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ABSTRACT  
   

The study examined how ATFIND, Mantel-Haenszel, SIBTEST, and Crossing 

SIBTEST function when items in the dataset are modelled to differentially advantage a lower 

ability focal group over a higher ability reference group. The primary purpose of the study 

was to examine ATFIND’s usefulness as a valid subtest selection tool, but it also explored 

the influence of DIF items, item difficulty, and presence of multiple examinee populations 

with different ability distributions on both its selection of the assessment test (AT) and 

partitioning test (PT) lists and on all three differential item functioning (DIF) analysis 

procedures. The results of SIBTEST were also combined with those of Crossing SIBTEST, 

as might be done in practice. 

ATFIND was found to be a less-than-effective matching subtest selection tool with 

DIF items that are modelled unidimensionally. If an item was modelled with uniform DIF or 

if it had a referent difficulty parameter in the Medium range, it was found to be selected 

slightly more often for the AT List than the PT List. These trends were seen to increase as 

sample size increased. All three DIF analyses, and the combined SIBTEST and Crossing 

SIBTEST, generally were found to perform less well as DIF contaminated the matching 

subtest, as well as when DIF was modelled less severely or when the focal group ability was 

skewed. While the combined SIBTEST and Crossing SIBTEST was found to have the 

highest power among the DIF analyses, it also was found to have Type I error rates that 

were sometimes extremely high. 
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CHAPTER 1 

INTRODUCTION 

Since the reauthorization of the Elementary and Secondary Education Act with the 

No Child Left Behind Act of 2001 (NCLB), state content assessments in mathematics, 

reading, writing, and science have increasingly become increasingly important. They are the 

basis for not only school and district evaluations but also gateways for student promotion 

and graduation as well as teacher evaluations, influencing decisions about pay and even 

possible job loss. Each year, every public school in our nation administers these high stakes 

tests to students enrolled in Grades 3 through 8 and one state designated grade in high 

school. All students, regardless of ability (or disability) must be assessed. Schools and 

districts are penalized if they do not assess at least 95% of each student subgroup, which is 

calculated by grade level and includes students with disabilities (SWD), English language 

learners (ELLs), students from low income families, and the major ethnicities within the 

state (United States Department of Education, 2000). 

Because of the inclusion of students with disabilities and those just learning English, 

states have increasingly allowed students to use accommodations on the assessments that are 

specifically aligned with their needs so that they can better demonstrate their knowledge and 

skills (Thurlow, & Bolt, 2001; Johnstone, Altman, Thurlow, & Thompson, 2006, Bolt, & 

Thurlow, 2007). Of the students with disabilities in our nation's schools, over half have been 

found to be designated with learning disabilities (Torgesen, 2004). Learning disabilities, 

which affect students' ability to processes information, directly impact students' ability to 

learn and demonstrate knowledge in specific content areas such as reading, writing, and 

mathematics (Silver, 2004). Accommodations, such as having the writing prompt read out 
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loud or using a white board to work a mathematics question, are assumed to have negligible 

effect on the construct being assessed so that the resultant student scores are both valid and 

can be aggregated for teacher, school, district, and state evaluations (Arizona Department of 

Education (ADE), 2011c). The investigation and assurance of the validity of these 

accommodations for various groups of examinees falls on the assessment community for the 

states. To this end, multiple studies have been performed to investigate the lack of 

measurement invariance, including differential item functioning (DIF) between students who 

took an assessment with an accommodation (or group of accommodations) and those who 

did not (e.g. Cohen, Gregg, & Deng, 2005; Elliot, & Marquart, 2004; Middleton & Cahalan 

Laitusis, 2007). The work, however, is not complete. 

With multiple groups defined by both various needs and the use of various 

accommodations, researchers are struggling with the task of teasing apart the data to 

determine whether items function similarly or differently in the many groups defined by the 

combinations of those needs and accommodations. For example, one state has 19 different 

need classifications which allow access to 22 specific accommodations. These students' 

needs include various education classifications such as Emotionally Disabled, Specific 

Learning Disabled, and Mild Mental Retardation, as well as physical disabilities such as 

students who have Visual Impairment, Hearing Impairment, or Traumatic Brain Injury. 

Additionally, ELLs are allowed to access a separate list of accommodations which contains 

some of the same accommodations that students with learning or physical disabilities may 

access. If a researcher restricts the students included in the DIF analyses to those who used 

only one accommodation, 418 analyses would be needed to compare the item functions for 



 

  3 

each group/accommodation combination to the referent group of general education 

students who took the assessment with no accommodations.  

 Complicating these analyses is that the DIF process matches the two comparison 

groups on some measure of ability prior to determining whether the items function 

differently for these two groups. The groups are often identified as the focal, generally 

consisting of examinees in the subgroup of interest (in this case, the students with an 

identified need who took the test with an accommodation) and referent, the examinees in 

the majority group, generally (Millsap, 2011) but not necessarily, assumed to be advantaged 

by DIF. When students are matched on their total score for the assessment, the score for the 

focal group would include any items that had been impacted by their accommodation and 

cause the matching score to be increasingly unreliable as the number of DIF items that are 

contained in the assessment increases. In an ideal world, we would prefer to match 

examinees on a purified subtest that contains no DIF items to optimize the reliability of the 

analysis (Linn, 1993). Additionally, because of the large number of group/ accommodation 

combinations, it would be preferable to be able to have the same matching set of items for 

all DIF analyses to aid in comparability of the results across combinations.  

 The goal of this study is to investigate a method of analytically selecting a purified 

matching subtest for use when multiple focal groups have multiple causes for potential DIF 

as compared to a single referent group. 
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CHAPTER 2 

BACKGROUND LITERATURE 

Measurement Non-invariance 

Definition of Differential Item Functioning. DIF is defined to exist when 

individuals having the same ability level but belonging to different groups are observed to 

have different probabilities of correctly answering an item (Hambleton, Swaminathan, & 

Rogers, 1991). That is, systematic differences in performance, between different groups of 

examinees, is observed after they are matched on the ability that the test was intended to 

measure (French & Finch, 2010). Using Hanson’s (1998) notation, this definition can be 

written with the item response variable for the one item (V) under investigation (so no item 

subscript is used) with possible discrete values v1, v2, … vi. The group variable in this notation 

is G with possible discrete values g1, g2, … gj, and the matching variable is W which can be 

either discrete or continuous. It can be formulated as the conditional dependence of V on 

both G and W as below 

 

��� � ��  | 	 � 
, � � �� � ��� � ��| 	 � 
�                                 (1) 

 

for 1 ≤ i ≤ I, 1 ≤ j ≤ J, and for all w. 

Dichotomous data, generally examined for one or both of two types of DIF. Uniform 

DIF tends to advantage one group over the other across the whole ability range. Non-

uniform DIF however, occurs when there is an interaction between membership within a 

group and ability level (Narayanan & Swaminathan, 1996). Within item response theory 
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(IRT), dichotomous item responses are often modeled using some variant of the general 

curvilinear three parameter logistic (3-PL) model shown.  

 

����� � 1|��, ��, ��, ��� �  �� � �1 �  ��� ������� �!
"#������� �!            (2) 

 

 In this model, ai is the parameter for the item Vi’s discrimination, bi is the parameter 

for the item's difficulty, and ci is the item's pseudo-guessing parameter where �s is the 

parameter for examinee's ability. Here, the probability of an examinee's correct response to 

the item is dependent solely on the three item parameters and the one person parameter and, 

disregarding error, should be the same regardless of how the examinees are grouped 

(Embretson & Reise, 2000). Within this framework, which will be utilized in the current 

study, uniform DIF is observed when two or more groups vary on item difficulty parameter 

after matching on ability. However, if the groups vary, either instead or additionally, on the 

item discrimination parameter, then non-uniform DIF is evident (de Ayala, 2009). A 

graphical representation of uniform and non-uniform DIF can be obtained using separate 

item characteristic functions for each of the two groups. Figure 1 displays an example of 

uniform DIF. In this figure, the two item characteristic functions (ICF) values differ only in 

difficulty parameter. The difficulty parameter in this example has a value of -0.5 for Group 2 

(the reference group) and a value of 0.5 for Group 1 (the focal group), indicating that this 

item is harder (or takes more of the trait to answer correctly) for Group 1 than Group 2. 

Since this is the only parameter that varies between the groups for this item, Group 2 has a  



 

Figure 1. Probability curves for two groups on an item that displays uniform DIF.
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Probability curves for two groups on an item that displays uniform DIF.

higher probability of correctly answering the item than Group 1 across every level of ability 

). The item characteristic curves (ICC) displayed will not meet except that they asymptote 

to the same values (in this example at .10 and 1).  

Figure 2 is an example of non-uniform DIF where not only is there a difference 

between groups in probability in correctly answering the item but  the group having the 

advantage changes at some point within the ability range. Here, one group has a higher 

probability of correctly answering the question at end of the scale and the other group has a 

t the other (Walker, 2001). In this example, the ICF values differ in terms 

-guessing parameters, as well as the difficulty parameter. The 
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reversed at the higher end of the ability scale. Some researchers have termed non
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reversed at the higher end of the ability scale. Some researchers have termed non-uniform  
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Probability curves for two groups on an item that displays non-uniform DIF.

DIF as “crossing” due to the visual juncture of the ICFs sometimes observed (Bolt & Stout, 

1996, p. 88). It should be noted that it is entirely possible for an item to have invariant 

difficulty values for two groups and only have discrimination and/or pseudo-guessing values 

that vary. In this case, if the analysis is insensitive to non-uniform DIF, DIF might not be 

identified (Camilli, 2006). It is also possible that the ICCs do not intersect, except at the 

asymptotes, but the magnitude of DIF varies across the ability scale. With this “non

nonuniform” (Güler & Penfield, 2009) or “unidirectional” DIF, one group remains 

oss the scale but the amount of advantage is not consistent (Li 

& Stout, 1996).While DIF within the IRT framework, as explained above and used within 

this study, can be conceived as a lack of parameter invariance between groups matched on 

ability, researchers have conceptualized it from other perspectives also.
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& Stout, 1996).While DIF within the IRT framework, as explained above and used within 

this study, can be conceived as a lack of parameter invariance between groups matched on 

ability, researchers have conceptualized it from other perspectives also. 
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Parameter and Test Level Non-invariance. Within parametric approaches to 

DIF, parameter non-invariance has been defined as equivalent population parameters across 

different populations (Teresi, 2006b). These population parameters can be either factor 

loadings and variable intercepts or item discrimination, difficulty and pseudo-guessing 

parameters (Teresi, 2006b). There are two general frameworks within which parametric 

approaches to parameter non-invariance (or DIF) studies are based: item response theory 

(IRT) and structural equation modeling (SEM). Following Byrne (2006), this statement 

subsumes confirmatory factor analysis (CFA) as a special case of SEM where the 

relationships between latent factors are not causally modeled. IRT and SEM are related in 

that some models used in IRT (normal ogive and logistic ogive) have been shown to be 

linked to one form of an SEM model (multiple indicator-multiple cause, MIMIC) that is 

used to investigate parameter non-invariance. Additionally, Takane and de Leeuw (1987) 

demonstrated that the models used for factor analysis and IRT are equivalent (Teresi, 

2006b). 

Multidimensional Framework for DIF. Assessments can be designed to (or 

incidentally) address one or more skills or traits. When the ability to correctly respond to all 

of the items on an assessment depends solely on one skill, or one set of composite skills 

(Reckase, Ackerman, & Carlson, 1998), the test is unidimensional. When the modeling of 

assessment performance is more complex (e.g. accounting for either multiple abilities 

concurrently or various mixtures of abilities assessed within the various items), then a 

multidimensional model might be more appropriate (Hartig, & H�hler, 2009). The 

differences in the observed probabilities, as illustrated above, could be conceived as due to 

some ability, outside those for which the test was designed to measure, that varies between 
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groups. If the probability of the correct score was not based solely on the ability level of the 

primary trait (�) but also that of the secondary trait ($, also know as an auxiliary or nuisance 

trait), then DIF could occur if the probability density functions of $ conditioned on the 

primary trait were not equivalent for the two groups (Roussos & Stout, 1996a). Using a 

multidimensional framework, there can be multiple primary traits (Θ �  �", �&, �', … �)) that 

the assessment is intended to measure and multiple unintended (or nuisance) traits (Η �
$", $&, $' … $+� that it also measures. Each of these traits would have one or more items 

that function as an indicator. Figure 3 presents an example, using a factor structure of an 

assessment, which measures two intended traits and one nuisance trait. 

 

 

 

 

 

 

 

Figure 3. Example of a multi-trait factor structure. 

 

In this example, significant loadings and correlations are indicated by dashed and 

solid arrows where non-existent and non-significant loadings are excluded for clarity. Here, 

as represented by the solid arrows, items �" through �, are intended to measure latent trait 

�", items represented by the solid arrows, items �" through �, are intended to measure 

latent trait �", items �- through �". are intended to measure latent trait �&, /" through /". 

�" $"  �& 

�" �& �' �0 �1 �2  �, �- �". �3 

/" /". /3 /- /2 /0 /, /1 /& /' 
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represent the impact of random and unique measurement error on the items, and the curved 

double arrow line indicates that �" is correlated with �&. Some of these items, however, also 

load on other traits as displayed by the connecting dashed arrows. As indicated item �3 loads 

not only on �& as intended, but also on �" while �' and �, load not only on �", but also on 

�&. The third trait, the nuisance trait $", has two items that load on it, �0 and �3. In this 

example, the remaining items’ non-significantly loading on $" and the non-significant 

correlations between the nuisance trait and the intended traits are not displayed for 

simplification of illustration. There is no supposition that this must always be the case, rather 

researchers might expect that there would always be at least some correlation between traits.  

 A hypothetical example of this type of structure might appear in a high school 

algebra quiz, where �" would be general algebra concepts including some calculation, �& 

would be logic problems using algebra concepts, and $" would be computational skill. In 

this scenario, �0 and �3, since they additionally load on $", might require relatively high 

levels of computation to answer correctly while the rest of the items require low levels or no 

computation to correctly answer. Since the intent for this quiz is to assess students on 

algebra and logic concepts and not on their computational skill (arithmetic), this additional 

trait might be considered a nuisance trait. If it was determined that there were two or more 

groups of students who varied systematically on this trait, DIF might be observed. 

 Using this scenario and applying Ackerman’s (1992, 1994) multidimensional 

perspective, �" and �& could be considered a plane of valid traits with each on an 

orthogonally-placed axis. When only the intended traits are used, all items are represented by 
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vectors that lie either close to one of the two axes or, in the case of �', �,, and �3 (since 

they load on both intended traits), lie between them. One possible example of this plane is 

presented in Figure 4. Please note that the following figures only include the first quadrant 

and were conceptualized as scaled from zero at the origin to positive 4. The scale values, 

however, have been left off to simplify the artwork. In a more realistic scenario, all two-

dimensional (2D) drawings would be on a regular coordinate plane ranging from - ∞ to + ∞ 

and all three-dimensional (3D) drawings would be placed on a three dimensional coordinate 

grid with each dimension ranging from - ∞ to + ∞. 

 

 

 

 

 

 

Figure 4. Example of an algebra quiz, item vectors in relation to the intended traits. 

 

In Figure 4, each item's location between the two axes represents a composite of the 

amount of each trait it is measuring, while the distance away from the origin represents the 

difficulty of the item, and the length of the vector represents its level of multidimensional 

discrimination. The unidimensional vector θTT in this example, following Froelich and 

Habing (2008), is depicted as an approximation of the weighted average of the item vectors 

and can be thought of as the ability composite that is intended to be measured by the whole 

quiz. The direction of the items in this intended plane would be changed with the addition of 
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a third trait $", orthogonal to the intended plane. Figure 5 presents one possible example of 

this change.  

Here, Items 5 and 9 have been pulled off the intended plane (depicted as a shaded 

rectangle) by the additional trait they measure, $". While it is hard to display, both of these 

items retain their relationship between the intended traits. Their maintained relationship is 

illustrated by the inclusion of both items’ reflections (Item 5’ and Item 9’) onto the intended 

plane. While the remaining items’ possible non-significant loadings on $" are not included in 

this figure for clarity. 

 

 

 

 

 

 

 

 

 

Figure 5. An example of items relation to the 2 intended traits and 1 unintended trait. 

 

If instead of this 3D representation, the θTT vector was used to represent the intended 

construct, the items could be viewed once again in a 2D graph as in Figure 6. In this 

depiction most of the items mainly measure the intended construct and non-significantly 

load on the nuisance trait. However, two items (Items 5 and 9) more heavily and 
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significantly, measure the unintended construct in the example scenario, computation or 

arithmetic. Ackerman (1992) proposed that the items most closely measuring the intended 

construct of an assessment could be distinguished from other items that might be measuring 

other constructs, those suspected of containing DIF, through the creation of a “Validity 

Sector.” This sector (also illustrated in Figure 6), and its reflection through the origin, 

contains the items that would constitute a valid subtest. Ackerman (1992) recommends that 

practitioners establish this sector and its width as they are developing each assessment. To 

this end, he presents an index of item validity that is a function only of the direction α that 

the item measures and the angle of the reference composite for the items chosen as most 

representative of measuring the intended trait. Since this index is population-dependent, he 

cautions that groups should be combined for its determination. He additionally recommends 

that for DIF analyses the estimate of ability (in whatever form) used as the matching 

criterion be based on items within this sector. 

 

 

 

 

 

 

 

 

Figure 6. A 2D example of quiz items relation to intended and unintended trait vectors. 
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The mere existence of an unintended dimension, however, does not mean that DIF 

will be observed. For DIF to be present within this framework, not only must there be an 

additional dimension, but there also needs to be differences between at least two groups’ 

conditional ability distributions on that additional dimension. Ackerman (1992) provided a 

case-wise analysis of the effects differences in mean and variances of a reference and a focal 

group would have on the detection of DIF. His conclusions are summarized in Table 1. 

 
Table 1  

The effect of distribution of group ability on detection of DIF. 

Case#/ Effect 45�            46�  45$            46$  75�            76�  75$            76$  

1. No DIF/ no 
impact 

= = = = 

2. Impact1 � = = = 

3. Uniform DIF = � = = 

4. Nonuniform DIF = = = � 

5. If 85�,$ � 86�,$  

then nonuniform 
DIF 

= = = = 

  

DIF versus Impact. DIF, as described above, exists when there are differences in 

the probability of correctly answering a question between groups, after matching on (or 

conditioning on) ability. This term was introduced by Holland and Thayer (1988) as a more 

“neutral” term for what was originally called “item bias.” However, some authors still prefer 

“item bias” (Ackerman, 1992) or even the more general term of “measurement bias” 

(Millsap & Everson, 1993), which may be used when discussing not only item level, but also 
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testlet and factor level bias. For these authors, these terms deal with the statistical evidence 

of differences between group performance after matching on some estimation of ability or 

abilities without judgment with regard to whether cause for the difference is a threat to 

construct validity. 

This is similar to Camilli’s (2006) explanation of DIF as synonymous to “statistical 

bias,” which he defines as a systematic (as opposed to random) over- or under-estimation of 

item or person parameters or when two parameters that should be the same are 

systematically different. He, however, also uses the term “unfairness” to describe DIF or 

statistical bias that is due to measurement differences in traits that are irrelevant to the 

constructs the test is intended to measure. The term “unfairness” used by Camilli (2006) in 

this context, seems to be a replacement for the term “item bias,” which Camilli and Shepard 

(1994) used to describe items that displayed DIF and also were found to be caused by some 

source irrelevant to the construct being measured by the test.  

 Impact has been defined as the existence of differences in the average performance 

on a test or test item between groups, without regard to matching examinees on ability 

(Camilli, 2006). This can be a measure of true differences in ability between groups as 

evidenced by the results of their test scores (Camilli, 2006). He gives the example of impact 

and statistical bias using running a race where two groups’ (A and B) times are determined 

by two different stop watches. An example of impact would be if group A’s time is, on 

average, better than group B’s and if both watches are working accurately, then group A 

might be said to have higher ability for running, on average, than group B. However, if the 

reason for group A having better times than group B was that the watch used to measure 

group A’s time ran slow, recording faster times for this group, then the results would contain 
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bias (Camilli, 2006). He notes that in this scenario, since all of the runners in each group 

were measured by a single watch, comparisons within groups may be accurate, but due to the 

inaccuracy of group A’s watch, comparisons between the two groups would be confounded. 

 Ackerman (1992) describes impact from a validity standpoint by defining it in terms 

of valid skills or constructs. In his definition, impact occurs when there are between-group 

differences in test performance that are caused by between-group differences in a valid skill. 

His multi-trait perspective has an emphasis on valid and invalid constructs that might be 

considered similar to Camilli’s (2006) fair and unfair perspective when conceptualized within 

the construct validity framework presented by Camilli and Shepard (1994). All of these 

researchers seem to agree that impact is an unbiased difference between two groups where 

differences that are unfair or invalid are biased. 

As outlined above, it seems that authors have come close to consensus regarding the 

usage of impact as defined above. Given the historical usage of the term “item bias,” 

however, there still seems to be some differing opinions about its usage. The original “item 

bias” was 1) sometimes (e.g. Ackerman, 1992) intended to be a statistical bias based only on 

difference in performance after matching on ability (this is the definition that is associated 

with DIF) and 2) sometimes (e.g. Camilli & Shepard, 1994) intended to be based both on a 

statistical bias in group performance conditioned on ability and on an evaluation of the item 

over and above differences in group performance (Angoff, 1993). The term “item bias” 

continues to be variously used. In a recent book, Millsap (2011) used item bias in preference 

to DIF to emphasize the importance of multivariate target-latent variables that the test is 

intended to measure. This usage would have an evaluative component and would, therefore, 

place the usage with those whose intent is based both on statistical bias and evaluation. 
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Camilli (2006, p. 234) however, used both DIF and “item bias” for statistical bias and the 

term “fairness” for statistical bias and evaluation.  

Importance of DIF. An item is determined to be biased if it is unfairly harder for 

one group than it is for another (Clauser & Mazor, 1998). DIF and bias are related in that for 

an item to be biased, it must display DIF. However, the presence of DIF alone is not 

sufficient a sufficient condition for the determination of bias. When differences between 

groups are found after matching individuals within those groups by ability, the item could be 

measuring not only the primary ability of interest but also an additional ability. This item 

could be considered bias or not based on the relevancy of the additional ability it is 

measuring. The item could be considered unbiased if the additional ability it is measuring is 

relevant to the purpose of the test (Clauser & Mazor).  

Contemporary validity theorists such as Cronbach (1988) and Messick (1988) have 

argued that test validation efforts should be focused on its application and the interpretation 

of its results. Further, DIF analysis is just one piece of the whole validity argument for a test.  

It is a separate piece of evidence from the others used within the overall test development 

process but is used in conjunction with all other validity evidence to support the validity 

argument (Clauser & Mazor, 1998). 

One possibility for an item exhibiting DIF is that it doesn’t accurately measure the 

ability of interest for members in one of the groups (Camilli & Shepard, 1994). Items found 

to exhibit DIF, could reviewed by a committee of content experts for additional 

dimension(s) not integral to the intended construct of the test. If the committee is able to 

identify the additional dimension(s) that is causing the DIF, and if the dimension is not 

integral to the construct that the test is intended to measured, then the item could be 
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considered for exclusion from future test forms or from interpretations of test scores. If 

however, the additional dimension causing DIF is found to be construct relevant, then the 

item could be retained (Camilli & Shepard). The ultimate decisions as to the deposition of 

DIF items, generally is a matter of policy (Clauser & Mazor, 1998). These decisions are 

typically informed both by practicality and the intended use of the test (Clauser & Mazor). 

Additionally, if the reason an item exhibits DIF can be identified, then perhaps it can be re-

written to eliminate the cause, or future items can be written insuring that the identified  

DIF-producing characteristics are not present. 

Causes of DIF. Many, but not all, of the causes of local dependence within 

performance assessments delineated by Yen (1993) can cause DIF to be observed within 

dichotomously scored multiple-choice items. Her list, with examples of cases of DIF 

provided by respondent, includes 

a) External assistance or interference – Special education students (the focal group), 

especially at the lower end of the ability scale, who were allowed the use of 

computational tools on a high school mathematics test, scaled based on 

responses of students who were not allowed computational tools, were found to 

have a higher probability of correctly answering computational items than either 

general education or other special education students not allowed this 

accommodation (Scott, 2009). It could be that the additional use of 

computational tools by the focal group acted as an external assistance rather than 

simply allowing the student to show what they knew or were able to do.  

b) Speededness – An effect of differential speededness at the end of tests was 

found to disadvantage Blacks and Hispanics in two editions of Verbal and 
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Mathematical portions of the SAT (Schmitt, et all, 1990). It could be that the 

items in the early portions of the test took more time for these examinees to 

answer correctly or that they had less skill in managing their time to insure 

accurate completion of the test. 

c) Item or response format – In both mathematics and in social studies, if an item 

contains a graph or figure (e.g. for social studies: map or chart), White examinees 

have been found to be advantaged over Black examinees, even when some 

written material is included (O’Neill & Mc Peek, 1993). It could be that 

differences in an auxiliary ability may be contributing to these findings, but it 

could also be an artifact of item difficulty since there was generally a moderate to 

strong correlation between difficulty and DIF.  

d) Content – The inclusion of words that have multiple meanings (homographs) 

such as the word “hide,” which can mean either the skin of an animal or the act 

of seeking concealment, was found to disadvantage Black and Hispanic 

examinees (O’Neill & Mc Peek, 1993). It could be that, when paired with 

multiple-choice options that played off the alternative meaning (e.g. hunt or 

shelter), these examinees got confused (O’Neill & Mc Peek, 1993). 

e) Knowledge – Males were found to have a higher probability than female 

examinees, across the ability scale, of correctly answering verbal analogy SAT 

questions that are related to typical male pursuits (O’Neill & Mc Peek, 1993). 

These words, dealing with such topics as hunting, fishing, or ice hockey, could 

advantage males simply because of their additional knowledge of these topics 

(Camilli & Shepard, 1994).  
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f) Abilities – General education students, across the ability scale, were found to 

have a higher probability of correctly answering items that required logic to 

answer correctly than special education students who were allowed to use 

computational tools as an accommodation (Scott, 2009). It could be that the 

special education students not only had a handicap with computation but also an 

additional handicap associated with the use of logic. It could also be that the 

teachers of these students’ had focused on computational or other low-level 

mathematical skills while choosing not to address the higher-order thinking skills 

required for the application of logic in mathematics problems. This lack of 

opportunity to learn is also evident for other subgroups such as English language 

learners on state science content assessments (e.g., Ilich, 2013) and between 

students from different countries in tests like the Second International 

Mathematics Study (McDonnell, 1995). 

Some of the other causes of local dependence between items which Yen (1993) 

identifies, that may cause lack of unidimensionality, might not lead to differential item 

functioning between groups because they cause the lack of unidimensionality equally for 

both groups. However, DIF can also be observed (or hidden) when multidimensional data is 

analyzed and scaled using a unidimensional IRT model. For example, when two components 

of the Law School Admission Test were analyzed using testlets, rather than individual items 

that function autonomously, DIF was found between various groups that had previously 

been undetected (Wainer, 1995). 

Populations of Interest. Since the institution of NCLB in 2001, there has been 

increased concern about differences between groups of students on standardized 
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assessments. States routinely perform DIF analyses on items on their annual achievement 

tests, comparing groups by gender and by ethnicity: White as compared to each of the other 

major ethnicities of at least Black, Hispanic, Native American, and Asian (e.g. ADE, 2011b). 

However, the list of populations of interest continues to grow. For example, linguistic 

complexity within items has been a concern for students who are still learning the English 

language. To investigate this issue, Martiniello (2009) compared the performance of ELL 

students on a mathematics assessment to students who were native speakers of English 

(non-ELL).  

With the increase in the inclusion of various subgroups, such as ELLs and SWDs, 

who had previously been excluded from taking standardized assessments, much more 

concern about appropriate accommodations for those students has been evident. In addition 

to multiple studies of a specific accommodation for a specific subgroup (e.g. Cohen, Gregg, 

& Deng, 2005; Elliot, & Marquart, 2004; Middleton & Cahalan Laitusis, 2007), one recent 

study by a state examined the science performance of 19 different need categories of 

students who used one of 22 different accommodations on their annual state assessment 

(ADE, 2011a). This study attempted to tease apart the performance information for the 

various need groups rather than lumping all of the need categories for students into one 

overall variable, such as SWD. While not containing a DIF analysis, it did compare the 

students within each need group who took the test with accommodations to both the non-

need students and students with the same need who took the assessment without standard 

accommodations. The concern for validating accommodations for examinees in specific 

subgroups has recently been highlighted within the Journal of Applied Testing Technology 

(JATT) when they chose to present this as a topic for a special issue (Camara, 2009).  
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The various studies sometimes have divergent results. The results presented within 

the special issue of JATT showed that while consistent, large differences in performance 

between groups was evident, there was no evidence that the accommodations changed the 

underlying constructs that the tests were measuring (Camara, 2009). Other studies (e.g. 

Scheuneman, Camara, Cascallar, Wendler, & Lawrence, 2002; Scott, 2009) have found a 

number of items that were influenced by the use of accommodations.  

In a study that investigated the causes of DIF when accommodations were used on a 

state high school mathematics assessment, the students who were identified as having 

disabilities had a very different response distribution than the students in the regular 

population, regardless of whether they had used an accommodation or not (Scott, 2009). 

This study grouped students not only based on whether they had an identified need, but also 

by the type of accommodation they used: non-standard such as calculators or manipulatives, 

or standard accommodation such as the use of a white board or an alternative setting. Due 

to federal requirements, all tests of students using non-standard accommodations since 2007 

have been invalidated and not included within aggregations of student performance or for 

accountability purposes (Franciosi, 2008). However, the distributions of both the 

mainstream students and those with disabilities who took the assessment with either 

standard or no accommodation (SWD) are suitable to inform conditions for the current 

study. In that state 2006 data, the SWD group had a population mean proportion correct of 

around .438 (7= .164), where the regular education students (REG) had a mean proportion 

correct that was much higher at .688 (7=.183). An associated difference was that these two 

disparate groups' population distributions had vastly different skewness with the SWD group 

having an extreme positive skewness of .898 (SE=.036), and the REG group having a 
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moderately negative skewness of -.411 (SE=.010). Another population of interest in current 

research concerns students who are ELLs that take assessments with standard 

accommodations geared specifically to address their needs. In the same state 2006 data, these 

students had a response distribution similar but slightly higher and less skewed than the 

students with disabilities with a mean proportion correct of .448 (7=.150) and skewness of 

.772 (SE=.034). The distributions of these diverse subgroups are important in that they 

inform the conditions that researchers should investigate prior to proposing new 

methodologies for use with groups such as these. 

Methods of Examining Measurement Non-Invariance.  

There are multiple methods for examining non-invariance in IRT and in SEM (non-

IRT parametric) frameworks. For example within the IRT framework, DIF can be explored 

using various likelihood ratio tests (e.g. General IRT-LR, Bock & Aitkin, 1981; Loglinear 

IRT-LR, Thissen & Mooney, 1989), ratios of parameters (e.g. IRT-D2, Bock, Muraki & 

Pfeiffenberger, 1988), or based on the area between ICCs (e.g. Raju, 1988) defined by the 

parameters (Wainer, 1993). Within the IRT framework, the parameters that are explored for 

non-invariance are the difficulty parameter (b), the discrimination parameter (a), and the 

pseudo-guessing parameter (c), usually in that order of priority, as modeled with the 3-PL as 

shown in Equation 2 above. Within SEM, investigations of DIF have been performed using 

multi-group CFA and MIMIC models (Teresi, 2006b). 

IRT Methods. Within IRT, DIF can be investigated either parametrically or non-

parametrically. While there are a great number of different parametric methods to investigate 

DIF, all of these require distributional assumptions. Historically, they assumed normal 

distributions for both focal and reference groups (Woods, 2011). Non-parametric 
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methodologies, however, place no restrictions on examinee distributions (Douglas, Roussos, 

Stout, 1996). While non-IRT parametric methods to investigate measurement non-invariance 

will be discussed because of the usefulness in test level analyses, parametric IRT methods 

might not be appropriate with the extreme performance distributions found within the 

subgroups of interest discussed above because of their assumption of normal distributions. 

The discussion here, therefore, is limited to two often-used non-parametric methods, namely 

Mantel-Haenszel and SIBTEST (Clauser & Mazor, 1998; Narayanan & Swaminathan, 1996). 

Both procedures begin by computing the number of correct and incorrect responses to 

items after matching examinees from each group, focal and referent. For these 

computations, they both can use the observed total score. SIBTEST, however, has the 

additional option of computing these using weighting by either the reference or the 

combined-group target ability distribution (Shealy & Stout, 1993b). From that point, the 

procedures differ. 

