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ABSTRACT 
 

Following a traumatic brain injury (TBI) 5-50% of patients will develop post 

traumatic epilepsy (PTE).  Pediatric patients are most susceptible with the highest 

incidence of PTE.  Currently, we cannot prevent the development of PTE and knowledge 

of basic mechanisms are unknown.  This has led to several shortcomings to the treatment 

of PTE, one of which is the use of anticonvulsant medication to the population of TBI 

patients that are not likely to develop PTE.  The complication of identifying the two 

populations has been hindered by the ability to find a marker to the pathogenesis of PTE.  

The central hypothesis of this dissertation is that following TBI, the cortex undergoes 

distinct cellular and synaptic reorganization that facilitates cortical excitability and 

promotes seizure development.  Chapter 2 of this dissertation details excitatory and 

inhibitory changes in the rat cortex after severe TBI.  This dissertation aims to identify 

cortical changes to a single cell level after severe TBI using whole cell patch clamp and 

electroencephalography (EEG).  The work of this dissertation concluded that excitatory 

and inhibitory synaptic activity in cortical controlled impact (CCI) animals showed the 

development of distinct burst discharges that were not present in control animals.  The 

results suggest that CCI induces early “silent” seizures that are detectable on EEG and 

correlate with changes to the synaptic excitability in the cortex.  The synaptic changes 

and development of burst discharges may play an important role in synchronizing the 

network and promoting the development of PTE. 
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CHAPTER 1 

INTRODUCTION 

Epilepsy 

Epilepsy is defined as the risk of recurrent seizures which can vary in length and 

severity (Fisher et al., 2005).  It cannot be cured, but in 70% of cases seizures can be 

controlled by medication (Eadie, 2012).  Epilepsy goes back as far as the first medical 

records (Atlas epilepsy care in the world., 2005).  The first recorded account of epilepsy 

was made by the Babylonians who believed that seizures were the result of an evil spirit 

invading the body.  This supernatural view was not challenged until the 17th century B.C. 

by Hippocrates (Atlas epilepsy care in the world., 2005).  Hippocrates postulated that 

epilepsy should be treated like any other natural disease, with diet and drugs before it 

becomes chronic.  He believed that once a disease becomes chronic it is ultimately 

incurable (Temkin, 1994).  Despite Hippocrates’ proposal that heredity was a likely cause 

or his description of the physical characteristics and social stigma caused by it 

(Magiorkinis, Sidiropoulou, & Diamantis, 2010), it was still assumed that epilepsy was 

caused by evil spirits until the 17th century (Atlas epilepsy care in the world., 2005).  It 

was not until the mid 1800s that the first antiepileptic drug was developed, bromide 

(Perucca & Gilliam, 2012). 

Sixty-five million people worldwide are known to have epilepsy (Thurman et al., 

2011).  The ways in which people develop the disease can be due to genetics or be a 

result of other conditions.  However, in most cases for patients diagnosed with epilepsy, 

the cause is unknown (Fisher et al., 2005) 
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Epilepsy can happen in a variety of ways.  Genetic factors can be a cause of 

epilepsy because certain genes can affect the likelihood of susceptibility as well as the 

interaction of multiple genes (Pandolfo, 2011).  However, idiopathic generalized epilepsy 

is the most common type of genetically determined epilepsy, but how it is inherited is 

still unknown (Atlas epilepsy care in the world., 2005).  The other prominent mode of the 

development of epilepsy is symptomatic.  Symptomatic epilepsies can occur as the result 

of brain tumors, cerebral anoxia, brain infections, birth trauma, cortical malformations, 

and head trauma (Atlas epilepsy care in the world., 2005).   

Compared to those that have not suffered seizures after a head injury, PTE patients are 

known to have a shorter life expectancy (Corkin, Sullivan, & Carr, 1984).  In addition to 

shorter life expectancies, those with PTE recover from injuries slower and have more 

cognitive and motor issues (Camfield & Camfield, 2014). 

Traumatic Brain Injury 

Traumatic brain injury is the result of an external mechanical force that causes 

damage to the brain.  The mechanical force can be the result of a rapid change in 

acceleration, blast waves, penetrating injury, or impact (Maas, Stocchetti, & Bullock, 

2008).  Classification of TBI is based on severity of the injury, anatomical features 

resulting from the injury, and how the injury was caused (Saatman et al., 2008).  

Although TBI affects all ages, it remains a leading cause of death and disability in 

children.  According to the National Center for Injury Prevention and Control (2009), in 

children 0- 14 years of age, TBI annually results in 435,000 trips to the emergency room 

and nearly 2700 deaths. 
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Symptoms of TBI largely depend upon which area of the brain was injured.  

Severe TBI will often result in a relentless headache, convulsions, nausea, aphasia, 

slurred speech, dysarthria, loss of coordination, weakness in limbs, restlessness, or 

agitation (Kim, 2002).  When the primary damage to the brain has occurred there is 

frequently multiple secondary injury events.  These events can include damage to the 

blood-brain barrier, inflammation, excitotoxicity, influx of calcium and sodium ions into 

neurons, and mitochondrial dysfunction (Park, Bell, & Baker, 2008).  An increase in 

intracranial pressure may rise from swelling or from a hemorrhage.  Brain death or 

herniation can occur when the pressure within the skull becomes too great (Werner & 

Engelhard, 2007).  Also, ischemia can result from a decrease in cerebral perfusion 

pressure (Ghajar, 2000). 

Researchers have constructed a various assortment of models such as fluid 

percussion injury, controlled cortical impact, blast models, and undercut models to better 

understand the implications and consequences of TBI. 

Post Traumatic Epilepsy 

Post traumatic epilepsy is a possible outcome as a result of traumatic brain injury.  

A sufferer of a traumatic brain injury can experience post traumatic seizures as quickly as 

one week after initial insult (Pagni & Zenga, 2005).  PTE and symptomatic epilepsy 

accounts for 5% and 20% of epilepsy cases respectively (Garga & Lowenstein, 2006).  A 

large problem to those that suffer TBI is the unknown likelihood of developing PTE 

(Pitkänen et al., 2007).  Post traumatic seizures may occur after insult, but this does not 

mean that the patient will go on to develop post traumatic epilepsy (PTE).  PTE is 

characterized as a chronic condition, where post traumatic seizures might only occur once 
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or twice in a patient (Frey, 2003a).  The likelihood of a person developing PTE is linked 

to the severity of the injury (Iudice & Murri, 2000).  Mild TBI increases the risk, 

compared to that of an uninjured group, of PTE by one and a half fold (Annegers, 

Hauser, Coan, & Rocca, 1998).  However, some estimates show that as many half of 

severe TBI sufferers will develop PTE (Iudice & Murri, 2000).  A study done to 

understand the likelihood of the development of PTE in relation to severity showed that 

2.1% of mild TBI sufferers will go on to develop PTE compared to 16.7% of severe TBI 

sufferers (Annegers et al., 1998; Pitkänen & McIntosh, 2006).   

 Currently, it is unknown what changes to the brain occur after trauma (Garga & 

Lowenstein, 2006; Mazarati, 2006).  Researchers have proposed several possible 

mechanisms that can lead to PTE, however, multiple mechanisms may be found in an 

individual with PTE (Agrawal, Timothy, Pandit, & Manju, 2006).  Several of these 

proposed mechanisms can range from formation of new synapses and axons, cells 

undergoing apoptosis or necrosis, and altered gene expression (Herman, 2002).  A 

particular area that is believed to give rise to PTE is the hippocampus.  This is due to 

decreased connectivity between the parietal cortex and hippocampus (Mishra et al., 

2014).  This reorganization of neural networks may make neurons hyperexcitable (Elaine 

Wyllie MD & Deepak K. Lachhwani, 2005).  Neurons that become hyperexcitable can 

create an epileptic focus that leads to seizures (Gill, Chang, Prenosil, Deane, & 

McKinney, 2013).  Furthermore, an increase in neuronal hyperexcitability in conjunction 

with a loss of inhibitory neurons can produce PTE (Elaine Wyllie MD & Deepak K. 

Lachhwani, 2005). 
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Cortex 

The human cortex has six cortical layers and each layer is characterized by the 

distribution of neural cell types and connections to other layers and subcortical regions.  

