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ABSTRACT   

Protein  affinity  reagents  have  aptly  gained  profound  importance  as  capture  reagents  and  

drugs  in  basic  research,  biotechnology,  diagnostics  and   therapeutics.  However,  due  to  the  

cost,  labor  and  time  associated  with  production  of  antibodies  focus  has  recently  changed  

towards  potential  of  peptides  to  act  as  protein  affinity  reagents.  Affinity  peptides  are  easy  

to  work  with,  non-immunogenic,  cost  effective  and  amenable  to  scale  up.  Even  though  

researchers  have  developed  several  affinity  peptides,  we  are  far  from  compiling  library  of  

peptides  that  encompasses  entire  human  proteome.  My  thesis  describes  high  throughput  

pipeline  that  can  be  used  to  develop  and  characterize  affinity  peptides  that  bind  several  

discrete  sites  on  target  proteins.  

  

Chapter  2  describes  optimization  of  cell-free  protein  expression  using  commercially  

available  translation  systems  and  well-known  leader  sequences.  Presence  of  internal  

ribosome  entry  site  upstream  of  coding  region  allows  maximal  expression  in  HeLa  cell  

lysate  whereas  translation  enhancing  elements  are  best  suited  for  expression  in  rabbit  

reticulocyte  lysate  and  wheat  germ  extract.  Use  of  optimal  vector  and  cell  lysate  

combination  ensures  maximum  protein  expression  of  DNA  libraries.   

 

Chapter  3  describes  mRNA  display  selection  methodology  for  developing  affinity  peptides  

for  target  proteins  using  large  diversity  DNA  libraries.  I  demonstrate  that  mild  denaturant  

is  not  sufficient  to  increase  selection  pressure  for  up  to  three  rounds  of  selection  and  

increasing  number  of  selection  rounds  increases  probability  of  finding  affinity  peptides.  

These  studies  enhance  fundamental  understanding  of  mRNA  display  and  pave  the  way  

for  future  optimizations  to  accelerate  convergence  of  in  vitro  selections.   

 

Chapter  4  describes  a  high  throughput  double  membrane  dot  blot  system  to  rapidly  

screen,  identify  and  characterize  affinity  peptides  obtained  from  selection  output.  I  used  

dot  blot  to  screen  potential  affinity  peptides  from  large  diversity  of  previously  
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uncharacterized  mRNA  display selection  output.  Further  characterization  of  potential  

peptides  allowed  determination of  several  high  affinity  peptides  from  having  Kd  range  150– 

450  nM.  Double  membrane  dot  blot  is  automation  amenable,  easy  and  affordable  solution  

for  analyzing  selection  output  and  characterizing  peptides  without  need  for  much  

instrumentation. 

 

Together  these  projects  serve  as  guideline  for  evolution  of  cost  effective  high  throughput  

pipeline  for  identification  and  characterization  of  affinity  peptides. 
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Chapter  1 

Introduction 

Discovery  of  antibodies,  nature’s  own  protein  affinity  reagents,  not  only  marked  the  

beginning  of  field  of  immunology  but  also  added  whole  new  dimension  to  our  

understanding  of  protein-protein  interactions.  Realizing  diagnostic  and  therapeutic  

applications  of  antibodies,  researchers  soon  embarked  upon  the  quest  for  cheaper,  

synthetic  and  simple  alternatives  to  traditional  antibodies.  Understanding  the  structure  of  

antibody  has  given  rise  to  various  protein  affinity  reagent  platforms  like  monoclonal  

antibodies,  recombinant  antibodies,  single  chain  antibodies,  nucleic  acid  aptamers,  peptides  

and  synbodies.  Hybridoma,  recombinant  DNA  and  systematic  evolution  of  ligands  by  

exponential  enrichment  (SELEX)  technologies  have  been  widely  used  to  develop  various  

types  of  affinity  reagents.  Each  of  these  technologies  aim  to  produce  large  diversity  of  

affinity  reagents  by  using  permutation  and  combination  of  amino  acids,  a  principle  very  

similar  to  natural  process  of  antibody  production  in  primates.  However,  the  time  and  cost  

of  affinity  reagents  produced  from  each  of  these  platforms  varies  widely.  Moreover,  rapidly  

growing  field  of  proteomics  has  created  an  urgent  need  for  technology  that  can  develop  

variety  of  affinity  reagents  for  array  of  target  proteins  at  affordable  cost  in  short  time  on  

a  high  throughput  platform.  SELEX  technologies  are  highly  preferred  when  developing  a  

platform  for  high  throughput  protein  affinity  reagent  production.    
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SELEX  also  known  as  in  vitro  selection,  is  a  method  of  simulating  natural  evolution  in  

laboratory  to  obtain  biological  molecules  with  specific  function  (1).  It  is  based  on  the  

theory  that  functional  biological  molecules  originated  from  large  number  of  random  

sequences.  As  illustrated  in  Fig.1.1,  every  in  vitro  selection  begins  with  synthesis  of  large  

DNA  libraries  with  random  sequences  of  fixed  length.  The  library  has  constant  5’  and  3’  

flanking  regions  for  amplification  of  library  by  polymerase  chain  reaction  (PCR).  Depending  

on  the  number  of  randomized  nucleotides  a  library  of  complexity  1010-1015  can  be  

generated.  Having  large  diversity  allows  exploration  of  large  sequence  space  thus  

increasing  the  probability  of  isolating  desired  functional  biomolecules.  The  pool  of  library  

biomolecules  is  equilibrated  with  target  protein  followed  by  washing  to  select  for  desired  

ligand.  Target  protein  bound  sequences  are  PCR  amplified  and  subjected  to  another  

Fig.  1.1  Schematic  of  SELEX  technology  Double  stranded  DNA  library  is  used  as  

starting  point  to  obtain  large  diversity  of  biomolecules.  Appropriate  selection  steps  

are  performed  in  order  to  isolate  biomolecules  of  interest.  Output  of  selection  is  

PCR  amplified  for  another  round  of  selection  (39).                
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round  of  in  vitro  selection.  Stringency  of  consecutive  rounds  can  be  increased  to  exclude  

weak  binders.  SELEX  technology  has  been  applied  to  identify  DNA  and  RNA  aptamers  

as  well  as  peptides  (2–5).Using  peptides  as  affinity  reagents  is  of  great  advantage  due  to  

their  specificity,  small  size,  ease  of  synthesis,  ease  of  scaling  up  production,  

transportation  and  low  cost  involved.  SELEX  is  fast,  cost  effective,  less  labor  intensive  

and  does  not  involve  animal  immunization.  Variants  of  SELEX  such  as  bacterial  display,  

phage  display,  yeast  display,  cell  surface  display,  ribosome  display  and  mRNA  display  

were  developed  to  obtain  desired  peptides  while  retaining  the  linkage  between  genotype  

and  phenotype  during  selections  (6–11). 

mRNA  display  is  a  method  of  choice  for  in  vitro  selections  due  to  cell  free  nature  of  this  

system  and  possibility  of  using  large  diversity  libraries  for  selections,  to  the  order  of  1015.  

In  most  in  vitro  selections  that  involve  at  least  one  in  vivo  step,  diversity  of  library  is  

limited  due  to  transformation  efficiency  of  microorganism.  Cell  based  in  vitro  selections  

introduce  internal  bias  in  selection  process  due  to  cellular  bias  during  peptide  expression  

or  degradation.  mRNA  display  uses  in  vitro  translation  in  order  to  generate  

peptides/proteins.  Chapter  2  describes  optimization  of  template  and  commercially  available  

cell  lysate  combinations  to  ensure  maximum  peptide/protein  expression  during  selection.  

Furthermore,  cell  based  in  vitro  selections  do  not  permit  use  of  most  post  translational  

modifications  or  unnatural  amino  acids.  Alternatively,  appropriate  eukaryotic  in  vitro  

translation  lysates  can  be  used  to  translate  variety  of  peptides/proteins  with  desirable  post  

translational  modifications  and  unnatural  amino  acids.  As  illustrated  in  Fig.1.2,  mRNA  

display  involves  transcription  of  library  followed  by  covalent  linkage  with  puromycin  linker.  

Puromycin  is  a  structural  mimic  of  tyrosyl-tRNA  that  allows  covalent  linkage  between  

mRNA  and  corresponding  peptide  upon  in  vitro  translation.  Covalent  linkage  between  

genotype  and  phenotype  in  mRNA  display,  unlike  ribosome  display,  allows  application  of  

stringent  selection  conditions  to  exclude  majority  of  weak  peptides  to  attain  convergence  

earlier  during  selections.  The  small  size  of  puromycin  linker  prevents  selection  of  non-

specific  peptides  interacting  with  linker.  This  is  one  of  the  major  drawbacks  of  ribosome  
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display  since  large  ribosomal  complex  consists  of  numerous  proteins  and  ribosomal  RNAs  

that  interact  with  peptides  in  selection  pool.  mRNA  display  being  completely  in  vitro  

technique  allows  use  of  in  vitro  mutagenesis  or  in  vitro  recombination  at  any  step  of  

selection.  mRNA  display  allows  fast,  easy  and  cost  effective  selection  of  variety  of  

functional  peptides/proteins  in  few  weeks.  Chapter  3  provides  detailed  description  and  

protocol  of  mRNA  display.  

