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ABSTRACT 

Organic light emitting diodes (OLEDs) are a promising approach for display 

and solid state lighting applications. However, further work is needed in 

establishing the availability of efficient and stable materials for OLEDs with high 

external quantum efficiency’s (EQE) and high operational lifetimes. Recently, 

significant improvements in the internal quantum efficiency or ratio of generated 

photons to injected electrons have been achieved with the advent of phosphorescent 

complexes with the ability to harvest both singlet and triplet excitons. Since then, a 

variety of phosphorescent complexes containing heavy metal centers including Os, 

Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the 

field has focused on iridium based complexes. Platinum based complexes, however, 

have received considerably less attention despite demonstrating efficiency’s equal to 

or better than their iridium analogs. In this study, a series of OLEDs implementing 

newly developed platinum based complexes were demonstrated with efficiency’s or 

operational lifetimes equal to or better than their iridium analogs for select cases.  

In addition to demonstrating excellent device performance in OLEDs, 

platinum based complexes exhibit unique photophysical properties including the 

ability to form excimer emission capable of generating broad white light emission 

from a single emitter and the ability to form narrow band emission from a rigid, 

tetradentate molecular structure for select cases. These unique photophysical 

properties were exploited and their optical and electrical properties in a device 

setting were elucidated.   

Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly 

efficient white device employing a single emissive layer exhibited a peak EQE of 
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over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, 

y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, 

with a narrow band emission into a microcavity organic light emitting diode 

(MOLED), significant enhancement in the external quantum efficiency was 

achieved. The optimized MOLED structure achieved a light out-coupling 

enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 

34.2%. In addition to demonstrating a high light out-coupling enhancement, the 

microcavity effect of a narrow band emitter in a MOLED was elucidated.  
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1 INTRODUCTION 

1.1 Overview of Organic Electronics 

1.1.1 The Electronic Age 

We live in an electronic world. The number of internet connected electronic 

devices alone far exceeds the number of people on the planet with 10 billion 

connected devices as of 2012 and a forecasted 28 billion connected devices by the end 

of 2020 according to an IMS report.1 The average American household has ~24 

electronic products,2 which combined can require up to 150 embedded 

microprocessors fabricated from various semiconductor chip manufacturing facilities 

to operate.3 In addition to household products, as many as 40 embedded 

microprocessors are required to run the various electrical components of the average 

automobile. Thus, given the typical household has on average 2.3 vehicles according 

to an estimate in 2008, the average household relies on several hundred 

microprocessors to function.3 In the health field, electronic devices have become an 

essential component in acquiring, processing, and interpreting data to assist in 

medical decisions. In short, our economic, health, and national security, rely on and 

are positively impacted by this world of electronics that we have created.  

While electronics have solved many problems and is, in large, responsible for 

the progression of mankind, they have also been the cause of serious negative 

environmental impacts as well as some societal impacts in regards to their 

manufacturing, use, and disposal. Disposal of electronic devices in particular has 

become a serious concern in recent years.  
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According to the US Environmental Protection Agency (EPS), approximately 

142,000 computers and 416,000 mobile devices are recycled or thrown away every 

day2  and up to 2.4 million tons of electronic waste hit US landfills each year.2  

Harmful contaminants such as arsenic, barium, beryllium, cadmium, chromium VI , 

lead, lithium, mercury, nickel, selenium, americium, among others are basic 

materials used to fabricate these electronic devices and have been known to cause 

serious medical problems including diseases of the skin, decrease nerve conduction 

velocity and cause lung cancer, damage to heart, liver, kidney, spleen, and other 

physiological damages to the human body. Unfortunately these electronic devices 

often are not disposed of properly and enter garbage disposal sites that are unfit to 

safely contain these hazardous elements and prevent them from entering into the 

environment.4 In addition to environmental concerns, the demand for rare minerals 

to fabricate electronic devices has become the driving force for financing civil 

violence by armed groups in the Democratic Republic of the Congo (DRC) or 

adjoining countries. These minerals mined under conditions of human right abuses, 

properly termed conflict minerals, are purchased by semiconductor corporations. 

While companies are aware of the problems associated with conflict minerals, such 

as Intel Corporation which has recently published a paper outlining their goal to 

achieve a Conflict-free supply chain, conflict minerals are still being purchased and 

used to fabricate electronic devices.  

1.1.2 A New Era of Electronics 

Organic semiconducting materials are a promising solution to many of the 

issues surrounding traditional materials used to fabricate electronic devices and 

may offer a more eco-friendly and affordable approach to growing our electronic 
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world. Organic materials exhibit an immense variation in structure and properties 

creating untold potential and novel functionality. Additionally, organic materials 

can be synthesized or processed with relative ease and have the ability to be 

deposited on a variety of low cost substrates such as glass, plastic or metal foil by 

organic chemical vapor deposition, organic thermal evaporation, or spin coating.5 

These favorable properties make the fabrication of electronic devices based on 

organic materials much simpler and potentially more cost effective compared to 

crystalline, inorganic semiconductor devices.  

1.1.3 Mechanical, Optical and Electrical Properties of Organics 

Solids based on organic semiconducting compounds are typically soft and 

fragile whereas inorganic semiconducting compounds are typically hard and brittle. 

These properties are strongly related to the intermolecular interactions. While 

organic compounds are typically bonded together by weak van der Waals forces that 

decrease as 1/R6, where R is the intermolecular spacing, inorganic semiconductors 

are bonded by strong covalent bonds whose strength falls off as 1/R2. Although, the 

soft and fragile nature of organic semiconducting compounds are less robust when 

exposed to adverse environmental agents such as moisture and corrosive agents 

compared to inorganic semiconductors, the mechanical properties of organic 

semiconductors has also opened the door to an array of innovative fabrication 

methods impossible with inorganic semiconductors. In particular, many processes 

can be directly printed through use of contact with stamps or by ink-jets and other 

solution based methods. Such ability allows for continuous roll-roll processing which 

is an attractive feature for large scale manufacturing.  



4 

 

  Among the most attractive properties of organic materials for electronic 

devices is the ability to be tailored to optimize a particular function, including 

luminescent properties, absorption characteristics, charge mobility, energy level 

position, etc. This also leads to a large variety in the electrical and optical properties 

of organic semiconductor materials with potentially more flexibility in electronic 

device design. These properties depend strongly on the atomic structure and bonding 

properties of the material which can be broadly classified into three categories: small 

molecules, polymers, and biological materials. Small molecules refer to compounds 

with a well-defined molecular weight and further broken down into classification as 

monomers, dendrimers, and oligomers. By comparison, polymers are long-chain 

molecules containing an indeterminate number of molecular repeat units. Biological 

materials are complex, consisting of proteins and strands of DNA. Currently, there 

are no clear demonstrations of electronic applications based on biological materials, 

however reports of some applications such as DNA-based computing which uses the 

tendency of nucleotide bases to bind (hybridize) in preferred combinations to do 

computation are beginning to emerge. 6 Although, the properties of small-molecules 

and polymer organic thin films in organic electronics differ in regards to thin-film 

deposition and device preparations, there are in general more similarities than 

differences in both their electronic and optical properties. The excitonic state 

dominates the optical properties in both small molecules and polymers.7 An exciton 

is a molecular excited state for which an electron/hole pair can recombine to 

generate either light (a radiative process) or heat (a non-radiative process). An 

exciton is “mobile” within the solid organic film and migrates in the film via a 

hopping mechanism; from molecule to molecule for small molecule films or along the 

polymer backbone for polymeric films. The most common exciton species in organic 
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electronics is the tightly bound Frenkel exciton with a binding energy of ~1eV that is 

generally localized on a single molecule at a time.8 In special cases such as highly 

ordered molecular crystals, more weakly bound charge-transfer (CT) excitons are 

found in the optical spectra. These CT excitons are typically spread over one or more 

neighboring molecules with a binding energy of ~10-100meV (much lower than 

Frenkel states). By comparison, inorganic semiconductors form Wannier-Mott type 

excitons with yet smaller binding energies of typically only a few meV and therefore 

are rarely observed.   

 Similar to the exciton, the mobility of charge carriers (electrons or holes) in 

solid amorphous organic films typically occurs via a hopping mechanism between 

molecular sites or from chain to chain for small molecules and polymers, 

respectively. More specifically, holes hop along the highest occupied molecular 

orbital (HOMO) of the molecules and electrons hop along the lowest occupied 

molecular orbital (LUMO) of the molecules, which can be considered the organic 

analogs of the valence band and conduction band found in inorganic semiconductors, 

respectively. As a consequence of a hopping mechanism found in the charge carrier 

transport of organic semiconductors compared to band carrier transport found in 

inorganic semiconductors, carrier mobility’s (μ) of organic semiconductors tend to be 

low compared with inorganic semiconductors. Typical room temperature carrier 

transport mobility values for organic semiconductors are between 10-6 to 1 cm2V-1s-1 

compared with 102-104 cm2V-1s-1 for inorganic semiconductors.9,10 In organic 

materials with a high degree of order, such as molecular crystals, carriers hop 

between closely spaced molecules (crystalline stacks) as opposed to hopping across 

individual molecular sites, and consequently tend to have higher mobility’s than the 
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typical amorphous organic films. Mobility’s of molecular crystals as high as 1 cm2V-

1s-1 has been reported at room temperature.10-12 One approach to achieving a high 

degree of order in organic thin films and improve mobility is by the deposition 

(generally by spinning) of polymers onto substrates prepared by rubbing or other 

‘direction-inducing’ processes, which  can lead to alignment of chains, thus 

increasing the charge mobility relative to random disordered films.13 Another 

approach to reducing disorder in organic films is by templating ordered epitaxy-like 

growth from crystalline substrates that impose their lattice order onto the adsorbed 

organic films.14 However, this approach is limited to special cases involving only a 

few organic materials and substrates that may not necessarily be ideal for use in the 

given application. 

  More recently, advances in organic materials with long range order have 

been made. In particular, graphene, which contains carbon atoms densely packed in 

a regular sp2-bonded atomic-scale hexagonal honey comb lattice, represents a whole 

new class of organic materials for use in organic electronics. The strong covalent 

bonds and highly ordered crystal like structure make graphene an excellent 

electrical conductor with mobility’s as high as 200,000 cm2V-1s-1. 15 Additionally, 

graphene has an unusual band structure and its experimental realization presents 

tantalizing opportunities to study phenomena ranging from exotic quantum Hall 

states to the Klein paradox or tunneling of relativistic particles. 15 The full benefits 

of graphene in organic electronics have yet to be realized, but offers a taste of the 

novelty and potential organic materials may offer our future world of electronics.  
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1.1.4 The Rise of a New Era 

While the field of organic electronics has been actively studied by physicists 

and chemists for the past 50 years, only recently has organic electronics transitioned 

from the domain of “pure research” into practical application. For many years, 

organic semiconductor based devices fell far short of the stability and performance of 

devices based on “conventional” inorganic semiconductors such as silicon or gallium 

arsenide. A significant discovery in the mid-1980s changed the situation 

dramatically with the demonstration of an efficient, low voltage, thin film organic 

light emitting diode (OLED) by Ching Tang and Steven van Slyke. 16 By fabricating 

an organic heterostructure light emitting device composed of thin, amorphous 

organic materials, Tang and van Slyke achieved an increase in the luminescence 

quantum efficiency by approximately two order of magnitude compared to existing 

light emitting devices based on organic materials at the time with an efficiency of 

1% at an operating voltage less than 10V (Figure 1a).16 The electroluminescence 

occurs as a result of injecting charges (i.e. holes and electrons) into the organic 

semiconductor materials, Alq3 and Diamine, where they meet and recombine to form 

photons. By comparison, state of the art OLEDs today consists of complex multilayer 

systems. Figure 1b shows a schematic of a common multilayer OLED architecture. 

In this configuration, holes are injected from a conductive anode into the highest 

occupied molecular orbital (HOMO) of the hole-transport layer (HTL) and electrons 

are injected from a conductive cathode into the lowest unoccupied molecular orbital 

(LUMO) of the electron-transport layer (ETL) where they migrate towards the 

center and into the emissive layer (EML). Typically a thin hole injection layer (HIL) 

and electron injection layer (EIL) is implemented into the device to improve charge 
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injection from the metallic anode and cathode, respectively, into the organic layers.16 

An electron blocking layer (EBL) and hole blocking layer (HBL) are typically used to 

confine charge carriers and excitons in the EML. For example, by inserting a 

material with a shallow LUMO energy level between the HTL and EML an energy 

barrier for electron transfer is formed, preventing leakage of electrons into the HTL. 

By comparison, by inserting a material with a deep HOMO energy level between the 

ETL and EML an energy barrier for hole transfer is formed, preventing leakage of 

holes into the ETL. In the event the triplet energies of the EBL and HBL materials 

are higher than the triplet energies of the EML material, an energy barrier for 

exciton transfer is formed.  

 

Figure 1. (a) The first thin film organic light emitting diode (OLED) based on a 

hetrostructure device architecture. The OLED was built on a glass substrate coated 
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with a transparent and conducting anode of indium tin oxide. The diamine and Alq3 

organic layers were capped with an opaque, reflective metal cathode composed of a 

Mg:Ag alloy. In this structure, holes are injected from the anode into the diamine 

layer and electrons are injected from the cathode into the Alq3 layer. The diamine 

was selected as the so called hole transporting layer based on earlier studies of 

photoconductors which found this class of materials to have stable conductivity 

properties. In this hetrostructure device the electrons and holes can effectively 

recombine at the diamine/Alq3 interface with minimal electron injection into the 

diamine layer and some hole penetration into the first 100 Angstroms of Alq3.16 (b) 

Energy diagram of a common multilayer OLED. The multilayer OLED typically 

consists of an hole injection layer (HIL), a hole-transport layer (HTL), an electron-

blocking layer (EBL), an emissive layer (EML), a hole-blocking layer (HBL), an 

electron-transport layer (ETL), and the electron-injection layer (EIL) between a 

conductive anode and cathode. The top of the boxes for each layer indicate the 

energy level of the highest occupied molecular orbital (HOMO) and the bottom of the 

boxes for each layer indicate the energy level of the lowest unoccupied molecular 

orbital (LUMO). The dashed lines represent the triplet energy states of the organic 

materials in the case of phosphorescent materials.16 

Although, this particular demonstration by Tang and VanSlyke was still 

insufficient to compete with the existing technologies at the time, it nevertheless 

demonstrated the potential of organic materials for solid state electronic devices and 

laid the foundation for a new generation of optoelectronic devices. Since then a wave 

of organic optoelectronic devices have been reported.  In particular, the organic solar 

cell or organic photovoltaic (OPV) has received great attention from the scientific 

community in recent decades. Since the report of a two-layer organic solar cell with 

a 1% power conversion efficiency from Tang and VanSlyke,1,7 OPVs consisting of 

small molecules, polymers, and dye-sensitized solar cells have experienced 

significant improvements in performance. In particular, the dye-sensitized solar cell 

has achieved power conversion efficiencies as high as 11%. 18 Although the efficiency, 

stability, and strength of OPVs remain far below their inorganic counterparts, OPVs 

are a promising prospect for a renewable energy source due to their low cost, light 

weight, and mechanical flexibility. According to authorities in the field, if the OPV 

power efficiency can be raised be a factor of 2-3, then OPVs will become the 
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mainstay of solar energy harvesting. The thin film transistor (TFTs) based on 

organic materials has also been heavily studied in recent years.19, 20 The growing 

interest in organic thin film transistors is largely attributed to the ability to deposit 

on a room temperature surface which enables inexpensive, lightweight, flexible, and 

mechanically rugged plastic substrates for uses such as simple circuits on plastic 

cards or flexible displays. Other organic optoelectronic devices such as organic 

lasers, 21, 22 organic sensors, 23-25 and organic memories, 26, 27, have also begun to 

emerge.  

1.2 A Bright Future for Display with OLEDs 

Thus far, the most successful optoelectronic device in the realm of organic 

electronics is the organic light emitting diode (OLED). In particular, OLEDs have 

proven to be successful in high quality passive and active matrix displays.  Several 

major international corporations such as Samsung Mobile Display, LG Display, 

Novaled Phillips, and General Electric are participating in the OLED display 

technical contest.  

 

Figure 2. A selective history of OLED products from Samsung between 2010 to 2013. 

The images, from left to right, include the Samsung Ice Touch, the Samsung s8500 

Phone (top) with the Samsung Galaxy Note Phone (bottom) with touch functionality 

based on super AMOLED technology, a comparison of OLED (Samsung Wave) and 

liquid crystal display (LCD) technology (Nokia X6), the Samsung Galaxy Tab 1 with 
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a 7” display, the Samsung Galaxy S3 with a 4.8” display, the Samsung 55” OLED TV 

(top) with the curved Samsung 55” OLED TV (bottom), and a “sneak peak” at the 

future of OLED display with a flexible smartphone prototype from Samsung. 28 

Samsung has been the leader in bringing OLED technology into commercial 

displays. In 2010, Samsung released the Samsung IceTouch with a 2” full-color 

transparent OLED display.  Later that year, they released several products, 

including the s8500 Wave Phone with a 3.3” display, the Galaxy Note Phone with a 

5.3” display and HD resolution (1280x800), and the Galaxy-Tab with a 7” display, 

based on their new Super AMOLED displays which included an integrated touch 

function with sensors just 0.001mm resulting in better images and greater visibility 

in direct sunlight. In 2012 they launched the Galaxy S3 with a 4.8” display along 

with their first OLED TV with a 55” display. Since that release over 50 million 

Galaxy S3 phones have been sold.29 In 2013, they pushed the limits further by 

creating a prototype curved OLED TV with a 55” display which they demonstrated 

during their CES presentation. According to Samsung, the curved design provides 

more depth to the image for a more life-like viewing experience. Samsung is 

planning to bring this flexible display technology to the mobile market as well with 

an expected delivery date at the end of 2014. Figure 2 summarizes the 

aforementioned OLED based products released by Samsung the past 3 years.  From 

the first 2” color display for mobile devices to the 55” flexed display for an OLED TV, 

significant progress has been made in a short span of time demonstrating the 

potential of organic electronics. Though impressive OLED technologies have come to 

fruition in recent years, the field is still in its infancy and has only begun to mature.  

Several key features have made the organic light emitting diode an attractive 

alternative to other display technologies on the market. These key features include 
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(1) emissive pixels, (2) thickness, (3) weight, (4) flexibility, (5) response time, (6) 

efficiency, and (7) color gamut. Liquid crystal displays (LCDs), which have 

traditionally dominated the display market, contain an inherent source of 

inefficiency as they rely on selectively filtering a backlight to produce red, green, and 

blue light for display. By comparison, OLED pixels can emit directly blue, green, and 

red colors resulting in effective utilization of emitted light. In addition to effective 

utilization of light emission, excellent viewing characteristics including a higher 

viewing solid angle with approximately a lambertian emission pattern (constant 

luminance over all viewing angles in the forward direction) can be achieved with an 

OLED display. Since OLEDs are fabricated from organic thin films typically no more 

than 100nm thick, the display thickness is approximately only limited by the 

substrate thickness. Although displays are easier to fabricate on rigid substrates 

such as glass, advances in the fabrication of OLEDs on plastic substrates is 

progressing which will not only make for a thinner display but a more rugged and 

robust display as well that is less sensitive to cracking from mechanical stresses. 

Additionally, displays built on a plastic substrate will be considerably lighter 

resulting in untold possibilities such as mounting displays as large as 200 inches to 

walls with ease or even wearable displays built into clothing. Another attractive 

feature is the quick response time attributed to the short radiative lifetime of 

organic phosphors ranging between couple of nanoseconds for fluorescent materials 

to ~500 nanoseconds for phosphorescent materials. 30 One of the most attractive 

features of OLED technology is their potential for high efficiency.  Low power 

displays are most important in mobile device applications where an extended 

battery life is highly desired. Organic phosphors are also capable of producing a 

large range of colors for displays with a high color gamut. A high color gamut is most 
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critical in photography. Thus, naturally, on-camera monitors with an OLED display 

have gained popularity in recent years. In particular, the AC7-OLED on-camera 

monitor exhibits a much larger color gamut than traditional LCD displays used in 

many of the common mobile displays as in the iPhone 5.31   

Although significant improvements in display utilizing OLEDs have been 

achieved, continued effort in reducing the power consumption of OLEDs is needed. 

With the increased sales of smart phones and other mobile devices, a long battery 

life is desired, which can be extended to a great extent by reducing the power 

consumption of the display. Thus, further improvements in the device efficiency are 

desired and possible with continued research and development in organic materials 

and device architectures for OLEDs.  

1.3 Efficient Lighting with Unique Design Potential  

1.3.1 OLEDs for Lighting 

While organic light emitting diodes have been widely developed for flat-panel 

displays, only recently has the efficiency and stability of white OLEDs risen to the 

point that they can be considered for solid state lighting applications. Considering 

white organic light emitting diodes (WOLEDs) have the potential of being 

ecofriendly, affordable, and efficient with low power consumption and high color 

quality, WOLEDs may someday replace existing lighting solutions and become the 

dominant source of solid state lighting.   
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1.3.2 The Need for Efficient Lighting   

Solid state lighting (SSL) occupies a large portion of the world’s energy 

demand which can be relieved to some extent by improving the power efficiency of 

SSL sources. This energy demand is particularly high in the United States. 

According to a 2010 DOE report, the U.S. consumes 700 TWh of electricity annually 

on lighting, constituting approximately 19% of the total U.S. electricity use.32 A 

breakdown of the average daily operating hours and annual electricity usage for the 

residential, commercial, industrial, and outdoor sectors is summarized in Table 1. 

 

Table 1. Summary of Lighting Market Characterization in 201032 

  

Lamps 

Average Daily 
Operating 

Hours 
Wattage 
per Lamp 

Annual Electricity Use 
(TWh)   

Residential 5,811,769,000 1.8 46 175 

Commercial  2,069,306,000 11.1 42 349 

Industrial 144,251,000 13 75 58 

Outdoor 178,374,000 11.7 151 118 

 

A summary of the various lighting technologies and their electrical 

consumption is outlined in Table 2. Approximately 22% of the current lighting 

market relies on incandescent lamps to produce light.32 Incandescence is a very old 

(>100 years) and inefficient technology (<5% of the electrons are converted to 

photons). While in recent years, many of the incandescent lighting sources have 

been replaced by the more efficient fluorescent lamps, fluorescent lamps contain 

harmful components such as mercury. Thus, SSL technologies that are eco-friendly, 

affordable, and efficient are desired and are needed in order to compete with the 
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incandescent bulb and the fluorescent lamp. In particular, inorganic light emitting 

diodes and organic light emitting diodes have drawn attention in recent years as 

they have the potential to be as efficient as fluorescent lamps without containing 

harmful pollutants such as mercury.  

 

 

Table 2: U.S. Lighting consumption by sector and Lamp type in 2010 32 

 

 

1.3.2 Requirements for Lighting and Current Trends in Lighting Technology 

General illumination requires high quality light and can be described by 3 

parameters: (1) The lumen output or luminous flux (lm), (2) the color rendering 

index (CRI), and (3) the correlated color temperature (CCT).  

The lumen is a measurement of the brightness of a source or the power 

emitted from a source as interpreted by the human eye. The typical lumen output for 
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a 100-W incandescent lamp is ~1,500 lm or for a standard office fixture containing 

four fluorescent lamps behind a diffuser is ~5,000 lm.33 CRI is an arbitrary unit of 

measurement that compares the ability of a light source to reproduce the true color 

of objects being lit by the source. Incandescent lamps have CRI values close to 100, 

whereas monochromatic sources such as low-pressure sodium lamps have CRI 

values close to 0. A source with a CRI of <70 is considered unacceptable for interior 

illumination applications. The CCT is the temperature of a blackbody spectrum 

closest to the color of the light source. The CCT for incandescent light bulbs is ~2700 

K and is often referred to as “warm light”. Sources such as LEDs with a down 

converting phosphor or fluorescent lamps often exhibit a higher CCT, so called “cool 

light”, as it contains more high energy blue emission. Typically, warm light is more 

desirable to the consumer than cool light even if cool light sources can achieve a 

higher CRI. More on the metrics used to quantify solid state lighting will be 

discussed in Chapter 2.  

Table 3 provides a summary of the efficiency, lifetime and color quality of 

existing light technologies and represents the best data found in literature as of 

2008. Based on the data outlined in table 3, organic light emitting diodes can clearly 

achieve sufficient lighting quality for general illumination with CRI values greater 

than 90 and moderate power efficiency.  However, affordability might be a more 

challenging goal for organic SSL. Two factors must be considered when comparing 

affordability of various SSL technologies: (1) purchasing cost and (2) operating cost. 

In some cases, the purchasing cost may be high, but the reduction in power usage 

and higher operational lifetime may suede consumers to pay more up front to save 

cost in the long-term. For example, inorganic LEDs are gaining increased popularity 
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in recent years in spite of a higher purchasing cost compared with incandescent 

bulbs. Significant improvements in luminous efficacy of inorganic LEDs over the 

past four decades has reduced the cost from $20/lm to about 0.01$/lm as of 2008.33 

Although, a 1,500-lm (100-W) incandescent bulb can be purchased for less than 

$0.50, representing a cost per lumen of <$0.03, the higher efficiency and operational 

lifetime already make inorganic LEDs more competitive than their purchasing price 

would suggest.33  

Table 3. A Summary of Lighting Technologies33 

Light Source  Efficiency (lm/W) CRI Lifetime (h) 

Incandescent Lamp 10-15 >90 1000 

Fluorescent Lamp 40-80 70 10,000 

High-Pressure Sodium Lamp 140 <10 10,000 

Light Emitting Device (LED) >80 80 >10,000 

Organic Light-Emitting Device (OLED) 65 >90 10,000 

 

Compared to inorganic LEDs for SSL, OLEDs are far behind in terms of 

affordability. Assuming a WOLED  with a power efficiency of 64 lm/W34 was 

manufactured into a 1-ft2 panel operating at a brightness of 4,000 cd/m2, then the 

luminous flux would be ~1,200 lm (assuming lambertian emission). Thus, a 

reasonable cost point for organic SSL to compete in the current market is ~ $10.33  

Based on existing organic SSL materials and designs, such a cost point is not 

feasible. Among the most costly aspects of organic SSL technology is the substrate. 

Typically high quality glass with little impurity defects and a high surface quality is 

needed to grow efficient devices and minimize impurity diffusion into the device 

resulting in reduced operational lifetimes. While such high quality of glass is not an 
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issue for use in OLED displays to remain cost competitive, organic SSL cannot 

accommodate such a costly substrate and remain cost competitive with existing 

efficiencies and operational stabilities. Very low-cost float glass might be an option; 

however, methods that address the aforementioned issues need to be considered. 

Similarly, plastic is too expensive considering it also must be high quality; including 

dimensional stability, a glass transition temperature, and extremely low moisture 

permeability. Additionally, innovations in manufacturing are needed for organic 

SSL to become affordable. Batch coating techniques including vacuum sublimation 

or solution-based methodologies are unlikely to achieve the high through-put needed 

to be cost effective. Roll-roll coating which is a continuous and fast coating process, 

may lead to the high through-put needed, however, high purity devices free of 

contaminants necessary to yield high operational lifetimes are difficult to achieve 

without a vacuum system based fabrication process. Thus, if OLEDs are to compete 

with growing SSL technologies such as inorganic LEDs, either improvements in 

efficiency or reductions in manufacturing costs will be needed.  

 1.3.3 White Lighting Architectures in Organic SSL 

One common approach to achieving organic white-light devices with a broad, 

white-light spectrum is by using multiple dopants; namely a combination of single-

color sub-elements typically of either (1) red, green, and blue or (2) blue and orange 

(Figure 3). This can be achieved either by combining multiple dopants in a single 

layer or by doping a single dopant in multiple layers. While this approach is capable 

of achieving high quality white light, it requires a either additional layers or 

complicated co-depositions, resulting in a potentially higher manufacturing cost. 

Thus, simpler designs with fewer layers are desired. An alternative to combining 



19 

 

several sub-elemental colors to achieve a broad, white-light spectrum is by using a 

blue or ultraviolet device in conjunction with a down converting phosphor (Figure 3). 

While a blue device with a down converting phosphor design is simple with a 

potentially more cost effective manufacturing process than WOLEDs containing 

several sub-elemental colors, it has an inherent limitation in efficiency as the stokes 

shift in the down-converting process is a source of energy loss. In this thesis a novel 

architecture for generating high quality white light will be discussed (Chapter 3), 

which does not exhibit the inherent limitations of the traditional approaches of 

generating white light. 

 

Figure 3. Some common WOLED architectures including combining multiple 

dopants in a single layer or by doping a single dopant in multiple layers  composed of 

(1) red, green, and blue dopants (left) or (2) blue and orange dopants (middle) as well 

as (3) a blue device with a down-converting phosphor (right).  

1.3.4 Current Challenges in Materials and Device Architectures of Organic SSL 

 As mentioned in the forgoing sections, organic semiconducting materials are 

in need of further development to achieve the efficiency required for organic SSL to 
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become a competitive choice for general illumination. More specifically, materials 

that enable devices with close to 100% internal quantum efficiency, wherein one 

photon is generated for every one electron injected with no barriers or losses to 

charge injection and transport, are desired. Thus, the field currently depends 

heavily on materials scientists and chemists to develop and synthesize new organic 

semiconducting materials to meet these high efficiency standards. In addition to 

high efficiency, electrochemically stable materials with high device operational 

lifetimes are needed.  

Since the report of Tang and VanSlyke, with an estimated 1 photon 

generated for every ~25 electrons using an organic bilayer sandwiched between an 

anode and cathode, significant improvements in this ratio of generated photons to 

injected electrons has been achieved with a development in materials. One of the 

most influential factors for reducing this ratio is the advent of phosphorescent 

organic semiconductor materials.35 As discussed in earlier sections, the optical 

properties of organic semiconductors are dominated by strongly bound excitons. The 

total spin of the exciton can form either a zero net spin (singlet excitons) or a non-

zero net spin (triplet excitons) depending on the spin states of the constituent 

electron and hole. Only excitons with a net spin of zero can radiatively recombine 

without violating quantum mechanical spin conservation rules. Random optical or 

electrical stimulation yields only 25% of excitons with opposite spin and thus only 

25% of the generated excitons can recombine to form light, known as fluorescence. 

The remaining 75% of the excitons are in high-spin “triplet” states, and direct 

recombination to the ground state is forbidden by quantum mechanical conservation 

rules. Thus, such materials, known as fluorescent materials, significantly limit the 
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device efficiency. Recently, it has been realized that by incorporating a heavy metal 

ion into an organic small molecule,36 the metallic character can couple with organic 

ligands,37 resulting in a metal-ligand charge-transfer state. Excited states in these 

cases retain enough metallic characteristics to remove the spin-forbidden nature of 

the radiative relaxation of the triplet state, resulting in nearly 100% radiative 

recombination of generated excitons. Such materials, known as phosphorescent 

materials, have the ability to harvest both singlet and triplet excitons in OLEDs 

compared to fluorescent materials, which have the ability to only harvest singlet 

excitons. The advent of phosphorescence was a giant leap forward towards highly 

efficient OLEDs approaching 100% internal quantum efficiency. 

