed ATRT had responded most favorably to DC vaccination. Two were 

alive at 34.1 and 52.6 months of follow-up and the third had died of disease at 50.5 

months post vaccination. Hence, stem cell vaccine therapy has engendered a certain 

degree of optimism in the ability of certain brain tumors to be treated by these methods.  
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4.2  Materials and Methods 

4.2.1 Tumor Model 

 A mouse glioma model using mouse glioma GL261 cells was tested in this study. 

A total of 12 female, C57/Black6 mice were used. The mice were divided into 2 cohorts 

with 6 mice in each cohort. In order to administer the ‘DC vaccine’ to the mice cohorts, 

20 additional mice were used to collect spleen and bone marrow for dendritic cell (DC) 

differentiation. These 20 mice were euthanized by standard procedure using isoflurane 

and by cervical dislocation. The spleen and bone marrow were harvested separately in 

Hank’s Balanced Salt Solution (HBSS). The adherent cells were then differentiated to 

form mature DCs by addition of mouse cytokines such as GM-CSF (50ng/mL), IL-4 

(10ng/mL), IL-1β (10ng/mδ), Iδ-6 (15ng/mL), TNF-α (10ng/mδ), PGE2 (1µg/mδ). The 

mature DCs were further primed and made into a ‘DC vaccine’ by adding RNA and cell 

lysate from the mouse glioma cells (GL261). Standard IACUC approved protocols were 

followed for all mice. All mice cohorts were monitored for weight or behavior changes 

and imaged to assess tumor burden on day 3 and then every subsequent week after tumor 

cells implantation. All 12 mice were implanted with 500,000/5µL GL261 cells cranially 

after administering approved anesthetic and antibiotic in order to induce tumor growth. 

For the treatment, 3 mice from cohort 2 received a single dose of 5-Azacytidine drug and 

the rest 3 mice received 3 doses of the same drug every week. The remaining 6 mice from 

cohort 1 were used as an untreated control group. All animals were sacked according to 

approved protocols after tumor burden was assessed and imaged. 
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4.2.2 Measurements and Analysis 

 The mice brain MR images were acquired using ParaVision software on a Bruker-

Biospin 7-Tesla system with 30 cm bore magnet, (BrukerBiospin, BNI, AZ). A volume 

transmitter coil (72 mm) was placed inside the magnet for radio frequency excitation, and 

a rat brain radio frequency (RF) surface coil was used for signal detection. Animals were 

placed at prone position on a nonmagnetic holder with the teeth bar as an aid to fix the 

head position. During image acquisition, anesthesia was maintained using isoflurane (1.5 

%), respiration was monitored using SAII system and rectal temperature was maintained 

at 37
o
C. Each animal was imaged at day-3 post tumor implantation, followed by an 

interval of 7-days till they lost a significant body weight (after that they were sacrificed). 

Diffusion Tensor Images (DTI) were acquired using a spin-echo pulse sequence with 

repetition time (TR) of 3750 msec and echo time (TE) of 18 msec. Diffusion encoding 

gradients were applied in six directions using a b-value of 1500s/mm
2
. The obtained DTI 

images were then used to generate Apparent Diffusion Coefficient (ADC) and Fractional 

Anisotropy (FA) maps in MATLAB (R2012b, The MathWorks, MA) using equations I 

and II (refer Chapter 1). T2–Weighted images were obtained during the same imaging 

session and at the same neuro-anatomical level as the diffusion tensor images, using a 

multislice–multiecho pulse sequence with TR = 4768msecat28 echo points or TE's of 10, 

21, 31, 42, 52, 63, 74, 84, 95, 105, 116, 126, 137, 148, 158, 169, 179, 190, 200, 211, 222, 

232, 243, 253, 264, 274, 285, 296. The single and multi-parametric T2 maps were then 

obtained for each slice with the same field of view and matrix size as T2 weighted 

images. 
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 All the images were acquired with the following acquisition parameters: number 

of slices, 15; slice thickness, 0.5 mm; interslice distance, 0.5 mm; field of view 30 x 30 

mm; matrix dimensions 128 x 128 (resulting in 150 x 150 µm in plane resolution).  

For the analysis, the mice brains were automatically segmented by k-means 

clustering and level-set evolution algorithms followed by a manual visual check. To 

analyze and quantify the MR parameters three region of interest's (ROI's) were selected 

on the T2 weighted MR image slices, where a visual evidence of the tumor was observed. 

