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ABSTRACT 
 

Boron concentrations and isotopic composition of phlogopite mica, amphibole, and 

selected coexisting anhydrous phases in mantle-derived xenoliths from the Kaapvaal Craton were 

measured by secondary ion mass spectrometry in an effort to better understand the B isotope 

geochemistry of the subcontinental lithospheric mantle (SCLM) and its implications for the global 

geochemical cycle of B in the mantle.  These samples display a wide, and previously 

unrecognized, range in their boron contents and isotopic compositions reflecting a complex 

history involving melt depletion and metasomatism by subduction- and plume-derived 

components, as well as late stage isotopic exchange related to kimberlite emplacements.  Micas 

from ancient lithospheric harzburgite metasomatized by slab-derived fluids suggest extensive B-

depletion during subduction, resulting in low-B, isotopically light compositions whereas kimberlite-

related metasomatic products and a sample from the 2 Ga Palabora carbonatite have !11B values 

similar to proposed primitive mantle.  The results suggest that subduction of oceanic lithosphere 

plays a limited role in the B geochemistry of the convecting mantle. 
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CHAPTER 1.  INTRODUCTION 

1.1. Boron and its distribution among various Earth reservoirs 

Boron is potentially well suited for tracing the recycling of surface volatiles into the mantle 

because it is an incompatible, fluid-mobile element.  Boron is bound in hydrous fluids as a B(OH)3 

species where B is in trigonal coordination and B dissolved in silicates is in tetrahedral 

coordination.  The heavier isotope, 11B, prefers trigonal coordination leading to the large 

fractionations observed in nature (see “Reviews in Geochemistry,” volume 33 for an extensive 

description of the geochemical behavior of boron).  The incompatibility of B implies that its 

concentration in the mantle is intrinsically low due to the removal by partial melting, and therefore 

that its later re-enrichment by a variety of processes over time may be easily detected.  The utility 

of boron, in this respect, is augmented by the wide range in boron isotopes and boron 

concentrations in terrestrial materials (Figure 1 & 2).  Seawater (4.5 ppm) and the continental 

crust (10 ppm) are relatively enriched in boron concentrations with !11B values of +39.5‰ and 

"10.5‰, respectively (Spivack and Edmond, 1987; Chaussidon and Albarède, 1992).  The 

canonical primitive mantle is characterized by boron concentrations of # 0.1 ppm and a boron 

isotopic composition of "10 ± 2‰ (Chaussidon and Jambon, 1994; Chaussidon and Marty, 1995; 

Gurenko and Chaussidon, 1995; Roy-Barnman et al., 1998).  These estimates for the primitive 

mantle are based on the measurement of the boron concentrations and isotopic composition of 

ocean island basalts (Chaussidon and Marty, 1995).  Other oceanic basalts, such as MORB, 

display mostly lower !11B values and it has been suggested that hydrothermal alteration or 

assimilation of crustal components (or sediments) may be responsible for modifying their boron 

isotopic signatures from values originally similar to those of the primitive mantle (Chaussidon and 

Marty, 1995).  In contrast, subduction-related basalts have higher B concentrations and !11B 

values consistent with the presence in their source of boron lost from the subducting slab as B-

bearing minerals break down and release isotopically heavy boron into the source of arc 

magmas.  Continued subduction of these materials results in the eventual ‘drying out’ of the slab, 

with successive releases of H2O fluid containing less and less boron that is isotopically more and 
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more fractionated (i.e. lighter) boron isotopes.  Thus the SCLM can be hypothesized to interact 

with rising mantle plume material (!11B of ~"10‰) or the time-integrated fluid from subducting 

slabs with !11B much lighter ("20 to "40‰) recycled materials affected by seawater-alteration 

(Moran et al., 1992).  Conclusions about the B isotope composition of B-poor mantle reservoirs 

are rendered somewhat uncertain by the susceptibility of the erupted magmas basalts to 

contamination by B-rich crustal materials en route to the surface.  In contrast, entrained mineral 

samples from the upper mantle (even when modified during ascent) may show textures allowing 

such interactions to be detected.  Here we report determinations of B concentrations and !11B in 

a suite of mineral samples from the subcontinental lithospheric mantle (SCLM) of southern Africa 

brought to the surface by fast-erupting kimberlite volcanoes.  We examine the potential to 

characterize the composition and evolution of the SCLM, and the broader implication of these 

analyses for volatile cycling in the mantle. 
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Figure 1. Schematic cross section through a subduction zone and craton with B concentrations 
and !11B values for natural reservoirs (modified from Wunder et al., 2005).  Data from the 
following sources: seawater—Spivack and Edmond (1987); pelagic sediments—Ishikawa and 
Nakamura (1993); fresh MORB—Leeman and Sisson (1996); altered oceanic crust—Smith et al. 
(1995); mantle—Chaussidon and Marty (1995), confirmed in this study; volcanic arcs—Rosner et 
al. (2003); continental crust—Chaussidon and Albarède (1991); kimberlite—this study; surface 
water—Vengosh et al. (1995).  Metasomatism of the subcontinental lithospheric mantle (SCLM) 
occurs in multiple episodes, with “older” and “younger” events shown by purple, green and gray 
shading of the SCLM, respectively. 
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Figure 2: !11B vs. B concentrations from major reservoirs.  Data from this study plotted as 
circles—phlogopite data plotted as averages (values recorded in Table I).  Primitive Mantle 
(PM)—Chassidon and Marty (1995); Mid Ocean Ridge Basalts (MORB)—Chaussidon and 
Jambon (1993); Ocean Island Basalts (OIB)—Chaussidon and Marty (1995), Chaussidon and 
Jambon (1993); Back arc basin basalt (BABB)—Chassidon and Jambon (1993); Island Arcs 
(IA)—Rosner et al., (2003), LeVoyer et al., (2008); Crust—Chaussidon and Albarède (1991); 
Serpentinized peridotites (Serpentine)—Scambelluri and Tonarini (2012).  Seawater—Spivack 
and Edmond (1987). 
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1.2.  Archean subcontinental lithospheric mantle 

The subcontinental lithospheric mantle (SCLM) is a geochemical reservoir that is 

volumetrically 3-4 times larger than the overlying continental crust and thus has the potential to 

contribute significantly to the global mass balance of some elements.  Archean SCLM, which may 

extend to depths of ~250 km, formed as a buoyant residue of ancient melt-depletion events, for 

which both subduction- and plume- related melting processes have been proposed (Canil and 

Lee, 2009; Arndt et al., 2009).  This buoyancy, combined with the probable depletion in volatiles 

and radioactive (heat-producing) elements has resulted in a stable and mechanically rigid 

lithosphere resistant to destruction by the forces of mantle convection over geologic time.  

Because it is cold and geologically stable, the SCLM traps upwelling volatile-rich melt and fluids 

generated in the convecting mantle below, which then react with the melt-depleted lithospheric 

peridotite to form metasomatic mineral assemblages.  The composition of these assemblages 

conveys information about the origin of their parent fluids, as well as the composition and 

evolution of the SCLM.  Given this model we hypothesized that boron was an element that might 

represent a record of such processes in the SCLM.   

1.2.1.  The formation and metasomatism of the Kaapvaal Craton 

The Kaapvaal Craton is a region of Archean SCLM that has been the subject of extensive 

study of both crust and mantle lithosphere.  The amalgamation of several smaller cratonic nuclei 

between 2.5 to 3.0 Ga accompanied by extensive granitoid magmatism and melt-depletion of the 

underlying mantle lithosphere (de Wit et al., 1992; Carlson et al., 1999; Schmitz et al., 2004, 

Poujol et al., 2003) resulted in the stabilization of the SCLM.  A major phase of subduction-related 

metasomatism affected the lithosphere during this time (Carlson et al., 1999; Simon et al., 2007).  

Portions of the craton were impacted by flood basalt magmatism and intrusion of the Bushveld 

Igneous Complex at 2.65 and 2.05 Ga respectively, with major periods of lithospheric accretion 

and reworking at the craton margins during the later Kheis and Namaqua orogenies at ~1.6 and 

~1.0 Ga (Moen and Armstrong, 2008).  The craton was pierced by several episodes of kimberlite 

magmatism, the major phases being at 200-110 Ma (group II kimberlites) and ~100-75 Ma (group 
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I kimberlites).  The reaction of the kimberlitic precursor magmas and their derivatives with the 

Kaapvaal SCLM in the Cretaceous resulted in the development of extensive metasomatic 

assemblages (Erlank et al., 1987; Jones et al., 1982; Kramers et al., 1983; Konzett et al., 1998, 

2000; Grégoire et al., 2002, 2003). 

The SCLM of the Kaapvaal Craton is sampled via kimberlite-derived xenoliths consisting 

mainly of Mg-rich garnet harzburgites and lherzolites.  The majority of samples are anomalously 

enriched in orthopyroxene compared to the predicted residua of partial melt extraction at 

pressures of 3-6 GPa (the pressure of origin) and almost all contain trace phlogopite (Herzberg, 

2004; Erlank et al., 1987).  This enrichment is believed to reflect the presence of hydrous melts 

and fluids in an Archean subduction zone setting (Kesson and Ringwood, 1989; Rudnick et al., 

1994; Kelemen et al., 1998; Carlson et al., 1999; Bell et al., 2005; Simon et al., 2007).  It has 

been proposed that the Archean lithospheric mantle consisted predominantly of clinopyroxene-

free garnet harzburgite with Mg# > 93, and that clinopyroxene and garnet were added by younger 

silicate melt metasomatism (Simon et al., 2003).  In the case of Kaapvaal, much of this may have 

occurred during the intense thermochemical infiltration and erosion of the cratonic base and 

margins by plume-derived melts parental to group I kimberlites (Gurney and Harte, 1980; Burgess 

and Harte, 1999; Bell et al., 2003; Griffin et al., 2003; Kobussen et al., 2009; Janney and Bell, 

2010).  The infiltration of such magmas into the overlying lithosphere, accompanied by their 

reactive down-temperature differentiation to carbonatitic residua has given rise to a series of 

metasomatic assemblages rich in clinopyroxene and phlogopite (Jones et al., 1982; Erlank et al., 

1987).  The chemical and isotopic composition of these mantle mineral assemblages, and of 

kimberlite-melilitite-carbonatite magmas erupted at the surface, record the progressive influence 

of Archean lithosphere on deep-seated magmas that, in the case of group I kimberlites, begin 

with OIB-like (HIMU-FOZO) geochemical signatures (Kramers et al., 1981, 1983; Smith, 1983; 

Janney et al., 2002; Nowell et al., 2004; Janney and Bell, 2010; Figure 3).  Although a deep 

lithospheric origin for the HIMU component in mantle derived magmas has been suggested (Hart 
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and Zindler, 1986; Bell and Tilton, 2001), most studies favor an origin from recycled oceanic crust 

within the convecting asthenosphere (White and Hoffman, 1982).   