Mantel-Haenszel Method. The Mantel-Haenszel (MH) procedure (Holland & 

Thayer, 1988) detects DIF by first clustering both the focal and reference groups by each 

examinee’s total test score. It then creates a 2 x 2 matrix of the number correct and incorrect 

responses for each score level (Clauser & Mazor, 1998). The null hypothesis for MH is that 

the focal and reference groups have the same odds of answering the item correctly at a given 

score level, for all score levels (Narayanan & Swaminathan, 1996). MH’s null and alternative 

hypotheses can be written using Dorans’ and Holland’s (1993) notation as 

 

9:: <6=
/?=
@/<6A
/?A
@  � 1     w= 1, 2,  W                                     (3) 
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9�: <6=
/?=
@ �α<6A
/?A
@      w= 1, 2,  W and α ≠ 1.                       (4) 

 

In these equations, R stands for the number of correct (right) responses and M stands for 

the number of incorrect (missed) responses. The subscripts r and f refer to group, reference 

and focal, respectively, and the subscript w refers is the score level. The number of score 

levels is denoted as W.   

Again using Dorans’ and Holland’s (1993) notation, the estimate of effect size for 

MH DIF as given by Clauser and Mazor (1998) can be written as 

 

B?9 �  ∑ �6=
?A
�  D
⁄F∑ �?=
6A
�  D
⁄F  .                                                               �5� 

 

In this equation  Tw refers to the total number of responses from both groups at score level 

w. Dorans and Holland give The MH Х2 statistic, given by Dorans and Holland, which is 

revised here to use the same notation as equations 3 through 5, is 

 

?9I2 � KLM 6=
N  � M E�6=
 �N L � 0.5Q 2 M ��=�6=
�NR .            �6� 

They note that in this equation, the purpose of subtracting 0.5 from the absolute value is to 

improve the statistic’s accuracy. The E(Rrw ) term within this statistic can be defined as 

 

E�6=
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 .⁄                                                         �7� 
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In this definition, Trw is the total number of reference group responses and Rtw is the total 

number of correct responses at that score level. Additionally, the Var(Rrw ) term can be 

defined as 

 

                 ��=�6=
� �   D=
 6T
 DA
 ?T
<D
2 �D
 � 1�@  .                                              �8� 

 

Here, Tfw is the total number of focal group responses and Mtw is the total number of 

incorrect responses at that score level. 

SIBTEST Method. The simultaneous item bias test (SIBTEST, Jiang & Stout, 

1998; Shealy & Stout, 1993; Nandakumar & Stout, 1993) is also a non-parametric DIF 

procedure. While it is based on a multidimensional model for DIF, conceptually it can be 

thought of as very similar to the MH procedure (Clauser & Mazor, 1998). SIBTEST 

however incorporates some major innovations including a new matching procedure and the 

ability to test bundles of suspect items (Clauser & Mazor, 1998). While SIBTEST’s matching 

process is operationalized as using a regression-corrected matched-score, it is conceptualized 

as matching on a latent score. The purpose of the addition of the model-based regression 

correction was to reduce Type I error (Shealy & Stout, 1993). It is based on the observed 

score for a group of items believed to be free of DIF. This is contrasted with MH’s 

matching procedure which is strictly based on observed score. The other innovation for 

SIBTEST is the ability to “bundle” items. The purpose for this functionality is to evaluate 

the amplification or cancellation of DIF across items. In a confirmatory mode bundling can 

be used to group items in a predefined subtest. In an exploratory mode it can be used to 
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investigate whether individual items with low levels of DIF will exhibit significant DIF as a 

group (Gierl, Bisanz, Bisanz, Boughton, & Khaliq, 2001). 

 For SIBTEST, DIF occurs at an ability level if the probability of correctly answering 

an item is not the same for the reference group (PR(θ) ) as it is for the focal group (PF(θ)) at 

that ability level (Bolt & Stout, 1996). In SIBTEST’s formulation, ability level is generalized 

as a corrected matching score, termed as the one target ability θ (Bolt & Stout). In their 

review of improvements made to the original version of SIBTEST (Shealy & Stout, 1993), 

Bolt and Stout state that within the SIBTEST framework, abilities other than that primarily 

intended to be measured by the assessment are secondary abilities. These additional abilities 

are represented with the vector η.  

Secondary abilities can be either integral or extraneous to the dominant construct 

being measured. They term these secondary abilities auxiliary and nuisance, respectively. The 

probability functions, fR(η | θ) and fF(η | θ),  incorporate conditional distributions of η for the 

respective groups at a fixed θ. Bolt and Stout explain that since all of the abilities that 

influence examinee performance are included within the latent space of the model, item 

response function invariance holds across the two groups (Bolt & Stout). The index they 

give for the amount of DIF that is attributable to differences in the distributions of the 

nuisance ability between the two groups at θ is 

 

                W��� �  X6 �Y | �� �  X5 �Y | ��   
          �  Z X�Y | �, $� <A6�$ | �� �  A5�$ | ��@ [$.                                  �9� 
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 The suspect item score Y in this index can be defined as either the score of one 

dichotomous item or one polytomous item. It could, however be defined as the sum of the 

item scores for a group of either dichotomous or polytomous items (Bolt & Stout, 1996). 

Because the index assesses DIF at a specific ability level, it is a measure of “local DIF.” The 

global index of DIF, βuni, is computed by integrating  W��� over the whole target ability range 

θ. In this integral, fF(θ) is the density function of the focal group’s  target ability 

 

]^_` �  Z W��� A5��� [� .                                                     �10� 

 

The subscript UNI in this index refers to the type of DIF being investigated 

(unidirectional). The fF(θ) indicates that with this formulation the DIF found would be 

against the focal group (Bolt & Stout). This unidirectional formulation is for DIF that occurs 

for one group over the other across the entire ability range. Therefore it specifically 

examines the item(s) for uniform DIF. Sometimes however, in conditions such as when 

accommodations are used (Scott, 2009), the difference between the two groups’ probabilities 

of correctly answering the item changes sign within the target ability scale.  The more general 

non-uniform DIF function is calculated using a piece-wise integral, with the first integral 

going from the lower bound to the estimated crossing point ability and the second going 

from that estimate  to the upper bound. Bolt and Stout give this as 
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      ]a6b �  Z <X5 �Y | �� �  X6 �Y | ��@ A5���[�  
cd ce      

             � Z <X6 �Y | �� �  X5 �Y | ��@ A5���[� .                                    �11� 
cf ce  

In this formulation, θc is the estimated ability level for the location where the 

functions cross (Bolt & Stout). A positive value for this index indicates that the focal group 

has the advantage below the crossing point and the reference group has the advantage above 

that point where a negative value indicates that the reverse is true (Bolt & Stout). 

All of these integrals in practice are estimated by dividing the curve into segments, 

estimation of the area under the curve between segments and then adding the areas together. 

This is a standard mathematical technique for estimating the area under a curve. For the 

crossing point used in the βCRO computation, a linear regression is used. The crossing point is 

the estimate of the ability level where the curve heights are equal (Bolt & Stout, 1996). 

Non-IRT Parametric Methods. SEM can be thought of as a marriage of 

measurement models and structural models so that parameter non-invariance investigations 

address both models together (Byrne, 2006). Investigations of the measurement model 

portion within which the item or variable loadings and intercepts lie can be variously 

performed using single- or multiple-group multiple indicator-multiple causes (MIMIC) or 

multiple-group CFA analyses (Teresi, 2006b). Investigations of non-invariance within SEM 

using CFA procedures can examine differences in dimension, configuration, metric, factor 

intercepts, and item-specific errors with some authors recommending the investigation 

proceed in that order (Teresi, 2006b). 
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The MIMIC model. The MIMIC model, when based on full information, can be 

thought of variously as an ordinal dependent variable CFA model or as a generalization of 

the IRT 2-parameter normal ogive function (Jones, 2006). It is a special case of Muthén’s 

(2002) general model 

 

g�h �  i � ΛΘ� � Κ� � /� ,                                                (12) 

 

for individual i, where g�h is (usually) a continuous latent response variable, i is the vector of 

measurement intercepts, Λ is the matrix of factor loadings that relate the latent response 

variable to the latent trait (or measurement slopes), Θ is the vector of latent factors,  are the 

studied group categorical or continuous variables, the matrix of regression slopes (K) 

measures the direct effects of the studied variables on the response to the item, and / is the 

vector of measurement errors (or residuals) that are uncorrelated with the other variables in 

the model. In the MIMIC model when dichotomous items are used, they are formulated as 

realizations of the latent underlying continuous variables (Teresi, 2006b). 

 With the MIMIC model, uniform DIF is assumed when parameter estimates within 

K are significantly different than 0 (Teresi, 2006b). The estimate of the magnitude of DIF, 

conditioned on the indirect effect of the other covariates on the item by the path through 

the latent variable, is the value of the coefficient of the path from the studied background (or 

grouping) variable to the item (Teresi, 2006a). The single group MIMIC model has expanded 

the basic SEM model developed by Jöreskog (1979) to incorporate terms that not only 

model the intercepts of the studied variables (comparable to the difficulty parameter in IRT), 

and the direct effects of the variables (Teresi, 2006b), but also explicitly recognize the 
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discrete and ordinal nature of dichotomous data (Millsap, 2006). With a single group MIMIC 

model, only uniform DIF can be detected while nonuniform DIF can be investigated if a 

multiple-group MIMIC model is used (Jones, 2006).  

Both the MIMIC model and multiple-group SEM (or CFA) have distinct advantages 

for use in the investigation of DIF. Advantages for MIMIC are that (especially for discrete 

data) sample size requirements are reduced (Millsap, 2006) and that it allows the examination 

of the direct effect of background variables on factors as well as the use of continuous rather 

than only categorical background (or grouping) variables (Teresi, 2006a).  

Advantages for multiple-group SEM include the ability for the investigation of the 

estimation of different loadings for each item (Teresi, 2006a). With single-group MIMIC, 

these loadings are treated as the same across groups which makes it impossible to detect 

differences in the discrimination parameter (Teresi, 2006a). While the use of the multiple-

group MIMIC model can investigate differences in discrimination parameters, large sample 

sizes are required and the categorical group variables must be examined separately, one at a 

time (Teresi, 2006a).  

Multi-group CFA within SEM. In the discussion of CFA non-invariance, testing a 

conceptual example using seven items intended to measure one factor as depicted in Figure 

7, following Camilli’s (2006) diagram, will be used. In Figure 7 �" through �, are test items, 

�"is the intended latent construct to be assessed, $"is an unintended secondary construct 

affecting item performance, � is a dichotomized grouping variable for the referent and focus 

groups and includes a predictive variable, I. The predictive variable I is derived by the 

simple sum of scored item responses. This variable is often the defacto estimate of examinee 

ability used in DIF analyses (e.g., MH and logistic regression; Clauser & Mazor, 1998) and is 
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indicated by the fixed unitaries specified on the paths connecting the test items to I. The 

solid lines indicate the original (or intended) relationships within the system where the 

dashed lines indicate the final (or actual) model in our example. Also, curved double-arrowed 

lines imply correlations where single-headed lines imply causality. 

 

 

 

 

 

 

 

 

 

Figure 7. Multi-group structural model depicting both item and test level non-invariance. 

 

 Camilli (2006) explains that DIF within this diagram is depicted directly in �2 by the 

path from the grouping variable to this item which indicates that it is affected by group 

membership beyond the two latent proficiency factors that influence item performance. He 

additionally contends that DIF may also be observed indirectly in items �" and �' due to the 

correlation between the grouping variable and the secondary latent trait. He argues that the 

utility of this type of diagram is that, in addition to modeling DIF, the impact of DIF on test 

usage can be modeled (Camilli, 2006). While these additional considerations are not the 

focus of this study, it is important to keep in mind that investigations of measurement non-

   1   1  1 1 

I  
  1   1  1 

�" $" 

�" �& �' �0 �1 �2  �, 

� 



 

  33 

invariance or DIF are not an end in themselves, but only one step in the effort to ensure 

unbiased assessments and assessment usage. 

 As was mentioned earlier, investigations of non-invariance within SEM using CFA 

procedures have been recommended to proceed from examining differences in dimension, 

to configuration, to metric, to factor intercepts, and finally to item-specific errors (Teresi, 

2006b). Within SEM, the factor loadings and the factor model intercepts can be considered 

comparable to the discrimination and difficulty parameters within IRT (Teresi, 2006b). The 

information of factor loadings and model intercepts are contained within the measurement 

model portion of SEM. The measurement model portion is equivalent to a factor analysis 

model of the data (Byrne, 2006), making confirmatory factor analysis procedures used for 

investigations of DIF within factor analysis models appropriate for this portion of non-

invariance investigations within SEM (Teresi, 2006b).  

 Authors vary in the recommended number of steps or order in which the steps for 

investigation of invariance (or non-invariance) should proceed (see Gregorich, 2006; Mulaik 

& Millsap, 2000; and Thompson & Green, 2006): however, all agree that the model should 

approximately fit for all groups prior to investigating for DIF. A diagram of the original 

measurement model shown in Figure 7 is used in Figure 8 to display a unidimensional factor 

model in two groups that follows that presented by Gregorich (2006). This representation 

excludes factor means which are important considerations for factorial invariance as a clue 

that differential additive response bias might be existent (Gregorich, 2006). These means, 

however, are not considered when investigating DIF, since any difference between them for 

the groups would amount to impact rather than bias. Included are the single-headed arrows 

that represent the regression parameters with common factor loading values noted as l and 
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common factor intercept values noted as i for each item for each group. As previously 

stated, these are conceptually the same as item discriminations and difficulty parameters, 

respectively, investigated for DIF in the IRT framework and will be used to identify item 

parameter invariance within this CFA example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Example of a unidimensional factor model in 2 groups. 

 

For one group the general common factor model has been offered as 
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where ` runs from 1 to p items, j runs from 1 to N examinees, k runs from 1 to q factors and 

N > p > q. In this equation, ��� are the scores for each of the examinees on each of the 

items, and as in Figure 8, l�+ represent the common factor loadings (or regression 

coefficients) of each item on each of the common factors. Additionally, ��+ represents the 

value of each examinee’s factor score, and i�� and B� represent the random errors of 

measurement and the intercepts from the regression of each of the items onto the factor, 

respectively.  This model also aligns nicely to the IRT framework used within this study, 

where the IRT difficulty and discrimination parameters, b and a are non-linear 

transformations of i and l, respectively (Mc Donald, 1999: Takane & de Leeuw, 1987). The 

transformation equations given by Mc Donald (1999) are 

 

                                                                    �� �  l�
s1 � l�&t                                              (14) 

 

and 

 

                                                                   �� �  �i�
s1 � l�&t  .                                         (15) 

 

The investigation of measurement invariance generally relates to “full” invariance; 

however, this restriction can be relaxed at any step to obtain partial factorial invariance. This 

is particularly important in the investigation of DIF which is a search for non-invariance 
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between groups, at the item level. If partial invariance of the measurement model exists, then 

some but not all of the items’ intercepts are equivalent across groups (Teresi, 2006b). Also, if 

an item (or factor) is found to be non-invariant between groups, it can be removed from 

further investigations of invariance, therefore purifying the comparison or conditioning 

estimate (Teresi, 2006b). This is comparable to processes within IRT where items that have 

been determined to contain DIF are removed from the estimate of � in an iterative 

purification process (Teresi, 2006b). Meredith and Teresi (2006) cite the main causes for 

failure of measurement invariance (or DIF) as either the presence of multiple common 

factors and/or differences between groups on the means and/or variances of specific 

factors. They warn that applying models that are intended for continuous data with data that 

is ordered categorical might adversely affect the estimates of factor structure obtained 

(Meredith & Teresi, 2006). 

Model Considerations. There are similarities between CFA and IRT approaches to 

invariance testing. The aim for both in this context is an investigation of the probability of 

observed patterns of item responses (Teresi, 2006b). Both rely on one or more latent 

variable, use model-based goodness-of-fit tests, and estimate a parameter similar to the 

corrected item total correlation from classic test theory (Teresi, 2006b). As indicated above, 

for IRT this is the discrimination parameter (ai) and for CFA this is the factor loading (λ) 

where the difficulty (bi) parameter is comparable to the item or variable intercepts (Teresi, 

2006b). However, IRT processes conditions the probability of observing item response 

patterns on an estimate of ability, while CFA uses the marginal probability of a response 

pattern (Teresi, 2006b).  
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Both CFA and IRT have their strengths and weaknesses. One of the strengths of 

IRT has been its focus on individual ability estimates which are critical in some applications 

such as computerized adaptive testing (Teresi, 2006b). Also, IRT was specifically created to 

be used with dichotomous items where the SEM (including CFA) models are generally 

designed for continuous, or at least ordinal, variables where special processes are needed to 

accommodate categorical or dichotomous variables (Byrne, 2006). While this difference has 

started to blur as models are created within each framework to handle all types of variables 

(e.g. Jones, 2006; Muraki, 1999), some authors suggest that decisions for the choice of model 

might rightfully involve consideration of this difference (Teresi, 2006a, Hambleton, 2006).  

IRT methods, unlike other parametric approaches, are comprehensive methods in 

that they can investigate differences between groups in all three parameters, difficulty, 

discrimination power, and pseudo-guessing (Angoff, 1993). While SEM methods can 

investigate parameter differences between groups in difficulty (item or variable intercept) and 

discrimination (item or variable loading on the factor), they are unable to address the issue of 

differences due to guessing (Angoff, 1993). However, IRT methods are similar to the SEM 

methods in that for some of the models (e.g. Rasch, 2-PL), guessing can be assumed to be 

nonexistent. For example, with the Rasch model, which assumes that all items are equally 

discriminating, an investigation of DIF would be limited to uniform DIF because the only 

difference allowed between items and item curves is difficulty (Angoff, 1993). With IRT, a 

mismatch between model and data can lead to misidentification of DIF; in fact some 

researchers insist that without a good model fit, DIF analyses are “pointless” (Hambleton, 

2006, p. S186). A major strength of the use of SEM models (both MIMIC and CFA) is the 

ability to focus and explicitly model the relationship between the factors as well as the 
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relationships between factors and various variables of interest (Teresi, 2006b). A major 

weakness of both is that there needs to be a purification process to filter out the items that 

contain DIF from the analysis; in DIF, this resultant subset of items is called the matching 

subtest (Teresi, 2006b; Roussos & Stout, 1996a). 

Current Subtest Selection Methods 

Two-Step Process. One method of selection proposed by Holland and Thayer 

(1988) and studied by Clauser, Mazor, and Hambleton (1993), consists of a two-step process. 

In this process, DIF analyses is first run matching examinees on their total test score, then 

after the items that are found to contain DIF are removed, DIF analysis is rerun matching 

them on their "purified" score. Clauser, et al. (1993) found that the two-step process was 

superior to matching on total test score alone when using MH analysis for DIF detection. 

This was particularly true when the ability distributions of the focal and referent group were 

equal and the percentage of DIF items in the data was relatively large (20%). However, even 

in the least optimal cases (unequal ability distributions, small test length, and a small 

percentage of DIF items in the data) the improvement in both the Type I error rate and the 

percentage of DIF items identified by MH analysis was generally observed. While this two-

step process is an improvement over simply matching examinees on their total test score, the 

DIF results are informed by matching on some items that might contain DIF and are 

therefore less than reliable. 

 External Criteria. Other researchers (Mazor, Kanjee, & Clauser, 1993; Williams, 

1997) have suggested that the addition of one or more multivariate external criteria, such as 

student grades, might both "enhance the validity of subgroup comparisons and inferences of 

possible item bias" (Williams, 1997, p. 253) and allow for one designator to be imbedded as 
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an anchor across multiple test forms. There are multiple issues with this proposal, a few of 

which are delineated here. First, some testing situations are devoid of external criteria for this 

use. Second, the validity of teacher assignment of student grades can be called into question. 

Additionally, the consistency of grading procedures across teachers is non-existent (Williams, 

1997). While the addition of one or more valid external matching variables to the matching 

subtest would be useful, the issues associated with this addition make it a non-viable option 

in many cases. 

 Dimensionality Based. Roussos and Stout (1996a) used the multidimensional 

model for DIF put forth by Shealy and Stout (1993a) to describe a paradigm that, in part, is 

designed to reduce the Type I error inflation of DIF analyses through the selection of a 

matching criterion based on understanding of the dimensionality of the dataset. The first 

stage of their unified DIF analysis process requires that the items be inspected for 

characteristics that are known or suspected to cause DIF. They suggest that, among other 

resources, these characteristics could be based upon the results of previously published DIF 

analyses, substantive content considerations, and dimensionality of archival test data. They 

state that the need for a substantive hypothesis base for DIF analysis is driven by the 

"overwhelming failure" (Roussos & Stout, 1996a, p. 360) to identify underlying causes of 

DIF. The second step of their process is to run confirmatory DIF analysis with the items 

suspected of measuring the same additional dimension bundled and assessed together. It is 

this additional dimension that, in the Shealy and Stout framework (1993a), is thought to vary 

between the focus and referent group and cause an item to exhibit DIF. 

 Group differences in ability on one or more secondary dimensions can cause DIF to 

be evident or obscured if the groups are matched on items that contain those dimensions 
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(O'Neill & McPeek, 1993; Roussos & Stout, 1996a). Roussos and Stout contend that the 

optimal matching subtest in the multidimensional framework would use only the items that 

"most purely measure only the primary dimension(s) of the test" (p. 367). They go on to say 

that, if this optimal matching subtest cannot be found, that the second best alternative would 

to be to use items that have secondary dimensions that are not contaminated by DIF. As 

examples of two methods to identify groups of suspect items, they briefly outline the 

processes presented in Douglas, Roussos, and Stout (1996). The first of these examples is 

based on expert review of the items to bundle possible suspect items. The second, using a 

process put forward by Stout, Douglas, Habing, Kim, Roussos, & Zhang (1996) combines 

the dimensional analysis programs hierarchical cluster analysis (HCA) and DIMTEST 

(Nandakumar & Stout, 1993; Stout, 1987) to identify bundles that corresponded to various 

secondary dimensions. In both examples, the bundles are then analyzed for DIF in a 

confirmatory mode using SIBTEST (Shealy & Stout, 1993b). 

 The intent of Roussos & Stout’s (1996a) paradigm is to identify characteristics in 

items that cause DIF so that these characteristics could be consciously addressed during 

future item and assessment development. One might deal with identified causes of DIF by 

either modifying items to eliminate the DIF-causing characteristics or by balancing the 

benefit/disadvantage for groups within each test form. While the elimination of the 

characteristics identified as causing DIF within items is admirable and a prudent process for 

assessment developers, it is not applicable to cases, such as those described above, where the 

cause for DIF is not in how the item is written but rather in the interaction of examinees, 

who have access to non-standard resources (accommodations) with those items.  
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Using DIMTEST. Nandakumar (1994) also suggested that DIMTEST, which 

assesses essential unidimensionality of a dataset, might be useful in selecting an analytically 

valid subtest for use in DIF analyses. She investigated the first version of DIMTEST, which 

contained factor analysis as the mechanism for the selection of the comparison subtest and a 

non-bootstrap adjustment for bias based on large scale statistics. Working within the Shealy 

and Stout (1993a, 1993b) framework of multidimensionality for DIF items, she ran 

DIMTEST repeatedly with each analysis using two randomly assigned groups, one for the 

exploratory factor analysis and the other for the confirmatory dimensionality analysis. She 

then eliminated from the matching subtest, items that consistently were chosen by the factor 

analysis and reran DIMTEST to see if the resultant set of items was essentially 

unidimensional. If the result of this analysis was that the remaining items still did not 

compose an essentially unidimensional set, the DIMTEST analyses - removal of items 

process was repeated, until the final set of items was confirmed as essentially unidimensional. 

She then used this essentially unidimensional set of items as the matching set for DIF 

analysis (Nandakumar, 1994).  

 Her preliminary results showed promise; she found that she was able to identify the 

multidimensional items associated with DIF in most of the conditions. She cautioned that 

several conditions could cause this process to not be successful. She delineated these 

conditions as when 1) the number of items influenced by multidimensionality is pervasive, 2) 

multiple major dimensions affect the function of many items, or 3) one major auxiliary 

dimension influences many items. In these instances, she recommended that intensive item 

analysis by content experts be sought (Nandakumar, 1994). If DIF is caused by an 

accommodation used throughout the assessment, one would expect that many, if not most, 



 

  42 

of the items might be influenced by the accommodation. Nandakumar warned that this is 

one of the cases where her process might not be successful so using it for the scenario 

outlined above would be inadvisable. This possibility, which is not being investigated within 

the current study, is one of this study's limitations. 

Proposed Subtest Selection Method 

 While the above methods have proven useful for selecting an empirically valid 

subtest, it may be possible to improve and perhaps simplify this process for DIF analysis in 

the presence of multiple groups and items with multiple dimensions of various strengths. In 

this study, a method of selecting matching subtests for DIF analysis when there are multiple 

potential causes for DIF among multiple groups is proposed. 

 The mechanism for this new method is grounded in the work of Roussos and Stout 

(1996a), Stout et al. (1996), and Nandakumar (1994) as described above but also incorporates 

the improvements to the subtest selection process, called ATFIND, within DIMTEST 

introduced by Froelich and Habing (2008). ATFIND uses a combination of the non-

parametric conditional covariance programs, HCA/CCPROX (Roussos, Stout, & Marden, 

1998) and DETECT (Kim, 1994; Zhang & Stout, 1999b), to empirically select an assessment 

subtest (AT). Like DIMTEST, both HCA/CCPROX and DETECT were created to assess 

dimensionality. DIMTEST then compares AT to the remaining items (the partitioning 

subtest, PT). DIMTEST bases its dimensionality statistic on the examinee responses to those 

two sets of items. DIMTEST with AT selected by ATFIND was found to both maintain a 

Type I error rate around the nominal rate of α=.05 and have similar or significantly more 

power than when factor analysis was used to select AT when the data was modeled using a 

compensatory model (Froelich & Habing, 2008).  
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 This study proposes the use of ATFIND to select a comparison subtest for use 

within DIF analysis. This proposal is based on this program's ability to select a dimensionally 

homogeneous set of items that is dimensionally distinct from the remaining set of items 

(Froelich & Habing, 2008) and is an extension of Nandakumar's (1994) work using 

DIMTEST's selection of AT to purify a valid subtest for DIF. With the program ATFIND, 

the dimensionally homogeneous set of items is designated as AT and the remaining 

heterogeneous and dimensionally distinct set of items is designated at the PT. It is the items 

in PT that are proposed as the matching subtest for DIF analysis and the items in the AT 

that are proposed to be suspect of DIF. 

DIMTEST and ATFIND 

DIMTEST’s Purpose. The DIMTEST (Froelich & Habing, 2008; Nandakumar & 

Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001) procedure was created as a test of 

essential unidimensionality within assessments for at least three of the reasons discussed in 

section (b) above: 1) the requirement that the assessment is in reality measuring the trait 

which it purports to measure rather than being significantly contaminated by other traits, 2) 

that an assessment that is designed to measure differences between examinees is actually 

measuring a unified trait, and 3) if unidimensionality is violated, then the validity of the use 

of the resultant scores would be called into question (Stout, 1987). 

Definition of Conditional Independence. The basic idea behind the conditional 

or local independence (LI) assumption is “that the trait value provides all relevant 

information about the examinee's performance and that once that trait value is taken into 

account, item responses are independent” (Yen & Fitzpatrick, 2006, p. 122). The assumption 

of conditional or local item independence, which Mokken (1996) distinguishes as 
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independence of responses within persons as opposed to sampling independence or 

independence of responses between persons, holds when for every single person for every 

fixed trait level, the response to any item in the test is independent of the responses to any 

other item in the test (Mokken, 1996). This implies that all of the systematic variation that 

exists within the item responses is only due to the variations of people over the trait range, 

the variation in any one trait value is random, and the residual, which is the only source of 

systematic variation, is kept constant (Mokken). A “strong” version of conditional 

independence can be formulated as 

 

��u�� � ��v|�� �  ∏ ���� � ��|��)�n"                                         (16) 

 

where �� is the score on item ` (Yen & Fitzpatrick, 2006, p. 122). This definition requires 

that independence is conditioned on the trait (�). This is contrasted to the case of 

correlations between the item scores of all the respondents who take the test when not 

accounting for � (unconditioned). In the unconditioned case, the item scores are not 

expected to be, and generally should not be, independent (Yen & Fitzpatrick, 2006). 

 A “weak” version of conditional independence, as proposed by Mc Donald (1979), 

requires only the pair-wise conditional covariances among the items in the assessment to be 

equal to zero for every � (Yen & Fitzpatrick, 2006). This “weak” version of conditional 

independence can be formulated as 

 

���� � �� , �� � ��|�! �  ���� � ��|������ � ��|�!                          (17) 
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where �� is the score on the `th item and �� is the score on item x (Yen & Fitzpatrick, 2006, 

p. 123). The concept behind these definitions is similar to that found within step-wise factor 

analysis where, analogous to conditioning on �, the first factor is defined, and its variance 

accounted for, by the factor’s removal in the first step (Yen & Fitzpatrick). The residual item 

correlations can then be inspected. If the item correlations are all zero, no more factors will 

be identified. However, if two or more items remain correlated, these items will contribute 

to additional factors being defined (Yen & Fitzpatrick). 

 Definition of Essential Unidimensionality. In 1990, Stout proposed essential 

independence as an even “weaker” definition of LI that was based on his 1987 definition of 

essential unidimensionality. In his definition of essential independence, it is only required 

that the average of the pair-wise correlations approach zero as the number of items in the 

assessment goes to infinity (Stout, 1990). This definition implies that only the dominant 

traits must be used by the model rather than requiring that the traits in the model completely 

explain the covariance between all of the items (Nandakumar, 1991). Nandakumar (1991, p. 

102) gives this definition for every value of � as  

 

yz��� { ∑ |}~����,��|�nc!|������� ��� !  � 0 �� � �  ∞                              (18) 

 

where � is the item pool, ` and x are items within that pool, and � are, possibly, multiple 

latent traits. The data do not have to be unidimensional for LI to hold. If more than one trait 

is modeled, LI can still hold as long as each of those traits modeled completely describe the 

underlying responses within the items (Gorin & Embretson, 2008).   
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The unidimensionality assumption holds when only one ability or trait is measured 

by all of the items within the assessment (Hambleton, Swaminathan, & Rogers, 1991). In 

other words, the item responses are solely a function of the single, continuous, latent trait 

variable (de Ayala, 2009). The dimensionality of an assessment could be conceptualized as 

the number of traits that underlie the item responses (Gorin & Embretson, 2008) or 

alternatively, as the number of traits that must be modeled in order to achieve weak LI (Yen 

& Fitzpatrick, 2006). This second definition, put forth by Mc Donald (1981, 1982), has the 

added benefit of defining unidimensionality in operational terms, allowing it to be 

determined as a function of the conditional covariance between items (Yen & Fitzpatrick, 

2006). 

Rarely, if ever, does an assessment meet the strong assumption of unidimensionality 

(Hambleton, Swaminathan, & Rogers, 1991; Gorin & Embretson, 2008). A more 

appropriate criterion might be that the test data contains one dominant component, or trait, 

that influences performance on the test (Hambleton, Swaminathan, & Rogers, 1991). The 

idea of a single dominant trait being sufficient to explain the relationship between all of the 

item responses is the basis for Stout’s (1987) essential unidimensionality (Gorin & 

Embretson, 2008). Stout defined essential dimensionality as the minimum number of 

dimensions required to attain essential independence (Yen & Fitzpatrick, 2006). Using 

Nandakumar’s (1991) notation as above, formally Stout’s (1987) definition of essential 

dimensionality is  

 

[���� { ∑ |}~����,��|�nc!|������� ��� !  � 0                                       (19) 
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for all values of �. Essential unidimensionality holds, when [�= 1 (Nandakumar, 1991). 

 While the models discussed above have been based on the assumption of 

unidimensionality, it should be noted that researchers have been working to create models 

that can handle multidimensional assessments for both dichotomous and polytomous items 

(e.g. Mc Donald, 1996; Reckase, 1996), but the discussion of these models is outside the 

scope of the current study. 

Rephrasing of the definition, Stout’s essential unidimensionality states that on 

average, the pair-wise covariances between items, after accounting for the trait (or 

conditioning on the trait), will approach zero as the number of items in the test grows larger 

(Yen & Fitzpatrick, 2006). Stout (1987, p. 591) states that this definition is based on the 

“fundamental principle that LI should hold approximately when sampling from a subpopulation 

of examinees of approximately equal ability” (italics are author’s). He goes on to say that if a test 

is multidimensional, then the fundamental principle would be violated because examinees 

with approximately the same test scores might differ widely in the items that they correctly 

answered to get their total score (Stout, 1987). 