The ROI-1 outlined the tumor region observed on the T2-weighted image slices for each 

mice and it was obtained using region-growing algorithm (a region-based image 

segmentation method). The ROI-2 outlined 

the peri-tumoral region which was 2-

pixelswide (300 micrometers) surrounding the 

tumor ROI. The ROI-3 was used as a control 

and it outlined the contralateral hemisphere. 

All the ROI's were visually checked and it 

was made sure that the CSF (Cerebrospinal 

Fluid) was excluded (Figure 4.1). The 

obtained ROI's were then saved and 

transferred to corresponding slices ofT2,ADC, 

FA and M0maps and then the mean, standard 

deviation, and number of pixels for each ROI 

was extracted. The pooled means (the average 

Figure 4.1. T2 weighted single image 

slice from a representative animal 

depicting the three region of interests 

outlined for the analysis. ROI-1 (within 

red), ROI-2 (between yellow and red), 

and ROI-3 (within green) outlined the 

tumor, peri-tumoral and contralateral 

regions respectively.12 
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of all the pixel intensities inside the selected ROIs, computed across all the slices) were 

obtained for individual parametric map, for each slice and for each mice. Calculation of 

the tumor volumes was computed by multiplying the number of voxels inside the tumor 

ROI of each slice by the slice thickness and resolution of the image. All analysis and 

quantification of MR data was performed using MATLAB (R2012b, The MathWorks, 

MA).To compare in-between cohort variations of the quantitative MR parameters, the 

pooled means obtained for tumor and peri-tumoral regions for each mice within the same 

cohort were averaged and then plotted against the averaged pooled means of the 

corresponding cohort's contralateral ROI's, which was used as a control. 

4.2.3 Statistics 

 All results were expressed as mean ± SD. The differences in tumor volumes and 

variations in MR signal intensities in-between the region of interests and different cohorts 

were analyzed by one-way ANOVA, followed by the Students t-test. All statistical 

analyses were performed using Prism v6 (GraphPad, CA). The level of significance was 

set at P < .05. 

4.3  Results 

 Cohort 1 with no vaccine control 

 In Cohort 1 (n=6) no tumor was identified in any of the mice at 3-days post tumor 

implantation. Out of 6 mice, only one mice survived till 31 days post tumor implantation. 

The tumor volume and quantitative MR values of that mice were not considered for 

statistical comparisons and the related values are represented in Figure 4.2(A) and 

Figure 4.3(1A-4A) respectively. Follow-up imaging showed an increase in tumor 
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volumes where tumors significantly grew after 17 days (0.35 ± 0.26 at day-10, 4.28 ± 

2.57 at day-17 vs. 34.83 ± 23.7 at day-24, P <0.001, <0.002 respectively), Figure 

4.2(A). High intensity pixels were observed at the lesion (tumor) site on the T2, ADC and 

M0-fraction parameter maps at day-10, 17, and 24 and were found significantly different 

when compared to the mean values of contralateral and peri-tumoral regions of respective 

maps on corresponding days (Table 4.1). Only T2 values at day-10 showed a significant 

change between peri-tumoral and contralateral regions (P <0.002).The deviation in FA 

values between the regions of interest were comparable with the observations in T2 and 

ADC maps. Low intensity pixels were observed at the lesion site on the FA maps at post 

day-3 images, but were found significantly different from the mean values of 

contralateral and peri-tumoral region only at day-24 (Contralateral: 0.44 ± 0.04, Peri-

tumoral: 0.51 ± 0.04 vs. Tumor: 0.36 ± 0.03, P <0.01, <0.0001 respectively). 

Interestingly, at day-24 the FA mean values of peri-tumoral region was found 

significantly higher compared to the contralateral region (P <0.03), Figure 4.3. 