  

  

Fig.  1.2  mRNA  display  Double  stranded  DNA  library  is  transcribed,  crosslinked  to  

psoralen  -  puromycin  linker  and  translated  using  appropriate  cell  free  translation  

lysate.  Peptide  –  mRNA  fusions  are  subjected  to  in  vitro  selection  to  obtain  desirable  

functional  peptides.  Selection  output  is  PCR  amplified  for  next  round  of  selection  (40). 
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mRNA  display  is  a  powerful  in  vitro  selection  technique  that  allows  isolation  of  desirable  

peptides/proteins  from  a  large  diversity  library,  as  large  as  1015.  However,  starting  

selections  with  such  vast  complexity  pool  also  increases  possibilities  of  selecting  

nonspecific  binders.  Even  after  10  rounds  of  selections  it  is  not  uncommon  to  find  a  few  

million  peptides  in  the  selection  output.  It  can  be  very  challenging  to  identify  few  high  

affinity  peptides  from  a  pool  of  millions  of  peptides  if  the  downstream  technology  for  

characterizing  peptides  is  not  scalable.  Most  researchers  perform  next  generation  

sequencing  followed  by  computational  analysis  to  identify  affinity  peptides.  Computational  

algorithms  that  identify  redundant  amino  acid  sequences  or  motifs  are  valuable  tools  for  

analyzing  large  selection  outputs.  However,  internal  biases  of  selection  technique,  for  

instance  bias  introduced  during  PCR  amplification  of  selection  output,  may  add  up  over  

the  rounds  of  selections  thus  misleading  computational  analysis  towards  false  positives.  

Increasing  use  of  selection  strategies  to  obtain  affinity  peptides  demands  advanced  

experimental  screening  technologies  that  will  help  us  identify  potential  high  affinity  

peptides  from  large  selection  outputs.  Most  of  the  current  techniques  that  characterize  

binding  properties  of  peptides  such  as  surface  plasmon  resonance  (SPR),  fluorescence  

resonance  energy  transfer  (FRET),  electrophoretic  mobility  shift  assay  (EMSA)  are  either  

time  consuming,  expensive,  labor  intensive  or  demand  exceptional  instrumentation  and  

technical  expertise  dedicated  to  peptide  characterization  method.  As  a  result  most  

laboratories  that  perform  selections  are  not  able  to  identify  and  characterize  valuable  

output  that  in  vitro  selections  are  generating. 

Dot  blot  is  widely  used  for  detection  and  identification  of  biomolecules  as  quick  cost  

effective  alternative  to  chromatography  and  electrophoresis.  In  third  world  countries,  dot  

blot  has  saved  millions  of  lives  by  detecting  sexually  transmitted  diseases,  Chlamydis  

trachomatis  infections  and  antibodies  to  tuberculosis  and  typhoid  fever  (12, 13).  In  Chapter  

3,  I  propose  a  double  membrane  dot  blot  method  for  rapidly  screening  selection  output  to  

identify  potential  affinity  peptides.  This  method  can  be  used  to  further  characterize  binding  

properties  of  potential  peptides  to  isolate  high  affinity  binders.  In  order  to  analyze  
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peptides,  they  are  in  vitro  expressed  and  purified  from  corresponding  oligonucleotide  

sequence,  which  bypasses  expensive  and  time  consuming  solid  phase  synthesis  of  

peptides.  The  peptides  are  equilibrated  with  target  protein  to  separate  unbound  free  

peptide  from  bound  peptide-protein  complex  based  on  size.  Dot  blot  method  entails  use  

of  a  very  simple  and  inexpensive  dot  blot  apparatus,  which  is  assembled  with  

regenerated  cellulose  and  nylon  membrane  system.  Selection  output  can  be  directly  

subjected  to  dot  blot  screen  to  identify  potential  affinity  peptides,  without  need  for  prior  

sequencing,  by  equilibrating  with  appropriate  concentration  of  target  protein.  Solution  

binding  constant  of  identified  potential  peptides  is  determined  by  equilibration  with  wider  

range  of  concentration  of  target  protein.  Double  membrane  dot  blot  system  is  a  rapid,  

high  throughput  and  affordable  solution  to  screen,  identify  and  characterize  selection  

output  without  need  for  exceptional  instrumentation.  
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My  thesis  proposes  use  of  mRNA  display  technology  to  select  for  affinity  peptides  from  

large  sequence  space  using  high  complexity  DNA  libraries  as  described  in Chapter  3.  I  

propose  use  of  appropriate  vector  template  and  cell  free  lysate  combination  for  in  vitro  

translation  of  peptides  as  illustrated  in  Chapter  2.  Challenge  of  identifying  high  affinity  

peptides  from  large  diversity  of  in  vitro  selection  output  can  be  addressed  using  dot  blot  

method.  Dot  blot  method  allows  efficient  screening  of  selection  peptides  without  need  for  

Fig. 1.3  Dot  Blot  method  Radiolabelled  peptides  are  expressed  and  

equilibrated  with  appropriate  concentrations  of  target  protein.  Size  based  

separation  of  equilibrated  reaction  is  used  to  screen  peptides  obtained  from  

selection  output.  Potential  high  affinity  peptides  can  be  further  characterized  by  

equilibrating  with  wider  range  of  target  protein  concentrations  to  determine  Kd.  

Sequencing  DNA  corresponding  to  high  affinity  peptides  eliminates  need  for  

next  generation  sequencing  thus  reducing  cost  of  characterizing  selection  output.     
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next  generation  sequencing.  Potential  high  affinity  peptides  identified  in  screen  can  be  

further  characterized  using  size  based  separation  principle  of  dot  blot  method  (Chapter  4).  

Thus  I  propose  a  time,  labor  and  cost  effective  pipeline  for  generating  high  affinity  

peptides  for  diverse  proteins  in  high  throughput  format. 

 

 

  

Fig.  1.4  Pipeline  for  isolating  high  affinity  peptides  Proposed  pipeline  

illustrates  three  major  components  for  isolating  high  affinity  peptides;  in  vitro  

selection  of  desirable  peptides  using  mRNA  display,  screening  selection  output  

to  identify  potential  affinity  peptides  by  dot  blot  method  and  characterization  of  

high  affinity  peptides  to  determine  Kd. 

mRNA display selection
Dot blot for screening selection 

output
Dot blot for characterizing 

affinity peptides
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Chapter  2 

Comparison  of  commercial  cell-free  translation  systems  for   

optimal  expression  of  DNA  libraries      

Contributions 

The  following  chapter  describes  optimization  of  commercial  cell  free  expression  systems.  

The  project  was  conceived  by  Dr.  John  Chaput.  Reported  experiments  were  performed  by  

Pankti  Shah, 
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Abstract 

Cell-free  protein  synthesis  is  essential  for  many  biotechnology  and  functional  proteomics  

applications.  However,  not  all  protein  expression  vectors  and  translation  systems  are  

compatible.  One  of  the  most  common  reasons  for  low  protein  yields  is  reduced  efficiency  

of  translation  initiation.  Here,  translation  efficiency  of  three  commonly  used  commercial  

cell-free  translation  systems  is  compared  with  an  expression  vector  carrying  three  different  

translation  enhancing  elements  (TEEs).  Luciferase  reporter  vector  was  used  in  translation  

systems  composed  of  wheat  germ  extract  (WGE),  HeLa  cell  lysate  (HCL),  and  rabbit  

reticulocyte  lysate  (RRL)  to  compare  encephalomyocarditis  (EMCV)  internal  ribosome  entry  

site  (IRES)  to  the  TEEs,  which  were  derived  from  alfalfa  mosaic  virus  (AMV)  and  

tobacco  mosaic  virus  (TMV).  In  addition,  the  role  of  poly  A  tail  in  enhancing  protein  

expression  as  well  as  linear  versus  plasmid  DNA  templates  were  compared.  The  results  

of  comparison  of  translation  systems  demonstrate  that  vectors  with  EMCV  IRES  are  more  

efficient  in  HCL  and  vectors  with  TEEs  are  more  efficient  in  WGE  and  RRL  lysates.  

Besides,  plasmid  DNA  increases  translation  10-fold  as  compared  to  linear  DNA  and  polyA  

tail  failed  to  show  any  significant  effect.  We  suggest  a  general  guide  for  identifying  vector  

and  cell-free  expression  system  compatibility.  These  findings  will  be  used  to  optimally  

express  DNA  libraries  to  maximize  unbiased  representation  of  library  diversity. 
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Introduction 

Cell  free  translation  systems  have  added  new  dimensions  to  the  field  of  protein  

expression  by  coupling  transcription  and  translation  in  vitro.  Optimization  of  in  vitro  

translation  technology  has  received  remarkable  attention  due  to  applications  in  creating  

protein  arrays  (10),  expressing  DNA  libraries  to  generate  pool  of  recombinant  proteins  (9),  

incorporation  of  unnatural  amino  acids  (8,  12),  high-throughput  screening  of  peptide  

libraries  (11,  17),    structural  and  functional  analysis  of  individual  and  membrane  proteins  

(13–15)  and  understanding  the  mechanism  of  translation  initiation  (21).  Continuous  protein  

synthesis  systems  such  as  continuous-flow  cell-free  (CFCF)  translation  (24),  microfluidic  

array  devices  (18)  and  protein  producing  gel    (22)  have  facilitated  protein  expression  in  

high  throughput  format  with  significantly  reduced  cost.  In  addition  to  these  strategies,  it  is  

extremely  valuable  to  optimize  vectors  for  increased  expression.  Incorporation  of  critical  

sequence  elements  flanking  the  gene  of  interest  greatly  enhances  gene  expression.  For  

instance,  IRES  is  often  incorporated  into  the  5’  UTR  of  expression  vectors  to  compensate  

for  reduced  cap-dependent  initiation  of  translation  in  vitro.  Optimal  expression  becomes  

crucial  in  case  of  mRNA  display  where  expression  of  each  variant  of  the  DNA  library  is  

significant  qualitatively  and  quantitatively.  Commercial  cell  free  translation  systems   were  

compared  to  ensure  maximum  diversity  and  equal  representation  of  peptides  during  

mRNA  display  selections. Comparison  of  EMCV,  HCV  (hepatitis  C  virus)  and  poliovirus  

IRES  in  HCL  indicates  that  only  the  EMCV  and  HCV  IRES  increase  protein  yield  when  

present  upstream  of  a  reporter  gene  (19).  These  results  indicate  that  translation  

enhancing  cis  elements  increase  protein  production  in  vitro  by  mechanisms  that  are  lysate  

specific. 