 DIMTEST Hypotheses and Assumptions. Stout's (1987) DIMTEST is based on 

a nonparametric multidimensional latent trait model. He assumes that data contains the 

following characteristics: (a) that LI holds, (b) that a specific population, with a distribution 

of abilities, was randomly sampled for the examinees, (c) that different examinees had 

independent response patterns, (d) that a fixed set of items could possibly have been selected 

from a large set of items such as an item pool, and (e) that the data are adequately 

represented by monotonically increasing IRT. The DIMTEST methodology, however, only 
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assumes (a), (b), and (e) as stated above (Nandakumar & Yu, 1994). DIMTEST was 

originally created to assess the unidimensionality of dichotomous data which is the focus of 

the discussion here (Stout, 1987). It has since been expanded to assess the unidimensionality 

polytomous items with a separate program Poly-DIMTEST (Li, 1995), but since the current 

study is limited to dichotomous data, this extension will not be addressed here.  

The hypothesis that is tested by DIMTEST is 9.: [ � 1, which is compared to the 

alternative hypothesis of 9.: [ � 1 (Stout, 1987). Stout (1987) noted that the conceptual 

raw data consists of ����� observations where ` is the item index, which runs from 1 to 

� � _ � � with _ being the number of items in the “Partitioning” subtest (PT) and � being 

the number of items in the “Assessment” subtest (AT), and x is the person index, which runs 

from 1 to �, the number of people in the sample. Additionally, each examinee’s responses 

consist of a vector containing 0’s and 1’s with 0 indicating an incorrect response and 1 

indicating a correct response (Stout, 1987). The basic algorithm was designed for tests 

administered to small samples ( � � 2000) but includes a modification for larger sample 

sizes (Stout, 1987). 

DIMTEST Procedure Logic. The general logic of DIMTEST, described in turn 

below, is: 1) the items within the test are divided into two subtests which are dimensionally 

distinct from each other (AT and PT), 2) the examinees are grouped based on their PT 

score, 3) the variance for each grouping of examinees is estimated, 4) an estimate of the 

variance for each grouping of examinees is computed using a formula that assumes 

unidimensionality, 5) normalize and then combine the different subgroup variances to form 

the statistic (TL), 6) correct for statistical bias, and 7) test for unidimensionality using one of 

three comparisons derived for small (J ≤ 2,000), moderate (2,000 < J ≤ 40,000), or large (J > 
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40,000) administrations (Stout, 1987). Most of the steps within this logic remain virtually 

unchanged from the original launching of DIMTEST; however, changes in the process for 

performing the steps have changed and have been included in the newer DIMTEST 2.0 

version. While Stout (1987) suggested empirically selecting the AT and PT item sets using 

factor analysis, the program ATFIND, which is a combination of two other programs 

(HCA/CCPROX and DETECT, described below), has recently been recommended and 

included within the program. 

ATFIND Procedure. When originally proposed, Stout (1987) suggested that the 

two subtests required for the DIMTEST procedure be either 1) selected using expert 

opinion or 2) based on the results of principle axis factoring analysis. Later researchers (e.g., 

Blais & Laurier, 1995; Deng & Ansley, 2000; Froelich, 2000) found that the second option 

was less than ideal, especially when the underlying model was noncompensatory or when the 

examinee ability distribution was different from the item difficulty parameter distribution. 

Froelich and Habing (2008) proposed a new process (now called ATFIND within the 

program) using the conditional covariance-based theory (Stout, et al., 1996; Zhang and Stout, 

1999a) as implemented with Roussos, Stout, and Marden’s (1998) agglomerative hierarchical 

cluster analysis (HCA/CCPROX) and the DETECT procedure and index (Kim, 1994; 

Zhang & Stout,1999b).  

 In ATFIND, first HCA/CCPROX is run to cluster items into potential ATs. These 

clusters contain between four items and one-half of the items with the corresponding 

potential PTs identified as the rest of the items in the test. Once the clusters are formed, 

DETECT is run and its index is calculated for each of the AT/PT cluster pairs identified by 

HCA/CCPROX. The pair with the greatest DETECT index is then chosen as the AT and 
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the PT. It is this pair of clusters, that are the most dimensionally distinct, that are used for 

calculating the DIMTEST statistic as explained in steps 2 through 7.  

 Conditional Covariance-Based Theory. The conditional covariance-based theory 

that underlies HCA/CCPROX, DETECT, and DIMTEST is based on each item’s 

discrimination vector as illustrated in Figure 9 for the 2D case. In this diagram, θ1 and θ2 are 

orthogonal traits being measured by the test, the item’s discrimination vector is the direction 

(or composite of the directions) that is best measured by the item, and θTT, as discussed 

previously, is the weighted average of the item discriminations within the test. In this 

example, only Item 8 is solely measuring one trait (θ1), all of the other items measure both θ1 

and θ2 and best measure a composite ability somewhere between the two main traits. 

 
 

 

 

 

 

 

 

Figure 9. Item discrimination vector graph of a two-dimensional assessment. 

 

 The key result of this depiction from Zhang and Stout (1999a) is that the item pair 

conditional covariances based on the unidimensional θTT vector can be used to recover the 

multidimensional structure of the assessment as given by 
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aa:��� �  � a:����, ��|Θ�� � ����A�����[����
��  .                           (20) 

 

With this equation, for a test with d dimensions, the vectors for i to l items are projected 

onto the (d - 1) dimensional hyperplane (Θ��� ) that is orthogonal to the vector Θ��. If the 

angle between the pair of item vectors is less than 90° (�/2�, then aa:��� is positive, if the 

angle is more than 90°, the aa:��� is negative, and if it is equal to 90°, it is equal to 0. The 

magnitude of the aa:��� is related to the closeness of the two item vectors to each other, 

their closeness to the Θ�� vector, and the length of their discrimination vectors. When there 

are only two dimensions, Θ���  would be the vector through the origin orthogonal to Θ��. In 

this case, the item pairs whose vectors that lie on the same side of Θ�� would have a 

projected angle of 0 which would create a positive conditional covariance. However, if the 

item pair has vectors that lie on opposite sides of Θ�� , then their projected angle would be 

� (180°), creating a negative conditional covariance.  

 HCA/CCPROX. Using this theory in an iterative process, HCA/CCPROX 

identifies possible AT and PT subtests. It uses a step-wise method, starting with each item as 

a unique cluster then, at each step, the two closest clusters are joined together. The next to 

final stage contains two clusters with the final stage containing all items in one cluster. In our 

example of 8 items in Figure 8, in the first stage all eight items would each be in their own 

distinct cluster then, since Item 2 and Item 3 are items that are closest to each other (the 

degree of separation is the smallest), they would be joined in the second stage. The next to 

final stage would contain a cluster containing Items 1 through 4 and another containing 

Items 5 through 8, where the final stage would contain all eight items. 
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 HCA/CCPROX uses a proximity measure 8}}�����, ��� to determine which two 

item clusters are closest to each other. This measure is an estimate of  

 

�1�aab��,�! �  �:_�T�_T                                                          (21) 

  

for a pair of items i and l. The constant is added in the computation so that the proximity 

measure that results is non-negative. If any two items are on the same side of Θ��, they 

would have a positive conditional covariance, which after the sign reversal by multiplying by 

-1, would result in a small value of 8}}�����, ���. If, however, they were on opposite sides of 

Θ��, they would have a negative conditional covariance, which, after the sign reversal by 

multiplying by -1, would result in a large value of 8}}�����, ���. This creates a situation 

where the vectors of items that are near each other have small proximity values, where those 

that are far away from each other have large proximity values. To determine the distance 

between two clusters HCA/CCPROX, choosing single items from each of the two clusters, 

averages the distances between all of the item pairs. HCA/CCPROX returns a list of all item 

cluster pairings (all possible AT/PT pairings) but does not have a way to determine the 

optimal partitioning. 

 DETECT. The DETECT (Kim, 1994; Zhang & Stout, 1999b) procedure’s goal is 

to determine the optimal partitioning of the test, assuming that it has approximate simple 

structure. Using the same underlying conditional covariance theory as described above 

(where all of the items within a cluster have a positive conditional covariance with each 

other, and a negative conditional covariance with any item from any other cluster), 

DETECT partitioning optimizes the DETECT index function 



 

  53 

 

y��, Θ��� � &
)�)�"� ∑ � ��,�aab��,�"����)  .                                  (22) 

 

When the items are in the same cluster in partition, P, ��,� is assigned the value of 1, 

and when they are in different clusters, ��,� is assigned the value of -1. In theory, the 

DETECT index could be computed for all possible pairings but, in practice, it only 

computes the index for the clusters provided by HCA/CCPROX. DETECT determines the 

pair of clusters that has both the most positive conditional covariances between the items in 

AT, while at the same time the most negative conditional covariances between the AT and 

PT items. For our example, this would create an AT containing Items 1 through 4 and a PT 

containing Items 5 through 8. DETECT does not, however, have a hypothesis test to 

determine whether the optimal clusters are dimensionally distinct (Froelich & Habing, 2008). 

This process is left to DIMTEST’s procedure. 

Study Structure 

The study will be organized in two parts. The first part will be an investigation of 

ATFIND's ability to select a set of items that do not contain DIF, and the second part will 

be a comparison of the performance of three standard non-parametric DIF analyses. The 

performance of the DIF analyses with the matching subtests selected as the PT List by 

ATFIND will be compared to one generated to not contain DIF.  The conditions used and 

the base data remain the same across both parts of the study. 
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CHAPTER 3 

METHODOLOGY 

The primary motivation for this study is the observed lack of available 

methodologies to efficiently select a matching subtest for DIF analysis when multiple groups 

and multiple potential causes for DIF are present. The purposes of this study are 1) to 

investigate the use of a current, easily accessible tool, ATFIND, to select a DIF free 

matching subtest and 2) explore SIBTEST's and MH's ability to identify DIF items among 

the suspect items, when the magnitude of DIF varies by group. The factors manipulated in 

the simulation study are selected such that they reflect multiple different, plausible, testing 

conditions (including data that contains no DIF items) and build upon existing research, 

especially that of Nandakumar (1994) and Froelich and Habing (2008). 

Study Design 

 The factors manipulated in the study are: a) percent of DIF items, b) number of 

groups, c) percent of focal group simulees, d) ability distributions, and e) sample size. The 

study design, which is summarized in Table 2 resulted in 64 different conditions. Following 

Dinis (2008) and Guler and Penfield (2009), to allow for controlled magnitude of both 

uniform and non-uniform DIF items for the two focal groups, the unidimensional three 

parameter logistic model was used to create the data rather than a multidimensional model. 

  Number of Groups. Data were generated for a total of three groups. DIF analyses, 

by definition, always compare at least two groups, one reference and one focal. The cases for 

two groups acted as a baseline for the extension to three groups, one reference and two 

focal. This extension to three groups is to aid in the comparability of DIF analyses across  
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Table 2 

Factors Manipulated for Data Generation 

Factors Levels 
# of 

Levels 

% of DIF Items 0%,                                                                          

10% or 20% (1/2 uniform & 1/2 non-uniform) 

3 

Number of Groups 2 (Referent and Focal 1 or Focal 2) or 3 3 

% of Focal Simulees 10% or 50% 2 

Ability Distributions N(0,1) or  

N(0,1), Mean =-1, SD=1, Skewness= .5, or 

N(0,1), Mean=-1.5, SD=1, Skewness = 1, or 

N(0,1), Mean=-1, SD=1, Skewness = .5, and 

Mean=-1.5, SD=1, Skewness = 1 

4 

Sample Size 750 or 2000 2 

 Total Number of Conditions 64 

 

multiple focal-reference pairings by selecting one "purified" subtest that is the same across 

those pairings. 

 Percent of DIF Items. Three percentages of DIF items were examined: 0 percent, 

10 percent, and 20 percent of the 60 items modeled as containing DIF. The 10 and 20 

percentage cases, which replicate Nandakumar's (1994) minimum and maximum percent of 

DIF items, are within the range studied by Furlow, Ross, and Gagne (2009; 10 and 25 
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percent) and are well within the 30 percent that has been found in application (Clauser, et al., 

1993; Oshima & Miller, 1992; Hambleton & Rogers, 1989). The 0 percent cases were 

generated for each sample size and distribution for each focal group separately as well as for 

conditions when both focal groups were modelled within datasets. These were included to 

allow for the examination of Type I error of the proposed procedure for use with the three 

DIF analyses. 

 Percent of Focal Simulees. Two different percentages of focal simulees were 

modeled, 10 and 50 percent. With three groups, half of the focal simulees were from each of 

the two focal groups. These percentages follow Furlow, Ross, and Gagne (2009) study of 

DIF with disproportionate groups (e.g., Whites as compared to Asians or Hispanics) as well 

as approximately equal groups (e.g., genders). 

 Ability Distributions. There were two levels of ability distributions. For a baseline, 

the referent and both focal groups were all drawn from a normal N(0,1) distribution. The 

second level maintained the ability distribution of the referent group at the normal N(0,1), 

but drew the ability of the first focal group from a distribution with mean of -1.5, standard 

deviation (SD) of 1.0, and skew of 1.0., and the second focal group from a distribution with 

mean of -1.0, SD of 1.0, and skew of 0.5. The transformation for the focal group skewed 

distributions used Fleishman's (1972) method of transforming a N(0,1) distribution to one 

with a specified skew and kurtosis explained within the Data Generation section below. 

These skewed distributions approximate those of a state high school mathematics 

assessment taken by students without an identified need as well as those identified with a 

disability and those identified as new to the English language, respectively. 
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 Sample Size. Two sample sizes were used, 750 and 2000. The first 250 of the 750 

simulees and the first 750 of the 2000 simulees were used in the analysis of ATFIND and 

the remaining 500 and 1250 were used in the DIF analyses. The total sample size and the 

number to use in the ATFIND analysis were the maximum and minimum used by Froelich 

and Habing (2008), who utilized the remaining simulees to run DIMTEST. 

Data Generation 

 Model. Item responses using the conditions outlined above are generated using R (R 

Development Core Team, 2010) from a unidimensional 3-PL item response theory model. 

The items modeled to not contain DIF maintained the same parameters across the three 

groups (the reference and both focal groups); whereas the items modeled to contain DIF 

had at least one different parameter for each of the three groups. The difference in 

magnitude in the modification of the parameters for each focal group models a difference in 

effect associated with the cause for DIF. For cases containing both focal groups, these 

differences resulted in items generated to both DIF causes included within one set of data. 

The complete two-part study design (for subtest selection and DIF analysis) of 72 conditions 

is replicated 100 times (Froelich & Habing, 2008, Narayanan & Swaminathan, 1996). 

Each 60-item dataset for each condition was generated using a group (g) specific 

version of the unidimensional 3-PL IRT equation given by 

 

����� � 1|��, � �, � �, � �! �  � � � �"� e¡�!
"# ¢£��.¤�¡�¥��� ¡�¦§                    (23) 
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where agi is the item’s discrimination for the group, bgi is the item's difficulty parameter for 

the group, and cgi is the item's pseudo-guessing parameter for the group. The simulee 

ability, ��, was taken from distributions, as discussed in Appendix E. 

 Item Parameters. The selected non-DIF item parameters remain fixed across all 

conditions. DIF item parameters are consistent across conditions for a particular group. The 

discrimination and difficulty item parameters for the 60 non-DIF items presented in Table 3 

were randomly drawn from the parameters for the 80 items presented by Clauser, et al. 

(1993). As reported in Clauser, et al., these were originally estimated from the 1985 

administration of the Graduate Management Admissions Test studied and published by 

Kingston, Leary and Wightman (1985). The pseudo-guessing parameter for all non-DIF 

items was set at .20. 

 Two different DIF models were incorporated within the data to simulate both 

uniform and non-uniform DIF. In each case, one-half of the DIF items were modeled as 

exhibiting uniform DIF favoring the focal group and one half of the DIF items were 

modeled as exhibiting non-uniform DIF. To determine appropriate parameter modifications 

for focal-group favoring uniform and non-uniform DIF items a study was undertaken using 

a real state assessment high school mathematics data where students were allowed to use 

various accommodations, such as calculators. Items in this data had previously been shown 

to exhibit DIF favoring the focal group that used accommodations (Scott, 2009). The 

investigation of focal-group favoring DIF item parameters is presented as Appendix B. For 

uniform DIF modification, the difference in difficulty parameters was randomly drawn from 

a uniform distribution from -0.20 to -0.50 for moderate DIF and from a uniform 

distribution from -0.50 to -0.80 for large DIF. 
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 For non-uniform DIF modification the concern is to create differences in item 

characteristic curves that would ensure both that they cross at some point within the range 

of ability being studied and also that the resulting cross would advantage the focal group 

across more than an insignificant portion across that range. For the current study, that 

portion was defined as at least 20%. Therefore, the three parameter modifications, while 

being drawn separately from distributions, have those distributions influenced by the 

modification of the other parameters. 

In an attempt to ensure that the ICCs crossed within the ability range of interest, 

lower differences in difficulty parameters were paired with higher ratios of discrimination 

parameters (greater than 1) and negative changes to the pseudo-guessing parameters (the 

Low b-difference modification). Similarly, higher differences in difficulty parameters were 

paired with lower ratios of discrimination parameters (less than 1) and positive changes to 

the pseudo-guessing parameters (the High b-difference modification). Each of the items 

modified for non-uniform DIF was assigned one of the two modification schemes. The only 

criteria for placement within one or the other modification subset, was that with average 

referent difficulty parameters for each subset would be as close to the same as possible. The 

resultant sets’ average difficulty were equivalent at -0.06, however their standard deviations 

did vary (0.92 and 1.42). 

 For each item, two changes for each parameter were randomly drawn from 

distributions detailed below, then the changes that would resulted in parameters closest to 

that of the referent group (closest to 0 change for difficulty difference, 1 for ratio of 

discriminations, and 0 for pseudo-guessing) were identified as the “moderate” DIF 

modification and used for Focal Group 2 and the remaining changes were combined to be 
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identified as the “large” DIF used for Focal Group 1. After selection of the parameter 

changes, the resultant ICCs were examined and two (Items 20 and 60) failed to cross at any 

point within the ability range, -3.00 to 3.00. For these two items, the discrimination and 

pseudo-guessing parameter changes were redrawn until the curves were observed to cross. 

The item parameters for the DIF items for the two focal groups are presented in Table 4. 

The DIF items were purposefully dispersed throughout the simulated assessment to model 

an accommodation that would influence a student's response throughout the test.  

 The items modified to exhibit DIF were selected to approximate the difficulty and 

discrimination parameters of those that were randomly selected as non-DIF items. The sixty-

item simulated non-DIF assessment difficulty and discrimination parameters had a mean and 

SD (in parentheses) of -0.10 (1.34) and 0.77 (0.28), respectively. For the items selected to be 

modified for uniform DIF, these values were -0.09 (0.94) and.90 (0.15), and for the items 

selected to be modified for nonuniform DIF they were -0.06 (1.08) and 0.77 (0.26), 

respectively.  

 It has been shown that dimensionality assessment and DIF analysis methods 

sometimes vary in performance when examinee ability distributions differ (Gierl, Gotzmann, 

& Boughton, 2004; Nandakumar & Yu, 1994; Seraphine, 2000; Walker, Azen, & Schmitt, 

2006; Zwick, Thayer, & Mazzeo, 1997). Also, as exemplified by the state data discussed 

above, ability distributions for special populations such as SWDs and ELLs can be both 

disparate and skewed. Because of these factors, a comparison of ATFIND’s performance for 

these distributions is incorporated. The person parameters for all three groups (the reference 

and both focal) are initially generated randomly from normal distributions with a mean of 0 

and a variance of 1. To approximately model data found within real mathematics assessment  
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Table 3 

Item Parameters for Non-DIF Items 

# agi bgi cgi # agi bgi cgi # agi bgi cgi 

1 0.29 -2.95 0.20 21 1.04 2.11 0.20 41 0.50 0.80 0.20 

2 0.75 -1.97 0.20 22 1.01 0.81 0.20 42 0.29 -1.00 0.20 

3 0.36 -2.63 0.20 23 0.98 1.67 0.20 43 1.02 0.64 0.20 

4 0.41 -2.93 0.20 24 0.65 1.68 0.20 44 1.16 1.11 0.20 

5 0.56 -1.77 0.20 25 0.93 -0.23 0.20 45 0.48 2.12 0.20 

6 0.73 -1.60 0.20 26 0.35 -1.12 0.20 46 0.65 1.19 0.20 

7 0.94 -1.21 0.20 27 0.31 -1.37 0.20 47 0.79 -1.41 0.20 

8 0.96 -2.70 0.20 28 0.39 -1.17 0.20 48 0.53 0.87 0.20 

9* 0.64 -1.55 0.20 29* 1.05 0.10 0.20 49* 0.94 0.03 0.20 

10** 0.75 -1.01 0.20 30** 0.51 -0.09 0.20 50** 1.01 0.91 0.20 

11 0.82 0.61 0.20 31 0.55 1.26 0.20 51 1.11 0.35 0.20 

12 0.86 -0.57 0.20 32 0.73 0.61 0.20 52 0.56 -1.41 0.20 

13 0.42 -1.15 0.20 33 0.88 0.95 0.20 53 0.59 -1.29 0.20 

14 0.74 0.60 0.20 34 1.40 1.64 0.20 54 1.01 0.22 0.20 

15 0.44 -0.30 0.20 35 1.35 0.82 0.20 55 0.88 0.93 0.20 

16 0.55 -1.06 0.20 36 0.92 1.13 0.20 56 1.32 0.57 0.20 

17 0.82 1.02 0.20 37 0.73 1.18 0.20 57 1.09 1.11 0.20 

18 0.52 -1.96 0.20 38 0.87 -0.75 0.20 58 0.83 1.54 0.20 

19* 1.02 1.28 0.20 39* 0.81 -0.62 0.20 59* 0.94 0.25 0.20 

20** 0.78 -0.05 0.20 40** 0.45 -1.49 0.20 60** 1.12 1.35 0.20 

Note: * modified for uniform DIF. ** modified for non-uniform DIF. 
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Table 4  

Item Parameters for DIF Items  

Focal Group 1 Focal Group 2 

#       agi     bgi      cgi     agi     bgi      cgi 

9 0.64 -2.13 0.20 0.64 -1.82 0.20 

  10* 1.05 -1.28 0.12 0.91 -1.19 0.15 

19 1.02 0.58 0.20 1.02 0.99 0.20 

   20** 0.54 -0.82 0.29 0.57 -0.60 0.24 

29 1.05 -0.57 0.20 1.05 -0.14 0.20 

   30* 0.73 -0.58 0.10 0.58 -0.38 0.11 

39 0.81 -1.42 0.20 0.81 -1.11 0.20 

   40** 0.32 -2.04 0.26 0.36 -2.02 0.23 

49 0.94 -0.60 0.20 0.94 -0.22 0.20 

   50* 1.46 0.57 0.11 1.22 0.65 0.15 

59 0.94 -0.31 0.20 0.94 -015 0.20 

   60**   0.74   0.82   0.30   0.77   0.85   0.21 

Note: * assigned to the Low b-difference subset of non-uniform DIF items. ** assigned to 

the High b-difference subset of non-uniform DIF items. 

 

data, a second set of distributions was used which retained the reference group’s distribution 

at N(0,1) while transforming the first focal group, which is intended to replicate students 

with special needs, to a distribution with mean -1.5, variance 1.0, and a skew of 1, and the 

second focal group, intended to replicate ELL students, to a distribution with mean -1, 
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variance 1.0, and a skew of .5. These focal distributions were transformed using Fleishman's 

(1978) process as described in Appendix E. 

Analysis Methods 

 The analysis methods portion of the study is broken into two distinct parts, the first 

for the evaluation of ATFIND’s performance in selecting a matching subtest and the second 

for an evaluation of the methods of identifying DIF using the selected subtest. For these 

purposes, MH D was computed and ATFIND, SIBTEST, and Crossing-SIBTEST, with 

their default options, were utilized. ATFIND selects between four and one-half of the total 

number of items that are most homogeneous and dimensionally, distinctly different from the 

rest of the items as the AT subtest (Froelich & Habing, 2008). A portion of the total sample 

(250 of 750 and 750 of 2000) is used to run ATFIND, while the remaining is used to run all 

three DIF analyses in a confirmatory mode. These quantities are both the maximum and 

minimum number Froelich and Habing (2008) used to run ATFIND as well as their total 

samples.  

 ATFIND Analysis. While it is expected that the AT subtest produced by ATFIND 

will contain the DIF items, since ATFIND (and DIMTEST) are single-group analyses, it 

remains unclear that this is the case when used with multiple groups.  

Following Nandakumar (1994), this study uses the AT subtest as a list of suspect 

items and the PT subtest as the matching subtest for DIF analysis. However, as discussed 

above, her process of repeatedly eliminating items to purify the matching set might be less 

than ideal within the normal production constraints of typical state assessments systems 

which were the impetus for this study. These constraints, include high turn times (usually 

days to a few weeks), a high number of annual assessments (21 in one state), and many 
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regularly studied focus groups (typically, gender plus each ethnic minority), without even 

considering the workload demand for exploring DIF for the 22 different accommodations 

crossed with 19 different needs in our example. While Nandakumar's conditions are possible 

when an accommodation is allowed and used for the whole test by only one of two groups 

of students, the exploration of this extension of the use of the proposed methodology is 

reserved for future study. 

  DIF Analysis. The second part of the study will to be to examine the efficacy of 

the matching subtest procedure in standard DIF analysis. This part of the study will again be 

broken into two parts. The first is an examination of Type I error using the 0% DIF item 

cases and running SIBTEST, Crossing SIBTEST, and MH using the items selected for PT as 

the matching set. The second part of the analysis will be to run the three DIF analyses twice 

on each of the 100 datasets for each condition which contains DIF items. 

For the DIF cases, the first run for each dataset will use the items not identified in 

the associated AT list as the matching set for the analysis. For the second run for each 

dataset, forty items consistently generated to be free of DIF will be included in the matching 

subtest where the remaining 20 items will be included in the suspect subtest. The twenty-

item suspect list will include the 12 items modified for DIF for any condition, as well as 8 

additional non-DIF items. The 8 non-DIF items were chosen to have discrimination and 

difficulty parameter distributions that were similar to both the whole test and the DIF 

modified items and will be included in the suspect list to allow for Type I error rate to be 

computed in all conditions for all DIF analyses. This second set of runs allows the new 

methodology’s application within DIF analyses to be evaluated against the best possible 

scenario for each DIF analysis so that confounding of the applications can be reduced. 
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Outcome Variables 

 ATFIND. Both the PT List and the AT List for each dataset will be inspected for 

DIF items. The number and type of items selected for each of these subtests will be 

tabulated and various statistics will be presented. For the PT List, the mean number and 

standard deviation will be computed for each item type for each of the percentage DIF 

conditions for both the Small sample and Large sample. The percentage of each type of item 

in the PT List will also be computed for each condition generated. The matching subtest 

purity rate, will be determined by dividing the number of non-DIF items selected for the PT 

List by the total number of items selected for the PT List. .  

 AT List DIF item hit rates will be computed by sample size and degree of DIF 

modification for both percent DIF conditions and also by referent difficulty range (b ≤ -1.0, 

-1.0 < b ≤ 1.0, and b > 1.0) and for all conditions. Additionally, the overall AT List selection 

rate will be computed for each of the 12 DIF items. 

DIF Analyses. The DIF analyses outcome measures will be computed for MH, 

SIBTEST, Crossing SIBTEST, and the combination of SIBTEST and Crossing SIBTEST 

results. This “Both SIBTESTs” is included since it is a reasonable expectation that a 

practitioner who used SIBTEST to check for uniform DIF will follow up that analysis with 

Crossing SIBTEST to check for non-uniform DIF. Both Type I error and Power rates will 

be computed for the three original analyses as well as the combined “Both SIBTESTs”. 

Since all conditions, including those with a pure matching subtest, should contain at 

least some non-DIF items inspected for DIF, Type I error rate will be computed for all 

conditions. It is expected that ATFIND will select at least a few non-DIF items for most of 

the AT Lists in each of the conditions and, as explained above, the suspect item list for the 
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pure matching subtest conditions will contain either 6 DIF and 14 non-DIF items or 12 DIF 

and 8 non-DIF items based on the percentage of DIF items modeled.  

However, because of the differences in the default examination of suspect items 

between MH and the SIBTEST procedures, two different Type I error and Power rate 

computations will be produced for each matching subtest (Best and PT). The first, those 

which are standardly observed within the literature, especially when items are examined using 

all other items as a matching subtest, can be written as: 

 

Dg¨© ª ©==:=���«¬ �  # :A `T©®� A�¯�©¯g `[©_T`A`©[ �� �:_T�`_T`_ yª5D:T�¯ # :A _:_ � yª5 `T©®� `_ T°© [�T��©T  

and 

 

�:
©=���«¬ �  # :A yª5 `T©®� `[©_T`A`©[ �� �:_T�`_T`_ yª5D:T�¯ # :A yª5 `T©®� `_ T°© [�T��©T  

 

In the context of the current study, these rates are most appropriate in the 

examination of how the PT List matching subtest functions in conjunction with each of the 

DIF analyses, MH will inspect more of both DIF and non-DIF items than the SIBTEST 

procedure for DIF. Therefore, it is expected that MH will identify a higher number of both 

of these types of items as having DIF. This in turn will lead to both of these rates for both 

matching subtests being higher for MH than any of the SIBTEST procedures. The Total 

Power rates for the SIBTEST procedures are limited by the number of DIF items in the 

suspect list. 
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Because of the differences, following work by Zhou (2006) and Zhou, Gierl, and 

Tan (2006) in evaluating different aspects of SIBTEST procedures, a second set of Type I 

error and Power rates will be computed. These alternative rates will be based on the actual 

items analyzed for DIF by the different analyses. They can be written as: 

 

Dg¨© ª ©==:=«z«¬±²�³ �  # :A `T©®� A�¯�©¯g `[©_T`A`©[ �� �:_T�`_T`_ yª5# :A _:_yª5 `T©®� �_�¯g´©[ A:= yª5  

 

and 

 

�:
©=«z«¬±²�³ �  # :A yª5 `T©®� `[©_T`A`©[ �� �:_T�`_T`_ yª5# :A yª5 `T©®� �_�¯g´©[ A:= yª5  

 

In the context of the current study, these rates are most appropriate in the 

comparisons between the different DIF analyses as well as within each analysis between the 

use of a pure matching subtest (Best) and one that is contaminated by DIF items (PT). Since 

MH always analyzes all items, its Total Type I error is the same as its Analyzed Type I error 

and its Total power and its Analyzed power will both be the same. Therefore, only one of 

these rates will be computed for each of the matching subtests. For the SIBTEST 

procedures, however, the two sets of outcome variables are expected to be very different. 

With the reduction in number of items used in the denominator, for all of the SIBTEST 

procedures, both the Analyzed Type I error and Analyzed Power rates are expected to be 

much higher than the Total Type I error and Total Power rates.  
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Both the Total and Analyzed Type I error and Power rates will be computed for the 

three primary analyses (MH, SIBTEST, and Crossing SIBTEST) as well as the combined 

“Both SIBTESTs” for all conditions for both matching subtests. Additionally, the Total 

Power will be computed for all four analyses for each of the three referent difficulty ranges 

using the Best matching subtest. These will be computed within the 10 and 20 percent DIF 

conditions for all conditions as well as by sample size and overall. 
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CHAPTER 4 

RESULTS 

The results are provided in two main sections, first for those associated with the 

ATFIND analyses and then those for the three DIF analyses, MH, SIBTEST (SIB), and 

Crossing SIBTEST (X-SIB). The results, when both SIBTEST analyses (Both-SIB) are 

combined, are also included. Both main sections are subdivided into three subsections.  

 From this point forward, the categories of distributions for 0% DIF conditions will 

be noted as: 

 Normal focal distributions           Norm  

 Moderately Skewed focal distribution          MS  

 Large Skew focal distribution           LS 

 Both Skewed focal distributions          BS  

 For both the 10% and 20% DIF modified conditions, the following notation will be 

adopted:  

 Normal focal distribution with Moderate DIF modification       N-MDIF 

Normal focal distribution with Large DIF modification       N-LDIF 

Normal focal distribution with both DIF modifications       N-BDIF 

Moderately Skewed focal distribution with Moderate DIF       MS-MDIF 

Large Skewed focal distribution with Large DIF        LS-LDIF 

Both Skewed focal distributions with Both DIFs        BS-BDIF 

ATFIND Analysis 

 This section is divided into three subsections. The first presents the numbers of 

items (both DIF and non-DIF) selected for the PT List as a measure of purity of the 
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matching subtest to be used in the following DIF analyses. The second presents the 

distribution of the number of DIF items identified by the PT List in the 10 and 20 percent 

DIF conditions. The third presents the percentage of items ATFIND selected for the AT 

List based on difficulty range when items are divided by Low, Medium, and High referent 

item difficulty. 