Figure 4.2. Tumor volumes observed for (A) cohort-1 and (B) cohort-2 (Cage-1 and 

Cage-2). 13 
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Table 4.1. Mean values of T2, ADC and M0-fraction parameter maps with statistical 

comparisons between Tumor, Contralateral and Peri-tumoral regions of interest for 

Cohort 1. 3 

 Tumor vs. Contralateral vs. Peri-tumoral 

T2 

day-10 51.7 ± 1.65 49.9 ± 1.04, (P<0.03) 47.1 ± 1.00, (P<0.0001) 

day-17 61.7 ± 4.57 49.4 ± 0.96,(P<0.0001) 49.9 ± 1.67, (P<0.0001) 

day-24 64.1 ± 2.27 49.9 ± 0.97,(P<0.0001) 51.7 ± 1.12, (P<0.0001) 

ADC 

day-10 0.70 ± 0.03  0.61 ± 0.02, (P<0.0001) 0.59 ± 0.02, (P<0.0001) 

day-17 0.81 ± 0.06 0.60 ± 0.01, (P<0.0001) 0.62 ± 0.02, (P<0.0001) 

day-24 0.88 ± 0.05 0.61 ± 0.02, (P<0.0001) 0.65 ± 0.04, (P<0.0001) 

M0- 

Fraction 

day-10 0.09 ± 0.03 0.05 ± 0.00, (P<0.002) 0.05 ± 0.00, (P<0.002) 

day-17 0.20 ± 0.04 0.04 ± 0.01, (P<0.0001) 0.05 ± 0.01, (P<0.0001) 

day-24 0.22 ± 0.03 0.05 ± 0.01, (P<0.0001) 0.08 ± 0.03, (P<0.0001) 

 

Compared with day-10 a significant increase in T2, ADC and M0 lesion mean values were 

observed at day-17 and at day-24 (T2: P <0.0001, <0.0001, ADC: P <0.001, <0.0001, 

M0-fraction: P<0.0001, <0.0001respectively), however only ADC lesion mean values at 

day-24 were significantly different compared to day-17(P < 0.05). In peri-tumoral region 

a significant increase in T2 mean values was observed at day-17 and day-24 compared 

with day-10 (P<0.003, <0.001 respectively) and also day-24 T2 mean values were found 

significantly higher than the day-17 (P <0.05). ADC and M0-fractionperi-tumoralmean 

values showed a significant increase at day-24 compared to day-10 (ADC: P<0.01; M0-

fraction: P<0.01) and only M0-fraction peri-tumoral mean values were significantly 

increased by day-24 compared with day-17 (P< 0.05). Table 4.1. 
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Cohort 2 with vaccine control 

 Cohort-2 (n=6) was divided into two sub-groups based on the applied doses of 

drug for the treatment. Cage-1 (n=3) mice were given only a single dose of vaccine at 

day-3 post tumor implantation where as cage-2 (n=3) mice were given 3 doses of vaccine 

every week post tumor implantation. Compared to cohort-1 the cohort-2 (cage-1 and 

cage-2) mice survived for only 17 days post tumor implantation and no tumor was 

detected at day-3. A significant increase in tumor volumes was observed at day-17 

compared to day-10 only for cage-2 (P <0.002), and the tumor volumes at day-10 and 

day-17 were comparable between the two cages (Table 4.3), Figure 4.2(B). Significantly 

high intensity pixels were observed at the lesion site compared to the contralateral and 

peri-tumoral regions on the T2, ADC and M0-fraction parameter maps at day-10 and day-

17 for both the cages (Table 4.2). Only T2 values of cage-1 mice at day-10 showed a 

significant change between peri-tumoral and contralateral regions (P <0.05). On the 

cage-1 and cage-2 FA parameter maps, significantly low intensity pixels were observed 

at the lesion site compared to contralateral and peri-tumoral regions at day-10 and day-17 

(Table 4.2). Besides, the peri-tumoral FA values were significantly higher compared to 

contralateral region at day-10 for cage-1 (P <0.006) and at day-17 for cage-2 (P <0.02). 

Further, a significant increase in cage-2 peri-tumoral FA values was observed from day-

10 to day-17 (P <0.05), Figure 4.3(3B). 

Statistical comparisons between cohort 1 and cohort 2 

 The tumor volumes of cohort-1 were significantly lower from both the cage-1 and 

cage-2 compared at day-17 (Table 4.3). Also, a significant change was observed between 

cohort-1 and cage-2 ADC mean values at day-17 (P <0.05).   