 

Cell  free  translation  lysates  from  hyperthermophiles,  hybridomas,  Xenopus  oocytes,  insect,  

mammalian  and  human  cells  (7,  20),  reconstituted  translation  systems  from  E.  coli  (23)  

and  Thermus  thermophilus  (25)  have  been  developed  for  varied  applications  in  protein  

expression  studies.  Eukaryotic  RRL,  WGE  and  HCL  based  systems  have  been  extensively  



  12 

used  for  their  unique  characteristics  each.  Mammalian  RRL  allows  cap-independent  

translation  but  fails  to  glycosylate  proteins  (4).  WGE  produces  high  amounts  of  large  

protein  with  negligible  off  target  protein  production  but  fails  to  confer  co-  and  post  –  

translation  modifications  and  often  leads  to  premature  termination  (5).  Human  HCL  allows  

co-  and  post  –  translation  modifications  but  is  a  relatively  new  system  and  has  proven  to  

be  sensitive  to  additives  (3).  The  large  variety  of  available  translation  systems  has  led  to  

a  significant  optimization  of  expression  vectors;  however,  no  direct  comparison  exists  to  

demonstrate  which  combinations  are  ideal  starting  points  (1,  2,  6,  19).  Promega  

recommends  presence  of  a  Kozak  sequence  with  an  ATG  start  codon  in  an  appropriate  

context  and  a  poly  A  tail  for  optimal  expression  in  eukaryotic  systems.  Their  observations  

indicate  that  the  addition  of  poly  A  tail  compensates  for  absence  of  Kozak  sequence  in  

RRL  (1,  2,  6).  Langlais  et.  al.  demonstrated  the  significance  of  template  sequence  

optimization  for  protein  production  in  E.  coli  and  WGE  based  systems  (16).  Here  we  
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compare  the  potential  of  commonly  used  TEEs  to  enhance  the  functional  luciferase  

protein  yield  across  commercially  available  lysates.  We  followed  recommended  

manufacturer’s  procedures  in  order  to  test  the  effect  of  three  common  5’  UTR  sequences,  

EMCV,  AMV,  TMV  in  three  common  eukaryotic  cell  free  translation  systems,  WGE,  HCL  

and  RRL.  We  also  compared  the  effect  of  circular  versus  linear  DNA  template  and  the  

effect  of  adding  a  poly  A  tail  downstream  of  a  luciferase  reporter  gene. 

  

Fig.  2.1  Design  of  vectors  to  compare  commercial  cell  free  translation  

systems;  a)  pJCLuc_TEE  and  b)  pJCLuc_TEEp(A)  represent  6  vector  

constructs,  3  each.  All  of  the  vectors  have  T7promoter,  either  of  unique  5'-

UTR  (EMCV,  AMV  or  TMV),  Firefly  Luciferase  reporter  gene  and  T7  terminator  

as  shown.  pJCLuc_TEEp(A)  has  an  additional  poly  A  site  between  Luciferase  

gene  and  T7  terminator.  Vectors  have  identical  backbone  sequence.  Arrows  

indicate  primer  binding  region  for  generating  linear  DNA  template. 

a) b) 
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Experimental design 

Molecular cloning and template preparation 

pJCLuc  plasmid  with  monocistronic  Firefly  Luciferase  under  the  T7  promoter  was  received  

as  a  generous  gift  from  Dr.  Doudna’s  lab,  University  of  California,  Berkeley,  USA.  We  

used  enzymes  from  New  England  Biolabs,  Ipswich,  MA,  USA  to  modify  pJCLuc  plasmid  

by  standard  molecular  cloning  techniques.  All  the  plasmids  created  from  pJCLuc  parent  

plasmid  had  T7  promoter,  single  unique  translation  enhancing  element  (TEE;  EMCV,  AMV  

or  TMV),  Luciferase  reporter  gene  and  T7  terminator.  Some  plasmids  were  further  

modified  to  insert  an  additional  62  nt.  long  poly  A  tail  between  Luciferase  reporter  and  

T7  terminator  (fig.  2.1).  We  amplified  all  the  plasmids  in  XL-1  Blue  cells  and  purified  

plasmids  using  PureYield plasmid miniprep  system  (Promega,  Madison,  WI,  USA).  We  

quantified  plasmid  preparation  by  Nanodrop  (Thermo  Scientific,  USA).  We  used  above  

mentioned  vectors  as  templates  to  generate  linear  DNA  by  polymerase  chain  reaction  

(PCR)  using  T730mer.F  -  5’  CAAGCTCATTAATACGACTCACTATAGGCC  3’  and  T7  

terminator  long.R  -  5’  GGTTATGCTAGTTATTGCTCAGCGG  3’  primers.  Linear  DNA  was  

purified  (Quiagen,  Valencia,  CA,  USA)  and  quantified  by  agarose  gel  electrophoresis  using  

low  mass  DNA  ladder  (New  England  Biolabs,  USA).   

 

in vitro translation and Luciferase assay 

We  used  500  ng  of  circular  plasmid  DNA  and  400  ng  of  linear  PCR  generated  DNA  as  

templates  for  cell  free  expression,  unless  otherwise  stated.  We  followed  recommended  

protocols  from  manufacturer  (Promega;  L1170  and  L4140  and  Thermo  Scientific;  88882)  

to  perform  coupled  in  vitro  transcription  and  translation  reactions.  T7  PCR  enhancer  was  

not  included  in  the  cell  free  expression  reaction  of  linear  template.  We  incubated  all  the  

reactions  at  30  °C  for  90  minutes.  We  performed  luciferase  assay  with  10  times  diluted  

in  vitro  translation  reactions.  Glomax  96-microplate  luminometer  (Promega,  USA)  was  used  

to  quantify  the  light  signal  from  Firefly  Luciferase  with  delay  time  of  2  seconds  and  
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integration  time  of  10  seconds.  Each  data  point  in  the  figures  represents  three  

independent  cell  free  expression  reactions. 

 

TEE Sequences 

EMCV  in  pJCLuc  vectors  –  

GGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTC

TTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAA

TGTCGTGAAGGAAGCAGTTCCTCTGGAGGCTTCTTGAAGACAAACAACGTCTGTAGCGACC

CTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGT

GTATAAGATACACCCGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTGGATAGTTG

TGGAAAGAGTCAAATGGCTCACCTCAAGCGTATTCAACAAGGGGCGGAAGGATGCCCAGAA

GGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGT

CGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACA

CGATGAT 

 

AMV  in  pJCLuc  vectors  –  TTTTTTTATTTTTAATTTTCTTTCAAATACTTCCACCATGG 

 

TMV  in  pJCLuc  vectors  –  TTACAATTACTATTTACAATTACA 
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Results  and  Discussion 

5’-  UTR  TEE,  presence  of  poly  A  tail  and  mode  of  template  generation  i.e.  circular  

plasmid  versus  PCR  generated  linear  DNA  template  were  tested  for  WGE,  HCL  and  RRL  

based  cell  free  translation.  EMCV  IRES,  AMV  and  TMV  TEEs  were  incorporated  into  the  

5’  UTR  of  the  luciferase  reporter  gene  to  compare  their  potential  to  enhance  cell  free  

expression  in  different  cell  lysates.  Each  construct  contains  an  identical  T7  promoter,  

luciferase  gene  and  T7  terminator  site.  The  potential  for  a  poly  A  tail  to  influence  

translation  was  studied  by  incorporating  a  62-mer  poly  A  tail  downstream  of  the  luciferase  

gene.  Circular  plasmid  and  PCR-generated,  linear  DNA  templates  were  compared  for  

each  of  the  constructs  (Fig.  2.1).  Luciferase  activity  was  measured  for  each  construct  in  

each  of  the  three  lysate  systems  using  a  standard  luciferase  assay  read  by  a  Glomax  

96-microplate  luminometer. 

 

The  template  format  has  a  significant  impact  on  the  amount  of  protein  produced  via  cell-

free  translation.  Luciferase  activity  from  circular  plasmid  DNA  templates  (Fig.  2.2a)  was  at  

least  10-fold  higher  than  luciferase  activity  from  PCR  generated  linear  DNA  templates  

(Fig.  2.2b). Each  of  the  templates  contained  identical  information  from  T7  promoter  to  T7  

terminator  region.  In  certain  situations,  PCR  fragments  can  be  much  easier  to  obtain  but  

suffer  significantly  in  terms  of  protein  yields.  Certain  manufacturers  recommend  addition  of  

a  poly  A  tail  in  order  to  compensate  for  the  absence  of  a  Kozak  sequence  but  we  find  

it  does  not  increase  production  in  our  system  and  long  adenosine  repeats  are  difficult  to  

clone.   

 

The  selection  of  an  appropriate  translation  enhancing  element  in  the  5’  UTR  can  

significantly  alter  the  outcome  of  a  cell-free  translation.  TEEs,  AMV  and  TMV  are  

comparable  in  WGE.  TMV  in  WGE  produced  32423-fold  more  luciferase  than  EMCV.  

While  in  HCL,  EMCV  is  the  ideal  choice  with  234-fold  more  protein  than  either  AMV  or  

TMV.  For  RRL  the  results  were  all  very  similar.  We  found  this  odd  and  noticed  that  with  



  17 

decreased  amount  of  template  there  was  a  significant  difference  in  ability  to  express  

protein  (data  not  shown).  However,  when  using  the  amount  of  plasmid  recommended  by  

the  manufacturer  there  is  no  significant  difference  in  the  amount  of  luciferase  produced.  

We  would  still  recommend  TMV  because  it  performs  better  at  lower  concentrations  of  

template  and  thus  has  a  much  better  chance  for  higher  production  if  diverse  proteins  are  

made  or  the  template  is  not  under  saturating  conditions. 

Of  all  the  constructs,  EMCV  IRES  in  HCL  produced  highest  amount  of  luciferase  protein.  