 Matching subtest purity. This section describes the results of the investigation into 

the ability of ATFIND to identify a set of items that are DIF-free and to place them on the 

PT List. The intent of identifying this set of items is to use them as a matching set within 

DIF analysis. 

Table 5 presents the number and percentage of items selected for the PT List by 

item type, aggregated by sample size and then the percentage of DIF items simulated.  

Regardless of the number of items simulated to exhibit DIF or the size of the sample, when 

aggregated by sample size within the three percent DIF conditions, on average 

approximately 36.3 (SD=4.3) items were selected for the PT List. This is about 60% of the 

60 items included on each simulated test, leaving the remaining approximately 40% of the 

items selected for the AT List. This percentage varied slightly across the percentage of DIF 

items simulated and between sample sizes. However, in no case at the percent DIF/sample 

size aggregation level was the percent of items selected for the PT List lower than 59.7 or 

higher than 60.9.  

There were only slight differences observed between the percentage of DIF and 

non-DIF items selected as well as between the type of DIF modification, uniform or non-

uniform. Across the percent DIF/sample size aggregates, the percentage of non-DIF items 

selected for the PT List was slightly higher than that of DIF items. On average, across 
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sample size and both percent DIF conditions, 60.7% of non-DIF items were selected for the 

PT List where 58.9% of the DIF items were selected. Also, across these aggregations, on 

average, non-uniform DIF (NU-DIF) items (59.8%) were selected slightly more often than 

uniform DIF (U-DIF, 58.1%). The differences in these comparisons were extremely small in 

Small samples; they all increased, however, in Large samples. This was particularly true for 

the U-DIF to NU-DIF comparison which went from a maximum difference of .04% in the 

Small sample (10% DIF) to a difference of 3.5% in that same aggregate in the Large sample. 

While differences this small may be non-significant, the increase may indicate that they 

would get even larger as sample size increased beyond the Large sample size of 750 simulees 

that was used to run ATFIND. 

Regardless of item type, for both percent DIF/sample size and condition level 

aggregations the percentage of items selected for the PT List was quite consistent and all 

were around 60%. The item type with the lowest PT List selection rate tended to be uniform 

DIF items (in 27 of the 48 DIF conditions). At the condition level, while the differences 

between the item type selection rate generally remained small (< 5% in 29 of the 48 DIF 

conditions), there were 19 instances where the difference in selection rate among the three 

items types (Non-DIF, U-DIF, and NU-DIF) was 5% or higher. Most of these (16 of the 

19) were found with the Large sample, and in most instances (15), the item type with the 

lowest selection rate was U-DIF. In the comparisons with larger differences, the U-DIF 

items had an average selection rate of 56.3; whereas, the Non-DIF and NU-DIF items had 

selection rates of 61.5 and 60.6, respectively.  
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Table 5  

Percent of Items Selected for PT List by Item Type. 

Aggregation
-Severity of 

DIF 

0% 
DIF 

 10% DIF  20% DIF 

Item Type All  All 
No 
DIF 

U 
DIF 

NU 
DIF 

% 
Pure 

 All 
No 
DIF 

U 
DIF 

NU 
DIF 

% 
Pure 

Overall 60.5 
 

60.6 60.8 58.2 60.2 90.2 
 

60.3 60.7 58.0 59.4 80.5 

N=250 60.2 
 

60.3 60.4 59.2 59.6 90.1 
 

59.7 59.9 58.6 58.9 80.3 

Normal Distribution (All Groups) 

  10% Focal 59.6 
  

 
     

 
   

    Moderate 
 

59.6 59.2 63.0 63.3 89.4 
 

60.3 60.1 62.8 59.5 79.7 

    Large 
  

61.4 62.0 54.7 57.3 90.9 
 

58.9 59.4 56.8 56.8 80.7 

    Both 
  

59.8 59.7 60.7 59.7 89.9 
 

60.4 60.4 58.2 62.2 80.1 

  50% Focal 59.9 
  

 
     

 
   

    Moderate 
 

60.4 60.7 59.7 56.7 90.4 
 

60.1 59.9 61.3 60.3 79.8 

    Large 
  

60.0 60.1 58.7 61.0 90.0 
 

60.2 60.4 60.2 58.3 80.3 

    Both 
  

60.5 60.6 61.7 58.0 90.1 
 

59.9 60.1 58.0 60.3 80.3 

Focal (Moderately Skewed Distribution - Moderate DIF) 

  10% Focal 61.1 
 

61.6 61.3 61.0 67.7 89.6 
 

59.0 59.1 58.0 58.5 80.2 

  50% Focal 60.3 
 

60.6 60.9 53.3 61.0 90.6 
 

60.1 60.4 59.2 58.5 80.4 

Focal (Large Skewed Distribution - Large DIF) 

  10% Focal 61.0 
 

60.4 60.7 60.0 56.3 90.4 
 

59.0 59.3 57.2 58.0 80.5 

  50% Focal 59.7 
 

60.2 60.1 60.0 62.0 89.9 
 

59.2 59.9 55.3 57.7 80.9 

Focal (Both Skewed Distributions - Both DIF) 

  10% Focal 60.5 
 

59.0 59.3 57.7 55.7 90.4 
 

59.0 59.4 55.3 59.8 80.5 

  50% Focal 60.8 
 

59.9 60.6 60.3 56.3 90.3 
 

59.9 60.1 60.8 57.2 80.3 
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Aggregation
-Severity of 

DIF 

0% 
DIF 

 10% DIF  20% DIF 

Item Type All  All 
No 
DIF 

U 
DIF 

NU 
DIF 

% 
Pure 

 All 
No 
DIF 

U 
DIF 

NU 
DIF 

% 
Pure 

N=750 60.8 
 

60.9 61.2 57.2 59.6 90.3 
 

60.9 61.4 57.4 59.8 80.7 

Normal Distribution (All Groups) 

  10% Focal 60.4 
  

 
     

 
   

    Moderate 
 

59.7 60.0 52.3 60.7 90.5 
 

60.3 60.5 60.3 58.5 80.3 

    Large 
  

60.0 59.8 61.7 60.3 89.8 
 

60.9 61.9 54.7 59.3 81.3 

    Both 
  

61.2 61.7 57.3 56.7 90.7 
 

59.6 60.6 54.2 56.7 81.4 

  50% Focal 61.2 
  

 
     

 
   

    Moderate 
 

61.2 61.7 53.0 58.7 90.9 
 

60.4 60.1 62.0 60.3 79.7 

    Large 
  

61.0 61.9 51.0 56.0 91.2 
 

62.8 63.4 56.8 63.8 80.8 

    Both 
  

62.0 62.3 60.0 59.3 90.4 
 

60.8 61.4 56.3 60.2 80.8 

Focal (Moderately Skewed Distribution - Moderate DIF) 

  10% Focal 58.8 
 

60.6 60.9 56.0 59.7 90.5 
 

61.1 61.7 57.3 59.8 80.8 

  50% Focal 61.4 
 

61.5 61.6 58.7 61.7 90.2 
 

62.1 62.8 62.2 56.2 80.9 

Focal (Large Skewed Distribution - Large DIF) 

  10% Focal 61.2 
 

61.0 61.2 54.3 63.3 90.4 
 

60.7 61.0 56.2 63.3 80.3 

  50% Focal 61.1 
 

61.3 61.0 62.0 66.7 89.5 
 

61.3 61.7 57.0 62.7 80.5 

Focal (Both Skewed Distributions - Both DIF) 

  10% Focal 60.8 
 

60.5 60.7 53.3 63.7 90.3 
 

60.5 60.6 58.7 61.2 80.2 

  50% Focal 61.9 
 

61.4 61.1 66.7 62.0 89.5 
 

60.2 61.5 53.5 56.0 81.8 

Note: Data for all analyses consisted of combined Referent and Focal group generated 

responses.  Referent group abilities were consistently drawn from a N(0,1) distribution. 
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The percentage of items selected for the PT List was generally consistent regardless 

of the amount of the percent of simulee responses associated DIF items, the percent of DIF 

items simulated, the type of DIF simulated, or the severity of DIF modification imposed on  

the items. This generally consistent selection of items resulted in PT List purity rates that 

were very close to that of the percentages of non-DIF items. As can be seen in Table 5, the 

purity rate of the PT List in 10% DIF cases is, on average, 90.2%, where the purity rate in 

the 20% DIF cases, on average, is 80.5%. Purity rates for the various conditions fluctuate 

slightly around these averages.  

 In summary, a generally consistent 60-40 percent split for the PT and AT Lists was 

observed across sample sizes, percents of focal simulees included, focal distributions, 

percents of DIF items included, DIF item types, and severity of DIF modifications, as well 

as DIF item difficulties presented below. This surprising approximately 60% - 40% split led 

to an investigation to verify that the simulated data was created as specified prior to 

proceeding on to DIF analysis of the data. This investigation (presented in Appendix G) 

incorporated four analyses.  Confirmatory and exploratory principal axis factor analysis was 

performed using Mplus (Muthen, & Muthen, 1998) and SPSS (SPSS, Inc., 1989), 

respectively. MH analysis (difMH within the difR package, Magis, Beland, & Raiche, 2013) 

was performed using R (The R Project for Statistical Computing, 2012). Finally, a parameter 

recovery check was performed using BILOG-MG 3 (Zimowski, Muraki, Mislevy, & Bock, 

2003). The results of these four additional analyses confirmed that the simulee response data 

had indeed been generated as intended.  

 Items selected for AT List. This section is divided into two subsections. The first 

presents the frequencies and percentages of DIF items selected for the AT List by condition 
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aggregated across focal distributions. The second disaggregates these by focal distribution 

and referent item difficulty and compares these disaggregates to the selection for 0% DIF 

conditions. 

 Hit counts. Figure 10 presents the percentage of simulations for which the various 

number of DIF items were selected for 10% (a) and 20% (b) DIF cases. These values were 

aggregated across focal distributions. For each graph, the maxima appear between what are 

33 to 50 percent of the DIF items. Rarely are none of the DIF items selected; and rarely are 

all, or even nearly all, of the DIF items selected. The overall number of items selected 

represents 40.8% (Mean = 2.4, SD=1.3) and 41.3% (Mean = 5.0, SD=2.0) of the DIF items 

in the 10% and 20% DIF conditions, respectively. 

Referent item difficulty. Table 6 presents the percentage of all items selected for 

AT List by referent item difficulty range in 0%, and for the DIF modified items in the 10%, 

and 20%, DIF conditions. The items were divided into three difficulty ranges Low (b ≤ -1), 

Medium (-1.0 < b ≤ 1.0) and High (b > 1.0). For 10% DIF conditions, there was 1 DIF item 

with a referent item difficulty in the Low range, 3 items in the Medium range, and 2 items in 

the High range. In the 20% DIF conditions, there were 3, 7, and 2 DIF items in these 

ranges, respectively. Overall, regardless of sample size, simulee ability distribution, 

percentage of simulees in the focal group, or the percentage of DIF items in the dataset, 

items in the Medium difficulty range had a slightly higher AT List selection rate than either 

of the other two difficulty ranges. While these differences were generally very small, they 

tended to increase with sample size and with the number of DIF items included. 
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a) 

 

b) 

 

Figure 10. The percentage of simulations for which the various number of DIF items were 

selected for 10% (a) and 20% (b) DIF cases  
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Table 6  

Percentage of items selected for AT List by referent item difficulty. 

Aggregation-
Severity of 

DIF 

0% DIF  10% DIF  20% DIF 

Low Med High  Low Med High  Low Med High 

Overall 37.6 41.3 38.9  38.4 41.7 40.7  38.4 42.9 40.2 

N=250 38.8 40.6 39.2  38.7 41.7 39.9  39.9 42.2 39.8 

 Normal Distribution 

   10% Focal 38.3 42.0 40.6         

     Moderate DIF  35.0 37.7 36.5  33.7 40.7 40.0 

     Large DIF     38.0 47.0 42.5  42.3 44.0 41.5 

     Both DIF     42.0 42.0 35.5  39.0 39.7 41.5 

   50% Focal 38.2 41.4 40.5         

     Moderate DIF  37.0 41.3 45.0  37.7 41.1 34.5 

     Large DIF     39.0 42.0 38.0  39.0 41.9 39.5 

     Both DIF     40.0 39.3 41.5  39.3 42.7 36.5 

Focal (Moderately Skewed Distribution - Moderate DIF) 

   10% Focal 34.8 41.4 40.8  37.0 39.3 29.5  41.3 42.4 40.0 

   50% Focal 39.5 41.4 37.2  35.0 45.3 43.0  38.0 41.6 44.5 

Focal (Large Skewed Distribution - Large DIF) 

   10% Focal 36.5 39.7 41.3  41.0 40.7 44.0  42.0 42.6 42.5 

   50% Focal 42.8 39.7 37.9  40.0 37.7 40.5  43.7 43.3 44.0 

Focal (Both Skewed Distributions - Both DIF) 

   10% Focal 39.3 40.5 38.1  40.0 47.7 38.5  41.0 44.7 36.5 

   50% Focal 41.1 38.9 37.3  40.0 40.7 44.0  42.0 41.9 36.5 
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Aggregation-
Severity of 

DIF 

0% DIF  10% DIF  20% DIF 

Low Med High  Low Med High  Low Med High 

N=750 36.4 42.0 38.5  38.1 41.7 41.5  36.8 43.5 40.6 

Normal Distribution 

   10% Focal 35.7 43.5 38.9         

     Moderate DIF  36.0 46.0 43.5  38.7 38.6 50.5 

     Large DIF     44.0 37.3 39.0  36.7 46.0 42.0 

     Both DIF     43.0 41.7 45.0  37.7 48.7 40.5 

   50% Focal 31.9 43.1 41.5         

     Moderate DIF   38.0 42.7 49.5  33.3 40.3 42.0 

     Large DIF     38.0 47.3 49.5  29.3 43.9 40.5 

     Both DIF     44.0 39.7 39.5  37.3 44.6 38.5 

Focal (Moderately Skewed Distribution - Moderate DIF) 

   10% Focal 37.0 46.1 39.3  34.0 45.7 41.0  37.7 43.4 40.0 

   50% Focal 35.8 42.1 36.9  38.0 42.0 37.5  41.0 41.3 39.0 

Focal (Large Skewed Distribution - Large DIF) 

   10% Focal 36.5 40.8 38.7  35.0 42.7 42.0  33.0 43.7 39.0 

   50% Focal 41.1 40.0 34.3  30.0 38.0 35.0  36.3 41.1 42.5 

Focal (Both Skewed Distributions - Both DIF) 

   10% Focal 34.7 41.4 42.2  37.0 43.7 40.5  35.7 42.4 38.5 

   50% Focal 38.3 39.1 36.1  40.0 34.0 36.0  45.0 48.4 34.5 

Note: Data for all analyses consisted of combined referent and focal group generated 

responses. Referent group abilities were consistently drawn from a N(0,1) distribution. 

For 10% and 20% DIF conditions, results contain only for DIF items. 
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DIF Analysis. 

The DIF analysis results section is presented in three subsections. The first presents 

the percent of time each analysis falsely identified items as containing DIF (Type I error 

rate). The second subsection contains the results of the analyses appropriately identifying all 

DIF items for both a DIF-free matching subtest and the PT List matching subtest (Power 

rates). The third describes the results of the analyses appropriately identifying DIF items 

(Power) by referent difficulty range using only the DIF-free matching subtest. In each of 

these subsections, the results for MH, SIB, X-SIB, and Both-SIB are presented. If an item 

was identified as containing DIF by either SIBTEST analysis, it was counted and presented 

as a percentage under Both-SIB. 

The Total Type I error and Power rates are most appropriate in the examination of 

how the PT List matching subtest functions in conjunction with each of the DIF analyses. 

For this examination, the Total rates for the PT matching subtest are compared to those for 

the Best matching subtest. However, for an examination of how DIF contamination within 

the matching subtest influences each analyses’ ability to identify DIF items, or for a 

comparison across the different DIF analyses, it is most appropriate to take into 

consideration the number of items available for it to identify. For these purposes, the 

Analyzed rates are used. For the examination of DIF contamination in the matching subtest, 

the Analyzed rates for the PT List matching subtest (which are expected to contain at least 

some DIF items) are compared to the rates for the Best matching subtest which were 

created to be DIF-free. For the comparison of the ability of each analysis to select DIF items 

within the three referent difficulty ranges, only the "Best" conditions were used. These Best 
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conditions ensure that all DIF items in each difficulty range were examined by each of the 

analyses. 

 Type I error for DIF identification. 

Total Type I error. In this section, all rates were computed using the number of 

non-DIF items in the analysis: 60 for 0% DIF, 54 for 10% DIF, and 48 for 20% DIF 

conditions. Figures 11 through 13 present the percentages of non-DIF modified items that 

were falsely identified as containing DIF by each of the analyses for the 60, 54, and 48 non-

DIF modified items in the 0%, 10%, and 20% DIF conditions, respectively. The tabulated 

results are available in Appendix H, Tables H1a through H1c.  

Comparison of analyses to a criterion of 5% Total Type I error rate. When Total Type I error 

rates were computed across all conditions, generally all four analyses had rates below or only 

slightly above the nominal .05 regardless of matching subtest. For the Best matching subtest, 

the overall Total Type I error rates were .059, .018, .017, and .030 for MH, SIB, X-SIB, and 

Both-SIB, respectively. With the PT List matching subtest, they were slightly higher (.072, 

.035, .030, .052, respectively). With Total Type I error rates, both SIB and X-SIB generally 

identified less than the nominal 5% of non-DIF items as containing DIF. The only 

exceptions were all found when using the PT matching subtest in skewed distribution 

conditions, with 50% focal simulees.  

When the results from both of the individual SIBTESTs were combined into Both-

SIB, it maintained this general trend in conditions using the Best matching subtest. Both-SIB 

obtained a Type I error rate higher than 5% in none of the 28 conditions with normal 

distributions and in only 5 of the 36 conditions with skewed distributions. In conditions 

using the PT matching subtest with normal distributions Both-SIB Total Type I error rate 
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exceeded the 5% criterion in only 2 of the 28 conditions (20% DIF, Large sample, 50% focal 

simulees, N-LDIF and N-BDIF). It did, however, generally exceed the 5% criterion when 

the PT matching subtest was used with skewed distributions (in 31 out of the 36 conditions).  

MH generally had a Total Type I error rate greater than the 5% criterion when data 

was modeled with skewed distributions regardless of matching subtest (in 32 and 34 of 36 

conditions for Best and PT matching subtests, respectively). All six conditions where MH 

had a Total Type I error rate less than or equal to the 5% criterion in skewed conditions 

were with Small samples and 10% focal simulees. With data that was modeled using normal 

distributions, MH performed very differently. When the Best matching subtest was used 

with normal focal distributions, MH had Total Type I error rates less than or equal to the 

5% criterion in all 28 conditions. When using the PT matching subtest it had a Total Type I 

error rate greater than the criterion in 13 of the 28 conditions. 

 Comparison between analyses. When comparing Total Type I error rates by matching 

subtest within conditions, regardless of sample size or percent of DIF items included in the 

data, MH consistently had a higher error rate than either SIB or X-SIB. MH also generally 

had a higher Total Type I error rate than Both-SIB (in 52 of 64 comparisons). The 

exceptions were all found in Small samples with 10% focal simulees. Eleven of these were 

found with PT matching subtest (spread approximately equally across the three percent DIF 

conditions) and one with Best matching subtest (0% DIF, Norm). 

 Comparison between Small and Large sample. When comparing the Total Type I error 

rates in Small versus Large samples, MH performed very differently than the SIB 

procedures. Generally, MH had a higher Total Type I error rate in Large than Small sample  
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a) 

 
10% Focal simulees using Best subtest    
 

b) 

 
50% Focal simulees using Best subtest 
 

c) 

 
10% Focal simulees using PT subtest    
 

d)  

 
50% Focal simulees using Best subtest 
 
Small Samples:     Mantel-Haenszel      SIBTEST      Crossing SIBTEST      Both SIBTESTs 
Large Samples:     Mantel-Haenszel     SIBTEST       Crossing SIBTEST      Both SIBTESTs 

 
Figure 11. Total Type I error rates for 0% DIF conditions.  
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a) 

 
10% Focal simulees using Best subtest    
 

b) 

 
50% Focal simulees using Best subtest 
 

c) 

 
10% Focal simulees using PT subtest    
 

d) 

 
50% Focal simulees using Best subtest 
 
Small Samples:     Mantel-Haenszel      SIBTEST      Crossing SIBTEST      Both SIBTESTs 
Large Samples:     Mantel-Haenszel     SIBTEST       Crossing SIBTEST      Both SIBTESTs 

 
Figure 12. Total Type I error rates for 10% DIF conditions. 
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a) 

 
10% Focal simulees using Best subtest    
 

b) 

 
50% Focal simulees using Best subtest 
 

c) 

 
10% Focal simulees using PT subtest    
 

d)  

 
50% Focal simulees using Best subtest 
 
Small Samples:     Mantel-Haenszel      SIBTEST      Crossing SIBTEST      Both SIBTESTs 
Large Samples:     Mantel-Haenszel     SIBTEST       Crossing SIBTEST      Both SIBTESTs 

 
Figure 13. Total Type I error rates for 20% DIF conditions. 
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conditions. There were only two conditions where this did not hold, both in 20% DIF 

conditions with 10% focal simulees using Best matching subtests.  

SIB, X-SIB, and Both-SIB however, generally tended to have as high or higher Total 

Type I error rate with 10% focal simulees in Small sample conditions but with 50% focal 

simulees in Large sample conditions. For the Best matching subtest, across the 32 sample 

size condition level comparisons, there were very few conditions where this trend did not 

hold. These differences were quite small reaching a maximum of 1.5 percentage points with 

Both-SIB (6.7 for Large sample and 5.2 for Small). Most of the exceptions to the trend of 

Total Type I error rates in Large sample than in Small for SIBTEST were found in 10% DIF 

or skewed distribution conditions. 

The one major difference between SIB and X-SIB, when comparing Total Type I 

error rates between Large and Small samples, was observed in 10% focal simulee, Skewed 

distribution conditions. In these conditions, for SIB there were no instances where Total 

Type I error rates in Large sample conditions was higher than in Small sample conditions. X-

SIB however, had a higher Total Type I error rates in Large sample conditions than in Small 

in 11 out of the 18 comparisons. 

Analyzed Type I error. In this section percentages were computed for MH using a 

denominator of 60, 54, and 48 for 0%, 10%, and 20% DIF conditions, respectively. The 

"Best" percentages for all three SIBTEST analyses (SIB, X-SIB, and Both-SIB) were 

computed using the number of non-DIF items in the static suspect list as the denominator 

(20, 14, and 8 for 0%, 10%, and 20% DIF conditions, respectively). The SIBTEST PT 

percentages were computed by dividing by the number of non-DIF items in the AT List.  

The Analyzed Type I error rates for each of the analyses in the 0%, 10%, and 20% DIF 
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conditions are presented in Figures 14, 15, and 16, respectively. The tabulated results are 

available in Tables H2a through H2c in Appendix H.  

Comparison of analyses to a criterion of 5% Analyzed Type I error rate. With Analyzed Type I 

error rate, SIB and X-SIB, generally, and the combined Both-SIB consistently, had a higher 

Analyzed Type I error rate than the 5% criterion. This is in stark contrast to how the 

SIBTEST analyses performed with Total Type I error rate. While the MH error rate was 

close to the nominal .05, when Analyzed Type I error rates were computed across all 

conditions all SIBTEST analyses had elevated error rates, especially with the PT matching 

subtest. For the Best matching subtest, the overall Analyzed Type I error rates were .059, 

.0.70, .065, and .114 for MH, SIB, X-SIB, and Both-SIB, respectively. With the PT List 

matching subtest, they were even higher (.072, .090, .077, and .134, respectively).  

In skewed distribution conditions, both SIB and X-SIB had Analyzed Type I error 

rates higher than the criterion in virtually every instance. The one exception was with X-SIB 

using the Best matching subtest in a 10% DIF condition (Small sample, 10% focal, MS-

MDIF). With normal distribution conditions, using the Best matching subtest, SIB had an 

Analyzed Type I error rate higher than the criterion in half of the conditions (14 out of 28) 

where X-SIB had a rate higher than the criterion in 21 out of the 28 conditions. When the 

PT matching subtest was used in normal distribution conditions, SIB and X-SIB, each had 

Analyzed Type I error rates higher than the criterion in all but one condition. Both of these 

were found in Small sample with 50% focal simulees. 

Comparison between analyses. With the Analyzed Type I error rates, SIB was more likely 

than either MH or X-SIB to have the highest Type I error rate with both the Best and PT 

matching subtests. With the Best and the PT matching subtests, SIB had the highest 
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Analyzed Type I error rate in 37 and 52, respectively. This compares to MH having the 

highest Total rate in 9 conditions with the Best matching subtest and 7 conditions with the 

PT matching subtest and X-SIB having the highest rate in 18 and 6 conditions using those 

subtests, respectively. Both-SIB consistently had the highest Analyzed Type I error rate 

compared to any of the other methods. The Analyzed Type I error rates for Both-SIB 

ranged from a low of 6.6% (20% DIF, Small sample, N-LDIF, with 50% focal simulees 

using the Best matching subtest) to a high of 31.8% (20% DIF, Large sample, LS-LDIF, 

with 50% focal simulees with the PT matching subtest). 

Comparison between Best and PT matching subtests. Within conditions, analyses generally 

had lower Analyzed Type I error rates with the Best matching subtest than with the PT 

matching subtest across all analyses and all percent DIF conditions. This was especially true 

in the 10% and 20% DIF conditions, where in 95% of the comparisons the analyses had as 

low or lower Analyzed Type I error rates with the Best matching subtest as when the PT 

matching subtest was used. In datasets that contained DIF modified items, six of the seven 

conditions where the Best matching subtest was associated with a higher Type I error rate 

were observed in X-SIB analyses. Most of these six X-SIB exceptions were in conditions 

with 10% focal simulees. When DIF items were present in the dataset, MH consistently had 

the same or higher Type I error rate with the PT matching subtest than with the Best 

matching subtest.  

In 0% DIF conditions, both MH (with Total rate) and SIB (with Analyzed rate) 

generally had higher Type I error rates with the PT matching subtest than with the Best 

matching subtest regardless of sample size. While X-SIB followed this trend in 0% DIF 

conditions with Large sample, it did not do so in 0% DIF conditions with the Small sample.  
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a) 

 
10% Focal simulees using Best subtest    
 

b) 

 
50% Focal simulees using Best subtest 
 

c) 

 
10% Focal simulees using PT subtest    
 

d)  

 
50% Focal simulees using Best subtest 
 
Small Samples:     Mantel-Haenszel      SIBTEST      Crossing SIBTEST      Both SIBTESTs 
Large Samples:     Mantel-Haenszel     SIBTEST       Crossing SIBTEST      Both SIBTESTs 

 
Figure 14. Analyzed Type I error rates for 0% DIF conditions.  
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a) 

 
10% Focal simulees using Best subtest    
 

b) 

 
50% Focal simulees using Best subtest 
 

c) 

 
10% Focal simulees using PT subtest    
 

d)  

 
50% Focal simulees using Best subtest 
 
Small Samples:     Mantel-Haenszel      SIBTEST      Crossing SIBTEST      Both SIBTESTs 
Large Samples:     Mantel-Haenszel     SIBTEST       Crossing SIBTEST      Both SIBTESTs 

 
Figure 15. Analyzed Type I error rates for 10% DIF conditions.  
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a) 

 
10% Focal simulees using Best subtest    
 

b) 

 
50% Focal simulees using Best subtest 
 

c) 

 
10% Focal simulees using PT subtest    
 

d)  

 
50% Focal simulees using Best subtest 
 
Small Samples:     Mantel-Haenszel      SIBTEST      Crossing SIBTEST      Both SIBTESTs 
Large Samples:     Mantel-Haenszel     SIBTEST       Crossing SIBTEST      Both SIBTESTs 

 
Figure 16. Analyzed Type I error rates for 20% DIF conditions.  
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In the Small sample 0% DIF conditions, X-SIB generally had as high or higher Analyzed 

Type I error rate with the Best matching subtest (5 out of 8 times).  

Power for DIF identification. This section contains the results of each of the 

analyses correctly identifying DIF items (power). As with Type I error rates, SIB and X-SIB 

results were combined and presented as Both-SIB. The section is divided into two main 

subsections. The first section presents power rates for all DIF items without regard to item 

type of difficulty range, and the second contains the power rates for DIF types within 

referent difficulty ranges. 

Percent of DIF items correctly identified. Figures 17 and 18 present the Total 

and Analyzed power rates. The associated tabulated results are available in Table I1a and 

Table I1b in Appendix I. The Total power rates are presented as Best and PT matching 

subtest power rates. These were computed using the number of DIF items in the dataset as 

the denominator (6 and 12 for 10% and 20% DIF conditions, respectively). Since for MH, 

the default was to analyze all items for DIF only, these two power rates are presented. For all 

three SIBTEST analyses, in addition to the Total power rates for Best and PT matching 

subtests, the Analyzed power rates for the PT matching subtest are presented (labeled as 

DIF-AT within Figures 17 and 18). 

 Power rate across conditions using the Best matching subtest. When Total power is computed 

for the Best matching subtest across all conditions for each of the analyses, none of them 

performed very well. MH, SIB, and the combined Both-SIB did, however, perform very 

similarly, with Both-SIB performing slightly better than the other two analyses. X-SIB 

performed least well. Aggregating across all conditions, the overall Total power rates for 

MH, SIB, X-SIB, and Both-SIB were 46.8%, 45.9%, 35.8%, and 50.5%, respectively. When  
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Figure 17. Power rates for DIF items within all difficulty ranges with 10% DIF. BEST = Best 

matching subtest; PT = PT List matching subtest; DIF-AT = Analyzed power rate with PT 

List matching subtest. 
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Figure 18. Power rates for DIF items within all difficulty ranges with 20% DIF. BEST = Best 

matching subtest; PT = PT List matching subtest; DIF-AT = Analyzed power rate with PT 

List matching subtest.  
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Total power was computed at the percent DIF level (across both sample sizes), all four 

analyses consistently performed better with 10% DIF than with 20% DIF conditions. When 

Total power was computed at the sample level within the percent DIF levels, all four 

analyses continued to show better performance in Large sample than in Small sample 

aggregations and in 10% DIF than in 20% DIF aggregations. The maximum Total power 

rates for the sample size within percent DIF aggregation were found in the 10% DIF/Large-

sample aggregation for all four analyses (65.9%, 63.1%, 50.7% and 66.1% for MH, SIB, X-

SIB, and Both-SIB, respectively). The minimums for all four analyses were found in the 20% 

DIF/Small-sample aggregation (31.2%, 33.5%, 25.9%, and 38.0%, respectively). The 

conditions where MH had higher Total power than Both-SIB with the Best matching subtest 

were generally in 10% DIF conditions with skewed distributions. Across all aggregations, X-

SIB generally performed least well.  

Total power rate comparisons between matching subtests. In this section, the 

results presented in the previous section for the Best matching subtest are compared to the 

Total power rates for the PT matching subtest. These are presented in the Best and PT 

columns in Figures 17 and 18 (and Appendix Tables I1a and I1b) for 10% and 20% DIF 

conditions, respectively. As described above, these Total power rates are particularly 

informative in the evaluation of how the ATFIND selected PT List matching subtest 

performed in conjunction with the DIF analyses.  

Comparison of Best to the PT matching subtest within and between analyses. With Total power 

rates, generally for MH, and consistently across all conditions for all SIBTEST analyses, the 

use of the Best matching subtest produced higher power rates than the use of the PT 

matching subtest. The overall Total power rates with the PT matching subtest were 41.9%, 
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17.3%, 13.2%, and 19.3% for MH, SIB, X-SIB, and Both-SIB, respectively. Across all 

analyses and conditions regardless of matching subtest, Large samples yielded higher power 

rates than Small samples. When the PT List matching subtest was used, MH consistently had 

a much higher Total power rate than any of the SIBTEST analyses. 

Analyzed power rates. Analyzed power rates, which account for the restricted 

number of items investigated by the SIBTEST procedures, are presented as DIF-AT in 

Figures 17 and 18 (and Appendix Tables I1a and I1b) for 10% and 20% DIF conditions 

respectively. Analyzed power rates are particularly informative in the evaluation of the 

impact DIF contamination within the matching subtest had on SIBTEST analysis 

performance. First the Analyzed power rates for the PT matching subtest will be compared 

to those for the Best matching subtest within the three SIBTEST analyses. The SIBTEST 

procedures’ Analyzed power rates for the PT matching subtest will then be compared to MH 

power rates for the PT matching subtest. 