Each layer is roughly 2-3mm thick in humans. Layer I is the shallowest layer of the 

cortex.  It is mostly free of neuronal cell bodies and is largely composed of branching 

apical dendrites of pyramidal neurons.  Layer I, the molecular layer, receives excitatory 

input from other areas of the cortex (Douglas & Martin, 2007), but it has also been shown 

that a large number of thalamocortical neurons converge there as well (Rubio-Garrido, 

Pérez-de-Manzo, Porrero, Galazo, & Clascá, 2009).  Layer II and III, the external 

granular layer and external pyramidal layer respectively; consist of small to medium 

sized pyramidal neurons that output to layer V/VI.  However, the output to layer VI is 

weak despite layer V/VI being interconnected (Shipp, 2007).  Layer IV, the internal 

granular layer, serves to relay signals to layers II and III and also include some inhibitory 

granule cells.  Layer IV also directly outputs to layer VI, prominently in primary cortices.  

This IV to VI circuit loop is reasoned to serve as a modulatory loop as it mainly 

terminates upon inhibitory neurons.  However, areas of the brain like the motor cortex is 

agranular, lacking a layer IV (Shipp, 2007).  Layer V, the internal pyramidal layer, is 

comprised of pyramidal neurons that project to subcortical regions (Jones, 1998).  Layer 

V is the primary output layer of the entire cortex and is densest in the motor region.  This 

layer outputs to a variety of regions such as the superior colliculus, brainstem oculomotor 

centres, cerebellum, striatum and the thalamus (Shipp, 2007).  Layer VI connects to the 

thalamus and is an outgoing component of a cortico-thalamo-cortical loop.  
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Considering layer V pyramidal neurons serve as the primary output for the brain, 

this led us to investigate if the pathogenesis of seizure generation after traumatic brain 

injury could uncover intracellular markers.  It has been shown that deep layer cortical 

neurons initiate spike and wave discharges, in seizure models (Polack et al., 2007).  

Cortical layer V has been suggested as an important pathogenic synchronizing 

mechanism, as well as a contributor to the initiation of epileptiform events (Hoffman et 

al., 1994).  Layer V neurons have shown spontaneous ictal-like epileptiform discharges 

after controlled cortical impact (CCI) (Yang et al., 2010).  Furthermore, acute injury 

models that have undercut layer V, have shown to cause a decrease in synaptic inhibition 

and an increase in synaptic excitation as a result of reorganization of synaptic circuits 

(Jin, Huguenard, & Prince, 2011).  

Cortical Development 

 The development of the cortex begins as progenitor cells transfer inside-out along 

radial glia (Noctor et al., 2001).  The first pyramidal neurons migrate out of the 

ventricular and subventricular zones from the preplate.  The preplate will eventually 

become layer I and the subplate will form a middle layer, or cortical plate, that will go on 

to develop into layers V and VI.  Neurons that come later will migrate radially through 

the deep layers and become layers II to IV (Rakic, 1988).  Pyramidal neurons, the brain’s 

primary excitatory unit, begin to increase in soma size, apical dendrite length, and basal 

dendrite length in rats between postnatal day 3 and 21 (Zhang, 2004).  GABAergic 

interneurons serve as the brain’s primary inhibitory units.  During development, GABA is 

primarily excitatory because the gradient of chloride is reversed in immature neurons, 



	   7	  
	   	  	   	  
	   	  
	   	  
	   	  
	  

meaning the reversal potential is higher than the resting membrane potential of the cell 

(Ben-Ari et al., 2007; Li & Xu, 2008).  As a result of GABAergic interneurons maturing 

faster and the GABA signaling mechanisms occurring earlier than glutamatergic 

transmission, GABA is the major excitatory neurotransmitter in the brain before the 

maturation of glutamatergic synapses (Rheims et al., 2009). 

 The development of excitatory and inhibitory synaptic circuits occurs during the 

generation of cells and their movement before reaching their final position in the cortex.  

This occurs during the first two postnatal weeks of a rat’s development (Shatz, 1990).  

Neurons begin to extend their axons and dendrites to proper synaptic partners.  As the 

synapses are constructed and mature within neural circuits, they undergo continuous 

refinement and reformation.  The refinement and pruning period is dependent upon 

interactive mechanisms and patterned neuronal activity, and in rats occurs during the 

second and third postnatal week of rats (Katz, 1993; Shatz, 1990).   The reduction of 

axons, dendrites, and synapses, and death of neurons, by apoptosis, is a very important 

counter process to the excessive growth of axons, dendrites, and synapses (Cowan., 

1984).  The pruning and refinement process begins in late gestation and dramatically 

increases postnatally.  Although synaptogenesis differs across brain regions, the sensory 

and motor cortices experience the most refinement after birth, and regions that handle 

cognitive functions are done later (Levitt, 2003). 

Summary 

Studies have shown that young children have a 42.5% chance of developing early 

posttraumatic seizures (EPTS) after TBI.  Which is almost double that of adult sufferers 

(Arndt et al., 2013).  Due to this large discrepancy, we find that a juvenile model provides 
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the best option for having a substantial number of animals to develop PTE.  Using a 

juvenile severe TBI model allowed us to identify a possible marker during the 

pathogenesis of posttraumatic TBI.  We can identify a marker by looking for synaptic and 

intrinsic changes during whole-cell patch clamp recordings.  We hypothesized that if 

TBIs were known to result in PTE, we would see a synaptic or intrinsic change in layer V 

pyramidal neurons intracellularly. 

In chapter 2, we study changes in the synaptic and intrinsic properties of layer V 

pyramidal neurons.  We identify that there are no synaptic or intrinsic changes, but we do 

find that 80% of animals that suffered a severe TBI showed cellular bursting.  We find 

that animals that suffered a severe TBI are 60% more likely to show cellular bursting.
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CHAPTER 2 

SPONTANEOUS SYNAPTIC BURST ACTIVITY IN JUVENILE RATS AFTER 

CONTROLLED CORTICAL IMPACT 

Following a traumatic brain injury 5-50% of patients will develop post traumatic 

epilepsy.  Pediatric patients are particularly susceptible with the highest incidence of 

PTE.  Currently we cannot prevent the development of PTE and we have a limited 

understanding of the basic epileptogenic mechanisms that are initiated by TBI.   We 

hypothesize that early on following injury the cortex undergoes distinct cellular and 

synaptic reorganization that facilitates cortical excitability and promotes the development 

of seizures.  To induce traumatic brain injury, we performed controlled cortical impact 

(CCI) in juvenile rats (post-natal day 17).  Controlled cortical impact has been shown to 

induce the development of cellular and synaptic changes that are thought to promote 

increased cortical excitability.  In–vivo we performed EEG epidural recordings for 14 

days following CCI.  All animals initially displayed electrographic seizures that 

terminated within the first week and were presumed to be injury induced.  Following a 

quiescent period 40% (6 of 15) animals had the reemergence of recurrent electrographic 

seizures with an average event duration of 15.5s.  These seizures were primarily “silent” 

with no overt behavioral seizure phenotype but demonstrated sustained changes in 

cortical excitability. To further study these changes, we performed in-vitro whole cell 

patch clamp recording on layer V pyramidal neurons in the peri injury zone from CCI or 

sham (craniotomy only) animals.  Pyramidal neurons represent the major source of 

excitatory output from neocortical layer V, a lamina that has been implicated in both 

acute and chronic models of neocortical epileptogenesis. First we examined for changes 
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in intrinsic excitability and found no significant difference in input resistance, action 

potential threshold, firing rate or resting membrane potential.  Next, we examined for 

changes in excitatory synaptic function by recording spontaneous excitatory post-

synaptic currents (sEPSCs) and found enhanced excitatory activity evidence by a 

decrease in the inter-event interval of CCI vs control animals with no change in the 

amplitude of events.  This increased in excitatory activity was not accompanied by a 

change in inhibitory drive suggesting CCI alters the E-I balance.  Specifically, we 

observed no change in the amplitude or IEI of spontaneous inhibitory synaptic currents 

(sIPSCs).  In addition, both excitatory and inhibitory synaptic activity in CCI animals 

showed the development of distinct burst discharges that were not present in control 

animals.  The results suggest that CCI induces early “silent” seizures that are detectable 

on EEG and correlate with distinct changes to the synaptic excitability in the cortex.  The 

synaptic changes and development of burst discharges may play an important role in 

synchronizing the network and promoting the development of PTE. 
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Introduction 

Traumatic brain injury (TBI) is a leading cause of death and disability in children 

(Faul,. et al, 2010) and often leads to the development of post-traumatic epilepsy (PTE) 

(Annegers et al., 1998; Caveness et al., 1979; Englander et al., 2003; Iudice & Murri, 

2000). PTE develops in up to 20% of children and depends on several factors including 

the severity of injury, age of the patient, and injury site  (Barlow, Spowart, & Minns, 

2000)(Appleton & Demellweek, 2002) .   The underlying pathophysiology of PTE is 

poorly understood, but develops in the wake of injury and leads to spontaneous recurrent 

seizures.  Over the long term these post-traumatic seizures (PTS) may cause secondary 

brain damage through mechanisms including increased metabolic requirements, hypoxia, 

increased intracranial pressure, and/or excessive release of neurotransmitters (Medelow 

and Crawford, 1997; Teasdale and Bannan, 1997 and Graham et al., 2006 for review).   