 Since the advent of phosphorescent organometallic complexes with the ability 

to harvest triplet excitons, highly efficient WOLEDs with >20% have been 

reported.34 However, further work is needed in developing semiconducting materials 

for white light electroluminescence. In particular, highly efficient phosphorescent 

emitters that are electrochemically stable with long device operational lifetimes and 

high color purity are desired. With regards to phosphorescent emitters for white 

OLEDs, blue emitters have been a major focus of the field in recent years as blue 

OLEDs typically have lower efficiencies and device operational lifetimes than red 

and green. Consequently, the efficacy of RGB WOLEDs as well as WOLEDs 

implementing a down-converting phosphor depends strongly on the properties of the 

blue emitter contained therein and is typically the bottle neck in either or both the 

efficiency and stability of WOLEDs based on those architectures (Figure 3). While 

stable blue fluorescent emitters can be used to fabricate WOLEDs with high 

operational lifetimes, the device efficiencies remain low.38 Conversely, while 
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WOLEDs with high device efficiencies have been fabricated implementing blue 

PhOLED, the operational lifetime remains low.39 Thus, the development of 

phosphorescent blue emitters that are both electrochemically stable and highly 

efficient are of paramount importance.  

  In addition to the need for improvements in the availability of efficient and 

stable phosphorescent emitters in OLEDs, improvements in device architectures are 

also needed. Although high device efficiency has been realized with the development 

of efficient charge transporting and charge injecting materials40-42 combined with the 

advent of the aforementioned phosphorescent heavy metal complexes, which are 

capable of harvesting 100% of electrogenerated excitons, 36 the external quantum 

device efficiency remains limited to 20-30%, 34 as most of the photons generated do 

not contribute to the out-coupled power as a result of optical losses inside of the 

device. These optical losses include surface plasmon polaritions (SPPs),43, 44 

absorption at the metal electrode surface,45 and modes trapped by total internal 

reflection due to the mismatch of the refractive indices between the organic layers 

(n~1.6-1.8)/ITO anode (n~1.9) and glass (n~1.5) (waveguide modes) and the 

mismatch of refractive indices between glass and air (n~1) (substrate modes).46-49 

Thus, device architectures that improve out-coupling efficiency are highly desired 

and provide the greatest potential for improvements in OLED efficiency and 

methods that improve the light out-coupling efficiency, or fraction of light emitted 

from the device to total generated light, need to be considered. There have been a 

number of methods reported that enhance the external quantum efficiency (EQE) of 

OLEDs and overcome the light out-coupling limitation. In particular, methods that 

release light trapped by total internal reflection include implementing a high 



23 

 

refractive-index (n 1.8) substrate, creating surface roughness on the top of the 

substrate to allow more light to scatter out of the substrate,50 implementing an 

ordered microlens array at the top of the substrate to eliminate the critical angle 

condition at the substrate/air interface,51 growing a periodic two-dimensional (2D) 

photonic crystal to couple the guided waves to the radiation mode in the direction 

normal to the device surface,52 or through the design of a microcavity OLED 

(MOLED).53, 54 Thus, the development of the aforementioned methods combined with 

the development of novel materials and emitters for highly efficient devices may 

provide a route towards affordable and ecofriendly SSL sources.  

1.3.5 Designer Lighting with OLEDs 

Although, Organic SSL remains more costly at the present, the market for 

unique designer lighting with unique features may offer organic SSL a competitive 

edge in spite of higher cost. These unique features include emission over a large area 

with the potential for dual-sided emission from either straight or curved surfaces 

allowing for novel lighting designs difficult and often impossible to achieve based on 

current SSL technologies. Additionally, organic SSL is compact, light, and 

consequently more rugged than typical SSL technologies. Such unique properties 

provide designers untold possibility for lighting including lighting that is color-

tunable, transparent, ultrathin, flexible, and wearable, just to name a few, resulting 

in an array of new niche lighting markets with far reaching applications. Thus, the 

market for such niche lighting may provide organic SSL the momentum needed to 

bring volumes up and subsequently bring cost down possibly to the point wherein 

OLEDs become competitive for general illumination.  
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1.4 Thesis Outline 

 The foregoing sections outlined the need of further development and 

improvements in device efficiency and stability of OLEDs for applications in both 

display and solid state lighting. This thesis endeavors to demonstrate improvements 

in device efficiency and stability by using novel device architectures and/or novel 

organic materials. More specifically, the ensuing chapters will focus on the use of 

platinum based complexes for efficient and stable phosphorescent OLEDs. Chapter 2 

will describe the materials characterization methods and equipment as well as detail 

the device fabrication tools and methods. Chapter 3 will explore some highly 

efficient excimer based WOLEDs. Chapter 4 will explore a possible route towards 

both stable and efficient blue and white excimer based OLEDs. Chapter 5 will 

discuss a stable red OLED based on a phosphorescent platinum complex with high 

operational lifetimes. Chapter 6 will discuss the light out-coupling limit based on 

conventional OLED architectures and a possible route towards improved light out-

coupling efficiency with a microcavity OLED (MOLED) design. Chapter 6 will also 

develop an optical model designed to assess microcavity effects in a MOLED. Based 

on the optical model developed, a design of experiment (DOE) will also be outlined 

with the intent of optimizing the light out-coupling efficiency with respect to light 

out-coupling reflectivity and organic thickness in a DBR/metal microcavity 

structure. Chapter 7 will compare the theoretical and experimental light out-

coupling enhancement of MOLEDs utilizing the optimized structure developed in 

the DOE of chapter 6 with a highly efficient Pt-based green-emitting complex 

exhibiting narrow band emission (FWHM=18nm in solution of DCM). This thesis 

will conclude with a full summary and outlook on the work demonstrated.  
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2 METHODS AND CHARACTERIZATION 

2.1 Lighting Standards and Definitions 

 In physics light is often quantified in terms of radiant energy (radiant flux, 

radiant intensity, radiance, etc.). In the field of organic electroluminescence from 

organic light emitting diodes, light is typically quantified in terms of luminous 

energy (luminance flux, luminous intensity, luminance, etc.). These definitions will 

now be defined.  

 The luminance flux, Φ, is the flow of radiant energy as perceived by the 

human eye. The eye responds in a characteristic way to radiant energy and depends 

strongly on the wavelength of the emitted light. The Luminance flux is typically 

evaluated in terms of the eye’s photopic or scotopic response according to the 

following equation 

Equation 1 

  dVkm )(  

Here, Φ is in lumens (lm)

nm, V(λ) is the photopic or scotopic response, and Km is the maximum spectral 

luminous efficacy, which is 683 lm/W and 1754 lm/W for photopic and scotopic 

vision, respectively. 

 The luminous intensity, I, is the luminance flux per solid angle. The 

luminous intensity is described by the following equation 
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Equation 2 
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Here, IL is in candela (cd), and Ω is the solid angle in steradian. The candela is equal 

to the luminous intensity (for a given direction) of a source that emits 

monochromatic radiation of frequency 540x1012 Hz (555 nm) and that has a radiant 

intensity in that direction of 1/683 W/sr.  

 The luminance, Lv, is defined by the derivative 

Equation 3 
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dAd
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Here, Lv is in cd/m2 and is typically referred to as nits, θ is the angle between the 

surface normal and the specified direction in radians, and A is the surface area in 

m2. A diagram of the luminance is shown in Figure 4. 

 

Figure 4. Diagram of the luminous intensity parameters 
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 A source is considered lambertian when the luminous intensity in any 

direction varies as the cosine of the angle between that direction and the 

perpendicular to the surface element of the source according to the equation 

Equation 4 

cos0,LL II   

Here IL,0 is defined as the luminous intensity at the surface normal. 

 As a consequence Equation 4, a lambertian source therefore has the same 

luminance regardless of viewing angle, and the total luminous flux per unit area is π 

times the luminance. Typically, organic light emitting devices are assumed to have a 

lambertian intensity profile, however, special cases, as in the case of microcavity 

OLEDs, the lambertian assumption typically does not hold true. More on this topic 

will be discussed in the ensuing sections.   

2.2 The Human Response  

 As alluded to in the previous section, the standard for lighting and display 

must account for the response of the human eye. The human response to light is a 

psychological phenomenon which, at the present, is poorly understood. 

Consequently, standards for quantifying color are based on mean values for a 

representative group of people. The most commonly used metric for quantifying color 

are based on the organization Commission Internationale de l’Eclariage (CIE). The 

CIE coordinate system will be described in more detail in the foregoing sections.   

The human eye detects light by focusing light rays into the retina wherein 

light energy is converted into electrical energy. The human eye has a spectral 
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response that depends strongly on wavelength. This spectral response depends on 

the particular eye as well as the age of the person. Wavelengths below 380nm are 

filtered out by the cornea and crystalline lens and wavelengths between 380nm and 

950nm propagate through with little attenuation. Wavelengths greater than 950nm, 

however, experience significant attenuation by the infrared water bands and the 

infrared radiation transmittance above 1400 nm is negligible. The absorbance of 

wavelengths in the visible region has been shown to increase with age. According to 

one report as much as a fourfold reduction in transmittance of shorter wavelengths 

compared to longer wavelengths is common.55 

 

Figure 5. Photopic and Scotopic luminous effieciency versus wavelength 
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The eye consists of two main classes of photodetectors; rods and cones. Rods 

are responsible for our scotopic response or night vision and are extremely sensitive 

to light. Cones are responsible for our photopic or day vision and are responsible for 

our ability to discriminate color. The normalized scotopic and photopic responsivities 

are shown in Figure 5. The quantification of OLEDs in terms of the photopic 

response will be explored in the next sections.  

2.3 Light Characterization  

The best standard for high quality white light is, naturally, the sun. The 

solar spectrum can be described by Plank’s blackbody spectrum equation which 

relates the spectral properties of the body to temperature: 

Equation 5 

)1(
)(
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3
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Here, ρ is the energy density per unit frequency, h is Plank’s constant, c is the 

velocity of light, kB is the Boltzmann constant, ω is the angular frequency, and T is 

the temperature in Kelvin.  

 Although actual sunlight as perceived on earth deviates slightly from 

Equation 5 due to scattering and absorptive effects of the atmosphere, it closely 

resembles the spectral characteristics of the sunlight and can therefore be used for 

defining the standards for lighting. Some of these standards will now be discussed. 

 The color temperature of a blackbody is defined as the color perceived at a 

certain temperature. For example, a blackbody radiator with a high color 
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temperature (i.e. 10,000 K) appears blue. For a non-blackbody radiator or source of 

light for which Equation 5 does not hold, the correlated color temperature (CCT) is 

the temperature of a blackbody radiator which has a color that most closely 

resembles that of the light source. The CCT, therefore, only specifies chromaticity 

and gives no information about the spectral power distribution.  

 In addition to being used as a measure of chromaticity, the correlated color 

temperature is also used to specify the color rendering index of a light source. This is 

an important metric for quantifying the capacity of a source to illuminate all colors 

in the visible spectrum. For example, the color of two light sources may appear 

identical, metameric, when viewed directly and will therefore have the same color 

temperature; however, the color of the reflected light from an object illuminated by 

these two sources may be significantly different. Thus, a method for distinguishing 

between two metameric sources such as the color rendering index (CRI) is needed.  

The color rendering index (CRI) is a comparison between an object of a light 

source of a particular correlated color temperature to the reflection from the same 

object under illumination from a blackbody radiator of the same color temperature. 

The similarity of the two sources is ranked on a scale from 0 to 100, wherein a rating 

of 100 is a perfect match to a black body radiator. Sources with a rating above 80 are 

considered high quality lighting sources. Values below 70 are considered undesirable 

for natural lighting requirements.  

 Although CRI and CCT reflect the chromaticity and spectral output of a light 

source, a more comprehensive chromaticity measure is needed. There are several 

methods to define the chromaticity of a light source, however, the most common 
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chromaticity coordinate system used in display and lighting industries and the one 

that will be used throughout this thesis is the C.I.E. chromaticity coordinates. The 

method was originally developed in 1931 by CIE which defines all metameric pairs 

by giving the amounts X, Y, and Z of three imaginary primary colors required by a 

standard observer to match the color being specified. These amounts are calculated 

as a summation of the spectral compositions of the radiant power of the source times 

the spectral tristimulus values, or color matching functions56 for an equal power 

source and expressed as 

Equation 6 
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Here, s(λ) is the spectral irradiance of the source, and )(x , )(y , and )(z  are the 

spectral tristimulus values plotted in Figure 6. Chromaticity coordinates (x,y,z) are 

then calculated according to the following equations 

Equation 7 
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By convention, CIE chromaticity coordinates are stated in terms of x and y only (x + 

y + z = 1) and plotted in a rectangular coordinate system.   

 

Figure 6. Spectral tristimulus values. 

 

2.4 Experimental Methods and Equipment  

2.4.1 Device Physics  

An understanding of the basic device physics of OLEDs is necessary to 

understand the characterization methods in the next sections. This will now be 

discussed. Organic Light Emitting Diodes are composed of a series of thin, organic 

layers sandwiched between two conducting electrodes (Figure 7). When a positive 
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bias is applied to the anode, positive charges (holes) are ejected from the anode and 

negative charges (electrons) are ejected from the cathode. The charges migrate to the 

emission zone whereby they localize and relax on an electroluminescent (EL) 

emitting material resulting in the generation of a photon with a wavelength 

characteristic of the emitting material (Figure 7).  

 

Figure 7. (a) Simplified OLED structure. (b) Energy Diagram of a typical 

hetrostructure OLED.   

The efficiency of an OLED can be defined as the ratio of photons emitted from 

the device to the number of electrons injected into the molecular layers, known as 

External Quantum Efficiency (EQE).57, 58 The EQE depends on 4 parameters and can 

be expressed as59, 60 

Equation 8 

outoutr   int  

The charge balance factor (γ) is the ratio of excitons formed to total 

holes/electrons injected into the molecular layers. Charge imbalance exists due to 

differing mobility’s of the organic carriers. When there is large differential in charge 

mobility between the hole transporting layer and electron transporting layer, for 
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example, there is a high probability of holes or electrons traveling though the device 

without forming an exciton resulting in significant leakage current and consequently 

low IQE.  

The exciton spin factor (χ) is the ratio of photons generated to excitons 

formed and accounts for the spin statistics of the formed excitons.35, 37 When holes 

and electrons combine to form an exciton, the spin states can add to give a total spin 

of 0 or 1, singlet exciton and triplet exciton respectively. A singlet exciton is 

antisymmetric under particle exchange with a total spin of 0. A triplet exciton is 

symmetric under particle exchange with a total spin of 1. Singlet excitons may 

recombine to form light, a process known as fluorescence. A triplet exciton, however, 

cannot recombine as recombination is forbidden per the Pauli Exclusion Principle. In 

the case of small molecules, 25% of the formed excitons are singlets and 75% of the 

formed excitons are triplets.38, 46, 49 In the case of polymers, 50% of the formed 

excitons are singlets and the remaining 50% of the formed excitons are triplets. 

Thus, the IQE is severely limited by the exciton spin factor for many emissive 

molecules. However, when heavy metal ions, such as Ir, Pt, and Os, are introduced 

into the emitter molecules, the strong spin-orbit coupling mixes the excited singlet 

states and triplet state. Under these conditions, the previously forbidden triplet 

excitons are able to recombine in a process known as phosphorescence resulting in 

an exciton factor ~1.  

The photoluminescence quantum efficiency (ηr) is the ratio of the number of 

emitted photons to the number of generated excitons and is intrinsic to the emissive 

material. The photoluminescence quantum efficiency can be expressed as61
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Equation 9 
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Here κr and κnr denote the rate constants of the radiative and non-radiative decay of 

excitons. A photoluminescence quantum efficiency of 1 can be obtained with proper 

molecular design and high purity materials.62, 63  

The light out-coupling efficiency (ηout) is the ratio of photons that exit the 

device to total photons generated.  This efficiency is limited by various optical losses 

in the device to values of 20-30% typically.64  

2.4.2 Device Fabrication  

All devices in this thesis were processed on a 1 inch by 1 inch glass substrate 

pre-patterned with Indium Tin Oxide (ITO). The Organic layers and metallic 

cathode were grown by thermal evaporation in a Travato deposition chamber under 

high vacuum (~1e-8 Torr) through a shadow mask. The deposition chamber consists 

of 10 source positions and 4 substrate positions wherein individual control over the 

material composition and thickness for a given substrate is possible by changing the 

mask positions on the stage. Each substrate contained 4 emissive pixels with an 

active area of ~4 mm2. The organic layers were deposited by passing DC current 

through a tantalum boat loaded with the given organic material. The electron 

injection layer, LiF, was deposited by passing a DC current through a tantalum 

spoon, loaded with a LiF crystal. The aluminum cathode was deposited by passing a 

DC current through a tungsten filament attached to a Boron Nitride crucible loaded 

with aluminum pellets. The thickness and deposition rate was controlled and 
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monitored using a 3 quartz crystal monitors at a deposition rate between 0.1A/sec to 

1A/sec.  

2.4.3 Photoluminescence 

 The photoluminescent spectra of the organic semiconducting materials in this 

thesis were measured on a Horiba Jobin Yvon Fluoro-Log-FL4-1057 spectrometer. 

The solution spectra were dissolved in a solution of DCM and excited with UV light. 

Thin film photoluminescent spectra was measured by depositing a thin film on glass 

under high vacuum by thermal evaporation and exciting with UV light.   

2.4.4 Electroluminescence 

The electroluminescent spectra of the devices in this thesis were collected on 

a Horiba Jobin Yvon Fluoro-Log-FL4-1057 spectrometer. The devices were driven at 

a low current density using a Keithley 2400 source meter to reduce degradation 

during measurement. The angular dependence on the electroluminescent spectra 

was measured using a rotating stage. 

2.4.5 Photocurrent Measurements 

The current-voltage-luminance measurements were conducted using two 

separate methods. For OLEDs in conventional structures, wherein the lambertian 

assumption is valid, current-voltage data was collected while the device was voltage 

driven from 0V to 8V using a Keithley 2400 source meter. The light emitted from the 

device was connected to a fiber optic cable wherein the emitted light propagated 

through the cable into a calibrated silicon photodiode and the photocurrent signal 

from the detector was collected. To account for light lost on account of absorbance in 
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the fiber optic cable and the gap between the device/fiber optic cable and between 

the fiber optic cable/silicon photodiode, a geometric factor was incorporated into the 

efficiency calculations to be discussed in the next section. The geometric factor (ratio 

of light detected to total light emitted) was determined by using a reference 

structure with a known efficiency and matching brightness with voltage, which was 

determined to be 0.20. The low geometric factor is a result of the large separation 

distance between the device surface and fiber optic cable and the between the fiber 

optic cable and silicon photodiode. The second method, wherein the lambertian 

assumption is not valid employs a large aperture light collection technique. Similar 

to the first method, current-voltage data was collected while the device was voltage 

driven from 0V to 8V using a Keithley 2400 source meter. The light emitted from the 

device was collected into an OSI optoelectronic photodiode, 220-DP, with a large 

active area (~200 mm2) to cover the active device area entirely. The photodiode was 

in intimate contact with the device such that the majority of the emitted light was 

collected. As a consequence of the protective glass window casing on the large area 

photodiode, some of the light emitted from the device is reflected at the protective 

window surface and a geometric factor is required in the calculation to account for 

this loss. The geometric factor for the calibrated large area photodiode was 

determined following the same approach as the first method and was determined to 

be 0.85.  

2.4.6 Characterization 

 When calculating the efficiency of OLEDs from J-V-L data it is important to  
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account for the wavelength dependent spectral response of the photodetector in the 

external quantum efficiency equation. Typically the spectral emission of OLEDs are 

broad and can introduce large errors in measurement if the wavelength dependence 

of the photodiode responsivity is not taken into account. A general equation for the 

external quantum efficiency that accounts for the wavelength dependent photodiode 

responsivity can be expressed as57 

Equation 10 
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Here h is Plank’s constant, c is the speed of light in vacuum, f is the geometric factor 

or fraction of light emitted to that coupled into the detector, q is the electronic 

charge, IOLED is the current, Idet is the incremental photocurrent generated in the 

photodetector by the OLED power (POLED(λ)) emitted at the center wavelength, λ, 

and R(λ) is the incremental photodiode responsivity between wavelengths λ and λ 

+dλ (R(λ)=Idet(λ)/f(λ)POLED(λ)). When the emission pattern is not lambertian, as in the 

case of microcavity OLEDs, then the geometric factor depends strongly on 

wavelength. In this case, the best experimental set up employs large aperture light 

collection optics such that the wavelength dependence of f is small (see section 2.4.5). 

Often times the detector sensitivity is expressed in terms of its own external 

quantum efficiency (ηdet=hcR(λ)/qλ). Rearranging Equation 10 the external quantum 

efficiency can be expressed as57 
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Equation 11 
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 In display, the luminous efficiency (ηL), in candelas per amp (cd/A) is 

typically used to quantify the properties of an OLED. This definition is similar to the 

external quantum efficiency; however, ηL weights all incident photons according to 

the photopic response of the eye. With this definition the luminous efficiency can be 

expressed as57 

Equation 12 

OLEDL IAL /  

Here L is the luminance of the OLED and A is the active area.  

 Another common metric used in display is the luminous power efficiency, or 

luminosity (ηp), in lumens per watt (lm/W). The luminous power efficiency is the 

ratio of luminous power emitted in the forward direction, Lp, to the total electrical 

power required to drive the OLED at a particular voltage. In terms of the spectrally 

resolved efficiencies previously discussed, the luminous power efficiency can be 

written as57 

Equation 13 
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Here V is the voltage (V), g(λ) is the photopic response with a peak value of 

φ0=683lm/W at λ=555nm where g(λ=555nm)=1.65 
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 As can be seen in Equation 12 and 13, both the luminous efficiency and the 

luminous power efficiency depend strongly on the visible wavelength content of the 

OLED spectrum. Consequently, the external quantum efficiency tends to be a more 

useful metric for comparing the fundamental physical mechanisms responsible for 

light emission within an OLED. However, in lighting and display the luminous 

power efficiency is useful for comparing the power dissipated by the device. These 

terms will be used frequently throughout the remainder of this thesis. 
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3 SINGLE DOPED WHITE ORGANIC LIGHT EMITTING DIODES 

3.1 Introduction 

 The typical approach to achieving white light is through the simultaneous 

emission of multiple emissive materials, which need to be employed in either a 

single emissive layer with multiple molecular emitters or multiple emissive layers.42, 

66, 67 However, the use of these multi-layered or multi-dopant device architectures, 

not only results in increased fabrication difficulty and costs but also yields several 

possible operational problems making them a less attractive approach for generating 

white light. Among these are voltage-dependent emission and color aging issues due 

to differing electrical properties or different degradation processes for each emissive 

dopant or emissive layer.68 Therefore, in order to greatly simplify the device 

structure and eliminate many of these concerns, it will be ideal to develop an 

efficient and stable white OLED using a single emitter.  

One possible route to achieving white light generation from a single emitter 

is through an excimer emitting complex, which has the potential of generating broad 

emission from a combination of red-shifted “aggregate” or excimer emission with the 

parent monomer emission.69 With an appropriate molecular design, emission over 

the entire visible range is possible and high quality white light can be achieved with 

an appropriate balance of monomer and excimer contributions. Recently, there has 

been a growing interest in Pt(II) compounds for applications in excimer-based 

WOLEDs due to their square-planar geometries which offer the possibility of strong 

intermolecular interactions via intimate Pt-Pt contacts and their potential to form 

excimers at moderate concentrations with significantly low energy aggregate 
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emission with respect to the monomer emission.70 Based on this approach, efficient 

excimer based WOLEDs utilizing square planar Pt complexes have been  

reported.71-73   

Although the phenomenon of excimer formation has been widely observed,74, 

75 the photophysical properties of excimers remain poorly understood.  For this 

reason, progress on phosphorescent excimers has depended almost entirely on the 

materials development.  The first successful example of phosphorescent emitters for 

excimer-based white OLEDs is platinum (II) [2-(4’,6’-difluorophenyl)pyridinato-N, 

C2’)](2,4-pentanedionato) (FPt).71 In contrast to many organic emitters, FPt can form 

a broadly emitting excimer.  Thus, white light can be generated by coupling blue-

green like emission from single FPt molecules and orange like emission from FPt 

aggregates. Maximizing the device efficiency and achieving high quality white 

illumination are keys to the success of excimer-based WOLEDs for lighting 

applications. The highest quality white illumination requires sources with CIE 

coordinates close to (0.33, 0.33) and a CRI value over 80.74 As illustrated in Figure 8, 

previously reported excimer based WOLEDS using FPt and platinum(II) 1,3-

difluoro-4,6-di(2-pyridinyl)benzene chloride (Pt-4) cannot produce a satisfactory 

white EL spectra due to either inefficient monomer emission (FPt)71, 72 or unsuitable 

excimer emission color (Pt-4)73. Thus, further development in highly efficient 

excimer emitting platinum based complexes with monomer and excimer 

contributions that span the entire visible spectrum are desired.  In the ensuing 

sections, a summary of a highly efficient excimer based WOLED implementing the 

complex platinum(II) bis(N-methyl-imidazolyl)-benzene chloride (Pt-16) with 

superior color quality and device efficiency’s compared with FPt and Pt-4 will be 
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outlined. WOLEDs implementing Pt-16 exhibited a maximum external quantum 

efficiency (EQE) of 20.1% with a peak power efficiency of over 50 lm/W on a planar 

glass substrate and color coordinates of  CIE(x=0.33, y=0.33) and a CRI of 80 as 

outlined if Figure 8.   

 

Figure 8. Molecular structure and emission spectra of FPt (dashed), Pt-4 (dash-dot), 

and Pt-16 (solid) in optimized device architectures with their reported CIE and CRI. 

 

 

In addition to demonstrating highly efficient WOLEDs with excellent color 

quality, the ensuing sections will highlight some excimer behaviors found during our 

study. Unlike monochromic OLEDs, the EQE of which depends on the 

photoluminescent (PL) efficiency of emitters, the EQE of excimer-based WOLEDs 

hinges on the combined factors of PL efficiency from both monomers and excimers.76 

There is a lack of understanding of what determines the PL efficiency of excimers 
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which can be affected by many factors such as: the excited properties of monomers, 

the variation in the intermolecular force between monomers due to different 

molecular packing, host materials, or processing conditions, and quenching 

processes for either excitons or excimers. 77 Based on our experience, even a small 

molecular structural modification between platinum (II) bis(N-methyl-imidazolyl)-

benzene chloride[9] (Pt-16) and platinum(II) bis(N-methyl-imidazolyl)-toluene 

chloride (Pt-17) (Figure 9), could significantly alter electroluminescent (EL) 

properties of their corresponding phosphorescent excimers. The ensuing sections will 

highlight some of these differences with a comprehensive comparative summary of 

the device performance of Pt-16 and Pt-17 excimer based WOLEDs. 

 

Figure 9. Molecular structure of Pt-16 (left) and Pt-17 (right). 

3.2 Experimental 

Room temperature photoluminescent spectra were measured in a solution of 

dichloromethane in a Horiba Jobin Yvon Fluoro-log-FL4_1057 spectrometer. Devices 

were fabricated on ITO coated glass substrates. PEDOT:PSS was filtered through a 

0.2 μm filter and spin-coated on the pre-cleaned substrates, giving a 40-50 nm thick 

film. All other materials were deposited in a glove-box hosted vacuum deposition 
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system at a pressure of 10-7torr.  The EML was evaporated by a co-deposition of the 

emitter and 26mCPy to form a 25 nm-thick blend film.  

The absolute PL quantum efficiency measurements of doped thin films were 

carried out on a Hamamatsu C9920 system equipped with a xenon lamp, integrating 

sphere and a model C10027 photonic multi-channel analyzer.  EL spectra were 

measured with an Ocean Optics HR-4000 spectrometer and I-V-L characteristics 

were taken with a Keithley 2400 Source Meter and a Newport 818 Si photodiode.  

All device operation and measurement were carried out inside a nitrogen-filled 

glove-box.  Individual devices had areas of 0.04 cm2.  Agreement between luminance, 

optical power and EL spectra was verified with a calibrated Photo Research PR-670 

Spectroradiometer with all devices assumed to be Lambertian emitters. 

The materials used have acronyms as follows: NPD: N,N′-diphenyl-N,N′-

bis(1-naphthyl)-1,1′-biphenyl-4,4″-diamine.  TAPC: di-(4-N,N-ditolyl-amino-phenyl) 

cyclohexane.  PO15: 2,8-bis(diphenylphosphoryl)-dibenzothiophene.  26mCPy: 2,6-

bis(N-carbazolyl) pyridine. BmPyPB: 1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene.  

A series of devices implementing Pt-16 and Pt-17 were fabricated according 

to the following layer sequence: Glass/Patterned ITO/40nm-50nm PEDOT:PSS/30nm 

NPD as a hole-transporting layer/10nm TAPC as an electron-blocking layer/25 nm 

emissive layer/40nm electron transporting layer and hole-blocking layer/1nm 

LiF/90nm Al cathode.  The emissive layer consists of either 26mCPy as a host or 

TAPC:PO15(1:1) (Structures A and B) as co-host materials with Pt-16 and Pt-17 as a 

phosphorescent emitters. The exciton blocking layer and electron transporting layers 

are either a combined HBL/ETL of 40nm PO15 (structure A) or a separated HBL of 

10nm PO15 and ETL of 30nm BmPyPB (structure B). A summary of the various 
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device architectures and molecular structures of the aforementioned materials are 

shown in Figure 10. 

 

Figure 10. The energy level diagram of the device structures in this study. The 

molecular structure of the materials used in device structure A (top), structure B 

(middle), and the cohost structure B (bottom) are shown on the right.  

 

 

3.3 Results and Discussion 

The photoluminescent spectra of Pt-16 and Pt-17 in a solution of DCM are 

shown in Figure 11. Both Pt-16 and Pt-17 share similar photoluminescent 

characteristics with a monomer emission peak of 450nm and 460nm for the Pt-16  
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complex and Pt-17 complex, respectively. Additionally, the emitter, Pt-16, has a 

slightly narrower emission band compared with Pt-17 with a FWHM of 46nm 

compared to 51nm for Pt-17.  

 

Figure 11. The photoluminescent spectra of Pt-16 and Pt-17 in a solution of DCM. 