 Comparison of Best to the PT matching subtest within SIBTEST analyses.  With Analyzed 

power rates, while all three SIBTEST procedures still generally had higher power rates with 

the Best than with the PT matching subtest, these rates within analyses were very similar. As 

was described above, SIBTEST procedures’ overall power rates with the Best matching 

subtest were found to range from a low of 35.8% for X-SIB to a high of 50.5% for Both-

SIB. Their overall Analyzed power rates for the PT matching subtest were consistently, 

slightly lower (32.1%, 41.1%, and 46.9% for X-SIB, SIB, and Both-SIB, respectively).The 

maximum difference between the two rates within a condition was 14.6 percentage points 

found for X-SIB in 20% DIF, Large sample, 50% focal simulee, N-MDIF. The maximum 

difference for the PT matching subtest having a higher Analyzed power rate than the Best 
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was a difference of 3.5 percentage points, found for Both-SIB in 10% DIF, Small sample, 

MS-MDIF with 50% focal simulees. 

Comparison of PT matching subtests between analyses. When the Analyzed power rates for 

the PT matching subtest were used, similar to the finding with power rates with the Best 

matching subtest, Both-SIB and especially SIB had rates that were very similarly to MH’s 

41.9%.  Both-SIB consistently performed slightly better than the other two analyses in 20% 

DIF conditions and generally better in 10% DIF conditions. Unlike with the Best matching 

subtest, with the PT matching subtest, there was no notable pattern, other than the 

percentage of DIF items in the dataset, to the conditions where MH had higher Total power 

than Both-SIB. The maximum difference between the Analyzed power rates for the PT 

matching subtest for either SIB or Both-SIB and those of MH was 15.0 percentage points. 

In this condition, Both-SIB had an Analyzed power rate of 61.0 and MH had a power rate of 

46.0. X-SIB again performed least well, having power rates that were much lower in general 

than any other analysis. X-SIB performed most similarly to MH and SIB in Large sample 

conditions with 50% focal simulees, N-LDIF or N-BDIF. 

Power rates for DIF items within referent difficulty ranges. This section 

contains the results of the analyses correctly identifying DIF items by referent difficulty 

range. The results presented in this section are only for the Best matching subtest; therefore, 

only the Total power rates are used. This restriction is for comparability as these were the 

only conditions that ensure that all DIF items in each difficulty range were examined by each 

of the analyses. The section is divided into three subsections, first for both U-DIF and NU-

DIF modified items together and then for each of these two different modifications 
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separately. Within each subsection, results are presented for the analyses first across 

conditions and then within conditions.  

 Power rates for all DIF items. To compute power rates by referent difficulty, DIF 

modified items were divided into three ranges by the difficulty parameter assigned to the 

referent group. In 20% DIF cases, where all DIF modified items were used, three items 

(numbers 9, 10, and 40) had referent difficulty parameters less than -1.00, seven items 

(numbers 20, 29, 30, 39, 49, 50, and 59) had referent difficulty parameters greater than -1.00 

but less than 1.00, and two items (numbers 19, and 60) had referent difficulty parameters 

greater than 1.00. For 10% DIF cases, items 9, 10, 29, 30, 49, and 50 were not modified to 

exhibit DIF. This modification design resulted in the referent difficulty power rates for Low, 

Medium, and High ranges for 20% DIF conditions being computed with a denominator of 

3, 7, and 2, and for 10% DIF conditions with a denominator of 1, 3, and 2, respectively. 

Figures 19 and 20 present the power rates for the analyses within each of the referent 

difficulty ranges for 10 and 20 percent DIF conditions, respectively. The associated tabular 

results are available in Table I2a and Table I2b within Appendix I. 

Total power rate across conditions. When power is computed across all conditions for 

each of the analyses, none of them performed well in all difficulty ranges. The overall power 

rates (aggregated across both sample size and percent DIF conditions) were consistently 

highest in the High difficulty range and lowest in the Low difficulty range for all four 

analyses. The overall power rates in the High difficulty range for MH, SIB, X-SIB, and Both-

SIB were 60.8%, 54.9%, 42.8% and 58.6%, respectively. Those for the Medium difficulty 

range were slightly lower for each analysis (53.6%, 52.6%, 40.8%, and 57.3%, respectively).  
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Figure 19. Power rates for 10% DIF conditions for all DIF items in the Low, Medium, and 

High referent difficulty ranges.  
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Figure 20. Power rates for 20% DIF conditions for all DIF items in the Low, Medium, and 

High referent difficulty ranges.  
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The power rates for the Low difficulty range were much lower than those in the Medium 

range (13.4%, 13.3%, 11.0%, and 18.1%, respectively). 

Across all conditions for all analyses, increases in power were generally observed 

both as sample size increased and as the percent of focal simulees increased with 10% focal 

simulee/Large-sample results being very similar to those for 50% focal simulee/Small-

sample. Additionally, all analyses tended to have higher power in normal distribution 

conditions than in the comparable skewed distribution and with the inclusion of more items 

with Large DIF modification.   

Total power rates within conditions. Again, MH, SIB and Both-SIB performed very 

similarly, regardless of percent DIF, sample size, simulee distribution or severity of the DIF  

modification with X-SIB tending to have the lowest power rates. Strikingly, all four analyses 

performed much differently with the 6 DIF items in the 10% DIF conditions than with the 

12 DIF items in the 20% DIF conditions. With 10% DIF, they all generally had the highest 

power rates in the Medium range, with somewhat lower rates in the High range and much 

lower rate in the Low range. With 20% DIF, while the power rates in the Low range 

remained low, those in the Medium were generally lower and those in the High range 

generally higher than those found with 10% DIF. This resulted in graphs for 20% DIF 

tending to be monotonically increasing as referent item difficulty range increased. 

Power rates for Uniform DIF items. To compute Total power rates for U-DIF, 

the number of U-DIF modified items in each of the ranges was used as a denominator. In 

20% DIF cases, where all U-DIF modified items were used, one item (number 9) had a 

referent difficulty parameter less than -1.00, four items (numbers 29, 39, 49, and 59) had 

referent difficulty parameters greater than -1.00 but less than 1.00, and one item (number 19) 
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had a referent difficulty parameters greater than 1.00. For 10% DIF cases, items 9, 29, and 

49 were not modified to exhibit DIF. This modification design resulted in the referent 

difficulty power rates for Low, Medium, and High ranges for 20% DIF conditions being 

computed with a denominator of 1, 4, and 1. For 10% DIF conditions, where there were no 

items in the Low range, power rates for the Medium and High ranges were computed with a 

denominator of 2 and 1, respectively. Figures 21 and 22 present the U-DIF power rates for 

the analyses within each of the referent difficulty ranges for 10 and 20 percent DIF 

conditions, respectively. The associated tabulated results are available in Table I3a and Table 

I3b within Appendix I. 

Total power rate across conditions. When Total power is computed across all conditions 

for each of the analyses, again none of them performed well in all difficulty ranges. The 

overall power rates (aggregated across both sample size and percent DIF conditions) for 

uniform DIF items were consistently highest in the Medium difficulty range and again lowest 

in the Low difficulty range for all four analyses. The overall power rates in the Medium range 

for MH, SIB, X-SIB, and Both-SIB were 55.6%, 56.8%, 41.8%, and 59.8%, respectively. 

Power rates for the one U-DIF item (number 19) in the High range were all over 10 

percentage points lower than that found in the Medium range (41.2%, 36.9%, 27.8%, and 

41.8%, respectively). U-DIF power rates for the one item (number 9) in the Low difficulty 

range in 20% DIF conditions were consistently higher than those when both U-DIF and 

NU-DIF items were included, however this range was still the lowest of the three difficulty-

ranges (22.2%, 28.4%, 19.5%, and 27.5%, respectively for the four analyses).  

Unlike the results found when power rates were computed for both uniform and 

non-uniform DIF items together, with power computed across all conditions for uniform  
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Figure 21. Power rates for 10% DIF conditions for Uniform DIF items in the Low, Medium, 

and High referent difficulty ranges.  
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Figure 22. Power rates for 20% DIF conditions for Uniform DIF items in the Low, Medium, 

and High referent difficulty ranges.  
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DIF items alone, rates in 10% DIF conditions were very similar to those in the 20% DIF 

conditions. However, as was seen previously, power tended to increase as sample size or 

percentage of focal simulees increased, as well as with focal simulee ability drawn from a 

normal distribution rather than either of the skewed distributions. With U-DIF items, once 

again regardless of difficulty range, 50% focal simulee/Large-sample tended to have the 

highest power with 10% focal simulee/Small-sample having the lowest power. The other 

two combinations (50% focal with Small sample and 10% focal with Large sample) generally 

had power rates that were very similar. 

Total power rates within conditions. When Total power rates for Best matching subtest 

were used to compare the results for the analyses aggregated across difficulty ranges, MH, 

SIB, and Both-SIB performed very similarly with X-SIB having slightly lower power rates. 

With Total power rates for U-DIF items, all four analyses performed very similarly within 

each of the difficulty ranges when focal group simulee ability was drawn from a normal 

distribution. When focal ability was drawn from a skewed distribution, however, the decrease 

in X-SIB’s power was generally larger in each difficulty range than the other analyses. X-

SIB’s decreases were especially notable with 50% focal simulees in combination with Large 

sample.  With normal distribution, all four analyses generally had extremely high power in 

the Medium range in Large sample with 50% focal simulees, regardless of the percentage of 

DIF items or of the severity of U-DIF modelled. In these conditions, they also tended to 

have relatively high power in the High difficulty range as long as at least some of the items 

were modelled with Large DIF (i.e., N-LDIF and N-BDIF). 

Interestingly at the condition level, while all four analyses tended to have their 

highest power rate in the Medium difficulty range regardless of sample size, percentage of 
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DIF, percentage of focal simulees, or simulee distributions, there was an exception in one 

condition. Both MH and X-SIB had as high or higher Total power rates for the one item 

(number 19) in the High range than the Medium range in Large sample, LS-LDIF, with 50% 

focal simulees with both 10% DIF and 20% DIF. For this High range item, all four analyses 

had notably higher power with Large DIF than with Moderate DIF. When both DIF 

modifications were included within the data, a general increase in power over that with 

Moderate DIF was observed. 

Power rates for Non-uniform DIF items. To compute Total power rates for NU-

DIF, the number of NU-DIF modified items in each of the ranges was used as a 

denominator. In 20% DIF cases, where all NU-DIF modified items were used, two items 

(numbers 10 and 40) had referent difficulty parameters less than -1.00, three items (numbers 

20, 30, and 50) had referent difficulty parameters greater than -1.00 but less than 1.00, and 

one item (number 60) had referent difficulty parameters greater than 1.00. For 10% DIF 

cases, items 10, 30, and 50 were not modified to exhibit DIF. This modification design 

resulted in the referent difficulty power rates for Low, Medium, and High ranges for 20% 

DIF conditions being computed with a denominator of 2, 3, and 1, respectively, and for 

10% DIF conditions with a denominator of 1 for all ranges. 

 For NU-DIF modification, in addition to a change in difficulty from the referent 

item difficulty parameter, there was also a change in both discrimination and pseudo-

guessing parameters. These changes were performed at two levels, demarcated as Low and 

High. In the Low NU-DIF modification (used with items 10, 30, and 50), the pseudo-

guessing parameter was lower and the discrimination parameter was higher for the focal 

group than for the reference group. In the High NU-DIF modification (used with items 20, 
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40, and 60), the pseudo-guessing parameter was set higher and the discrimination parameter 

lower for the focal group. The 10% DIF conditions included only NU-DIF items that were 

simulated with the High modifications while the 20% DIF conditions included an equal 

percentage of both modifications. Figures 23 and 24 present the Total NU-DIF power rates 

for the analyses within each of the referent difficulty ranges for 10% and 20% DIF 

conditions, respectively. The associated tabulated results are available in Table I4a and Table 

I4b within Appendix I. 

Total power rate across conditions. When Total power was computed across all conditions 

for each of the analyses, again, none of them performed well for all difficulty ranges. The 

overall power rates (aggregated across both sample size and percent DIF conditions) for 

NU-DIF items were consistently highest for the one item (number 60) in the High difficulty  

range and the lowest for the items in the Low difficulty range for all four analyses. The 

overall Total power rates for the one NU-DIF item in the High range for MH, SIB, X-SIB, 

and Both-SIB were 80.3%, 72.8%, 57.9%, and 75.3%, respectively. The Total NU-DIF 

power rates for the Medium difficulty range were much lower than those in the High range 

(54.3%, 51.7%, 43.2%, and 58.2%, respectively). The Total power rates for the NU-DIF 

items in the Low difficulty range were very low (15.5%, 16.5%, 13.9%, and 22.0%, 

respectively). 

Unlike the results found for U-DIF, power rates in 10% DIF conditions were 

generally very different from those in the 20% DIF conditions in the Low and Medium 

ranges with the introduction of items modelled with the Low NU-DIF modification. 

However, as was seen previously with NU-DIF, power again tended to increase as sample 

size or percentage of focal simulees increased as well with focal simulee ability drawn from a  
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Figure 23. Power rates for 10% DIF conditions for Non-uniform DIF items in the Low, 

Medium, and High referent difficulty ranges.   
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Figure 24. Power rates for 20% DIF conditions for Non-uniform DIF items in the Low, 

Medium, and High referent difficulty ranges.  
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normal distribution rather than either of the skewed distributions. With NU-DIF items, once 

again regardless of difficulty range, 50% focal simulee/Large-sample conditions tended to 

have the highest power with 10% focal simulee/Small-sample having the lowest power. The 

other two combinations (50% focal with Small sample and 10% focal with Large sample) 

again generally had power rates that were very similar. 

Total power rates within conditions. With Total power rates for NU-DIF items, MH and 

SIB performed very similarly within each of the difficulty ranges regardless of focal ability 

distribution, percentage of DIF, or severity of DIF modification. X-SIB and Both-SIB also 

generally had power rates very similar to MH’s and SIB’s in 10% DIF conditions. With 10% 

DIF, especially with 50% focal simulees with Large sample, all four analyses generally had 

high power for the one item (number 20) in the Medium difficulty range in addition to the 

high power observed for the one item in the High difficulty range. In these conditions, X-

SIB tended to have much lower power with skewed focal distributions than with normal 

distributions. 

With the addition of the three items modelled with the Low NU-DIF modification 

in 20% DIF conditions, there were marked differences in power rates in those item’s 

difficulty ranges (Low and Medium). With the addition of another item (number 10) in the 

Low difficulty range, the power rates for all four analyses generally increased with normal 

focal distribution but remained very low with skewed distributions. With the addition of two 

more Low NU-DIF modification items in the Medium difficulty range, regardless of severity 

of DIF modification, percentage of focal simulee, or sample size, all four analyses were 

observed to have lower power rates. In multiple instances, these decreases from the levels 

with 10% DIF were large. There were 19 instances where the decrease for an analysis was 
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greater than 50 percentage points with the maximum decrease found for MH in Large 

sample, 50% focal simulee, N-MDIF (64.7 percentage points). X-SIB tended to have the 

lowest decrease in power with the addition of the two items. Additionally, contrary to the 

general trend of X-SIB having the lowest power among the procedures, with either Large or 

Both DIF modifications, X-SIB tended to have the higher power than either MH or SIB in 

the Medium range with 20% DIF.  



 

  111 

CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

This research adds to the literature for four different statistical analysis programs. 

Importantly, it adds information about how each of these programs functions when DIF 

items are modelled to advantage a lower ability focal group over a higher ability reference 

group. An example where this might be the case is when students just learning English or 

with a disability are afforded test accommodations.  

For ATFIND, the primary purpose was to examine its usefulness as a valid subtest 

selection tool. However, it also explores the influence of DIF items, item difficulty, and 

presence of multiple examinee populations with different ability distributions on the 

selection of the AT and PT Lists. For MH, SIB, and X-SIB, the primary purpose was to 

examine the ATFIND selected PT List’s usefulness as a valid matching subtest. To compare 

the PT List’s performance for the three DIF analyses, a static set of both DIF and non-DIF 

items were used in the suspect item-set and a set of DIF-free items were used in the 

matching subtest. Using this static suspect item-set also allowed for the comparison of the 

three analyses on the influence of DIF type, referent item difficulty, and presence of multiple 

examinee populations with different ability distributions on both their power and Type I 

error rates. Finally, since both SIB and X-SIB were included in the study, the influence of 

their joint use was examined. 

ATFIND Analysis 

 Usefulness as a valid matching subtest selection tool. Regardless of simulee 

distribution, variability of simulee distributions, percentage of focal simulees, sample size, 

percent of items modelled to exhibit DIF, the type of DIF modeled, and referent item 
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difficulty, approximately 60% of items were selected by ATFIND for the PT List and 40% 

were selected for the AT List. While there were some slight variations in selection rates 

noted for these variables, ATFIND’s general insensitivity to DIF modelled via 

unidimensional 3-PL item parameter change showed it to be unusable as a valid matching 

subtest selection tool for DIF analyses. It resulted in matching subtests that had 

approximately the same percentage DIF contamination as was in the original dataset (10% 

for 10% DIF conditions and 20% for the 20% DIF conditions).  

 ATFIND was developed to divide the items in a test into two sets that measure 

different composite abilities and uses two analysis software procedures HCA/CCPROX 

(Roussos, Stout, & Marden, 1998) and DETECT (Kim, 1994; Zhang & Stout, 1999b) to 

accomplish this (Froelich, & Habing, 2008). Therefore, it could be that it is susceptible to the 

same issues as found with its base procedures. In their comparative study of test 

dimensionality assessment procedures, van Abswoude, van der Ark, and Sijtsma (2004) 

found that the performance of both DETECT and HCA/CCPROX suffered as the 

correlation between latent abilities increased past 0.60.  

To examine how strongly correlated the factors created by simulee score on DIF 

modified items were to their score on non-DIF items, a small preliminary study was 

conducted. For this study, the first 20 datasets within the 20% DIF, Large sample, 50% focal 

simulees in the N-LDIF condition were analyzed using SPSS (1989-2010). For each simulee, 

two subscores were computed; one for all DIF modified items and the other for all non-DIF 

items. Pearson correlations were then computed for the subscores. The factors in all twenty 

of the datasets had correlations at or above .70 (Mean=0.725, SD=0.017). These high 
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correlations indicate that this might be one cause of ATFIND’s inability to select the DIF 

items for the AT List. 

Since this is a simulation study, these results are also dependent on the DIF 

modeling method used and, as is often quoted, “Essentially, all models are wrong, but some 

are useful” (Box & Draper, 1987, p. 424). It could be that, while modeling DIF via 

unidimensional 3-PL item parameter non-invariance between groups is often useful, a 

different model may provide different results. Previous researchers had indicated that DIF 

might be (e.g., Lord, 1980; Ironson, Homan, Willis, & Signer, 1984) or always is (e.g., Shealy 

and Stout, 1993a; Ackerman, 1992) caused by the impact of a secondary dimension upon the 

examinee’s response. As Ackerman explains, within this view, DIF is caused by differences 

between groups in the distributions on this secondary dimension. Multiple researchers have 

used the multidimensional item response theory put forward by Reckase and McKinley 

(Reckase, 1985; Reckase, 1996; Reckase & McKinley, 1991) to model DIF (e.g., Ackerman, 

& Evans, 1994; Gierl, Gotzmann, & Boughton, 2004; Mazor, Hambleton, & Clauser, 1998; 

Nandakumar, 1993; Stout, Li, Nandakumar, & Bolt, 1997). An example where 

multidimensionality might especially be the case is items affected by the various testing 

accommodations (e.g., calculators on a mathematics test, read-aloud on a reading test) since 

they might in fact be an additional dimension afforded to only a portion of the examinee 

population. There is some indication that DIF might not always cause the lack of essential 

unidimensionality within a dataset (Wu, 2009). It would be interesting to repeat this study 

using both uniform and non-uniform DIF modelled with multidimensional item response 

theory.  



 

  114 

In 2009, Wu explicitly studied whether DIF would always cause a lack of essential 

unidimensionality as determined by DIMTEST. In addition to modeling both uniform and 

non-uniform DIF unidimensionally as was done in this study, she also simulated both types 

of DIF multidimensionally. Additionally, she varied not only the proportion of DIF items in 

the dataset (up to 60%) but also the proportion of uniform DIF items in relation to non-

uniform DIF items. For unidimensionally modelled DIF with moderate DIF (an area 

between ICCs of .4), regardless of the percentage of DIF items included in the dataset or the 

proportion of uniform DIF items, DIMTEST’s power remained extremely low (around 5%). 

When DIF was modelled unidimensionally with large DIF (an area between ICCs of .8), 

DIMTEST’s power increased as the percentage of DIF items in the dataset, the proportion 

of uniform DIF items, the number of items in the test, the sample size, and the percentage 

of focal simulees increased. When DIF was modelled multidimensionally, in addition to the 

factors found to cause an increase in DIMTEST’s power with large DIF in unidimensional 

data, increases were also observed as the angle between the traits increased or the correlation 

between the traits decreased regardless of severity of DIF induced. While these results are 

specifically for DIMTEST, both the integral nature of ATFIND within the DIMTEST 

procedure, and the fact that they are both based on the same conditional covariance-based 

theory (Froelich & Habing, 2008) might lead to the conjecture that at least some the same 

factors that Wu found to impact DIMTEST’s power might also impact ATFIND’s. Teasing 

the results for the two procedures apart would perhaps lead to more useful applications for 

ATFIND than were found in the current study. 

ATFIND’s selection process was observed to be relatively robust to multiple 

previously unexplored variables. The percentage of DIF items, sample size, simulee ability 
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distribution, percentage of focal simulees, and severity of DIF had little impact on the 

selection of items for the PT List. Two variables (DIF type and referent item difficulty), 

however, were shown to have very slight influence on the items selected for the PT List. 

There was a slight propensity for ATFIND to exclude U-DIF items and items in the 

Medium referent difficulty range from the PT List and place them instead in the AT List.  

To examine how the results obtained here might compare to those with the DIF 

modifications using a similar process to that proposed by Nandakumar (1994), a brief 

auxiliary study was performed to examine the results of selecting a matching subtest based 

on factor analysis. The first version of DIMTEST used factor analysis to identify its 

assessment subtests and partitioning subtest. While the original analysis was performed using 

Principal Components, Principal Axis factor (PAF) analysis was used based on research 

showing that it is more sensitive to additional factors when more than one factor is expected 

(Crawford, et al., 2010). For this study, the first 20 datasets within the 20% DIF, Large 

sample, 50% focal simulees in the N-LDIF condition used in the correlation study above 

were again analyzed using SPSS (1989-2010). After PAF extraction using correlation, 

VARIMAX rotation was performed and any item that weighted at least .300 on the second 

factor was identified as a suspect item and all other items were identified as a matching 

subtest item.  

While DIF purity rates for the matching subtest were generally higher than the 80% 

DIF purity for the whole test, and individual runs achieved purity rates above 90%, the 

average rate was only slightly higher (83.4%) than that of the whole test. While this study is 

only preliminary, it would seem to indicate that even with optimal conditions (Large sample 

size, Large DIF, equal percent of both subgroups, and normal distribution) focal-
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advantaging DIF modification is extremely difficult for different dimensionality analyses to 

identify. 

 Influences on the selection of subtests. While ATFIND generally selected 

approximately the same proportion of both DIF items types as non-DIF items, across 

conditions, uniform DIF items were selected for the AT List (and excluded from the PT 

List) at a slightly higher rate than both non-uniform DIF and non-DIF items. Additionally, 

ATFIND’s uniform DIF AT List selection rate generally increased as sample size increased 

where its non-uniform DIF and non-DIF AT List selection rate remained relatively stable. 

This slight propensity for selecting uniform DIF items for the AT List, however, might be a 

consideration with a much larger sample in the analysis, a short test, or with a higher 

percentage of uniform DIF items in the dataset. It would be appropriate to explore influence 

of these additional variables on ATFIND’s selection of uniform DIF items. 

Skewness, percentage in focal group, and degree of DIF. With the exception of 

both uniform and non-uniform DIF items in the Large sample, 10% DIF, 50% focal group, 

Large DIF condition, ATFIND’s subtest selection rate was virtually the same for normally 

distributed simulees as it was for the other three distribution conditions. In this one 

condition, ATFIND’s AT List selection rate was over 10 percentage points higher in the 

normal distribution condition than in the Large Skewed condition. In all other conditions, 

including the rest with that most severe distribution, the ability distribution of the simulees 

seemed to have little or no effect on ATFIND’s selection rate. 

 Similarly, the percentage of focal simulees seemed to have little impact on 

ATFIND’s selection rates. Only two conditions exhibited a selection rate for 10% focal 

simulees greater than 10 percentage points different from that of the 50% focal simulee 
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condition. Both of these were for uniform DIF with the Large sample but were in opposite 

directions. 

 The degree of DIF induced had even less impact on ATFIND’s selection rates. The 

only difference greater than 10 percentage points occurred in Small sample, 10% DIF, 

Moderately Skewed distribution with 10% focal simulees. In this condition, ATFIND 

selected a much lower percentage of non-uniform DIF items with Moderate DIF for the AT 

List than either those with a Large Skewed distribution and Large DIF or Both Skewed 

distributions and Both DIF modifications. 

 Taken together, these results present a picture of a software procedure that is 

relatively robust to some of the most influential unidimensional conditions that might occur 

in real data. 

 Item difficulty. Regardless of item type, percentage of DIF items, simulee 

distribution, percentage of focal simulees in the dataset, or sample size, ATFIND showed a 

slight tendency to select items for the AT List in the Medium difficulty range (-1 < b ≤ 1) 

more often than those in either the Low or the High difficulty ranges. Since this tended to 

increase as sample size increased, perhaps the difference would continue to increase as the 

sample size increased past the 750 used for Large sample in the current study’s ATFIND 

analyses.  

An examination of ATFIND’s selection rates within difficulty ranges in 0% DIF 

conditions provides a hint to the reason behind it choosing items in the Medium range most 

frequently. In these conditions, when the simulee ability was drawn from either the normal 

or the Moderately skewed distributions, or when 10% focal simulees were included with 

either of the other two distributions, ATFIND consistently selected more items in the 
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Medium range. It is in these conditions that most of the simulees will have abilities that have 

been drawn from the associated Medium ability range. However, when 50% focal simulees 

were used in association with the Large skew and group mean (-1.5), ATFIND selected the 

most items in the Low difficulty range. Combined, these trends seem to indicate that 

ATFIND’s selection of items is influenced at least to a degree by the ability distributions of 

the examinees. 

DIF Analysis 

 Influence of using the PT List as a matching subtest. This section will be 

restricted to the Total Type I error and Total power rates, computed with all of the non-DIF 

items or with all of the DIF items used as a denominator, respectively. These rates are most 

appropriate in the examination of how the PT List matching subtest functions in 

conjunction with each of the DIF analyses. 

Total Type I error. When the PT List was used as the matching subtest, and the AT 

List was used as the suspect item list, both SIB and X-SIB generally had Type I error rates 

no greater than the nominal 5%. The only exceptions to this were with a skewed focal ability 

distribution with 50% focal simulees. When the results of these two analyses were combined, 

as a researcher might do in practice, the combined Both-SIB generally maintained error rates 

of less than 5% with simulees with normal distributions, but generally exceeded the nominal 

rate with focal simulees with skewed distributions. The SIBTEST analyses tended to have a 

higher Type I error rate with 10% focal simulees when the Small sample was used and with 

50% focal simulees with the Large sample. The impact of sample size on SIB and X-SIB was 

very different however. SIB consistently had lower Type I error rates with the Large sample 
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size where X-SIB had a higher Type I error rate with the Large sample in approximately half 

of the conditions. 

When the PT List was used as the matching subtest, and all items were inspected for 

DIF as is MH’s default, it exhibited Type I error rates greater than the 5% nominal rate in 

approximately half of the 28 conditions with normal distributions and almost all of the 

skewed distribution conditions. Across distributions, it tended to have lower Type I error 

rates with the Small sample in combination with 10% focal simulees than with Large sample 

especially in combination with 50% focal simulees.  

These findings generally support studies (e.g., Bolt & Gierl, 2006; Finch & French, 

2007; Jaing & Stout, 1998; Li, 1995; Li & Stout, 1996; Narayanan & Swaminathan, 1996; 

Roussos & Stout, 1996b) that have shown that MH’s, SIB’s, and X-SIB’s Type I error rates 

tend to increase as sample size increases and/or as the difference in the groups’ mean ability 

increases. While the Type I error rates for MH were very similar to those found in the 

current study, those for SIB and X-SIB were not. Previously reported Type I error rates for 

SIB’s and X-SIB’s were either similar to or slightly higher than MH’s; however, their Total 

Type I error rates in the current study were much lower than MH’s regardless of matching 

subtest.  

While MH consistently had a higher Total Type I error rate than SIB, X-SIB, and 

Both-SIB, its overall error rate (.07) with the PT List matching subtest was only slightly 

higher than the nominal .05 and in many conditions, especially with normal distributions, 

was well under .05. Additionally, MH generally maintain an error rate of less than 10% 

except in conditions with a Large sample combined with Large skewed distributions and 

50% focal simulees. Based only on the Total Type I error rate computation, one might 
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conclude that SIBTEST procedures are superior to MH, but Type I error is only part of the 

story. 

Some may argue that statistical analyses should only be used in situations where their 

Type I error rates are well-maintained (Newton & Rudestam, 1999). With DIF analyses, 

however, the statistical identification of an item as containing DIF is only the first step in the 

determination that the item is biased, and should be modified or discarded. The second step 

entails the item being reviewed by content experts who may determine that there in fact is 

nothing wrong with the item (Camilli & Shepard, 1994). Therefore, the threat of over-

identifying items as having DIF is not as egregious as large Type I error rates might be 

within other types of analyses. Because of the second level of inspection generally embodied 

within DIF studies, power for all analyses for all conditions will be discussed regardless of 

the error rates for those conditions.  

Total Power. When the PT List was used as the matching subtest, and power was 

computed using the total number of DIF items in the dataset, none of the analyses was able 

to identify the focal advantaging DIF items consistently. However, as expected, MH far 

outperformed any of the SIBTEST procedures. For MH, Total power rates with the PT List 

matching subtest averaged 41.9% (SD 19.9) where none of the SIBTEST procedures, 

including Both-SIB, had an average Total power of over 20%. With the PT matching 

subtest, while the power rates for MH were generally similar to but slightly lower than those 

found in the literature (e.g., Bolt & Gierl, 2006; Clauser, et al., 1993; Gierl, Jodoin, 

Ackerman, 2000; Li & Stout, 1996; and Narayanan & Swaminathan, 1996), the Total power 

rates for the SIBTEST analyses were much lower than those previously reported. As an 

example, one previous study, which compared the performance of SIBTEST to those of 
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MH and logistic regression, characterized SIBTEST as “clearly the most powerful DIF 

detection method” (Gierl, Jodoin, Ackerman, p. 16). This was definitely not the case for the 

three SIBTEST analyses here as indicated by Total power rate when the PT matching 

subtest was used. 

While Total power rates within conditions with the use of the PT List as the 

matching subtest consistently improved as sample size increased, the constant low power for 

the SIBTEST procedures and the general low power for the MH provides strong evidence 

that this list should not be used as a matching subtest in practice, regardless of the generally 

low Type I error rates obtained. 

Impact of DIF contamination in the matching subtest. The Type I error and 

power rates discussed in this section were computed using the number of non-DIF or DIF 

items, respectively, that each analysis actually examined for DIF. In the context of this study, 

using the rates that take into consideration the number of items an analysis is given to 

examine are most appropriate both in the examination of how DIF contamination in the 

matching subtest influences their performance and in the comparison across the different 

analyses. As explained above, for MH, only Total power and Total Type I error rate were 

computed for each of the subtests. However, for the three SIBTEST procedures, the 

denominator for the rates with the Best matching subtest is the number of that type of item 

in the 20 item static suspect list, and the denominator for the rates with the PT matching 

subtest is the number of that type of item selected for the AT List. 