40 

Table 4.2. Mean values of T2, ADC and M0-fraction parameter maps with statistical 

comparisons between Tumor, Contralateral and Peri-tumoral regions of interest for  

Cohort 2. 4 

 Tumor vs. Contralateral vs. Peri-tumoral 

T2 

(Cage-1) 

day-10 52.9 ± 0.72 48.5 ± 0.67, (P<0.0001) 46.3 ± 0.82, (P<0.0001) 

day-17 61.7 ± 3.75 48.4 ± 0.66, (P<0.0001) 50.2 ± 0.31, (P<0.0001) 

T2 

(Cage-2) 

day-10 54.0 ± 2.15 48.3 ± 0.48, (P<0.0001) 47.9 ± 0.53, (P<0.0001) 

day-17 63.9 ± 4.16 48.8 ± 0.29, (P<0.0001) 51.7 ± 2.05, (P<0.0001) 

ADC 

(Cage-1) 

day-10 0.74 ± 0.02 0.59 ± 0.00, (P<0.0001) 0.57 ± 0.01, (P<0.0001) 

day-17 0.81 ± 0.05 0.56 ± 0.02, (P<0.0001) 0.59 ± 0.03, (P<0.0001) 

ADC 

(Cage-2) 

day-10 0.73 ± 0.03 0.60 ± 0.01, (P<0.0001) 0.60 ± 0.01, (P<0.0001) 

day-17 0.88 ± 0.03 0.59 ± 0.01, (P<0.0001) 0.62 ± 0.07, (P<0.0001) 

M0 - 

Fraction 

(Cage-1) 

day-10 0.15 ± 0.02 0.04 ± 0.00, (P<0.0001) 0.04 ± 0.01, (P<0.0001) 

day-17 0.24 ± 0.08 0.04 ± 0.00, (P<0.0001) 0.06 ± 0.02, (P<0.0003) 

M0 - 

Fraction 

(Cage-2) 

day-10 0.11 ± 0.02 0.04 ± 0.01, (P<0.0001) 0.04 ± 0.01, (P<0.0001) 

day-17 0.23 ± 0.06 0.05 ± 0.01, (P<0.0001) 0.06 ± 0.02, (P<0.0003) 

FA 

(Cage-1) 

day-10 0.30 ± 0.02 0.36 ± 0.00, (P<0.03) 0.44 ± 0.02, (P<0.0001) 

day-17 0.33 ± 0.03 0.41 ± 0.03, (P<0.02) 0.48 ± 0.03, (P<0.0003) 

FA 

(Cage-2) 

day-10 0.33 ± 0.04 0.39 ± 0.02, (P<0.03) 0.41 ± 0.04, (P<0.006) 

day-17 0.34 ± 0.04 0.42 ± 0.06, (P<0.03) 0.50 ± 0.01, (P<0.0002) 

 

Table 4.3. Statistical comparisons between Cohort 1 and Cohort 2 (cage 1 and cage 2) 

mean tumor volumes. 5 

 Cohort 1 vs. Cage 1 vs. Cage 2 

day-10 0.35 ± 0.26 1.33 ± 0.55 1.56± 0.39 

day-17 4.28 ± 2.58 21.65 ± 14.3, (P<0.0002) 23.53 ± 4.48, (P <0.0001) 
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Figure 4.3. Quantitative T2: 1(A), 1(B); ADC: 2(A), 2(B); FA: 3(A), 3(B) and M0-

fraction: 4(A), 4(B) mean values of the contralateral, peri-tumoral and tumor ROIs 

observed at the post day-3 tumor implantation for the two cohorts. Data presented here 

as mean ± std (*P < 0.05). Note, Cohort 2 is divided into two groups based on the doses 

of drug applied, represented as Cage 1 (single dose) and Cage 2 (multiple doses).14 
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4.4  Discussion 

 Accurate assessment of tumor response to treatment for each individual patient is 

crucial in determining whether to continue the current therapy or switch to an alternative 

therapy [45-47]. The measurements in tumor volume changes play an important role 

during the assessment and is a critical component for the evaluation of therapeutic 

efficacy as it is often related to patient survival length. Further, the MR parameters T2, 

ADC and FA are shown to be a sensitive marker of tumor response to anticancer 

treatments [48-50]. 

 In the present study, The MRI results did not show any significant changes in 

between the two treated cohorts with no reduction in tumor volumes compared to the 

control group. The future studies would be focused on issues regarding the optimal dose 

for the application of DC vaccine. 