Despite containing similar monomer emission energy and similar molecular 

structures, the device characteristics of Pt-16 and Pt-17 based OLEDs are 

drastically different.  With a similar device structure of ITO/PEDOT:PSS/NPD(30 

nm)/TAPC(10 nm)/x%emitter:26mCPy(25 nm)/PO15(40 nm)/LiF/Al, Pt-16 and Pt-17 

based OLEDs demonstrate different trends in the dependence of device efficiency on 

dopant concentration. A summary of Pt-16 and Pt-17 devices are illustrated in 

Figure 12. 
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Figure 12. Electroluminescent emission spectra (a), Forward-viewing external 

quantum efficiency vs. current density (b) for Pt-16 and electroluminescent emission 

spectra (c), Forward-viewing external quantum efficiency vs. current density (d) for 

Pt-17 with concentrations of 2% (solid line), 10% (dotted line), 14% (dash-dotted 

line), and 18% (dashed line) in the device structure of : ITO/PEDOT:PSS/30nm 

NPD/10nm TAPC/25nm x% emitter in 26mCPy/40nm PO15/LiF/Al.  

With increasing dopant concentrations, both Pt-16 and Pt-17 based OLEDs 

observe the general trend of having a more pronounced red-shifted emission peak 

(Figure 12) that is attributed to excimer emission rather than dimer emission on the 

basis of no observable red-shifted absorption band for Pt-16:26mCPy at high dopant 

concentrations.71-73    However, the device efficiencies of Pt-16 based OLEDs (Figure 

12, top) are much higher at high dopant concentrations and a slightly lower at low 

dopant concentration than those reported in Pt-17 based devices (Figure 12, bottom).   
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Figure 13. The electroluminescent spectra at a drive current of 0.5 mA/cm2, 1 

mA/cm2,, and 5 mA/cm2, for Pt-16 in the device structure: ITO/PEDOT:PSS/30nm 

NPD/10nm TAPC/25nm 10% Pt-16 in 26mCPy/40nm PO15/LiF/Al. 

With respect to the electroluminescent characteristics, as the dopant 

concentration for Pt-17 based OLEDs increases, the ratio of excimer emission vs. 

monomer emission increases and yields a white light emission with appropriate CIE 

coordinates and desirable CRI values only at concentrations as high as 18%.  

However, this increased excimer contribution at high concentrations is accompanied 

by a dramatic drop-off in maximum EQE from 16.9% for the 2%-doped Pt-17 device 

to 11.0% for the 18%-doped Pt-17 device.  On the other hand, the peak EQE of Pt-16 

devices increases with higher dopant concentration from 13.7% for the 2%-doped Pt-

16 device to 19.2% for the 18%-doped Pt-16 device despite showing similar 

resistances in the current-voltage characteristics for devices with the same high 

dopant concentration.  Moreover, for 10%-doped Pt-16 device (versus 18%-doped Pt-

17 device), the excimer emission is strong enough to yield a white emission with CIE 

coordinates of (0.32, 0.32) and a CRI of 80. This high color quality emission spectrum 
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showed minimal dependence on current density (and driving voltage) within the 

typical operating range of 100-500 cd/m2 (Figure 13) as has been previously 

demonstrated for excimer based devices. This independence of electroluminescent 

spectral characteristics on the driving current make excimer based WOLEDs an 

attractive solution for lighting and display enabling consistent color characteristics 

independent of drive current and brightness. It has been shown in a previous 

reporting that Pt-17 based excimer WOLEDs also exhibit this independence of 

electroluminescent spectral characteristics on the driving current.73 

 

Figure 14. Peak EQE versus dopant concentration (left) and Excimer/Monomer 

emission intensity ratio versus dopant concentration of Pt-16 (solid squares) and Pt-



51 

 

17 (open squares) in the device structure of: ITO/PEDOT:PSS/30nm NPD/10nm 

TAPC/25nm x% emitter in 26mCPy/40nm PO15/LiF/Al. 

A summary of the peak EQE versus concentration for Pt-16 and Pt-17 based 

WOLEDs as well as the ratio of excimer/monomer emission ratio versus 

concentration of Pt-16 and Pt-17 are shown in Figure 14. WOLEDs implementing 

the complex Pt-16 form excimer more readily than WOLEDs implementing the 

complex Pt-17 with an excimer peak that exceeds the monomer peak at 

concentrations as low as 14% compared to >18% for WOLEDs implementing Pt-17.   

 

Figure 15. The thin film PL spectra of Pt-17 (left) and Pt-16 (right) and PL quantum 

efficiency’s (inset) for a dopant concentration of 2% (monomer emission) and 18% 

(monomer plus excimer emission). 

The PL quantum efficiencies of doped films at various concentrations were 

measured in order to uncover the cause for the different device characteristics of 

Pt-16 and Pt-17 based OLEDs (Figure 15). Although both Pt-16 and Pt-17 have 

similar molecular structures, the quantum efficiency of 2% Pt-16:26mCPy film 

(42±5%) is much lower than that of 2% Pt-17:26mCPy film (68±5%).  This can be 

attributed to a faster non-radiative decay process for Pt-16 due to its higher 

emission energy, resulting in a smaller energy difference between the lowest excited 
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state and the metal-centered quenching state.  A similar trend has also been 

observed for other blue-emitting Pt and Ir complexes.78, 79  However, it is surprising 

that the quantum efficiency of 18% Pt-16:26mCPy film (71±5%) is much higher than 

that of 18% Pt-17:26mCPy film (48±5%) with both excimers demonstrating similar 

emission spectra and emission energies (Figure 15).  Thus, the EQE decrease of the 

Pt-17 based OLEDs with higher dopant concentrations, can be associated with the 

drop-off in PL quantum efficiency of the Pt-17 doped thin films, in addition to 

considering possible polaron-quenching and other exciton-quenching mechanisms.80, 

81  Meanwhile, the significant increase in the PL quantum efficiency of Pt-16 doped 

thin films at high concentrations can explain the improvement in EQE for Pt-16 

based OLEDs with larger dopant concentrations, which makes Pt-16 a perfect 

candidate for excimer based white OLEDs.   

 

Figure 16. Forward-viewing external quantum efficiency (%) versus current density 

(mA/cm2) of Pt-16 based WOLEDs of Structure A (dotted line) and Structure B 

cohost (dashed line). Electroluminescent spectra (inset) of the devices at 1 mA/cm2. 
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Structure A is: ITO/PEDOT:PSS/30nm NPD/10nm TAPC/25nm 10:45:45 Pt-

16:TAPC:PO15/40nm PO15/LiF/Al. Structure B cohost is: ITO/PEDOT:PSS/20nm 

TAPC/25nm 10:45:45 Pt-16:TAPC:PO15/10nm PO15/30nm BmPyPB/LiF/Al.  

Utilizing the benefits of efficient Pt-16 excimer emission, devices were 

fabricated aimed at achieving high EQE at typical operating conditions of 100 to 

1000cd/m2.  To reduce the high EQE “roll-off” at higher luminance, 26mCPy was 

replaced with a co-host of TAPC:PO15 (1:1) for 10%-doped Pt-16 device (labeled as 

Structure B cohost) following the previous literature report.82 Additionally, a 30nm 

BmPyPB layer was used to replace 30nm of the PO15 layer (label as Structure B) in 

order to further improve charge balance and resulting device efficiency.  Although, 

BmPyPB has been reported to have a higher electron mobility than PO15, a 10nm 

PO15 layer is still necessary as a hole blocking layer as the LUMO level of BmPyPB 

is too low and will potentially quench Pt-16 excitons.83 As a result, the Pt-16 device 

with the Structure B cohost, exhibits the highest device efficiency (ηEQE = 20.1%) 

amongst all reported excimer-based WOLEDs. A summary of the Pt-16 in the 

aforementioned device structures are shown in Figure 16 and a summary of all 

devices fabricated in this study are shown in Table 4. The EL spectrum of this device 

also yields highly desirable CIE coordinates of (0.33, 0.33) and a CRI of 80, with EL 

characteristics independent of current density.  A maximum forward power 

efficiency of ηP=51 lm/W was recorded at the brightness of 1 cd/m2, which remains at 

a high ηP=41 lm/W at 100 cd/m2 and ηP=29 lm/W at 1000 cd/m2.  The performance of 

this device is comparable to the best reported WOLEDs in literature that have 

achieved maximum ηEQE=20.1% and peak ηP=41.3 lm/W for white light with CIE 

(0.38, 0.45) and CRI of 85 but used 3 different dopants embedded in multiple 

emissive layers. Another report demonstrated a maximum ηEQE=26.6% and peak 

ηP=67.2 lm/W for a WOLED employing a blue fluorescent host material and a yellow 
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phosphorescent dopant but produced only a yellowish white light with CIE (0.46, 

0.44), unsatisfactory CRI, and showed moderate voltage dependence in the emission 

color.82 

Table 4. A summary of device characteristics at 1 mA/cm2. The device structure is 

ITO(65nm)/PEDOT/NPD(30nm)/TAPC(10nm)/x%Emitter:26mCPy(25nm)/PO15(40n

m)/LiF(1nm)/Al(90nm) unless otherwise noted (*†). 

Emitter Bias(V) luminance 

(cd/m2) 

EQE 

(%) 

CIEx CIEy CRI P.E. 

(lm/W) 

2%Pt-16 4.7 150 10.2 0.18 0.19 -- 10.0 

10%Pt-16 4.4 295 13.3 0.32 0.32 80 21.0 

14%Pt-16 4.8 319 14.7 0.38 0.37 73 21.1 

18%Pt-16 4.6 386 15.9 0.41 0.39 70 26.5 

10%Pt-16* 3.3 371 16.8 0.32 0.33 80 35.2 

10%Pt-16*† 3.5 396 18.2 0.33 0.33 80 35.2 

2%Pt-17 4.8 249 15.0 0.18 0.25 -- 16.3 

10%Pt-17 5.2 285 14.5 0.23 0.30 64 17.2 

14%Pt-17 4.6 236 11.3 0.29 0.33 76 16 

18%Pt-17 4.5 226 10.0 0.37 0.38 80 15.9 

18%Pt-17* 4.0 350 15.7 0.37 0.40 80 27.3 

*A Cohost of TAPC:PO15 is used in the EML 

†A 10nm PO15/30nm BmPyPB HBL/ETL is used 
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3.4 Conclusion 

In this section, a possible alternative to generating broad white light 

emission from multiple sub-elemental colors was demonstrated and a highly efficient 

white light emission from a single dopant and single emissive layer was achieved. 

WOLEDs implementing the complex Pt-16 achieved a peak EQE over 20%, CIE 

coordinates of (0.33, 0.33) and a CRI value of 80, which are comparable or superior 

to state-of-the-art WOLEDs with multiple dopants.  Moreover, excimer-based 

WOLEDs will have great potential to further improve the device efficiency if more 

efficient blue-emitting square planar Pt complexes can be developed.  The record 

high power efficiency of Pt-16 based WOLEDs can be further improved by employing 

state-of-the-art charge-injection materials and out-coupling techniques, which will 

set a clear path for the potential of a single-doped WOLED with ηP of 100 lm/W.  

Overall, the demonstration of a single-doped WOLEDs with high efficiency and high 

illumination quality presents a unique opportunity to significantly simplify the 

device architecture and eliminate the problems of color aging and color instability 

for WOLEDs using multiple emitters.  This will help to expedite the potential 

commercialization of WOLEDs for lighting applications.  
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4 A ROUTE TOWARDS STABLE BLUE PHOLEDS 

4.1 Introduction 

Organometallic phosphorescent complexes have become the mainstay of 

highly efficient OLEDs and significant progress has been made in recent years with 

respect to their quantum efficiency’s.41 Their ability to harvest 100% of 

electrogenerated excitons36, 84 yielding high external quantum efficiencies85 makes 

them an essential factor in highly efficient of OLEDs, however further development 

in the availability of phosphorescent complexes is needed. More specifically, 

phosphorescent complexes that are both highly efficient and electrochemically stable 

yielding high operational device stability are highly desired. Though, great strides 

have been made in recent years in this area, the realization of both highly efficient 

and highly stable phosphorescent complexes remains a challenge. Blue emitting 

phosphorescent complexes in particular, which typically exhibit lower operational 

lifetimes compared to red and green, are highly desired and essential if OLEDs are 

to compete with existing lighting and display technologies.86 

Thus far, the approach to achieve efficient blue phosphorescent OLEDs has 

primarily focused on Ir-based complexes.87, 88 In particular extremely efficient deep 

blue emitting devices have been achieved using fluorinated Ir complexes such as 

iridium(III) bis(3’,5’-diflouro-4’-cyanophenyl-pyridinato-N,C2) picolinate (FCNIrpic) 

which exhibited a maximum external quantum efficiency (EQE) of 24.2% and 

Commission Internationale de L’Éclairage (CIE) coordinates of (0.14,0.20).89 More 

recently, Pt-based complexes have also received increasing attention as they have 

demonstrated external quantum efficiencies (EQE) approaching or equal to their 
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Iridium analogs.90 One such example, platinum(II) 1,3-diflouro-4,6-di(2-

pyridinyl)benzene chloride (Pt-4) exhibited a maximum EQE of 16% and CIE 

coordinates (0.16, 0.26).91 Despite the high efficiencies exhibited by fluorinated Pt or 

Ir complexes, the large electro-negativity of fluorine may destabilize the molecule, 

leading to potentially short device operational lifetimes.92 Thus blue phosphorescent 

emitters with fluorine-free cyclometalating ligands are desired.   

 

Figure 17. The molculcar structure of Pt14 (left), PtOO2 (middle), and PtON2 

(right). 

One investigation of a series of platinum complexes  with a fluorine free blue 

phosphorescent emitter utilized a Pt(N^C^N)Cl cyclometalating ligand.93 In the 

investigation, devices utilizing the complex Platinum m-di(methyl-

imidazolyl)benzene Chloride  (Pt-14) achieved impressive device efficiencies of over 

18%. Nevertheless, N^C^N type compounds like Pt-14, typically still require 

monoanionic ligands such as a phenoxyl group or chloride to bond to the platinum 

ion, thus, a new molecular design motif with a more stable molecular structure will 

be highly desired.94, 95 Recently, there has been demonstrated success in the 

utilization of tetradentate, cyclometalated platinum complexes which have the 

benefit of potentially being completely halogen free and have also demonstrated high 

photoluminescent quantum yields of close to 100%.96 In this study, such 

tetradentated platinum complexes having blue-green emission and external 
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quantum efficiencies (EQE) exceeding 22% in a device setting are demonstrated. The 

molecular structures of the complexes investigated in this study (Pt-14, PtOO2 and 

PtON2) are shown in Figure 17. 

4.2 Experimental  

4.2.1 Experimental Conditions 

The absorption spectra were recorded on an Agilent 8453 UV-visible 

Spectrometer. Steady state emission experiments at both room temperature and 

77K were performed on a Horiba Jobin Yvon Fluoro-Log-FL4-1057 spectrometer. 

Photoluminescent quantum efficiency (Φ) measurements were carried out at room 

temperature in a solution of dichloromethane. Before the emission spectra were 

measured, the solutions were thoroughly bubbled by nitrogen inside of a glovebox 

with the content of oxygen less than 0.1 ppm. A solution of coumarin 47 (coumarin 1; 

Φ=0.73, excited at 360nm)97 in ethanol was used as references for Pt complexes. The 

equation Φs= Φr[(ηs
2ArIs)/ (ηr

2AsIr)] was used to calculate quantum yield, where Φs is 

the quantum yield of the sample, Φr is the quantum yield of the reference, η is the 

refractive index of the solvent, As and Ar are the absorbances of the sample and 

reference at the wavelength of excitation, and Is and Ir are the integrated areas of 

emission bands.98 Phosphorescence lifetime (τ) were performed on the same 

spectrometer with a time correlated single photon counting method using a LED 

excitation source. The radiative decay rate constant (kr) was estimated by kr=Φ/τ 

and the nonradiative decay rate (knr) was estimated by knr=(1-Φ)/τ. For low 

temperature (77 K) emission spectra, the solute was dissolved in 2-MeTHF and 

cooled to 77K with liquid nitrogen.  1H spectrum was recorded at 400 MHz, 13C NMR 
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spectrum was recorded at 400 MHz on Varian Liquid-State NMR spectrometer in 

DMSO-d6 solutions using residual H2O (δ = 3.33 ppm) as internal reference for 1H 

NMR spectrum and DMSO-d6 (δ = 39.52 ppm) as internal reference for 13C NMR 

spectrum. 

Cyclic voltammetry and differential pulse voltammetry were performed using 

a CH Instrument 610B electrochemical analyzer. Anhydrous DMF (J.T. Baker) was 

used as the solvent under a nitrogen atmosphere, and .1 M tetra(n-butyl)-

ammonium hexaflourophosphate was used as the supporting electrolyte. A glassy 

carbon electrode was used as the working electrode. A silver wire was used as the 

pseudo-reference electrode. A Pt wire was used as the counter electrode. The redox 

potentials are based on the values measured from differential pulsed voltammetry 

and are reported relative to a ferrocenium/ferrocene (Fc+/Fc) redox couple used as an 

internal reference (0.45 V vs SCE).99  

4.2.2 Materials 

Poly[3,4-ethylenedioxy thiophene] doped with poly[styrene sulfonate] 

(PEDOT:PSS, Clevios PVP AI 4083) was purchased from H.C. Stark inc. and N,N’-

diphyenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4”-diamine (NPD) was purchased 

from Aldrich and sublimed in a thermal gradient furnace prior to use. 2,8-

bis(diphenylphosphoryl) dibenzothiophen (PO15)71, di-[4-(N,N-di-toylyl-amino)-

phyenyl]cyclohexane (TAPC)71, 2,6-bis(N-carbazolyl)pyridine (26mCPy)78, 1,3-bis(3,5-

dipyrid-3-yl-phenyl)benzene (BmPyPB),  Platinum phenyl-methylimidazole 

(PtOO2)100 and Platinum m-di(methyl-imidazolyl)benzene Chloride (Pt-14)93 were 

prepared following literature procedure. 
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4.2.3 Device Fabrication and Characterization 

Figure 18. The energy level diagram of the device structures in this study of 

glass/ITO/NPD(30nm)/TAPC(10nm)/mCPy26:Dopant(25nm)/PO15(10nm)/BmPyPB(3

0nm)/LiF(1nm)/ Al(100nm).  

 

The devices were fabricated on a glass substrate pre-coated with a patterned 

transparent indium tin oxide (ITO) anode using the structure of 

ITO/PEDOT:PSS/NPD(30nm)/TAPC(10nm)/8%Dopant:26mCPy(25nm)/PO15(10nm)/ 

BmPyPB(30nm)/LiF/Al.  The energy level diagram including the HOMO and LUMO 

energies of the materials for the structure above is outlined in Figure 18. All small 

molecular materials were sublimed in a thermal gradient furnace prior to use. Prior 

to organic depositions, the ITO substrates were cleaned by sonication in water, 

acetone, and isopropanol followed by UV-ozone treatment for 15 minutes. 

PEDOT:PSS was filtered through a 0.2μm filter and spin-coated on the pre-cleaned 

substrates, giving a 40nm thick film. Organic materials were thermally evaporated 

at deposition rates of 0.5 to 1.5 Å/s at a working pressure of less than 10-7 Torr. The 

deposition rates and thicknesses were monitored by quartz crystal microbalances. A 
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thin 1 nm LiF layer was deposited at rates of <0.2 Å/s and aluminum cathodes were 

deposited at a rate of 1 Å/s through a shadow mask without breaking vacuum. 

Individual devices had areas of 0.04 cm2. All device operation and measurement 

were done inside a nitrogen-filled glove-box. I-V-L characteristics were taken with a 

Keithley 2400 Source-Meter and a Newport 818 Si photodiode. EL spectra were 

taken using the Jobin Yvon Fluorolog spectrofluorometer. Agreement between 

luminance, optical power and EL spectra was verified with a calibrated Photo 

Research PR-670 Spectroradiometer with all devices assumed to be Lambertian 

emitters. 

4.3 Results and Discussion 

4.3.1 Electrochemical and Photophysical Properties  

Table 5. Photophysical Properties of Pt14, PtOO2 and PtON2 

 

  Emission at RT 

Emission at 

77K 

    

 

λmax 

Φ 

τ kr knr λmax τ Eox Ered 

[nm] [μs] [105 s-1] [105 s-1] [nm] [μs] [V] [V] 

Pt-14 470 0.56 11 0.51 0.4 465 12 0.31 -2.73 

PtOO2 468 0.64 9 0.71 0.4 462 12 0.33 -2.62 

PtON2 466 0.61 6.5 0.94 0.6 460 8.7 0.29 -2.57 

Room temperature emission spectra were measured in a solution of 

dichloromethane. 77 K emission spectra were measured in a solution of 2-MeTHF. 

Coumarin 47 was used as a reference for quantum efficiency measurement in a 

dilute solution. The radiative decay rate constant (κr) was estimated by the lifetime 

(τ) and the quantum efficiency (Φ) of the samples where κr=Φ/τ and κnr=(1-Φ)/τ. 

Redox measurements were carried out in anhydrous DMF solution using DPV. The 

redox values are reported relative to Fc/Fc+. 
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The electrochemical properties of Pt-14, PtOO2 and PtON2 were examined 

using cyclic voltammetry, and the values of the redox potentials were determined 

using differential pulsed voltammetry (Table 5). The oxidation potential (Eox
1/2) of 

PtOO2 and PtON2 are similar to the oxidation potential of Pt-14. Compared with Pt-

14, PtOO2 and PtON2 have a lower reduction potential which is attributed to the 

addition of a pyridyl group into the complex system of PtOO2 and PtON2.  

The absorption features of PtOO2 and PtON2 are shown in Figure 19. Both 

complexes exhibit very strong absorption bands below 300 nm (ε > 1 x 104 L mol-1cm-

1) due to 1π-π* transitions localized on phenyl methyl imidazolyl ligands, together 

with a set of intense bands in the region 320-400 nm (ε > 2 x 104 L mol-1cm-1) which 

are attributed to MLCT transitions involving both the cyclometalating ligands and 

platinum metal ions.90 The weaker absorption bands in the region 400-500nm are 

attributed to triplet transitions (inset of Figure 19) and occur near the energy 

maximum emission at 77K (Figure 19). Both PtOO2 and PtON2 exhibit similar T1 

absorption transitions in energy, while PtON2 appears to have more pronounced T1 

absorption bands.  

The room temperature emission spectra and low-temperature (77 K) emission 

spectra for PtOO2 and PtON2 are recorded in Figure 20. The low temperature 

photoluminescent characteristics of PtOO2 and PtON2 are similar with a peak 

intensity at 462 and 460nm, respectively. Additionally, both molecules have similar 

vibronic progressions indicating that the lowest excited states of the platinum 

complexes are mainly localized on the cyclometalated ligand. However, the vibronic 

progressions of PtOO2 is more pronounced. The room temperature peak wavelength 

of PtOO2 (468nm) is slightly higher than the room temperature peak wavelength of 
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PtON2 (466nm). Both PtOO2 and PtON2 exhibit a 6nm red shift in the peak 

wavelength and broadening in the room temperature emission spectrum relative to 

the low-temperature emission spectrum. Although PtOO2 and PtON2 have similar 

photoluminiscent quantum efficiencies, the radiative lifetime (τ) of PtOO2 is higher 

relative to PtON2 resulting in a smaller radiative decay rate (kr) of PtOO2 relative 

to PtON2. Thus, the higher T1 absorption, the smaller contribution of the vibronic 

sideband of the emission spectrum, and the faster radiative decay process for PtON2 

indicates a more 1MLCT/3MLCT character mixed in the lowest excited state 

properties of platinum complexes due to the use of pyridyl carbazolyl ligand 

compared to the phenoxyl pyridyl ligand. A similar observation was reported in the 

phenyl carbine-based Platinum complexes in a previous publication.101 

 

Figure 19. The absorption spectra of PtOO2 (Circles) and PtON2 (Triangles) in 

CH2Cl2 at room temperature. The T1 absorption transitions are shown in the inset. 
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Figure 20. Room temperature (solid line) and 77K photoluminescent (dotted line) 

emission spectra of PtOO2 (Left) and PtON2 (Right). For room temperature 

measurements the solutes were dissolved in CH2Cl2. For low temperature (77K) 2-

MeTHF was used as the solvent. 

 

4.3.2 Device Performance 

The EL spectra and CIE coordinates for devices employing PtOO2 and PtON2 

in the structure of ITO/PEDOT:PSS/NPD(30nm)/TAPC(10nm)/8%Dopant: 

26mCPy(25nm)/PO15(10nm)/BmPyPB(30nm)/LiF/Al are displayed in Figure 21. The 

structure chosen incorporates the hole blocking layer (PO15) and the electron 

blocking layer (TAPC) which results in good confinement of the excitons inside the 

emissive layer for reduced efficiency roll-off.82 A 30nm NPD and BmPyPB layer were 

used due to their relatively high hole and electron mobility, respectively.83 

Additionally, the host material (26mCPy) was judiciously chosen per the suitable 

triplet energy for the emitters in this study resulting in good energy transfer and 

exclusive dopant emission.  
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 Both PtOO2 and PtON2 have similar EL characteristics with a primary peak 

wavelength at 470nm and a secondary peak wavelength at 502nm. The intensity of 

the secondary peak wavelength of the PtOO2 device is slightly larger than the 

PtON2 device. Consequently, PtOO2 in a device has a slightly larger y-coordinate 

CIE (0.34) relative to PtON2 in a device (0.32).  

 

Figure 21. Normalized electroluminescent spectra, accompanied by CIE values at 

1mA/cm2 for the dopants PtOO2 (Circles) and PtON2 (Triangles) in the device 

structure of ITO/PEDOT:PSS/NPD(30nm)/TAPC(10nm)/ 8% Dopant:26mCPy(25nm) 

/PO15(10nm)/ BmPyPB(30nm)/LiF/Al. 

The device performance of PtOO2 and PtON2 are displayed in Figure 22. The 

complexes PtOO2 and PtON2 exhibit similar device efficiencies as they have similar 

photoluminiscent quantum efficiencies (0.64 and 0.61, respectively). The EQE of 

PtOO2 in a device is slightly higher than PtON2 in a device, with a maximum 

forward viewing EQE of 23.1% at a current density 0.02 mA/cm2 compared to a 
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forward viewing EQE of 22.9% at a current density 0.03 mA/cm2 for PtON2 in a 

device. Devices of PtON2 had reduced EQE roll off, dropping to only 20.1% at 100 

cd/m2 and 17.5% at 1000 cd/m2 compared to 20.9% at 100 cd/m2 and 15.7% at 1000 

cd/m2 for devices of PtOO2. The power efficiency of the PtOO2 based device has a 

peak value of 48.8 lm/W with only a slight drop to 37.3 lm/W at a practical operating 

brightness (100 cd/m2).  Devices of PtON2 have a peak value of 43.4 lm/W with only 

a slight drop to 36.5 lm/W at a practical operating brightness (100 cd/m2).  

 

Figure 22. Power efficiency-luminance (open symbols) and external quantum 

efficiency-current density (closed symbols) characteristics for PtOO2 (circles) and 

PtON2 (Triangles) in the device structure of ITO/PEDOT:PSS/NPD(30nm)/ 

TAPC(10nm)/8%Dopant:26mCPy(25nm)/PO15(10nm)/BmPyPB(30nm)/LiF/Al. 
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4.4 Conclusion 

In this section, highly efficient halogen free phosphorescent complexes with 

high external quantum efficiencies emitting in the blue-green region were 

demonstrated. Devices based on the halogen free platinum complex, PtOO2 and 

PtON2 yielded external quantum efficiencies over 20%. Elimination of halogens 

from the Pt-based phosphorescent emitters should provide a viable route to stable 

deep blue phosphorescent emitters for displays and lighting applications. 

Additionally, the development of halogen free Pt-based phosphorescent emitters may 

also provide a viable route towards stable and efficient white light as Pt-based 

complexes have the potential of excimer emission which enables broad emission 

covering the entire visible spectrum for white light emitting devices. 
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5 STABLE AND EFFICIENCT RED PHOLEDS 

5.1 Introduction 

The foregoing sections discussed the need for further developments in highly 

efficient phosphorescent OLEDs with high operational lifetimes and demonstrated a 

possible route towards a stable blue PhOLED. In this chapter, an efficient and 

stable red PhOLED will be discussed. Thus far, the approach to achieve efficient red 

phosphorescent OLEDs has primarily focused on Ir-based complexes.87, 88, 102 In 

particular, highly efficient iridium based red PhOLEDs have been fabricated 

utilizing cyclometalating  ligands such as phenylquinolines/phenylisoquinolines,103-

105 phenylquinazolines,106 and phenylquinoxalines.106 Among these, a highly efficient 

and stable device utilizing the tris(1-phenylisoquinoline) irdium(III) (Ir(piq)3) 

complex exhibited a maximum EQE of 12.6%, color coordinates CIE (x=0.64, y=0.35) 

and an estimated operational lifetime at 50% of initial luminance, T0.50, of 1×10^7 

hours at an initial luminance of 100 cd/m2.107 Platinum based complexes, however, 

have received significantly less attention despite demonstrating external quantum 

efficiencies (EQE) approaching or equal to iridium analogs.89, 90 While previous 

reports have suggested that platinum complexes may exhibit shorter operational 

lifetimes relative to their iridium analogs due to the square planar geometry of the 

PtII complex which typically exhibits irreversible oxidation due to rapid solvolysis of 

the PtIII species,76 great strides have recently been made in improving the stability of 

platinum based complexes utilizing a tetradentate cyclometalated design. In 

particular, a series of deep blue, tetradentate, Pt-based complexes have 

demonstrated high quantum efficiencies and moderate device operational lifetimes 

compared with their Ir analogs possessing similar emitting ligands.101 Another 
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report demonstrated a highly efficient and stable symmetric tetradentate 

cyclometalated platinum complex, Pt7O7, capable of blue and white emission which 

exhibited high quantum efficiencies and highly stable white emission with a T0.5 of 

over 10 000 h at 100 cd/m2 further demonstrating the potential for highly efficient 

and stable tetradentate cyclometalated platinum complexes.108 Here we report a 

novel red emitting phenyl-quinolone based tetradentate cyclometalated platinum 

complex, PtON11Me, with an operational stability close to or exceeding its iridium 

analog. Devices employing PtON11Me exhibited a maximum EQE of 8.3%, color 

coordinates CIE (x=0.61, y=0.36) and an estimated operational lifetime T0.97 ~ 1560 

h, higher than its iridium analog, tris(1-phenylquinoline) iridium(III) (PQIr), using a 

similar device architecture.109 This demonstrates the potential for platinum based 

phosphorescent emitters with long operational lifetime and high quantum 

efficiencies in OLED displays.  