Analyzed Type I error. Unlike when the Total Type I error rate was examined, with 

the Analyzed Type I error rate both SIB and X-SIB generally had Type I error rates slightly 

higher than the 5% nominal rate regardless of matching subtest. These rates were much 
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more consistent with MH’s Total Type I error rates, where Both-SIB not only generally had 

the highest Analyzed Type I error rate, but consistently had a rate higher than 5% with the 

PT matching subtest. While the Analyzed Type I error rates for all four analyses tended to 

increase when the PT matching subtest was used as compared to the Best subtest, regardless 

of the presence of DIF items in the matching subtest, the increase was amplified as the 

percentage DIF items in the dataset increased. The highest Analyzed Type I error rates for 

all four analyzes were observed with the PT matching subtest in 20% DIF conditions with 

50% focal simulees. The amplification of Analyzed Type I error rate with the increase in the 

percentage of DIF items was not observed when the Best matching subtest was used. These 

results provide evidence that DIF contamination in the matching subtest causes items to be 

identified as containing DIF, when in fact they do not, and support the findings of Lopez 

(2012) that Type I error rates generally increase for X-SIB with the presence of differential 

test functioning within the dataset, especially as the sample size increases. The current 

findings are an indication that using either all items in the assessment or all other items in the 

assessment as the matching subtest, as is generally used for MH and SIBTEST procedures, 

respectively, might best be reconsidered, since they would most likely contain DIF items if 

there were any DIF items in the dataset. Perhaps, however, there are other methodologies 

available (or being developed) that might have better success with identifying suspect items 

for DIF analysis. Based on the findings within this study, these methodological options 

should be explored. 

With normal distributions, the Analyzed Type I error rates found in this study for 

MH, SIB, and X-SIB are very similar to those found in the literature (e.g., Clauser, et al., 

1993; Finch & French, 2007; Li, 1995; Li & Stout, 1996; and Narayanan & Swaminathan, 
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1996). Also similar to the literature, Analyzed Type I error rates for all of the analyses tended 

to increase as the difference between abilities increased. In the literature, however, the 

maximum ability departure was generally 1.0 SD, where in this study (based on distributions 

found within real data), this was increased to a maximum of 1.5 SDs. It was in the conditions 

with the largest differences in abilities that the highest Analyzed Type I error rates were 

observed. In this study, not only was the difference between mean group ability increased 

but, because it was observed in the real data for groups that are expected to take advantage 

of testing accommodations, the ability distributions of the groups was also skewed (.5 and 

1.0 for Moderate and Large, respectively). The current study found that as the combination 

of difference between abilities and skewness in ability increased, Type I error increased for 

all of the analyses regardless of matching subtest but was generally amplified with the 

presence of DIF items in the PT matching subtest. This would seem to be an indication that 

the search for a reliable statistical purifying process for use with these analyses remains a 

worthy goal. 

The ability distributions of the referent group and both focal groups modelled within 

the current study’s data are based on those found in a real state content assessment for 

regular education, English language learners, and students with disabilities, respectively. 

Because these students continue to be groups of interest, especially as new accommodations 

are proposed to facilitate their ability to demonstrate what they know and can do, it is 

important to understand how those distributions impact the identification of DIF items by 

each of the analyses. For the study of DIF caused by the use of accommodations, perhaps a 

more appropriate reference group would be a separate sample from the same subgroup that 

did not access the accommodation. Then at least the ability distributions would be similar. A 
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simulation study with data modelled for both focal and referent groups with the same 

moderate and/or large positive skewed ability distributions with one group having DIF 

items similar to those in this study might be able to inform a better selection of referent 

group for accommodation DIF studies. It could be that since the ability distributions of both 

groups in this future study would similar, that the Type I error rates found would be more 

similar to those found with normal ability distributions in this study.  

Analyzed power. The large Analyzed Type I error rates observed for all four 

procedures, especially with mismatch of abilities between groups, might be a 

contraindication for the examination of power for the procedures. However, as explained 

above, since DIF identification is only the first step in the DIF study process, Type I error is 

much less of a threat than Type II error which is informed by power rates. With Analyzed 

power rates, all of the procedures had rates for the PT matching subtest that were very 

similar to, but generally lower than, those with the Best matching subtest.  

Regardless of matching subtest, MH, SIB, and Both-SIB performed very similarly, 

with Both-SIB generally obtaining the highest power followed by MH, then SIB. Again X-

SIB generally had the lowest power. MH generally achieved higher power rates with skewed 

simulee distributions and with 10% focal simulees, where SIB generally had the highest rates 

in normal distribution conditions and with 50% focal simulees. While none of the 

procedures consistently achieved even an acceptable level of power (e.g., > 70%), across all 

conditions even with the Best matching subtest, they were more successful in some 

conditions than in others. Unlike Total power rates, with Analyzed power rates, not only 

were MH’s rates similar to those in the literature but SIB’s and X-SIB’s were also (e.g., Bolt 

& Stout, 2006; Clauser, et al., 1993; Finch & French, 2007; Li, 1995; Lopez, 2012; Narayanan 
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& Swaminathan, 1996; and Wu, 2009). While as might be expected, there were differences in 

power rates between the results found in the current study which focused on focal-

advantaging DIF and those in previous studies which focused on referent-advantaging DIF, 

the factors that caused those differences tended to be the same. 

In the current study, regardless of matching subtest, all four analyses generally had 

higher power with Large sample than with Small, with normal distributions for both groups 

than with skewed focal distributions, with Large DIF modification than Moderate, with 10% 

DIF items than with 20% DIF, and with 50% focal simulees than 10%. Increases were most 

evident in skewed ability conditions or if only Moderate DIF was modelled with focal ability 

drawn from a normal distribution. In previous studies, power was found to increase as 

sample size increased and decrease as the difference between focal and referent ability 

increased (Bolt & Stout, 2006; Finch & French, 2007; Gierl, Jodoin, & Ackerman, 2000; Li, 

1995; Lopez, 2012; and Narayanan & Swaminathan, 1996). Also, they found that increases in 

the magnitude of DIF induced within sample sizes improved power (Gierl, Jodoin, & 

Ackerman, 2000; Li, 1995; Lopez, 2012; Narayanan & Swaminathan, 1996; and Wu, 2009), 

and some found that the percentage of focal to referent simulees seemed to impact power as 

well. However, because both sample size and percentage of focal simulees in previous 

studies varied, it is very difficult to tease apart the impact each has on the power rates 

achieved. Narayana and Swaminathan (1994) did find that both SIB and MH had higher 

power as the percentage of focal simulees increased as compared to a static referent group 

size. The current study, however, systematically varied the percentage of focal simulees 

within a sample size and showed that using an equal percentage of each group increases 

power over and above increases in sample size.  
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For the impact of the percentage of DIF items in the dataset, the comparison 

between the results found in the current study and that of previous studies is somewhat 

muddier. Some previous studies found that there was little or no difference between power 

rates for MH and/or X-SIB as the percentage of DIF items increased in the matching 

subtest (Finch & French, 2007; and Narayanan & Swaminathan, 1996). These findings are 

inconsistent with the current study that found that not only does the presence of any DIF 

items in the matching subtest negatively influence power, but also that the number of DIF 

items in the matching subtest had a negative influence.  Other studies however, found that 

the impact of percentage of DIF contamination was additionally influenced by test length 

(Clauser, et al., 1993) or by the severity of DIF modification (Wu, 2009). While test length 

was not a variable of interest in the current study, the inclusion of items with Large DIF in 

the dataset was found to partially mitigate the effect of DIF contamination in the matching 

subtest. This was evidenced by the comparison of decrease in power for conditions with 

Large DIF to those of either Moderate or Both DIF. When the groups were of equal size, 

regardless of distribution, all four analyses consistently had less of a loss of power with Large 

DIF than with either of the other two modifications when the number of DIF items 

increased. While they all also generally had an associated increase in Type I error in Large 

DIF conditions, those increases tended to be quite small.  

While power increased for both matching subtests with larger sample, higher 

percentage of focal simulees, normal distribution for both groups, and more severe DIF 

induced, power with the PT matching subtest remained lower than that with the Best 

matching subtest. The highest power rates for all four analyses were generally found with 

10% DIF, Large sample, 50% focal simulee, and N-LDIF with the Best matching subtest. 



 

  127 

Interestingly, this was the one condition where the combined Both-SIB performed slightly 

better with the 20% DIF than with 10% DIF indicating that having more DIF items to 

identify allowed the two individual SIBTEST analyses more opportunity to select different 

items for this condition. In this condition, where both the ability distributions and the 

percentages of simulees are the same in both groups, it is completely arbitrary as to which 

group might be considered the focal and referent. Therefore, it is this condition in the 

current study, which focuses on focal-advantaging DIF that is most comparable to the 

referent-advantaging DIF studies within the literature.  

The generally higher power observed for all four analyses with the Best matching 

subtest than with the PT subtest is another indication that the presence of DIF items in the 

matching subtest negatively affects the performance of each of these analyses. This supports 

previous findings of differential test functioning’s (or contamination’s) negative influence on 

power sometimes observed for these analyses (Clauser, et al.,1993; Lopez, 2012; and Wu, 

2009). The Type I error and power rates taken together seem to indicate that none of the 

four procedures is generally very successful at identifying focal-advantaging DIF items of the 

sort that might be found with the use of accommodations. Overall, their performance was 

better with a DIF free matching subtest than with one that was contaminated with DIF 

items. However, it could be that they are most successful in some referent difficulty ranges 

than in others in combination with one of the types of DIF modifications (e.g. uniform 

DIF) than the others (e.g., High non-uniform DIF or Low non-uniform DIF). These trends 

will be discussed in the following section.  

Examination of power rates by DIF item characteristics. This section is divided 

in two by DIF type, with a discussion of the impact of item characteristics on analyses’ 
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power for uniform DIF items first, followed by that for non-uniform DIF items. Since the 

focus here is on the item characteristics, and because power generally decreases to varying 

degrees with smaller sample, lower percentage of focal simulees, skewed distributions, and 

with DIF contamination in the matching subtest, these conditions have been excluded and 

only the “best case scenario” conditions will be discussed. The section addresses only the 

power rates in Large sample conditions with 50% focal simulees with the normal ability 

distribution. 

Uniform DIF items. All four analyses had the lowest power with the Low difficulty 

item. While this item also had a low discrimination (0.64), the analyses were highly successful 

with the two medium difficulty items (numbers 39 and 59) with low to medium 

discriminations (0.81 and 0.94), respectively. All the analyses had very high power for the 

rest of the uniform DIF items, regardless of difficulty or item discrimination, as long as at 

least some of the focal simulees were associated with Large DIF. These results seem 

contrary to those of Narayanan and Swaminathan (1994) who found that higher power was 

achieved by both SIB and MH when items were modelled with low or medium difficulty in 

association with medium or high discrimination, and relatively lower power (e.g., < .70) for 

high difficulty with either low or medium discrimination. The current study found no 

evidence that the uniform DIF item’s discrimination played a part in determining the 

analyses’ ability to identify it. The current study did find, however, that both item difficulty 

and severity of DIF induced were key factors in the analyses’ ability to identify uniform DIF 

items. 

Non-uniform DIF items. With non-uniform DIF items, in addition to referent 

difficulty and the severity of DIF modification influencing analysis power, the type of non-
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uniform DIF modification seemed to be a factor. Both of the items (number 20 and 60) that 

were modelled with the High non-uniform DIF modification, had high power for all 

analyses regardless of severity of DIF induced. For these items, the guessing parameter was 

set higher and the discrimination parameter was set lower than that of the referent 

parameters. These items were in the Medium and High difficulty ranges, respectively, where 

the one item with High non-uniform DIF modification in the Low difficulty range was 

observed to have very low power. It could be that the DIF modification interacts with item 

difficulty to make it harder for analyses to identify the item as containing DIF. Additional 

evidence that this might be the case is provided by the power rates for the Low non-uniform 

DIF modification. All of the analyses generally had low power for these three items, 

especially when some or all of the simulee DIF was modelled as Moderate. Interestingly, of 

the three, the item (number 10) with the highest power was the only one in the Low 

difficulty range. However, its rates were very similar to the Low difficulty uniform DIF item 

(number 9), so it could be that this item is functioning as a uniform DIF item rather than a 

non-uniform DIF item for the analyses. Since DIF modification was found to influence 

power in addition to referent difficulty, and since the DIF parameters used in this study were 

informed by real data, the low power rates for these items are particularly concerning when 

considering the fairness of accommodations. 

 One might expect that based on X-SIB’s purpose and prior studies (e.g., Narayanan 

& Swaminathan, 1996) that X-SIB would have higher power rates than either MH or SIB 

when examining non-uniform DIF items. While this was generally not the case with the 

High non-uniform DIF modification, there was a marked increase for X-SIB over that of 

MH and SIB for the Low non-uniform DIF modification items in the Medium range. The 
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results for these items support the finding by Narayanan & Swaminathan that X-SIB had 

both much higher power than MH when non-uniform DIF items were modelled by only 

changing the discrimination parameter. While their study found that X-SIB was most 

successful with the High discrimination items (with Low or Medium difficulty) and least 

successful with Low discrimination items (with Medium or High difficulty), there was no 

relationship between the level of item discrimination and power found in the current study. 

 To explore the reasons ATFIND performed so differently than expected and to 

check the results found for the DIF analyses, several additional conditions were run. These 

conditions increased both sample size (to 20,000) and severity of DIF (difference in 

difficulty parameter of 1.00 between groups), separately and together. All 12 DIF items for 

these conditions were modeled for uniform DIF, which is different from the original study 

where in every condition, one-half of the DIF items was modeled for uniform DIF, and the 

other half were modeled for non-uniform DIF. The increases in sample size and DIF 

severity were compared to the sample size that used as Large sample for ATFIND (750, with 

an additional 750 for DIF analyses), and severity of DIF (.80 difference in difficulty) that was 

the maximum of the range selected in this original study. Since the DIF analyses did better 

with normal distribution and 50% focal simulees, the 20% DIF, Large sample, 50% focal, N-

LDIF condition was used as a comparison between the additional conditions and the 

original study. The documentation of these conditions and the results are provided in 

Appendix J.  

 In these additional conditions, ATFIND was found to select DIF items very 

differently for the two sample sizes. When a total sample size of 20,000 (10,000 for 

ATFIND) was used with the Larger DIF modification (difference of 1.00 between focal and 
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referent item difficulty), ATFIND almost consistently selected either all of the DIF items or 

none of the DIF items for the AT List. As either sample size or severity of DIF decreased, 

ATFIND was found to increasingly split the DIF items between the AT List and the PT 

List. When the lower sample size of 1,500 (750 for ATFIND) was used with the Smaller 

DIF modification (difference of .80 between focal and referent item difficulty), ATFIND 

selected DIF items in a distribution that was very similar to that found in the comparison 

original study condition. 

To explore possible reasons for ATFIND’s all or nothing selection of the DIF items 

in the Large sample, Large DIF additional condition, a series of multiple regression analyses 

were performed. These evaluated how well the discrimination and difficulty item parameters 

of the 48 non-DIF items predicted their placement either with the DIF items on the AT List 

or on the AT List when all of the DIF items were placed on the PT List. The linear 

combination of the two parameters was significantly related to their placement on the AT 

List both with and without the DIF items. However, only the non-DIF discrimination item 

parameter was significantly correlated (-.52, p < .01) with placement on the AT List with the 

DIF items, and only the non-DIF difficulty item parameter was significantly correlated (.61,  

p < .01) with placement on the AT List when the DIF items were all placed on the PT List.  

Because of the apparent quadratic nature of the non-DIF item difficulty parameter’s 

relationship to selection for the AT List without the DIF items, a curve estimation 

regression procedure was also performed. This also was statistically significant and 

accounted for approximately 67% of the variance of the non-DIF items placement on the 

AT List when all of the DIF items were placed on the PT List. The fact that ATFIND 

selected this group of medium difficulty non-DIF items for the AT List as a similar, but 



 

  132 

slightly lower, rate (41%) as it did all of the DIF items (57%) would seem to indicate that 

ATFIND was having difficulty identifying which of the two groups of items was most 

“relatively dimensionally homogeneous” (Froelich & Habing, 2008, p. 144). 

The DIF analyses’ power and Type I error results for the additional conditions also 

generally confirm those of the original study. With the additional conditions, MH, SIB, and 

X-SIB all had consistently high power (over 90%) with the Best matching subtest for the 

uniform DIF items, as well as for that type of DIF item in the original condition. They all 

also tended to have slightly lower Analyzed power when DIF items were included in the 

matching subtest, especially with the smaller sample size (750 for the additional conditions 

and 1,250 for the original condition). The amplified Type I error rates with DIF 

contamination found in the original study were magnified with DIF contamination in 

conjunction with the Large sample size in the additional conditions. All three analyses had 

Analyzed Type I error rates of over 45% in both Large sample conditions with SIB and X-

SIB having Analyzed Type I error rates of over 90% when Large sample was combined with 

the Largest DIF modification. These results confirm the original study’s finding that the PT 

List is unusable as a matching subtest, regardless of any additional content examination of 

the DIF items identified by the analyses, prior to determination of item bias. 

Limitations 

 While the current research explored many conditions found in real assessment data, 

it did not include all conditions for all examinees. In this study, the ability distributions were 

selected based on only three groups of high school students, those with no special need 

(regular education), those with an identified disability, and those who were registered in an 

English language learning program. For examination of performance, as well as 
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accountability and research purposes, each of these broad groups can, and often are, divided 

into multiple subgroups based on student characteristics such as ethnicity, type of disability, 

and home language. The current study did not address any of these additional differences. 

Also, the results indicate that additional conditions would be worth exploring in 

future studies. For ATFIND, it would be interesting to explore the influence both the 

correlation and the degree of angle between abilities have on its selection of its subtests. 

Using a multidimensional model of both uniform and non-uniform DIF in addition to the 

unidimensional used here might help lead to more useful applications for ATFIND. While 

the current study was limited to a “Large” sample size of 750, results indicate that both 

uniform DIF and Medium referent difficulty range items are selected more frequently for the 

AT List as sample size increases. It would be prudent to examine larger sample sizes for this 

analysis especially as new state and national level large sample tests are being developed. In 

this study, the guessing parameter was set for ATFIND at .20 since that was the referent 

group guessing parameter. However, based on Socha and DeMars (2013a) finding, this 

might have influenced ATFIND’s Type I error rate. It would be interesting to see how much 

setting the ATFIND guessing parameter at .00 and at .30 influences item selection when 

DIF items are included in the dataset. 

 It seems, based on the current study and the small axillary study, that at least some 

dimensionality analyses have difficulty identifying DIF items modified to advantage the 

lower ability focal group. It could be that an analysis other than those used here would have 

better success, especially if a larger sample size is used. Also, the inclusion of an equal 

number of non-uniform DIF items and uniform DIF items in each dataset might have 

influenced ATFIND’s power rates. Based on its slight propensity to selected uniform DIF 
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items over both non-DIF and non-uniform DIF items for the AT List, especially as sample 

size increased, it would be interesting to see how changing the ratio of these items influences 

ATFIND’s power. 

 With DIF analyses, there were indications that contamination in the matching 

subtest influenced both power and Type I error rate but the current study only explored a 

limited number of conditions where impact against the focal group was combined with 

focal-advantaging DIF items. With more and more accommodations being introduced in 

testing situations, especially with the new, innovative item types in computer-based testing, a 

further exploration of the relationship between impact and focal-advantaging DIF would 

seem prudent. Associated with this, is the lack within the current study of referent groups 

with the same skewed distributions as the focal groups. An example of these groups in real 

data these might be two groups of students with disabilities, one who had access to the 

accommodation under investigation and the other who did not. It might be that, if the two 

groups had the same positively skewed ability distribution, the DIF analyses would have 

been more successful in finding the DIF items in the Low referent difficulty range.  

 The results of this study indicate that research on non-uniform DIF needs to be 

expanded. A prior study had shown that the item discrimination parameter was a major 

factor in the analyses ability to identify the item as containing DIF, where in this study no 

evidence of this as a factor was found. The factor that did influence power was the type of 

non-uniform DIF modification induced, with the High non-uniform DIF modification 

seeming to be much easier for MH and SIB to identify than the Low non-uniform DIF 

modification. However, only six items were used to explore these differences. It would seem 
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that, since accommodations might generally cause non-uniform DIF rather than uniform 

DIF (Scott, 2009), these differences should be further explored. 

 Lastly, the current study did not explore test length or the amplification of DIF 

across item bundles. It could be that the results here would vary as test length varied, 

especially in combination with Moderate DIF. Also, it is possible that when similar items are 

bundled together that focal-advantaging DIF would be more evident. 

Conclusions   

The focus of this research was to examine how ATFIND, MH, SIB, and X-SIB 

function when DIF items in the dataset are modelled to advantage a lower ability focal group 

over a higher ability reference group. While the primary purpose for ATFIND was to 

examine its usefulness as a valid subtest selection tool, it also explored the influence of DIF 

items, item difficulty, and presence of multiple examinee populations with different ability 

distributions on the selection of the AT and PT Lists.  

ATFIND was found to be a less than effective matching subtest selection tool with 

DIF items that are modelled unidimensionally. Regardless of sample size, percentage of DIF 

items in the dataset, type of DIF modelled or the referent difficulty of the DIF items, 

simulee distribution, variability of simulee distribution within the dataset, or percentage of 

focal simulees, ATFIND selected approximately 60% of the items for the PT List and 40% 

for the AT List. The resultant PT List matching subtests contained approximately the same 

percentage of DIF items as were in the original dataset. This led to matching subtests that 

were shorter, but had similar contamination (and purity) rates as the original set of items. 

Interestingly, ATFIND’s lack of usefulness as a matching subtest selection tool for DIF 

studies also indicated that it tended to be robust to some of the most influential 
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unidimensional conditions that might occur in real data. When examining the characteristics 

of the items ATFIND selected for the two subtests, only two characteristics seemed to 

influence selection. Both uniform DIF items and items in the Medium referent difficulty 

range were selected slightly more often for the AT List than the PT List. These trends were 

seen to increase as sample size increased and might become a consideration when ATFIND 

sample exceeds the 750 used as Large sample in the current study. 

For MH, SIB, X-SIB, and Both-SIB, the primary purpose was to examine the 

ATFIND selected PT List’s usefulness as a valid matching subtest.  This was evaluated using 

the Total Type I error rates and the Total power rates for each analysis and subtest 

combination. The PT List was less than successful as a valid matching subtest, especially for 

the SIBTEST analyses that only examined the suspect items in the AT List for DIF. MH’s 

default of examining all items, regardless of their subtest, was found to aid in its much higher 

power.  

The use of both PT List DIF-contaminated matching subtest and a static set DIF-

free matching subtest that included both DIF and non-DIF items in the suspect list allowed 

for the examination DIF contamination on power and Type I error. Overall, all four analyses 

had higher power and lower Type I error with the DIF-free matching subtest than with the 

use of the DIF-contaminated PT matching subtest. While generally these differences were 

relatively small, they tended to be amplified when more DIF items were present in the 

dataset. The amplification was especially found when DIF was modelled only with Moderate 

severity or when focal distributions were skewed. 

The use of the static DIF-free matching subtest with both DIF and non-DIF items 

in the suspect list also allowed for the comparison between the analyses’ Type I error and 
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power rates not only by examinee ability distributions but also by the influence DIF type, 

DIF modification, and referent item difficulty. Overall, for all four analyses, as focal simulee 

ability varied from that of the referent group, Type I error rates increased. However, the 

results for power were not as clear. These were complicated by the combination of the 

severity of DIF modification being associated with a degree of difference in mean ability in 

the skewed conditions, as well as differences in DIF modification, especially for non-

uniform DIF. 

Finally, since both SIB and X-SIB were included in the study, the influence of their 

joint use was examined. Generally, the combined Both-SIB had both the highest power and 

the highest Type I error rate of any of the four procedures regardless of all other factors. 

Since some of the Type I error rates found were extremely high (up to 20.7% with the Best 

matching subtest and even higher with the contaminated PT matching subtest), practitioners 

should use extreme caution when using the results of the two analyses in combination. While 

the results from MH were not combined with X-SIB within this study, since MH and SIB 

have been found to identify similar items (Fidalgo, Ferreres, Muniz, 2004), one might 

conjecture that similar Type I error and power rates would be found combining the results 

from MH with X-SIB. 
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END NOTES 

1. Ackerman (1992, p. 69) defines formally defines impact as “a between-group difference 

in test performance caused by a between-group difference on a valid skill (e.g., the 

differences between the proportion correct for two groups of interest on a valid item).” 

Where in his case-wise analysis of his regression equation of the difference between the 

expected value of the conditional distributions for a specific ability level, he concluded 

that a difference in group means on the intended construct would signal U-DIF rather 

than impact. He explains that this surprising result as a function of the amount and 

direction of the correlation between �, the valid skill, and $, the nuisance skill, stating 

that “by examining the expected value of an $ ‘conditional slice’… [that] Because of the 

positive correlation between � and $, the focal group [the group with the lower ability] 

will have the higher expected value” (p. 81). Using this reasoning then, if there is no 

correlation between the two traits as in our example, no potential for DIF would be 

expected. The table was modified to reflect the Ackerman’s definition rather than his 

case-wise conclusion. 
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The investigation to inform the modeling of differential item functioning (DIF) 

items for simulation research contained four distinct phases. These phases were, in order, a 

review of the literature, DIF analysis of real data to identify items that favored the focal 

group, the equating of each groups’ item parameters to that of the reference group, and 

finally, an examination of the changes between the reference group’s item parameters and 

that of the focal groups’ for those focal group favoring DIF items. Each of these phases will 

be described, in order, within this document followed by a presentation of the resultant 

parameters to be used to simulate focal advantaging DIF items.  

Review of the Literature 

 A brief review of the literature was performed to investigate the methods that have 

been used by researchers to model DIF for simulation research. The type of DIF analysis 

was specifically excluded from the criteria for selecting studies resulting in those that 

included not only SIBTEST and MH DIF analyses but also, Raju’s area, logistic regression, 

analysis of variance, confirmatory factor analysis, and empirical Bayes MH analyses. 

Particular attention was paid to the type of DIF (U-DIF or NU-DIF) that was modeled and 

to the type of modeling (unidimensional or multidimensional) that was performed. While 

DIF can be viewed as a secondary dimension on which two of more groups have different 

distributions, because it has been previously determined that the data for the current 

research would be modeled unidimensionally, those studies modeling DIF using 

multidimensional item response theory were noted but are not included within this 

discussion.  

 Modifications used to model DIF items. Of the ten studies selected that 

simulated unidimensional data to research DIF analyses, six modeled both U-DIF and NU-
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DIF, one modeled only NU-DIF, and three modeled only U-DIF. For U-DIF, researchers 

generally chose to add or subtract a static value from the reference difficulty parameter (e.g., 

add .5, Fidalgo, Ferreres, & Muniz, 2004; add 1.0, Seong, Suh, Lee, & Cohen, 2004; subtract 

.93, Raju, 1990; and add .48 or .64, Swaminathan, & Rogers, 1990). Sometimes the 

researchers determined the amount to add or subtract from the difficulty parameter based 

on the area between the item characteristic curves (ICCs) for the focal and referent groups 

(Kanjee, 2007; Raju, 1990; and Whitmore, & Schumacker, 1999) with areas of .4 referring to 

small DIF, .6 as moderate DIF, and .8 as large DIF. Some researchers chose not only to 

specify a static difference between item difficulties but also chose specific standard item 

difficulties for the reference group. Bolt & Gierl (2006) used this process when they chose 

respective referent and focal item difficulties as displayed in Table B1. Of the studies 

reviewed only one research team, Fidalgo, Hashimoto, Bartram, and Muniz (2007), chose the 

amount they added to the referent item difficulty from a distribution of values, using a N(0, 

0.18) distribution to compare an empirical Bayes to the standard MH statistic.   

Table B1  

Difficulty Parameters for DIF Items Simulated by Bolt and Gierl, 2006 

Referent Difficulty 1st Focal Difficulty 2nd Focal Difficulty 3rd Focal Difficulty 

-1.00 -1.25 -0.75 -0.50 

0.00 -0.25 0.25 0.50 

1.00 0.75 1.00 1.50 

 

 For NU-DIF, where a modification to the discrimination parameter is added to that 

of the difficulty parameter, researchers again generally chose either to add a value from the 
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reference group’s discrimination parameter or select specific parameter combinations. Stark, 

Chernyshenko, and Drasgow (2006) added -.25 or -.40, Swaminathan, and Rogers (1990) 

added 1.76 or 2.36, and Whitmore, and Schumacker (1999) added 0.76 to the referent 

discrimination parameter. Where Oshima, Raju, and Nanda (2006) crossed an addition of -

0.50 to the discrimination parameter with the addition of 0.00, 0.50 and 1.0 to the difficulty 

parameter and Bolt and Gierl (2006) matched the addition of  -0.25 to the discrimination 

parameter with the addition of -0.50, 0.00, and 0.25 to the difficulty parameter. Only one 

researcher specified the use of a ratio modification of the referent discrimination parameter 

to obtain that of the focal (1.13 multiplied to the discrimination parameter, Raju, 1990). The 

researchers that used the area between ICCs to inform their choice of changes to the 

difficulty parameter also used it to inform the changes to the discrimination parameter. Only 

one study (Kanjee, 2007) mentioned using a pseudo-guessing parameter which was set at 

0.20 for all items for both referent and focal groups. 

 Relationships between MH ∆ and IRT. Researchers have investigated and 

derived formulas that relate the MH delta statistic (∆) for U-DIF to one or more IRT 

parameters. A summary of these relationships follows with each IRT model discussed 

separately.  

Rasch and 1PL IRT model. Holland and Thayer (1988) derived a relationship 

conditioned on total score for a Rasch one parameter logistic (1PL) IRT model as follows: 

 

∆¶� ©·�¸�·�¹                                                                                 �1� 
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where ��º and ��»are the studied item’s difficulty parameters for the focal and referent 

group, respectively. Roussos, Schnipke, and Pashley (1999) reframe this equation as: 

 

∆¶"¼¬� 4��» � �º�                                                                        �2� 

 

and found that ∆¶"¼¬ follows this formula and that an absolute difference in b values of 0.375 

or more would result in a ∆ corresponding to a “C” MH ∆ flag (a ∆ statistic of at least 1.50) 

and a “B” flag (a ∆ statistic of between 1.00 and 1.50) would correspond to an absolute 

difference of at least 0.25 and less than 0.375.  

2PL IRT model. Roussos et al. (1999) derived and examined a similar formula for a 

two parameter logistic (2PL) IRT model which incorporates the discrimination parameter (a, 

assumed to be the same for both groups for U-DIF) as follows: 

 

∆¶&¼¬� 4���» � �º�.                                                                      �3� 

 

With this equation the amount of difference in difficulty parameters required to flag DIF at a 

specific level with the ∆ statistic would be proportionally reduced if the discrimination 

parameter is greater than 1 and proportionally increased if it is less than 1. 

 3PL IRT model. Roussos at al. (1999) found a very different effect when they 

studied the relationship between the 3PL model and MH ∆. They numerically evaluated the 

integrals within a theoretical formula for the MH odds ratio, written in terms of examinee 

ability, and then computed ∆ by multiplying the natural log of that value by -2.35. When they 

incorporated the pseudo-guessing parameter (at 0.20 for both groups), they found that as the 
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average of the difficulty parameters of the two groups increased, the absolute value of ∆ 

decreased from the base level associated with that difference between the difficulty 

parameters. Increases in the discrimination parameter were related to a decrease in the 

absolute value of ∆, which was the opposite (authors' italics) of that found when the pseudo-

guessing parameter was set at 0. They also noted effects for both ability distribution variation 

and the ratio of reference to focal group size as the difficulty parameters increased but noted 

that there was no evidence to indicate that a larger ratio for the groups affect the value of ∆. 

Analysis of Real Focal Advantaging DIF Items. 

 Scott (2009) identified a set of items that advantaged disabled students who used 

non-standard accommodations such as calculators or manipulatives, over either regular 

education or disabled students who did not access non-standard accommodations. Because 

the current study is intended to model focal advantaging DIF items not only for disabled 

students (SWD) but also for English language Learners (ELL) who accessed non-standard 

accommodations, which had not been previously studied, a DIF analysis was conducted with 

new random samples taken from the same High School AIMS Mathematics 2006 dataset 

used by Scott (2009). Two new 200 and 500 case random samples were drawn for a 

reference group, obtained from students, not designated as either SWD or ELL, who took 

the examination without the use of a non-standard accommodation and two focal groups 

(SWD or ELL exclusively) who took the assessment with a non-standard accommodation. 

For each comparison, referent versus SWD and referent versus ELL, DIMTEST 

(Nandakumar & Stout, 1993; Stout, 1987) was used on the 200 case samples combined to 

identify items in the AT and PT lists. SIBTEST and Crossing-SIBTEST (Jiang & Stout, 

1998; Shealy & Stout, 1993) analyses were then performed using the 500 case samples, first 
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with the items on the PT list as the matching subtest and then the items on the AT list as the 

matching subtest. The additional use of the AT list items was to ensure that all items that 

exhibit DIF favoring a focal group were identified for the following parameter investigation. 