In  contrast,  we  observed  that  EMCV  IRES  in  WGE  and  RRL  resulted  in  lowest  protein  

yield,  indicating  that  EMCV  IRES  has  a  lysate  specific  mechanism  to  enhance  translation.  

Although  commercially  available  HCL  based  cell  free  translation  system  is  almost  twice  as  
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expensive  as  RRL  and  WGE  based  systems,  HCL  produces  up  to  200-fold  more  protein  

when  used  with  the  appropriate  cis  element.  This  can  be  of  great  advantage  when  one  

wants  to  produce  large  amount  of  correctly  folded  human  protein  with  associated  post-

translational  modifications.  Particularly,  during  expression  of  large  DNA  libraries  where  

maximizing  diversity  is  elementary  for  success  of  future  applications.  Appropriate  template  

sequence  choice  during  cell  free  translation  can  have  dramatic  effects  on  protein  yield  

and  our  results  represent  ideal  starting  points  that  should  yield  significant  material  without  

exhaustive  optimization.   

 

Fig.  2.2  Comparison  of  commercial  cell  free  translation  systems    Constructs  

containing  different  TEEs  with  poly  A  signal  (white  bars)  and  without  poly  A  

signal  (gray  bars)  were  used  as  template  for  cell  free  translation  in  three  different  

cell  lysates  as  indicated.  Here,  EMCV  indicates  pJCLuc_EMCV,  AMV  indicates  

pJCLuc_AMV  and  TMV  indicates  pJCLuc_TMV  vectors.  p(A)62  indicates  vector  

containing  62  bp  long  poly  A  signal  downstream  of  Luciferase  reporter  and  p(A)0  

indicates  the  gene  devoid  of  a  poly  A  signal  followed  by  T7  terminator.  a)  

Circular  plasmid  vector  and  b)  Linear  PCR  generated  DNA  template. 

 

b) a) 
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Conclusion 

Knowledge  of  using  appropriate  5’-  UTR  TEE  –  lysate  combination  can  save  cost,  effort  

and  time  of  protein  production  significantly.  Our  results  demonstrate  that  optimizing  the  

template  sequence  for  a  given  lysate  can  greatly  increase  protein  production.  We  

recommend  use  of  EMCV  IRES  for  coupled  transcription  and  translation  in  HCL  and  AMV  

or  TMV  TEEs  for  WGE  and  RRL.  These  suggestions  could  serve  as  starting  points  for  

labs  that  are  interested  in  producing  protein  from  cell  free  lysates  quickly  and  easily.  

These  comparisons  also  serve  as  a  benchmark  for  screening  lysate  -  specific  leader  

sequences. 
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Fig.  2.3  Summary  of  comparison  of  commercial  cell  free  translation  systems  

Color-coded  summary  of  results  from  comparison  of  EMCV  IRES,  AMV  and  TMV  

TEEs  across  commercially  available  WGE,  HCL  and  RRL  based  cell  free  

translation  systems.  The  Luciferase  activity  of  the  construct  goes  on  increasing  

10-folds  each  time  from  Violet  color  to  Red  color  as  shown.   
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Chapter 3 

Development  of  affinity  peptides  using  mRNA  display 

 

Contributions 

The  following  chapter  describes  the  selection  and  characterization  of  affinity  peptides  

using  mRNA  display  technology.  The  project  was  conceived  by  Dr.  John  Chaput.  

Reported  experiments  were  performed  by  Pankti  Shah,  Ian  Shoemaker,  Gokhan  Demirkan  

and  Columba  Kim  under  the  guidance  of  John  Chaput,  Mitch  Magee  and  Joshua  LaBaer.  

Pankti  Shah  performed  mRNA  display  selections.  Ian  Shoemaker,  Gokhan  Demirkan  and  

Columba  Kim  characterized  selection  output  using  surface  plasmon  resonance  imaging. 
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Abstract 

Growing  knowledge  of  human  proteome  demands  simultaneous  development  of  protein  

affinity  reagents  to  understand,  diagnose  and  treat  diseases.  However,  building  novel  

target-specific  affinity  reagents  is  an  extremely  expensive,  laborious  and  time-consuming  

process.  Chaput  lab  has  developed  ligand  interactions  by  nucleotide  conjugates  (LINC)  

technology  that  reconstructs  two  peptides,  selected  via  mRNA  display,  which  bind  discrete  

sites  on  a  protein  surface  in  to  a  high  affinity  protein  capture  reagent  linked  at  specific  

distance  and  orientation  on  a  DNA  scaffold.  Virtues  of  LINC  technology  enable  economic  

and  rapid  development  of  high  affinity  reagents  against  desirable  targets  at  ease.  We  

propose  to  automate  the  development  of  antibody  like  high  affinity  and  high  specificity  

bivalent  affinity  reagents  against  96  human  kinases  in  high  throughput  format.  From  our  

experience,  convergence  of  mRNA  display  selection  to  obtain  high  affinity  and  high  

specificity  peptides  requires  6-8  rounds  of  selection.  Our  long  term  goal  is  to  limit  

selection  to  a  single  round  in  order  to  facilitate  automation.  As  a  pilot  project  towards  

this  goal,  our  aim  was  to  reduce  number  of  rounds  of  mRNA  display  selection  by  

introducing  mild  denaturant  thus  increasing  selection  pressure.  We  performed  three  rounds  

of  selection  against  AKT3  target  protein  under  native  and  mild  denaturing  conditions.  

Surface  plasmon  resonance  (SPRi)  analysis  of  three  rounds  of  AKT3  selections  indicate  

that  probability  of  encountering  binders  increases  with  increasing  rounds  of  mRNA  display  

selections.  Addition  of  mild  denaturant  (0.75M GuHCl)  however,  is  not  sufficient  to  enrich  

binders  during  selections.  Binders  obtained  from  AKT3  selections  will  be  transformed  in  to  

bivalent  affinity  reagents  using  LINC  technology.  Results  from  individual  experiments  and  

optimization  strategies  will  enable  reduction  of  mRNA  display  selections  to  single  round  in  

order  to  facilitate  automation  and  develop  binders  at  reduced  cost,  effort  and  time.   
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Introduction 

With  the  advent  of  high  throughput  genomics,  our  abilities  to  study  genes  and  gene  

expression  have  grown  tremendously.  Increasing  information  about  entire  human  proteome  

demands  development  of  new  technologies  and  tools  to  work  with  repertoire  of  proteins  

quickly  and  easily  at  low  cost.  Protein  affinity  reagents  are  indispensible  tools  required  for  

understanding,  diagnosis  and  treatment  of  diseases  caused  by  protein  dysfunction.  Future  

medicine  needs  individual  specific  affinity  reagents  to  monitor  individual  health  status  and  

personalize  diagnosis  of  diseases.  Thus  establishing  need  for  technology  that  operates  on  

thousands  of  proteins  at  a  time  and  accelerates  discovery  of  high  affinity  and  high  

specificity  protein  capture  reagents.  In  addition,  it  is  desirable  to  have  new  class  of  

affinity  reagents  that  are  small,  simple,  easy  to  produce  on  large  scale,  cost  effective  and  

easy  to  transfer  in  order  to  facilitate  field  of  proteomics. 

 

Hybridoma  technology  to  develop  monoclonal  antibodies  is  oldest  and  reliable  method  of  

choice  to  produce  high  affinity  reagents  in  vivo.  Monoclonal  antibodies  are  widely  used  in  

basic  research,  disease  diagnosis,  therapeutics  and  other  consumer  products  due  to  high  

specificity  and  high  affinity.  Development  of  monoclonal  antibody  by  classical  hybridoma  

technology  requires  animal  immunization,  takes  5  to  10  months  and  costs  tens  of  

thousand  dollars  depending  on  method  of  characterization  (9, 15).  In  addition,  hybridomas  

produce  antibodies  without  any  encoding  DNA  sequence  information  making  it  difficult  to  

manipulate  these  antibodies  in  lab.  Phage  display  technology  is  based  on  in  vitro  

selection  of  desirable  peptides  from  library  of  peptides  displayed  on  bacteriophage  

surface.  This  technology  non-covalently  couples  phenotype  i.e.  peptides  on  phage  surface,  

to  its  encoding  genotype  i.e.  cDNA  enclosed  in  corresponding  phage.  Selected  phages  

have  to  be  transfected  in  suitable  bacterial  host  for  amplification  and  next  round  of  

selection.  This  method  involves  single  in  vivo  step  of  transfection,  thus  limiting  the  

diversity  of  library  by  the  transfection  efficiency.  Peptides  from  phage  display  selection  are  

translated  in  bacteria  hence  codon  usage,  folding  and  post-translation  modifications  of  
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mammalian  systems  are  not  always  feasible  (7).  Ribosome  display  is  a  completely  in  

vitro  protein  selection  method  that  relies  on  maintaining  ribosome-mRNA-polypeptide  

ternary  complex  to  couple  phenotype  to  genotype.  Ribosome  is  stalled  during  translation  

by  removal  of  stop  codon,  low  temperature  and  high  cation  concentration  to  facilitate  

peptide/protein  display  on  ribosome  surface.  This  completely  in  vitro  selection  technique  

allows  use  of  synthetic  and  natural  libraries  with  large  diversity.  However,  selection  

conditions  have  to  be  carefully  optimized  for  maintenance  of  ternary  complex,  which  limits  

use  of  stringent  selection  strategies  to  enrich  desirable  peptides/proteins  (2, 12).  Apart  

from  these,  various  other  methods  like  colony  screening,  yeast  display,  cell  surface  

display  have  also  been  used.  Most  of  these  technologies  are  cumbersome,  time  

consuming,  require  large  amount  of  target  protein  for  selections  and  limit  diversity  of  

libraries  due  to  in  vivo  steps.   