In contrast to the metasomatic assemblages related to group I kimberlites that are 

characterized by the phlogopite-ilmenite-clinopyroxene (PIC) mineral association (Grégoire et al., 

2002, 2003), a second lineage of phlogopite-rich assemblages characterized by the presence of 

potassium-richterite has been linked geochemically to group II kimberlites that originate in 

enriched (EMII-type) mantle (Dawson and Smith, 1977; Waters, 1987; Sweeney et al., 1993; 

Ulmer and Sweeney, 2002; Konzett et al., 1998, 2000; Grégoire et al., 2002, 2003).  Although 

both group I and group II kimberlites themselves, were formed by melting that took place within 

Archean SCLM (Le Roex et al., 2003; Becker and Le Roex, 2006; Becker et al., 2007; Coe et al., 

2008), the source of group II kimberlite parental fluids is uncertain—they may have been 

generated in situ within old enriched SCLM (Becker and Le Roex, 2006), from convecting mantle 

influenced regionally by subduction (as proposed for the Karoo Large Igneous Province by Cox, 

1988), or from a plume deriving from an enriched mantle (EM) source (Le Roex, 1986).  

Whichever of these options applies the EM geochemical signatures of group II kimberlite (i.e., 

high radiogenic Sr, low radiogenic Nd; Figure 3) suggests ultimate derivation from recycled 

continental material. 

Part of the hypothesis behind our work is that the diversity of metasomatic components 

identified in previous studies may have boron signatures (concentrations and isotopes) that will 

allow an investigation of these components and the processes at work at depth through selective 

analysis of previously characterized samples.  
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Figure 3:  Variation of initial 143Nd/144Nd and 87Sr/86Sr.  Colored fields represent published data for 
South African Group I, Group II and Transitional kimberlites (Smith, 1983; Fraser and 
Hawkesworth, 1992; Tainton, 1992; Clark, 1994; Nowell et al., 1999, 2004; Coe, 2004; after 
Becker and le Roex, 2006).  MORB, HIMU, EM I and EM II –type basalt fields represent data 
from Stracke et al. (2003). 
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CHAPTER 2.  METHODS 
2.1.  Sample Selection 

Phlogopite mica, amphibole, and clinopyroxene from mantle xenolith samples collected in 

southern Africa by J.V. Smith, J.B. Dawson and D.R. Bell were analyzed.  Phlogopite is the most 

widespread phase with relatively high B content in metasomatic assemblages and was therefore 

targeted for analysis.  However, in some cases, phlogopite mica showed inhomogeneous boron 

and isotopic ratios so coexisting clinopyroxene or amphiboles were also analyzed when possible.   

2.1.1.  Products of Mesozoic metasomatism 

In the case of group I and group II kimberlite magmas, the most primitive components 

(with respect to minimal lithospheric interaction), are found in subcalcic, Cr-poor clinopyroxene 

megacrysts (Jones, 1987; Janney and Bell, 2010, 2011).  Examples of these are megacrysts 

ROM270-CI11; ROM273-DI16 (group I) and LAC236, LAC-P (group II).  Micas are only 

encountered in megacryst assemblages precipitated at lower temperatures, typically after 

substantial magmatic reaction or differentiation (Moore et al., 1992; Bell and Moore, 2004) 

(MON22; ROM249).  These more advanced stages of differentiation and lithospheric reaction are 

also represented by calcic clinopyroxene megacrysts (Jones, 1987; Moore et al., 1992; Bell and 

Moore, 2004) (ROM270-DI10) that are sometimes also Cr-rich as a result of their interaction with 

refractory, melt depleted lithospheric peridotite, in which case they assume an apple green color 

and are referred to as “Granny Smith” megacryst (Boyd et al., 1984; BFT104).  Samples of 

clinopyroxene and mica megacrysts representing these various stages of group I and group II 

kimberlite-magma evolution were analyzed (Table II).  MARID xenoliths with mineralogical 

affinities to group II kimberlites but which show radiogenic isotope composition suggesting group 

I-group II kimberlite mixing were also analyzed (BD3130, BD3655).  The above samples are 

considered to represent mainly fragments of mantle veins representing channel ways of 

metasomatizing agents.  They contrast with the high-temperature garnet lherzolites resulting from 

metasomatism of the lithospheric base by more primitive magmas in equilibrium with sub-calcic 

clinopyroxene megacrysts (73-105) and with phlogopite- and clinopyroxene-bearing peridotites 
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(lherzolites and wehrlites) that represent metasomatites thought to be formed when more 

differentiated fluids infiltrate surrounding depleted peridotite (BT-7, BD1359).  Finally, a sample of 

mica pyroxenite from the 2.02 Ga Palabora carbonatite complex was analyzed in order to 

examine the B isotope composition of the mantle in the early Proterozoic.   

2.1.2.  Products of ancient metasomatism 

The age(s) of metasomatism producing dispersed phlogopite and orthopyroxene 

enrichment in peridotite, as well as occasionally clinopyroxene rich (websteritic) peridotite, is 

poorly constrained.  It is generally accepted that a major fraction of this metasomatism appears to 

also involve melting that occurred in the Archean, because the Os-isotope model ages of these 

peridotites are dominated by a peak at ~2.7 Ga (Carlson et al., 1999; Carlson et al., 2005; 

Pearson and Wittig 2008; Simon et al., 2007).  However, Nd and Ar isotope evidence has been 

presented to suggest that metasomatism may also have occurred in the Mesoproterozoic (Hopp 

et al., 2008).  The geochemical character of this metasomatism is distinct from that resulting from 

kimberlite metasomatism, being characterized by LILE enrichment and HFSE depletion, with Ba-

Ti compositions of micas providing a convenient distinction (Figure 10).   

A series of samples was chosen that includes refractory Mg-rich clinopyroxene-free 

garnet harzburgites (e.g., BFT-153), some of which have sub-calcic garnet compositions 

indicative of extreme Ca-depletion by partial melt extraction (BFT137; BFT141a; BFT147), as well 

as pyroxene-rich websteritic compositions (BFT405; BFT297).  Orthopyroxene- and phlogopite-

rich samples (BFT137, BFT141a) are hypothesized to represent addition of hydrous Si-rich fluids 

or melts to a harzburgite protolith (Bell et al., 2005), whereas the websteritic samples are 

suggested to have formed from reaction of a more Ca-rich, perhaps granitoid melt with harzbugite 

in a mantle wedge setting (Rapp et al., 2010).  Sample BFT147 is a relatively orthopyroxene-

poor, dunitic garnet harzburgite with accessory chromite and coarse phlogopite that is notably Cl-

rich (Bell et al., 2005).  This sample has been suggested as a potential example of Archean 

peridotite protolith showing only incipient orthopyroxene enrichments.    
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2.2.  Sample Descriptions 

2.2.1.  73-105, Frank Smith mine 

Sample 73-105 is a coarse granular undeformed garnet lherzolite with secondary mica. 

This sample was a piece of a 1” round thick section (~10 X 5 mm).   Garnet makes up a large 

area of the thin section rimmed by kelyphite and phlogopite.  The garnet here is fractured.  Olivine 

and orthopyroxene makes up the remainder of the mineralogy.  Serpentinization is pervasive 

within this sample associated with the olivine.  This sample was studied in thin section:  Hervig’s 

garnet lherzolite PTS-1 (polished thin section 1).  SIMS analyses were performed on the thin 

section and data was collected for phlogopite, serpentine, garnet and pyroxene. 

 

2.2.2.  BT-7, Bultfontein 

BT-7 is a coarse grained garnet lherzolite with mica.  This sample was a piece of a 1” 

round thick section, measuring to about 12 X 4 mm.  The sample is composed of coarse grains of 

orthopyroxene.  The olivine in this sample, the second most abundant mineral, has been heavily 

serpentinized.  The garnet crystal present in this sample is rimmed by kelyphite.  There is one 

large grain of clinopyroxene (3 mm) in this sample.  The pristine tabular phlogopite is seen on the 

edge of the sample. This sample was previously studied by Delaney et al. (1980) characterizing 

the mica as “PK” where the “P” stands for primary mica type and the “K-subscript” indicates that 

the mica exists in kelyphitic rims around a garnet.  The abbreviation, “PK,” is inferred to represent 

primary textured mica in kelyphitic rims around garnet.  This is confusing because it is not 

explicitly explained in the figure caption and thus could be looked at as a mistake.  Although this 

was classified as primary textured mica in Delaney et al. (1980), it is unlikely to be primary in 

nature because it is found in a reaction rim around garnet. This sample was studied in thin 

section:  Hervig’s garnet lherzolite PTS-2 (polished thin section 2).  Phlogopite and pyroxene 

were targeted using SIMS. 

 

2.2.3.  BD1359, Matsoku 
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BD1359 is a coarse granular rutile-garnet lherzolite with evidence of past shearing and 

metasomatism. This sample is a piece of 1” round thin section measuring to ~10 X 5 mm.  The 

modal mineralogy is difficult to estimate because of the small sample size.  This sample is 

comprised of orthopyroxene, olivine, clinopyroxene, garnet, phlogopite, and rutile (listed in 

descending abundance).  This sample has been heavily sheared.  The highly strained olivine 

neoblasts have annealed and coarsened into a granuloblastic texture.  Garnets have been 

fractured and stung-out.  Delaney et al. (1980) reported this sample to have ‘unusual’ primary.  

The mica in thin section has silicate inclusions.  Phlogopite in sample was studied by SIMS:  

Hervig’s garnet lherzolite PTS-2 (polished thin section 2). 

 

2.2.4.  BD3130, Bultfontein 

BD3130 is a MARID xenolith.  The thin section is 1” round and is a coarse grained rock.  

Pyroxene is the most abundant mineral in sample.  The richterite and phlogopite are concentrated 

in a vein ! 1 cm in width, which spans across the section making up about 25% of the sample. 

Additional lenticular streaks of this assemblage are seen within the sample.  Richterites in this 

sample are nearly euhedral showing 120/60º cleavage and pleochroism.  The micas also show 

distinct cleavage traces and appear in coarse patches within the vein.  The opaque mineral(s), 

making up about 1% of the modal mineralogy, is likely ilmenite.  Rutile is also present in trace 

amounts in this sample.  K-richterite and phlogopite mica were analyzed using SIMS and EMP.  

This sample was analyzed in thin section:  BD3130 (phlogopite and amphibole) (Hervig’s 

collection). 

 

2.2.5.  BD3655, Bultfontein 

This sample is a heavily metasomatized olivine-rich peridotite with veins of amphibole-

rich material now dominating the rock.  Mica and ilmenite make up about 10% of the sample.  The 

Mg-ilmenite is present as elongate crystals.  The rock has also been serpentinized.  

Clinopyroxene is present as an accessory mineral.  BD3655 was analyzed by Hervig by SIMS.  
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The sample was mislaid prior to this study but is thought to be similar to BD3647, documented in 

Jones et al. (1982).    

 

2.2.6.  PB_1, Palabora 

 PB_1 is a mica pyroxenite from the Palabora carbonatite complex that measures to 15 X 

10 X 5 cm.  In hand sample, there are large bands of phlogopite the mineralogy (~50%).  The 

clinopyroxene and apatite are similar in appearance and make up about ~35% of the mineralogy.  