5.2 Experimental 

5.2.1 Materials 

The materials used in this study were 1,4,5,8,9,11-hexaazatriphenylene-

hexacarbonitrile (HATCN), N,N’-diphyenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4”-

diamine  (NPD), 4,4’-bix(N-carazolyl) biphenyl (CBP), di-[4-(N,N-di-toylyl-amino)-

phyenyl]cyclohexane  (TAPC), diphenyl-bis[4-(pyridine-3-yl)phenyl]silane (DPPS), 

1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPB), bis(2-methyl-8-quinolinolato) 

(biphenyl-4-olato)aluminum (BAlq), and tris-(8-hydroxyquinoline) aluminum (Alq).   
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5.2.2 Materials Characterization 

The absorption spectra were recorded on an Agilent 8453 UV-visible 

Spectrometer. Phosphorescence lifetime (τ) determinations were performed on a 

Horiba Jobin Yvon Fluoro-log-FL4-1057 spectrometer with a time correlated single 

photon counting method using a LED excitation source. The radiative decay rate 

constant (kr) was estimated by kr=Φ/τ and the nonradiative decay rate (knr) was 

estimated by knr=(1-Φ)/τ. Room temperature emission spectra was measured in a 

solution of dichloromethane. For low temperature (77 K) emission spectra, the solute 

was dissolved in 2-MeTHF and cooled to 77K with liquid nitrogen. 1H spectra were 

recorded at 400 MHz, 13C spectra were recorded at 100 MHz on Varian Liquid-State 

NMR instruments in DMSO-d6 solutions and chemical shifts were referenced to 

residual protiated solvent. 1H NMR spectra were recorded with residual H2O (δ = 

3.33 ppm) as internal reference; 13C NMR spectra were recorded with DMSO-d6 (δ = 

39.52 ppm) as internal reference. The following abbreviations (or combinations 

thereof) were used to explain 1H NMR multiplicities: s = singlet, d = doublet, t = 

triplet, q = quartet, m = multiplet. Shanghai Institute of Organic Chemistry 

performed the mass spectrum measurements. 

5.2.3 Device Fabrication and Characterization  

The devices were fabricated on a glass substrate pre-coated with a patterned 

transparent indium tin oxide (ITO) anode. All small molecule materials were 

sublimed in a thermal gradient furnace prior to use. Prior to organic depositions, the 

ITO substrates were cleaned by sonication in water, acetone, and isopropanol. 

Organic materials were thermally evaporated at deposition rates of 0.5 to 1.5 Å/s at 
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a working pressure of less than 10-7 Torr. The deposition rates and thicknesses were 

monitored by quartz crystal microbalances. A thin 1 nm LiF layer was deposited at 

rates of <0.2 Å/s and aluminum cathodes were deposited at a rate of 1 Å/s through a 

shadow mask without breaking vacuum. Individual devices had areas of 0.04 cm2. 

All device operation and measurements were done inside a nitrogen-filled glove-box. 

I-V-L characteristics were taken with a Keithley 2400 source-meter and a Newport 

818 Si photodiode. Electroluminescent (EL) spectra were measured with an Ocean 

Optics HR-4000 spectrometer. Agreement between luminance, optical power and EL 

spectra was verified with a calibrated Photo Research PR-670 Spectroradiometer 

with all devices assumed to be lambertian emitters. The luminance versus. time 

measurements were conducted at a constant dc current under accelerated conditions 

(20 mA/cm2) and photocurrent measurements were recorded every 30 seconds for an 

~80 hour time interval. All luminance versus time measurements were conducted in 

a nitrogen environment and uninterrupted throughout the duration of the test. To 

eliminate external light from compromising the measurement’s, the set up was 

covered with a dark colored cloth and aluminum foil. 

5.3 Results and Discussion 

5.3.1 Photophysical Properties 

The room temperature and low temperature (77 K) emission spectra for 

PtON11Me are shown in Figure 23. The low temperature photoluminescent peak 

occurs at 586nm and the room temperature emission spectrum exhibits a 28nm shift 

and broadening with a peak intensity of 614nm relative to the low-temperature 

emission spectrum.  
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The absorption features of PtON11Me are shown in the inset of Figure 23.  The very 

strong absorption bands below 300nm are assigned to 
1
π-π* ligand centered (LC) transitions, the 

strong bands between 320-450nm are attributed to metal-to-ligand-charge-transfer (MLCT) 

transitions. PtON11Me has a short phosphorescent lifetime of 3.6 microseconds in a solution of 

CH2Cl2 at room temperature and 6.8 microseconds in 2-MeTHF at low temperature (77K).  

Furthermore, the PL quantum efficiency of PtON11Me in a doped PMMA film at room 

temperature is experimentally determined to be 40±5%, indicating that PtON11Me is an efficient 

emitter and suitable for OLED applications, however, it is still under our investigation to uncover 

why PtON11Me has a much lower quantum efficiency than its blue-emitting and green-emitting 

analogs like PtON1, PtON7 and Pt7O7.
101 

 

Figure 23. Room temperature (solid line) and 77K (dotted line) photoluminescent 

emission spectra of PtON11Me. For room temperature measurements the solutes 

were dissolved in CH2Cl2. For low temperature (77K) 2-MeTHF was used as the 

solvent. The absorption features and molecular structure of PtON11Me are shown in 

the inset.  
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The complex PtON11Me has a short phosphorescent lifetime of 3.6 microseconds 

at room temperature and 6.8 microseconds at low temperature (77K) due to the 

CbPy chelate in the ligand, which has significant 1MLCT/3MLCT character in its 

lowest excited state.  The non-radiative decay rate is 12.2x104 s-1 and  radiative 

decay rate is 2.5x104 s-1, resulting in a quantum efficiency of 17%. The absorption 

coefficient in units of 104 cm-1 L mol-1 versus wavelength in nanometers of 

PtON11Me is shown in the inset of Figure 23. The molecular structure of the 

complex PtON11Me is also shown in the inset.   

5.3.2 Device Performance and Operational Lifetime 

 

Figure 24. The normalized EL spectra (inset) and the external quantum efficiency-

versus current density for PtON11Me in structure I (open squares): 

ITO/HATCN(10nm)/NPD(40nm)/TAPC(10nm)/2%PtON11Me:CBP(25nm)/DPPS(10 

nm)/BmPyPB(40nm)/LiF(1nm)/Al(100nm) and structure II (closed circles): ITO/ 

HATCN(10nm)/NPD(40nm)/2%PtON11Me:CBP(25nm)/BAlq(10nm)/Alq(30nm)/LiF(1

nm)/Al(100nm). 
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Devices were fabricated in the structure of  ITO/HATCN(10nm)/NPD(40nm)/ 

TAPC(10nm)/2%PtON11Me:CBP(25nm)/DPPS(10nm)/BmPyPB(40nm)/LiF(1nm)/ 

Al(100nm) (structure I). NPD and BmPyPB were chosen due to their relatively high 

hole and electron mobility, respectively.83, 109 Both DPPS and TAPC have a high 

triplet energy of 2.87 and 2.7 eV, respectively, which effectively confines excitons 

inside the emissive layer (EML).110 Additionally, DPPS has a deep HOMO level (6.5 

eV), effectively confining holes inside the EML. In this exciton confining structure, 

exclusive PtON11Me emission is observed and moderate efficiency is achieved with 

a maximum forward viewing EQE of 12.4% as shown in Figure 24.  

Although OLEDs implementing the materials DPPS, TAPC, and BmPyPB 

have yielded high external quantum efficiencies, the device operational lifetimes of 

devices implementing these materials remain low due to their poor electrochemical 

stability.93 Thus, PtON11Me was also implemented in the device structure of 

ITO/HATCN(10nm)/NPD(40nm)/2%PtON11Me:CBP(25nm)/BAlq(10nm)/Alq(30nm)/

LiF(1nm)/ Al(100nm) (structure II) which has been shown to exhibit high 

operational lifetimes.109 The 10nm TAPC layer was omitted and the 10nm DPPS 

layer was replaced by a 10nm BAlq layer which has proven to yield stable and 

efficient red phosphorescent OLEDs.109 Additionally, the 40nm BmPyPB ETL was 

replaced by a thinner 30nm Alq layer.  The EL spectra of devices in structure II 

showed non-exclusive emission from PtON11Me with observed peaks at ~525nm, 

suggesting poor confinement of excitons in the EML. Consequently, a reduction in 

the maximum forward viewing EQE to 3.3% is observed. The poor confinement of 

excitons in the case of structure II is attributed to the low triplet energy of BAlq 

(2.2eV),111 which for a dopant concentration of only 2% leads to the possibility of 
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migration of triplet excitons out of the EML before being trapped on the dopant 

molecules.112 

 

Figure 25. The normalized EL spectra (inset) and the external quantum efficiency-

versus current density for PtON11Me in device structure II: 

ITO/HATCN(10nm)/NPD(40nm)/x%PtON11Me:CBP(25nm)/BAlq(10nm)/Alq(30nm)/

LiF(1nm)/Al(100nm) for 6% (open squares), 10% (open circles), and 20% (solid 

triangles) PtON11Me concentration in CBP.  

 

In order to improve the charge balance and obtain exclusive PtON11Me 

emission in structure II, the dopant concentration of PtON11Me must be increased. 

This has been shown to improve device performance in PhOLEDs for select cases.113 

Thus, the influence of PtON11Me concentration on device performance was 

examined using the device structure of ITO/HATCN(10nm)/NPD(40nm)/x% 

PtON11Me: CBP(25nm)/BAlq(10nm)/Alq(30nm)/LiF(1nm)/Al(100nm). The 

electroluminescent spectra and device performance for 6%, 10%, and 20% 
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PtON11Me concentration in CBP is summarized in Figure 25. Increasing the 

concentration to 10% resulted in an emission primarily originating from PtON11Me. 

By increasing the PtON11Me concentration further to 20%, exclusive PtON11Me 

emission was achieved and a higher maximum forward viewing EQE of 8.3% was 

observed compared to a maximum forward viewing EQE of 4.5% and 6.1% for the 6% 

and 10% PtON11Me doped devices, respectively. 

 

Figure 26. Normalized luminance versus time under constant direct current of 20 

mA/cm2 for devices of PtON11Me in structure II (open triangles), structure II (solid 

triangles), structure IV (solid diamonds). The normalized luminance versus time for 

devices of PQIr in structure II (open squares) is also shown.  

The device operational lifetime of PtON11Me was examined in the optimized 

structure II configuration with a PtON11Me concentration of 20%. For a 

comparison, the phosphorescent complex PQIr, known for its high external quantum 

efficiency and operational lifetime (T0.5 = 15 000 h normalized to 100 cd/m2) was also 

fabricated in structure II.109 The luminance versus time characteristics shown in 
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Figure 26 were assessed under accelerated conditions at a driving current of 

20mA/cm2. To correlate luminance decay against initial brightness, T0.97, 

corresponding to the time for the luminance decay to reach 0.97L0 was measured for 

the various devices. At a constant drive current of 20mA/cm2, the initial luminance 

(L0) of PtON11Me in structure II was 1104cd/m2 with a T0.97 = 26.3 h compared to a 

20% PQIr doped device in structure II with an initial luminance of 2400 cd/m2 and a 

T0.97 = 8.2 h. The lifetime, T0.97, for both of the devices at an initial luminance of 100 

cd/m2 was determined using the relationship T0.97(L1)= T0.97(L0)( L0/L1)1.7
 yielding T0.97 

= 1560 h and T0.97 = 1776 h for the PtON11Me and PQIr devices, respectively. The 

PtON11Me based device exhibited a luminance decay of 0.90L0 at 246 h at a drive 

current of 20mA/cm2, which corresponds to a T0.90 = 11 800 h at an initial luminance 

of 100 cd/m2. In some cases, the operational lifetime can be improved using a cohost 

structure.114 For this reason, PtON11Me was also implemented into the cohost 

structure of ITO/HATCN(10nm)/NPD(40nm)/x%PtON11Me:CBP:BAlq(25nm)/BAlq 

(10nm)/Alq(30nm)/LiF(1nm)/Al(100nm) (structure III) with a PtON11Me 

concentration of 20% PtON11Me and a 1:1 CBP:BAlq ratio. Structure III exhibited a 

T0.97 = 42 h at an initial luminance of 1200 cd/m2, corresponding to a T0.97 = 2870 h at 

100 cd/m2. To improve the device operational lifetime further, PtON11Me was 

implemented into the structure of ITO/HATCN(10nm)/NPD(40nm) 

/x%PtON11Me:mCBP:BAlq(25nm)/BAlq(10nm)/Alq(30nm)/LiF(1nm)/Al(100nm) with 

a 6% PtON11Me concentration and a 1:1 mCBP:BAlq ratio. The new structure 

incorporating the host mCBP resulted in a higher estimated operational lifetime of 

T0.97 = 3112 h at 100 cd/m2. A summary of the operational lifetime values and the 

device characteristics for the devices in this study is given in Table 6. Further 

improvements in the device operational stability can be further expected with the 
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incorporation of state-of-the-art host and blocking materials that can decrease the 

turn-on voltage, improve the electron to photon conversion efficiency, and eliminate 

degradation mechanisms associated with the various host and blocking materials.  

 

Figure 27. Normalized luminance versus time under constant direct current of 20 

mA/cm2 for 400 hours for devices of PtON11Me in structure II. The experimental 

data (black squares) was fitted with a stretched exponential decay (SED) function 

(solid line). The linear coordinate system also shown for clarity (inset). 

To correlate luminance decay against initial brightness, T1/2 (0.5L0) is 

typically employed as a figure of merit.107 However, since running to 0.5L0 is not 

practical for high device stabilities such as the ones in this investigation, we find it 

convenient to use T0.90, corresponding to the time for the luminance decay to reach 

0.90L0. Since the time dependent relative luminance L(t) most commonly shows an 

exponential decay behavior, the T1/2 can be approximated by extrapolation. 

According to a report by Merheim et al., best results can be obtained by fitting the 
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whole data set with a stretched exponential decay function (SED).107 The 

extrapolated Luminance decay curve using an SED function for PtON11Me in device 

structure  II is shown in Figure 27. The T0.90 with an initial luminance of 1104 cd/m2 

was 246 hours corresponding to a T0.90 of 11,800 hours at an initial luminance of 

100cd/m2. Using the extrapolated SED function with β=0.4475 and τ=40567.7, the 

T1/2 at an initial luminance of 100 cd/m2 is ~188,000 hours.  

Table 6. A summary of device characteristics of PtON11-Me in the 4 different 

devices structures. 

 

 

 

Type 

Emitter CIEx CIEy 

EQE 

Peak 

(%) 

EQE 

at 

100 

cd/m2 

L0‡ 

(cd/m2) 

EQE‡ 

(%) T0.97
‡ 

T0.97
* 

at 

100 

cd/m2 

 

I 

 
PtON11Me 2% 0.63 0.36 12.5 12.1 1942 9.0 † † 

 

 

II PtON11Me 2% 0.54 0.40 3.3 3.3 904 2.8 † † 

 

 

II PtON11Me 6% 0.59 0.38 4.5 4.5  980 3.7  † † 

 

 

II PtON11Me 10% 0.61 0.37 6.3 6.2 1150 5 † † 

 

 

II PtON11Me 20% 0.61 0.36 8.3 7.5 1104 5.6 26.2 1560 

 

 

III PtON11Me 20% 0.61 0.36 8 7.4 1200 5.6 42 2870 

 

 

IV PtON11Me 6% 0.6 0.36 4.7 4.6 902 3.9 74 3112 

 

 

II PQIr 20% 0.66 0.34 7.7 7.4 2400 7.4 8.2 1776 

 

†Operational lifetime was only determined for electrochemically stable device 

architectures and for devices which exhibited exclusive dopant emission.  

‡Device characteristics at J=20mA/cm2 

*Device operational lifetime estimated using the relationship T0.97(L1)= T0.97(L0)( 

L0/L1)1.7. 
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5.4 Conclusion 

An efficient and stable red phosphorescent OLED was demonstrated utilizing 

the cyclometalated, tetradentate, quinolone based platinum complex, PtON11Me. 

Using the exciton confining structure I, a maximum forward viewing EQE of 12.5% 

with color coordinates CIE (x=0.63, y=0.36) was achieved. By implementing 

PtON11Me in the electrochemically stable structure II, a high operational lifetime 

was achieved with an estimated T0.97 = 1560 h at 100 cd/m2 and a maximum forward 

viewing EQE of 8.3%. The operational lifetime was improved further by 

implementing PtON11Me into the CBP:BAlq cohost structure III which exhibited an 

estimated T0.97 = 2870 at 100 cd/m2. The highest device operational lifetime was 

achieved incorporating PtON11Me into the mCBP:BAlq cohost structure IV with an 

estimated T0.97 = 3112 at 100 cd/m2. We found that platinum complexes can act as 

efficient and stable dopants with efficiencies and operational lifetimes close to or 

exceeding those of their iridium analogs. 
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6 MICROCAVITY ORGANIC LIGHT EMITTING DIODES FOR IMPROVED 

LIGHT EXTRACTION EFFICIENCY: A THEORETICAL APPROACH 

6.1 The Light Out-Coupling Limit  

The light out-coupling efficiency (ηout) is defined as the ratio of photons that 

are emitted from the device into air to the total number of photons generated. While 

significant improvements in the device efficiency of OLEDs has been realized in 

recent years with the development of efficient charge transporting and charge 

injecting materials combined with the advent of phosphorescent heavy metal 

complexes, which are capable of harvesting 100% of electrogenerated excitons,36, 84, 

115 resulting in near 100% total internal quantum efficiency in select devices,35 the 

external quantum device efficiencies remains limited to 20-30%  as most of the 

photons generated remain trapped as a result of total internal reflection (TIR) and 

other optical losses.35, 116 

The light out-coupling losses are dominated by 4 primary mechanisms; 

surface Plasmon polaritions (SPPs), waveguide modes, substrate modes, and 

electrode absorption.44, 117-119 For a typical bottom emitting OLED architecture 

(Figure 28) the SPPs account for 40% of the out-coupling losses, the waveguide 

modes account for 15% of the light loss, the substrate mode account for 23% of the 

light loss, and the metal losses due to absorption by the electrodes accounts for 4%. 

A summary of these mechanisms are outlined in Figure 28.  Modes trapped by total 

internal reflection (waveguide and substrate modes) occur due to the mismatch of 

the refractive indices between the ITO anode (n~1.9) and glass substrate (n~1.5) as 

well as between the glass substrate and air (n~1).47 As a result of the 
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aforementioned loss mechanisms, only 20% to 30% of the light emitted in the active 

region contributes to the farfield optical power of the OLED. Thus, in order to 

improve the efficiency of OLEDs, methods that improve the light out-coupling 

efficiency, or fraction of photons emitted from the device to total generated photons, 

need to be considered. 

  

Figure 28. Schematic of a multilayer OLED and the various optical losses including 

absorption at metal surfaces, surface plasmon effects, and losses from total internal 

reflection (waveguide modes and sud substrate modes). 
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6.2 Light Extraction Methods 

There have been a number of reported methods that enhance the external 

quantum efficiency (EQE) of OLEDs and overcome the light out-coupling limitation 

for typical OLEDs. Some of these methods include implementing a substrate with 

high index materials (n 1.8) combined with backside substrate modification,49 

creating surface roughness at the glass/air interface of the substrate to allow more 

photons to scatter out of the substrate,50, 121-123  implementing an ordered microlens 

array at the glass/air interface of the substrate to reduce the angle of incidence of 

the glass/air interface below the critical angle,124 growing a periodic two-dimensional 

(2D) photonic crystal to couple the guided waves to the radiation mode in the 

direction normal to the device surface,52, 125 or through the design of a microcavity 

OLED (MOLED). 53, 126-134 MOLEDs are of particular interest due to their simple 

fabrication and their ability to be used in conjunction with the other aforementioned 

strategies.126, 135 The ensuing sections will focus on the design of microcavity OLEDs 

for enhancing the light out-coupling efficiency. To assist with MOLED design, 

optical models will now be developed.  

6.3 The Microcavity Effect 

A MOLED is formed by positioning the emissive layer (EML) in between a 

highly reflective cathode and semi-reflective out-coupling mirror separated by a 

distance on the order of the wavelength of light emitted creating an optical “micro” 

cavity. Interference effects caused by the cavity redistribute the internal power 

flow126 and, in select cases, change the spontaneous emission of the source inside the 

cavity.136 With an appropriate cavity design, a preferential propagation direction of 
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the photons can be forced from the total internal reflection regime toward the 

extraction cone, resulting in an increase in light out-coupling efficiency.137 Following 

this approach, significant improvements in device performance can be achieved with, 

typically, only a slight modification to the original device structure.126, 135 

6.3.1 Purcell Effect 

As previously suggested, for select cases, the spontaneous emission of the 

source itself can experience significant changes in the presence of an optical cavity 

including a change in the total power radiated by the dipole and a change in 

radiative electron-hole recombination rate and hence lifetime. The change of the 

carrier lifetime due to the presence of a cavity, known as the Purcell effect,138 has 

been studied in detail.139-141 The change in lifetime is often expressed in terms of the 

Purcell factor: 

Equation 14 



0

1

1




pF Emitted Dipole Power in Cavity / Emitted Dipole Power in bulk 

Here, Fp is the Purcell factor and τ and τ0 are the radiative lifetimes with and 

without cavity, respectively. An analytical solution is possible for the case of a 

horizontal dipole in the middle of a cavity with perfect reflecting mirrors.140 The 

results depend on the phase of the mirror. The Purcell factor is given as a function of 

cavity order for r=+1 and r=-1 in Figure 29.  
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Figure 29. Horizontal dipole in the middle of a cavity142.  

Apart from the singular 1/mc behavior for small cavity order (mc) in the r=+1 

case, for r=-1 (perfect metallic mirrors), the maximum Purcell-factor is 3 and is 

obtained in a half-wavelength thick cavity (order 1 cavity or λ/2 cavity, mc=1). For 

higher order cavities (thick cavities), the Purcell factor converges to 1. In other 

words, high order cavities with many modes have a similar impact on the dipole as 

uniform space with a continuum of modes. Thus, for planar cavities with cavity 

lengths larger than λ/2 (mc>1), the potential increase or decrease in the spontaneous 

emission rate is at most a factor of 3 or 2, respectively.139-141 More significant 

changes in lifetime, however, can be expected in three dimensionally confined 

cavities. For example, enhancement factors greater than 15 have been observed for 

three-dimensionally confined cavities with a small volume, such as quantum dots in 

pillar micro-cavities (Fp=5) or micro-disks (Fp=15).143 

In a micro-cavity bound by DBR mirrors the Purcell factor is generally close 

to 153, 144-149 due to the narrow angular range of reflectivity resulting in a large 

number of leaky modes.150 With structures confined by metal mirrors, high Purcell 
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factors can be achieved via coupling to surface Plasmon modes.151  The interaction 

between the free charges at the metal surface and electromagnetic radiation results 

in surface plasmons having greater momentum, or equivalently, a greater in-plane 

wave-vector ksp compared to “free” photons in the semiconductor, i.e. ksp>nk0. This 

increased momentum (in-plane wave-vector) means that SP modes are non-

radiative, they are bound to the interface between the metal and the dielectric.   

The dipole emission has near-field and far-field components. The far-field 

component propagates as plane waves while the near-field is made up of evanescent 

waves which are quite intense. While the focus for improved extraction in MOLEDs 

is on the plane wave components, potential for improvement also resides in 

converting the evanescent waves into plane waves via coupling to surface Plasmon 

modes. This can be achieved by prism coupling or Bragg scattering.118, 152, 153 

6.3.2 Low-finesse Microcavity’s 

 Thus far, the majority of MOLED reporting’s have concentrated on using 

structures with low to moderate Q-factors, wherein little to no change in the 

spontaneous lifetime is observed.53, 144-149 Although, higher finesse cavities can result 

in large enhancement of both electroluminescence and photoluminescence in the 

forward direction for sharply directed forward emission, this enhancement is often 

accompanied by a large color change versus viewing angle and low total light 

extraction enhancement.154-156  Theoretical work has suggested that low-finesse 

MOLEDs are a more promising structure for use in lighting and display applications 

as they combine the advantage of a small color shift and reasonable enhancement in 

total extraction efficiency.131 This improvement in the light extraction efficiency of 
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low-finesse MOLEDs is achieved not by changing the spontaneous emission of the 

source itself, but by a redistribution of the power as a result of interference effects 

created by the optical cavity. With an appropriate cavity design, the preferential 

propagation direction of the photons can be changed from the total internal 

reflection regime toward the extraction cone resulting in an increase in light out-

coupling efficiency (Figure 30). An optical model will now be developed beginning 

with a simple scalar approach to progressively more sophisticated models.    

 

Figure 30. Typical organic phosphors in conventional OLED structures have 

isotropic emission wherein the emitted power is uniform in all directions for a given 

wavelength. Only light rays inside of the extraction cone (solid line) are permitted to 

escape due to total internal reflection caused by the mismatch in the index of 

refraction of the medium at which the source emits (ni) with respect to the exit 

medium (no), where ni > no. Consequently, light rays outside the extraction cone 

(dotted line) cannot escape. By implementing reflective mirrors (right) into the 

device architecture with a separation on the order of an integer value (m) of one-half 

of the emission wavelength (λ), the power can be shifted from the total internal 

reflection regime towards the extraction cone, such that more power propagates 

within the extraction cone.    
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6.4 The Scalar Model 

6.4.1 Point Source Near a Single Mirror 

A simple case will first be described to familiarize the reader with the 

concepts to be covered in this Chapter. Consider a point source distance, d, from a 

mirror with field reflection coefficient, r, defined as the ratio of the reflected electric 

field to incident electric field (r=Er/Ei).  

 

Figure 31. A point source near a single mirror, where d is the distance between the 

source and mirror, E0 is the dipole farfield without a mirror, r is the ratio of reflected 

electric field to incident electric field, θ is the angle of incidence, and φ is the phase 

difference between the direct and reflected contribution of the field. 

For the simplified scalar approach, the electric far field of a plane wave of 

monochromatic light incident on a single mirror is given by the sum of each wave as 

expressed in the following equation
   

 

Equation 15 

 2

0 1 i

t reEE   
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Here Et is the total electric field, E0 is the dipole far field without a mirror and is the 

phase difference between the direct and the reflected contribution of the field and is 

given by
    

 

Equation 16 

 cos0ndk  

Here k0 is the wave vector, n is the refractive index of the medium, θ is the angle of 

incidence, and d is the distance between the source and mirror. 

For reflections whereby a change in phase occurs at the mirror, the total 

electric
          

 

Equation 17 

 )2(

0 1 effi

t reEE


  

Equation 18 

)arg(cos22 0 rndkeff    

Here Arg(r) is the phase change of the wave upon reflection at the mirror surface.  

6.4.2 Resonant Condition for a Single Mirror 

Constructive interference between the two waves occurs when
   

 

Equation 19 

 meff 22   
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For normal incidence (θ=0) and reflection of a wave incident on an ideal 

metal mirror (arg(r)=π), the conditions for destructive and constructive interference 

are expressed as 

Equation 20 

Optical Length, (nd) )12(
4

 m


   Constructive Interference condition 

Equation 21 

   Optical Length, (nd) )2(
4

m


        Destructive Interference condition 

In this case, constructive interference occurs at the anti-nodal position and 

destructive interference occurs at the nodal position. 

The maximum, minimum and average field intensity (|Et|2) over all angles is 

then given by 

Equation 8a             Maximum = (1+|r|)2 

Equation 8b             Minimum = (1-|r|)2 

Equation 8c              Average = 1 + |r|2 

Thus, for a perfect mirror (|r|=1), the resultant power of the source can be 

anywhere between 0 and 4 and is strongly dependent on the direction. This simple 

case demonstrates the profound influence the environment can have on the far field 

power distribution of the emitting source as a result of wave interference. 
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6.4.3 Transmission of a Fabry-Perot Cavity 

 

Figure 32. Transmission of a Fabry-Perot cavity, where E0 is the dipole farfield 

without a mirror, r is the ratio of reflected electric field to incident electric field, t is 

the ratio of transmitted electric field to incident electric field, R is the reflectivity 

energy, T is the transmission energy, L is the cavity length, n is the index of 

refraction of the medium, θ is the angle of incidence, and φ is the phase difference 

between the direct and reflected contribution of the field. 

Consider an electric field propagating wave incident on a Fabry-Perot cavity 

with index of refraction, n, at an angle, θ, from the normal plane of incidence. The 

transmitted electric far field of a plane wave of monochromatic light is given by the 

sum of the transmitted waves157: 

Equation 22 

 niii

t
effeffeff errerrerrttEE 2)2(

21

2)2(

21

)2(

21210 )(...)(1
 

  

Equation 23 
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Equation 24 

)arg()arg(22 21 rreff  

  

Here Et is the transmitted electric field, E0 is the dipole farfield without a cavity, 

and t1/t2 and r1/r2 are the field transmission and reflection coefficients, respectively. 

Arg(r1) and Arg(r2) are the phase changes at the mirror and 2  corresponds to the 

cavity round-trip phase shift and is equal to      

  
     

 

Equation 25 

 cos22 0nLk
 

Here L is the cavity length, k is the amplitude of the wave vector (k=2π/λ) in the 

cavity with refractive index n, and θ is the angle of incidence.  

The power transmission coefficient (TFP) for a Fabry-Perot Cavity is given by:

           

 

Equation 26 

2
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21

2
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2

)2(
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

  

Here T1 , T2 and R1 , R2 are the power transmission and reflection coefficients for the 

top and bottom mirror, respectively (Ti=|ti|2, Ri=|ri|2). The power transmission 

coefficient (TFP) is related to the Airy Factor (A(2 eff)= TFP/T2). The Airy factor (A) or 

cavity enhancement factor defines the resonant modes of the cavity. The resonant 

modes represent cases of optimum constructive interference (peaks in transmission) 
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and are strongly dependent on the cavity length. The Airy factor and resonance will 

be discussed in more detail in later sections.  

6.4.4 Point Source in a Fabry-Perot Cavity  

 Consider now a source inside of a Fabry-Perot Cavity as shown in Figure 33.  

 

Figure 33. Point source inside a Fabry-Perot cavity, where E0 is the dipole farfield 

without a mirror, r is the ratio of reflected electric field to incident electric field, t is 

the ratio of transmitted electric field to incident electric field, R is the reflectivity 

energy, T is the transmission energy, L is the cavity length, n is the index of 

refraction of the medium, θ is the angle of incidence, and φ is the phase difference 

between the direct and reflected contribution of the field. 

 

For a source within a Fabry-Perot cavity, the result strongly resembles the 

case of transmission from an external source through a Fabry-Perot cavity with the 

exception that an additional term (ζ) must be added to account for the additional set 

of waves emitted downwards by the source (dotted line). This can be expressed as 
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Equation 27 
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Equation 28 

)arg()arg(22 2111 rreff  
 

Equation 29 

)arg(22 222 reff    

The first term, the Airy factor ( )2( 1

effA  ), given in Equation 27, is strongly 

dependent on the length of the cavity. The Airy factor is periodic with period π in 

1eff. Its maxima define the resonant modes of the cavity and obey the phase 

condition 2 1eff = 2mπ with m a positive or negative integer.  