 

Fig.  3.1  Hybridoma  Technology  Antigen  is  injected  in  animal  several  times  at  

interval  of  two  weeks.  Immunized  spleen  cells  are  extracted  and  fused  to  

myeloma  cells  to  create  hybridoma.  Hybridomas  producing  high  affinity  antibodies  

are  cloned  to  acquire  monoclonal  antibodies.  
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mRNA  display  is  extremely  convenient  completely  in  vitro  selection  technology  which  

involves  covalent  linkage  of  phenotype  i.e.  peptide/protein  to  genotype  i.e.  its  encoding  

mRNA  via  a  psoralen  puromycin  linker  (3).  DNA  library  is  in  vitro  transcribed  using  T7  

RNA  polymerase,  pool  of  mRNA  is  purified  and  UV-  crosslinked  to  psoralen  puromycin  

linker.  Puromycin,  structural  mimic  of  tyrosyl-tRNA,  enters  A  site  of  ribosome  towards  the  

end  of  in  vitro  translation  and  covalently  bonds  to  the  translated  peptide  via  natural  

peptidyl  transferase  activity  of  ribosome.  Puromycin  thus  links  mRNA  to  its  encoding  

peptide.  Different  in  vitro  translation  systems  including,  E.coli  cell  lysate,  rabbit  reticulocyte  

lysate,  HeLa  cell  lysate,  wheat  germ  lysate  can  be  used  for  translation  depending  on  

purpose  of  selections.  mRNA-peptide  fusions  are  reverse  transcribed  to  form  stable  RNA-

DNA  hybrid  which  also  prevents  selection  of  RNA  aptamers.  Desirable  peptides  can  be  

selected  by  using  wider  range  of  conditions  such  as,  pH,  temperature,  ionic  strength,  

solvents,  denaturants,  due  to  profound  stability  of  RNA-DNA-peptide  fusions.  Cell  free  

nature  of  mRNA  display  reduces  intrinsic  biases  introduced  during  transformation,  cellular  

expression  and  easily  aids  construction  of  larger  library  sizes  of  the  order  of  1012  –  1014.  

Thus,  mRNA  display  allows  10,000-fold  greater  sequence  complexity  than  phage  display,  

106-fold  greater  complexity  than  yeast  display  and  109-fold  greater  sequence  complexity  

as  compared  to  colony  screening  methods  (8).  Higher  diversity  of  libraries  allows  greater  

coverage  of  sequence  space  and  better  chances  of  finding  high  specificity  high  affinity  

peptides.  mRNA  display  selections  are  performed  at  such  low  volumes  that  nM  

concentration  of  target  protein  is  sufficient  for  multiple  rounds  of  selections.  Stringent  

selection  strategy  with  freedom  to  use  arbitrary  selection  conditions  in  addition  to  quick  

and  easy  amplification  of  selection  output  makes  mRNA  display  easy  and  robust  selection  

technology.  mRNA  display  has  been  successfully  used  in  past  to  develop  proteins  and  

peptides  that  bind  target  proteins  and  ligands  with  high  specificity  and  high  affinity  (4, 11, 

13).  
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For  large  protein  library  containing  1012  –  1014  unique  sequences,  distinguishing  non-

specific  binders  from  specific  binders  can  be  challenging.  Hence,  it  takes  6  -  8  rounds  of  

mRNA  display  selections  to  achieve  significant  convergence  of  library.  Each  round  of  

mRNA  display  typically  takes  4  –  7  days  depending  on  procedure  of  experiments.  In  

most  cases,  it  takes  up  to  2  months  to  obtain  probable  peptides/proteins  for  further  

characterization.  Our  goal  is  to  reduce  selection  procedure  to  single  round  of  mRNA  

display  and  facilitate  automation  for  developing  high  affinity  reagents  from  first  rate  

binders  using  ligand  interactions  by  nucleotide  conjugates  (LINC)  technology.  This  

technology  uses  DNA  as  a  scaffold  to  hold  two  peptides  (binding  discrete  epitopes  of  

target  protein)  at  specific  distance  and  orientation  to  construct  a  high  affinity  bivalent  

protein  capture  reagent  (5, 6, 10, 14).  Our  lab  has  previously  used  two  low  affinity  Grb2  

binding  peptides  that  bind  to  different  domains  of  Grb2  namely,  SH2  and  SH3  domain  

with  Kd  =  0.5  mM  and  Kd  =  5  mM  to  create  high  affinity  bivalent  affinity  reagent  for  

Grb2.  When  two  peptides  were  covalently  linked  on  DNA  scaffold,  at  specific  distance  

and  orientation,  to  recapitulate  antibody  like  bivalent  affinity  reagent,  they  bound  Grb2  

with  affinity  of  Kd  =  6.9  +  0.4  nM,  which  is  5-  to  10-fold  stronger  than  commercially  

available  Grb2  antibodies  (5).   

 

Reducing  mRNA  display  to  single  round  will  enable  quick  and  easy  selection  of  first  rate  

binders  against  various  targets  from  a  single  parent  pool  of  RNA-DNA-peptide  fusions.  

These  binders  will  be  transformed  in  to  high  affinity  bivalent  reagents,  called  nucleotide-

protein  aptamers  (Nupromers),  using  LINC  technology  in  automated  high  through  put  

format.  Automating  high  affinity  protein  capture  reagent  development  will  reduce  time,  

labor  and  cost  of  production.  As  a  pilot  project  towards  our  goal  of  reducing  6  –  8  

rounds  of  mRNA  display  to  single  round  of  selection  and  amplification,  we  performed  

three  rounds  of  mRNA  display  selections  on  AKT3  target  protein,  with  and  without  0.75  

M  guanidine  hydrochloride  (GuHCl)  washes  to  obtain  affinity  binders.  Surface  plasmon  

resonance  imaging  (SPRi)  analyses  of  small  fraction  of  selection  output  suggest  that  
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probability  of  finding  binders  increases  with  increasing  rounds  of  selections  however,  

adding  denaturant  at  such  low  concentrations  is  not  sufficient  to  enrich  for  higher  affinity  

peptides.  We  selected  human  serine/threonine-protein  kinase,  AKT3  for  its  role  as  

regulator  of  cell  signaling.  AKT3  is  known  to  regulate  cell  proliferation,  differentiation,  

apoptosis  and  tumorigenesis  (1). 

 

 

 

 

  

Fig.  3.2  DNA  library  used  as  starting  pool  for  mRNA  display  selections  DNA  

construct  consists  of  T7  promoter  (cyan),  translation enhancing  element  (green),  

start  codon  (gray),  random  amino  acid  region  (red),  thrombin  cleavage  site  

(yellow),  restriction  enzyme  cleavage  site  (green)  and  regionc  omplementary  to  

crosslinker  (pink). 
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Experimental design 

mRNA-Lib-For  5’  TTCTAATACGACTCACTATAGGGAGTGGACGTCAATACTTACGC  3’  and  

mRNA-Lib-Rev2  5’  ATAGCCGGTGTCCACTTCCTGCAGGAGATCCTCTAGGC  3’  primers  

were  used  for  klenow  and  amplification  of  library.   

mRNA-Lib-RT2  5’  TTTTTTTTTTTTTTTATCCACTTCCTGCAGGAGATCCTCTAGGC  3’  primer  

was  used  for  reverse  transcription.  All  oligo  nucleotides  were  purchased  from  Integrated  

DNA  technologies  (IDT,  Coralville,  IA).  Quiaquick  gel  extraction  kit  was  used  to  clean  up  

PCR  (Quiagen,  Valencia,  CA).  All  enzymes  were  purchased  from  New  England  Biolabs  

(Ipswich,  MA)  unless  otherwise  stated.  DNA  and  RNA  concentrations  were  determined  by  

absorbance  readings  at  260  nm  using  NanoDrop  1000  (Thermo  Scientific,  Waltham,  MA).  

5’-psoralen-TAG  CCG  GTG-(PEG9)2-A15-ACC-puromycin  linker  was  used  for  psoralen-

DNA-puromycin  crosslinking.  Biotinylated  AKT3  protein  was  a  generous  gift  from  Joshua  

labaer  lab.  Commercial  pJET  cloning  kit  was  purchased  from  Promega  (Madison,  WI). 

In  vitro  transcription  was  performed  using  HEPES  KOH  Buffer  pH  7.5  200  mM,  freshly  

prepared  DTT  40  mM,  bovine  serum  albumin  200  µg/ml,  MgCl2,  nucleotide  triphosphate  

mix  7  mM  each,  spermidine  2  mM,  rRNAsin  0.6  U/µl  and  T7  polymerase  0.2  U/µl  and  

template  50  nM  –  200  nM  final  concentration.  Reagents  were  mixed  and  incubated  at  37  

°C  overnight. 

In  order  to  crosslink  mRNA  and  psoralen-DNA-puromycin,  HEPES  KOH  pH  7.5  20  mM,  

KCl  100  mM,  EDTA  pH  8  1  mM,  spermidine  1  mM,  psoralen-DNA-puromycin  linker  20  

µM  and  mRNA  template  5  µM  final  concentration  were  mixed  in  1.5  ml  black  eppendorf.  

Reaction  mix  was  denatured  at  65  °C  for  5  min  followed  by  annealing  at  room  

temperature  for  25  min.  50  µl  aliquots  were  transferred  to  each  well  of  96-well  plate  and  

irradiated  at  366  nm  for  15  min.  Crosslinked  material  was  collected  in  a  single  tube. 

In  vitro  translation  and  reverse  transcription  reaction  were  performed  as  per  

manufacturer’s  recommendations.   

PCR  cycle  optimization  was  performed  by  visualizing  PCR  aliquots  from  8-20  cycles  at  

interval  of  2  cycles  each  on  2%  agarose  gel. 
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Peptides  for  SPRi  analysis  were  purchased  from  Biomatik,  Wilmington,  DE.   
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Results  and  Discussion 

A  20mer  DNA  library  was  designed  with  randomization  at  12  amino  acid  positions.  