 

 

 

 

 

 

 

 



43 

5. CONCLUSIONS 

 In this final chapter, the main conclusions of the present thesis project are 

summarized, and some perspectives of this and related work are outlined. Finally, 

directions for future studies are proposed.  

5.1. Conclusions 

 In the current MRI study of animal models with severe TBI, significant variations 

in the parametric T2, ADC and FA values was noticed at the initial scan of 24 hours as 

well as at the follow-up scan 7-days post injury. T2 values tended to be hyper-intense at 

both the time points representing hemorrhage caused due to the mechanical impact during 

trauma at 24-hours and cavity formation associated with disrupted cells on day-7. DTI 

parameters: the ADC and FA values were critical in distinguishing the injury region at 

24-hours into cytotoxic and vasogenic edema and in outlining the injury regions resolving 

to normal values by day-7. While interpretation of non-invasive imaging data should be 

performed cautiously due to inherent methodological limitations (such as resolution, 

sample size and lack of exact histological correlates). DTI might provide a prospective 

tool for the in vivo tracking of micro-structural reorganization during recovery from TBI. 

Together, these quantitative MRI analyses of micro- and macro-structural changes using 

conventional T2 and DTI techniques complemented each other in this study of severe 

TBI. Serial application of these MRI techniques would enable the monitoring of the 

extent and distribution of biological changes post TBI. In addition to it, DTI may capture 

biological severity at the micro-structural level and provide prognostic information 

during the early chronic face of TBI. This project contributed to the evolving research 
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area of advance imaging of TBI in animal models, providing new insight into the 

possibilities of measuring brain changes quantitatively following TBI.  

 The second project of this thesis is a pilot study on employing dendritic cell based 

vaccinations and Azacytidine drug in mice glioma model. In this synergistic study the 

applied dosage of drug did not show any significant deviation in quantitative MR 

parameters between treated mice and controls. Further, an increase in volumetric tumor 

growth was observed in the treated cohorts compared to the control, and the treated mice 

survived approximately one week less than the controls. The biological reasons for this 

increased tumor growth rate in the treated cohorts is still unclear and the interpretation is 

outside the scope of the current quantitative multi-parametric MR study.     

5.2. Future Directions 

 For future studies of TBI, a study with more number of animals are required with 

different injury severity models, especially in order to determine the diagnostic and 

potential of DTI technique in TBI. Prospective studies with serial imaging at multiple 

time points (more than 2) would be extremely critical for following micro- and macro-

structural brain changes over time and in translating the results to clinical situations. The, 

injury severity measurements should be included in the study as it is critical for 

classification of experimental TBI models into mild, moderate and severe levels. Finally, 

DTI should be acquired with higher resolution and with more diffusion-encoding 

directions than in the present study allowing tractography based analysis. The 

tractography measurements would be of particular interest and presumably unravel more 

aspects of TBI patho-physiology. With the rapid advancements in the field of imaging, 
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detailed characterization of injury following TBI, and insights into the cellular and sub-

cellular levels during recovery, may ultimately lead to therapeutic improvements.  

 The next stage of the tumor study presented here would be concentrated on the 

issues regarding the optimal dose for the application of DC vaccine with an intention to 

restrict or delay the tumor growth rate in the treated cohorts compared to the control. The 

quantifiable MR parameters may provide valuable insights into the patho-physiology and 

treatment response of the tumor. Finally, the image segmentation and registration 

algorithms developed during this project can be directly applied for analysis and 

quantification of further imaging data that would be acquired during this larger treatment 

study.  
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APPENDIX I 

MATLAB IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS 
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K-MEANS ALGORITHM 

function Mask = k_means(Input_Image, k) 

 

Input_Image_Vector = Input_Image(:); 

 

% Avoiding zero and negative values present within the image 

Input_Image_Vector = Input_Image_Vector-min(Input_Image_Vector)+1; 

 

% Computing histogram of the image 

Image_Histogram = zeros(1, max(Input_Image_Vector)); 

 

for iterate1 = 1:length(Input_Image_Vector) 

 

 Image_Histogram(Input_Image_Vector(iterate1)) =... 