 The DIF analyses resulted in 22 of the 84 items on the test being identified as 

advantaging one of the two focal groups uniformly (βuni) or across at least 20% of the 

analysis region as given within Crossing-SIBTEST’s output as the percent of the magnitude 

favoring a group above (and/or below) the computed crossing point. Table B2 presents the 

SIBTEST and Crossing-SIBTEST results for these 22 focal-favoring DIF items. Included in 

the table for each item is the crossing point (where the difference in probability of correct 

response for the two groups is equal to zero), the magnitude of Βcro both above and below 

the crossing point, the percentage and group favored by that magnitude of Βcro, followed by 

the Βcro and Βuni statistics along with their associated p-values. Nine items favored the focal 

group over between 29% (item # 66) to 84% (items # 18 and 34) of the analysis region. 

Thirteen items favored the focal group across the whole analysis region (e.g., items # 3 and 

32, 100% either below or above the crossing point, and item # 13 favored the focal group 

59% below the crossing point and 41% above the crossing point).  

 While item #13's results might be surprising when taken from the ICC view, both 

SIBTEST and Crossing-SIBTEST analyses are based solely observed probabilities rather 

than estimates of an ICC. With Crossing-SIBTEST, the probability of correct response for 

each for each level of ability for each comparison group is computed using a regression 

correction. Starting at the lowest ability level, these probabilities are then compared and the 

first instance where they are equal (their difference is equal to zero) is determined to be the 

crossing point for that item. The SIBTEST statistic is then computed piecewise below and  
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Table B2  

Crossing and Uniform DIF Analysis Results for Focal Advantaging AIMS Items 

Item  

# 

Cross 
Point 

Βcro 
below 

Favor % 
Favor 

Βcro 
above 

Favor % 
Favor 

Βcro                        Βcro                         

p-value 
βuni βuni      

p-value 

3 38 .120 F 100 0  0 .120* .045 -.119* .037 

6 38 .150 F 100 0  0 .150* .012 -.153* .033 

11 33 .135 F 98 .002 F 2 .133* .006 -.146* .042 

13 30 .077 F 59 .053 F 41 .023 .737 -.129* .041 

18 15 .021 R 16 .107 F 84 -.127* .038 -.092* .050 

19 23 .059 R 44 .074 F 56 -.133* .015 -.033 .052 

22 22 .036 R 27 .097 F 73 -.133* .048 -.058 .053 

28 20 .024 F 25 .072 F 75 -.048 .166 -.107* .036 

32 0 0  0 .063 F 100 -.063 .218 -.082* .037 

33 0 0  0 .119 F 100 -.119* .014 -.109* .039 

34 28 .049 F 84 .009 R 16 .058 .068 -.061* .030 

44 17 .010 F 8 .126 F 92 -.116 .101 -.141* .044 

46 8 0  0 .129 F 100 -.129* .006 -.116* .038 

51 12 .004 F 4 .090 F 96 -.087 .156 -.096* .035 

55 19 .052 R 32 .112 F 68 -.163** .000 -.045* .048 

62 13 .016 R 22 .054 F 78 -.070* .003 -.026* .045 

65 38 .128 F 100 0  0 .128* .045 -.135 .051 

66 23 .072 R 71 .030 F 29 -.102* .031 .093* .042 

71 27 .047 R 52 .043 F 48 -.090* .026 .042* .039 

79 11 .006 F 6 .092 F 94 -.085 .136 -.096* .041 

82 14 .005 F 4 .110 F 96 -.105 .058 -.110* .043 

83 21 .090 R 60 .060 F 40 -.150* .007 .050 .055 
Note: *Indicates significance at a .05 level where ** indicates a significance level of less than 

.001.  A negative βuni indicates that examinees in the focal group are favored. A negative βcro 

indicates the examinees in the focal group above the crossing point are favored.  
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above this point using the difference between expected probabilities of the focal and referent 

groups below this point and the difference between the expected probabilities of referent 

and focal groups above the point. There is nothing in the computation that requires that 

different groups are favored above and below the crossing point. In the case of item #13, 

where the crossing point was approximately in the middle of the range, the magnitude of Βcro 

below the crossing point was 0.077 and above the crossing point was 0.053, both favoring 

the focal group. This resulted in a composite Βcro of 0.023 (p-value = 0.737) after adding the 

negative value of 0.053 since it favored the focal group above the crossing point. While this 

result is non-significant, the Βuni statistic for this item which used the difference between 

focal and referent expected probabilities across the whole range was -0.129 (p-value = 0.041) 

which was significant. Item #11, which favored the focal group both above and below the 

crossing point, was found to have significant DIF by both SIBTEST and Crossing-

SIBTEST. 

 Of the 22 focal advantaging DIF items, 8 exhibited U-DIF alone, 7 exhibited NU-

DIF alone, and the remaining 7 were identified by both SIBTEST and Crossing-SIBTEST. 

Item number 66, which was found significant by both analyses, is interesting in that while 

29% of the magnitude of Βcro indicates that the item favors the focal group, the Βuni statistic 

indicates that it exhibits U-DIF favoring the reference group. 

Estimation and Equating of Item Parameters. 

 To obtain comparable estimates of the difficulty, discrimination, and pseudo-

guessing item parameters for focal-favoring DIF items, the three 500 case samples used to 

identify the DIF items were separately analyzed using BILOG-MG (Zimowski, Muraki, 

Mislevy, & Bock, 1996) and then the resultant estimates were equated using methodology 
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described by Cook and Eignor (1991). To equate the parameters estimates of the focal 

groups to that of the referent group a non-equivalent group anchor test (NEAT) design was 

used. The anchor set, containing 30 non-DIF items, were selected by eliminating any of the 

84 items on the test that exhibited DIF for any group in either the original Scott (2009) or 

the current analysis. These 30 items comprised 35.7% of the total test. This number and 

percentage of anchor items meets Kolen and Brenan’s (2004) recommendation that at least 

20% of the overall test be included as anchors for a test of at least 40 items in length and at 

least 30 anchor items for very long tests.  

 An examination of the anchor items’ content, revealed a distribution similar to that 

of the full test, with a maximum difference in percentage of 3.6 within the content area of 

algebra. The percentage of items aligned to each of the five mathematics content strands for 

the full test and the anchor test are presented in Figure 1. This content area contains the 

most items both on the full test (25 items, 29.8%) and on the anchor set (10 items, 33.3%). 

The distribution of content for the anchor set approximately meets the criteria put forth or  

 

 

Figure B1. Percentage of items by content strand in full and anchor tests. 
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explored by multiple authors (e.g., Cook, & Eignor, 1991; Hambleton, Swaminathan, & 

Rogers, 1991; Kolen, & Brennan, 2004; and Sinharay, & Holland, 2007) that it proportionally 

match the operational test’s content specifications. 

 Following Cook and Eignor (1991), the mean and SD of the difficulty parameters of 

the anchor set was computed for each group. These were then used to compute a slope and 

intercept for the conversion of the focal groups’ parameters to that of the referent group. 

Cook and Eignor give the relationship to create the slope and intercept as: 

 

�" � ?©�_"½T�_[�=[ y©�`�T`:_" �  �& � ?©�_&½T�_[�=[ y©�`�T`:_&  .                                    �4� 

 

Reformatted, this equation becomes: 

 

�" � ½T�_[�=[ y©�`�T`:_"½T�_[�=[ y©�`�T`:_&  �& �  � ?©�_&½T�_[�=[ y©�`�T`:_& �  ?©�_".                  �5� 

 

Within the reformatted equation the transformative slope (noted as A below) is the ratio of 

the two SDs where the intercept (noted as B below) is the difference between of the mean of 

Group 1 and the mean of Group 2 divided by its SD. Each group’s mean, SD, 

transformation slope and intercept are displayed in Table B3. The resultant transformation 

constants were used with all of the items for the group to convert both the difficulty and 

discrimination parameters to a scale comparable with that of the referent group. The 

following transformation equations: 
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�¶�h � A�¶� � B                                                                     �6� 

and 

 

�À�h �  �À�A                                                                           �7� 

 

where �¶� is the focal group’s difficulty parameter for the item as determined by individual 

group analysis, �¶�h is the focal group’s equated difficulty parameter, �À� is the focal group’s 

discrimination parameter for the item as determined by individual group analysis, and �À�h is 

the focal group’s equated discrimination parameter were used. Since the pseudo-guessing 

parameter is read from the probability axis rather than the ability axis, transformation of this 

parameter is not necessary (Cook, & Eignor, 1991). Item characteristic curves for the 8 NU-

DIF items, created using the equated parameters are presented in Appendix C. 

 

Table B3  

Means and Standard Deviations of Each Group’s Anchor Set 

Group 
Mean 

Difficulty 

Difficulty 

SD 

Transformation 
Slope 

Transformation 
Intercept 

Referent -0.5602 1.0642   

SWD 1.2592 1.0506 0.9872 -1.759 

ELL 1.0557 1.0345 0.9721 -1.581 

Note: Displayed are each group’s mean and standard deviation (SD) of difficulty parameters 

for the 30 item anchor set plus the transformation slope and intercept that were used to 

equate each focal group’s parameters to that of the referent group. 
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Examination of Changes to Parameters. 

 The item parameters of the referent group were compared to that of the focal group 

favored (either SWD or ELL) for each of the 22 focal-advantaging items. For each item, the 

difference between each group’s difficulty and pseudo-guessing parameters was taken and 

the ratio of the focal group’s to the referent group’s discrimination parameter was found. 

The comparisons between the difficulty, pseudo-guessing, and discrimination parameters for 

the groups will be discussed in that order separately below. 

Difficulty parameter. Figure 2 displays the distribution of the difference between 

the difficulty parameters for the two groups as compared with the difficulty parameter value 

for the referent group by DIF type. The referent group’s difficulty parameters, on the whole 

test, range from -4.24 to 1.67 with a mean of -0.47 and SD of .96. While no pattern to the 

comparison of difficulty difference to referent difficulty was discerned, the DIF items were 

observed over a slightly smaller range and at a higher average referent difficulty (minimum =      

-2.14, maximum= 1.67, mean=0.03, and SD= 0.84). The 8 NU-DIF items were found 

almost exclusively in the upper region of the ability scale with a minimum referent difficulty 

of -0.14. The mean difficulty for the NU-DIF items was 0.70, with a standard deviation of 

0.61 and again a maximum of 1.67. The range, mean, and standard deviation of differences 

between the difficulty parameters were approximately same for both U-DIF and NU- DIF 

items, with a minimum of -0.79 and -0.78, a maximum of -0.18 and -0.04, a mean (and SD) 

of -0.49 (0.20) and -0.45 (0.28), respectively.  

While the difference in the referent difficulty location between the U-DIF and NU-

DIF focal-favoring DIF items is interesting, the main goal of the current investigation is to 
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Figure B2. The difference in difficulty parameters versus the difficulty parameter for the 

referent group by DIF type. 

 

determine the amount of change that should be induced to model both types of DIF items 

in a subset of items that is similar to that of a whole test. It is evident, based on the 

distribution of differences between the group difficulty parameters, that the difficulty 

modification for both types of DIF items would be very similar, with NU-DIF having a 

slightly lower minimum.  

 Pseudo-guessing parameter. Figures 3 and 4 present the comparison of the 

difference between pseudo-guessing parameters versus the referent difficulty parameters and 

the difference between difficulty parameters by DIF type, respectively. When the difference 

in pseudo-guessing parameters (c) was examined for all 22 focal-favoring DIF items, no 

discernible change to the range or distribution of differences was evident either across the 
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referent difficulty parameters range or the difference in difficulty parameters range. The 

differences in c-parameters, with the exception of that for one item (# 3), ranged from -0.09 

to 0.08. The mean of the 21 differences (excluding that of item #3 that had a difference of 

0.23) was essentially zero (-0.0012). An examination of the differences for the NU-DIF 

focal-favoring items showed results very similar to those for all 22 focal-favoring DIF items. 

Figure B3. The difference in pseudo-guessing parameters versus the difficulty parameter for 

the referent group by DIF type.  



 

  169 

Figure B4. The difference in pseudo-guessing parameters versus the difference in difficulty 

parameters for all 22 focal-favoring DIF items.  

 

Discrimination parameter. The ratios of the focal to the referent discrimination 

parameters were examined both for all 22 focal advantaging DIF items and for the 8 that 

were identified as exhibiting NU-DIF. These ratios as compared to the referent difficulty 

parameters and the difference between the difficulty parameters by DIF type are displayed in 

Figures 5 and 6, respectively. The ratios for the NU-DIF items had a larger range of values 

and, generally, had larger values than those for the U-DIF items. The one exception to this 

trend was the ratio of 0.37 for item # 66 which was also the item that was found to favor the 

focal group for 29% of the magnitude of βcro while being flagged as having U-DIF favoring 

the referent group. There were three items that had difficulty differences of less than 0.25, 

which is the lower bound identified by Roussos et al. (1999) of the difference in difficulties 

required to obtain a Mantle-Haenszel ∆ “B” flag in a 1PL model. These items had 
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discrimination ratios that ranged from 1.24 to 1.44, which indicates that the item 

discrimination parameter for the focal group was much larger than that for the reference 

group. 

Similar to the comparison that was performed for the differences between difficulty 

parameters to the difficulty parameters for the referent group; the ratios of focal to referent 

discrimination parameters were compared with the discrimination parameters for the 

referent group as presented in Figure 7. Most of both types of DIF items discrimination 

ratios are grouped in a seemingly random distribution between the referent discrimination 

values of 1.17 and 2.33. While the referent discrimination parameters on the 84 item test 

ranged from 0.59 to a maximum of 3.12, all of the focal advantaging DIF items identified 

had referent discrimination parameters above 1.00, with a minimum of 1.17 and maximum 

of 3.12. The minimum referent discrimination parameter for NU-DIF items was even higher 

at 1.36.  

 

Figure B5. The ratio of the focal to the referent discrimination parameters versus the 

difficulty parameter for the referent group by DIF type  
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Figure B6. The ratio of the focal to the referent discrimination parameters versus the 

difference in difficulty parameters by DIF type. 

Figure B7. The ratio of the focal to the referent discrimination parameters versus the 

discrimination parameter for the referent group by DIF type.  
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Interaction of discrimination and pseudo-guessing parameters. To model NU-

DIF with a 3PL IRT model, parameters need to be considered not only separately but also in 

combination. The ratios of the focal to referent discrimination parameters were examined in 

reference with the difference between the focal and the referent pseudo-guessing parameters 

as displayed in Figure 8. For NU-DIF items, the graph reveals that there are very different 

patterns of this interaction below and above the ratio of 1 for the discrimination parameters, 

where they are the same for both groups. Below this level, for all cases of NU-DIF items, 

the referent pseudo- guessing parameter (c) is less than or equal to zero (e.g., the 

discrimination ratio of 0.37 has a referent c-parameter of 0.373 and a focal c-parameter of 

0.287 resulting in a c-parameter difference of -0.086). However, where the focal 

discrimination  

Figure B8. The difference in the pseudo-guessing parameters versus the ratio of the focal to 

the referent discrimination parameters by DIF type. 

 



 

  173 

parameter is larger than that of the referent group (a ratio greater than 1), there seems to be a 

higher likelihood that the focal c-parameter will be larger than that of the associated referent 

parameter. 

 A linear regression analysis of the NU-DIF item discrimination parameter ratios to 

the associated differences of c-parameters was significant indicating that the two variables are 

linearly related. The scatterplot for the two variables in Figure 8, indicates that the variables 

are related such that as the ratio of NU-DIF item discrimination parameters for the focal to 

referent groups increases, the difference in the focal and referent pseudo-guessing 

parameters increases. The regression equation for predicting the c-parameter based on the 

ratio of discrimination parameters is 

 

� ¨�=�®©T©= �  .115 [`��=`®`_�T`:_ =�T`: � .130 

 

The 95% confidence interval for the slope, 0.033 to 0.197, does not contain the value of 

zero, and therefore the discrimination ratio is significantly related to the difference in c-

parameters. The correlation between the discrimination ratio and c-parameter difference 

variables was 0.81 with approximately 66% of the variance of the c-parameter difference 

accounted for by the linear relationship with the ratio of discrimination parameters. 

Parameter Modification Distributions. 

This section presents the distributions from which the values used for modifying the 

referent item parameters to achieve focal advantaging DIF item parameters were drawn. 

These distributions were based mainly on the work of Roussos et al. (1999) as discussed 

above and on the parameters changes observed in the focal-advantaging AIMS DIF items. 
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The modification for difficulty parameters for U-DIF items will be addressed first with the 

discussion of the modifications for the difficulty, discrimination, and pseudo-guessing 

parameters for NU-DIF items following. In both cases, each item was modified from that 

for the referent group to exhibit two levels of DIF, one intended to be moderate and the 

other large.  

Uniform DIF.  For U-DIF modification, the difference in difficulty parameters was 

randomly drawn from a uniform distribution from -0.20 to -0.50 for moderate DIF and for 

large DIF from a uniform distribution from -0.50 to -0.80.  

Non-Uniform DIF.  The concern when modeling NU-DIF is to create differences 

in item characteristic curves (ICCs) that would ensure both that they cross at some point 

within the range of ability being studied and also that the resulting cross would advantage the 

focal group across more than an insignificant portion across that range. For the current 

study, that portion was defined as at least 20%. Therefore, the three parameter 

modifications, while being drawn separately from distributions, have those distributions 

influenced by the modification of the other parameters.  

In an attempt to ensure that the ICCs crossed within the ability range of interest, 

lower differences in difficulty parameters were paired with higher ratios of discrimination 

parameters (greater than 1) and negative changes to the pseudo-guessing parameters (the 

Low b-difference modification). Similarly, higher differences in difficulty parameters were 

paired with lower ratios of discrimination parameters (less than 1) and positive changes to 

the pseudo-guessing parameters (the High b-difference modification). Each of the six items 

modified for NU-DIF was assigned one of the two modification schemes. The only criteria 

for placement within one or the other modification subset was that with average referent 
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difficulty parameters for each subset be as close to the same as possible. The resultant sets’ 

average difficulty were equivalent at -0.06, however their standard deviations did vary (0.92 

and 1.42). For each item, two changes for each parameter were randomly drawn from 

distributions detailed below, then the changes that would resulted in parameters closest to 

that of the referent group (closest to 0 change for difficulty difference, 1 for ratio of 

discriminations, and 0 for pseudo-guessing) were identified as the “moderate” DIF 

modification and used for Focal Group 2 and the remaining changes were combined to be 

identified as the “large” DIF used for Focal Group 1. After selection of the parameter 

changes, the resultant ICCs were examined and two (Items 20 and 60) failed to cross at any 

point within the ability range, -3.00 to 3.00. For these two items, the discrimination and 

pseudo-guessing parameter changes were redrawn until the curves were observed to cross. 

The change drawn to modify each item parameter for DIF for each group is presented in 

Table B4, the resultant item parameters for the referent and both focal groups for all of the 

DIF items are presented in Table B5, and the ICCs for the six NU-DIF items are presented 

in Appendix D. 

Difference in difficulty parameters. The Low b-difference change of difficulty 

parameter was randomly drawn from a uniform distribution from -0.05 to -0.50 and the 

High b-difference change of difficulty parameter was randomly drawn from a uniform 

distribution from -0.50 to -0.80. This decreases lower bound of the distribution of the 

change in difficulty parameters from that of the uniform modification but keeps all of the 

other bounds consistent with that modification. It is also consistent with the differences of 

difficulty parameters found for non-uniform focal advantaging AIMS DIF items. 
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Table B4 

Changes Drawn to Modify Item Parameters for DIF Items 

  Focal 1  Focal 2 

# 
 

    agi    bgi   cgi  
    agi    bgi   cgi 

9 -0.58 -0.27 

10* 1.40 -0.27 -0.08 
 

1.21 -0.18 -0.05 

19 -0.70 -0.29 

20** 0.69 -0.77 0.09 
 

0.73 -0.55 0.04 

29 -0.67 -0.24 

30* 1.43 -0.49 -0.10 
 

1.14 -0.29 -0.09 

39 -0.80 -0.49 

40** 0.72 -0.55 0.06 
 

0.81 -0.53 0.03 

49 -0.63 -0.25 

50* 1.45 -0.34 -0.09 
 

1.21 -0.26 -0.05 

59 -0.56 -0.40 

60**   0.66 -0.53 0.10  0.69 -0.50 0.01 

Note: *assigned to the Low b-difference subset of NU-DIF items. ** assigned to the High b-

difference subset of NU-DIF items. 
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Table B5 

Item Parameters for DIF Items 

 Referent  Focal 1  Focal 2 

# agi bgi cgi 
 

agi bgi cgi  
agi bgi cgi 

9 0.64 -1.55 .20 0.64 -2.13 .20 0.64 -1.82 .20 

10* 0.75 -1.01 .20 1.05 -1.28 .12 
 

0.91 -1.19 .15 

19 1.02 1.28 .20 1.02 0.58 .20 1.02 0.99 .20 

20** 0.78 -0.05 .20 0.54 -0.82 .29 
 

0.57 -0.60 .24 

29 1.05 0.10 .20 1.05 -0.57 .20 1.05 -0.14 .20 

30* 0.51 -0.09 .20 0.73 -0.58 .10 
 

0.58 -0.38 .11 

39 0.81 -0.62 .20 0.81 -1.42 .20 0.81 -1.11 .20 

40** 0.45 -1.49 .20 0.32 -2.04 .26 
 

0.36 -2.02 .23 

49 0.94 0.03 .20 0.94 -0.60 .20 0.94 -0.22 .20 

50* 1.01 0.91 .20 1.46 0.57 .11 
 

1.22 0.65 .15 

59 0.94 0.25 .20 0.94 -0.31 .20 0.94 -0.15 .20 

60** 1.12 1.35 .20   0.74 0.82 .30  0.77 0.85 .21 

Note: *assigned to the Low b-difference subset of NU-DIF items. ** assigned to the High b-

difference subset of NU-DIF items. 

 

Ratio of discrimination parameters. As stated above, items in the Low b-

difference subset were paired with ratios that were higher than 1. These were randomly 

drawn from a uniform distribution from 1.13 (the ratio used by Raju, 1990) to 1.50 

(approximately the maximum observed in the AIMS data). The uniform distribution from 



 

  178 

which the ratios were randomly drawn for the items in the High b-difference subset was the 

reciprocal of that used for the Low b-difference subset, 0.66 (1/1.50) to 0.88 (1/1.13). 

Differences in pseudo-guessing parameters. For each item two random draws 

from a uniform distribution from 0.01 to 0.10 were used to modify the 0.20 value assigned 

for the referent pseudo-guessing item parameters. To achieve a negative value of this change 

for items in the Low b-difference subset the value drawn was multiplied by -1 before adding 

to the referent c-parameter.  
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APPENDIX C  

ITEM CURVES FOR REAL-DATA NON-UNIFORM DIF ITEMS 
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Item 18      Item 62 

        

Item 19      Item 66 

         

Item 22      Item 71 

        

Item 55      Item 83 

        

Figure C1. Item characteristic curves for the 8 AIMS-Mathematics non-uniform Focal-

advantaging DIF items.  
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APPENDIX D  

ITEM CURVES FOR SIMULATED NON-UNIFORM DIF ITEMS 

 
 
 
 



 

  182 

Item 10      Item 40 

        

Item 20      Item 50 

         

Item 30      Item 60 

        

Figure D1. Item characteristic curves for the 6 simulated non-uniform Focal-advantaging 

DIF items.  
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APPENDIX E  

TRANSFORMATION FOR NON-NORMAL DATA 

 
 
 
 



 

  184 

Fleishman (1978) provided an equation and table of parameters that allowed for the 

transformation of the N(0,1) distribution to contain various degrees of skewness and 

kurtosis. His transformation equation, as simplified by Headrick and Sawilowsky (1999) was 

 

D � � � �Á � ����Á& �  [Á',                                           (24) 

  

where T is the univariate case and Z ~ N(0, 1). Fleishman's parameters were computed 

through the use of a system of equations derived from formulas for the first four moments, 

arbitrarily setting the first and second moment at 0 and 1, respectively for convenience, and 

then solving for the third and fourth moments (Â", Â&). These parameters, which are not 

available for all values of skewness and kurtosis, are then substituted into his transformation 

equation to produce T with a mean of 0, a variance of 1 and the designated skewness and  

 

Table E1 

Transformation Parameters for Focal Distributions 

Skew Kurtosis a b d 

Focal Group 1 

1 .5 -.2585 1.1147 -.0660 

Focal Group 2 

.5 0 -.0926 1.0399 -.0165 

Note: Following Headrick and Sawilowsky (1999), while Fleishman (1978) presented these 

parameters to 14 decimal places, they were rounded to four decimal places for use in this 

study. 



 

  185 

kurtosis. The Fleishman parameters used within this study are displayed in Table E1. The 

kurtosis of .50 for skew of 1 was chosen since this was the least value of kurtosis available 

for the specified skew. 
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APPENDIX F  

EXAMPLES OF COMPUTER CODE USED 
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R Code for generating dichotomous skewed or Normal distribution IRT 3-PL response data. 
 
################################################## 
####################### 
## 
## Code for generating dichotomous IRT data. 
## 
##################################################### 
####################### 
 
 
#SPECIFY THE SAMPLE SIZE AND TEST LENGTH. 
#SPECIFY TNE PERCENT OF FOCAL SIMULEES AND DISTRIBUTION 
#SPECIFY THE NUMBER OF SIMULEES FOR AT 
#SPECIFY THE MULTIDIMENSIONAL PARAMETERS FOR REFERENCE, AND 

TWO FOCAL GROUPS 
#SPECIFY THE NUMBER OF REPLICATIONS. 
#SPECIFY ALL SIMULATION PARAMETERS. 
 
 
Sample = 2000 #2000 or 750 
Per_Focal = 50 #50 or 10 
Per_DIF = 20 #20  
DIST = "Skew" #Norm or Skew 
Num_AT = 750 #750 or 250 
Num_DIF = Sample-Num_AT # = 1250 or 500 
Num_Items = 60  
nreps = 100 #number of replications.  
Num_Groups = 3 
 
# LOAD NECESSARY PACKAGES. 
 
  library(MASS) 
  library(mvtnorm) 
    
for (Group in 1: Num_Groups) #A=1, B=2, or AB=3  
{ #to create "Group Loop" 
 
# To zero out previous numbers for AT & DIF for each group 
Num_AT_A = 0 
Num_AT_B = 0 
Num_AT_R = 0 
Num_DIF_A = 0 
Num_DIF_B = 0 
Num_DIF_R = 0 
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# To set new AT & DIF numbers for each group 
Num_AT_R = Num_AT*(1-Per_Focal/100) 
Num_DIF_R = Num_DIF*(1-Per_Focal/100) 
 
if (Group==1)  
   {Num_AT_A = Num_AT - Num_AT_R 
 Num_AT_B = 0 
 Num_DIF_A = Num_DIF - Num_DIF_R 
    Num_DIF_B = 0 } 
  
if (Group==2) 
   {Num_AT_A = 0 
    Num_AT_B = Num_AT - Num_AT_R 
 Num_DIF_A = 0 
 Num_DIF_B = Num_DIF - Num_DIF_R } 
  
if (Group==3)  
   {Num_AT_B = round((Num_AT - Num_AT_R)/2,0) 
    Num_AT_A = (Num_AT-Num_AT_R)-Num_AT_B 
 Num_DIF_B = round((Num_DIF - Num_DIF_R)/2,0) 
 Num_DIF_A = (Num_DIF - Num_DIF_R) - Num_DIF_B }  
 
#DIRECTORIES. You must specify where you want things to go in gen.dir. 
 
condition = paste( "DATA", Group, Sample, Per_Focal, Per_DIF, DIST, sep="_") 
gen.dir = paste("C:\\Users\\lmscot2\\Desktop\\Data\\", condition, "\\", sep="") 

#Desktop. 
 
#create subdirectories. 
dir.create(gen.dir) #create the general directory. 
dir.create(paste(gen.dir, "items\\", sep="")) #store item parameter information. 
dir.create(paste(gen.dir, "at_thetas\\", sep="")) #store theta values. 
dir.create(paste(gen.dir, "at_data\\", sep="")) #store generated data files. 
dir.create(paste(gen.dir, "DIF_thetas\\", sep="")) #store theta values. 
dir.create(paste(gen.dir, "DIF_data\\", sep="")) #store generated data files. 
 
item_fold=paste(gen.dir, "items\\", sep="") #NAME of item folder. 
at_data_fold=paste(gen.dir, "at_data\\", sep="") #NAME of data folder. 
at_theta_fold=paste(gen.dir, "at_thetas\\", sep="") #NAME of theta folder. 
DIF_data_fold=paste(gen.dir, "DIF_data\\", sep="") #NAME of data folder. 
DIF_theta_fold=paste(gen.dir, "DIF_thetas\\", sep="") #NAME of theta folder. 
 
setwd(gen.dir) 
 
reference_at_data = matrix(NA,Num_AT_R,Num_Items) #SET UP AT DATA MATRIX. 
focus1_at_data = matrix(NA,Num_AT_A,Num_Items) #SET UP AT DATA MATRIX. 
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focus2_at_data = matrix(NA,Num_AT_B,Num_Items) #SET UP AT DATA MATRIX. 
reference_DIF_data = matrix(NA,Num_DIF_R,Num_Items) #SET UP DIF DATA 

MATRIX. 
focus1_DIF_data = matrix(NA,Num_DIF_A,Num_Items) #SET UP DIF DATA 

MATRIX. 
focus2_DIF_data = matrix(NA,Num_DIF_B,Num_Items) #SET UP DIF DATA 

MATRIX. 
 