Library  was  klenow  extended  and  PCR  amplified  for  mRNA  display  selections.  DNA  

library  was  constructed  with  5’  T7  promoter,  to  allow  in  vitro  transcription  by  T7  RNA  

polymerase  and  a  22mer  translation  enhancing  element  (TEE)  immediately  upstream  of  

peptide  coding  region  to  enhance  translation  in  rabbit  reticulocyte  lysate.  Enhancement  of  

translation  with  this  short  22mer  sequence  was  comparable  to  tobacco  mosaic  virus  

derived  TEE  in  rabbit  reticulocyte  lysate  (data  not  shown).  Coding  region  comprised  of  

start  codon  followed  by  12  random  amino  acids  and  a  thrombin  cleavage  site  will  create  

~1014  diverse  peptides.  Library  complexity  of  approx.  1014  unique  sequences  would  

traverse  sufficient  sequence  space  to  identify  affinity  binders  against  multiple  motifs  on  

various  target  proteins.  We  included  an  X  linker  region  complementary  to  psoralen-

puromycin  crosslinker  at  the  3’  end  of  the  construct  (fig.  3.2).   

 

Run  off  transcription  of  DNA  library  produced  pool  of  107  bp  mRNA  molecules.  

Transcription  reaction  was  DNase  treated  and  purified  using  denaturing  10%  Urea-

polyacrylamide  gel  electrophoresis  (PAGE)  followed  by  electroelution  and  ethanol  

precipitation.  Purified  mRNA  was  annealed  and  photo-crosslinked  to  psoralen-DNA-

puromycin  crosslinker  by  irradiating  at  366  nm  for  15  min.  Likewise,  crosslinked  mRNA  

was  purified  by  denaturing  10%  Urea-PAGE  followed  by  electroelution  and  ethanol  

precipitation.  Crosslinked  mRNA  was  further  translated  in  vitro  using  rabbit  reticulocyte  

lysate  for  1  hr  at  30°C.  Peptides  were  radiolabelled  by  addition  of  S35-methionine  in  the  

translation  reaction.  Fusion  formation  was  promoted  by  incubating  translation  reaction  

overnight  with  high  concentration  of  KCl  and  MgCl2  salts.  Oligo-d(T)  cellulose  column  was  

used  to  purify  mRNA-peptide  fusions.  mRNA  of  the  fusions  was  reverse  transcribed  with  

Superscript  II  to  create  stable  RNA-DNA-peptide  fusions.  Reverse  transcribing  mRNA  

before  selections  protects  degradation  of  mRNA  by  RNases  and  also  prevents  enrichment  

of  RNA  aptamers  against  target  protein  during  selection.     
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Target  protein,  AKT3  was  biotinylated  for  immobilization  on  streptavidin  coated  magnetic  

dynabeads  (Life  Technologies,  Carlsbad,  CA)  before  selections.  In  order  to  compare  effect  

of  mild  denaturant  on  selections,  one  set  of  selections  and  washes  were  carried  out  in  

phosphate  buffer  saline  containing  0.025%  Tween  (PBST)  and  0.75  M  GuHCl.  We  

expected  0.75  M  GuHCl  to  aid  removal  of  unfolded  weak  interacting  peptides  while  still  

maintaining  major  folds  of  peptides.  RNA-DNA-peptide  fusions  were  preselected  for binding  

to  streptavidin  coated  magnetic  Dynabeads  for  1  hr  at  room  temperature  to  eliminate  

non-specific  peptides  binding  to  bead  or  eppendorf  tube  surfaces.  Unbound  fraction  from  

pre-selection  step  was  incubated  with  AKT3  coated  magnetic  dynabeads  for  2  hrs  at  

room  temperature  with  rotation.  After  selection,  supernatant  was  stored  at  -20  °C  as  

unbound  fraction  and  beads  were  washed  5  times  with  1X  PBST  and  suspended  in  

nuclease  free  water.  In  order  to  prevent  over  amplification  of  bound  fraction  of  library,  



  32 

number  of  PCR  cycles  required  to  amplify  selected  pool  needs  to  be  optimized.  We  used  

20%  of  the  bound  beads  as  template  for  PCR  cycle  optimization  (Fig. 3.3c).  RNA-DNA-

peptide  fusions  on  the  surface  of  rest  of  the  dynabeads  were  then  amplified  using  

optimal  number  of  PCR  cycles.  Amplified  library  was  purified  using  Quiaquick  PCR  clean  

up  kit,  cloned  in  commercial  pJET  vector  and  sequenced  to  determine  sequence  of  

peptides  that  were  selected  as  AKT3  binders.  Part  of  this  amplified  library  was  used  as  

starting  pool  for  next  round  of  mRNA  display  selections  against  AKT3.  After  three  rounds  

of  AKT3  selection  with  and  without  mild  denaturant,  we  cloned  and  sequenced  outputs  

from  every  round  of  selection.  

 

a) 

b) 

Fig.  3.3 Transcription,  crosslinking,  translation  and  PCR  cycle  optimization  

during  mRNA  display  a)  107  bp  mRNA  transcripts  produced  after  run  off  

transcription  of  dsDNA  library  and  corresponding  peptide  sequence.  b) Schematic  of  

mRNA-psoralen  puromycin  crosslinked  fusion.  c)  2%  agarose  gel  showing  PCR  cycle  

optimization,  numbers  in  each  lane  correspond  to  number  of  cycles  of  PCR  used  for  

amplification  of  selection  output. 

 

c) 
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Selection  peptides  were  ordered  in  96  well-format,  sixteen  from  each  round,  with  terminal  

cysteine  containing  GSC  linker.  Peptides  were  immobilized  on  gold  surface  using  amine  

coupling  chemistry  for  SPRi  analysis.  Plexera  proteomic  processor  V3  was  used  to  

process  array  of  peptides  by  flowing  AKT3  target  protein  over  chip  surface  while  

recording  measurements  for  each  peptide.  After  binding,  running  buffer  alone  was  allowed  

to  flow  over  the  chip  surface  to  measure  off  rates.  SPRi  experiments  were  performed  in  

duplicates  using  a  transferrin  specific  binder,  B10  as  control.  Data  collected  from  our  

experiments  were  extracted  and  analyzed  using  Scrubber  software  to  calculate  Rmax  of  

each  peptide.  Selection  peptides  that  showed  Rmax  greater  than  B10  were  considered  as  

binders.  Rmax  of  binders  was  normalized  with  respect  to  B10.  Our  data  indicates  that  

probability  of  obtaining  affinity  binders  increases  slightly  with  more  rounds  of  selection.  

Amongst  the  sequences  we  used  for  characterization,  more  binders  were  obtained  from  

round  three  than  from  second  or  first  round.  Fig.  3.4b  shows  a  plot  of  total  number  of  

binders  obtained  from  each  round  of  selection.  As  evident  from  graph,  adding  mild  

denaturant  during  selections  was  not  sufficient  to  increase  selection  of  binders.    Binders  

with  high,  medium  and  low  Rmax  were  found  to  be  selected  in  every  round  of  selection.  

Fig.  3.4c  shows  curves  of  three  representative  peptides  from  AKT3  selections.  R3-8  is  

one  of  the  highest  affinity  AKT3  binding  peptide  characterized  so  far. 

 

Conclusion 

Above  results  indicate  that  increasing  number  of  rounds  of  mRNA  display  increases  

probability  of  encountering  binders.  Presence  of  mild  denaturant  (0.75  M  GuHCl)  is  not  

sufficient  to  enrich  for  binders  during  mRNA  display  selections.  Peptides  obtained  from  

selections  can  be  used  to  generate  bivalent  affinity  reagents,  Nupromers  for  AKT3  using  

LINC  technology.  Results  from  our  pilot  experiments  will  be  used  to  fine  tune  mRNA  

display  selections  to  reduce  cost,  time  and  effort  of  obtaining  high  affinity  high  specificity  

binders  for  target  proteins.  These  efforts  will  enable  automation  of  LINC  technology  to  

develop  bivalent  affinity  reagents  in  high  throughput  format.   
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Fig.  3.4  Analysis  and  characterization  of  mRNA  display  selection  output   

a)  Representative  peptides  from  AKT3  selection.  b)  Plot  of  total  number  of  

binders  obtained  from  each  round.  R  is  an  abbreviation  for  round,  number  

indicates  number  of  rounds  and  G  indicates  presence  of  mild  denaturant  during  

selections.  Chip  1  and  Chip  2  are  two  replicates  performed  on  different  days.  

Total  number  of  peptides  screened  for  each  round  was  16.  c)  Representative  

SPRi  plot  of  high,  medium  and  low  affinity  peptides  obtained  from  three  rounds  

of  selections  against  AKT3  via  mRNA  display.                             

(Figure  of  SPRi  was  provided  by  Shoemaker  I)  
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Chapter  4 

Dot  blot  method  for  screening  and  characterization  of  affinity  peptides     

 

 

 

 

 

Publication:  
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Approach for Characterizing In Vitro Selected Peptides with Protein Binding Affinity. Anal. Chem.       