Exacerbating the clinical management of PTE is that the seizures are often refractory to 

anti-epileptic drugs (Bauer & Burr, 2001) and are ineffective at reducing the risk of 

developing PTE (Adelson et al., 2003; Arango et al., 2012; Kochanek et al., 2012).  

However,  evidence suggests that there may be a critical window following TBI for 

clinical intervention (Graber & Prince, 2004).  Development of new therapeutic strategies 

in children requires an improved understanding of the processes and timing of events that 

occur early after injury in the genesis stages of PTE.     

In humans, PTE develops slowly over months and even years.  The slow 

development of PTE provides a unique temporal window to study and identify the 

epileptic changes as they occur “on the road” to PTE.  We hypothesize that understanding  
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the early changes that occur following TBI may help to define the critical period for  

intervention and potentially identify unique therapeutic targets.  The pediatric brain is in 

the midst of neurodevelopment and is undergoing a host of age-dependent physiological 

changes including synaptogenesis, use-dependent pruning, enhanced glucose 

metabolism(Chugani, Phelps, & Mazziotta, 1987), increased neurotrophic factors 

(Friedman, Olson, & Persson, 1991), and increased excitatory amino acid receptors 

(Insel, Miller, & Gelhard, 1990).  These changes may confer unique advantages and 

disadvantages to the outcome of a TBI event and shape the development of PTE.   

Injuries ranging from mild (concussion) to severe penetrating wounds and skull 

fractures may fall under the broad term of TBI.   The incidence of PTE is significantly 

higher following severe TBI which is effectively modeled in animals by controlled 

cortical impact (CCI).  CCI has been used extensively as a model of head injury 

(Lighthall et al., 1989; Liu et al., 2013; Mannix et al., 2011) and more recently as an 

effective means to model severe TBI (Cantu et al., 2014; Hunt, Scheff, & Smith, 

2009)(Yang et al., 2010). Following CCI, studies have shown significant cavitation and 

neuronal cell loss at the site of injury (K. J. Anderson, Miller, Fugaccia, & Scheff, 2005; 

Fox, Fan, Levasseur, & Faden, 1998; Goodman, Cherian, Bryan, & Robertson, 1994; 

Hall et al., 2005; D. H. Smith et al., 1995), hippocampal neurogenesis, and 

synaptogenesis in the hippocampus (Rola et al., 2006; Scheff et al., 2005).  Direct injury 

induced seizures have been reported to occur within the first 48 hours  following CCI 

(Nilsson et al., 1994) but the development ofspontaneous recurrent post-traumatic 

seizures (PTS) occurs in 12.5 to 36% of animals following a latent period of weeks to 

months (Statler et al., 2009)(Hunt et al., 2009).  In juvenile animals we have previously  
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shown that CCI induces necrotic loss of cortex, damage to the underlying corpus 

callosum and hippocampus, synaptic reorganization (Card, Santone, Gluhovsky, & 

Adelson, 2005)(Jenkins et al., 2002) and deficits in spatial learning and memory 

(Adelson, Fellows-Mayle, Kochanek, & Dixon, 2013).  In this study, we examined the 

underlying mechanisms that may contribute to cortical hyperexcitability and 

epileptogenesis in juvenile animals following CCI. 

Pyramidal (PYR) neurons are the major source of excitatory output from layer V, 

a lamina that has been implicated as the site of origin of interictal epileptiform discharge 

in both acute and chronic models of neocortical epileptogenesis (Hoffman et al., 1994; 

Prince and Tseng, 1993).  A recent preliminary report by Yang and colleagues has shown 

that CCI performed in juvenile rats rapidly induces spontaneous epileptiform activity and 

burst firing in layer V cortical pyramidal neurons (Yang et al., 2010).  Burst firing is 

known to increase the fidelity of synaptic information transfer (Izhikevich, Desai, 

Walcott, & Hoppensteadt, 2003; Lisman, 1997) and may help to promote epilepsy by 

facilitating the propagation of local areas of hyperexcitability and synchrony.  In the 

present study we examined the underlying mechanisms that may contribute to the 

development of epileptiform activity in juvenile rats following CCI.  Utilizing 

electrophysiolgical approaches, we determine that CCI in juvenile rats induces the rapid 

development of in-vivo epileptiform activity and the preferential enhancement of in-vitro 

excitatory pre-synaptic burst discharges. These synaptic bursts occurred in the absence of 

significant changes in intrinsic excitability of layer V pyramidal neurons and may be  
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driven by altered afferent cortical synaptic input.  Our findings suggest that juvenile 

animals undergo unique pathophysiological changes early after TBI that may be involved 

in the pathogenesis of PTE. 

Materials and Methods 

Protocols used for all experiments were approved by the University of Arizona 

Institutional Animal Care and Use Committee. 

CCI Injury 

To experimentally model TBI, a controlled cortical impact (CCI) was performed 

on 29 post-natal day 17 (P17) Sprague-Dawley rats as previously described (Adelson et 

al., 2013) (Card et al., 2005) (Jenkins et al., 2002).  In brief, male Sprague Dawley rats 

were sedated with isoflurane and injected interperitoneal (IP) with a mixture of ketamine 

(50mg/kg) and xylazine (5mg/kg) at 0.01mL per 10g of rat weight.   Surgery site was 

shaved and animals were fixed into a stereotaxic frame.  A midline scalp incision was 

then performed to expose the skull and a 6-mm craniotomy over the right somatosensory 

region was performed.  The bone flap from the craniotomy was removed and placed in 

saline solution.  Precaution was taken during the craniotomy to avoid damaging the 

underlying dura and inducing significant bleeding.  A frontoparietal controlled cortical 

impact (CCI) (5mm tip, 4m/s, 2.0 mm depth) was performed using a pneumatic impactor 

(Amscien Instruments, Richmond, VA).    After the CCI, the bone flap, that was removed 

during the craniotomy, was placed over the injury site and secured with dental cement. 

During this time, electroencephalography (EEG) leads were mounted and also secured 

with dental cement. The skin was then sutured closed and the incision area swabbed with 
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betadine.  Animal temperature was maintained with an electric heating pad and 

monitored post-surgery until ambulatory (< 3 hours).  Following the initial recovery, 

animals were returned to standard housing and monitored daily.  Animals that were to be 

connected to EEG were given 24 hours post-injury to recover prior to EEG monitoring.  

All other animals were allowed to recover until further experimentation began on post-

injury day (PID) 14. 

Seizure Monitoring with Electroencephalograpy (EEG) 

Rats subjected to CCI or age-matched controls were implanted with epidural 

recording electrodes.  Experimental evidence indicates craniotomy may induce alterations 

to the cortex (Cole et al., 2011; Olesen, 1987).  As such, we considered the craniotomy a 

component of the injury process and used appropriate naïve age-matched control animals.  

Epidural recording electrodes were made from #0-80 x 1/8 inch stainless steel screws at 

the following stereotaxic co-ordinates:  AP: 2.0mm, Lateral: ±  3.0, Depth: 1mm; AP: -

4.0mm, Lateral: -3.0mm, Depth: 1mm; AP: -8.0mm, Lateral: +3.0, Depth: 1mm (Fig. 1).  

After recovery from surgery, animals were placed in acrylic cages where they could 

move freely and were connected through commutators to the recording system.  Animals 

were singly housed during this period.  EEG signals were recorded continuously for 13 

days post-injury using an Xltek 128 channel Neurolink IP amplifier (1.0Hz and 70Hz 

cutoffs, 512Hz sampling rate) .  Two independent, blinded, and trained personnel 

analyzed the digital EEG files and their results were compared for consistency and 

averaged.  As previously described, epileptiform activity was defined by the presence of 

epileptiform discharges or seizure-like events (Ziyatdinova et al., 2011).  Epileptiform 

discharges (ED) were defined by rhythmic transients containing spikes and uniform sharp 
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waves that lasted between 1 and 5 seconds.  High-amplitude rhythmic discharges that 

were clearly distinguishable from background and lasted for greater than 5 seconds have 

been considered seizures (Horita, Uchida, & Maekawa, 1991).  As simultaneous 

behavioral seizure activity was not monitored, this activity has been classified as seizure-

like and most likely represents subclinical electrographic seizures.   