Calcite is also present making up about 5% of the sample.  The original hand sample is part of 

Bell’s collection.  This sample was studied (by SIMS) in a grain mount made for this work:  MGMt-

3 (phlogopite and clinopyroxene) (Guild’s collection).   

 

2.2.7.  ROM-249, Monastery 

 This Monastery mica megacryst was about 3 X 0.5 X 1 cm.  The sample appears almost 

asbestiform and friable, apparently due to deformation.  Individual fragments, broken from the 

megacryst, were heavily kinked under high magnification.  The phlogopite megacryst is part of 

Bell’s collection.  This sample was studied (by SIMS and EMP) in a grain mount made for this 

work:  MGMt-1 (phlogopite) (Guild’s collection).    

 

2.2.8.  BFT153, Bultfontein 

BFT153 is a garnet harzburgite xenolith with porphyroclastic texture.  In hand sample it 

appears to be coarse granular but in thin section the olivines have been recrystallized.  The 

exterior of the sample shows evidence of weathering.  In thin section, the mineralogy is 

dominated by olivine (~65%) and orthopyroxene (~20%).  The olivine has been heavily fractured 

and serpentinized.  The garnet appears in large clots making up ~10% of the modal mineralogy in 

thin section.  There is a spatial relationship between the garnet and orthopyroxene.  Phlogopite is 

found within the garnet clots, almost exclusively, and makes up ~2% of the mineralogy.  Opaque 

are seen around the olivine.  This hand sample is part of Bell’s collection. This sample was 
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studied (by SIMS and EMP) in a grain mount made for this work:  MGMt-2 (phlogopite) (Guild’s 

collection). 

 

2.2.9.  BFT104, Bultfontein 

This clinopyroxene megacryst (measures 6 X 3 X 7 cm) has a rare phlogopite inclusion 

that measures ~5 X 5 X 1 mm.  The clinopyroxene is referred to as a “Granny Smith” because of 

its bright green color, suggesting a Cr-rich nature. This hand sample and grain separates are part 

of Bell’s collection. This sample was analyzed by SIMS in a grain mount made for the current 

study:  MGMt-3 (phlogopite and clinopyroxene) (Guild’s collection). 

 

2.2.10.  BFT297, Bultfontein 

Sample BFT297 has two distinct coarse granular lithologies:  a garnet lherzolite and a 

garnet websterite with primary mica.  The whole sample measures to ~14 X 10 X 6 cm and is 

ellipsoidal in shape.  The sample has a weathering rind that is a few millimeters in thickness.  The 

coarse granular garnet lherzolite section has trace clinopyroxene.  The pyroxene-rich part is an 

orthopyroxene-rich garnet websterite with sparse clinopyroxene and substantial primary 

phlogopite.  This hand sample and grain separates are part of Bell’s collection. This sample was 

studied in a grain mount made for this work:  MGMt-2 (phlogopite) and MGMt-4 (garnet) (Guild’s 

collection). 

 

2.2.11.  BFT141a, Bultfontein 

Sample BFT141a is coarse granular graphite mica bearing garnet harzburgite.  The 

crystals are nearly equigranualr.  This sample has nearly equal abundances of olivine and 

orthopyroxene.  Garnets are fairly evenly dispersed among the other grains.  Some of the garnets 

show small kelyphitic rims.  The small percentage of opaque mineral is graphite.  Phlogopite 

seems to be spatially related with orthopyroxene. This hand sample and grain separates are part 
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of Bell’s collection. This sample was studied in a grain mount made for this work:  MGMt-2 

(phlogopite) and MGMt-4 (garnet) (Guild’s collection). 

 

2.2.12.  BFT405, Bultfontein 

Sample BFT405 is a xenolith measures to ~25 X 12 X 13 cm and is approximately 

ellipsoidal broken along its long axis.  The mineralogy along the fractured surface does not seem 

to be different from the sample as a whole.  The exterior of the xenolith has a thin rind of 

weathered minerals.  The bulk of this xenolith is composed dominantly of orthopyroxene (~40%) 

and olivine (~35%).  Phlogopite in this sample is concentrated in veins making up ~10% of the 

mineralogy.   Clinopyroxene crystals are found throughout the sample and are coarse (~5mm 

crystals on average).  Garnets are fairly sparse making up < 5% of the modal mineralogy.  

BFT405 is a pyroxene-rich garnet lherzolite. This hand sample and grain separates are part of 

Bell’s collection. This sample was studied in a grain mount made for this work:  Mt-168 

(clinopyroxene and phlogopite) (Bell’s collection), MGMt-4 (phlogopite and garnet) (Guild’s 

collection). 

 

2.2.13.  BFT404, Bultfontein 

Sample BFT404 is a pyroxene-rich garnet lherzolite xenolith that measures to 14 X 11 X 

12 cm.  This sample is nearly spherical but irregularly shaped with two fractured surfaces.  The 

weathering rind on this sample is 2-5 mm thick and covers the non-fractured surfaces.  The bulk 

of this xenolith is composed nearly equal proportions of orthopyroxene and olivine. Garnets are 

relatively abundant and evenly dispersed, making up ~15% of the modal mineralogy.  Phlogopite 

in this sample is rare (< 1%).   Clinopyroxene crystals are sparsely scattered throughout the 

sample (~2%) and relatively small (~1mm crystals on average). This hand sample and grain 

separates are part of Bell’s collection.  The xenolith was studied in a grain mount made for this 

work:  Mt-168 (clinopyroxene and phlogopite) (Bell’s collection), MGMt-4 (phlogopite and garnet) 

(Guild’s collection). 



 
 

16!

 

2.2.14.  MON22, Monastery 

MON22 is a phlogopite megacryst in kimberlite matrix.  This phlogopite is about 2 X 0.5 X 

0.5 cm and is prism-like in shape. This mica appears undeformed when observed under high 

magnification.  This hand sample is part of Bell’s collection. This sample was studied (by SIMS 

and EMP) in a grain mount made for this work:  MGMt-1 (Guild’s collection). 

 

2.2.15.  BFT137, Bultfontein 

Sample BFT137 is a mica garnet harzburgite with a vein of phlogopite-bearing garnet 

orthopyroxenite.  The sample measures to 40 X 22 X 15 cm and has an ellipsoidal shape and is 

fractured on its long axis.  The sample is fractured along the vein and shows a gradation from the 

phlogopite-bearing garnet orthopyroxenite into a clinopyroxene-free garnet harzburgite with 

sparsely distributed phlogopite.  The boundary between the vein and the host material is indistinct 

in thin section but obvious in hand sample.  The vein is dominated by enstatie with some garnet, 

subordinate olivine and abundant, coarse phlogopite and large sub-spherical to euhedral sulfide 

grains (Bell et al., 2005).  This sample contains clear petrographic evidence for metasomatism 

(Bell et al., 2005). This hand sample is part of Bell’s collection. This sample was studied (by SIMS 

and EMP) in a grain mount made for this work:  MGMt-2 (phlogopite) and MGMt-4 (garnet) 

(Guild’s collection). 

2.2.16.  BFT147, Bultfontein 

BFT147 was also studied by Bell et al. (2005) and described as uniformly orthopyroxene-

poor, olivine-rich garnet harzburgite containing sparse subcalcic garnet and relatively abundant 

discrete magnesiochromite.  The xenolith measures to 20 X 10 X 10 cm.  This samples is said to 

have much less garnet and enstatite than BFT137 (described above).  Large patches of coarse 

phlogopites are present.  Magnesiochromite makes up ~2% of the samples.  Enstatite observed 

in this sample has a poikolitic habit, which suggests growth from an intergranular medium. This 
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hand sample is part of Bell’s collection. This sample was studied (by SIMS and EMP) in a grain 

mount made for this work:  MGMt-2 (phlogopite) (Guild’s collection). 

 

2.3.  Sample Preparation 

2.3.1.  Sample Mounts   

Sample mounts were prepared using mineral separates.  Aluminum discs (1” round) with 

8 wells were utilized for this study in an effort to minimize the use of epoxy.  EpoxiCure™ Epoxy 

Resin was used for all sample mounts because of its composition.  According to studies 

conducted at Ion Microprobe Facility at University of Edinburgh, EpoxiCure™ Epoxy Resin only 

contributes 0.3 counts per second of 11B to the average signal 

(http://www.geos.ed.ac.uk/sidecar/ion-microprobe/epoxy-resins/compositions/).   

2.2.2.   Orientation of Micas 

In an attempt to make a better mica mount I practiced mounting micas in different 

orientations.  Samples were mounted on the basal pinacoid (a axis) and on the ‘book end’ (b or c 

axis).  When mounted on the ‘book end’ the grains polished well.  Those grains mounted on the 

basal pinacoid had varying success in polishing.  Micas that did not polish well on the basal 

pinacoid may have been unintentionally placed on an angle.  More work is needed to determine if 

mica orientation has any significant influence on the stability or consistency of analytical 

measurements.       

2.3.3.  Mannitol 

To reduce boron contamination, I treated all samples with a 1.82% mannitol solution 

(after Williams et al., 2001).  The samples were submerged in the solution and were sonnified for 

at least an hour.  They were left to soak for 15-24 hours.  The samples were then removed from 

the mannitol and sonnified in boron free water for about ten minutes.  The samples were then 

doused with boron free water to remove any mannitol crystals that may have formed over 

duration of the treatment.  The samples were dried in the oven ~150ºC.  
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After all necessary decontamination steps are taken a gold sputter coat is applied to the 

surface of the sample using a sputter coater.  The sputtered gold coat should be 20-40nm thick 

(http://sims.ess.ucla.edu/resources/SAMPLEPREP.php).    

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

19!

CHAPTER 3.  ANALYTICAL METHODS 

 

3.1.  Secondary ion mass spectrometry 

3.1.1.  Instrumental set up 

The concentrations and isotopic compositions of boron in phlogopite, amphibole and 

coexisting anhydrous assemblages were measured using the Cameca IMS 6f SIMS at Arizona 

State University.  Analyses were performed using a 16O- primary ion beam accelerated to 

!9.0keV with a beam current of 15-50 nA focused to a 30-50 µm spot. Ion intensities were 

measured after 5-10 minutes of pre-sputtering in an effort to reach steady-state conditions and 

reduce the effects of surface contamination.  The transfer optics were set to produce an imaged 

field of ~60 µm with a field aperture of 750 µm diameter was placed on the ion optical axis.  11B+ 

and 10B+ were measured for 4 and 16 seconds per cycle, respectively, and integrated over 150-

350 cycles depending on boron concentration.  