 

 

 

 

 

 

 

Contributions 

The  following  chapter  describes  the  screening  and  characterization  of  affinity  peptides  

using  double  membrane  dot  blot  system.    The  project  was  conceived  by  Dr.  John  

Chaput.  Reported  experiments  were  performed  by  Pankti  Shah,  Andrew  Larsen  and  Katie  

Fenton  under  the  guidance  of  John  Chaput.  Pankti  Shah  expressed  and  purified  peptides  

to  screen  and  characterize  peptides  using  dot  blot  method.  Andrew  Larsen  designed  

oligonucleotides  for  cloning  and  performed  dot  blot.  Katie  Fenton  made  recombinant  

expression  vectors  using  molecular  cloning  tools. 
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Abstract 

Systematic  evolution  of  ligands  by  exponential  enrichment  (SELEX)  is  widely  accepted  

method  of  choice  to  meet  the  growing  need  for  protein  affinity  reagents.  Tremendous  

diversity  of  selection  output  however,  demands  careful  characterization  to  be  able  to  

identify  most  appropriate  affinity  peptide.  Here  we  demonstrate  a  rapid  affordable  and  

high  throughput  approach  to  screen  and  characterize  binding  kinetics  of  peptides  with  

target  protein.  This  method  entails,  in  vitro  translation  and  purification  of  labelled  peptides  

followed  by  equilibrium  binding  with  target  protein  and  separation  of  bound  peptide-protein  

complexes  from  unbound  peptides.  Size  dependent  separation  of  bound  and  unbound  

peptide  using  simple  membrane  system  is  fundamental  to  our  dot  blot  method  of  

screening  and  characterization.  We  validate  our  technology  by  screening  and  

characterizing  previously  reported  human  α-thrombin  mRNA  display  selection  output.  Rapid  

screening  of  uncharacterized  selection  output  led  to  identification  of  several  human  α-

thrombin  binding  peptides  with  low  nanomolar  solution  binding  affinity  (Kd),  range  150  –  

450  nM.  We  offer  economic  and  simple  solution  to  analyze  selection  output  and  

characterize  peptides  in  high  throughput  format  to  accelerate  discovery  of  protein  capture  

reagents.   
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Introduction 

Increasing  demand  for  protein  capture  reagents  over  past  decade  has  led  to  

advancement  of  SELEX  technology  as  a  tool  to  identify  protein  affinity  peptides  (1–5).  in  

vitro  selection  technologies  allow  cost  effective  exploration  of  large  sequence  space,  

starting  with  complex  DNA  libraries,  to  simulate  evolution  and  identify  affinity  binders.  

However,  much  success  and  advancement  of  selection  technologies  has  not  directly  

translated  into  rapid  affinity  peptide  development.  Several  factors  slow  down  the  discovery  

and  development  of  affinity  peptides  despite  of  powerful  selection  platform.  Starting  with  

large  diversity  libraries  of  approx.  109  to  1013  complexity,  even  10  rounds  of  selections  

result  in  millions  of  survivor  sequences.  Some  actively  selected  low,  medium  and  high  

affinity  binders  whereas  some  passively  selected  peptides.  Next  generation  sequencing  

allows  us  to  sequence  voluminous  selection  output  however,  we  fail  to  identify  high  

affinity  binders  from  millions  of  reads  of  potential  binders.  Although,  computational  tools  

help  identification  of  convergence  patterns  over  rounds  of  selections,  analysis  is  limited  by  

internal  experimental  bias  that  leads  to  over  representation  of  certain  amino  acid  

sequences  over  others.  Due  to  cost  and  time  associated  with  peptide  synthesis  and  

instrumentation  for  measuring  solution  binding  kinetics,  it  is  not  practical  to  characterize  

large  number  of  potential  peptides  identified  after  next  generation  sequencing  and  

computational  analyses.  Thus  bottleneck  for  protein  capture  reagent  development  seems  

to  be  shifted  from  affinity  peptide  development  to  identification  and  characterization  of  

potential  peptides.  Development  of  affordable,  simple,  and  quick  high  throughput  screening  

and  characterization  platform  for  peptides  will  solve  major  hurdles  faced  during  protein  

capture  reagent  discovery.   

 

To  overcome  the  restraints  of  current  methods,  we  developed  double  membrane  dot  blot  

method,  an  affordable  solution  to  rapidly  screen  and  characterize  peptides  for  their  affinity  

to  diverse  target  proteins,  using  minimal  instrumentation.  Major  advantage  of  our  

technology  comes  from  user  friendly  and  cost  effective  nature  of  steps  involved.  In  our  
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system,  coupled  transcription  and  translation  systems  are  employed  to  express  labelled  

peptide  from  DNA  constructs.  Labelled  peptides  have  affinity  tag  which  make  them  

amenable  to  purification  via  affinity  column,  thus  producing  large  amounts  of  pure  peptide  

easily  in  days  as  opposed  to  time,  cost  and  effort  associated  with  solid  phase  peptide  

synthesis.  Labelled  peptides  are  then  equilibrated  with  target  protein  followed  by  

partitioning  using  simple  membrane  partitioning  system  that  separates  bound  and  unbound  

peptide-protein  complexes  based  on  size.  Our  method  is  easily  scalable  to  large  number  

of  peptides  making  it  feasible  to  automation.  Screening  and  characterization  of  sequences  

by  dot  blot  method  does  not  require  large  amounts  of  target  protein  or  prior  sequencing  

of  selection  output,  which  largely  contribute  to  the  cost  of  affinity  reagent  development.  

However,  when  combined  with  sequencing  and  computational  analysis,  our  technology  can  

greatly  increase  the  efficiency  and  pace  of  affinity  reagent  development. 

 

As  illustrated  in  Fig.  1.3,  DNA  oligonucleotides,  obtained  from  in  vitro  selection  output,  

corresponding  to  peptide  sequence  is  cloned  in  expression  vector  for  expression  and  

affinity  purification  of  peptide.  Expression  vector  consists  of  T7  promoter  for  efficient  in  

vitro  transcription,  an  appropriate  translation  enhancing  element  (TEE)  for  enhancing  

efficiency  of  cap  independent  translation  in  vitro,  a  C-terminal  streptavidin  binding  protein  

(SBP)  tag  for  affinity  purification  and  a  tobacco  etch  virus  (TEV)  protease  cleavage  site  

to  specifically  elute  peptide  bound  to  streptavidin  affinity  column.  Recombinant  plasmids  

are  transcribed  and  translated  using  commercially  available  rabbit  reticulocyte  lysate  

coupled  transcription  and  translation  system  in  presence  of  S35-labelled  methionine  to  

generate  S35-labelled  peptide-  SBP  fusions.  Peptides  are  affinity  purified  from  crude  lysate  

using  streptavidin  agarose  column.  Peptides  are  eluted  by  TEV  cleavage  or  as  SBP  

fusions  with  water.  Purified  peptides  are  equilibrated  with  target  protein  at  fixed  

concentrations,  250  nM  and  500  nM  in  present  study,  to  screen  and  identify  potential  

binders.  In  case  fraction  of  peptide  bound  positively  correlates  with  concentration  of  target  

protein,  those  particular  peptides  are  further  characterized  to  measure  solution  binding  
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affinity  (Kd)  by  equilibration  with  various  concentrations  of  target  protein  spanning  5  µM  –  

1  nM.  Peptides  of  interest  that  exhibit  high  affinity  to  target  protein  (Kd  in  low  nM  range)  

are  sequenced  to  determine  amino  acid  composition. 

 

Above  mentioned  screening  and  characterization  is  based  on  selective  partitioning  of  

bound  peptide-protein  complex  from  unbound  peptides  based  on  size  which  is  

accomplished  by  use  of  a  double  membrane  dot  blot  system.  Dot  blot  microfiltration  

apparatus  consists  of  two  96  well  plates  and  a  vacuum  base.  Layers  of  different  

membranes  can  be  sandwiched  between  two  plates  to  achieve  specific  filtration  goals.  

Combination  of  regenerated  cellulose  and  nylon  membranes  have  been  used  in  past  to  

measure  binding  affinity  of  DNA  and  RNA  aptamers  to  protein  targets  (6–8).  Many  

membranes  such  as  regenerated  cellulose,  polyvinylidene  fluoride  and  nylon  bind  protein  

and  nucleic  acids  based  on  physiochemical  properties  like  charge  and  hydrophobicity.  

Since  our  goal  was  to  separate  peptide-protein  complexes  based  on  size,  we  used  10K  

dialysis  membrane  made  from  regenerated  cellulose.  Small  pore  size  allowed  us  to  

prevent  filtration  of  peptide-protein  complex  combined  with  low  power  vacuum,  approx.  40  

torr,  for  slow  and  efficient  filtration  of  free  peptides  from  equilibrated  solution.   

 

Here  we  screen  24  peptides  obtained  from  human  α-thrombin  mRNA  display  selection  to  

identify  potential  affinity  peptides  using  double  membrane  dot  blot  technique.  Five  potential  

high  affinity  peptides  were  further  characterized  to  determine  their  binding  affinity  to  

human  α-thrombin  and  was  found  to  be  in  range  of  150  –  450  nM. 
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Fig.  4.1  Double  membrane  dot  blot  system  Dot  blot  apparatus  containing  two  

membrane  system  for  size  separation  of  unbound  peptides  from  bound  peptide-

protein  complexes.  Dot  blot  apparatus  is  assembled  as  shown  with  dialysis  

membrane  directly  facing  top  96-well  plate  followed  by  nylon  membrane  and  filter  

paper  from  top  to  bottom  respectively. 

      (Figure  of  Dot  Blot  derived  from  Harvard  Apparatus)  
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Experimental  design 

Construction  and  amplification  of  linear  DNA  constructs 

DNA  oligonucleotides  encoding  for  various  peptides  were  annealed  and  klenow  extended  

to  make  double  stranded  peptide  coding  sequence  (Integrated  DNA  Technologies  Inc.,  

Coralville,IA;  New  England  Biolabs  Inc.,  Ipswich,  MA).  These  double  stranded  peptide  

encoding  DNA  constructs  were  PCR  amplified  and  inserted  in  expression  vector  with  T7  

promoter  and  C-terminal  Streptavidin  binding  protein  tag  (Wilson  et.  al.,  2001).  

Recombinant  vectors  were  transformed  in  XL-1  Blue  cells  and  transformants  were  grown  

to  amplify  pure  recombinant  plasmid.  PureYield  plasmid  miniprep  system  (Promega,  

Madison,  WI)  was  used  to  isolate  plasmid  from  clones.  Linear  DNA  with  T7  promoter,  

translation  enhancing  element,  peptide  coding  sequence  followed  by  streptavidin  binding  

protein  tag  were  PCR  amplified  using  T730  mer.F  -  

5’CAAGCTCATTAATACGACTCACTATAGGCC3’  and  T7  terminator  long.R  -  

5’GGTTATGCTAGTTATTGCTCAGCGG3’  primers. 