Preparation and maintenance of brain slices 

Coronal brain slices were prepared as previously described (T. R. Anderson, 

Huguenard, & Prince, 2010; T. R. Anderson, Jarvis, Biedermann, Molnar, & Andrew, 

2005) from CCI or age-matched control animals. Slices were prepared from the 

somatosensory cortex beneath the injury site in CCI animals or from corresponding 

control cortex.  Male Sprague-Dawley rats aged 31-35 days (PID 14-19) were deeply 

anaesthetized with inhalation of isoflurane and decapitated. The brain was rapidly 

removed and and coronal slices (350um thick) of the somatosensory cortex taken using a 

vibratome (VT 1200; Leica, Nussloch, Germany).  Harvesting of slices was performed 

beneath the site of CCI or in corresponding control cortex.  The site of CCI was readily 

identifiable in slices as significant cavitation and tissue loss.  Initial harvesting was 

performed in an ice cold (4°C) carboxygenated (95% O2, 5% CO2) high sucrose solution 

containing the following (in mM): 234 sucrose, 11 glucose, 26 NaHCO3, 2.5 KCl, 1.25 

NaH2PO4H20, 10 MgS47H20, 0.5 CaCl22H20.  Slices were then incubated for 1h at 32°C 

in carboxygenated artificial CSF (aCSF) containing (in mM):  126 NaCl, 26 NaHCO3, 2.5 

KCl, 10 Glucose, 1.25 Na2H2PO4H20, 1 MgSO47H20, 2 CaCl2H20, pH 7.4 and then 

returned to room temperature before being moved to the recording chamber for whole-

cell patch clamp recording. 
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Electrophysiological recording 

Slices prepared from CCI or control animals were submerged in flowing 

carboxygenated aCSF heated to 32°C.  Submerged slices were first visualized under 4x 

brightfield for identification of layer V cortex.  For slices from CCI rats, recordings were 

made in the peri-injury zone within 2 mm of the injury induced cavitation.  Recordings 

from control slices were made in the recorded in the corresponding cortex.  Whole-cell 

recordings were obtained from regular spiking cortical pyramidal neurons using an 

upright microscope (Axioexaminer, Carl-Zeiss, Thornwood, NY, USA) fitted with 

infrared differential interference contrast optics.  Regular spiking (RS) pyramidal neurons 

were distinguished based on their current-clamp firing behavior (Guatteo, Bacci, 

Franceschetti, Avanzini, & Wanke, 1994).  The electrode capacitance and bridge circuit 

were appropriately adjusted. The series resistance (Rs) of neurons chosen for analysis was 

less than 20% of membrane input resistance and monitored for stability. Membrane 

potential was not corrected for a calculated 10 mV liquid junction potential.  A 

Multiclamp 700A patch-clamp amplifier (Axon Instruments, Union City, CA, USA) was 

used for both current and voltage-clamp mode.  Recordings were obtained at 32°C using 

borosilicate glass microelectrodes (tip resistance, 2.5-3.5 MΩ) filled with intracellular 

solution (in mM):  135 KGluconate, 4 KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 Mg ATP, 0.3 

Na TRIS for excitatory recording resulting in a calculated ECl- of -16 mV. For recording 

of inhibitory events, an intracellular solution containing the following was used (in mM): 

70 KGluconate, 70 KCl, 2 NaCl, 10 HEPES, 4 EGTA, 4 Mg ATP, 0.3 GTP. This internal 

solution has been used previously (T. R. Anderson et al., 2010)(Sun, Huguenard, & 

Prince, 2006) and facilitates detection of inhibitory events.  The calculated ECl was 
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approximately −16 mV, resulting in inward GABAA currents at a holding potential of 

−70 mV.  Inhibitory events were pharmacologically isolated by bath application of 2-

Amino-5-phosphonopentanoic acid (d-APV; 50 µm) and 6,7-dinitroquinoxaline-2,3-

dione (DNQX, 20 µm) purchased from Ascent Scientific (Abcam Biochemicals, 

Cambridge, MA).   

Data Analysis 

Data were analysed using pCLAMP (Axon Instruments), Prism (GraphPad) and 

MiniAnalysis (Synaptosoft) software and are presented as means ± s.e.m.  For detection 

of spontaneous synaptic events automated threshold detection was employed through 

MiniAnalysis and detected events were subsequently manually verified.  Synaptic bursts 

events were detected based on previously published characteristics (Prince and Connors, 

1986; Prince and Tseng, 1993) and were defined by a minimum of 3 synaptic events 

occurring in 250 milliseconds that temporally summated.  Input resistance was calculated 

from the voltage response to the input of a current step (1s, 50mV).  Adaptation index 

was calculated as 100 × (1 – FLast/F2), where FLast corresponds to the firing rate of the last 

interspike interval and F2 the second interspike interval. Many of the pyramidal neurons 

had a high variability in the first interspike interval, so the second interspike interval was 

chosen for analysis. Intrinsic burst index was calculated as the inter-event interval 

between the first set of action potentials divided by the second.  Statistical significance 

was tested using an unpaired t test and differences were determined to be significant if P 

< 0.05. 
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Results 

 To model severe TBI in pediatric patients, we subjected 17-day-old rats to 

controlled cortical impact (CCI (n=13) and compared them to age-matched controls 

(n=9).  The CCI procedure results in a significant cavity in the cortex at the site of the 

injury and extensive necrosis (Adelson et al., 2013; Yang et al., 2010).  In the weeks and 

months that follow after CCI, up to 36% of adult animals will develop spontaneous 

behavioral seizures (Hunt et al., 2009) and over 85% have been shown to develop 

epileptiform activity (Statler et al., 2009).  In humans, PTE develops following a latent 

period that can last from months to years (Agrawal et al., 2006).  At the point in which 

seizures are clinically identifiable, the underlying neural activity and networks have 

undergone significant change.  We believe this activity begins early after the injury, and 

leads to hyperexcitability and subclinical electrographic changes well in advance of PTE.  

To investigate the changes that occur in juvenile rats early after CCI, we examined for 

electrophysiological changes and mechanisms that may promote epileptogenesis. 

Epileptiform Activity is rapidly induced In-Vivo following Traumatic Brain Injury  

To monitor for the development of epileptiform activity, we performed 

electroencephalograpy (EEG) recordings of CCI animals (n=16) or age-matched controls 

(n=9).  Following recovery from the CCI surgery, EEG activity was continuously 

recorded for the first two weeks.  Epileptiform activity was detected post-recording based 

on previously published characteristics (Ziyatdinova et al., 2011) and as detailed in the 

methods.  Two trained personnel where blinded to the animal’s experimental condition 

and averages values taken from the independent grading of the EEG recordings.  Within 

the first 24 hours of recording, 87.5% of CCI animals developed epileptiform activity that 
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was absent in control animals.  This epileptiform activity was considered to be injury-

induced and akin to “early” post-traumatic seizures.  Animals had a variable latent period 

(2-7 days) following this initial early stage, but all CCI animals subsequently developed 

recurrent epileptiform activity that was synchronized across all EEG leads (Fig. 1).  On 

average, 16.4±3 epileptiform events were detected over the post-latency recording period. 

In 7 of 16 CCI animals, prolonged seizure-like events were also detected.  The 

development of epileptiform activity within 14 days after CCI, and in advance of PTE, 

suggests the presence of on-going epileptogenic activity.  Post-injury day 14 was chosen 

for further in-vitro experimentation as it was the earliest time point that all animals 

reliably displayed in-vivo epileptiform activity.     
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Figure 1. CCI Induces Epileptiform Activity. Left: Schematic representation of rat brain 
indicating site of CCI injury (blue circle) and EEG recording electrodes (red circles). 
Middle and Right: Epidural EEG recordings from rats made 14 days after CCI. Middle 
panel is from a control animal without observable epileptiform activity and right panel 
from a CCI animal that displayed spontaneous epileptiform discharges. 
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Epileptiform synaptic bursting is induced in-vitro following TBI 

Epileptogenesis has been extensively studied in numerous animal models and is 

generally thought to occur as the result of disruption to intrinsic excitability, synaptic 

inhibition and/or synaptic excitation (Prince and Connors, 1986 for review).  To 

investigate the contribution of these mechanisms to CCI induced epileptiform activity, we 

examined for electrophysiological changes in cortical brain slices.  Epileptiform activity 

detected by EEG was widespread and synchronous within and across cortical 

hemispheres.  Pyramidal neurons in layer V are the major output pathway of the cortex 

and have been implicated in network synchronization (Telfeian & Connors, 1998).  As 

such, whole-cell patch clamp recordings of physiologically-identified layer V pyramidal 

neurons were made 14 days after CCI or in age-matched control.  All recordings were 

made in the peri-injury zone (i.e. within 2 mm of injury site) or corresponding control 

cortex.    