  Image_Histogram(Input_Image_Vector(iterate1)) + 1; 

 

end 

 

Pixel_Values =find(Image_Histogram); 

 

Centroids =(1:k) * (max(Input_Image_Vector)/(k+1));% Initialize centroids 

k_mean_Vector = zeros(1, max(Input_Image_Vector)); 

 

while(1) 

 

% Iterations continues till stopping criterion has not met   

 

Initial_Centroids = Centroids; 

 

% Computing the distance of each pixel from the centroids and  

% obtaining the minimum. assigning the pixel value to a label  

% k where k is the index of the nearest centroid. 

 

for iterate2 = 1:length(Pixel_Values) 

 

            Distances = (Pixel_Values(iterate2) - Centroids).^2;  

Minimum_Distance = find(Distances == min(Distances)); 

k_mean_Vector(Pixel_Values(iterate2)) = Minimum_Distance(1); 

 

end 
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for iterate3 = 1:k % Updating centroids 

 

            Temp = find(k_mean_Vector == iterate3); 

Centroids(iterate3) = sum(Temp.*Image_Histogram(Temp)) / ... 

sum(Image_Histogram(Temp)); 

 

end 

% Stop iterations if Initial Centroids equals to updated centroids 

if Initial_Centroids == Centroids 

 break, 

end 

 

end 

 

    Mask = zeros(size(Input_Image));% Generating mask for the image 

 

for rows = 1:size(Input_Image,1) 

for cols = 1:size(Input_Image,2) 

 

            Distances = (Input_Image(rows, cols) - Centroids).^2;  

Minimum_Distance = find(Distances == min(Distances)); 

 

Mask(rows, cols) = Minimum_Distance(1); 

 

end 

end 

 

figure, imshow(Mask, [1 k]) 

end 
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REGION GROWING ALGORITHM 

function Final_Mask = Region_Growing(InputImage, InitialSeeds, InputThreshold) 

  

% InputImage : Input Image  

% InitialSeed : Initial seeds for the algorithm. 

    % InputThreshold : Set appropriate threshold  

    % Final_Mask : This variable holds the output mask. 

 

InputImage = double(InputImage); 

Final_Mask = zeros(size(InputImage)); % Create Mask with zeros 

 

% Neighbors pixel positions for the input seed 

NeighbourCheck = [-1,-1; -1,0; -1,1; 0,-1; 0,1; 1,-1; 1,0; 1,1]; 

 

    [MaxRows, MaxCols] = size(InputImage); 

 

for runs = 1:size(InitialSeeds, 1) 

 

        Mask = zeros(size(InputImage)); 

InitialSeed = InitialSeeds(runs,:); % Input Seed for region growing 

        Threshold = InputThreshold; 

 

% Initializing region mean equal to the input seed. 

RegionMean = InputImage(InitialSeed(1), InitialSeed(2)); 

Threshold  =RegionMean.*Threshold; 

 

InSeed_Row = InitialSeed(1); % Row coordinate of input seed 

InSeed_Col = InitialSeed(2); % Column coordinate of input seed 

 

NewSeeds = [];  % Variable "NewSeeds" hold the new input seeds. 

        Temp = 1;       % Temporary Variable 

 

% Region Growing Algorithm begins 

while (1) 

 

            Check = size(NewSeeds,1); 

for runs2 = 1:Check+Temp 

 

if ~isempty(NewSeeds) 

InSeed_Row = NewSeeds(runs2,1); 

InSeed_Col = NewSeeds(runs2,2); 

else 

Temp = 0; 

end 
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% Checking the neighboring positions for the input seed 

for runs3 = 1:8 

 

InRow = InSeed_Row + NeighbourCheck(runs3,1); 

InCol = InSeed_Col + NeighbourCheck(runs3,2); 

 

if InRow> 0 &&InRow<= MaxRows&&... 

InCol> 0 &&InCol<= MaxCols&&... 

Mask(InRow, InCol) ~= 1 

 

if InputImage(InRow, InCol) <= (RegionMean + Threshold) &&... 

InputImage(InRow, InCol) >= (RegionMean - Threshold)  

 

% Updating Mask 

Mask(InRow, InCol) = 1; 

NewSeeds(end+1, :) = [InRow, InCol];  %#ok<AGROW> 

 

% Recomputing region mean with updated mask. 