Equation 30 

)2cos(21

1
)2(

12121

1 eff

eff

RRRR
A





  

The second term, the standing wave factor ( )2( 2

eff ), given in Equation 30, is 

strongly dependent on the position of the source within the cavity. According to the 

above equation, the transmission is high in a Fabry-Perot when the source is located 

at an antinode position of the standing wave. 

Equation 31 

)2cos(21)2( 2222

effeff RR  
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6.4.5 Resonance in a Fabry-Perot Cavity  

A resonance or a resonant mode can be described as a condition for which the 

cavity enhancement factor or Airy factor goes through a maximum. In a given 

Fabry-Perot cavity, resonance will occur for a particular combination of wavelength 

and wave propagation direction or angle. As noted previously, a resonant condition 

occurs when 2 1eff = 2mπ with m being a positive or negative integer. For simplicity 

and to demonstrate the concept of resonance, it will be assumed that the power 

transmission and reflection coefficients are independent of wavelength and angle of 

incidence and that no phase change occurs at the mirror surface (arg(r)=0). Under 

these conditions the resonant condition simplifies to
 

 

Equation 32 

 cos22 0nLkm 
 

As will be shown shortly, it is convenient to rewrite the resonant condition in 

terms of the z component of plane wave k-vector (kz):
   

Equation 33 

 mnLknLk z 22cos22 
 

Rearranging Equation 33  yields     

Equation 34 

nL

m
k z



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Thus, resonance occurs in intervals of π/nL with respect to the z component of 

the wave-vector. For perfect resonators (|r1r2|=1), these resonant intervals form 

resonant planes in K-space.  

The concept of resonance in a Fabry-Perot can be more conveniently 

expressed graphically in the K-space representation. In the K-space representation, 

a monochromatic source resembles a sphere satisfying the dispersion relation:  

Equation 35 
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Figure 34. Dimensional K-Space representation of the wave-vector (red arrow).
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As the emission properties of the Fabry-Perot cavity are independent on the 

azimuthal angle ( ), the k-space representation can be broken down into two 

dimensions and the dispersion relation can be simplified to: 
   

 

Equation 36 
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For perfect resonators wherein the optical cavity contains perfect mirrors 

(R=1), resonance for a given wave-vector, k, occurs only when there is a crossing of 

the K-vector sphere defined by the dispersion relation (solid line) with the resonance 

planes (dotted line). 

 

As can be seen from the Figure 35, for a given wavelength the resonant 

modes form a discrete set as a function of θ and a continuous set as a function of 

(cones of resonance). One of these resonance cones are depicted in the Figure 36. The 

resonant plane spacing is inversely dependent on the length of the cavity. Thus, the 

number of resonant modes (or rather of resonant cones) will increase as the cavity 

thickness is increased. Vice versa, by decreasing the thickness the number of cones 

can be reduced to 1 (or even 0 in special cases). Figure 36 depicts an identical 

monochromatic source (same k-vector magnitude) in 2 different sized cavities. As 

can be seen for the smaller cavity (left), less resonant modes are present.  
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Figure 35. Dimensional projection of K-Space. Points of resonance (black dots) occur 

upon intersection of the k-sphere (black circle) with the resonant planes (black 

lines). The separation of resonances occurs in intervals of π/nL per the resonant 

condition given in equation 19. 

When the Fabry-Perot medium has an index, n, greater than the external 

medium, then total internal reflection occurs whereby light greater than the critical 

angle (θc) of the cavity mirror’s is reflected and trapped inside the cavity. Thus only 

those wavevectors within the critical angle can be extracted. These wave-vectors 

form a cone, known as the extraction cone (Figure 36).  

 An additional observation that can be made from Figure 36 is that as the 

number of resonant modes increase, the relative number of resonance modes in the 

extraction cone decreases and resonant modes outside of the extraction cone 

increases.  
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Figure 36. K-space representation of 2 different cavities with different cavity 

lengths. Cavity 1 (L1) is smaller than cavity 2 (L2) and has twice as many resonant 

conditions inside the extraction cone (diagonal lines). 

6.4.5 The Airy Factor 

 For simplicity, let us consider again a source within a Fabry-Perot resonator 

with R1=R2=R and z=L/2 and ideal mirrors ( = 1= 1eff= 2eff). Equation 27 reduces to: 

Equation 38 
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Equation 39 

 cos2 knL  

In the case of a perfect resonator (|r1r2|=1, R=1) as described previously, the 

transmittance approached infinity, and the resonant modes became singularities, 

which can be described by a Dirac distribution. For more realistic situations 

wherein|r1r2|<1, the optical mode density is no longer a Dirac distribution and the 

resonant peaks caused by the Airy factor have a finite width. The full width half 
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maximum (FWHM), defined as δ 1eff, is inversely proportional to the cavity finesse 

(F) according to the following equation

  

 

Equation 40 




F

 

Here Δ  is the separation between adjacent resonances and δ  is the full-width half 

maximum of the resonance peak (Figure 37).  

Thus, the higher the reflectivity of the optical cavity mirrors, the lower the 

FWHM, and the higher the finesse. As discussed previously, typically a low to 

moderate finesse optical cavity is implemented for optimizing the out-coupling 

efficiency of MOLEDs.
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Figure 37. The Airy function (top) and Emission (bottom) vs phase for different out-

coupling reflectivity’s (R1). Resonant peaks occur at integer values of π for this 

simplified case.
 

 

The Emission through the top of the cavity is strongly dependent on the 

phase of the cavity. Thus for wave-vectors out of phase with the cavity, the emission 

is significantly reduced. Additionally, the reflectance of the coupling mirror has a 

strong dependence on both the emission and the line width of the Airy resonant 

peak. Given the full-width half max (FWHM) is inversely proportional to the Finesse 

of the cavity, as the reflectance of the mirrors increases, the full width half 

maximum of the resonant peaks decreases and the drop in transmission for 

wavelengths out of phase with the cavity becomes more pronounced. 
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Figure 38. Resonant regions for imperfect resonators defined by dark shaded 

regions. 

For imperfect resonators as in those described in Figure 37, the k-space 

picture described previously must be slightly modified. In this case, the resonances 

of the Airy factor are no longer discrete, but continuous with a spread defined by the 

Finnesse. Consequently, the resonant planes in Kz are no longer planes, but slabs. 

Additionally, if the point source is not monochromatic it has a non-zero spectral 

width (such is the case of spontaneous emission from an organic semiconductor) and 

the dispersion sphere should be broadened to a shell. Thus for imperfect resonators, 

volumetric overlap between the slabs and the shell define regions of resonance as 

shown in Figure 38. 
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The resonant angles larger than the critical angle correspond to leaky modes 

and guided modes and do not contribute to the light emission exiting the cavity.47, 133, 

158, 159  Only those resonances for which the angle of incidence is less than the critical 

angle (θc) can be extracted. In terms of the z component of the wave-vector, this 

corresponds to values between kz=k0 and kz=k0cosθc. As the light emission is 

proportional to the area under the Airy factor, the light extraction can be 

approximated as ratio of the area under the Airy factor within the extraction cone 

(from kz=k0 and kz=k0cosθc) to the total area under the Airy factor from kz=k0 and 

kz=0.  

6.4.6 Cavity Order 

As shown previously, the resonant condition can be written in terms of kz or 

in terms of the angle of incidence. An alternative way to express resonance is 

through the cavity order (mc) which is the cavity thickness expressed in number of 

half wavelengths142: 

Equation 41 

n

d
mc

2/


 

A cavity order of 1 (mc=1) corresponds to an optical cavity length (given by 

the product of the index of refraction and the geometrical thickness {nL}) equal to 

λ/2. A cavity order of 2 (mc=2) corresponds to an optical cavity length λ and so on. 

The resonance can then be written in terms of the optical cavity length142  
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Equation 42 

mmc cos  

From this equation it is clear that the number of resonances is limited to mc. 

The cavity order will be discussed in more detail in the design rules section.  

6.4.7 Cavity Tuning 

 Resonant conditions in a Fabry-Perot cavity outlined previously (Equation 

33) can be rewritten as a function of wavelength (k0=2π/λ): 

Equation 43 





cos2

m
nL   

Equation 43 suggests that the resonant condition for a given optical cavity 

length (nL) depends on (1) the incident angle and (2) wavelength of the source 

emission. As shown in previous sections, when the incident angle and wavelength 

satisfy Equation 43, a resonant condition occurs. For clarity, when such conditions 

are met, the incident angle and wavelength will be referred to as the resonant angle 

and resonant wavelength, respectively. For a non-monochromatic source exhibiting a 

large dispersion of wavelengths, the optical length should be set such that majority 

of wavelengths satisfy a resonant condition within the extraction cone (θ< θc) to 

optimize the light enhancement emanating from the cavity. This is typically done by 

extending the spectral position of the optical mode beyond the peak intrinsic 

emission wavelength to form a so called over-tuned or detuned optical cavity 

compared to a tuned cavity for which the spectral location of the optical mode 

corresponds to the peak emission wavelength of the source. Such an approach is 
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based on the result in Equation 43 which suggests that the cavity length is directly 

proportional to the resonant wavelength and inversely proportional to the cosine of 

the resonant angle. Consequently, the resonant wavelength decreases with 

increasing resonant angle for a given cavity length and blue shifting of resonant 

peaks with increasing angle is observed. Thus, resonant conditions occur only for 

resonant wavelengths equal to or less than the cavity length for incident angles 

greater than 0ᵒ. For this reason, setting the optical cavity length equal to the 

resonant wavelength (tuned cavity) would limit the number of resonant 

contributions to wavelengths equal to or less than the peak emission wavelengths of 

the source and thus the overall power emanating from the cavity. More discussion 

on cavity tuning will be described in future sections.  

6.5 Design Rules  

The aforementioned sections, discussed a simplistic model to describe light 

out-coupling in a Fabry-Perot cavity or microcavity. While these approaches are 

insufficient to model an actual MOLED, they can be used to derive a number of 

approximate design rules for a simplified MOLED design, that can be used as 

guidelines for the first phase of design.  In this section the basic design rules for 

MOLEDs are explained. For a more detailed discussion the reader is referred to 

work presented by Benisty et al.131, 160 

6.5.1 Out-coupling Reflector  

A typical MOLED consists of a fully reflective back mirror and a semi-

reflective out-coupling mirror. The most important design parameter in a Fabry-

Perot cavity is the semi-reflective out-coupling mirror. Various reflectors for Fabry-
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Perot cavities have been studied including metallic reflectors, distributed Bragg 

reflectors (DBRs), and hybrid metal-DBR reflectors. Metal mirrors have the 

advantage of high reflectivity over a large spectral range including the near infrared 

and a large part of the visible range. Additionally, the reflectivity of metal mirrors 

does not depend on the angle of incidence. The disadvantage of metal mirrors is, 

except for cases of very thin films, the metallic reflectors are absorbing, resulting in 

a low transmittance making them unsuitable for out-coupling mirrors. Another 

disadvantage of metallic mirrors is a phase change occurs upon reflection at the 

metal surface. In order to compensate for this change in phase, an additional phase-

matching layer with an appropriate thickness needs to be added. 

DBRs consist of a series of high and low index material pairs. Typically the 

materials are dielectrics in which case they are properly termed dielectric 

distributed Bragg reflectors (DDBRs).161 Unlike metallic mirrors, they are non-

absorbing. Additionally, DBRs have a tunable Reflectance Energy, dependent upon 

the number of pairs and index of refraction difference of the materials. High 

reflectivity’s (~100%) are possible given sufficient number of pairs. A disadvantage 

of DBRs is they have a narrow band of high reflectivity in the spectral and angular 

regime. Additionally, due to the partial penetration of the optical wave in the 

reflector the use of DBRs as Fabry-Perot mirrors results in a significantly increased 

effective cavity length and cavity order.142, 162, 163  This thesis will focus on distributed 

Bragg reflectors as out-coupling mirrors in MOLEDs due to the minimal absorption 

losses and the large range of reflectance energies possible with a DBR configuration. 

The optical properties and design of DBRs will now be described.  
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DBRs are periodic structures with a unit cell of two layers, consisting of 

alternating layers of low (nl) and high (nh) refractive index material with an optical 

thickness of a quarter wave for the designed wavelength, defined as λBragg 
164, 165  

Equation 44 
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Figure 39. Distributed Bragg reflector structure with thickness λ/4ni where ni is 

index of the low and high refractive index material (left).  Reflectance spectra for a 

DBR with 8 pairs and Δn of 0.5. The reflectance peaks at the Bragg wavelength 

(right). 

The reflectance properties are strongly dependent on the following 

parameters: 

Equation 45 
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The dependence on the reflectance energy as a function of number of pairs 

and refractive index difference can be calculated analytically. Consider a DBR 

consisting of “p” pairs sandwiched between two media of refractive index n0 and ns. 

Its reflectivity at its central wavelength λBragg for normal incidence is given by131, 166  

Equation 46 
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The high reflectivity band is called the stop-band. Beyond the stop-band, 

DBRs are no longer mirrors and allow propagative photon states called leaky modes. 

The width of the spectral stop-band scales with the refractive index difference 

effnn /  and is approximately given by167  

Equation 47 
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 For a more general case with multiple layers with different refractive indices 

and different dispersion relationships the matrix method can be used to calculate 

the reflectance of a multi-layer stack.166, 168 A matlab program implementing the 
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matrix method to calculate the reflectance of a multi-layer stack used throughout 

this thesis is included in the appendix (I).  

6.5.2 MOLED structure and design  

 

Figure 40. Schematic diagram of a common microcavity OLED. The optical cavity is 

defined between the reflective cathode mirror and the Bragg mirror, composed of 

alternating quarter-wavelength thick high index materials and low index materials. 

Cavity tuning is possible by varying the transporting layers. A spacer layer is 

inserted between the transparent anode and high index material to tune the cavity 

order without affecting the electrical performance of the MOLED.   

 

 Figure 40 shows a schematic diagram of a common MOLED configuration 

which consists of a highly reflective cathode and a semi-reflective distributed Bragg 

reflector (DBR) or quarter wave stack (QWS) out-coupling mirror. The DBR consists 

of λ/4 optically thick repeat pairs of a high index dielectric and a low index dielectric. 

Typically a low index material is inserted between the transparent anode and high 
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index dielectric material to tune the optical cavity. Such an approach can 

significantly extend the optical cavity without compromising the electrical 

performance of the device. Thus, high order cavities, as in the case of multimode 

resonance for white color tuning, is achievable using a low index spacer layer. In 

practice, fine-tuning of the cavity is also needed to achieve high external quantum 

efficiency’s which is possible by varying the electron or hole transporting layers. The 

optical cavity is approximately equal to the optical length between the high index 

material and metallic cathode.      

A microcavity OLED can be designed to optimize one or more of the following 

criteria: 

(1) Optimization of overall external quantum efficiency 

(2) Optimization of spectral width 

(3) Optimization of brightness within a desired solid angle 

Often time’s one criterion optimization will affect another criterion 

optimization. For this reason, compromises between one criterion and another must 

be made. In this section, the design rules will focus only on optimization of the 

overall external quantum efficiency. The other criteria will be discussed further in 

later sections. 

 The basic design rules for enhancing light out-coupling in a MOLED based on 

the design outlined in Figure 40: 

(1) Minimize the cavity order (mc) 

(2) Design the out-coupling reflectivity such that R1
opt=1-mc/n2 

(3) Position the Airy Factor inside of escape window [k0,k0cosθc] 
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(4) Implement a source with a narrow spectral width 

(5) Maximize reflectivity of back mirror (R2) 

As a general rule the order of the cavity should be as low as possible.142 As 

suggested in an earlier section, maxima in the Airy factor ( )( zkA ) with respect to the 

z-component of the wave vector (Kz) define resonant modes of the cavity. With 

increasing cavity order the Airy factor peaks narrow which reduces the total area 

under the area curve inside of the extractable region (Appendix II).  

Ideally, the Airy peak should be squeezed symmetrically inside of the escape 

window [k0,k0cosθc] such that the majority of the Airy Peak is within the window. 

Increasing the out-coupling reflectivity results in a narrowed Airy peak inside of the 

window increasing the light extraction from the cavity but can also result in 

significant absorption losses due to the increased number of round trips. By setting 

the Airy factor at the escape window edges (θ=0 and θ=θc) to a reasonable value 

(~10% of its peak value), the following condition can be found for the optimal out-

coupling reflectivity (R1
opt) in the case of a lossless cavity131 

Equation 48 

21 1
n

m
R copt   

According to Equation 48, the optimum out-coupling reflectivity, therefore, is on 

the order of ~40% for an order 2 cavity and an active region refractive index of 1.8. It 

will be shown in future sections that this value agrees very well with more 

sophisticated models designed to assess light out-coupling in MOLEDs.  
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 In addition to optimizing the out-coupling mirror reflectivity, the cavity 

length should also be set such that the position of the Airy peak is centered inside of 

the escape window [k0,k0cosθc] which can be achieved be over-tuning or detuning the 

cavity. For a source with a large spectral distribution, the cavity detuning design 

must consider many wavelength as not all wavelengths can be centered inside of the 

escape window for a given cavity length. Typically, the peak emission wavelength of 

the source should be centered inside of the escape window, however, this condition 

varies from case to case depending on the spectral shape of the source. This point 

leads to the next design rule which suggests that the MOLED should implement 

sources with intrinsically narrow band emission characteristics or a small full width 

half maximum (FWHM).  Figure 41 effectively demonstrates this point in terms of a 

k-space coordinate system.  

 

Figure 41. The blue band represents the 2D projection of a non-monochromatic k-

sphere for a narrow (left) and broad (right) emission spectrum. The vertical lines 

represent resonant conditions within the extraction cone (contribute to farfield 

intensity). The horizontal lines represent resonant conditions outside of the 

extraction cone (do not contribute to the farfield intensity).  

Finally rule 5 suggests that the back mirror reflectivity (R2) should be as high 

as possible. Thus, cathode materials with high reflectivity’s and small absorption 

coefficients should be implemented into MOLEDs.  



113 

 

6.6 Method of Source Terms: Transition to a vectorial electromagnetic problem with 

electrical dipole source terms 

Design rules defined in the previous section can be used as a guideline in the 

first phase of design, however a quantitatively accurate design of a MOLED is only 

possible by numerical analysis. While the previous approaches have been used to 

develop general guidelines, in practice, specific details of MOLED performance 

including the light out-coupling efficiency, angular intensity profile, and spectral 

shape is needed. Thus, a more rigorous optical model will now be considered. 

The scalar approach as outlined in previous sections implies not only that the 

fields are scalar, but that the point source was a scalar. In reality, we must consider 

vectorial fields and vectorial sources.  

 

Figure 42. A schematic of a multilayer OLED (left) with an emitting medium (ns). 

The dipole is located at a distance d1 from the upper mirror and d2 from the bottom 

mirror with a total mirror separation of d. The upper mirror has a reflection 

coefficient of r1 and the bottom mirror has a reflection coefficient of r2. The power is 

reflected at the mirror surfaces creating interference inside the cavity. The emission 

angle θ and φ are defined in a Cartesian coordinate system (right). 
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In the weak-coupling regime, the spontaneous emission process of a bulk 

semiconductor can be adequately represented by an electric dipole.162 An electric 

dipole can be decomposed into a horizontal and vertical component. The horizontal 

component has a dipole moment in the (x-y)-plane and the vertical component has a 

dipole moment along the z-axis. Similar to the electric dipole, an electromagnetic 

wave can also be separated into two components; a Transverse Electric (TE or s) and 

Transverse Magnetic (TM or p). A TE is a plane wave that has its E-field in the (x-

y)=plane and orthogonal to k and a TM is a plane wave that has its H-field 

transverse to the plane of incidence. A plane wave component A of the field resulting 

from an electric dipole has its electric field in the plane of the dipole moment and the 

wave-vector k, vanishing sinusoidally for emission in the direction of the dipole 

moment.162 Decomposing an arbitrary linear polarization into TE and TM, averaging 

the field amplitude over the azimuthal angle , and normalizing the total emitted 

power results in plane wave amplitudes (expressed as density per unit solid angle) 

summarized below.162 

Table 7. Source terms for horizontal and vertical dipoles137 
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Thus, the complete vectorial problem can be decomposed into three simple 

scalar problems; a TE generated by a parallel dipole, a TM generated by a parallel 

dipole, and a TM generated by a perpendicular dipole.131, 160, 162  

 

Figure 43. Emission patterns for a vertical dipole emitting TM (left), a horizontal 

dipole emitting TM (middle) and a horizontal dipole emitting TE (right).  

The emitted intensity Ior,pol(θ) (pol=s,p, or=horizontal, vertical) for an internal 

emission angle, θ, caused by the source’s downwards and upwards propagating 

plane wave component Aor,pol
↓  and Aor,pol

↑ can be calculated letting the plane 

propagative and evanescent waves propagate in the multilayer. The different 

contributions in the outside medium give rise to a field distribution, a power 

distribution and an extraction efficiency given by137:  

Equation 49 
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Equation 51 
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Here|r1r2|<1, r1 and r2 the upwards and downward amplitude reflection 

coefficients (Er/Ei), T1 the upwards power transmission coefficient |Et
2/ Ei

2|and:
 

 

Equation 52 
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Equation 55 
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Here d1 and d2 are the distances of the dipole from the interfaces of the first layer of 

the upper mirror and the first layer of the bottom mirror, respectively. R1, r2, and T1 

are polarization dependent and can be calculated using a transfer matrix method. 

Similar to the scalar approach outlined earlier, the numerator is called the standing 

wave factor and expresses the dependence of the emitted intensity on the position of 

the source. The inverse of the denominator is called the cavity enhancement factor 
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or Airy factor. The cavity enhancement factor peaks (resonance occurs) when the 

following condition is met:  

Equation 56 

 mrr eff 2),(2)2arg()1arg(2   

In bulk semiconductor materials, the emission is isotropic and the dipole can 

have any orientation. In this case, one third of the power generated by dipoles is 

generated by vertical dipoles and two thirds by horizontal dipoles and the intensity 

becomes137

  
 

Equation 57 
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6.7 The Finite Difference Time Domain Method 

The previous approach assumes the cavity is composed of a single medium. 

However, OLEDs contain several layers with different refractive indices. 

Additionally, the previous model depends on knowledge of the exact location of the 

cavity, which may result in erroneous results when the reflection points are not 

defined accurately in the model. For a more accurate assessment of the light 

extraction efficiency in OLEDs, the finite difference time domain method should be 

used.  

6.7.1 Theory 

 The finite difference time domain (FDTD) method was first proposed by Kane 

S. Yee in 1966 and consists of a time-dependent solution of Maxwell’s equations 



118 

 

based on their differential form using central difference approximations of both the 

space and the time-derivatives.169, 170 The formulation is based on discretizing the 

volume domain with a regular, structured, staggered, rectangular grid, solving 

Maxwell’s equations discretely in both space and time, where the time step used is 

related to the mesh size through the speed of light. The technique is an exact 

representation of Maxwell’s equations in the limit that the mesh cell size goes to 

zero.  

 Several commercially available software programs implement the Yee 

algorithm for solving Maxwell’s equations for complex geometries. In particular, 

Lumerical FDTD Solutions has been common software used in the field for analysis 

of light extraction in OLEDs.169, 170 The software gives both time and frequency 

domain information to the user and handles a wide variety of material properties 

including metals. Results obtained from the near field may be transformed to the 

far-field to obtain scattering patterns.  

Figure 44 shows a schematic of a typical OLED structure. The OLED structure is 

modeled inside the FDTD computational domain. The metal cathode is modeled as a 

perfect electric conductor, allowing no energy to escape the simulation volume along 

the metal cathode boundary. The substrate and surrounding organic layers are 

defined by a perfectly matched layer (PML) boundary condition which allows 

electromagnetic waves to propagate out of the computational domain without being 

reflected back into the computational domain.  
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Figure 44. Schematic of a typical OLED structure.  

FDTD is a time domain technique; consequently, the electromagnetic fields 

are solved as a function of time. As OLEDs are broadband emitters, the power 

equation (Equation 58) must be determined as a function of angular frequency (ω) or 

wavelength. This is done by putting the time domain data through a Fourier 

transform (Equation 59 and 60). For convenience, the frequency data is normalized 

by the source spectrum (Equation 61). 
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Equation 59 
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E(t) and H(t) are the electric and magnetic fields as a function of time, 

respectively. sj(t) is the source time signal of the jth source and N is the number of 

active sources in the simulation volume. The time signal of the dipole source, s(t), is 

described by a pulse (Equation 62). 

Equation 62 
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  Ideally, s(t) would be a dirac delta function (in which case s(ω)=1), allowing 

for a response containing all frequencies from a single simulation. For a variety of 

reasons, it is more efficient and numerically accurate to excite the system with a 

short pulse such that the spectrum, |s(ω)|2, has a reasonably large value over all 

frequencies of interest.  

In an OLED electrons and holes recombine to excitons in the emission zone. 

While in principle, the radiative decay of an exciton must be described quantum 

mechanically in terms of photons; in practice it is possible to treat the generated 
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light classically using electromagnetic point dipole sources.171 The propagation of 

light is therefore given by the solution of Maxwell equations for an oscillating dipole 

in the layered structure and depends on its location and orientation. The total 

injected power of the oscillating dipole depends strongly on the dipoles local density 

of states as fields reflected by nearby structures re-interfere with the source, causing 

it to inject more or less power than in a homogenous environment.172 In the 3D 

FDTD calculation, the total injected power is normalized to the power injected in a 

homogenous environment. To simulate a perfectly isotropic, incoherent source, 3 

simulations of the same dipole orientated along the x/y/z axes are calculated and 

then summed up incoherently.171 The energy flow in the structure and into the 

substrate is then derived from the electrical and magnetic fields. Since the direction 

of the dipole can be arbitrary, the results must be averaged over all dipole directions. 

This can be expressed by the Equation 63. 

 

 

Equation 63 
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  The variable p(θdi,ϕdi) is the power as a function of the dipole direction θdi and 

ϕdi.  

  Since the OLED structure is uniform in the in-plane direction the system 

contains azimuthal symmetry and the power equation becomes a function of θdi only 

(p(θdi,ϕdi)=p(θdi)). The dipole power for each mode for various θdi is calculated in 
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three-dimensional space in the FDTD domain. According to Chen et al., the power 

can be perfectly described by Equation 64.  

Equation 64 
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Substituting Equation 64 into Equation 63, we obtain: 

Equation 65 
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 As shown in Figure 44, the power of the wave-guide is determined by simply 

calculating the power that flows along the Organic/ITO waveguide.  The 

computational domain extends 400nm deep into the glass substrate. The total power 

at this domain is assessed and the transmission of power from glass to air is treated 

by ray optics,173 i.e., the light that propagates inside the glass substrate with an 

angle less than the critical angle of the glass/air interface (41.8°) is considered as the 

air mode and the light that propagates inside the glass substrate at an angle larger 

than 41.8° is considered the glass mode. The light extraction efficiency of an OLED 

is defined as the fraction of optical power generated in the active layer over the 

power that is transmitted into air (air modes).  The overall extraction efficiency of 

the OLED is the ratio of the transmission of power from glass to air over the total 

injected power.   
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6.7.2 Overview of Model Assumptions  

 It is now worth reviewing the main assumptions of the modeling framework 

described in the previous section in order to define the general limits of validity of 

this approach. We can summarize the assumptions used in the modeling framework 

as follows: 

(i) The emitting medium, the substrate material, and the far-field 

medium in the OLED multilayer are assumed to be nonabsorbing. 

(ii) The transition dipole of the phosphorescent molecular emitter is 

assumed to be isotropic. 

(iii) OLED devices are operated at low excitation levels or, 

equivalently, at low exciton concentrations in the emitting layer. 

(iv) The extension of the exciton generation is small compared to the 

cavity length. In particular, we consider the limit of a  -

distributed exciton generation profile. 

(v) The source is monochromatic with an out-coupling efficiency equal 

to the ratio of total output power of the peak wavelength emission 

energy to total injected power of the dipole at the peak wavelength 

emission energy.  

(vi) The multilayer stack consists of perfectly smooth layers and 

interfaces.  
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The first assumption is an intrinsic limitation of the electromagnetic model 

used in this work. For the systems we will analyze in the foregoing sections, it can 

be verified that the effect of self-absorption in the emitting layer could be safely 

neglected due to the generally weak overlap between absorption peak and 

luminescence spectrum of the materials in this study.  

 The second assumption in the list above, i.e., isotropic transition dipole 

moments, is present due to the lack of specific information with respect to the 

orientation of the emitting dipoles in molecular emitting systems. Recently, 

experimental evidence of non-isotropic emission with a ratio for parallel versus 

perpendicular emitting sites was reported to be equal to 2:0.67 in the 

phosphorescent system NPB:Ir(MDQ)2(acac) , larger than the commonly considered 

isotropic portion 2:1.174, 175 It is expected, however, for the system involved that the 

information about the emitter orientation to lie within the accuracy limits of our 

device fabrication process and characterization uncertainties.  

 The third and fourth assumption has been made necessary due to missing 

quantitative knowledge of various internal microscopic quantities and distributions, 

for which physical models are unavailable or still under development. Particular 

care, however, has been taken in the design of experiment and in the choice of the 

characterization conditions to ensure that these assumptions are satisfied, and thus 

experiment and theory can be meaningfully compared.  

 The fifth assumption is valid only for select cases wherein the source exhibits 

an intrinsically narrow band emission. The design of experiment to be described 

included optimization of a MOLED implementing the tetradentate, cyclometalated 



125 

 

platinum complex, PtN1N, with an intrinsically narrow emission spectral band 

(FWHM=18nm in solution of DCM). The specific emission properties of PtN1N will 

be discussed in more detail in the foregoing sections. We have found the fifth 

assumption to be valid for MOLEDs implementing PtN1N as theoretical calculated 

data are in good agreement with the experimental findings. For organic emitters 

with a large full width half maximum, the optical model developed must be modified 

to account for many wavelengths.  

 The sixth assumption assumes perfectly smooth layers and neglects the 

surface roughness of the layer interfaces as well as the glass/air transition, which 

may lead in some underestimation of the overall light out-coupling efficiency.  