The concentrations of targeted trace elements (Li, F, Ti, Rb, Sr, Zr, Nb, Ba, and Ta) were 

also determined for selected samples using the Cameca 6f SIMS following conventional energy 

filtering methods described by Zinner and Crozaz (1986) and Shimizu et al., (1978).   We used a 

16O- primary ion beam accelerated to !12.5 keV with a beam current of 20nA focused to 20-40 

µm diameter spot.  Ion intensities were measured after 5 minutes of sputtering to ensure steady 

state was reached.  A mass resolving power of ~300 was used with the same transfer optics as 

used for the isotope measurements.  All trace elements (with the exception of yttrium) were 

counted for 2 seconds per cycle, while yttrium was measured for 4 seconds per cycle. 

The mass resolving power is a measure of the ability to distinguish two peaks of slightly 

different mass-to-charge ratios in a mass spectrum. The resolution is defined by the ratio of the 

nominal mass to the actual mass of the targeted species minus the interfering species’ actual 

mass.  For the analyses here a MRP of ~1000 was required to resolve 10BH+ from 11B+ (Figure 3) 

and 30Si3+ from 10B+.  High mass resolution spectra were taken on the IMt-1 standard during the 
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set up of each analysis session.  With such boron concentrations often below 1 ppm it is essential 

to have the interfering species sufficiently resolved.   

 

 

 

Figure 4:  High-resolution mass spectrum of 11B+ with atomic mass units displayed on the X-axis 
and counts per second displayed on the Y-axis.  Note 11B+ is clearly resolved from the interfering 
specie 10BH+. 
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3.1.2.  Standardization 

All samples were standardized to IMt-1 illite clay with 240 ppm of boron and boron 

isotopic composition of !9‰ (Williams et al., 2001).  In earlier measurements of boron isototope 

standards (IMt-1, synthetic basaltic glass, haplobasaltic glass, and rhyolite glass) at the ASU 

SIMS lab, no effect of changing sample chemistry on the calibration factor for boron isotope 

measurements was observed.  This is consistent with earlier work by Chaussidon and Marty 

(1995).  However, analysis of NIST 612 glass standard reference material was an exception as a 

4‰ change in the isotope calibration was observed compared to the other materials (previously 

noted by Rosner et al., 2008). 

The concentrations of boron were obtained using IMt-1 as a standard.  Treating SRM 

NIST 612 as an unknown returned the bulk analyzed boron concentration within 5%, showing that 

any matrix effects were small compared to the precision of the analyses of mantle-derived 

materials.  

3.1.3.  Analytical Procedures 

The standard is used to determine the instrumental mass fractionation.  Multiple analyses 

are done to ensure instrumental stability and proper calibration.  Ideally an analysis is done on a 

flat surface away from the edge that is free of cracks or other obvious imperfections.  When 

moving to the unknown, it is important to be sure charging is compensated prior to executing the 

analysis. The energy spectrum was used to ensure there was a 40eV window.  Charging was 

manually compensated for throughout an analysis session.  This was a major challenge in using 

this technique because of the high current (30-50nA) being used for most analyses.  It was very 

important to be consistent in checking for charging and manually compensating for it by adjusting 

the energy window.   

In each analysis session, the 11B/10B ratio of IMt-1 standard was initially examined in 3-5 

points.  Comparing the measured ratio to the known value from bulk analyses allowed a 

calibration factor to be determined.  This factor corrects the isotope ratio for the fractionation of 

the two ions during sputtering, transmission, and detection of the secondary ion signal.  This 
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fractionation is commonly referred to as ‘instrumental mass fractionation.’  It is expected that the 

standard will give the same isotope ratio throughout the session, but it is not unusual to see a 

gradual change in this calibration factor with time, so the standard is run several times during the 

session.   

After calibrating, the unknown materials are analyzed.  For both standard and unknowns, 

it is important to make sure that any charging resulting from the interaction of the negatively 

charged primary ion beam with the insulating sample is compensated.  This is achieved by 

adjusting the position of the energy window to maximize the secondary ion intensity of the matrix 

ion (e.g. 28Si+ or 27Al+).  A consistent instrument set-up was also accomplished by conducting an 

energy spectrum of standard and unknown to ensure that the range of energy ions (energy 

window) was set at 40 eV.  Carefully checking for sample charging is extremely important to 

obtaining a reproducible results from session to session.   

Once an analysis is executed it is generally it runs for 50-500 cycles (depending on the B 

count rate) where 11B is counted for 4 seconds and 10B is counted for 16 seconds.  Over the 

course of the analysis the stability is monitored through the comparison of the predicted error 

(based on Poisson statistics) and the standard error (the cycle to cycle calculated error of the 

mean) of the 11B/10B ratio.   

Because of the low boron contents in the phases of interest, the secondary ion signals 

were low.  Ogliore et al. (2011) and Coath et al. (2013) showed that there is an intrinsic bias in 

the isotope ratio for low signals.  Ogliore et al. (2011) in particular found that this bias is reduced 

to negligible values with the signals for the two isotopes are integrated over the entire analysis 

and the ratio is calculated from the resulting sums.  When compared with the isotope ratio 

determined by averaging the ratios obtained for each cycle, a bias between the two shows up 

only when the count rate of 11B+ declines below 350 counts/s (Figure 5).  Because some of the 

analyses obtained for this study displayed count rates at this level and lower, the integrated ratio 

was nearly always used.   
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Ultimately, attempting to obtain good precision on microanalyses of boron-poor phases is 

limited by how many atoms of boron are consumed during the analysis.  In turn, this is limited by 

how quickly atoms of the micas are removed (a function of the primary beam intensity) and how 

long we make the analysis (how many cycles of measurement as described above).  In fact, 

many individual measurements have errors in !11B that are >5‰.  While this is much larger than 

conventional bulk analyses for boron isotopes (and many other stable isotopes), we can show 

some advantages of the microbeam approach.   

Consider two sets of data from Monastery megacrysts; one of them (MON22) showed 

large errors in individual analyses, but all of the analyses were within 2! of the mean, and is 

labeled as homogeneous.  Combining all the analyses into an average and standard error of the 

mean gives "29.4 ± 0.6‰ (Figure 7).  In this case, any of the analyses could be used to 

represent (with larger precision than the average of 10) the chemistry of this crystal.  In contrast, 

individual analyses of megacryst ROM-249 shows considerable scatter (Figure 7) and the error 

bars do not overlap.  Analyses 2-5 are spatially related (covering an approximate area of 10000 

µm2) but are variable.  Analyses 1 & 6 are in separate locations of the same phlogopite crystal.  

These data cannot be taken to represent one value because they are not within error of each 

other.  
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Figure 5:  The integrated ratio of 11B/10B divided by the average 11B/10B plotted against the 10B 
count rate, where the integrated ratio is the ratio of the summed counts and the average is the 
average of many (100 or more) individual boron isotopic ratios.  Here the difference between 
these approaches to calculating the average boron isotope ratio is evaluated bases on Ogliore et 
al. (2011) who found that in some cases averaging a number of ratios leads to an additive bias.  
This figure shows that below 350 counts/second of 10B the integrated ratio is better representative 
of the collected data.  The lower the B count rate the larger the effect on the ratio.  The analyses 
obtained in this study used the integrated ratio when the boron ion signal was low.   
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Figure 6:  !11B vs. Analysis number for two phlogopite megacrysts from Monastery (error bars are 
2").   Results for MON22 and ROM249 are discussed in the text.  Gray bar represents the 
average of MON22 analyses (#29.5 ± 1‰).   
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CHAPTER 4.  RESULTS 
 

4.1. Boron concentrations and isotopic compositions 

Boron concentrations and isotopic compositions of phlogopite samples measured in this 

study are summarized in Table I and Figure 7.  Garnet lherzolite phlogopites from Frank Smith, 

Matsoku and Kimberley display boron contents that range from 0.6 to 6 ppm.  The boron isotopic 

compositions of the phlogopites from garnet lherzolites vary between 2 and 10‰.  There appears 

to be no correlation between the boron content and isotopic composition of these samples.  

MARID samples have phlogopites with !11B around "10‰ and B concentrations ranging from 0.8 

to 4.5 ppm.  Also falling at "10‰ is the mica pyroxenite sample from Palabora.  Despite the 

similar boron isotopic values, the phlogopite associated with Palabora carbonatite is rich in boron 

relative to the rest of the sample set (9 ppm).  Phlogopite megacrysts from Monastery range from 

"14 to "30‰ in isotopic composition.  One megacryst was heterogeneous with !11B values 

ranging from "5 to "24‰ and B concentrations from 3 ppm to 0.6 ppm (Figure 7).  The 

homogenous Monastery megacrysts had an average !11B value around "30‰ and B 

concentrations of 0.5 ppm.  The garnet lherzolite and garnet harzburgite/websterite from 

Kimberley have similar boron concentrations (0.3-0.4 ppm).   The xenolith BFT-297 has a more 

complex petrologic history as it displays a garnet harzburgite pyroxene-rich section and a more 

orthopyroxene-rich websteritic section.  This sample shows a range of !11B values from "2 to 

"24‰.  The garnet lherzolite from Kimberley (BFT-404) has an average boron isotopic 

composition of "27‰ and a range of concentrations from 0.05 ppm to 0.1ppm.  Garnet 

harzburgites have very light !11B values ("18 to "30‰ on average) with low boron concentrations 

(0.03-0.05 ppm).  The olivine-rich garnet harzburgite (BFT147) had the lowest recorded boron 

concentration in this study (0.003 ppm) and we report no !11B value for this mica. 

     

4.2.  Trace element data from selected phlogopites 
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A variety of trace elements were analyzed for a selection of the phlogopite samples and 

summarized in Table II.  Pyrolite-normalized data are shown in Figure 8.  All of the studied 

samples follow the same general pattern with the largest variations over two orders of magnitude 

for Ti, Ba, and B.  The Monastery megacryst (MON22) is notably enriched in Li compared to the 

other micas.   

 

4.3. Boron isotopic composition of clinopyroxenes 

The results of B concentrations and !11B measured in clinopyroxene from garnet 

lherzolites and megacrysts, from Monastery, Palabora, Lace, and Kimberley, are summarized in 

Table III.  On a whole samples range in !11B values from "9‰ to "24‰ and concentrations vary 

from 0.07-0.3 ppm.  The two pyroxene-rich garnet lherzolites from Kimberley (BFT404; BFT405) 

had !11B values of "14‰ but with different B concentrations (0.07 ppm and 0.23 ppm, 

respectively).  The sub-calcic megacryst from the group II kimberlite Lace, LAC-236 is relatively 

light in !11B at "17.7‰, with low boron concentration (0.07 ppm).  However, the sub-calcic 

megacryst from Monastery (ROM73_DI16) has a heavier !11B value ("11.1 ± 2‰) with a B 

concentration (0.12 ppm) similar to but slightly higher than the sub-calcic Lace megacrysts (0.12 

ppm).  The calcic megacryst from Monastery have nearly 0.3 ppm B, which is the highest 

concentration among this sample set of clinopyroxenes.  Based on experiments (e.g. Davis and 

Boyd, 1966) sub-calcic crystals are presumed to crystallize early while calcic clinopyroxenes 

represent lower temperatures of formation (more evolved), which is supported by the boron data.  