Intrinsic Excitability  

The intrinsic membrane properties of a neuron have been repeatedly shown to be 

altered in various models of epilepsy (Willmore, 1990; Yang, Benardo, Valsamis, & 

Ling, 2007).  Neurons that are predisposed or have pathological enhancements to intrinsic 

excitability may be spontaneous generators of epileptic activity.   To examine this 

possibility, we first recorded for changes in the intrinsic membrane properties from CCI 

and control pyramidal neurons.  Recording under current-clamp, we found no statistical 

difference between control and CCI resting membrane potential (-67.5 ±1.0 mV 

(control); -67.7±0.9 mV (CCI), P<0.92) and input resistance (198.5 ±16.1 MΩ(control); 

192.3 ±12.9 MΩ (CCI), P<0.76).  Next, we evaluated the firing-current (f-I) relationship 
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in control and CCI animals.  A series of current steps (-150pA to 300pa, 50pA steps, 1 

second) were injected through the patch pipette and the membrane voltage response was 

recorded (Fig 2A).  We examined for changes in the firing frequency and adaptation 

index but found no statistical difference (Fig 2B).  Finally, using a rheobase protocol (50 

msec, 5 pA steps) we examined for changes in membrane excitability.  We found no 

statistical difference in rheobase current or action potential properties (threshold, 

amplitude, and half-width)(Fig 3).  Overall, these results suggest that changes in the 

intrinsic membrane excitability of layer V pyramidal neurons does not significantly 

contribute to the early development of epileptiform activity following CCI. 
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Figure 2. Intrinsic excitability is not altered by CCI. A) Current Clamp recordings in 
response to intracellular current steps (-150pA to 250pA, 1s) in pyramidal neurons from 
control or CCI injured animals. Note the similarity in the intrinsic cellular response. B) 
Bar charts of average response values of various intrinsic membrane properties from 
(control n=14, CCI n=41). n=38)n=38).n=38).animals (n=41). 
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Figure 3. Action Potential Firing is not altered by CCI. A) Reprentative whole-cell 
current clamp recording in response to a series of 50msec injection (5pA steps). Bar 
charts of average values for control or CCI. Rheobase was calculated as the minimum 
current which produced an action potential. Threshold was measured at the greatest 
change in calculated slope. B) Current clamp single action potential step (2nA, 0.5ms) 
was injected to measure action potential properties. 
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Spontaneous Synaptic Activity 

The generation of epileptiform activity and seizures is thought to occur through 

altered network activity and increased neuronal recruitment that may involve changes to 

synaptic properties and efficacy (Prince and Connors, 1986 for review). We tested this 

possibility by examining post-synaptic currents received by layer V pyramidal neurons.   

 

Excitation 

First, under voltage clamp (Vhold=-70mV) we examined for changes in 

spontaneous post-synaptic currents.  For these experiments pharmacological isolation of 

excitatory glutamatergic post-synaptic currents (ePSCs) was not possible as GABA 

antagonists are known to disinhibit the slice and promote epileptiform activity and 

thereby mask CCI induced changes.  To minimize the detection of inhibitory events, 

neurons were held near and positive of the reversal potential of chloride (Vhold = -70mV, 

calculated ECl
- = -16mV).  This allowed detection of only excitatory positive-directed 

(inward current) events in isolation from any small inhibitory outward events.  First, we 

examined for changes in the inter-event interval (i.e. frequency) of excitatory sPSCs and 

found no statistical difference between control (295.6 ± 42.9 ms) and CCI (243.2 ± 

26.7)(P=0.28)  Similarly we found no statistical difference between control and CCI in 

the amplitude of excitatory sPSCs (16.8 ± 1.2 pA (control) vs 17.4 ± 1.4 pA (CCI), 

charge transfer (69.5 ± 7.0 fC (control) vs 73.1 ± 5.4 fC (CCI)(P=0.70) or decay (3.6 ± 

0.2 ms (control) vs 3.5 ± 0.2 ms)(CCI)(P=0.77)(Fig 4).  The data suggest that CCI does 

not alter overall excitatory synaptic activity. 
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Figure 4. CCI fails to alter excitatory post-synaptic currents. A) Voltage clamp recordings 
of spontaneous post-synaptic current (sPSC) in control or CCI injured animals. B) 
Overylayed and amplitude scaled average sPSC recorded from either control (black) or 
CCI (red) animals. C) and D) Average sPSC properties are plotted for control (n=13) or 
CCI (n=38). Vhold = -70mV. 
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Inhibition 

Second, to directly examine for changes in inhibition we recorded spontaneous 

inhibitory post-synaptic currents (sIPSCs) that were pharmacologically isolated by bath 

application of d-AP-V (50uM) and DNQX (20uM).  We also utilized a modified internal 

patch solution with an elevated chloride concentration.  This internal has been 

extensively used(T. R. Anderson et al., 2010)(Bacci & Huguenard, 2006) and increases 

the signal to noise and detection fidelity of inhibitory synaptic events.  Voltage clamp 

recordings were made at -70mV from CCI or control animals.  We found no significant 

change in amplitude (24.6 ± 2.4 pA (control) vs 24.9 ± 3.3 pA (CCI)( P=0.95) or inter-

event interval (385.1 ± 85.9 ms (control) vs 328.2 ± 50.4 ms (CCI)(P=0.55).    However 

in contrast to excitatory synaptic activity, a significant increase in the decay time of 

inhibitory sIPSCs was observed (5.2 ± 0.56 ms (control) vs 7.5 ± 0.70 ms 

(CCI))(P<0.03)(Fig 5).  A similar trend was observed in the charge transfer but it failed 

to reach statistical significance area (126.1 ± 17.6 fC (control); 185.1 ± 28.2 fC (CCI), 

P=0.15)(Figure 5B).  The net effect of these changes would be to increase the efficacy of 

inhibition following CCI by increasing the temporal window over which inhibition acts. 
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Figure 5. CCI increases inhibitory synaptic decay. A) Voltage clamp recordings of 
spontaneous inhibiotry post-synaptic current (sIPSC) in control or CCI injured animals. 
For inhibitory recording glutamate receptor antagonists (APV/DNQX or kynurenate) 
were applied. B) Overlayed and amplitude scaled average sIPSC recorded from either 
control (black) or CCI (red) animals. C) and D) Average sIPSC properties for control 
(n=9) or CCI (n=16). Vhold = -70mV. * P<0.05. 
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Synaptic Burst Discharges 

Excitatory burst discharges are thought to increase synaptic efficacy by increasing 

the probability of inducing the post-synaptic cell to fire an action potential.  In our initial 

experiments, we examined the average sPSC properties and found that CCI had no 

impact on the average excitatory synaptic activity. However, during recording we 

observed distinct spontaneous synaptic burst discharges that resembled the epileptiform 

activity observed in-vivo.  Based on previous reports detection of synaptic bursts was 

determined by the presence of a minimum of three simultaneous sPSCs within 250 ms 

that did not return to baseline.  These detection parameters were highly sensitive and 

allowed for detection of a small number of synaptic bursts in control animals.  Overall, 

the presence of excitatory burst discharges were significantly greater following CCI as 

79.5% of recorded CCI neurons displayed synaptic bursting compared to 23.1% of 

control.  However, the average number of synaptic bursts detected in a CCI animal (avg. 

of 7.7 ± 2) during a single recording session were dramatically increased over control 

(avg. of 0.38 ± 0.2) (P<0.04). The average excitatory sPSC burst in CCI animals 

consisted of 5.9 ±1 synaptic events and lasted on average for 858.0 ± 240 milliseconds 

(Fig 6).  Bath application of 1um tetrodoxin (TTX) eliminated excitatory burst discharges 

(n=4).  On the inhibitory side, similar burst discharges were observed in 75% of CCI 

neurons compared with 22% in control.  However, the average number of sIPSC bursts in 

CCI (3.6 ± 1.1 neurons remained significantly increased over control (0.6 + 0.4).   The 

average inhibitory sIPSC burst in CCI animals consisted of 11.4 ± 2.6 synaptic events 

with a duration of 431.0 ± 71 milliseconds (Fig 7).  Overall, following CCI, there was a  

 



	   31	  
	   	  	   	  
	   	  
	   	  
	   	  
	  

significant increase in excitatory and inhibitory burst discharges.  In comparison, CCI 

induced greater excitatory bursting than inhibitory bursting by both frequency of total 

neurons bursting, and average number of burst per neuron. This suggests CCI induced 

synaptic bursting may be preferentially increasing excitatory synaptic coupling.   