RegionMean = sum(InputImage.*Mask)/sum(Mask); 

end 

 

end 

end 

end 

NewSeeds(1:Check,:) = []; 

 

if isempty(NewSeeds) 

break; 

end 

 

end 

% Region Growing Algorithm Ends 

 

% Fill holes in the output generated mask. (Optional) 

Final_Mask = Final_Mask + imfill(Mask, 'holes'); 

Final_Mask(Final_Mask> 0) = 1; 

 

end 

 

Final_Mask = imfill(Final_Mask , 'holes'); 

 

end 
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LEVEL SET ALGORITHM 

function Contour_Image = Level_Set_Segmentation(InputImage, InitialMask, Timestep,  

       Alpha, Num_Iterations) 

 

** Note: The following algorithm is referred from a code written by Chunming Li.  
 

% ------ Input Variables ------ % 

% InputImage: Input Image  

% Initial Mask: Initial contour, to be selected inside or outside the region that has to be  

 segmented 

% Timestep: Determines the speed of curve evolution.(Relatively large time steps can  

  be used in the finite difference scheme to reduce the number of iterations  

 and computational time, while ensuring sufficient numerical accuracy.) 

% Alpha:  A nonzero Alpha value gives additional extra force to drive the motion of  

 the contour. (For weaker boundaries in the image a lower value of alpha is  

 recommended.) 

% Num_Iterations : Number of iterations performed to update the Level Set Function. 

 

% Computes the gradient of the smoothed image in X and Y direction. 

    [X_Gradient, Y_Gradient] = gradient(InputImage);                            

temp = X_Gradient.^2 + Y_Gradient.^2; % Computes magnitude of the gradient.                                          

Edge_Idicator_Function = 1 ./(1 + temp);   
 

Initial_LevelSet_Function = -2*(InitialMask); 

Initial_LevelSet_Function(Initial_LevelSet_Function == 0) = 2; 

Contour_Image = Initial_LevelSet_Function; 

 

    Epsilon  = 1.5;                                                   

    Lambda  = 5;                                                    

Myu = 0.2 / Timestep; 

 

% It computes the X and Y gradient of Edge indicator function.     

    [gx, gy] = gradient(Edge_Idicator_Function);                             

 

for n = 1:Num_Iterations 

 

        [ContourImage_Xgradient,ContourImage_Ygradient] = gradient(Contour_Image); 

% phi = Contour_Image 

        s=sqrt(ContourImage_Xgradient.^2 + ContourImage_Ygradient.^2);              

% magnitude(grad(phi)) 

 

% It evaluates [grad(phi) / magnitude(grad(phi))] 

Nx=ContourImage_Xgradient./(s+1e-10);                                       

Ny=ContourImage_Ygradient./(s+1e-10);                       
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% computes divergence 

        [in1_Xgradient, ~] = gradient(Nx); 

        [~, in1_Ygradient] = gradient(Ny); 

        Curvature = in1_Xgradient + in1_Ygradient;   

 

[ContourImage_Xgradient, ContourImage_Ygradient] = gradient(Contour_Image); 
        temp1 = sqrt(ContourImage_Xgradient.^2 + ContourImage_Ygradient.^2);         
        temp2 = (temp1>=0) & (temp1<=1);                                        
        temp3 = (temp1>1);    

 

Double_Well_Potential_FOD= ... 
temp2 .* ( sin(2*pi*temp1) / (2*pi) ) + temp3 .* (temp1-1) ;                     

Double_Well_Potential_FOD(Double_Well_Potential_FOD==0) = 1;        

temp1(temp1 == 0) = 1;                                                               

DPS = Double_Well_Potential_FOD ./ temp1;                                       
 
        Temp1 = DPS .* ContourImage_Xgradient - ContourImage_Xgradient; 
        Temp2 = DPS .* ContourImage_Ygradient - ContourImage_Ygradient; 
% computes divergence 
        [in1_Xgradient1, ~] = gradient(Temp1); 
        [~, in1_Ygradient2] = gradient(Temp2); 
        Temp3 = in1_Xgradient1 + in1_Ygradient2;  
 
% Evaluates Distance Regularization term. 
Distance_Regulization_Term = Temp3 + 4 * del2(Contour_Image); 

  

temp11 = (1/(2*Epsilon)) * ( 1 + cos(pi * Contour_Image/Epsilon) );          

        temp21 = (Contour_Image<= Epsilon) & (Contour_Image>= -Epsilon); 

Dirac_Contour_Image = temp11 .* temp21;  

 

Area_Term = Dirac_Contour_Image .* Edge_Idicator_Function;                          

Edge_Term = Dirac_Contour_Image .* (gx.*Nx + gy.*Ny) + ... 