The Cr-rich “Granny Smith” clinopyroxene megacryst (BFT104) stands out in this sample set with 

very light !11B ("23.7 ± 4‰). 
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Table I.  Boron abundance and isotopic composition of phlogopite from the subcontinental 
lithospheric mantle measured by SIMS. 

 
 

(a) boron isotopic compositions (!11B) are reported as the mean value with standard errors based on multiple 
analyses on phlogopite crystal(s). 

(b) boron concentrations calibrated against IMt-1, and synthetic basalt, haplobasalt, and rhyolite glass reported as 
the mean value with standard errors. 

Sample Source Rock type # of 
analyses 

Average 
!11Ba 

Average [B]b 

ppm 
73-105 Frank 

Smith 
Garnet lherzolite with 
secondary mica 

14 10.8±2 6±1 

BT-7 Kimberley Garnet lherzolite with 
primary mica 

4 10.6±2 0.8±0.3 

BD 1359 Matsoku Garnet-rutile lherzolite 
primary but unusual mica 

6 2.0±3 0.6±0.1 

BD 3130 Kimberley MARID  4 !9.7±1 0.8±0.02 

BD 3655 Kimberley MARID 50 !10.6±1 4.5±1 

PB_1 Palabora Mica pyroxenite 
 

4 !10.8±1 9±0.3 
 

ROM-249 Monastery Mica megacryst 6 !14.4±3 1.2±0.4 

BFT153 Kimberley Garnet harzburgite 1 !17.6±5 
 

0.06±0.01 
 

BFT104 Kimberley Clinopyroxene megacryst 
with mica inclusion—
Granny Smith 

7 !17.7±2 0.7±0.03 

BFT297 Kimberley Two parts:  Garnet 
harzburgite and garnet 
websterite with primary 
mica 

6 !17.9±4 0.3±0.01 

BFT141a Kimberley Graphite mica-bearing 
garnet harzburgite 

9 !17.9±2 0.05±0.003 

BFT405 Kimberley Pyroxene-rich garnet 
lherzolite 

10 !21.9±3 0.4±0.02 

BFT404 Kimberley Pyroxene-rich garnet 
lherzolite 

9 !26.9±2 0.09±0.01 

MON22 Monastery Mica megacryst 10 !29.5 ±1 0.5±0.01 

BFT137 Kimberley Mica garnet harzburgite 11 !31.1±2 0.03±0.002 

BFT147 Kimberley Olivine-rich garnet 
chromite harzburgite 

1 ---- 0.003±0.0006 



 
 

29!

 

Fi
gu

re
 7

:  
B

or
on

 c
on

te
nt

 v
s.

 !
11

B
 v

al
ue

s 
fo

r i
nd

iv
id

ua
l p

hl
og

op
ite

 a
na

ly
se

s 
(e

rr
or

 b
ar

 is
 1
")

.  
A

ll 
sa

m
pl

es
 h

av
e 

be
en

 g
ro

up
ed

 
ac

co
rd

in
g 

to
 ro

ck
 ty

pe
 a

nd
 g

eo
ch

em
is

try
.  

S
am

pl
es

 p
lo

tte
d 

in
 g

re
en

 a
re

 in
te

rp
et

ed
 a

s 
be

in
g 

in
flu

en
ce

d 
by

 la
te

 s
ta

ge
 p

ro
ce

ss
es

 
in

 th
e 

up
pe

r m
an

tle
 o

r c
ru

st
 b

as
ed

 o
n 

pe
to

gr
ap

hi
c 

ev
id

en
ce

.  
B

lu
e 

(M
A

R
ID

) a
nd

 o
ra

ng
e 

(p
yr

ox
en

ite
) s

am
pl

es
 a

re
 n

ea
r 

‘c
an

on
ic

al
’ m

an
tle

 v
al

ue
s 

(!
11

B
:  

~-
10

‰
). 

 L
ig

ht
 b

lu
e 

sy
m

bo
ls

 re
pr

es
en

t r
el

at
iv

el
y 

yo
un

g 
m

et
as

om
at

ic
 o

ve
rp

rin
tin

g 
ba

se
d 

on
 

m
od

es
 o

f p
yr

ox
en

e 
an

d 
tra

ce
 L

IL
E

 a
nd

 H
FS

E
 a

bu
nd

an
ce

s.
  D

at
a 

pl
ot

te
d 

in
 b

la
ck

 a
re

 m
eg

ac
ry

st
s 

fro
m

 th
e 

M
on

as
te

ry
 a

nd
 

B
ul

tfo
nt

ei
n 

ki
m

be
rli

te
s.

  S
am

pl
es

 p
lo

tte
d 

in
 p

in
k 

ar
e 

m
ic

as
 fr

om
 p

er
id

ot
ite

s 
th

at
 h

av
e 

ex
pe

rie
nc

ed
 th

e 
le

as
t M

es
oz

oi
c 

m
et

as
om

at
is

m
, b

ut
 w

er
e 

in
flu

en
ce

d 
by

 m
et

as
om

at
is

m
 in

 th
e 

A
rc

he
an

 (B
el

l e
t a

l.,
 2

00
5)

. 
!



 
 

30!

 

Sa
m

pl
e 

 
Si

O
2 

(w
t%

) 
Li

 
F 

Ti
 

R
b 

Sr
 

Y 
Zr

 
N

b 
B

a 
H

f 
Ta

 
B

 
!

11
B

 
M

g 
# 

B
FT

29
7 

41
.2

 
0.

96
 

±0
.0

1 
41

50
 

±4
0 

77
50

 
±1

60
 

32
1 

±7
 

9.
5 

±0
.1

 
0.

03
 

±0
.0

02
 

4.
5 

±0
.2

 
6.

2 
±0

.2
 

83
7 

±1
3 

0.
16

 
±0

.0
2 

0.
88

 
±0

.0
5 

0.
3 

±0
.0

1 
!1

7.
4 

±3
.8

 
95

.6
 

B
FT

14
7 

41
.8

 
0.

59
 

±0
.0

1 
28

00
 

±3
9 

73
6 

±4
 

27
4 

±1
 

7.
1 

±0
.3

 
0.

02
 

±0
.0

03
 

7.
9 

±0
.1

 
46

.1
 

±0
.3

 
85

0 
±8

 
0.

28
 

±0
.0

1 
2.

8 
±0

.2
 

0.
00

3 
±0

.0
00

6 
 

96
.1

 

B
FT

14
1a

 
40

 
0.

62
 

±0
.0

2 
37

70
 

±3
30

 
20

6 
±0

.6
 

19
5 

±4
 

56
 

±1
1 

0.
03

 
±0

.0
03

 
5.

8 
±0

.8
 

27
.5

 
±0

.2
 

92
60

 
±4

85
 

0.
44

 
±0

.0
2 

1.
81

 
±0

.1
5 

0.
05

 
±0

.0
03

 
!1

7.
9 

±2
.5

 
96

.4
 

B
FT

15
3 

40
.0

 
 

0.
51

 
±0

.0
5 

15
10

 
±4

9 
15

7 
±2

 
21

3 
±1

 
40

 
±5

 
0.

02
5 

±0
.0

03
 

5.
8 

±0
.3

 
18

.9
 

±0
.7

 
66

60
 

±5
25

 
0.

45
 

±0
.0

7 
1.

59
 

±0
.1

2 
0.

06
 

±0
.0

1 
!1

7.
6 

± 
5 

96
.2

 

B
FT

13
7 

41
.9

 
0.

53
 

±0
.0

4 
66

70
 

±3
30

 
56

4 
±5

 
23

5 
±1

 
6.

8 
±0

.2
 

0.
01

6 
±0

.0
04

 
3.

95
 

±0
.0

8 
12

.4
 

±0
.2

 
44

6 
±1

3 
0.

08
 

±0
.0

2 
0.

74
 

±0
.1

0 
0.

03
 

±0
.0

02
 
!3

1.
1 

±2
.3

 
96

.4
 

B
FT

40
4 

~4
1*

 
1.

56
 

±0
.1

3 
16

40
 

±2
7 

13
90

 
±2

1 
23

5 
±5

 
13

5 
±2

 
0.

11
1 

±0
.0

03
 

4.
3 

±1
.4

 
15

.3
 

±0
.1

 
30

72
 

±2
6 

0.
28

 
±0

.0
1 

1.
19

 
±0

.0
2 

0.
09

 
±0

.0
1 

!2
1.

8 
±3

.2
 

n.
a.

 

B
FT

40
5 

~4
1*

 
1.

40
 

±0
.1

1 
44

40
 

±8
9 

11
30

0 
±9

6 
37

7 
±1

0 
10

.3
 

±0
.3

 
0.

04
7 

±0
.0

09
 

6.
2 

±0
.6

 
19

.8
 

±0
.3

 
76

4 
±7

7 
0.

19
 

±0
.0

4 
1.

17
 

±0
.1

4 
0.

4 
±0

.0
2 

!2
6.

9 
±2

.4
 

n.
a.

 

M
O

N
22

 
41

.3
 

5.
5 

±1
.1

 
78

90
 

±1
75

 
71

60
 

±2
0 

63
3 

±5
 

7.
6 

±0
.8

 
0.

03
3 

±0
.0

07
 

7.
5 

±0
.2

 
11

.9
 

±0
.2

 
20

5 
±1

 
0.

29
 

±0
.0

3 
0.

78
 

±0
.0

5 
0.

5 
±0

.0
1 

!2
9.

5 
±0

.6
 

87
.9

 

   

Ta
bl

e 
II:

  T
ra

ce
 e

le
m

en
ts

 o
f s

el
ec

te
d 

ph
lo

go
pi

te
 s

am
pl

es
 re

po
rte

d 
in

 p
pm

 w
ith

 1
! 

er
ro

rs
.  

*S
iO

2 c
on

te
nt

 e
st

im
at

ed
.!



 
 

31!

 
 

 
 
 
 
 

 
 
 
Figure 8.  Trace element data from 8 phlogopite samples.  The data are normalized to pyrolite 
values as reported in McDonough and Sun, 1995.   
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 BFT-297:  Garnet harzburgite/webserite 
(Kimberley) 
BFT-147:  Garnet harzburgite (Kimberley) 

BFT-141a:  Garnet harzburgite (Kimberley) 

BFT-153:  Garnet harzburgite (Kimberley) 

BFT-137:  Garnet harzburgite (Kimberley) 

MON22:  Phlogopite megacryst (Monastery) 

BFT-404:  Garnet lherzolite (Kimberley) 
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Table III.  Clinopyroxene samples measured in this study.  Arranged according to !11B values. 
Standard deviation and standard errors are reported for !11B and B concentrations, respectively.  