6.7.3 Simulation Accuracy Check 

A three-dimensional multilayer OLED was modeled based on the device 

structure of Glass/ITO(60nm)/HATCN(10nm)/NPD(xnm)/TAPC(10nm)/8%PtN1N 

:26mCPy (25nm)/DPPS (10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm), where 

x=30nm, 40nm, 50nm, and 60nm. Optical constants for the various layers were 

experimentally measured using an ellipsometer and were included as inputs in the 

optical model. The structure chosen incorporates the highly efficient phosphorescent 

emitter, PtN1N, with a radiative quantum efficiency close to unity. The structure 

also incorporates effective hole and electron blocking and transporting materials 

resulting in close to 100% internal quantum efficiency. Additionally, the 

phosphorescent emitter exhibits a narrow band emission (FWHM=18nm based on 

the thin film PL), making the emitter a suitable candidate for the monochromatic 

assumption suggested in the previous section. Thus, the external quantum efficiency 
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is approximately equal to the out-coupling efficiency calculated at the peak thin film 

photoluminescent emission wavelength of 496nm. The device structure as well as 

the photoluminscent characteristics of the phosphorescent emitter, PtN1N, in a thin 

film (25nm) of 8%PtN1N:26mCPy are shown in Figure 45.  

 

Figure 45. The device structure (left) and photoluminescent spectrum (right) of 

PtN1N in a thin film of 26mCPy including the molecular structure of PtN1N (inset).  

The accuracy of the simulation depends on several factors including the size of 

the computational domain and the mesh size (Maxwell boundary condition 

domains). To assess the accuracy of the simulation, the afore–mentioned factors 

were investigated. In theory, the larger the computational domain and the smaller 

the mesh size, the nearer the finite difference time domain approximation 

approaches a solution to Maxwell’s equations in continuum space. However, 

increasing the computational domain and reducing the mesh size also results in a 

higher number of computations and computational memory. For this reason, it is 

important to define the point at which reducing the computational effort will result 

in inaccuracies. Following this approach, the computational power necessary to 
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accurately simulate light propagation in OLED structures can be determined 

without utilizing excessive computational power. The limiting regime was found by 

individually varying the size of the computational domain (increasing the domain) 

as well as the mesh size (reducing the mesh size) until no further change was 

observed in simulation outputs. The extraction efficiency, outlined in a previous 

section, was used as metric to compare the outputs of the simulation under different 

mesh size and computational domain conditions. All calculations in this thesis 

followed this optimization process.  

Based on the results, a mesh size of 10nm x 10nm x 8nm and a computational 

domain of 4um x 4um x 2um will result in a sufficiently accurate assessment of the 

extraction efficiency in OLEDs as further increases in the computational domain or 

further reductions in the mesh size results in negligible changes in the simulation 

output. The accuracy of the simulation was further investigated by comparing the 

calculated extraction efficiency with the external quantum efficiency of the OLED in 

this study. Since the OLED structure in consideration has near 100% internal 

quantum efficiency, the calculated light out-coupling efficiency is approximately 

equal to the external quantum efficiency. The spatial and temporal resolution of the 

FDTD calculation was 10nm and 0.019 fs, respectively. The size of the optimized 

computational domain is 4000x4000x2000 nm, where the last dimension refers to 

the direction perpendicular to the OLED layers. The comparison of the actual and 

theoretical external quantum efficiency as well as the measured electroluminescent 

spectra are shown in Figure 46.   
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Figure 46. The theoretical extraction efficiency (black squares) at different NPD 

layer thicknesses versus the measured external quantum efficiency (black line) of 

the OLED (left). The measured electroluminescent spectra  for a 30nm, 40nm, 50nm, 

and 60nm NPD layer.  

 The measured external quantum efficiency for OLEDs containing a 30nm, 

40nm, 50nm, and 60nm NPD thick layer were 23.3%, 25.0%, 24.9%, 24.5%, 

respectively, compared to theoretical values of 23.5%, 24.9%, 25.1%, and 23.9%, 

respectively. The theoretical and experimental values agree well and exhibit a 

similar trend with an optimal NPD thickness of 40nm, likely as a result of 

microcavity effects. This is supported by a slight red-shifted spectrum with 

increasing NPD thickness, typical of cavity detuning.  

6.8.1 Design of Experiment Description 

A design of experiment will now be described wherein the light out-coupling 

efficiency of the platinum complex, PtN1N, in a MOLED architecture was optimized 

by varying the (1) cavity length and (2) the DBR configuration or out-coupling 

mirror reflectivity. 
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Figure 47. A schematic diagram of the MOLED design explored in this DOE. Cavity 

tuning is accomplished by varying the hole transported layer, NPD, and the out-

coupling reflector is tuned by varying the material and the number of the high low 

index Bragg pairs.   

A schematic of the proposed MOLED design is outlined in Figure 47. The 

cavity length was tuned by varying the thickness of the hole transport layer, NPD, 

which has a high hole mobility resulting in little change in the electrical properties 

of the device with a wide range of thicknesses, which will be shown in Chapter 7. In 

this design of experiment, the NPD thickness was varied from 30nm to 60nm. The 

out-coupling reflectivity was tuned by varying the high and low index material as 

well as the number of quarter wave stack (QWS) pairs of the DBR. In this design of 

experiment, two common low index dielectric materials (SiO2 and MgF2) and six 

common high low index dielectric materials (MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2) 

were implemented in the MOLED described previously with 3 different 

configurations (1 DBR pair, 2 DBR pairs, and 3 DBR pairs) for a total of 36 DBR 
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structures. A summary of the DBR structures in this DOE are outlined in Table 8 

which includes the quarter wave thickness (λ/4n) for the low index dielectric (tlow) 

and the high refractive index (thigh) based on the refractive index at 496nm. Each 

DBR structure was designed to optimize reflectivity at the peak thin film 

photoluminescent emission wavelength of 496nm. Each structure consisted of a 

100nm optical spacer layer consisting of MgF2 and SiO2 for structures 1-6 and 7-12, 

respectively, outlined in Table 8.  The measured dispersion relation is outlined in 

Appendix III.  

Table 8. A summary of the Low/High index configurations investigated in this DOE 

Configuration 
Low/High 

Dielectric 

nlow  

[496nm] 

nhigh 

[496nm] 

tlow           

(nm) 

thigh          

(nm) 

1 MgF2/MgO 1.38 1.75 91 71 

2 MgF2/Y2O3 1.38 1.95 91 64 

3 MgF2/ZnO 1.38 2.05 91 61 

4 MgF2/ZrO2 1.38 2.22 91 56 

5 MgF2/TeO2 1.38 2.32 91 54 

6 MgF2/TiO2 1.38 2.71 91 46 

7 SiO2/MgO 1.49 1.75 84 71 

8 SiO2/Y2O3 1.49 1.95 84 64 

9 SiO2/ZnO 1.49 2.05 84 61 

10 SiO2/ZrO2 1.49 2.22 84 56 

11 SiO2/TeO2 1.49 2.32 84 54 

12 SiO2/TiO2 1.49 2.71 84 46 
 

 The various combinations of each structure result in a large range of peak 

reflective energy’s from 11% to 90%. A summary of the reflectance versus 
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wavelength and summary table for each DBR combination is outlined in the 

Appendix III.  

6.8.2 Results and Discussion 

 A total of 144 runs (4 NPD thickness and 36 DBR structure combinations) 

were simulated using the FDTD method. The full run scheme is referenced in 

Appendix III. A summary of the light extraction efficiency or light out-coupling 

efficiency for the single DBR pair consisting of (1) the low index dielectric MgF2 with 

a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2, and (2) the low index 

dielectric SiO2 with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2 is 

summarized in Figure 48. 
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Figure 48. A summary of the light extraction efficiency or light out-coupling 

efficiency for a single DBR pair consisting of the low index dielectric MgF2 with a 

high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2 (left),  and the low index 

dielectric SiO2 with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2 

(right) for NPD thickness 30nm, 40nm, 50nm, and 60nm.  

 

 Configuration 6 with the low index dielectric, MgF2 and high index dielectric,  

TiO2, exhibited an extraction efficiency of 26.72%, 33.45%, 33.21%, and 30.3% for a 

30nm, 40nm, 50nm, and 60nm NPD thickness, respectively, compared to 

configuration 1 with the low index dielectric, MgF2 and high index dielectric,  MgO, 

which had an extraction efficiency of 25.13%, 28.95%, 29.92%, and 28.51% for a 

30nm, 40nm, 50nm, and 60nm NPD thickness, respectively. For a given NPD 

thickness, the light extraction efficiency increased with increasing index of 

refraction of the high index dielectric. The index of refraction of the high index 

dielectric is directly related to the reflectance energy of the DBR stack. Thus, light 

extraction efficiency increased with increasing reflectance energy of the out-coupling 

mirror or DBR stack. Similar behavior was observed for configurations 

implementing the low index material SiO2 (configuration 7-12). In particular, 

configuration 12 with the low index dielectric, SiO2 and high index dielectric, TiO2, 

exhibited a light extraction efficiency of 31.10%, 34.31%, 33.02%, and 30.03% for a 

30nm, 40nm, 50nm, and 60nm NPD thickness, respectively, compared to 

configuration 7 with the low index dielectric, SiO2 and high index dielectric, MgO, 

which had an extraction efficiency of 25.53%, 28.06%, 28.37%, and 26.77%. The 

highest extraction efficiency for the single DBR case was achieved with a 40nm NPD 

thickness and a low index dielectric, SiO2, and high index, TiO2, dielectric with an 

extraction efficiency of 34.3%.  
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Figure 49. A summary of the light extraction efficiency or light out-coupling 

efficiency for a DBR stack of 2 DBR pairs consisting of the low index dielectric MgF2 

with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2 (left),  and the 

low index dielectric SiO2 with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, 

and TiO2 (right) for NPD thickness 30nm, 40nm, 50nm, and 60nm. 

 

A summary of light extraction efficiency for configurations 1-6 and 7-12 for 2 

DBR pairs is shown in Figure 49. In the case of 2 DBR pairs containing the low 

index dielectric, MgF2, the optimal extraction efficiency of 30.50%  was achieved 

with a 50nm NPD thickness and high index dielectric, Y2O3, compared to the 2 DBR 

case containing the low index dielectric, SiO2, with an optimal extraction efficiency 

of 31.60% with a 40nm NPD thickness and high index dielectric, TeO2. Unlike the 

single DBR case wherein light extraction efficiency increases for a given a NPD 

thickness with increasing index of refraction of the high index dielectric, maxima in 

the light extraction efficiency occurs at moderate indices of refraction of the high 
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index dielectric for both MOLEDs containing the low index dielectric MgF2 and SiO2. 

These maxima in the extraction efficiency are directly related to the reflectance 

energy of the out-coupling mirror and supports the design rules outlined in section 

6.5.2 (rule 2) which suggest that the highest extraction efficiency is achieved by 

balancing the extent at which the Airy peak is contained within the escape window 

and the absorption losses on account of increased number of round trips inside the 

cavity.  

 

Figure 50. A summary of the light extraction efficiency or light out-coupling 

efficiency for a DBR stack of 3 DBR pairs consisting of the low index dielectric MgF2 

with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2 (left),  and the 

low index dielectric SiO2 with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, 

and TiO2 (right) for NPD thickness 30nm, 40nm, 50nm, and 60nm. 
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A summary of light extraction efficiency for configurations 1-6 and 7-12 for 3 

DBR pairs is shown in Figure 50. In the case of 3 DBR pairs containing the low 

index dielectric, MgF2, the optimal extraction efficiency of 28.50%  was achieved 

with a 40nm NPD thickness and high index dielectric, MgO, compared to the 3 DBR 

case containing the low index dielectric, SiO2, with an optimal extraction efficiency 

of 28.4% with a 40nm NPD thickness and high index dielectric, MgO. In this 

particular case, increasing the index of refraction of the high index dielectric 

resulted in a reduction in the light extraction efficiency.  This also is directly related 

to the reflectance energy of the out-coupling mirror. While increasing the reflectivity 

of the out-coupling mirror reflectance energy narrows the airy peak and confines the 

Airy peak more inside of the escape window, the increased round trips inside the 

cavity result in significant absorption losses and reduction in efficiency.  

To determine the relationship between the out-coupling reflectivity and light 

extraction efficiency directly, a summary of the peak reflectance energy of select 

DBR structures and NPD thicknesses of 30nm, 40nm, 50nm, and 60nm versus light 

extraction efficiency were plotted in Figure 51. The optimum extraction efficiency is 

achieved with a ~40% out-coupling reflectance energy and a 40nm NPD thickness. 

Interestingly, the optimum out-coupling mirror reflectance energy based on a 

rigorous optical model agreed well with the optimum out-coupling reflectance energy 

based on the assumption in section 6.5.2 (rule 2) with an optimum reflectance 

energy of 38% (R1
opt=1-mc/n2, mc=2, n~1.8).  
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Figure 51. A summary of the light extraction efficiency or light out-coupling 

efficiency for select DBR configurations containing the low index low index dielectric 

MgF2 with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and TiO2 and the low 

index dielectric SiO2 with a high index dielectric MgO, Y2O3, ZnO, ZrO2, TeO2, and 

TiO2 for NPD thickness 30nm, 40nm, 50nm, and 60nm.  

6.8.3 Conclusion 

 A design of experiment was conducted implementing the narrow band 

emitter PtN1N into a second order MOLED architecture (mc=2) consisting of a DBR 

out-coupling mirror and metal aluminum cathode. The out-coupling reflectivity was 

tuned using a series of dielectric materials including MgF2, SiO2, MgO, Y2O3, ZnO, 

ZrO2, TeO2, and TiO2 with a quarter wave thickness (λ/4n) resulting in a large 

distribution in the out-coupling reflectance (10%-90%). The cavity length was tuned 

by adjusting the thickness of the hole transporting layer, NPD, in the structure of 

Glass/DBR(x)/ITO(60nm)/HATCN(10nm)/NPD(ynm)/TAPC(10nm)/8%:PtN1N 
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:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/ LiF(1nm)/Al(100nm), where x is the 

DBR configuration and y is the NPD thickness (30nm, 40nm, 50nm, and 60nm). A 

single DBR pair with a peak reflectivity of ~41% (at 496nm) consisting of the low 

index dielectric, SiO2, and high index dielectric, TiO2, (configuration 12) in the 

structure of Glass/TiO2(46nm)/ SiO2(100nm)/ITO(60nm)/HATCN(10nm)/NPD(40nm) 

/TAPC(10nm)/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF 

(1nm)/Al(100nm) achieved the highest light out-coupling efficiency of 34.3% 

resulting in a ~1.38 improvement compared to the conventional structure of Glass/ 

ITO(50nm)/HATCN(10nm)/NPD(40nm)/TAPC(10nm)/8%PtN1N:26mCPy(25nm)/ 

DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) with a light out-coupling 

efficiency of 24.9%. The design of experiment suggests that the highest enhancement 

in the out-coupling efficiency is achieved for out-coupling mirror reflectance energy 

of ~40% and a moderately detuned cavity which is in agreement with the design 

rules defined in section 2.5.   
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7 GREEN MICROCAVITY ORGANIC LIGHT EMITTING DIODES (MOLEDS) 

WITH A NARROW BAND EMISSION SOURCE 

7.1 Introduction 

The results obtained in the design of experiment in Chapter 6 will now be used 

as a guide in fabricating highly efficient microcavity OLEDs. The theoretical model 

developed in the foregoing chapter suggests that a moderate out-coupling reflectivity 

(~35-45%) is ideal for enhancing light out-coupling efficiency in MOLEDs. By 

implementing the high index material, TiO2 (n~2.7), and low index material, SiO2, 

(n~1.5) into the structure of Glass/TiO2(46nm)/SiO2(100nm)/ 

ITO(60nm)/HATCN(10nm)/NPD(40nm)/TAPC(10nm)/8%PtN1N:26mCPy(25nm)/DP

PS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) an improvement in the light out-

coupling efficiency of  ~1.38 was predicted. Although the DBR configuration using 

the high index dielectric, TiO2, in the device structure previously described 

demonstrated the highest improvement in light out-coupling efficiency in the design 

of experiment outlined in the foregoing section, ion-beam assisted TiO2 films 

fabricated in the deposition system used in this study were shown to exhibit poor 

stability with changes in surface quality over time. Thus, the high index dielectric, 

TiO2, was replaced with the high index dielectric, Ta2O5, for the MOLEDs fabricated 

in this study. Replacing TiO2 with Ta2O5 showed only a small reduction in the 

predicted light out-coupling enhancement based on theoretical calculations. By 

implementing the tetradentate, cyclometalated, platinum complex, PtN1N, into the 

optimized MOLED structure based on theoretical calculations employing the finite 

difference time domain method in the structure of Glass/Ta2O5(57nm)/SiO2(100nm)/ 

ITO(53nm)/HATCN(10nm)/NPD(45nm)/TAPC(10nm)/8%PtN1N:26mCPy(25nm)/ 
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DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) a high forward viewing 

measured EQE of 34.2% was achieved compared with the reference bottom emitting 

OLED structure on a planar glass substrate which exhibited a peak EQE of 25.4%. 

Thus, with the only an addition of a SiO2 spacer layer and Ta2O5 high index layer 

onto the original device structure, an enhancement in EQE of 1.35 was achieved. 

This enhancement in the light out-coupling compared well with theoretical 

predictions based on FDTD. 

7.2 Theoretical 

The optical performance of MOLEDs implementing PtN1N and a low index 

dielectric, SiO2, and high index dielectric, Ta2O5, will now be explored based on the 

finite difference time domain method outlined in Chapter 6.  

 

Figure 52. (a) Schematic diagram of the microcavity OLED. The optical cavity is 

defined between the reflective aluminum cathode mirror and the Bragg mirror, 

composed of alternating quarter-wavelength thick high index materials, Ta2O5, and 

low index materials, SiO2. Cavity tuning was achieved by varying the NPD layer. 

The emitters in this study were co-deposited with the host, 26mCPy. (b) The 

measured reflectance spectra of glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm) (1 pair),  

glass/Ta2O5(57nm)/SiO2(83nm)/ Ta2O5(57nm)/SiO2(100nm)/ITO(53nm) (2 pair), and 
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glass/Ta2O5(57nm)/SiO2(83nm)/ Ta2O5(57nm)/SiO2(83nm)/Ta2O5(57nm)/SiO2(100nm)/ 

ITO(53nm) (3 pair). 

Figure 52 shows the schematic diagram of the microcavity OLED. The 

microcavity structure consists of a reflective aluminum cathode and a semi-reflective 

distributed Bragg reflector (DBR) or quarter wave stack (QWS) out-coupling mirror. 

The DBR consists of λ/4 optically thick repeat pairs of a high index of refraction 

material, Ta2O5 (n=2.2), and a low index of refraction material, SiO2 (n=1.46). With a 

DBR design, reflectivity can be tuned by varying the number of DBR pairs..128 

Theoretical models conducted by Benisty et al. predict that a low out-coupling mirror 

reflectivity is ideal for enhancing the EQE of microcavity organic light emitting 

diodes since a large portion of the extractable Airy peaks can be squeezed reasonably 

well within the escape cone with little photon loss from the non-extractable Airy 

peaks.53,144,145,145 In particular, for second order (mc=2) MOLEDs wherein the optical 

cavity length (L) is equal to the peak wavelength (λs) of the source emission (L= mc 

λs/2), it was predicted that an out-coupling mirror reflectivity on the order of 35-45% 

is ideal for light out-coupling enhancement. These values correlated well with the 

theoretical predictions in Chapter 6. In this study, we investigate a range out-

coupling mirror reflectivities by varying the number of DBRs pairs in a second order 

MOLED design from one to three Ta2O5/SiO2 pairs with a reflectivity centered on the 

peak intrinsic emission wavelength of PtN1N. The optical cavity length was altered 

by varying the thickness of the hole transporting layer, NPD, in the device structure 

of glass/DBR(z pairs)/ITO/HATCN(10nm)/NPD(xnm)/ TAPC(10nm)/ 

8%PtN1N:26mCPy (25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al (100nm), 

where x is the thickness of the NPD layer in nm, and z is the number of DBR pairs 

(0, 1, 2, or 3).  A 100nm SiO2 spacing layer was inserted between the ITO anode and 
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Ta2O5 to extend the optical cavity closer to the intrinsic emission wavelengths 

without significantly increasing the organic layer thickness to affect OLED 

performance. By implementing a spacing layer into the DBR design, coarse 

adjustments in the cavity length of the MOLED can be achieved without changing 

the electrical properties of the device.  The NPD layer thickness range between 

30nm to 60nm was chosen as to vary the optical cavity length from the lower band 

edge of the intrinsic spectral distribution of PtN1N (~490nm) to the upper band edge 

(~550nm).  

A summary of the predicted peak external quantum efficiency versus NPD 

thickness for the reference structure (0 pair), 1 DBR pair, 2 DBR pairs, and 3 DBR 

pairs are shown in Figure 53. The single DBR pair had the highest calculated 

external quantum efficiency with a peak EQE of 32.1% for a 40nm NPD thickness. 

The peak EQE for a given NPD thickness decreases with increasing number of DBR 

pairs. In particular, for a 40nm NPD layer, the peak EQE is 32.1%, 31.2%, and 

25.4% for 1 DBR pair, 2 DBR pairs, and 3 DBR pairs, respectively, compared to 

24.9% for the reference structure (0 DBR pairs). Additionally, for a given DBR 

configuration, a maximum in EQE with respect to NPD thickness was observed. The 

source of these maxima will be described in more detail in a later section.  
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Figure 53. The calculated peak external quantum efficiency for the reference 

structure with 0 DBR pairs (top left), 1 DBR pair (top right), 2 DBR pairs (lower 

left), and 3 DBR pairs (lower right) based on the structure shown in Figure 52.  

A summary of the calculated normalized electroluminescent spectra for 0 

DBR pairs, 1 DBR pair, 2 DBR pairs, and 3 DBR pairs are shown in Figure 54. The 

high-finesse structure with 3 DBR pairs has a peak emission intensity of 504nm, 

519nm, 533nm, and 544nm for 30nm, 40nm, 50nm, and 60nm, respectively. The red 

shifting in the electroluminescent spectra with increasing NPD thickness is a result 

of extending the cavity length with increasing NPD thickness. The resonant peaks, 

evident in regions of enhanced intensity relative to the non-cavity spectrum, at 

504nm, 519nm, 533nm, and 544nm are directly proportional to the cavity length 

according to Equation 43 in Chapter 6 for normal incidence (θ=0ᵒ). Spectral 
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narrowing is also observed with increasing DBR pairs which may be advantageous 

in some applications desiring high color purity with a specific emission wavelength. 

In particular, the spectra exhibit a FWHM of 23nm, 18nm, and 16nm for a MOLED 

with 1 DBR pair, 2 DBR pairs, and 3 DBR pairs, respectively, compared to the 

reference structure with FWHM of 22nm.  

 

Figure 54. The calculated normalized electroluminescent spectra in the forward 

direction (0ᵒ) for the reference structure with 0 DBR pairs (top left), 1 DBR pair (top 

right), 2 DBR pairs (lower left), and 3 DBR pairs (lower right) based on the structure 

shown in Figure 52. 

The angular intensity profile is an important metric in display and important 

to consider in the design of highly efficient microcavity OLEDs. A summary of the 

angular intensity profile for a 496nm wavelength (peak intrinsic emission 
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wavelength) is shown in Figure 55. The reference structure has a lambertian 

emission pattern, typical of conventional OLED structures, with a slight deviation in 

lambertian emission with increasing NPD thickness due to weak microcavity effects. 

The single DBR has a directional dependent angular intensity with a maxima in 

intensity at off-axis angles (θ>0). In particular, the single DBR has a maximum 

intensity at 21ᵒ, 32ᵒ, 41ᵒ, and 54ᵒ for 30nm, 40nm, 50nm, and 60nm NPD thickness, 

respectively. This shift in the directionality with increasing cavity length is 

supported in Equation 43, which suggests that the cosine of the angle of incidence is 

inversely proportional to the cavity length.  

 

 

Figure 55. The calculated angular intensity profile for a wavelength of 496nm for the 

reference structure with 0 DBR pairs (top left), 1 DBR pair (top right), 2 DBR pairs 

(lower left), and 3 DBR pairs (lower right) based on the stru cture shown in Figure 

52. 
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It is evident in Figure 55 that a 30nm NPD thickness is not tuned to the peak 

emission wavelength of 496nm as the intensity is not maximized in the forward 

direction, characteristic of a tuned MOLED. Thus, a 25nm NPD thickness was also 

calculated using the method outlined in Chapter 6 for the single DBR case. 

Additionally, the curve in Figure 55 suggests that the optimized detuned structure 

has a NPD thickness of 45nm. A summary of the tuned structure with a 25nm NPD 

thickness as well as the optimized detuned structure with a 45nm NPD thickness is 

shown in Figure 56. 

 

Figure 56. The calculated external quantum efficiency and EL characteristics for the 

tuned and detuned MOLED with a single DBR pair implementing 25nm and 45nm 

NPD layer thickness, respectively, based on the device structure shown in Figure 52. 

 A series of MOLEDs were fabricated based on the structures investigated in 

this section and will now be described. 
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7.3 Experimental 

7.3.1 Materials 

The hole injection material, 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile 

(HATCN), was purchased from Lumtec Corp., the hole transporting layer, N,N’-

diphyenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4”-diamine  (NPD), was purchased 

from Chemical Alta, and the materials di-[4-(N,N-di-toylyl-amino)-

phyenyl]cyclohexane  (TAPC),71, 72 2,6-bis(N-carbazolyl)pyridine (26mCPy),79 

diphenyl-bis[4-(pyridine-3-yl)phenyl]silane (DPPS),41 1,3-bis(3,5-dipyrid-3-yl-

phenyl)benzene (BmPyPB),177 platinum(II)-2’-(H-pyrazol-1-yl)-9-(pyridine-2-yl)-9H-

2,9’-bicarbazole (PtN1N),  and platinum(II)-2-(3-(3-(pyridine-2-

yl)phenoxy)phenoxy)pyridine (PtOO3)100 were prepared following previous literature 

reports. 

7.3.2 Device Fabrication 

Thin films implementing the high-index of refraction material, Ta2O5, and the 

low-index of refraction material, SiO2, were deposited alternatively on glass 

substrates in a single chamber using an ion-beam sputtering technique. The last 

Ta2O5 layer was capped with a 100nm SiO2 spacer layer.54, 178 The DBR stack was 

then capped with an ITO layer deposited by ion assisted e-beam evaporation. The 

structures and naming convention that will be used in the remainder of the paper 

are as follows: glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm) (1 pair), 

glass/Ta2O5(57nm)/SiO2(83nm)/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm) (2 pair), 

glass/Ta2O5(57nm)/ SiO2(83nm)/Ta2O5(57nm)/SiO2(83nm)/Ta2O5(57nm)/SiO2(100nm)/ 

ITO (53nm) (3 pair) and the reference structure of ITO on glass will be referred to as 
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0 pair. All substrates described were patterned using photolithography. Prior to 

organic depositions, the substrates were cleaned by sonication in water, acetone, and 

isopropanol. Organic materials were thermally evaporated at deposition rates of 0.5 

to 1.5 Å/s at a working pressure of less than 10-7 Torr. The deposition rates and 

thicknesses were monitored by quartz crystal microbalances. A thin 1 nm LiF layer 

was deposited at rates of <0.2 Å/s and aluminum cathodes were deposited at a rate 

of 1 Å/s through a shadow mask without breaking vacuum. Individual devices had 

areas of 0.04 cm2.  

7.3.3 Materials and Device Characterization 

Steady state emission experiments of the sample at room temperature as well as 

electroluminescent spectra of the devices were performed on a Jobin Yvon Fluorolog 

spectrofluorometer. I-V characteristics were taken with a Keithley 2400 source-

meter and the photocurrent was measured using an OSI optoelectronics 220DP Si 

photodiode with a large active area of 200mm2 to effectively collect the emitted light 

from the device. All I-V-L measurements were done in a nitrogen-filled glove-box. 

Angular electroluminescent spectra ( EL) were measured using a rotating stage 

measured in ten degree increments, driven at a low constant current (0.01 mA/cm2 

to 0.001 mA/cm2) and measured with a constant slit width. Prior to EL spectra 

measurements, all devices were encapsulated in a nitrogen-filled glove-box and 

measured in air.  
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7.4 Results and Discussion 

The photoluminescent spectrum and molecular structure of PtN1N are shown in 

Figure 57. The photoluminescent spectrum exhibits a narrow spectral bandwidth 

with a FWHM of 18nm.  

 

Figure 57. Room temperature photoluminescent emission spectrum of PtN1N. For 

room temperature measurements the solute, PtN1N, was dissolved in CH2Cl2. The 

molecular structure of PtN1N is shown in the inset. 

The DOE in Chapter 6 assumed that the thickness of the NPD layer was 

independent on the device performance. The limits of this assumption will now be 

explored. We have chosen to tune the optical cavity length by varying the thickness 

of the hole transporting layer, NPD, due to its high hole mobility. Ideally, the 

electrical properties of the device should remain constant to simplify the analysis 

and directly correlate the light out-coupling efficiency to changes in the optical 

cavity length. Thus, the effect of NPD layer thickness on the device performance in 

the reference OLED structure of glass/ITO(50nm)/HATCN(10nm)/NPD(x 
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nm)/TAPC(10nm)/8%PtN1N: 26mCPy (25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF 

(1nm)/Al(100nm) was explored. The structure chosen was based on a device 

structure previously reported to exhibit highly efficient OLEDs utilizing PtN1N. 

Figure 58 shows the J-V curves, the EL spectra in the forward direction, the 

external quantum efficiency versus current density, and the peak external quantum 

efficiencies vs NPD thickness in the range of 25-60nm. By implementing the 

effective hole blocker, DPPS, and electron blocker, TAPC, to confine excitons in the 

emissive layer, combined with the high hole mobility of NPD, good charge balance 

and a confined recombination zone are maintained. Consequently, similar J-V 

characteristics are achieved with a large range of NPD thicknesses (25nm-60nm).  

 

 

Figure 58. (a) The J-V curves, (b) the normalized electroluminescent spectra at a 

viewing angle of 0o, (c) the external quantum efficiency-versus current density, (d) 

and the peak EQE-versus NPD thickness for PtN1N in the reference OLED 

structure of glass/ITO(53nm)/HATCN(10nm)/NPD(x-nm)/TAPC(10nm)/ 8%PtN1N 
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:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm), where x=25nm, 

30nm, 35nm, 40nm, 45nm, 50nm, 60nm.   

 

Figure 59. The normalized electroluminescent spectrum measured at different viewing 

angles between 0-80° in the device structure of glass/DBR(z 

pairs)/ITO(53nm)/HATCN(10nm)/NPD(x 

nm)/TAPC(10nm)/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/ 

LiF(1nm)/Al(100nm). 

A series of MOLEDs were fabricated in the structure of glass/DBR(z 

pairs)/ITO(53nm)/ HATCN(10nm)/NPD(x nm)/TAPC(10nm)/8%PtN1N:26mCPy 

(25nm)/DPPS(10nm)/ BmPyPB(45nm)/LiF(1nm)/Al(100nm), where x is the NPD 

thickness and z is the number of DBR pairs (0, 1, 2, or 3). Figure 59 shows the 

normalized electroluminescent spectra at viewing angles between 0-80ᵒ for MOLEDs 

with a 30nm, 40nm, 50nm, and 60nm NPD layer. For the MOLEDs in this study with a 

cavity order of 2 (mc=2), the optical cavity length is directly proportional to the 

wavelength of resonance at normal incidence (0
ᵒ
).