 Dirac_Contour_Image .* Edge_Idicator_Function .* Curvature ;              

 

Contour_Image = Contour_Image + Timestep * (            ... 

    Myu* Distance_Regulization_Term+ ... 

     Lambda* Edge_Term +                  ... 

           Alpha * Area_Term ); 

end 
 

% At the end of for loop, the Contour_Image variable holds the updated mask for the  

image.  
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B-SPLINE IMAGE REGISTRATION ALGORITHM 

 

[x1,y1,x2,y2] = InitialSeeds(Input_Image, Reference_Image, n); 

 

%  Input Variables description 

%Input_Image : It is the input image which has to be registered according to the 

 reference image. 

%Reference_Image : It is the reference image. 

% n: It is the distance between the landmarks (pixels) on the circumference of the i

 input image. (n can any value above 1, best if it is set to a value between 2 and 5) 

 

%  Output Variables description 

% x1, y1, and x2,y2 are the landmarks for the Input and Reference images 

respectively.  

 

 

% Following functions "point_registration" and "bspline_transform" are written  

%by Dirk-Jan Kroon and it is available freely on web under the title "B-spline Grid, 

%Image and Point based Registration". 

 

        [O_trans, Spacing]=point_registration(size(Input_Image),[x2(:) y2(:)],... 

       [x1(:) y1(:)],3); 

 

Ireg = bspline_transform(O_trans,Input_Image,Spacing,3); 

 

%  Displaying input, registered and reference images.  

figure, 

subplot(1,3,1),imshow(Input_Image, [0 max(Input_Image(:))]);  

title('Input Image'); 

 

subplot(1,3,2),imshow(Ireg, [0 max(Ireg(:))]);  

title('Registered Image'); 

 

        subplot(1,3,3),imshow(Reference_Image, [0 max(Reference_Image(:))]); 

title('Reference Image'); 
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function [x1,y1,x2,y2] = InitialSeeds(R1, R2, n) 

 

    R1e = R1-double(bwmorph(R1, 'erode')); R2e = R2-double(bwmorph(R2, 'erode')); 

ImSize = size(R1); 

 

ColInit = ImSize(2); 

while (1) 

if max(R1e(:,ColInit))==0, ColInit = ColInit - 1;else ColNum = ColInit; break, end 

end 

 

RowInit = ImSize(1); 

while (1) 

if max(R1e(RowInit, ColInit))==0, RowInit = RowInit - 1; 

else RowNum = RowInit; break, end 

end 

    R1_RowNum = RowNum;  R1_ColNum = ColNum; 

 

ColInit = ImSize(2); 

while(1) 

if max(R2e(:,ColInit))==0, ColInit = ColInit - 1;else ColNum = ColInit; break, end 

end 

 

RowInit = ImSize(1); 

while(1) 

if max(R2e(RowInit, ColInit))==0, RowInit = RowInit - 1; 

else RowNum = RowInit; break, end 

end 

 

    R2_RowNum = RowNum;  R2_ColNum = ColNum; 

    contour1 = bwtraceboundary(R1e, [R1_RowNum, R1_ColNum], 'W', 8, ... 

length(nonzeros(R1e)),'counterclockwise'); 

    contour2 = bwtraceboundary(R2e, [R2_RowNum, R2_ColNum], 'W', 8, ... 

length(nonzeros(R2e)),'counterclockwise'); 

 

    Cout1 = contour1(1:n:end, :); 

for i1 = 1:length(Cout1) 

        i2 = round(i1*(length(contour2)/length(Cout1)));Cout2(i1,:) = contour2(i2,:);   

end 

   

Im1 = R1e; for n = 1:length(Cout1), Im1(Cout1(n,1), Cout1(n,2)) = 4;end 

Im2 = R2e;for n = 1:length(Cout2), Im2(Cout2(n,1), Cout2(n,2)) = 4;end 

 

    x1 = Cout1(:,1);    y1 = Cout1(:,2);    x2 = Cout2(:,1);    y2 = Cout2(:,2); 

 

end 
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