 

In  vitro  expression  of  peptides 

Peptides  were  in  vitro  transcribed  and  translated  for  90  min  at  room  temperature  in  rabbit  

reticulocyte  system  using  linear  DNA  as  template  (Promega  L1170,  Madison,  WI).  SBP  

tagged  peptides  were  affinity  purified  using  Sterptavidin  agarose  column  (Thermo  Fisher  

20347,  Rockford,  IL)  (9).  Peptides  were  eluted  by  ProTEV  protease  cleavage  overnight  at  

room  temperature  leaving  streptavidin  binding  protein  tag  on  Streptavidin  agarose  column  

(Promega,  Madison,  WI)  (10). 

 

Dot  blot 

Minifold  I  96  well  dot  blot  apparatus  from  Whatman  was  used  to  quantify  fraction  of  

bound  peptide  (GE  Healthcare  Life  Sciences,  Piscataway,  NJ).  In  order  to  assemble  dot  

blot  apparatus,  a  filter  paper,  two  nylon  membranes  and  a  10K  dialysis  membrane  were  

placed  between  sample  well  plate  and  filter  support  plate  from  bottom  to  top  respectively  
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(Thermo  fisher,  Rockford,  IL;  EMD  Millipore  Corporation,  Billerica,  MA).  All  membranes  

were  pre-wetted  in  PBS  at  4  °C  for  at  least  10  min  before  assembly.  Peptides  were  

equilibrated  with  human  α-thrombin  at  various  concentrations  for  1  hr  at  4  °C  in  PBS  

buffer  with  0.025%  Tween-20  and  0.3%  BSA  and  then  loaded  on  to  assembled  dot  blot  

apparatus.  Vacuum  was  applied  to  facilitate  filtration  of  unbound  peptide.  Membranes  

were  exposed  to  phosphor  imager  overnight  in  order  to  quantify  peptide  retained  on  

membranes.  Image  quant  software  was  used  to  quantify  dot  blots  and  R  software  was  

used  to  analyze  results  (GE  Healthcare  Lifesciences,  Piscataway,  NJ). 
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Fig.  4.2  Validation  of  dot  blot  double  membrane  system  for  determination  of  

Kd  of  T10.39,  a  well  characterized  human  α-thrombin  binding  peptide;  a)  

phosphor  image  of  dialysis  membrane  (top)  and  nylon  membrane  (bottom)  b)  

Equilibrium  dissociation  plot  of  T10.39.  Kd  is  the  average  of  at  least  three  

independent  replicates  with  standard  deviations  (19). 
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Results  and  Discussion 

To  validate  our  rationale  of  measuring  peptide  binding  kinetics  by  size  based  separation,  

regenerated  cellulose  and  nylon  membrane  were  used  to  separate  unbound  peptide  from  

bound  peptide-protein  complexes.  We  obtained  solution  binding  affinity  constant  (Kd)  for  

T10.39,  a  known  thrombin  binding  peptide  isolated  from  human  α-thrombin  mRNA  display  

selection.  Our  results  depict  that  T10.39  binds  thrombin  with  Kd  of  167  +  36  nM  which  

is  consistent  with  reported  Kd  of  166  nM  (11).  T10.39  and  T10.11  were  the  only  two  

peptides  characterized  from  human  α-thrombin  mRNA  display  selection  output.  Due  to  

time  and  cost  associated  with  peptide  characterization  most  selection  outputs  remain  

uncharacterized  thus  bypassing  many  high  affinity  binders  that  might  bind  to  discrete  sites  

on  target  protein. 

 

Above  mentioned  mRNA  display  selection  was  performed  on  starting  library  of  1011  

different  sequences.  45  potential  binders  were  reported  after  10  rounds  of  selection  and  

only  two  peptides  were  characterized  reporting  a  Kd  of  166nM  and  520  nM  for  human  α-

thrombin.  To  further  validate  power  of  our  technology,  we  selected  24  peptides  from  set  

of  45  peptides  reported  in  human  α-thrombin  mRNA  display  selection  output  to  perform  a  

parallel  screen  (11).  DNA  oligonucleotides  encoding  24  peptides  were  cloned  in  

expression  vector  and  expressed  as  S35-labelled  peptides  to  perform  equilibrium  binding  

analysis  as  mentioned  in  Fig.  1.3.  Three  peptides,  T10.35,  T10.46  and  T10.57,  failed  to  

show  sufficient  expression  for  dot  blot  analysis  and  hence  were  discarded.  21  other  

peptides  were  equilibrated  with  250  nM  and  500  nM  human  α-thrombin  for  1  hr  at  4°C  

with  rotation.  Equilibrated  samples  were  spotted  in  dot  blot  apparatus  assembled  with  

regenerated  cellulose  and  nylon  membrane  in  presence  of  slow  vacuum.  In  order  to  

account  for  non-specific  binding  of  peptide  to  membranes,  we  set  up  samples  devoid  of  

human  α-thrombin  as  control.  Analysis  of  our  screen  indicates  that  five  peptides,  T10.06,  

T10.13,  T10.25,  T10.30  and  T10.37,  show  increased  binding  with  increasing  human  α-

thrombin  concentration.  We  noticed  some  of  the  peptides  with  high  hydrophobicity  showed  



  45 

up  as  weak  binders,  peptide  solubility  may  also  affect  binding  to  target  protein.  Otherwise  

insoluble  peptides  might  become  soluble  during  mRNA  display  due  to  association  with  

nucleic  acids  thus  rendering  them  to  selections.  Also,  insoluble  peptides  forming  large  

aggregates  may  lead  to  high  background  during  dot  blot  analysis. 

 

We  further  characterized  five  potential  thrombin  binding  peptides  obtained  from  our  screen  

using  range  of  human  α-thrombin  concentrations,  5  µM  -  1  nM.  Peptides  were  incubated  

with  various  concentration  of  human  α-thrombin  for  1  hr  at  4°C  with  rotation.  Separation  

of  bound  peptide-protein  complexes  from  unbound  peptide  resulted  in  a  binding  curve  

indicating  Kd  of  167  +  36  nM  for  T10.39,  159  +  41  nM  for  T10.13,  363  +  104  nM  for  

T10.30  and  313  +  78  nM  for  T10.37.  T10.39  was  used  as  standard  throughout  our  

experiments  and  gave  a  Kd  of  167  +  36  nM  consistent  with  literature.  DPGR  motif  

present  in  T10.39  is  also  present  in  T10.06,  T10.25  and  T10.30  peptides  which  bind  

human  α-thrombin  with  Kd  of  200  –  500  nM.  This  indicates  importance  of  DPGR  motif  in  

human  α-thrombin  binding.  Peptides  T10.13  and  T10.37  lacking  DPGR  element  were  also  

found  to  bind  human  α-thrombin  with  Kd  of  159  nM  and  313  nM,  suggesting  that  they  

might  bind  to  a  different  site  on  human  α-thrombin  protein  surface.  Discovery  of  peptides  

that  bind  to  discrete  locations  on  protein  surface  paves  way  to  construction  of  bivalent  

affinity  reagents,  NuPromers,  using  LINC  technology.  Linking  two  affinity  peptides  on  a  

flexible  surface  at  appropriate  distance  and  orientation  has  been  reported  to  increase  

binding  affinity  up  to  1000  fold  as  compared  affinity  of  individual  peptides  by  themselves  

(12, 13).     

 

Peptides  are  excellent  therapeutics  owing  to  small  size,  ease  of  in  vivo  delivery  and  

capability  to  bind  specific  surfaces  with  high  affinity.  Affinity  peptides  overcome  the  

limitations  of  antibodies  as  protein  capture  reagents  due  to  simple  structure,  non-

immunogenicity,  affordability,  ease  and  time  of  synthesis  as  well  as  convenience  of  

tailoring  them  to  our  needs.    With  increasing  applications  of  peptides  as  therapeutics (14),  
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drugs (15),  disease  diagnostics,  carriers  for  drugs (16),  activity  based  probes  for  enzyme  

profiling  and  cell  imaging (17, 18),  there  is  increasing  demand  for  high  affinity  peptides.  

We  seek  to  fill  this  gap  by  proposing  double  membrane  dot  blot  method  for  screening  

and  characterization  of  peptides.   
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Fig.  4.3  Screening,  identification  and  characterization  of  affinity  peptides  a)  amino  acid  

sequence  of  forty  five  peptides  obtained  from  mRNA  display  selection  (11).  Amino  acid  

sequences  with  grey  highlight  indicate  peptides  chosen  for  present  study.  b)  double  

membrane  based  dot  blot  screen  of  twenty  four  peptides  for  affinity  to  human  α-thrombin.  

Relative  fraction  of  peptide  bound  to  thrombin  at  250  nM  (grey  bars)  and  500  nM  (red  

bars)  were  comparred  to  identify  potential  affinity  peptides.  Stars  indicate  peptides  that  had  

negligible  expression  insufficient  for  dot  blot  analysis.    c)  Equilibrium  dissociation  plots  of  

four  thrombin-binding  peptides.  Kd  values  represent  atleast  three  independent  replicates  with  

standard  deviations  (19). 

a) b) 

c) 
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Conclusion 

Coupling  in  vitro  selections  with  double  membrane  dot  blot  approach  provides  an  

advantage  of  exploring  larger  sequence  space,  rapidly  and  cost  effectively  without  much  

investment  in  expensive  instruments.  A  single  screen  of  dot  blot  can  be  multiplexed  and  

completed  in  3  days,  including  peptide  expression  and  purification.  Thus  establishing  

double  membrane  dot  blot  as  ideal  method  for  peptide  screening  and  characterization. 
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