46
 The wavelength of resonance, 
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evident in regions of enhanced intensity in the electroluminescent spectrum relative to 

intrinsic emission of the source, is most pronounced for MOLEDs implementing 3 DBR 

pairs due to the high out-coupling mirror reflectivity.
65

 MOLEDs consisting of 3 DBR 

pairs and a 30nm NPD layer resulted in an approximately tuned microcavity structure, 

wherein the optical cavity is equal to the peak emission wavelength, with a resonance 

peak of 504nm at normal incidence. For the approximately tuned structure, significant 

spectral narrowing in the EL spectra with increasing number of DBR pairs was observed 

with a FWHM of 24nm, 17nm, and 15nm for a single DBR pair, 2 DBR pairs, and 3 

DBR pairs MOLED, respectively, at normal incidence (0
ᵒ
). The approximately tuned 

structure also exhibited a small color shift at varying viewing angles. By comparison, by 

increasing the NPD layer thickness a red-shift in the resonance peak was observed with a 

resonance peak of 522nm, 538nm, and 562nm for a 40nm, 50nm, and 60nm NPD layer, 

respectively, accompanied by large shifts in color at different viewing angles (0-80
o
). 

The external quantum efficiency versus current density for MOLEDs implementing a 

40nm NPD layer thickness is shown in Figure 5(a). The series of devices were fabricated 

during the same deposition run to minimize variation in deposition thickness of the 

organic layers to minimize variation in cavity length between each case. A peak EQE of 

33.6%, 32.8%, and 27.8% occur for MOLEDs with a single DBR pair, 2 DBR pairs, and 

3 DBR pairs, respectively, compared to a peak EQE of 25% for the reference OLED 

without a DBR. The reduction in EQE with increasing number of DBR pairs or out-

coupling mirror reflectivity is likely a result of increased photon absorption at the 

metallic cathode caused by additional round-trips inside of the optical cavity.
63 
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A full summary of the peak EQE versus NPD thickness for the MOLEDs in this study 

is shown in Figure 60(a). MOLEDs implementing a 25nm NPD layer with a single DBR 

pair exhibited a peak EQE of 26.3%. Increasing the NPD layer thickness to 30nm 

resulted in an improvement in the peak EQE of 30.2%. Increasing the NPD layer 

thickness further to 45nm resulted in further improvement in EQE of 34.2%. Increasing 

the NPD thickness beyond 45nm to 50nm and 60nm resulted in a drop in EQE of 32.2% 

and 27.8%, respectively. The maximum in peak EQE with respect to NPD thickness is a 

result of positioning the resonant modes of the optical cavity such that the majority of 

emission of the source could out-couple from the cavity resonant modes.
44

 This is 

supported in Figure 59, which identifies the degree of overlap of resonant modes of the 

optical cavity with the intrinsic spectral distribution of the source. For example, the 

resonant peaks for the MOLEDs consisting of 3 DBR pairs implementing a 50nm NPD 

layer occur at 538nm, 536nm, 510nm, and 494nm for 0°, 20°, 40°, and 60°, respectively, 

which are located well within the spectral distribution of the source and consequently a 

high EQE is achieved. On the other hand, for the MOLEDs consisting of 3 DBR pairs 

implementing a 30nm NPD layer exhibit resonant peaks at 504nm, 502nm, 494nm, and 

460nm for 0°, 20°, 40°, 60°, respectively, which are located at the band edge of the 

intrinsic spectral distribution. Similarly, for a 60nm NPD thickness, resonant peaks at 

562nm, 560nm, 532nm, and 504nm for 0°, 20°, 40°, 60°, respectively, are located at the 

band edge of the source and contribute weakly to the overall power output coupled from 

the cavity.  
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Figure 60. (a) The external quantum efficiency versus current density (mA/cm
2
) for the 

structure of glass/DBR(z pair)/ITO(53nm)/HATCN(10nm)/NPD(40nm)/TAPC(10nm) 

/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm). (b) 

Peak External Quantum Efficiency versus NPD thickness for the reference OLED 

structure or 0 pair (black squares), 1 pair (red circles), 2 pair (green triangles), and 3 pair 

(blue triangles) in the general device structure of glass/DBR(z 

pairs)/ITO/HATCN(10nm)/NPD(x nm)/TAPC(10nm)/8%PtN1N:26mCPy(25nm) 

/DPPS(10nm)/BmPyPB(45nm)/ LiF(1nm)/Al(100nm) 

 

To explore the differences associated with a tuned and detuned MOLED 

structure, the device characteristics of the optimized detuned MOLED and the tuned 

MOLED for the low-finesse single pair structure with a 45nm and 25nm NPD 

thickness, respectively, were compared (Figure 61) including the electroluminescent 

spectra, the angular intensity profile, and the external quantum efficiency versus 

current density. 
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Figure 61. The electroluminescent spectrum (top) normalized to the max intensity 

within the angular series of measurements for 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 

and 80° viewing angles in the device structure of 

glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(25nm(blue),45nm(

red))/TAPC(10nm)/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1n

m)/Al(100nm). The angular emission profile (lower left) for the tuned structure with 

a 25nm NPD thickness (blue) and the detuned structure with a 45nm NPD 

thickness (red). Lambertian emission is shown as a reference (black dotted line). The 

external quantum efficiency-versus current density (lower right) for the tuned 

structure (blue) and detuned structure (red). 
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The electroluminescent spectra is shown in the top portion of Figure 61 for 

detection angles of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, and 80°. To compare the 

change in absolute intensity with angle for the tuned and detuned structure, the 

angular dependent series of spectra were normalized to its maximum intensity in 

the series of measurements. The moderately detuned cavity with a 45nm NPD 

thickness had an optimum intensity at an off-axis angle of 30°, compared to the 

tuned cavity which had an optimum intensity at the surface normal, 0°, for 

wavelengths near 498nm, the non-cavity emission peak. Thus, the angular intensity 

profile shown in the lower left portion of Figure 61 shows that the tuned cavity has 

preferential output in the forward direction and the detuned structure has 

preferential output at an off-axis angle, characteristic of detuned cavities.53 

Additionally, the spectral shape remains approximately uniform with increasing 

angle for the low-finesse tuned MOLED, whereas the detuned structure exhibits a 

strong angular dependent spectral shape as a result of strong long wavelength 

resonant contributions to the out-coupling of the cavity for small detection angles.  

The external quantum efficiency vs. current density (mA/cm2) is shown in the lower 

right portion of Figure 61. The tuned structure with a 25nm NPD thickness exhibits 

a peak EQE of 26.3% compared to a peak EQE of 22.1% in the conventional OLED 

structure resulting in a 1.19 enhancement in EQE.  The detuned structure with a 

45nm NPD thickness exhibits a peak EQE of 34.2% compared to a peak EQE of 

25.4% in the conventional OLED, resulting in a 1.35 enhancement in EQE. Thus, by 

extending the cavity beyond the tuned cavity length, higher light out-coupling 

improvement is achieved, however, significant changes to both the angular intensity 

profile and spectral shape result. Depending on the application, significant changes 

in spectral shape and intensity with angle may not be desirable and a balance 
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between out-coupling enhancement and spectral uniformity with angle is needed. 

Such a balance was achieved utilizing a single DBR pair MOLED with a 30nm NPD 

thickness which exhibited a high peak EQE of 30.2% compared to its conventional 

OLED with a peak EQE of 22.9% resulting in a light out-coupling enhancement of 

1.3 and an angular intensity profile that preferentially emits in the forward 

direction with little change in the spectral shape. Such a preferential emission in the 

forward direction may prove useful for MOLEDs designed in conjunction with a 

microlens array or for a MOLED with a down converting phosphor for highly 

efficient white OLEDs.126  

 

Figure 62. The thin film photoluminescent spectrum (left) of PtN1N (blue) and 

PtOO3 (green) in a thin film of 8%emitter:26mCPy. The enhancement ratio or 

fraction of EQE in the MOLED structure to EQE in the conventional OLED 

structure for PtOO3 and PtN1N in the structure of glass/Ta2O5(57nm)/ 

SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(30nm,40nm,50nm,60nm)/TAPC(10nm

)/8%PtN1N:26mCPy (25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm). 

 

It has been suggested that a narrow band emission source is ideal for EQE 

enhancement in a MOLED since a larger fraction of the emission profile has 

emission accelerated by the cavity.35 However, to our knowledge there have been no 
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MOLED reports that have data to support this directly. In this study, the MOLED 

performance of the emitter, PtN1N (FWHM=18nm), with the emitter, PtOO3 

(FWHM=72nm) were explored to compare the effects of the source spectral emission 

band on microcavity performance. Figure 62 (left) shows the thin film PL spectra for 

PtOO3 and PtN1N in thin films of 8%emitter:26mCPy. The intrinsic emission peak 

of PtN1N (496nm) is similar to the instrinsic emission peak of PtOO3 (500nm) and 

consequently were compared in identical MOLED structures.  A series of devices 

implementing the emitter, PtOO3, were fabricated in the conventional OLED 

structure of glass/ITO(50nm)/HATCN(10nm)/NPD(xnm)/TAPC(10nm)/8%PtN1N 

:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) and the low-

finesse single DBR pair MOLED structure of glass/Ta2O5(57nm)/SiO2 

(100nm)/ITO(53nm)/HATCN(10nm)/NPD(xnm)/TAPC(10nm)/8%PtN1N:26mCPy(25

nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm) /Al(100nm) with a NPD thickness (x) of 

30nm, 40nm, 50nmm, and 60nm. Figure 62 (right) shows the enhancement in EQE 

for 30nm, 40nm, 50nm, and 60nm NPD thicknesses of MOLEDs implementing 

PtN1N and PtOO3. A summary of device data for all devices fabricated in this study 

is shown in Table 9. MOLEDs implementing the emitter PtOO3, have an EQE 

enhancement of 1.07, 1.18, 1.31, and 1.26 for 30nm, 40nm, 50nm, and 60nm NPD 

thicknesses, respectively, compared to PtN1N with an EQE enhancement of 1.32, 

1.35, 1.29, and 1.13 for 30nm, 40nm, 50nm, and 60nm NPD thicknesses, 

respectively. Thus, MOLEDs implementing the emitter PtOO3, required more 

detuning to achieve optimum EQE enhancement and resulted in a lower overall 

EQE enhancement relative to MOLEDs implementing PtN1N. Additionally, PtN1N 

based MOLEDs implementing 30nm NPD had EQE enhancements as high as 1.3 

with little change to the angular dependent EL spectral shape, whereas, PtOO3 
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based MOLEDs with a 30nm NPD thickness showed no improvement in EQE and 

experienced more significant change to the angular dependent EL spectral shape. 

Thus, a MOLED implementing a narrow spectral emission band has the potential of 

achieving significant enhancement with little detuning and consequently little 

change to the angular dependent spectral shape which can be advantageous for 

display applications. 

The normalized EL spectra for PtOO3 and PtN1N in the structure of 

glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(xnm)/TAPC(10n

m)/8%Emitter:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm), 

where x is equal to 30nm, 40nm, 50nm, and 60nm, is shown in Figure 63. For a 

30nm NPD thickness, smaller changes in the electroluminescent characteristics are 

observed with increasing angle of incidence compared to 40nm, 50nm, and 60nm 

NPD thicknesses. In particular, for MOLEDs implementing PtN1N and a 30nm 

NPD layer, the normal incident color coordinates were CIE(x=0.14,y=0.59) compared 

to a 60o viewing angle for which the color coordinates were CIE(x=0.1,y=0.60). By 

comparison, for MOLEDs implementing PtN1N and a 50nm NPD layer, the normal 

incident color coordinates were CIE(x=0.21,y=0.67) compared to a 60o viewing angle 

for which the color coordinates were CIE(x=0.09,y=0.53). Thus, larger changes in the 

color coordinates with increasing detection angle are observed with a larger NPD 

thickness. A full summary of the CIE coordinates at different viewing angles for a 

given NPD thickness of 30nm, 40nm, 50nm, and 60nm in the structures outlined in 

Figure 63 and is summarized in Figure 64. Figure 64 suggests that a 30nm NPD 

thickness has the smallest spread in CIE coordinates compared to 40nm, 50nm, and 

60nm NPD thicknesses for MOLEDs implementing PtN1N and PtOO3. 
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Figure 63. The normalized EL spectra for PtN1N (top) and PtOO3 (bottom) in the 

structure of glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD 

(xnm)/TAPC(10nm)/8%Emitter:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF 

(1nm)/Al(100nm), where x is the NPD thickness from left to right of 30nm, 40nm, 

50nm, and 60nm.  

 

Figure 64. The CIE color coordinate spread of PtN1N (left) and PtOO3 (right) in the 

structure of  glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD 

(30,40,50,60nm)/TAPC(10nm)/8%Emitter:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45

nm)/LiF (1nm)/Al(100nm)  at different viewing angles (0o, 10o, 20o, 30o, 40o, 50o, 60o, 

70o, and 80o). 
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Table 9. A summary of device characteristics of PtN1N and PtOO3 in the devices 

fabricated from substrates with 0 DBR pair (I), 1 DBR pair (II), 2 DBR pair (III), 3 

DBR pair (IV) and implementing various NPD thicknesses in the structure of 

glass/DBR(z-pairs)/ITO(53nm)/ HATCN(10nm)/NPD(xnm)/TAPC(10nm)/8%Emitter 

:26mCPy(25nm)/DPPS(10nm)/ BmPyPB(45nm)/LiF(1nm)/Al(100nm), where x is the 

NPD thickness and z is number of pairs (0, 1, 2, or 3). Device data in parenthesis 

represents the performance in the reference OLED structure without a DBR (0 pair). 

   

EQE (%) 

 

Structure Emitter 

NPD 

Thickness 

(nm) 

Peak  100 cd/m
2
  1000 cd/m

2
  Enhancement  

I PtN1N 25 22.1  20.1 15.9 NA 

I PtN1N 30 22.9 19.7 14.8 NA 

I  PtN1N 40 25 21.9 16.8 NA 

I PtN1N 45 25.4 23.3 18.2 NA 

I  PtN1N 50 24.9 22.2 16.9 NA 

I  PtN1N 60 24.5 21.6 16.9 NA 

II  PtN1N 25 26.3 22.9 17.6 1.19  

II  PtN1N 30 30.2 28 22.5 1.32 

II  PtN1N 40 33.6 30.8 24.4 1.34 

II  PtN1N 45 34.2 31.1 26.5 1.35 

II  PtN1N 50 32.2 30.3 25.1 1.29 

II  PtN1N 60 27.8 25.5 21.5 1.13 

III  PtN1N 30 26.1 22.9 17.7 1.14 

III  PtN1N 40 32.8 30.2 24.4 1.31 

III  PtN1N 50 32.5 30.7 25.3 1.31 

III  PtN1N 60 27 25 20.9 1.10 

IV PtN1N 30 20.4 17.5 13 0.89  

IV  PtN1N 40 27.8 23.8 19.1 1.11  

IV  PtN1N 50 28 26.2 21.7 1.12  

IV  PtN1N 60 24.6 23.7 20.1 1  

I  PtOO3 30 20.8  18.3  16.3  NA  

I  PtOO3 40 21.6  20.01  17.4  NA  

I  PtOO3 50 21.8  20.6  18.2  NA  

I   PtOO3 60 23.3 21.6 19.1 NA  

II PtOO3 30 22.2  18.9  16.7  1.07  

II  PtOO3 40 25.5  24  21.3  1.18 

II  PtOO3 50 28.5  26.8  23.9  1.31 

II  PtOO3 60 29.3  27.6  25  1.26 

 

 The wavelength dependence of the out-coupled power emitted from the 

MOLED can be calculated from the series of electroluminescent spectra measured at 

different detection angles. The total photon flux for a given wavelength can be 
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determined from its angular intensity profile, where the three-dimensional surface 

area o for a given wavelength is equal to the 

photon flux according to the following relationship 
S

ddIP  sin),( . An 

example of the angular dependent EL spectra and angular intensity profile, used in 

the calculation described previously, for the emitter, PtN1N, in the structure of 

glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(40nm)/TAPC(10 

nm)/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) is 

shown in Figure 65 and 66.  

 

Figure 65. The EL spectra (photon counts per second) for PtN1N in the structure of 

glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(40nm)/TAPC(10n

m)/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) at 

different detection angles (top). A polar plot (bottom) of the total intensity versus 

angle for a given wavelength (490nm, 496nm, 502nm, 508nm, 514nm, 520nm, 
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526nm, 532nm, 538nm, 544nm, and 550nm) derived from the angular dependent EL 

spectra and is also in units of photon counts per second.  

 

Figure 66. The angular intensity profile for 490nm, 496nm, 502nm, 508nm, 514nm, 

520nm, 526nm, 532nm, 538nm, 544nm, and 550nm in the structure of 

glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(40nm)/TAPC(10n

m)/8%PtN1N:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm). 

Each profile has azimuthal symmetry and the three dimensional profile can be 

generated by setting the intensity for a given θ constant for all azimuthal angles

The total photon flux for a given wavelength is the surface area of the three 

dimensional profile emission characteristics.  

 In order to define the true wavelength dependence on the total emitted 

power, the total photon flux must be normalized to the intrinsic emission spectrum. 

Unfortunately, the emitter, PtN1N, exhibits narrow band emission characteristics, 

introducing significant noise into the normalization on account of variation in the 

measurements implemented in this study. For this reason, the broader band 

emitter, PtOO3, is more suitable in defining the wavelength dependence on the total 

emitted power compared to the emitter, PtN1N. The total photon flux for PtOO3 in 
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the structure of glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/ 

NPD(30,40,50,60nm)/TAPC(10nm)/8%PtOO3:26mCPy(25nm)/DPPS(10nm)/BmPyPB 

(45nm)/LiF(1nm)/Al(100nm) is shown in Figure 67. The normalized total photon flux 

exhibits peaks at 502nm, 514nm, 531nm, and 537nm for 30nm, 40nm, 50nm, and 

60nm, respectively. The red-shifting in the peak wavelength is in agreement with 

the discussions previously with regards to the effect of cavity detuning on the out-

coupling enhancement in MOLEDs.      

 

Figure 67. The total photon flux for the emitter, PtOO3, in the structure of 

glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/HATCN(10nm)/NPD(30,40,50,60nm)/ 

TAPC(10nm)/8%PtOO3:26mCPy(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al 

(100nm). 

 The total photon flux normalized to the intrinsic emission spectrum is shown 

in Figure 68.  From this point forward, the total photon flux normalized to the 

intrinsic emission spectrum will be properly referred to as the relative enhancement 

ratio as it defines the potential out-coupled power of a given wavelength relative to 

other emission wavelengths. In the structure of glass/Ta2O5(57nm)/SiO2(100nm) 
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/ITO(53nm)/HATCN(10nm)/NPD(30,40,50,60nm)/TAPC(10nm)/8%PtOO3:26mCPy 

(25nm)/DPPS(10nm)/BmPyPB(45nm)/LiF(1nm)/Al(100nm) the enhancement ratio 

exhibits peaks at 502nm, 511nm, 534nm, and 545nm for a 30nm, 40nm, 50nm, and 

60nm NPD thickness, respectively. For a 30nm thick NPD layer, the enhancement 

ratio drops off rapidly for wavelengths greater than 502nm, however, there remains 

significant overlap in the enhancement ratio curve with the intrinsic emission 

spectrum of PtN1N on account of the narrow band emission characteristics of 

PtN1N. Conversely, the significant side band in the intrinsic emission spectrum of 

PtOO3 results in poor overlap in the enhancement ratio curve with the intrinsic 

emission spectrum of PtOO3 for a 30nm thick NPD layer and consequently less 

enhancement in the out-coupling efficiency. For this reason, significant detuning is 

required for MOLEDs implementing PtOO3 to achieve out-coupling enhancement, 

whereas, MOLEDs implementing PtN1N exhibited significant out-coupling 

enhancement with a 30nm NPD layer.  

The enhancement ratio characteristics outlined in Figure 68 correlates well 

with the methods described in section 7.3.3 for measuring the external quantum 

efficiency of the MOLEDs in this study. Both results suggest that an optimum 

enhancement in light out-coupling occur for a ~30-40nm thick NPD layer in 

MOLEDs implementing PtN1N, and a ~50nm thick NPD layer in MOLEDs 

implementing PtOO3. Thus, the intrinsic emission characteristics of the source in a 

MOLED has a significant impact on MOLED performance and a narrow band source 

in a MOLED is ideal for achieving large enhancements in the light out-coupling 

efficiency without the need of significant detuning.  
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Figure 68. The total photon flux normalized to the intrinsic emission spectrum of the 

emitter, PtOO3, for the structure of glass/Ta2O5(57nm)/SiO2(100nm)/ITO(53nm)/ 

HATCN(10nm)/ NPD(30,40,50,60nm)/TAPC(10nm)/8%PtOO3:26mCPy(25nm)/DPPS 

(10nm)/BmPyPB(45nm)/LiF(1nm)/Al (100nm). The thin film PL of PtOO3 (dashed) 

and PtN1N (dotted) in a film of 8%dopant:26mCPy are also included in the Figure 

(bottom).  

7.5 Conclusion 

A systematic and comprehensive study of the microcavity effects in MOLEDs 

implementing a narrow band emission source was conducted. The phosphorescent 

emitter, PtN1N (FWHM=18nm), was implemented into a series of low-finesse, 

moderate-finesse, and high-finesse MOLEDs with different cavity tuning. Optimum 

EQE enhancement was achieved with a moderately detuned, low-finesse MOLED 

structure with a single DBR pair of quarter-wavelength thick high index material, 

Ta2O5, and low index material, SiO2, which exhibited a peak EQE of 34.2% and a 

1.35 enhancement in EQE compared to PtN1N in conventional device architectures. 
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Additionally, the effect of the source spectral emission band on MOLED performance 

was investigated by implementing two phosphorescent molecules, PtN1N 

(FWHM=18nm) and PtOO3 (FWHM=72nm), with similar non-cavity peak emission 

energies and different spectral emission bands into identical MOLED structures and 

found that a greater enhancement in light out-coupling is possible with MOLEDs 

containing PtN1N with enhancements in light out-coupling efficiency as high as 1.3 

with detuning as low as Δλ~9nm, compared to MOLEDs containing PtOO3 for which 

little enhancement occurred for the same amount of detuning. This work suggests 

the potential for narrow band emission sources in MOLEDs and demonstrates that 

significant out-coupling enhancement can be achieved with a MOLED design.  
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8 FUTURE ROLE OF OLEDS 

8.1 Summary  

8.1.1 Motivation  

Organic light emitting diodes (OLEDs) are strong candidates for next 

generation displays and solid state lighting. In order to further the development of 

OLEDs in display, efficient and stable phosphorescent emitters are desired. The 

work conducted in this thesis demonstrates the potential of platinum based 

complexes for use in highly efficient and stable OLEDs.  

8.1.2 Highly Efficient White OLEDs and a Route towards Stable Blue OLEDs 

In addition to being a promising route for stable and efficient OLEDs, 

platinum complexes have unique photophysical properties. For select cases, the 

planar geometry facilitates Pt---Pt interactions within the doped thin organic film 

resulting in excimer emission combined with parent monomer emission, enabling 

emission over the entire visible range for high quality white light. Typically, white 

light emission in OLEDs is achieved by simultaneous emission of multiple emissive 

materials, which need to be employed in either a single emissive layer with multiple 

molecular emitters or multiple emissive layers. The use of these multi-layered or 

multi-dopant device architectures not only results in increased fabrication difficulty 

and costs but also yields several possible operational problems making them a less 

attractive approach for generating white light. In Chapter 3, a highly efficient white 

OLED using the platinum complex platinum(II) bis(N-methyl-imidazolyl)-benzene 

chloride (Pt-16)  was demonstrated which exhibited a maximum external quantum 
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efficiency (EQE) of 20.1%, a peak power efficiency of over 50 lm/W on a planar glass 

substrate and high quality white light with color coordinates of  CIE(x=0.33, y=0.33) 

and a CRI of 80. To our knowledge, this was the first demonstration of a single 

doped white OLED with an EQE greater than 20%. Although Pt-16 based devices 

demonstrated high quality white light emission with high external quantum 

efficiency’s, Pt-16 is electrochemically unstable which may be attributed to the 

highly electronegative halogen atom, chlorine. In Chapter 4, a route towards 

electrochemically stable platinum complexes with blue-green emission by utilizing a 

tetradentate, cyclometalated design was demonstrated. In particular, an OLED 

implementing the halogen free complex platinum(II) phenyl-methylimidazole 

(PtOO2) with a high external quantum efficiency of 23.1% and color coordinates of 

CIE(x=0.16,y=0.34) was demonstrated. 

8.1.3 A Stable Red PhOLED 

In Chapter 5, a stable and efficient red OLED based on the tetradentate 

cyclometalated platinum complex, PtON11-Me with an operational stability close to 

or exceeding its Iridium analog was demonstrated. Devices employing PtON11-Me 

in a stable structure exhibited a maximum EQE of 8.3%, color coordinates 

CIE(x=0.61,y=0.36) and an estimated operational lifetime T0.97 ~ 1560 h at 100 

cd/m2, higher than its iridium analog, tris(1-phenylquinoline) iridium(III) (PQIr), 

using a similar device architecture. Additionally, it was found that the operational 

lifetime could be improved further by implementing a mCBP:BAlq cohost structure 

which exhibited an estimated operational lifetime T0.97 = 3112 at 100 cd/m2. 

Furthermore, by using more effective electron, hole, and exciton blocking materials, 

efficiencies as high as 12.5% were achieved, demonstrating the potential for both 



169 

 

stable and highly efficient red OLEDs utilizing PtON11-Me. Thus, this work 

suggests that platinum complexes can act as efficient and stable emitters with 

efficiencies and operational lifetimes close to or exceeding those of their iridium 

analogs. The demonstration of a stable and efficient red OLED based on a platinum 

complex debunks previous notions that platinum complexes are less stable than 

their iridium analogs.  

8.1.4 Microcavity OLEDs using a Narrow Band Emitter 

In addition to the need for improvements in the availability of efficient and 

stable phosphorescent emitters in OLEDs, improvements in device architectures are 

also needed. Using conventional device architectures limits the external quantum 

device efficiency to 20-30%, as most of the photons generated do not contribute to the 

out-coupled power as a result of optical losses inside of the device. These optical 

losses include surface plasmon polaritions (SPPs), absorption at the metal electrode 

surface, and modes trapped by total internal reflection due to the mismatch of the 

refractive indices between the organic layers (n~1.6-1.8)/ITO anode (n~1.9) and glass 

(n~1.5) (waveguide modes) and the mismatch of refractive indices between glass and 

air (n~1) (substrate modes). Thus, device architectures that improve out-coupling 

efficiency are highly desired and provide the greatest potential for improvements in 

OLED efficiency and methods that improve the light out-coupling efficiency, or 

fraction of light emitted from the device to total generated light, need to be 

considered. There have been a number of methods reported that enhance the 

external quantum efficiency (EQE) of OLEDs and overcome the light out-coupling 

limitation by releasing the light rays trapped by total internal reflection.49 These 

include creating surface roughness on the top of the substrate to allow more light to 
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scatter out of the substrate,50, 121-123  implementing an ordered microlens array at the 

top of the substrate to eliminate the critical angle condition at the substrate/air 

interface,124 growing a periodic two-dimensional (2D) photonic crystal to couple the 

guided waves to the radiation mode in the direction normal to the device surface,52, 

125 or through the design of a microcavity OLED (MOLED). 53, 126-134 MOLEDs are of 

particular interest due to their simple fabrication and their ability to be used in 

conjunction with the other aforementioned strategies.126, 135 It has been found in this 

study that MOLEDs, in particular, are a more suitable design for narrow band 

emitters. It has been found that platinum complexes exhibit narrow band emission 

for a cyclometalated, tetradentate design with a high degree of rigidity. Such narrow 

emission bands are more suitable for a MOLED design than typical organic 

phosphors with broad spectral widths (FWHM>50nm) since a larger fraction of the 

emission is accelerated by the cavity. A MOLED based on a tetradentate, 

cyclometalated, platinum complex, platinum(II)-2’-(H-pyrazol-1-yl)-9-(pyridine-2-yl)-

9H-2,9’-bicarbazole  (PtN1N), with a narrow spectral emission band exhibiting a 

FWHM of 18nm in a solution of DCM was demonstrated. By extending the spectral 

position of the optical mode beyond the peak intrinsic emission wavelength to form a 

so called over-tuned or detuned optical cavity, a high forward viewing EQE of 34.2% 

was achieved compared with the non-cavity structure which exhibited a peak EQE of 

25.4%. Thus, with only an addition of a SiO2 spacer layer and Ta2O5 high index 

layer onto the original device structure, an enhancement in EQE of 1.35 was 

achieved with the detuned structure.  
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8.2 Outlook 

 A highly efficient and stable blue OLED with the ability to form excimer 

emission combined with monomer emission to generate high quality white light is 

the holy grail of organic light emitting diodes from platinum complexes. While 

several reporting’s of stable and efficient phosphorescent complexes with red and 

green emission have been reported, there have been few reports of stable and 

efficient blue-emitting phosphorescent complexes. Thus, a blue-emitting platinum 

complex with the ability of generating a broad white emission will be a significant 

step forward in the field and the development of such emitters may provide a viable 

route to both energy efficient OLED displays as well as organic solid state lighting.   

 WOLEDs fabricated in this thesis utilizing platinum(II) bis(methyl-

imidazolyl)benzene chloride (Pt-16), demonstrated excellent CIE color coordinates of 

(0.33,0.33), a high CRI of 80, and a high external quantum efficiency of 20.1%. 

However, the photoluminscent quantum yield (PLQY) measurements of Pt-16 doped 

in thin films of mCPy26 indicated that the Pt-16 monomer is inefficient requiring a 

tradeoff between color quality and high efficiency. Thus, square planar platinum 

complexes exhibiting both highly efficient monomer and excimer emission are highly 

desired. Additionally,  a new molecular design motif is needed since excimer 

emitting materials employing N^C^N cyclometalating ligands and their analogs, 

typically utilize potentially unstable functional groups (i.e. halogens) as a fourth 

coordinating ligand bonded to the platinum metal ion to achieve deep blue emission. 

The need for a new molecular motif was alluded to in Chapter 4 and demonstrated a 

highly efficient halogen free platinum complex, PtOO2, with blue-green emission. 

However, the complex, PtOO2, did not exhibit excimer emission. The lack of an 
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excimer component from PtOO2 is likely a result of considerable distortion from 

planarity created by the oxygen linking atoms, which inhibits intermolecular 

interactions necessary for excimer formations.100 Thus, further work is needed to 

achieve electrochemically stable, deep blue emission with excimer emission 

capability.  