Sample Location Type # of 
analyses 

Average 
!11B 

Average [B] 
ppm 

ROM-
270_CI-11 

Monastery 
 

Cpx megacrysts 
coexisting with 
ilmeninte 
Sub-Ca 

4 -8.9  
± 6 ‰ 

0.16 ± 0.01 

ROM-
273_DI-16 

Monastery Sub-calcic 
megacryst 

12 -11.1  
± 6‰ 

0.12 ± 0.01 

ROM-
273_DI-10 

Monastery Calcic megacrysts 6 -13.6 
 ± 3‰ 

0.28 ± 0.03 

BFT-405 Kimberley Pyroxene rich 
garnet lherzolite 

2 -14.1  
± 6‰ 

0.23 ± 0.03 

BFT-404 Kimberley Pyroxene rich 
garnet lherzolite 

4 -14.2  
± 10‰ 

0.07 ± 0.01 

PB-1 Palabora Mica pyroxenite 4 -14.5  
± 2‰ 

0.9 ± 0.03 

LAC-236 Lace Sub-calcic 
megacrysts 

10 -17.7  
± 5‰ 

0.07 ± 
0.003 

BFT-104 Kimberley Granny Smith 
Megacryst 

4 -23.7  
± 4‰ 

0.1 ± 0.03 
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CHAPTER 5.  DISCUSSION 

 
5.1. Boron isotope systematics of the Kaapvaal Craton mantle lithosphere 

The boron data set can be characterized in terms of three end members:  (1) high boron 

concentrations with heavy and variable isotopic compositions, (2) low intrinsic boron with 

relatively light isotopic signatures and (3) compositions indistinguishable from estimates of the 

primitive mantle.  Much of the data from this study define a broadly linear trend interpreted here to 

represent mixing between two or more of these end-members, which we take to represent distinct 

B-reservoirs.  Melt-depletion, re-fertilization, subduction, metasomatism, and near surface 

alteration have variably affected the samples falling along this trend, and these influences are 

discussed below.  

 

5.2. “Primitive mantle” B isotope compositions and their significance 

The present study shows that several distinct rock types from the SCLM including MARID 

metasomatites from Bultfontein and mica pyroxenite associated with carbonatite magma from 

Palabora, and subcalcic clinopyroxene megacrysts from Monastery display similar boron isotopic 

composition as the primitive mantle (!11B ~-10‰) (Figure 9). 

It is noteworthy that these comprise some of the most B-rich materical (except those B-

rich micas and serpentine obviously affected by late-stage fluid-alteration, as described below).  

These are therefore samples whose B-isotope compositions appear to be dominated by a 

convecting mantle component that may have its origin in relatively volatile-rich, poorly degassed 

mantle. Although geochemical studies of basalts previously suggested that pristine reservoirs of 

primitive mantle may no longer exist on Earth (Hoffmann, 1988; Hoffmann, 1997), this topic is 

presently under review (Jackson et al., 2010; Jackson and Jellinek, 2013).  Nevertheless, it 

appears that some lithospheric metasomatites reflect derivation from a source containing juvenile 

volatiles with primitive-mantle-like !11B.  Furthermore, it appears that the B-isotopic composition 

of this material has remained unchanged since ~2 Ga, the age of Palabora.  The association of 
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these !11B values with kimberlite-related samples implies that group I kimberlite magmas prior to 

lithospheric interaction are characterized by primitive !11B values similar to those of OIB.  Isotopic 

studies of Kaapvaal kimberlites have suggested that these magmas formed by the hybridization 

with continental lithosphere of melts derived from subducted oceanic crust components within a 

deep plume source (Janney et al., 2002), similar to models advanced recently for many OIB 

(Sobolev et al., 2007).  Because such subducted crust would be predicted to be highly depleted in 

B with low !11B, these results suggest that instead B in kimberlites (and by extension OIB) is 

dominated by a component derive from the ambient plume matrix material.  Thus, it is concluded 

that subduction of ocean crust does not affect significantly the B budget of the deep mantle, a 

conclusion reached previously for H as well (Dixon et al., 2002).  This is also consistent with the 

lack of evidence for a secular evolution in the B isotope composition of deep-seated magmas. 
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Figure 9:  Boron content and isotopic composition of coexisting minerals and megacrysts. 
Coexisting mineral pairs connected with dashed lines suggest B isotope matrix effects < 5‰. Cr-
poor cpx megacrysts from kimberlite, MARID xenoliths, and the mica pyroxenite from the 
Palabora carbonatite complex all have !11B overlapping the canonical mantle value of -10‰. The 
Granny Smith (Cr-rich) megacryst from Kimberley (not shown) has lower !11B reflecting 
incorporation of B from old metasomatized subcontinental lithospheric harzburgite. Minerals from 
MARID and carbonatite samples have about an order of magnitude higher B content than 
kimberlite megacrysts. Shaded region represents mantle value -10 ± 2‰. 
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5.3. Heavy !11B Signatures 

Heavy and variable !11B values coupled with high boron concentrations are observed in 

some micas.  These micas also display petrographic features indicating a secondary origin.  For 

example, mica in garnet lherzolite 73-105 from Frank Smith displays variable boron (1-15 ppm) 

and heavy boron isotopes (-3 " +20‰) (see Table I and Figure 7).  This sample is also 

characterized by serpentine veins and kelyphite (see section 2.2.1. for more details).  A garnet-

rutile lherzolite (BD1359), from Matsoku, has “primary mica with some unusual features” 

according to Delaney et al. (1980) but the mica in this rock contains 0.3 to 2 ppm B and !11B near 

0‰, clearly distinguished from the primitive mantle estimates.  The mica in the garnet lherzolite 

from Bultfontein (BT-7) was labeled as ‘primary’ based on petrographic textures described by 

Delaney et al. (1980).  However, these micas have B contents that vary from 0.3 to 1.7 ppm and 

B isotopic compositions between +7.7‰ and +13.9‰.  The B isotopic composition of the micas in 

these samples is, on average, 20‰ heavier than the primitive mantle values.   

Along with primary and secondary mica, the peridotites in this study also contain veins of 

serpentine.  In this study we analyzed serpentine from one garnet lherzolite xenolith containing 

texturally secondary mica (73-105; mica described in the previous section).  The serpentine in 

this sample had !11B values ranging from +10‰ to +30‰ and high B concentrations (30-200 

ppm).  Serpentines and serpentinized rocks are commonly reported to have heavy !11B values 

and variably enriched in boron (Spivack and Edmond, 1987; Chaussidon and Marty, 1995; 

Scambelluri and Tonarini, 2012; Figure 2).  Spivack and Edmond (1987), for example, measured 

!11B and B concentrations of serpentinized peridotites that range from 8.3 to 12.6‰ and 50-81 

ppm, respectively.  The serpentinization of the peridotites was suggested to occur at low 

temperatures at shallow depths.  These authors concluded that the high B concentrations 

measured in these altered peridotites is almost entirely secondary as the concentrations of B in 

pristine peridotites are extremely low (#0.1ppm) (Spivack and Edmond, 1987).  Our results are 

consistent with these previous observation and interpretations, namely that serpentinizing fluids 

associated with kimberlite emplacement carry high concentrations of isotopically heavy B.  Most 
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minerals in xenoliths are either inert to the effects of such fluids or display clear evidence of low-

temperature reaction assemblages (such as serpentine veins in olivine).  Phlogopite undergoes a 

more subtle form of alteration in which the potassium is leached from the mica structure to form 

patches of a magnesian phyllosilicate phase within the original phlogopite crystal outline (Luth, 

2003).  It is possible that isotopic exchange of elements like B and H in micas may occur even 

before associated chemical effects are evident, with such alteration by fluids plausibly also 

affecting phlogopite prior to surface emplacement.  Late-stage fluids related to kimberlite 

emplacement, as well as the boron they contain, may have various possible origins, including 

deuteric fluids derived by exsolution from the magma itself, as well as crustal fluids with varied 

histories.  The heavy !11B values that seem to characterize these late-stage alteration products 

suggest that there is a speciation-dependent isotopic fractionation of B in the parent fluids, similar 

to that responsible for the overall enrichment of 11B in seawater. 

As described in section 3.1.3 (Analytical Procedures), one of the Monastery phlogopite 

megacrysts was inhomogenous.  While the 2 mm crystal displayed textures of shear deformation 

and kink banding, it was otherwise unremarkable.  However, when the !11B for these 6 analyses 

are plotted as a function of the reciprocal boron concentration (Figure 10), we observe a linear 

correlation most easily explained as a mixing trend between an isotopically heavy, B-rich source 

(possibly a crustal fluid) and a reservoir with relatively low B concentrations and light boron 

isotopic values similar to the homogeneous megacrysts (Figure 10).  This example shows clearly 

the potential of late-stage processes to affect the B geochemistry of micas and emphasizes the 

need to determine both concentrations and !11B values from otherwise petrographically pristine 

grains when seeking original mantle !11B and B concentrations. 
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Figure 10. !11B vs. 1/B of two Monastery mica megacrysts showing a clear mixing trend between 
two reservoirs. One megacryst is homogeneous, with low B content and light isotope ratios while 
another is influenced by a B-rich, isotopically heavy reservoir. Error bars 1", isotope 
measurements re-plotted from Figure 7. 
 



 
 

39!

5.4. Light Boron Isotopic Signatures 

Micas from seven upper mantle xenoliths displayed lower boron concentrations than the 

other samples (with some overlap—see Figure 7) and boron isotope ratios much lighter than the 

canonical primitive mantle value.  These include the homogeneous mica megacrysts shown in 

Figure 10, and the micas in a suite of six peridotite xenoliths interpreted to have been subjected 

to melt-depletion and metasomatism in the Archean (Bell et al., 2005; Simon et al., 2007).  One of 

these samples (BFT-147) contained too little boron to obtain a precise isotope ratio.  The range in 

!11B of this group is -2 " "45‰, with a mean !11B of "25‰ (Figure 11).  Such isotopically light 

isotopic signatures cannot simply be explained by temperature dependent fractionation because 

the fractionation factor of B at T # 600ºC is insignificant and fails to produce a large enough 

fractionation if one assumes an original isotopic composition similar to that of primitive mantle 

estimates.  It is possible that light boron isotopic values measured in this study record a mixing 

between an extremely light !11B reservoir and a separate reservoir similar to the canonical 

primitive mantle value, such as group I kimberlite, to produce the values seen here.  The lightest 

!11B values recorded in the literature are ~"30‰ in non-marine evaporate and tourmalines 

(Barth, 1993) and coals with !11B as light as "70‰ (Williams et al., 2004).  These extremely light 

values are, however, associated with crustal organic sources and are B-rich relative to the 

concentrations measured in this study.  A mixing model, using this as a reservoir, is unlikely due 

to generally low mantle B and the lack of organic reservoirs extant at depth.  Thus I consider the 

alternative hypothesis that these signatures are related to subduction processes. 