  



	   32	  
	   	  	   	  
	   	  
	   	  
	   	  
	  

 

 

 

Figure 6. Excitatory Synaptic Bursts are Induced by CCI. A) Voltage clamp recording of 
spontaneous excitatory burst discharge observed in a CCI animal with an epileptiform 
EEG. Note the burst is comprised of compound sPSC and resembles paroxysmal 
discharges observed in epileptic animals. B) Bar charts of average values of various burst 
properties (control = 13, CCI = 38). *P<0.05. 
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Figure 7. Inhibitory Synaptic Bursts are Induced by CCI. A) Voltage clamp recording of 
spontaneous inhibitory burst discharge observed in a CCI animal with an epileptiform 
EEG. For inhibitory recording glutamate receptor antagonists (APV/DNQX or 
kynurenate) were applied. Note the burst is comprised of compound sIPSC and resembles 
epileptiform discharges observed in epileptic animals. B) Bar charts of average values of 
various burst properties (control (n=9), CCI(n =16). 
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Discussion 

This study was undertaken to better understand the early changes to cortical 

excitability induced by traumatic brain injury and to gain insight into how they may 

facilitate the development of post-traumatic epilepsy (PTE).  Controlled cortical impact 

(CCI) in rodents has been effectively used to model traumatic brain injury 

(TBI)(Bolkvadze & Pitkänen, 2012; Cantu et al., 2014; Hunt et al., 2009).  However, 

these studies have primarily focused on CCI performed in adult animals. The outcome, 

incidence and clinical management of TBI in children differ significantly from adults.  In 

this study, we examined the development of epileptiform activity and the underlying 

pathophysiology that occurs in juvenile (PND 17) rats following CCI.   The results of this 

study suggest that within 14 days of CCI injury epileptiform activity is induced that can 

be detected in-vivo by EEG as synchronous discharges across multiple cortical regions.  

At a cellular and synaptic level this epileptiform activity was accompanied by a lack of 

change in intrinsic membrane properties but a 44% increase in the decay of inhibitory 

synaptic input onto layer V pyramidal neurons.  In addition, spontaneous epileptiform 

bursting was observed in both excitatory and inhibitory synaptic recordings. Synaptic 

bursting is thought to enhance synaptic coupling between neurons and may promote PTE 

through enhanced hyperexcitability and network synchrony.   

Development of Epileptiform Activity Following CCI in Juvenile Rats 

The hallmark of PTE is the development of spontaneous recurrent seizures.  In 

humans, these seizures develop after several months to years following the initial 

injury(Agrawal et al., 2006).  The progressive development of PTE suggests an evolving  
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process that may begin early after injury.  To directly examine the development of  

epileptiform activity early after injury we performed continuous EEG for the first 14 days 

post-injury.  Epileptiform activity and electrographic seizures were observed in 87.5% of 

animals within the first 24 hours after CCI.  These early seizures are thought to be injury 

induced and may be separate from the underlying epileptogenic processes that lead to 

PTE.  However, children are also more prone to developing early seizures and the 

prevalence and contribution of these early seizures to development of PTE in pediatric 

TBI remains to be determined.  Following a variable latent period all CCI animals 

proceeded to develop spontaneous recurrent epileptiform activity by 14 days post-injury.  

This activity was primarily characterized by high-amplitude rhythmic discharges that 

were routinely synchronized across all 4 cortical EEG leads.  This activity resembles 

epileptiform discharges and inter-ictal spiking that has been previously shown in other 

epileptic animal models (Hunt et al., 2013). This epileptiform activity and late seizures 

that develop after the first week of injury are positive predictors of PTE (Frey, 2003 for 

review).  Furthermore, the presence of similar inter-ictal EEG abnormalities are strong 

predictors of disease severity and outcome (Ramantani, 2013 for review).  Further work 

recording EEG continuously for several months will be required to determine the 

prognostic value of the observed early epileptiform activity.  To our knowledge, no other 

study has examined the development of early EEG changes after injury during the time 

period as animals transition from these presumed injury induced seizures to the 

development of the first recurrent spontaneous epileptiform activity.  The study of PTE is  
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complicated by the presence of multiple injury, repair and adaptive processed initiated by  

the TBI – only a portion of which are presumed to be epileptogenic.  Examination of 

animals early after injury has a potential reductionist advantage while determining early 

pathophysiological changes that may define a critical window or targets for therapeutic 

intervention.  We have now validated that 14 days after injury is the earliest time point 

after CCI where animals reliably display in-vivo and in-vitro epileptiform activity.   

Epileptogenesis has been extensively studied in numerous animal models and may 

result from a variety of mechanisms.  While no common epileptogenic mechanism has 

been found a combination of disruption to intrinsic cellular properties, synaptic inhibition 

and/or synaptic excitation has been frequently reported(Prince and Connors, 1986 for 

review).  Recently, a preliminary report by Yang and colleagues has indicated the 

development of hyperexcitability and spontaneous epileptiform activity following CCI in 

juvenile animals(Yang et al., 2010).  We extend these findings here to examine the 

underlying mechanism and determine the impact of CCI on known intrinsic and synaptic 

changes that are thought to be epileptogenic.  Overall our results indicate that CCI fails to 

alter intrinsic membrane properties, neuronal firing or average excitatory synaptic 

activity while promoting burst discharges and enhanced inhibitory synaptic decay.  

Specifically, the intrinsic excitability of a neuron is determined in large part by its 

membrane properties and ion channels and enhanced intrinsic excitability may be 

epileptogenic.  However, following CCI in juvenile animals layer V pyramidal neurons 

displayed no change in intrinsic excitability.  This included resting membrane potential, 

input resistance, action potential threshold and rheobase.  Similarly, there was no change  
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in the firing properties (frequency or accommodation), input-output relationship (f-I  

curve) or single action potential waveform.  Together these results suggest that alterations 

to intrinsic excitability do not significantly contribute to the observed development of 

epileptiform activity following CCI. 

At a synaptic level, our results indicate that overall excitatory synaptic input onto 

layer V pyramidal neurons was not altered.  There was no change in the amplitude, inter-

event interval or kinetics of excitatory spontaneous post-synaptic currents.  Regulatory 

control over spontaneous synaptic activity is complex, but in general changes to 

amplitude and kinetics occur as a result of changes to the pre- or post-synaptic neuron 

including mechanisms such as quantal content or receptor subunit composition.  Altered 

inter-event interval is thought to reflect changes to the pre-synaptic neuron (e.g. 

probability of release).  The lack of change in sPSCs after CCI suggests that altered 

excitatory synaptic activity is not driving the development of epileptiform activity.  In 

examining inhibition in the cortex, we similarly found no change in the amplitude or 

inter-event interval of spontaneous inhibitory post-synaptic currents.  However, the decay 

of inhibitory responses was significantly increased following CCI.   Alterations to the 

time course of synaptic GABAergic events will have a profound effect on the excitability 

of individual neurons and networks by altering the temporal integration window, the time 

over which a GABAergic event may reduce a coincident excitatory event.  Our finding of 

an increase in sIPSC decay is consistent with increases observed in other models of 

epilepsy(Calcagnotto, Paredes, Tihan, Barbaro, & Baraban, 2005). The time course of 

inhibitory events is determined by both pre and post-synaptic factors including 

expression of synaptic GABA transporters, synchrony of GABA release and subunit 



	   38	  
	   	  	   	  
	   	  
	   	  
	   	  
	  

composition(Overstreet and Westbrook, 2003; Keros and Hablitz, 2005; Barberis et al., 

2007).  In general, an increase in synaptic decay is predicted to counteract the observed 

hyperexcitability but may also be impacted by neural trauma induced changes in the 

chloride reversal potential(van den Pol, Obrietan, & Chen, 1996).  Altered intracellular 

chloride may also impact the kinetics of chloride dependent GABAergic 

inhibition(Houston, Bright, Sivilotti, Beato, & Smart, 2009) and would be in line with the 

observed CCI induced changes.  Determining the role of increased synaptic decay in 

promoting or resisting epileptic changes following CCI remains an open question.   