 In addition to improvements in the availability of highly efficient and stable 

phosphorescent complexes, improvements in the light out-coupling efficiency are 

needed. Some of the benefits of a narrow band emitter in a microcavity organic light 

emitting diode for improved light out-coupling efficiency were outlined in Chapter 7. 

Further improvements in the light out-coupling efficiency utilizing a narrow band 

emitter in conjunction with a microcavity OLED design may be achieved by 

employing an exciplex forming co-host system. Kim et. al demonstrated an external 

quantum efficiency over 30% implementing an exciplex forming co-host system of 

4,4’,4”-tri (N-carbazolyl) tri-phenylamine (TCTA) and bis-4,6-(3,5-di-3-

pyridylphenyl)-2-methylpyrimidine (B3PYMPM).184 Optical analysis of the 

phosphorescent emitter Ir(ppy)2(acac) in device suggested a preferred non-isotropic 

orientation with a horizontal to vertical dipole ratio of 0.77:0.23 is achieved 

compared to 0.66:0.33 for isotropic emission. Thus, a MOLED implementing a 

narrow band emitting source doped in an exciplex forming co-host system may result 

in even further improvements in the external quantum efficiency. Such a structure 

combined with a microlens array, capable of releasing substrate modes, may result 

in record external quantum efficiencies of OLEDs.     
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APPENDIX I 

CALCULATING THE REFLECTANCE OF A MULTILAYER STACK: 

MATRIX METHOD CODEING IN MATLAB  
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%Matrix Method of a Multi-layer Stack 

clear all 

%define optical constants 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

angs=0; %angle start 

anginc=2; %angle increments 

ange=90; %angle end 

lams=300; %Starting lamda 

laminc=2; %lamda increments 

lame=850; %Ending lamda 

lamda=[lams:laminc:lame]; 

next=1; 

ns=1.7; %Emission Medium Index 

n0=1.7; %Incident Medium: Organic Layers (ns) 

load ITO_CP.m 

load SiO2_CP.m 

load TA2O5_CP.m 

load Glass_CP.m 

%define thickness of each layer 

ds=[65,0] 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%Define range of wavelength and angles and configuration of stack 

lamda=[lams:laminc:lame]; 

B=length(ds); 

M=length(lamda); 

for j=1:M 

n(1,j)=ITO_CP(j,2)+ITO_CP(j,3)*i; 

n(2,j)=SiO2_CP(j,2)+SiO2_CP(j,3)*i; 

n(3,j)=TA2O5_CP(j,2)+TA2O5_CP(j,3)*i; 

n(4,j)=SiO2_CP(j,2)+SiO2_CP(j,3)*i; 

n(5,j)=TA2O5_CP(j,2)+TA2O5_CP(j,3)*i; 

n(6,j)=SiO2_CP(j,2)+SiO2_CP(j,3)*i; 

n(7,j)=TA2O5_CP(j,2)+TA2O5_CP(j,3)*i; 

nB(B+1,j)=Glass_CP(j,2); 

end 

%define angle of incidence in polar units (tip) 

tip=[angs:anginc:ange]; 

V=length(tip); 

%convert polar to radians for ti 

for p=1:V 

    tir(p,1)=(tip(p)/180)*3.14; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

%Matrix Method 
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%determine the fresnel r and t coefficients 

for j=1:M 

    for k=2:B     

        for p=1:V 

 

%use snells law to determine the transmitted angle within multistack (at each layer) 

and final transmitted angle (B/B+1) 

for z=1:V 

    for b=2:B 

ttr(z,1)=asin((n0*sin(tir(z,1)))/n(1,j)); %0/1 (1) 

ttr(z,b)=asin((n(b-1,j)*sin(ttr(z,b-1)))/n(b,j)); %1/2 (2) ,2/3 (3), ...B/B+1 (B+1) 

    end 

ttr(z,B+1)=asin((n(B,j)*sin(ttr(z,B)))/nB(B+1,j)); %B+1/B (final refracted angle) 

end 

%n0/1 

ti=tir(p,1); 

tt=ttr(p,1); 

ni=n0; 

nt=n(1,j); 

aa=ni*cos(ti); 

bb=nt*cos(tt); 

cc=nt*cos(ti); 

dd=ni*cos(tt); 

rpar(1,j,p)=(cc-dd)/(dd+cc); 

rperp(1,j,p)=(aa-bb)/(aa+bb); 

tpar(1,j,p)=(2*aa)/(dd+cc); 

tperp(1,j,p)=(2*aa)/(aa+bb); 

%1/2,3/4,4/5....B-1/B 

ti=ttr(p,k-1); 

tt=ttr(p,k); 

ni=n(k-1,j); 

nt=n(k,j); 

aa=ni*cos(ti); 

bb=nt*cos(tt); 

cc=nt*cos(ti); 

dd=ni*cos(tt); 

rpar(k,j,p)=(cc-dd)/(dd+cc); 

rperp(k,j,p)=(aa-bb)/(aa+bb); 

tpar(k,j,p)=(2*aa)/(dd+cc); 

tperp(k,j,p)=(2*aa)/(aa+bb); 

%B/nB 

ti=ttr(p,B); 

tt=ttr(p,B+1); 

ni=n(B,j); 

nt=nB(B+1,j); 

aa=ni*cos(ti); 

bb=nt*cos(tt); 

cc=nt*cos(ti); 

dd=ni*cos(tt); 
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rpar(B+1,j,p)=(cc-dd)/(dd+cc); 

rperp(B+1,j,p)=(aa-bb)/(aa+bb); 

tpar(B+1,j,p)=(2*aa)/(dd+cc); 

tperp(B+1,j,p)=(2*aa)/(aa+bb); 

        end 

    end 

end 

for j=1:M 

    for k=1:B+1 

        for p=1:V 

Iperp(1,1,j,k,p)=1/tperp(k,j,p); 

Iperp(1,2,j,k,p)=rperp(k,j,p)/tperp(k,j,p); 

Iperp(2,1,j,k,p)=rperp(k,j,p)/tperp(k,j,p); 

Iperp(2,2,j,k,p)=1/tperp(k,j,p); 

Ipar(1,1,j,k,p)=1/tpar(k,j,p); 

Ipar(1,2,j,k,p)=rpar(k,j,p)/tpar(k,j,p); 

Ipar(2,1,j,k,p)=rpar(k,j,p)/tpar(k,j,p); 

Ipar(2,2,j,k,p)=1/tpar(k,j,p); 

        end 

    end 

end 

for j=1:M 

    for k=1:B 

epp(k,j)=((2*3.14)/(lamda(j)))*n(k,j); 

    end 

end 

for j=1:M 

    for k=1:B 

 for p=1:V 

    L(1,1,j,k,p)=exp(-i*epp(k,j)*(ds(k)/cos(ttr(p,k))));  

    L(1,2,j,k,p)=0;  

    L(2,1,j,k,p)=0;   

    L(2,2,j,k,p)=exp(i*epp(k,j)*(ds(k)/cos(ttr(p,k))));  

 end 

    end 

end 

Spar=ones(2,2,M,B+1,V); 

PRODpar=ones(2,2,M,B+1,V); 

for j=1:M 

    for p=1:V 

    PRODpar(:,:,j,1,p)=Ipar(:,:,j,1,p)*L(:,:,j,1,p); 

    for k=1:B-1 

PRODpar(:,:,j,k+1,p)=PRODpar(:,:,j,k,p)*Ipar(:,:,j,k+1,p)*L(:,:,j,k+1,p); 

    end 

    Spar(:,:,j,B,p)=PRODpar(:,:,j,B,p)*Ipar(:,:,j,B+1,p); 

    end 

end 

Sperp=ones(2,2,M,B+1,V); 

PRODperp=ones(2,2,M,B+1,V); 
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for j=1:M 

    for p=1:V 

    PRODperp(:,:,j,1,p)=Iperp(:,:,j,1,p)*L(:,:,j,1,p); 

    for k=1:B-1 

PRODperp(:,:,j,k+1,p)=PRODperp(:,:,j,k,p)*Iperp(:,:,j,k+1,p)*L(:,:,j,k+1,p); 

    end 

    Sperp(:,:,j,B,p)=PRODperp(:,:,j,B,p)*Iperp(:,:,j,B+1,p); 

    end 

end 

for j=1:M 

    for p=1:V 

rp1(j,p)=Spar(2,1,j,B,p)/Spar(1,1,j,B,p); 

Rp1(j,p)=abs(rp1(j,p)*rp1(j,p)); 

    end 

end 

for j=1:M 

    for p=1:V 

argrp1(j,p)=atan2(imag(rp1(j,p)),real(rp1(j,p))); 

    end 

end 

for j=1:M 

    for p=1:V 

rs1(j,p)=Sperp(2,1,j,B,p)/Sperp(1,1,j,B,p); 

Rs1(j,p)=abs(rs1(j,p)*rs1(j,p)); 

    end 

end 

for j=1:M 

    for p=1:V 

argrs1(j,p)=atan2(imag(rs1(j,p)),real(rs1(j,p))); 

    end 

end 

for j=1:M 

    for p=1:V 

tp1(j,p)=1/Spar(1,1,j,B,p); 

Tp1(j,p)=abs(tp1(j,p)*tp1(j,p))*((nB(B+1,j)*cos(ttr(p,B+1)))/(n0*cos(tir(p,1)))); 

    end 

end 

for j=1:M 

    for p=1:V 

ts1(j,p)=1/Sperp(1,1,j,B,p); 

Ts1(j,p)=abs(ts1(j,p)*ts1(j,p))*((nB(B+1,j)*cos(ttr(p,B+1)))/(n0*cos(tir(p,1)))); 

    end 

end 

%Ignoring reflectance at glass/air surface 

%plot reflectance spectra at normal incidence vs wavelength (nm) 

figure 

plot(lamda,Rs1(1,:)) 
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APPENDIX II 

FDTD SCRIPTS 
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FDTD SCRIPT 

current_h = 0; 

addrect; 

set("name","cathode"); 

set("material",%cathode material%); 

set("x span",%cathode span%); 

set("y span",%cathode span%); 

set("z min",current_h); 

current_h = current_h + %cathode h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","BMPYPB"); 

set("material",%BMPYPB material%); 

set("x span",span); 

set("y span",span); 

set("z min",current_h); 

current_h = current_h + %BMPYPB h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","PO15"); 

set("material",%PO15 material%); 

set("x span",span); 

set("y span",span); 

set("z min",current_h); 

current_h = current_h + %PO15 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","ActiveLayerMCPY"); 

set("material",%activeorganics index%); 

set("x span",span); 

set("y span",span); 

set("z min",current_h); 

current_h = current_h + %activeorganics h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","TAPC"); 

set("material",%TAPC material%); 

set("x span",span); 

set("y span",span); 

set("z min",current_h); 

current_h = current_h + %TAPC h%; 

set("z max",current_h); 

 

copy(0,0,0); 
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set("name","NPD"); 

set("material",%NPD material%); 

set("x span",span); 

set("y span",span); 

set("z min",current_h); 

current_h = current_h + %NPD h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","HATCN"); 

set("material",%HIL material%); 

set("x span",span); 

set("y span",span); 

set("z min",current_h); 

current_h = current_h + %HIL h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","anode"); 

set("material",%anode material%); 

set("z min",current_h); 

current_h = current_h + %anode h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","SiO2"); 

set("material",%SiO2 material%); 

set("z min",current_h); 

current_h = current_h + %SiO2 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","Ta2O5"); 

set("material",%Ta2O5 material%); 

set("z min",current_h); 

current_h = current_h + %Ta2O5 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","SiO2_2"); 

set("material",%SiO2 material%); 

set("z min",current_h); 

current_h = current_h + %SiO2_2 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","Ta2O5_2"); 

set("material",%Ta2O5 material%); 

set("z min",current_h); 
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current_h = current_h + %Ta2O5_2 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","SiO2_3"); 

set("material",%SiO2 material%); 

set("z min",current_h); 

current_h = current_h + %SiO2_3 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","Ta2O5_3"); 

set("material",%Ta2O5 material%); 

set("z min",current_h); 

current_h = current_h + %Ta2O5_3 h%; 

set("z max",current_h); 

 

copy(0,0,0); 

set("name","backfill"); 

set("material",%backfill material%); 

set("alpha",0.6); 

set("z min",current_h); 

current_h = current_h + %backfill h%; 

set("z max",current_h); 

pc_top_height = current_h; 

 

copy(0,0,0); 

set("name","glass"); 

set("material","<Object defined dielectric>"); 

set("index",%glass index%); 

set("alpha",0.2); 

set("z min",current_h); 

current_h = current_h + %glass h%; 

set("z max",current_h); 

SCRIPT-LIGHT OUT-COUPLING EFFICIENCY, EL SPECTRA, ANGULAR 

INTENSITY PLOTS 

runsweep;  

######################################################### 

# User inputs 

res = 101; 

project_in_air = 1; 

#farfieldfilter(0.1); 

plot_all_wavelengths = 0; 

mname = "substrate"; 

######################################################### 
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np_source_power = getsweepdata("nopattern_dipole_orientation","sourcepower"); 

np_dipole_power = getsweepdata("nopattern_dipole_orientation","dipolepower"); 

np_dipole_box_power = getsweepdata("nopattern_dipole_orientation","dipoleboxpower"); 

select("source1"); 

f = linspace(get("frequency start"),get("frequency stop"),length(np_source_power)); 

lambda=(c/f)*1e9; 

p1=1; 

p2=length(f); 

theta=linspace(-90,90,1001); 

phi=0; 

result0_x = matrix(res,res,length(f)); 

result0_y = matrix(res,res,length(f)); 

result0_z = matrix(res,res,length(f)); 

result0_xg = matrix(res,res,length(f)); 

result0_yg = matrix(res,res,length(f)); 

result0_zg = matrix(res,res,length(f)); 

ffx = matrix(length(theta),length(f)); 

ffy = matrix(length(theta),length(f)); 

ffz = matrix(length(theta),length(f)); 

ffxg = matrix(length(theta),length(f)); 

ffyg = matrix(length(theta),length(f)); 

ffzg = matrix(length(theta),length(f)); 

load("Run 1_nopattern_dipole_orientation/nopattern_dipole_orientation_1"); 

for(fpoint=p1:p2) { 

temp = farfield3d(mname,fpoint,res,res,1,1,1,1.0); 

result0_x(1:res,1:res,fpoint) = pinch(result0_x,3,fpoint) + temp;  

result0_y(1:res,1:res,fpoint) = pinch(result0_y,3,fpoint) + transpose(temp);  

tempg = farfield3d(mname,fpoint,res,res,1,1,1,1.5); 

result0_xg(1:res,1:res,fpoint) = pinch(result0_xg,3,fpoint) + tempg;  

result0_yg(1:res,1:res,fpoint) = pinch(result0_yg,3,fpoint) + transpose(tempg); 

uxang = farfieldux(mname,fpoint,res,res); 

uyang = farfieldux(mname,fpoint,res,res); 

ffx(1:length(theta),fpoint)=farfieldspherical(pinch(result0_x,3,fpoint),uxang,uyang,theta,

phi); 

ffy(1:length(theta),fpoint)=farfieldspherical(pinch(result0_y,3,fpoint),uxang,uyang,theta,

phi); 

uxangglass = farfieldux(mname,fpoint,res,res,1.5); 

uyangglass = farfieldux(mname,fpoint,res,res,1.5); 

ffxg(1:length(theta),fpoint)=farfieldspherical(pinch(result0_xg,3,fpoint),uxangglass,uyan

gglass,theta,phi); 

ffyg(1:length(theta),fpoint)=farfieldspherical(pinch(result0_yg,3,fpoint),uxangglass,uyan

gglass,theta,phi); 

} 

load("nopattern_dipole_orientation_2"); 

for(fpoint=p1:p2) { 

result0_z(1:res,1:res,fpoint) = pinch(result0_z,3,fpoint) + 

farfield3d(mname,fpoint,res,res,1,1,1,1.0); 

result0_zg(1:res,1:res,fpoint) = pinch(result0_zg,3,fpoint) + 

farfield3d(mname,fpoint,res,res,1,1,1,1.5); 

ffz(1:length(theta),fpoint)=farfieldspherical(pinch(result0_z,3,fpoint),uxang,uyang,theta,

phi); 
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ffzg(1:length(theta),fpoint)=farfieldspherical(pinch(result0_zg,3,fpoint),uxangglass,uyan

gglass,theta,phi); 

} 

result0 = (1/3)*(result0_x+result0_y+result0_z); 

result0g = (1/3)*(result0_xg+result0_yg+result0_zg); 

ff = (1/3)*(ffx+ffy+ffz); 

ffg = (1/3)*(ffxg+ffyg+ffzg); 

# calculate extraction efficiency at each wavelength 

power_radiated0 = matrix(length(f)); 

EEair1= matrix(length(f)); 

EEair2= matrix(length(f)); 

EE1deg= matrix(length(f)); 

EE10deg= matrix(length(f)); 

EE20deg= matrix(length(f)); 

EE30deg= matrix(length(f)); 

EE40deg= matrix(length(f)); 

EE50deg= matrix(length(f)); 

EE60deg= matrix(length(f)); 

EE70deg= matrix(length(f)); 

EE80deg= matrix(length(f)); 

EEgm= matrix(length(f)); 

EEother= matrix(length(f)); 

for(fpoint=1:length(f)) { 

ux = farfieldux(mname,fpoint,res,res,1.0); 

uy = farfieldux(mname,fpoint,res,res,1.0); 

uxg = farfieldux(mname,fpoint,res,res,1.5); 

uyg = farfieldux(mname,fpoint,res,res,1.5); 

} 

for(fpoint=1:length(f)) { 

power_radiated0(fpoint) = 

0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0,3,fpoint),ux,uy); 

EEair2(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,uy

g,42,0,0))/np_source_power(fpoint))*100; 

EE1deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,uy

g,1,0,0))/np_source_power(fpoint))*100; 

EE10deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,7,6,0))/np_source_power(fpoint))*100; 

EE20deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,13,12,0))/np_source_power(fpoint))*100; 

EE30deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,20,19,0))/np_source_power(fpoint))*100; 

EE40deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,25,24,0))/np_source_power(fpoint))*100; 

EE50deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,31,30,0))/np_source_power(fpoint))*100; 

EE60deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,35,34,0))/np_source_power(fpoint))*100; 

EE70deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,39,38,0))/np_source_power(fpoint))*100; 

EE80deg(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,u

yg,41,40,0))/np_source_power(fpoint))*100; 
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EEgm(fpoint)=((0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,uyg,

90,0,0)-

0.5*sqrt(eps0/mu0)*farfield3dintegrate(pinch(result0g,3,fpoint),uxg,uyg,42,0,0))/np_sour

ce_power(fpoint))*100; 

EEother(fpoint)=100-EEgm(fpoint)-EEair2(fpoint); 

} 

# calculate E2 vs position x and y 

EExy=matrix(res,res,length(f)); 

for(fpoint=1:length(f)) { 

for(n1=1:res) { 

for(n2=1:res) { 

EExy(n1,n2,fpoint)=result0g(n1,n2,fpoint); 

} 

} 

} 

# Summary Plots 

plot(c/f*1e9,EEair2,"wavelength (nm)","Extraction efficiency"); 

plot(c/f*1e9,EE1deg,"wavelength (nm)","Extraction efficiency"); 

plot(c/f*1e9,EE20deg,"wavelength (nm)","Extraction efficiency"); 

plot(c/f*1e9,EEgm,"wavelength (nm)","Extraction efficiency"); 

plot(theta,ff(1:length(theta),28),"Angle","Intentisy at 500nm"); 

matlabsave("Run 

1",power_radiated0,EEair2,EE1deg,EE10deg,EE20deg,EE30deg,EE40deg,EE50deg,EE6

0deg,EE70deg,EE80deg,EEgm,EEother,f,lambda,EExy,theta,ff,ffx,ffy,ffz,ffg,ffxg,ffyg,ffzg

); 

 

MATLAB CODE – DATA ANALYSIS OF FDTD CALCULATIONS 

%Angular Emission Profile 

WAVE=490; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P490(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP490(j-find(PINstart==min(PINstart))+1)=P490(j); 
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end 

WAVE=496; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P496(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP496(j-find(PINstart==min(PINstart))+1)=P496(j); 

end 

WAVE=502; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P502(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP502(j-find(PINstart==min(PINstart))+1)=P502(j); 

end 

WAVE=508; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P508(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 
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end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP508(j-find(PINstart==min(PINstart))+1)=P508(j); 

end 

WAVE=514; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P514(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP514(j-find(PINstart==min(PINstart))+1)=P514(j); 

end 

WAVE=520; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P520(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP520(j-find(PINstart==min(PINstart))+1)=P520(j); 

end 

WAVE=526; 

ng=1.5; 
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nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P526(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP526(j-find(PINstart==min(PINstart))+1)=P526(j); 

end 

WAVE=532; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P532(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP532(j-find(PINstart==min(PINstart))+1)=P532(j); 

end 

WAVE=538; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P538(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 
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PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP538(j-find(PINstart==min(PINstart))+1)=P538(j); 

end 

WAVE=544; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P544(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP544(j-find(PINstart==min(PINstart))+1)=P544(j); 

end 

WAVE=550; 

ng=1.5; 

nair=1; 

crit=43; 

for j=1:length(lambda) 

    PIN(j)=abs(lambda(j)-WAVE); 

end 

for j=1:length(theta) 

    P550(j)=ff(j,find(PIN==min(PIN))); 

    thetagrad(j)=(theta(j))*(3.14/180); 

end 

for j=1:length(theta) 

PINstart(j)=abs(0-theta(j)); 

PINend(j)=abs(90-theta(j)); 

end 

for j=find(PINstart==min(PINstart)):find(PINend==min(PINend))    

    TT(j-find(PINstart==min(PINstart))+1)=theta(j);   

    PP550(j-find(PINstart==min(PINstart))+1)=P550(j); 

end 

%Extraction Efficiency plots 

%find pl for ptn1n and load it using  

load PtN1N_PL_RT.m %PL spectrum of PtN1N 

RTx=PtN1N_PL_RT(:,1); 

RTy=PtN1N_PL_RT(:,2); 
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LTx=PtN1N_PL_LT(:,1); 

LTy=PtN1N_PL_LT(:,2); 

TFx=PtN1N_PL_TF(:,1); 

TFy=PtN1N_PL_TF(:,2); 

%interpolate data 

A=[450:.1:650]; 

Z=length(A); 

for j=1:Z 

    x1(j)=A(j); 

end 

PLRT=interp1(RTx,RTy,x1); 

PLLT=interp1(LTx,LTy,x1); 

PLTF=interp1(TFx,TFy,x1); 

EEa=interp1(lambda,EEair2,x1); 

EEgm=interp1(lambda,EEgm,x1); 

EEo=interp1(lambda,EEother,x1); 

EEfor1=interp1(lambda,EE1deg,x1); 

for j=1:Z 

    PL(j)=PLRT(j); 

end 

%Extraction Efficiency calculations 

%Product of Spectrum and EEair2 

for j=1:Z 

    AIRRT(j)=EEa(j)*PLRT(j); 

    GLASSRT(j)=EEgm(j)*PLRT(j); 

    OTHERRT(j)=EEo(j)*PLRT(j); 

    AIRLT(j)=EEa(j)*PLLT(j); 

    GLASSLT(j)=EEgm(j)*PLLT(j); 

    OTHERLT(j)=EEo(j)*PLLT(j); 

    AIRTF(j)=EEa(j)*PLTF(j); 

    GLASSTF(j)=EEgm(j)*PLTF(j); 

    OTHERTF(j)=EEo(j)*PLTF(j); 

end 

%Integrate product and spectrum 

TOPAIRRT=trapz(x1,AIRRT); 

TOPGLASSRT=trapz(x1,GLASSRT); 

TOPOTHERRT=trapz(x1,OTHERRT); 

BOTRT=trapz(x1,PLRT); 

EERT=(TOPAIRRT/BOTRT); 

EEGMRT=(TOPGLASSRT/BOTRT); 

EEOTHERRT=(TOPOTHERRT/BOTRT); 

TOPAIRLT=trapz(x1,AIRLT); 

TOPGLASSLT=trapz(x1,GLASSLT); 

TOPOTHERLT=trapz(x1,OTHERLT); 

BOTLT=trapz(x1,PLLT); 

EELT=(TOPAIRLT/BOTLT); 

EEGMLT=(TOPGLASSLT/BOTLT); 

EEOTHERLT=(TOPOTHERLT/BOTLT); 

TOPAIRTF=trapz(x1,AIRTF); 
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TOPGLASSTF=trapz(x1,GLASSTF); 

TOPOTHERTF=trapz(x1,OTHERTF); 

BOTTF=trapz(x1,PLTF); 

EETF=(TOPAIRTF/BOTTF); 

EEGMTF=(TOPGLASSTF/BOTTF); 

EEOTHERTF=(TOPOTHERTF/BOTTF); 

%STRING=int2str(EE); 

%STRING2=int2str(EEGM); 

%STRING3=int2str(EEOTHER); 

%Modified PL at normal, 10, 20, etc. 

EE10=interp1(lambda,EE10deg,x1); 

EE20=interp1(lambda,EE20deg,x1); 

EE30=interp1(lambda,EE30deg,x1); 

EE40=interp1(lambda,EE40deg,x1); 

EE50=interp1(lambda,EE50deg,x1); 

EE60=interp1(lambda,EE60deg,x1); 

EE70=interp1(lambda,EE70deg,x1); 

EE80=interp1(lambda,EE80deg,x1); 

for j=1:Z 

ZERO(j)=PL(j)*EEfor1(j); 

TEN(j)=PL(j)*EE10(j); 

TWENTY(j)=PL(j)*EE20(j); 

THIRTY(j)=PL(j)*EE30(j); 

FORTY(j)=PL(j)*EE40(j); 

FIFTY(j)=PL(j)*EE50(j); 

SIXTY(j)=PL(j)*EE60(j); 

SEVENTY(j)=PL(j)*EE70(j); 

EIGHTY(j)=PL(j)*EE80(j); 

end 

G1=max(ZERO); 

G2=max(TEN); 

G3=max(TWENTY); 

G4=max(THIRTY); 

G5=max(FORTY); 

G6=max(FIFTY); 

G7=max(SIXTY); 

G8=max(SEVENTY); 

G9=max(EIGHTY); 

for j=1:Z 

ZEROn(j)=ZERO(j)/G1; 

TENn(j)=TEN(j)/G2; 

TWENTYn(j)=TWENTY(j)/G3; 

THIRTYn(j)=THIRTY(j)/G4; 

FORTYn(j)=FORTY(j)/G5; 

FIFTYn(j)=FIFTY(j)/G6; 

SIXTYn(j)=SIXTY(j)/G7; 

SEVENTYn(j)=SEVENTY(j)/G8; 

EIGHTYn(j)=EIGHTY(j)/G9; 

end 
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SOS=zeros(length(x1),39); 

for j=1:length(x1) 

SOS(j,1)=x1(j); 

SOS(j,2)=ZEROn(j); 

SOS(j,3)=TENn(j); 

SOS(j,4)=TWENTYn(j); 

SOS(j,5)=THIRTYn(j); 

SOS(j,6)=FORTYn(j); 

SOS(j,7)=FIFTYn(j); 

SOS(j,8)=SIXTYn(j); 

SOS(j,9)=SEVENTYn(j); 

SOS(j,10)=EIGHTYn(j); 

end 

for j=1:length(TT)-1 

SOS(j,11)=TT(j)-90; 

SOS(j,12)=PP490(length(TT)-j); 

SOS(j,13)=PP496(length(TT)-j); 

SOS(j,14)=PP502(length(TT)-j); 

SOS(j,15)=PP508(length(TT)-j); 

SOS(j,16)=PP514(length(TT)-j); 

SOS(j,17)=PP520(length(TT)-j); 

SOS(j,18)=PP526(length(TT)-j); 

SOS(j,19)=PP532(length(TT)-j); 

SOS(j,20)=PP538(length(TT)-j); 

SOS(j,21)=PP544(length(TT)-j); 

SOS(j,22)=PP550(length(TT)-j); 

end 

for j=length(TT):length(TT)+length(TT)-1 

SOS(j,11)=TT(j-length(TT)+1); 

SOS(j,12)=PP490(j-length(TT)+1); 

SOS(j,13)=PP496(j-length(TT)+1); 

SOS(j,14)=PP502(j-length(TT)+1); 

SOS(j,15)=PP508(j-length(TT)+1); 

SOS(j,16)=PP514(j-length(TT)+1); 

SOS(j,17)=PP520(j-length(TT)+1); 

SOS(j,18)=PP526(j-length(TT)+1); 

SOS(j,19)=PP532(j-length(TT)+1); 

SOS(j,20)=PP538(j-length(TT)+1); 

SOS(j,21)=PP544(j-length(TT)+1); 

SOS(j,22)=PP550(j-length(TT)+1); 

end 

for j=1:length(x1) 

SOS(j,23)=x1(j); 

SOS(j,24)=EEa(j); 

SOS(j,25)=EEgm(j); 

SOS(j,26)=EEo(j); 

end 

SOS(1,27)=EERT; 

SOS(1,28)=EEGMRT; 
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SOS(1,29)=EELT; 

SOS(1,30)=EEGMLT; 

SOS(1,31)=EETF; 

SOS(1,32)=EEGMTF; 

SOS(1,33)=max(EEa(:)); 

SOS(1,34)=x1(find(EEa==max(EEa(:)))); 

%find EE at a specific wavelength value - WAVE 

WAVE=498; 

for j=1:length(x1) 

    PIN(j)=abs(x1(j)-WAVE); 

end 

SOS(1,35)=EEa(find(PIN==min(PIN))); 

WAVE=480; 

for j=1:length(x1) 

    PIN(j)=abs(x1(j)-WAVE); 

end 

SOS(1,36)=EEa(find(PIN==min(PIN))); 

WAVE=490; 

for j=1:length(x1) 

    PIN(j)=abs(x1(j)-WAVE); 

end 

SOS(1,37)=EEa(find(PIN==min(PIN))); 

WAVE=510; 

for j=1:length(x1) 

    PIN(j)=abs(x1(j)-WAVE); 

end 

SOS(1,38)=EEa(find(PIN==min(PIN))); 

WAVE=520; 

for j=1:length(x1) 

    PIN(j)=abs(x1(j)-WAVE); 

end 

SOS(1,39)=EEa(find(PIN==min(PIN))); 
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APPENDIX III 

DESIGN OF EXPERIMENT DETAILS 

HIGH AND LOW INDEX OPTICAL PROPERTIES 

REFLECTANCE SPECTRA OF DBR STRUCTURES 

TABULATED REFLECTANCE 

RUN SCHEME 
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