Subducting slabs experience a progressive loss of hydrous fluids with increasing P and 

T. Due to the favorable bonding environment of 11B in hydrous fluids over silicate melts or 

minerals, this fluid is isotopically heavy relative to residual solid phases in the slab itself (Wunder 

et al., 2005; Hervig et al., 2002).  This progressive loss of 11B to the departing fluid has been 

observed in island arc volcanic systems (Rosner et al., 2003; LeVoyer et al., 2008) and exhumed 

blueschists (Peacock and Hervig, 1999).  Supporting this concept is the observation that arc 

magmas show decreasing !11B with increasing distance from the trench. It is therefore predicted 
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that residual B-bearing minerals in the residual slab have increasingly negative !11B values 

(maybe as light as "20 to "30‰) and lower abundances of boron (Figure 1).  The precise nature 

of the mobile phase responsible for Archean metasomatism is unclear and plausibly includes both 

siliceous melts and dense hydrous fluids (Rudnick et al., 1994; Ireland et al., 1994; Bell et al., 

2005).  The probability that Archean slabs routinely underwent melting that metasomatized 

Archean lithosphere is high (Barth et al., 2001; Rapp et al., 2010).  Thus, isotopically light B could 

be derived from largely dehydrated Archean subducted slabs via melting at depth.  Continued 

dehydration may also be possible, as we do not know when the slab completely degasses.  We 

propose that such 11B-depleted melts and fluids from Archean slabs interacted with the Kaapvaal 

lithospheric mantle to create the isotopically light orthopyroxene-rich, phlogopite, bearing 

harzburgites and depleted lherzolites that characterize much of the Kaapvaal craton mantle 

xenolith suite.   

In considering the possibility that fluids evolved from a mostly-dehydrated slab are 

responsible, we point to sub-calcic garnet harzburgite (BFT147) containing phlogopite with a B 

concentration of 0.003 ppm as shown in Figure 11.  This olivine-rich harzburgite has been 

interpreted by Bell et al. (2005) as a possible protolith to the more pyroxene-rich metasomatic 

products generated by Archean subduction-related metasomatism (Kelemen et al., 1998; Simon 

et al., 2007).  These ancient metasomatic products have been variably exposed to later 

metasomatism by Mesozoic kimberlite-related melts and fluids that add further clinopyroxene and 

phlogopite, frequently giving rise to isotopic disequilibrium among mineral phases of different 

generations (e.g., Richardson et al., 1985).  However, we have used the geochemical arguments 

from Bell et al. (2005) to distinguish the samples dominated by a subduction-related component 

versus those dominated by a kimberlitic component to see if the phlogopites containing 

significantly lighter boron isotopic values can be similarly correlated.  Micas from such garnet 

harzburgites are represented by the circle, triangle, and diamond symbols in Figure 11.  These 

samples along with one garnet lherzolite, represented by the square symbols, have light boron 
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isotope ratios (!20 to !30‰) and very low B concentrations ("0.1ppm) but from 10-100X the B 

content of the modeled protolith (BFT147). 

There is a weak positive correlation between boron content and #11B (Figure 11).  This 

can be interpreted as either from an alteration process similar to that shown in Figure 10, or 

possibly Mesozoic overprinting metasomatism.  The large uncertainty in #11B measurements 

when the boron content is so low makes it difficult to distinguish between mixing such as in Figure 

10 (which we believe is a relatively shallow phenomenon) and metasomatism in the mantle.  

However, because mixing of crustal boron (e.g., the high-B, positive #11B end member in Figure 

10) represents extremely high B contents and heavy isotope ratios, any significant addition of 

crustal boron to these samples would be easily identified.  Thus, phlogopite from samples 

BFT405 and BFT297 are viewed as samples ‘transitional’ between a highly depleted component 

with light #11B and low B concentrations the addition of boron with somewhat heavier isotopic 

ratios (approaching #11B: !10‰).  This transition is more apparent through observing the 

individual analyses than the average.  Figure 11 shows additional chemical differences between 

metasomatic lineages.  The samples we are interpreting as representing subduction related 

(Archean) metasomatism fall near the y-axis (high Ba/Ti ratios).  BFT405 and BFT297 plot along 

the x-axis with low Ba/Ti ratios characterizing kimberlite-related micas.  The connection with 

subduction relates to a higher solubility of Ba in hydrous fluids than Ti (Spera et al., 2007) thus 

leading to high Ba/Ti ratios where Ba-rich fluids interact with Ti-poor refractory peridotite to form 

phlogopite.  In contrast, the melts responsible for kimberlites and carbonatites are derived from 

fertile sources in the convecting mantle that are depleted in fluid-compatible elements (such as 

boron) and show higher Ti concentrations.  However, none of these micas show average #11B 

greater than ~!18‰ (on average), suggesting that there may be some heterogeneity in the boron 

isotopic composition of different kimberlite magmas.   

The extreme depletion of B in ancient subducting slabs, which is indicated by the low B 

concentrations and very light #11B values in Archean metasomatic products, suggests that very 

little B was returned to the deep mantle by subduction at this time.  However, the depleted SCLM 
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apparently contained even less boron, allowing boron added by subduction related fluids to be 

detected by analyzing the phlogopites formed during those metasomatic events.  The 

metasomatism from Archean subduction-related fluids has !11B values between ~"30 and "20‰, 

with enrichments in B content (relative to the modeled 0.003 ppm in depleted micas) of 10-100, 

while still being below 1 ppm.  This observation is consistent with that made above on the 

unchanging !11B composition of the convecting mantle with time, and the concentration of mantle 

B in ambient deep mantle, rather than in its recycled components. 
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Figure 11.  !11B plotted against B abundances of phlogopite from Kimberley. Average !11B and 
concentration are plotted in large solid symbols and individual analyses are plotted in open 
symbols.  Garnet harzburgites (gt hrz), garnet lherzolites (gt lhrz), garnet websterite (gt web).  
Error bars 1".  Arrow indicates B concentration measured in sub-Ca garnet harzburgite 
(proposed protolith). 
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Figure 12:  Concentrations of Ba plotted against Ti in phlogopite from Kimberley metasomatic 
xenoliths illustrating geochemical distinctions among metasomatic lineages.  Archean 
harzburgites plot along the y-axis with high Ba/Ti with subduction related signature. Kimberlite-
related metasomatic micas plot with low Ba/Ti along the x-axis. Unpublished data from Gregoire 
is plotted in the orange symbols.  The larger symbols represent samples from this study (BFT-
137, BFT-147, BFT-153, BFT-141a, BFT-297, MON22, BFT-404, and BFT-405).  Data from Bell 
et al., 2005 (BFT-137) is represented by blue squares.  Unpublished garnet harzburgite data is 
presented in red squares.   
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CHAPTER 6.  CONCLUSIONS 

1. The diversity of the samples derived from the SCLM reflects a complex history of melt 

depletion and re-enrichment, with mantle phlogopites displaying a wide, previously 

unrecognized range in B contents and !11B for the mantle. 

2. Fluid processes during emplacement and/or alteration of the kimberlite have given rise 

to serpentine and secondary mica in mantle xenoliths with much higher B concentrations 

and heavier !11B values than those of primary mantle minerals. 

3. After Archean melt-depletion of SCLM, Archean/Proterozoic metasomatism added trace, 

but variable, amounts of isotopically light boron ("30‰), relative to primitive mantle 

("10‰).  This boron was likely derived from extensively dehydrated, B-depleted 

subducting ocean lithosphere. 

4. More recent metasomatism, related to the genesis and eruption of Mesozoic kimberlites, 

has overprinted subduction-related metasomatism.  This overprinting results in higher 

boron contents and isotope ratios more similar to the canonical primitive mantle. 

5. Data from the 2Ga Palabora carbonatite provide no evidence for secular evolution of 

mantle !11B in the convecting mantle. 

6. The B isotope geochemistry of metasomatic products in the SCLM supports inferences 

from the studies of water in oceanic basalts that recycled oceanic lithosphere entering 

the deep mantle is extensively devolatilized but is recognizable via analyses of trace 

phlogopite in previously depleted SCLM. 
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Sample Mount Date File Name !11B corr. !11B Int Std. Err. Mean (%) B ppm
phlog* 1_1 23.3 23.3 0.07
phlog* 1_2 25.3 25.2 0.10
phlog 1_3 -3.8 -5.1 0.29 0.646
phlog 1_4 13.0 13.0 0.05 10.780
phlog 1_5 16.8 16.7 0.06 7.758
phlog 1_6 21.2 21.4 0.08 6.040
phlog 1_7 19.6 19.5 0.08 6.051
73-105 phlog 2_1 3.6 3.2 0.18 16.475
73-105 phlog 2_2 6.5 5.8 0.20 3.094
73-105 phlog 2_3 14.3 13.8 0.17 4.118
73-105 phlog 2_4 11.0 11.3 0.18 4.018
73-105 phlog 2_5 8.8 8.4 0.15 4.525
73-105_PHG_1 14.9 15.4 0.11 8.302
73-105_PHG_2 4.5 4.2 0.17 3.165
73-105_PHG_3 3.9 2.3 0.21 1.674
73-105_PHG_4 16.3 16.3 0.08 9.797

BT-7 PHG_1 7.6 8.5 0.38 1.829
BT-7 PHG_2 12.7 11.1 0.42 0.273
BT-7 PHG_3 13.9 14.9 0.32 0.538
BT-7 PHG_4 8.0 9.0 0.28 0.451

1359 PHG_1 7.2 10.4 0.50 0.407
1359 PHG_2 -0.8 1.9 0.31 0.330
1359 PHG_3 1.6 0.9 0.24 0.481
1359 PHG_4 3.5 3.0 0.39 0.452
1359 PHG_5 -10.0 -7.9 0.26 0.717
1360 PHG_6 10.3 10.7 0.25 0.999

RM@1 -11.5 -11.7 0.15 0.780
RM@2 -9.6 -10.1 0.14 0.777
RM@3 -8.0 -8.1 0.16 0.703
RM@4 -9.8 -9.7 0.17 0.760

PAL_ph_2 -11.6 -11.6 0.08 7.79
PAL_ph_3 -8.5 -8.5 0.11 8.85
PAL_ph_4 -12.5 -12.5 0.11 8.52
PAL_ph_5 -10.4 -10.4 0.09 8.86

ROM-249_PH-01_1 -24.5 -25.0 0.25 0.585
ROM-249_PH-01@1 -15.4 -15.7 0.18 0.791
ROM-249_PH-01@2 -23.0 -23.4 0.22 0.655
ROM-249_PH-01@3 -9.0 -9.2 0.15 1.293
ROM-249_PH-01@4 -4.5 -4.5 0.10 2.839
ROM-249_PH-01_5 -9.8 -10.2 0.21 0.734

MGMt-2_BFT153 4/18/13 BFT-153_1 -14.81 -17.59 0.51 0.06

104_1 -15.12 -15.30 0.25 0.606
104_2a -14.92 -14.78 0.40 0.513
104_2b -9.18 -9.66 0.38 0.645
104_3 -19.67 -19.91 0.16 0.713
104_4 -22.09 -22.52 0.28 0.752
104_5 -23.39 -23.26 0.21 0.519
104_6 -19.72 -19.85 0.26 0.671