Development of synaptic bursting following CCI in juvenile rats 

The development of epilepsy is commonly associated with the synchronous 

discharge of cortical neurons.   Excitatory burst discharges are thought to increase 

synaptic coupling by increasing the probability of inducing the post-synaptic cell to fire 

an action potential.  In this study we have identified unique epileptiform burst discharges 

following CCI in the absence of changes to intrinsic membrane, firing properties or 

global changes in excitatory synaptic currents.  Taken together it suggests that layer V 

pyramidal neurons are not the initiator of the epileptiform discharges but are driven by 

afferent input.  As no changes were observed in excitatory synaptic IEI it suggests the 

synaptic bursting is not due to altered pre-synaptic probability of release.  As the bursts 

were sensitive to blockade with TTX it suggests they are being driven by action potential 

dependent afferent input.  How the bursts directly impact synaptic coupling and the 

output of layer V pyramidal neurons remains to be determined.  As synchronous 

spontaneous epileptiform activity was observed on EEG across cortical regions and 

hemispheres (Fig 1) it suggests network recruitment and widespread propagation of the 
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epileptic activity.  Layer V pyramidal neurons receives input from all other cortical layers 

as well as from thalamus and are implicated in synchronization of cortical activity(Peters 

& Jones, 1984; Telfeian & Connors, 1998; Wise, 1975).  The increase in excitatory burst 

discharges may therefore promote epileptiform activity by increasing the excitability of 

layer V pyramidal neurons that are perfectly placed to increase cortical output and 

network synchrony.  Determining if the epileptiform activity is specific to layer V 

pyramidal neurons, the location of the afferent driver of the epileptiform activity and the 

specific contribution of layer V changes to in-vivo epileptiform activity are areas of 

current investigation.    

In addition to excitatory bursting, distinct inhibitory bursting was similarly 

observed.   To isolate inhibitory synaptic currents we routinely blocked glutamatergic 

neurotransmission with bath application of APV and DNQX.   As inhibitory bursting 

persisted in the presence of glutamatergic blockade this suggests inhibitory bursting is not 

mediated by afferent glutamatergic input.  This appears is in contrast to our findings on 

excitatory bursting and may reflect intrinsic excitability changes and spontaneous burst 

discharges form inhibitory interneurons themselves.  Inhibitory interneurons in the cortex 

are a diverse group of neurons that have distinct anatomical, morphological and cellular 

properties(Markram et al., 2004 for review).  Based upon our results we cannot ascertain 

if changes to inhibition are confined to one class of interneuron and future work will be 

needed to determine its specific role in mediating CCI induced epileptiform activity and 

PTE. 
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Pediatric Traumatic Brain Injury 

Traumatic brain injury that occurs in children differs from adults with a decreased 

mortality rate(Luerssen, Klauber, & Marshall, 1988), increased incidence of skull 

fractures and epidural hematomas (Sarkar et al., 2014) and greater deficits in cognitive 

and behavioral functioning(Anderson et al., 2005c; McKinlay et al., 2002).  In this study 

we have begun examining if the pathophysiology of TBI in children V pyramidal 

neurons.  The development of epileptiform activity early after injury may be the first step 

“on the road” to PTE.  Understanding how TBI alters cortical excitability early after 

injury may help define therapeutic targets and a critical window of intervention.   
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Discussion 

Using whole-cell patch clamp and EEG techniques in juvenile rats this study 

demonstrates that (a) all rats within fourteen days post CCI injury show epileptiform 

activity by EEG, (b) there were no changes to synaptic or intrinsic properties in layer V 

pyramidal neurons, (c) excitatory and inhibitory synaptic bursting is greater in CCI 

animals compared to control, and (d) there is greater synaptic bursting than inhibitory 

bursting, suggesting a hyperexcitable network develops post injury.  Previous studies 

have shown an increase in postsynaptic currents after injury, but not while examining for 

changes in cell properties.  Other CCI studies that have shown increased spontaneous 

events, have not presented findings of synaptic bursts, both inhibitory and excitatory. 

 Neuronal firing usually occurs in a single action potential in isolation in response 

to discrete input postsynaptic potentials combine and cause the membrane potential to 

depolarize.  Neurons sometimes will have periods of rapid action potentials as opposed to 

the single firing event. Neuronal bursting is often seen as necessary to increase the 

reliability of neuronal communication (Izhikevich et al., 2003). Homeostatic synaptic 

plasticity has been implicated in an increase of network excitability after traumatic brain 

injury resulting in network burst activity (Houweling et al., 2005). It has been shown that 

bursting activity resulted from the upregulation of excitatory synapses between pyramidal 

neurons (Houweling et al., 2005). 

Electrical brain activity is normally non synchronous and when an epileptic 

seizure occurs, several neurons begin firing unusually, excessively and in synchrony.  

When an excitatory neuron fires, the resistance to continue to fire or fire again is because 

of the effect of inhibitory neurons or intrinsic properties of the neuron itself (Somjen, 
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2004). However, during epilepsy the resistance of the excitatory neuron to fire is 

decreased due to changes in ion channels or irregular activity of inhibitory neurons 

(Somjen, 2004).  Individual neurons are capable of intrinsic bursting in response to input 

(Traub & Wong, 1982).  When several neurons begin to burst in synchrony, a functional 

heterogeneity of cortical regions for seizure generation can lead to seizures (Timofeev & 

Steriade, 2004). Previous studies have examined mechanisms responsible for post-

traumatic epileptogenesis in rodents models using techniques such as lateral fluid 

percussion (Thompson et al., 2005), CCI in mice (Cantu et al., 2014; Hunt et al., 2009; 

Hunt, Scheff, & Smith, 2011), and cortical undercutting (Jacobs, Graber, Kharazia, 

Parada, & Prince, 2000; Yang et al., 2010).  To our knowledge, only one study has found 

bursting, but this was done during extracellular recordings after CCI injury (Yang et al., 

2010).  Our findings provide evidence that excitatory intracellular bursting is more 

apparent in neurons in a TBI brain. Furthermore, we show the increase in bursting in 

conjunction with intrinsic and synaptic properties unchanged after TBI. This suggests that 

pyramidal neurons of layer V are experiencing a change in input from other regions of 

the brain.  The surprisingly similar bursting patterns, intrinsic and synaptic properties 

seen in CCI compared to control suggest that cortical network connectivity and function 

is unchanged, but the manner in which neurons are transmitting information is different 

following severe cortical injuries. 

 Epilepsy research has shown that epileptiform activity can result from a shift of 

balance excitation and inhibition toward excitation (Dichter & Ayala, 1987; Galarreta & 

Hestrin, 1998; Nelson & Turrigiano, 1998; Tasker & Dudek, 1991).  This has been shown 

by studies that have elicited experimental seizures by blocking inhibition (Matsumoto & 
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Marsan, 1964; Prince, 1978; Steriade, Amzica, Neckelmann, & Timofeev, 1998). Other 

favorable conditions to generate seizures would be to increase inhibition and decrease 

excitation (Timofeev & Steriade, 2004).  How this balance is altered during TBI to 

contribute to the development of PTE is still unclear. Our findings show that there is an 

increase in excitation after TBI.  This is consistent with other TBI studies. However, it is 

our understanding that we are the first to show this shift in balance, toward excitation, 

during two weeks post injury in juvenile rats intracellularly. 

  There are many possibilities that play a role in TBI pathology leading to PTE 

including increased inflammation (Johnson et al., 2013; C. Smith et al., 2013), white 

matter degeneration (Johnson et al., 2013), oxidative and nitrosative damage (Abdul-

Muneer et al., 2013), and mitochondrial changes (Balan et al., 2013; Cheng, Kong, 

Zhang, & Zhang, 2012).  Also, further work needs to be conducted to elucidate what 

region of the brain is driving this rapid enhancement of excitability in layer V neurons.  

Perhaps, as axon sprouting and enhanced excitatory synaptic connectivity onto layer V 

pyramidal neurons has been shown in chronic models of posttraumatic epileptogenesis 

(Jin, Prince, & Huguenard, 2006; Salin, Tseng, Hoffman, Parada, & Prince, 1995), using 

biocytin on neurons in affected regions could provide visual data to under projection 

changes after injury. 

In conclusion, improvements in treatment and diagnosis of PTE are desperately 

needed.  Current treatment of children that suffer from TBI approaches the problem by 

treating any child that suffers an injury.  Providing anticonvulsants to a developing brain, 

when there may be no risk of PTE, could have undesirable developmental and cognitive 

ramifications. Here we have shown that, on a cellular level, those that suffer an injury are 
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experiencing a bursting phenomenon.  This bursting phenomenon could lead to the area 

of the brain that may play role in driving a hyperexcitable cortex.  By studying this TBI 

14 days post injury in juvenile rats, we are observing the period in which PTE is 

developing.  PTE could develop because of the modification of the network during the 

brain’s healing process. 

 Conclusion 

This dissertation uses common electrophysiology approaches to better understand the 

pathogenesis of PTE.  In chapter 2, we explored possible changes in intrinsic and 

synaptic properties after TBI.  We began this work by understanding how TBI patients 

are currently being treated and found that any individual that suffers TBI is prescribed 

anticonvulsants.  This led us to investigate possible ways to distinguish who is going to 

develop PTE and who will not.   

Our investigation led us to find an increase in excitatory cellular bursting, both 

inhibitory and excitatory, while observing no change in intrinsic or synaptic properties in 

juvenile rodents within fourteen days after sever injury.  Bursting frequency is a unique 

characteristic in the brain that develops after an individual suffers from TBI.  Our results 

are the first to show this unique phenomenon that could eventually lead to a better 

understanding of the pathogenesis of PTE epilepsy.  A better understanding of the origin 

of this bursting phenomenon is only the beginning to understand the cortical circuit 

related to layer V and its role in the pathogenesis of PTE.  
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EDUCATION 
Aug. 2012 - Current  M.S. in Biology 

Co-Chair: Trent Anderson, Ph.D. – University of Arizona – Basic 
Medical Sciences  
Co-Chair: Konstantinos Tsakalis, Ph.D. – Arizona State University 
- Department of Electrical Engineering 

   Expected Graduation: August 2014     
    

 
May 2010  B.A. with honors magna cum laude      
  

Honor’s Thesis Title: Monitoring the Change in 5HT2A in 
Response to Fear Conditioning 

   Chair: William J. Tyler, Ph.D. – Arizona State University  
 
HONORS/AWARDS 
2006-2010  Dean’s List, Arizona State University, Tempe, AZ 
2008-2010  Barrett Honor’s Scholar 
 
RESEARCH EXPERIENCE AND TRAINING 
Aug 2012 – Current  Arizona State University – School of Life Sciences 
   Phoenix, AZ 
   Master of Science - Biology 
   Investigating cortical hyperexcitability as a result of traumatic 
brain injury. 
   Responsibilities: 

• Perform controlled cortical impacts on rats and implant 
recording EEG electrodes. 

• Whole cell patch clamp recordings on cortical pyramidal 
neurons. 

• Analyze signal data using Clampfit, Excel, and Prism software. 
• Perform signal analysis of EEG data recorded from rats and 

humans suffering from traumatic brain injury using Matlab, 
Excel, and C. 

 
Principle Investigators – Trent Anderson, Ph.D. & Konstantinos 
Tsakalis, Ph.D. 

 
 
June 2011-Aug 2012 University of Arizona-College of Medicine Phoenix 

Phoenix, AZ 
Research Technician 
Investigating the role of neurosteroids in regulating cortical 

excitablity. 
Responsibilities: 
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• Perform voltage and current clamp techniques to neurons in 
situ while pharmacologically inducing epileptiform activity.   

• Test different anti-convulsing drugs concentrations in situ and 
evaluate intrinsic drug effect. 

• Perform data analysis using MINI software and Excel. 
 
Principle Investigator – Trent Anderson, Ph.D. 
 

Aug 2011 – Aug 2012 Arizona State University – School of Life Sciences 
Tempe, AZ 
Research Technician  
Understanding the development and function of motorneuron 
dendritic architecture. 
Responsibilities: 
• Write and perform protocols for patch clamp recordings of 

third-star larvae Drosophila. 
• Perform technical functions for Drosophilia including: 

preparing food and vials, maintain and care for back-up fly 
lines. 

 
Principal Investigator: Carsten Duch, Ph.D. 
 

2008-2011  Arizona State University – School of Life Sciences 
Tempe, AZ 
Honors Research Scholar 
Investigate ultrasonic neuromodulation, and homeostatic plasticity 
using the rodent olfactory system as prime model. 
Responsibilities: 
• Conduct in vivo behavioral assays including: Morris water 

maze, rot-a-rod, wire hang test, reward and aversive 
conditioning, etc. 

• Model wave properties of acoustic pressure generated by 
ultrasound on brain fluids. 

• Fluorescently label receptors by immunohistochemistry and 
image tissue slices with laser scanning confocal microscopy. 

• Conduct in vivo imaging using two-photon microscopy and 
perform data analysis using Matlab. 

 
Principal Investigator: William Jamie Tyler, Ph.D. 

 
PROFESSIONAL MEMBERSHIP 
Society for Neuroscience          
 2013-Present 
 
PUBLICATIONS & PRESENTATIONS 
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Publications: 
 

Joshua Nichols, Chen Wu, Roxy Perez, Lucy Treiman, and Trent Anderson 
(Submitting June 2014) Traumatic brain injury induces rapid enhancement of 
cortical excitability in juvenile rats. 

 
Corey Goddeyne, Joshua Nichols, Chen Wu, and Trent Anderson (In 
Preparation) Repetitive mild brain injury selectively decreases cortical 
inhibition in juvenile rats. 

 
Li MM, Tufail, Y., Nichols, J., Cruz, Karina, and Tyler, WJ (In 
Preparation).  Serotonin modulates sensory input gains in a context-dependent 
manner at olfactory glomeruli. 
 
J.F. Georges*, X. Liu*, J. Eschbacher, J. Nichols, R. Spetzler, B.G. 
Feuerstein, M.C. Preul, K. Van Keuren-Jensen, T. Anderson, H. Yan*, 
P.Nakaji* (In Review) Rapid ex vivo identification of central nervous system 
lymphoma with conformational switching aptamer. 

 
Joseph F. Georges, Nikolay L. Martirosyan, Jennifer Eschbacher, Joshua 
Nichols, Maya Tissot, Mark C. Preul, Burt Feuerstein, Trent Anderson, 
Robert F. Spetzler, Peter Nakaji (2014) Sulforhodamine 101 selectively labels 
human astrocytoma cells in an animal model of glioblastoma. Journal of 
Clinical Neuroscience 21 (5): 

 
Joseph Georges, BS, Aqib Zehri, BS, Elizabeth Carlson, BS, Joshua Nichols, 
BA, Michael A. Mooney, MD, Nikolay L. Martirosyan, MD, Layla Ighaffari, 
M. Yashar S. Kalani, MD, PhD, Jennifer Eschbacher, MD, Burt Feuerstein, 
MD, PhD, Trent Anderson, PhD, Mark C. Preul, MD, Kendall Jensen, PhD, 
and Peter Nakaji, MD  (2014) Contrast-free microscopic assessment of 
glioblastoma biospecimens prior to biobanking. Neurosurgical Focus 36(2): 
E8. 

 
Abstracts: 

Society for Neuroscience– Joshua Nichols, Chen Wu, Roxy Perez, Lucy 
Treiman, and Trent Anderson (2013) Traumatic Brain Injury Induces 
Rapid Enhancement of Cortical Excitability in Juvenile Rats 

American Association of Neurological Surgeons - Joseph F. Georges, Nikolay L. 
Martirosyan, Jennifer Eschbacher, Joshua Nichols, Maya Tissot, Aqib H 
Zehri, George AC Mendes, Anna Joy, Ali Elhadi, Mark C Preul, Burt G 
Feuerstein, Robert F Spetzler, Trent Anderson, Peter Nakaji (2013) Ex 
Vivo Fluorescence Neuropathology: Immediate and Specific Diagnosis of 
Human Astrocytic Brain Tumors 

 
Neurotrauma Symposium - Trent Anderson, Corey Goddeyne, Joshua Nichols, 

Anna Yoshihiro, Roxy Perez, Lucy Treiman, and P. David Adelson (2012) 
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Enhanced Cortical Excitability in the Peri-Injury Zone of Immature Rats 
after Experimental TBI 

 
American Association of Neurological Surgeons - Joseph F. Georges, Nikolay L. 

Martirosyan, Jennifer Eschbacher, Joshua Nichols, Maya Tissot, Ali M. 
Elhadi, George Mendes, Michelle McQuilkin, Burt G. Feuerstein, Robert 
F. Spetzler, Trent Anderson, Mark C. Preul, Peter Nakaji (2012) Rapid 
and Specific Diagnosis of Human Astrocytic Brain Tumors by Immediate 
Imaging with Sulforhodamine 101 

 
Society for Neuroscience - Monica Li Tauchmann, Yusuf Z. Tufail, Joshua 

Nichols and William J. Tyler (2010) Amplitude modulation by 5HT2A 
receptors at primary olfactory synapses underlies a learning-dependent 
peripheral sensory gate. 

 
Presentations: 

University of Arizona – College of Medicine Phoenix Basic Medical Seminar 
Series (June 2013) Enhanced Cortical Excitability in the Peri-Injury Zone of 
Immature Rats After Experimental TBI 
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