BFT-297_1 -9.71 -10.67 0.24 0.230
BFT-297_2 -1.97 -2.70 0.24 0.209

9/27/13

MGMt-3_PB_1

2/22/13

MGMt-1_ROM249

11/7/13

MGMt-3_BFT104

4/18/13

MGMt-2_BFT297

BD3130

PTS-2_BD1359

PTS-2_BT-7

PTS-1_73-105

9/26-27/2012

5/15/13

8/30-31/12

10/29/12

10/29/12
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Sample Mount Date File Name !11B corr. !11B Int Std. Err. Mean (%) B ppm
BFT-297_1 -22.08 -22.75 0.18 0.270
BFT-297@1 -24.76 -25.29 0.50 0.328
BFT-297@2 -21.20 -21.88 0.18 0.293
BFT-297@3 -24.74 -24.92 0.19 0.291

141A_1 -22.94 -30.04 0.51 0.030
141A_2 -2.49 -7.79 0.52 0.028
141A@1 -16.19 -22.81 0.51 0.029
141A@2 -9.46 -15.60 0.52 0.033
141A@3 -21.41 -26.53 0.51 0.032
141A@4 -5.59 -16.43 0.70 0.031
141A@5 4.02 -8.37 0.71 0.034
141A@6 -14.06 -23.30 0.59 0.050
141A_8 -14.77 -17.74 1.52 0.048
141A_9 -17.05 -16.14 0.53 0.048

BFT405 F_1 -38.96 -40.25 0.44 0.498
BFT405 F@1 -22.30 -24.80 0.25 0.357
BFT405 F@2 -20.17 -22.87 0.26 0.386
BFT405 F@3 -21.66 -24.36 0.26 0.405
BFT405 F@4 -19.59 -21.66 0.26 0.354
BFT 405 E_1 -39.95 -40.45 0.32 0.451
BFT 405 E@1 -16.07 -16.84 0.24 0.305
BFT 405 E@2 -13.31 -14.14 0.23 0.348
BFT 405 E@3 -15.89 -17.53 0.26 0.354
BFT 405 E@4 -10.80 -11.20 0.22 0.405

BFT 404 E_1 -32.32 -33.12 1.19 0.134
BFT 404 E@1 -29.53 -31.51 0.47 0.088
BFT 404 E@2 -21.78 -25.87 0.48 0.076
BFT 404 E@3 -24.40 -28.12 0.50 0.078
BFT 404 E@4 -9.11 -11.68 0.53 0.073
BFT 404 E@5 -36.63 -36.73 0.60 0.060
BFT 404 E@6 -19.70 -22.46 0.56 0.051
BFT 404 E@7 -25.66 -25.30 0.45 0.098
BFT 404 E@8 -24.74 -27.04 0.40 0.125

MON-22_1CT &@1 -28.65 -29.07 0.20 0.537
MON-22_@2 -26.19 -26.82 0.23 0.450
MON-22_@3 -31.25 -31.84 0.23 0.448
MON-22_@4 -28.22 -28.85 0.22 0.464
MON-22_@5 -28.64 -29.06 0.22 0.483
MON-22_@6 -31.98 -32.71 0.24 0.459
MON-22_@7 -31.76 -32.19 0.22 0.525
MON-22_@8 -31.03 -31.80 0.23 0.478
MON-22_@9 -26.95 -27.73 0.26 0.411
MON-22_10 -29.98 -30.54 0.31 0.423

BFT-137_1 -39.66 -45.63 0.48 0.031
BFT-137_2 -21.12 -7.45 0.34 0.129
BFT-137_3 -36.76 -37.17 0.42 0.051
BFT-137-2_1 -32.58 -40.21 0.82 0.025
BFT-137-2_@1 -58.95 -62.83 0.45 0.038
BFT-137-2_@2 -28.40 -30.97 0.49 0.025
BFT-137-2_@3 -31.74 -36.53 0.54 0.024
BFT-137-2_@4 -21.14 -23.42 0.54 0.029
BFT-137-2_@5 -37.29 -40.36 0.52 0.024
BFT-137-2_@6 -20.88 -22.35 0.47 0.029
BFT-137-2_@7 -29.16 -31.72 0.46 0.035

MGMt-2_BFT137

5/13/13

6/13/13

6/13/13

MGMt-2_BFT297

4/18/13

MGMt-2_BFT141a

2/22/13

10/25/12

Mt-168_BFT-405

10/25/12

Mt-168_BFT404

MGMt-1_MON 22
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Sample Mount Date File Name !11B corr. !11B Int Std. Err. Mean (%) B ppm
BFT-137-2_@8 -20.96 -23.08 0.51 0.033

MGMt-2_BFT147 4/18/13 BFT-147-P1_1 -157.21 -202.52 4.17 0.004

MGMt-1_SanCar_1 2/22/13 SanCar_1 -4.60 -12.11 1.14 0.046

MGMt-2_BFT137

6/13/13
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APPENDIX B 

CLINOPYROXENE DATA COLLECTED DECEMBER 2012—APRIL 2014 
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Sample Mount Date Sample !11B corr. !11B Int Std. Err. Mean (%) B ppm
ROM-270_CI-11_2 0.154
ROM-270_CI-11_3 -15.4 -15.7 0.35 0.149
ROM-270_CI-11_4 -7.6 -7.6 0.33 0.150
ROM-270_CI-11_5 -9.0 -10.0 0.41 0.177
ROM-270_CI-11_6 -1.6 -2.2 0.40 0.158

73-105_CPX_1 -26.0 -20.2 0.92 0.278
73-105_CPX_2 -16.4 -20.6 0.64 0.134

PTS-2_BD1359 1359 CPX_1 -12.7 -16.3 0.95 0.718

PAL_cpx@1 -15.8 -16.3 0.27 1.001
PAL_cpx@2 -12.0 -12.2 0.28 0.888
PAL_cpx@3 -14.2 -14.7 0.27 0.896
PAL_cpx@4 -15.9 -16.3 0.26 0.895

DI-16_1 -11.4 -14.3 0.51 0.530
DI-16_2 -9.8 -10.0 0.35
ROM-271_DI-16_1 0.153
ROM-271_DI-16@1 -4.0 -7.0 0.44 0.150
ROM-271_DI-16@2 -14.3 -17.6 0.47 0.090
ROM-271_DI-16@3 -7.8 -11.4 0.46 0.103
ROM-271_DI-16@4 -0.6 -3.4 0.43 0.099
ROM-271_DI-16@5 -3.3 -6.2 0.43 0.099
ROM-271_DI-16@6 -14.0 -17.1 0.44 0.098
ROM-271_DI-16@7 -18.7 -22.2 0.46 0.100
ROM-271_DI-16@8 -1.4 -5.4 0.44 0.101
ROM-271_DI-16@9 -5.3 -10.0 0.51 0.091
ROM-271_DI-16@10 -5.2 -8.8 0.50 0.097

11/7/13 104_C_1 -16.9 -20.0 0.58 0.117
MGMt-3_BFT104 104_C_2 -23.5 -28.2 0.41 0.115

104_C_3 -20.6 -21.2 0.43 0.103
104_C_4 -22.4 -25.4 0.47 0.099

DI-10_CT 0.489
DI-10_1 -10.2 -10.6 0.86 0.193
DI-10@1 -12.3 -12.0 0.40 0.208
DI-10@2 -16.6 -16.1 0.43 0.255
DI-10@3 -15.5 -14.1 0.45 0.282
DI-10@4 -8.9 -10.8 0.46 0.332
DI-10@5 -17.0 -18.3 0.44 0.409

BFT 405 C_1 -10.4 -14.1 0.71 0.343
BFT 405 C_2 -11.4 -14.1 0.52 0.265

BFT 404 D_1 -2.6 -3.2 0.98 0.536
BFT 404 D@1 -13.5 -7.3 0.61 0.062

5/15/13

9/27/13MGMt-3_PB_1

PTS-1_73-105

Mt-168 10/25/12

Mt-182_DI-10 12/7/12

2/22/13MGMt-1_ROM-270_CI-11

2/22/13MGMt-1_ROM-271_DI-16

12/7/12
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BFT 404 D@2 -27.7 -21.8 0.65 0.049
BFT 404 D@3 -27.1 -24.3 0.69 0.037

LAC-236_1 -19.8 -26.9 0.76 0.063
LAC-236_2 -12.8 -13.9 0.75 0.058
LAC-236_3 -17.0 -19.9 0.74 0.084
LAC-236_4 -12.6 -15.1 0.64 0.084
LAC-236_5 -17.8 -19.9 0.65 0.068
*LAC-236@1 -17.8 -19.9 0.65 0.066
*LAC-236@2 -11.4 -12.5 0.58 0.069
LAC-236@3 -12.6 -14.7 0.68 0.070
LAC-236@4 -8.2 -22.7 0.77 0.066
LAC-236@5 -6.4 -12.1 0.84 0.066

LAC-P_1 -23.3 -21.9 0.69 0.103
LAC-P_2 -5.6 -8.4 1.24 0.124
LAC-P_3 -20.6 -24.1 1.48 0.111

4/1/14

4/2/14

LAC-236

LAC-P

Mt-168_BFT404 10/25/12
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APPENDIX C 

SERPENTINE, GARNET, OLIVINE AND AMPHIBOLE DATA  

COLLECTED AUGUST 2012—SEPTEMBER 2013 
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Sample Mount Date File Name !11B corr. !11B Int Std. Err. Mean (%) B ppm
9/26/12 Serpentine 12.7 0.02

73-105_SERP_1 10.0 10.0 0.04 217
73-105_SERP_2 18.0 18.0 0.04 189
73-105_SERP_3 31.1 31.1 0.07 297
73-105_SERP_4 13.1 13.1 0.05 72
73-105_SERP_5 22.7 22.7 0.05 86

9/26/12 Garnet -10.3 0.79
5/15/13 73-105_GT-1 -26.6 -21.0 1.41 0.06

MGMt-4_BFT405 9/25/13 405_gt_1 1.4 -8.9 1.16 0.40
MGMt-4_BFT297 9/25/13 297_Gt_1 17.8 -4.6 1.49 0.01

PTS-1_73-105 5/15/13 73-105_OL_1 -17.1 -20.5 0.42 0.19
BT-7@1 -20.1 -22.4 0.62 0.05
BT-7@2 -20.6 -50.5 0.65 0.05
BT-7@3 1.7 -7.2 0.40 0.09
BT-7@4 -13.2 -19.9 0.48 0.07
BT-7@5 -7.2 -13.7 0.47 0.09

BD3130_1 -12.9 -12.9 0.18 0.9059
BD 3130@1 -12.1 -12.2 0.15 0.9791
BD 3130@2 -11.9 -11.9 0.12 0.9514
BD 3130@3 -10.5 -10.6 0.14 0.9428
BD 3130@4 -9.8 -9.9 0.15 0.9253
BD 3130@5 -13.3 -13.4 0.14 0.9031

BD3130

A
M

P
H

IB
O

LE

8/30-31/12

6/14/13

PTS-2_BT-7

O
LI

V
IN

E

5/15/13

PTS-1_73-105

S
E

R
P

E
N

TI
N

E

PTS-1_73-105

G
A

R
N

E
T