# SET ITEM PARAMETERS FOR REFERENCE, FOCAL1 AND FOCAL2 GROUPS 
 
# Non-DIF difficulty parameters. 
 
  for (Num_Items in 1:Num_Items) bp = as.matrix(c( 
                  -2.95, -1.97, -2.63, -2.93, -1.77, -1.60, -1.21, -2.70,-1.55, -1.01, 
                    .61, -.57, -1.15, .60, -.30, -1.06, 1.02, -1.96,1.28, -.05, 
                   2.11, .81, 1.67, 1.68, -.23, -1.12, -1.37, -1.17,.10, -.09, 
                   1.26, .61, .95, 1.64, .82, 1.13, 1.18, -.75,-.62, -1.49, 
                    .80, -1.00, .64, 1.11, 2.12, 1.19, -1.41, .87,.03, .91, 
                    .35, -1.41, -1.29, .22, .93, .57, 1.11, 1.54,.25, 1.35), ncol=1, nrow=Num_Items) 

  
 
# Non-DIF discrimination parameters. 
  
  for (Num_Items in 1:Num_Items) ap = as.matrix(c 
            (.29,.75,.36,.41,.56,.73,.94,.96,.64,.75, 
            .82,.86,.42,.74,.44,.55,.82,.52,1.02,.78, 
            1.04,1.01,.98,.65,.93,.35,.31,.39,1.05,.51,  
            .55,.73,.88,1.40,1.35,.92,.73,.87,.81,.45,  
            .50,.29,1.02,1.16,.48,.65,.79,.53,.94,1.01, 
            1.11,.56,.59,1.01,.88,1.32,1.09,.83,.94,1.12), ncol=1, nrow=Num_Items)  
 
# Non_DIF pseudo-guessing parameter. 
 
  for (Num_Items in 1:Num_Items) cp = as.matrix(runif(Num_Items, min=.20, max=.20)) 
  
#WRITE OUT GENERATED PARAMETERS FOR REFERENCE, FOCUS 1, & 

FOCUS 2 
 
item.id = matrix(seq(from=1, to=Num_Items, by=1), ncol=1, nrow=Num_Items) 
items = matrix(cbind(item.id, ap, bp, cp), ncol=4, nrow=Num_Items) 
items_reference <- items 
items_focus1 <- items 
items_focus2 <- items  
 
for(z in 1:Num_Items)  # items_focus1 
{ 
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 if(z==9)  
 { 
  items_focus1[z,3] <- -2.13 # bp 
 } 
 if(z==10)  
 { 
  items_focus1[z,2] <- 1.05  # ap 
  items_focus1[z,3] <- -1.28 # bp 
  items_focus1[z,4] <- .12   # cp 
 } 
 if(z==19)  
 { 
  items_focus1[z,3] <- .58   # bp 
 } 
 if(z==20)  
 { 
  items_focus1[z,2] <- .54   # ap 
  items_focus1[z,3] <- -.82  # bp 
  items_focus1[z,4] <- .29   # cp 
 } 
 if(z==29)  
 { 
  items_focus1[z,3] <- -.57  # bp 
 } 
 if(z==30)  
 { 
  items_focus1[z,2] <- .73   # ap 
  items_focus1[z,3] <- -.58  # bp 
  items_focus1[z,4] <- .10   # cp 
 } 
 if(z==39)  
 { 
  items_focus1[z,3] <- -1.42 # bp 
 } 
 if(z==40)  
 { 
  items_focus1[z,2] <- .32   # ap 
  items_focus1[z,3] <- -2.04 # bp 
  items_focus1[z,4] <- .26   # cp 
 } 
 if(z==49)  
 { 
  items_focus1[z,3] <- -.60 # bp 
 } 
 if(z==50)  
 { 
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  items_focus1[z,2] <- 1.46 # ap 
  items_focus1[z,3] <- .57  # bp 
  items_focus1[z,4] <- .11  # cp 
 } 
 if(z==59)  
 { 
  items_focus1[z,3] <- -.31 # bp 
 } 
 if(z==60)  
 { 
  items_focus1[z,2] <- .74  # ap 
  items_focus1[z,3] <- 0.82 # bp 
  items_focus1[z,4] <- .30  # cp 
 } 
} 
 
for(z in 1:Num_Items)  # items_focus2 
{ 
 if(z==9)  
 { 
  items_focus2[z,3] <- -1.82  # bp 
 } 
 if(z==10)  
 { 
  items_focus2[z,2] <- .91  # ap 
  items_focus2[z,3] <- -1.19  # bp 
  items_focus2[z,4] <- .15   # cp 
 } 
 if(z==19)  
 { 
  items_focus2[z,3] <- .99  # bp 
 } 
 if(z==20)  
 { 
  items_focus2[z,2] <- .57  # ap 
  items_focus2[z,3] <- -.60  # bp 
  items_focus2[z,4] <- .24   # cp 
 } 
 if(z==29)  
 { 
  items_focus2[z,3] <- -.14  # bp 
 } 
 if(z==30)  
 { 
  items_focus2[z,2] <- 0.58  # ap 
  items_focus2[z,3] <- -.38  # bp 
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  items_focus2[z,4] <- .11   # cp 
 } 
 if(z==39)  
 { 
  items_focus2[z,3] <- -1.11  # bp 
 } 
 if(z==40)  
 { 
  items_focus2[z,2] <- .36  # ap 
  items_focus2[z,3] <- -2.02  # bp 
  items_focus2[z,4] <- .23   # cp 
 } 
 if(z==49)  
 { 
  items_focus2[z,3] <- -.22  # bp 
 } 
 if(z==50)  
 { 
  items_focus2[z,2] <- 1.22  # ap 
  items_focus2[z,3] <- .65  # bp 
  items_focus2[z,4] <- .15   # cp 
 } 
 if(z==59)  
 { 
  items_focus2[z,3] <- -.15  # bp 
 } 
 if(z==60)  
 { 
  items_focus2[z,2] <- .77  # ap 
  items_focus2[z,3] <- .85  # bp 
  items_focus2[z,4] <- .21   # cp 
 } 
} 
 
write.table(items_reference, paste(item_fold, "items_r", ".dat", sep=""),  
col.names=c("item", "ap", "bp", "cp"),  
row.names=F,  
sep="\t", 
quote=F)   
   
write.table(items_focus1, paste(item_fold, "items_f1", ".dat", sep=""),  
col.names=c("item", "ap", "bp", "cp"),  
row.names=F,  
sep="\t", 
quote=F)   
 



 

  193 

write.table(items_focus2, paste(item_fold, "items_f2", ".dat", sep=""),  
col.names=c("item", "ap", "bp", "cp"),  
row.names=F,  
sep="\t", 
quote=F) 
 
for(which.rep in 1:nreps){ 
 
if (DIST == "Norm") { 
 
at_theta_r = as.matrix(rnorm(Num_AT_R, mean=0, sd=1), ncol=1, nrow=Num_AT_R) 
 
if (Num_AT_A > 0) 
at_theta_f1 = as.matrix(rnorm(Num_AT_A, mean=0, sd=1), ncol=1, nrow=Num_AT_A) 
 
if (Num_AT_B > 0) 
at_theta_f2 = as.matrix(rnorm(Num_AT_B, mean=0, sd=1), ncol=1, nrow=Num_AT_B) 
 
DIF_theta_r = as.matrix(rnorm(Num_DIF_R, mean=0, sd=1), ncol=1, 

nrow=Num_DIF_R) 
 
if (Num_DIF_A > 0) 
DIF_theta_f1 = as.matrix(rnorm(Num_DIF_A, mean=0, sd=1), ncol=1, 

nrow=Num_DIF_A) 
 
if (Num_DIF_B > 0) 
DIF_theta_f2 = as.matrix(rnorm(Num_DIF_B, mean=0, sd=1), ncol=1, 

nrow=Num_DIF_B) 
} 
 
if (DIST == "Skew") { 
 
at_theta_r = as.matrix(rnorm(Num_AT_R, mean=0, sd=1), ncol=1, nrow=Num_AT_R) 
 
if (Num_AT_A > 0){ 
at_theta_f1 = as.matrix(rnorm(Num_AT_A, mean=0, sd=1), ncol=1, nrow=Num_AT_A) 
for(y in 1:Num_AT_A)  # Skew theta 
{ 
 at_theta_f1[y,] <- ( (-1.5) + (-.2585)+ 1.1147*(at_theta_f1[y,])+ 

.2585*((at_theta_f1[y,])^2) + (-.0660)*((at_theta_f1[y,])^3)) 
} } 
 
if (Num_AT_B > 0){ 
at_theta_f2 = as.matrix(rnorm(Num_AT_B, mean=0, sd=1), ncol=1, nrow=Num_AT_B) 
for(y in 1:Num_AT_B)  # Skew theta 
{ 
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 at_theta_f2[y,] <- ( (-1) +(-.0926)+ 1.0399*(at_theta_f2[y,])+ 
.0926*((at_theta_f2[y,])^2) + (-.0165)*((at_theta_f2[y,])^3)) 

} } 
 
DIF_theta_r = as.matrix(rnorm(Num_DIF_R, mean=0, sd=1), ncol=1, 

nrow=Num_DIF_R) 
 
if (Num_DIF_A > 0){ 
DIF_theta_f1 = as.matrix(rnorm(Num_DIF_A, mean=0, sd=1), ncol=1, 

nrow=Num_DIF_A) 
for(y in 1:Num_DIF_A)  # Skew theta 
{ 
 DIF_theta_f1[y,] <- ( (-1.5)+(-.2585)+ 1.1147*(DIF_theta_f1[y,])+ 

.2585*((DIF_theta_f1[y,])^2) + (-.0660)*((DIF_theta_f1[y,])^3)) 
} } 
 
if (Num_DIF_B > 0){ 
DIF_theta_f2 = as.matrix(rnorm(Num_DIF_B, mean=0, sd=1), ncol=1, 

nrow=Num_DIF_B) 
for(y in 1:Num_DIF_B)  # Skew theta 
{ 
 DIF_theta_f2[y,] <- ( (-1)+ (-.0926)+ 1.0399*(DIF_theta_f2[y,])+ 

.0926*((DIF_theta_f2[y,])^2) + (-.0165)*((DIF_theta_f2[y,])^3)) 
} } } 
  
#write out separate theta files for the at files.   
  write.table(at_theta_r,  
    paste(at_theta_fold, "at_thetas_r_", which.rep, ".dat", sep=""),  
    row.names=T,  
    col.names=c( "               theta"),  
    quote=F,sep="\t") 
  
if (Num_AT_A > 0) 
write.table(at_theta_f1,  
    paste(at_theta_fold, "at_thetas_f1_", which.rep, ".dat", sep=""),  
    row.names=T,  
    col.names=c("               theta"),  
    quote=F,sep="\t") 
  
if (Num_AT_B > 0) 
write.table(at_theta_f2,  
    paste(at_theta_fold, "at_thetas_f2_", which.rep, ".dat", sep=""),  
    row.names=T,  
    col.names=c("               theta"),  
    quote=F,sep="\t") 
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#write out separate theta files for the DIF files.   
write.table(DIF_theta_r,  
    paste(DIF_theta_fold, "DIF_thetas_r_", which.rep, ".dat", sep=""),  
    row.names=T,  
    col.names=c( "               theta"),  
    quote=F,sep="\t") 
 
if (Num_DIF_A > 0) 
write.table(DIF_theta_f1,  
    paste(DIF_theta_fold, "DIF_thetas_f1_", which.rep, ".dat", sep=""),  
    row.names=T,  
    col.names=c("               theta"),  
    quote=F,sep="\t") 
  
if (Num_DIF_B > 0)  
write.table(DIF_theta_f2,  
    paste(DIF_theta_fold, "DIF_thetas_f2_", which.rep, ".dat", sep=""),  
    row.names=T,  
    col.names=c("               theta"),  
    quote=F,sep="\t") 
 
#GENERATE THE DATA.  
for(a in 1:Num_AT_R){ 
       for(Num_Items in 1:Num_Items){ 
    r_numerator = (1 - items_reference[Num_Items, 4]) 
    r_denominator = (1 + exp(-1.7*items_reference[Num_Items, 2]*(at_theta_r[a]-

items_reference[Num_Items, 3]))) 
    r_p_at=(items_reference[Num_Items,4] + (r_numerator/r_denominator)) 
       r_uni_at = runif(1) 
       if (r_p_at > r_uni_at) reference_at_data[a,Num_Items]=1 
       if (r_p_at < r_uni_at) reference_at_data[a,Num_Items]=0 
    } #closes IRT AT item loop. 
    } #closes IRT AT person loop. 
  
 if (Num_AT_A > 0) { 
 for(a in 1:Num_AT_A){ 
       for(Num_Items in 1:Num_Items){ 
    f1_numerator = (1 - items_focus1[Num_Items, 4]) 
    f1_denominator = (1 + exp(-1.7*items_focus1[Num_Items, 2]*(at_theta_f1[a]-

items_focus1[Num_Items, 3]))) 
    f1_p_at=(items_focus1[Num_Items,4] + (f1_numerator/f1_denominator)) 
       f1_uni_at = runif(1) 
       if (f1_p_at > f1_uni_at) focus1_at_data[a,Num_Items]=1 
       if (f1_p_at < f1_uni_at) focus1_at_data[a,Num_Items]=0 
       } #closes IRT AT item loop. 
    } #closes IRT AT person loop. 
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 } #closes if. 
  
 if (Num_AT_B > 0) { 
 for(a in 1:Num_AT_B){ 
       for(Num_Items in 1:Num_Items){ 
    f2_numerator = (1 - items_focus2[Num_Items, 4]) 
    f2_denominator = (1 + exp(-1.7*items_focus2[Num_Items, 2]*(at_theta_f2[a]-

items_focus2[Num_Items, 3]))) 
    f2_p_at=(items_focus2[Num_Items,4] + (f2_numerator/f2_denominator)) 
       f2_uni_at = runif(1) 
       if (f2_p_at > f2_uni_at) focus2_at_data[a,Num_Items]=1 
       if (f2_p_at < f2_uni_at) focus2_at_data[a,Num_Items]=0 
       } #closes IRT AT item loop. 
    } #closes IRT AT person loop. 
 } #closes if. 
   
 for(a in 1:Num_DIF_R){ 
       for(Num_Items in 1:Num_Items){ 
    r_DIF_numerator = (1 - items_reference[Num_Items, 4]) 
    r_DIF_denominator = (1 + exp(-1.7*items_reference[Num_Items, 

2]*(DIF_theta_r[a]-items_reference[Num_Items, 3]))) 
    r_p_DIF=(items_reference[Num_Items,4] + (r_numerator/r_denominator)) 
       r_uni_DIF = runif(1) 
       if (r_p_DIF > r_uni_DIF) reference_DIF_data[a,Num_Items]=1 
       if (r_p_DIF < r_uni_DIF) reference_DIF_data[a,Num_Items]=0 
    } #closes IRT AT item loop. 
    } #closes IRT AT person loop. 
 
 if (Num_DIF_A > 0) { 
 for(a in 1:Num_DIF_A){ 
    for(Num_Items in 1:Num_Items){ 
    f1_DIF_numerator = (1 - items_focus1[Num_Items, 4]) 
    f1_DIF_denominator = (1 + exp(-1.7*items_focus1[Num_Items, 

2]*(DIF_theta_f1[a]-items_focus1[Num_Items, 3]))) 
    f1_p_DIF=(items_focus1[Num_Items,4] + (f1_numerator/f1_denominator)) 
       f1_uni_DIF = runif(1) 
       if (f1_p_DIF > f1_uni_DIF) focus1_DIF_data[a,Num_Items]=1 
       if (f1_p_DIF < f1_uni_DIF) focus1_DIF_data[a,Num_Items]=0 
    } #closes IRT AT item loop. 
    } #closes IRT AT person loop. 
 } #closes if. 
  
 if (Num_DIF_B > 0) { 
 for(a in 1:Num_DIF_B){ 
    for(Num_Items in 1:Num_Items){ 
    f2_DIF_numerator = (1 - items_focus2[Num_Items, 4]) 
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    f2_DIF_denominator = (1 + exp(-1.7*items_focus2[Num_Items, 
2]*(DIF_theta_f2[a]-items_focus2[Num_Items, 3]))) 

    f2_p_DIF=(items_focus2[Num_Items,4] + (f2_numerator/f2_denominator)) 
       f2_uni_DIF = runif(1) 
       if (f2_p_DIF > f2_uni_DIF) focus2_DIF_data[a,Num_Items]=1 
       if (f2_p_DIF < f2_uni_DIF) focus2_DIF_data[a,Num_Items]=0 
    } #closes IRT AT item loop. 
    } #closes IRT AT person loop. 
 } #closes if. 
  
 if (Num_AT_B == 0) 
at_data = as.matrix(rbind(reference_at_data,focus1_at_data), ncol=Num_Items, 

nrow=(Num_AT_A+Num_AT_R)) 
 
 if (Num_AT_A == 0) 
at_data = as.matrix(rbind(reference_at_data,focus2_at_data), ncol=Num_Items, 

nrow=(Num_AT_B+Num_AT_R))  
  
 if (Num_AT_A > 0) 
 { 
 if (Num_AT_B > 0) 
at_data = as.matrix(rbind(reference_at_data,focus1_at_data, focus2_at_data), 

ncol=Num_Items, nrow=(Num_AT_A+Num_AT_B+Num_AT_R))     } 
  
#write out data files for AT 
write.table(at_data,  
  paste(at_data_fold,"at_data_", which.rep, ".dat", sep=""),  
  row.names=F,  
  col.names=F,  
  quote=F,   sep="") 
 
if (Num_AT_B == 0) 
f_DIF_data <- focus1_DIF_data 
 
if (Num_AT_A == 0) 
f_DIF_data <- focus2_DIF_data 
  
if (Num_AT_A > 0) 
  { 
if (Num_AT_B > 0) 
f_DIF_data = as.matrix(rbind(focus1_DIF_data, focus2_DIF_data), ncol=Num_Items, 

nrow=(Num_DIF_A+Num_DIF_B))    } 
   
#write out data files for the DIF 
write.table(reference_DIF_data,  
  paste(DIF_data_fold,"DIF_data_r_", which.rep, ".dat", sep=""),  
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  row.names=F,  
  col.names=F,  
  quote=F,   sep="") 
 
write.table(f_DIF_data,  
  paste(DIF_data_fold,"DIF_data_f_", which.rep, ".dat", sep=""),  
  row.names=F,  
  col.names=F,  
  quote=F,   sep="") 
   
} #close nreps loop. 
} #close group loop.     
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Batch Code for running ATFIND 
 
@ECHO ON 
 
set NUMBEROFFILESTOPROCESS=100 
set /A PROCESSINGFILENUMBER=0 
set /A sample=2000 
set /A ratio=50 
set /A difitems=0 
set /A groups=3 
set size=750 
set guess=.2 
set items=60 
 
set OUTPUTDIR = 

C:\Users\lmscot2\Desktop\WData\DATA_%groups%_%sample%_%ratio%_%d
ifitems%_Norm\atlist_output 

 
MD %OUTPUTDIR% 
 
:begin 
 
set /A PROCESSINGFILENUMBER+=1 
 
ECHO Processing ATFIND loop %PROCESSINGFILENUMBER% of 

%NUMBEROFFILESTOPROCESS% 
 
DEL atlist.in 
 
DEL atfind.in 
ECHO 

C:\Users\lmscot2\Desktop\WData\DATA_%groups%_%sample%_%ratio%_%d
ifitems%_Norm\at_data\at_data_%PROCESSINGFILENUMBER%.dat >> 
.\atfind.in 

ECHO %size% >>.\atfind.in 
ECHO %items%  >>.\atfind.in 
ECHO %guess% >>.\atfind.in 
 
atfind_v.1.3.exe 
 
TYPE .\atlist.in >> %outputdir%\atlist%PROCESSINGFILENUMBER%.in 
 
IF %PROCESSINGFILENUMBER% LSS %NUMBEROFFILESTOPROCESS% GOTO 

begin 
:EndOfProgram  
ECHO Finished.
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Code for running Mantel-Haenszel with a designated matching subtest using difR package 
 
##################################################### 
## 
## Code for running Mantel Haenszel with a designated matching subtest using difR  
## package. 
## 
###################################################### 
 
#SPECIFY THE SAMPLE SIZE AND TEST LENGTH. 
#SPECIFY TNE PERCENT OF FOCAL SIMULEES AND DISTRIBUTION 
#SPECIFY THE NUMBER OF SIMULEES FOR AT 
#SPECIFY THE NUMBER OF REPLICATIONS. 
#SPECIFY ALL SIMULATION PARAMETERS. 
 
Sample = 750 #2000 or 750 
Per_Focal = 50 #50 or 10 
Per_DIF = 20 #0, 10, or 20  
DIST = "Skew" #Norm or Skew 
Num_AT = 250 #750 or 250 
Num_DIF = Sample-Num_AT # = 1250 or 500 
Num_Items = 60  
nreps = 100 #number of replications.  
Num_Groups = 3 
Group = 3 
 
# LOAD NECESSARY PACKAGES. 
 
  library(difR) 
  source ("C:\\Users\\lmscot2\\Desktop\\difMH_ls.r") 
         
#DIRECTORIES. You must specify where you want things to go in gen.dir. 
 
condition = paste( "DATA", Group, Sample, Per_Focal, Per_DIF, DIST, sep="_") 
gen.dir = paste("C:\\Users\\lmscot2\\Desktop\\Data_WORKING\\", condition, 

"\\DIF_combined\\", sep="") #Desktop. 
 
#create subdirectory. 
 
dir.create(paste("C:\\Users\\lmscot2\\Desktop\\Data_WORKING\\", condition, 

"\\MH_RESULTS\\", sep="")) #store results from MH. 
 
MH_RESULTS_fold=paste("C:\\Users\\lmscot2\\Desktop\\Data_WORKING\\", 

condition, "\\MH_RESULTS\\", sep="") #NAME of MH_RESULTS folder. 
DIF_combined_fold=paste("C:\\Users\\lmscot2\\Desktop\\Data_WORKING\\", 

condition, "\\DIF_combined\\", sep="") #NAME of DIF_Combined folder. 
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setwd(gen.dir) 
 
anchor_1 
 
anchor_default <- 

c(1,2,3,4,5,6,8,11,12,13,14,15,16,17,21,22,23,24,26,27,28,31,32,33,34,35,36,38,41,42, 
               43,44,45,47,48,51,52,53,54,55,56,57) 
 
for (iteration in 1:nreps) { 
 
input_file = paste("DIF_data_combined_",iteration,".dat",sep="") 
input_file_route = paste(DIF_combined_fold, input_file, sep="") 
 
MH_output_AT=paste( "difMH_ATout_", iteration, sep="") 
MH_output_Default= paste("difMH_DEFout_", iteration, sep="") 
 
read_file <- as.matrix(read.fortran(input_file_route,"62I1"))  
 
response = matrix(NA,Num_DIF,Num_Items) #SET UP AT DATA MATRIX. 
Focal = matrix(NA,Num_DIF,1) #SET UP AT DATA MATRIX. 
 
for (Person in 1:Num_DIF) { 
 for (Item in 1:60){ 
  response[Person, Item] <- read_file [Person,Item] 
 } # coses loop over i 
} # closes loop over person 
 
for (Person in 1:Num_DIF) { 
 Focal[Person] <- read_file [Person,62] 
} # closes loop over person 
 
# Reference ="Ref", F1 & F2 = Focal 
use_names<-c("Ref","Focal") 
 
if (iteration==1)  
   {anchor_list <- anchor_1} 
if (iteration==2)  
   {anchor_list <- anchor_2} 
if (iteration==3)  
   {anchor_list <- anchor_3} 
if (iteration==4)  
   {anchor_list <- anchor_4} 
if (iteration==5)  
   {anchor_list <- anchor_5} 
if (iteration==6)  
   {anchor_list <- anchor_6} 
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if (iteration==7)  
   {anchor_list <- anchor_7} 
if (iteration==8)  
   {anchor_list <- anchor_8} 
if (iteration==9)  
   {anchor_list <- anchor_9} 
if (iteration==10)  
   {anchor_list <- anchor_10} 
if (iteration==11)  
   {anchor_list <- anchor_11} 
if (iteration==12)  
   {anchor_list <- anchor_12} 
if (iteration==13)  
   {anchor_list <- anchor_13} 
if (iteration==14)  
   {anchor_list <- anchor_14} 
if (iteration==15)  
   {anchor_list <- anchor_15} 
if (iteration==16)  
   {anchor_list <- anchor_16} 
if (iteration==17)  
   {anchor_list <- anchor_17} 
if (iteration==18)  
   {anchor_list <- anchor_18} 
if (iteration==19)  
   {anchor_list <- anchor_19} 
if (iteration==20)  
   {anchor_list <- anchor_20} 
if (iteration==21)  
   {anchor_list <- anchor_21} 
if (iteration==22)  
   {anchor_list <- anchor_22} 
if (iteration==23)  
   {anchor_list <- anchor_23} 
if (iteration==24)  
   {anchor_list <- anchor_24} 
if (iteration==25)  
   {anchor_list <- anchor_25} 
if (iteration==26)  
   {anchor_list <- anchor_26} 
if (iteration==27)  
   {anchor_list <- anchor_27} 
if (iteration==28)  
   {anchor_list <- anchor_28} 
if (iteration==29)  
   {anchor_list <- anchor_29} 
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if (iteration==30)  
   {anchor_list <- anchor_30} 
if (iteration==31)  
   {anchor_list <- anchor_31} 
if (iteration==32)  
   {anchor_list <- anchor_32} 
if (iteration==33)  
   {anchor_list <- anchor_33} 
if (iteration==34)  
   {anchor_list <- anchor_34} 
if (iteration==35)  
   {anchor_list <- anchor_35} 
if (iteration==36)  
   {anchor_list <- anchor_36} 
if (iteration==37)  
   {anchor_list <- anchor_37} 
if (iteration==38)  
   {anchor_list <- anchor_38} 
if (iteration==39)  
   {anchor_list <- anchor_39} 
if (iteration==40)  
   {anchor_list <- anchor_40} 
if (iteration==41)  
   {anchor_list <- anchor_41} 
if (iteration==42)  
   {anchor_list <- anchor_42} 
if (iteration==43)  
   {anchor_list <- anchor_43} 
if (iteration==44)  
   {anchor_list <- anchor_44} 
if (iteration==45)  
   {anchor_list <- anchor_45} 
if (iteration==46)  
   {anchor_list <- anchor_46} 
if (iteration==47)  
   {anchor_list <- anchor_47} 
if (iteration==48)  
   {anchor_list <- anchor_48} 
if (iteration==49)  
   {anchor_list <- anchor_49} 
if (iteration==50)  
   {anchor_list <- anchor_50} 
if (iteration==51)  
   {anchor_list <- anchor_51} 
if (iteration==52)  
   {anchor_list <- anchor_52} 
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if (iteration==53)  
   {anchor_list <- anchor_53} 
if (iteration==54)  
   {anchor_list <- anchor_54} 
if (iteration==55)  
   {anchor_list <- anchor_55} 
if (iteration==56)  
   {anchor_list <- anchor_56} 
if (iteration==57)  
   {anchor_list <- anchor_57} 
if (iteration==58)  
   {anchor_list <- anchor_58} 
if (iteration==59)  
   {anchor_list <- anchor_59} 
if (iteration==60)  
   {anchor_list <- anchor_60} 
if (iteration==61)  
   {anchor_list <- anchor_61} 
if (iteration==62)  
   {anchor_list <- anchor_62} 
if (iteration==63)  
   {anchor_list <- anchor_63} 
if (iteration==64)  
   {anchor_list <- anchor_64} 
if (iteration==65)  
   {anchor_list <- anchor_65} 
if (iteration==66)  
   {anchor_list <- anchor_66} 
if (iteration==67)  
   {anchor_list <- anchor_67} 
if (iteration==68)  
   {anchor_list <- anchor_68} 
if (iteration==69)  
   {anchor_list <- anchor_69} 
if (iteration==70)  
   {anchor_list <- anchor_70} 
if (iteration==71)  
   {anchor_list <- anchor_71} 
if (iteration==72)  
   {anchor_list <- anchor_72} 
if (iteration==73)  
   {anchor_list <- anchor_73} 
if (iteration==74)  
   {anchor_list <- anchor_74} 
if (iteration==75)  
   {anchor_list <- anchor_75} 
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if (iteration==76)  
   {anchor_list <- anchor_76} 
if (iteration==77)  
   {anchor_list <- anchor_77} 
if (iteration==78)  
   {anchor_list <- anchor_78} 
if (iteration==79)  
   {anchor_list <- anchor_79} 
if (iteration==80)  
   {anchor_list <- anchor_80} 
if (iteration==81)  
   {anchor_list <- anchor_81} 
if (iteration==82)  
   {anchor_list <- anchor_82} 
if (iteration==83)  
   {anchor_list <- anchor_83} 
if (iteration==48)  
   {anchor_list <- anchor_84} 
if (iteration==85)  
   {anchor_list <- anchor_85} 
if (iteration==86)  
   {anchor_list <- anchor_86} 
if (iteration==87)  
   {anchor_list <- anchor_87} 
if (iteration==88)  
   {anchor_list <- anchor_88} 
if (iteration==89)  
   {anchor_list <- anchor_89} 
if (iteration==90)  
   {anchor_list <- anchor_90} 
if (iteration==91)  
   {anchor_list <- anchor_91} 
if (iteration==92)  
   {anchor_list <- anchor_92} 
if (iteration==93)  
   {anchor_list <- anchor_93} 
if (iteration==94)  
   {anchor_list <- anchor_94} 
if (iteration==95)  
   {anchor_list <- anchor_95} 
if (iteration==96)  
   {anchor_list <- anchor_96} 
if (iteration==97)  
   {anchor_list <- anchor_97} 
if (iteration==98)  
   {anchor_list <- anchor_98} 
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if (iteration==99)  
   {anchor_list <- anchor_99} 
if (iteration==100)  
   {anchor_list <- anchor_100}    
    
anchor_list_DEFAULT <- anchor_default 
 
difMH_ls (response[,1:60], group=Focal[,1], focal.name=1, anchor_list, alpha=0.05, exact = 

TRUE, purify = FALSE, save.output = TRUE,  
       output=c(MH_output_AT,MH_RESULTS_fold)) 
 
difMH_ls (response[,1:60], group=Focal[,1], focal.name=1, anchor_list_DEFAULT, 

alpha=0.05, exact = TRUE, purify = FALSE, save.output = TRUE,  
       output=c(MH_output_Default,MH_RESULTS_fold)) 
} # Closes loop over iteration 
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Code for modifying difMH that is called within difR to allow for specifying particular items 
as the matching subtest. 

###################################################### 
# 
# difMH_ls 
# This is a modification of difMH within difR (Magis, Beland, & Raiche, 2013)  
# to allow for specifying only a particular anchor set. 
# 
###################################################### 
 
difMH_ls <- function (Data, group, focal.name,anchor_list,MHstat = "MHChisq", correct = 
TRUE,  
    exact = FALSE, alpha = 0.05, purify = FALSE, nrIter = 10,  
    save.output = FALSE, output = c("out", "default"))  
{ 
    internalMH <- function() { 
        if (length(group) == 1) { 
            if (is.numeric(group) == TRUE) { 
                gr <- Data[, group] 
                DATA <- Data[, (1:ncol(Data)) != group] 
                colnames(DATA) <- colnames(Data)[(1:ncol(Data)) !=  
                  group] 
            } 
            else { 
                gr <- Data[, colnames(Data) == group] 
                DATA <- Data[, colnames(Data) != group] 
                colnames(DATA) <- colnames(Data)[colnames(Data) !=  
                  group] 
            } 
        } 
        else { 
            gr <- group 
            DATA <- Data 
        } 
        Group <- rep(0, nrow(DATA)) 
        Group[gr == focal.name] <- 1 
        Q <- switch(MHstat, MHChisq = qchisq(1 - alpha, 1), logOR = qnorm(1 -  
            alpha/2)) 
        if (is.null(Q))  
            stop("'MHstat' argument not valid", call. = FALSE) 
        if (exact) { 
            if (!purify) { 
                PROV <- mantelHaenszel(DATA, Group, correct = correct,  anchor = 
anchor_list, 
                  exact = exact) 
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                STATS <- PROV$resMH 
                if (min(PROV$Pval) >= alpha)  
                  DIFitems <- "No DIF item detected" 
                else DIFitems <- (1:ncol(DATA))[PROV$Pval < alpha] 
                RES <- list(MH = STATS, Pval = PROV$Pval, alpha = alpha,  
                  DIFitems = DIFitems, correct = correct, exact = exact,  
                  purification = purify, names = colnames(DATA),  
                  save.output = save.output, output = output) 
            } 
            else {} 
        } 
        else { 
            if (!purify) { 
                PROV <- mantelHaenszel(DATA, Group, correct = correct,  
                  exact = exact) 
                if (MHstat == "MHChisq")  
                  STATS <- PROV$resMH 
                else STATS <- log(PROV$resAlpha)/sqrt(PROV$varLambda) 
                if (max(abs(STATS), na.rm = TRUE) <= Q)  
                  DIFitems <- "No DIF item detected" 
                else DIFitems <- (1:ncol(DATA))[is.na(STATS) ==  
                  FALSE & abs(STATS) > Q] 
                RES <- list(MH = STATS, alphaMH = PROV$resAlpha,  
                  varLambda = PROV$varLambda, MHstat = MHstat,  
                  alpha = alpha, thr = Q, DIFitems = DIFitems,  
                  correct = correct, exact = exact, purification = purify,  
                  names = colnames(DATA), save.output = save.output,  
                  output = output) 
            } 
            else {} 
        } 
        class(RES) <- "MH" 
        return(RES) 
    } 
    resToReturn <- internalMH() 
    if (save.output == TRUE) { 
        if (output[2] == "default")  
            wd <- paste(getwd(), "/", sep = "") 
        else wd <- output[2] 
        fileName <- paste(wd, output[1], ".txt", sep = "") 
        capture.output(resToReturn, file = fileName) 
    } 
    return(resToReturn)}  
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SIBTEST ‘.in” code for running SIBTEST with the pure matching subtest. 
 
60 
"C:\Data\DATA_2_2000_50_20_Norm\DIF_data\DIF_data_r_1.dat" 
"C:\Data\DATA_2_2000_50_20_Norm\DIF_data\DIF_data_f_1.dat" 
1 
"C:\Data\DATA_2_2000_50_20_Norm\sib_Def\sibDef_out_1" 
2 
20 
0 
0 
 
1 
7 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
9 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
10 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
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1 
18 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
19 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
20 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
25 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
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1 
28 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
29 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
30 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
37 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
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1 
39 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
40 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
46 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
49 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
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1 
50 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
54 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
58 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
 
1 
59 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
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1 
60 
'e' 
40 
1   2   3   4   5 6   8 11 12 13 
14 15 16 17 21 22 23 24 26 27 
31 32 33 34 35 36 38 41 42 43 
44 45 47 48 51 52 53 55 56 57 
0.2 
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Batch code for running SIBTEST and Crossing SIBTEST 
 
@ECHO ON 
 
set NUMBEROFFILESTOPROCESS=100 
set /A PROCESSINGFILENUMBER=0 
 
:begin 
 
set /A PROCESSINGFILENUMBER+=1 
 
ECHO Processing SIBTEST loop %PROCESSINGFILENUMBER% of 

%NUMBEROFFILESTOPROCESS% 
 
DEL sib.in 
copy .\sib_AT\sibAT%PROCESSINGFILENUMBER%.in sib.in 
 
nsibtfl2.exe 
 
DEL sib.in 
copy .\sib_Def\sibDef%PROCESSINGFILENUMBER%.in sib.in 
 
nsibtfl2.exe 
 
DEL sib.in 
copy .\csib_AT\csibAT%PROCESSINGFILENUMBER%.in sib.in 
 
csib2.exe 
 
DEL sib.in 
copy .\csib_Def\csibDef%PROCESSINGFILENUMBER%.in sib.in 
 
csib2.exe 
 
IF %PROCESSINGFILENUMBER% LSS %NUMBEROFFILESTOPROCESS% GOTO 

begin 
 
:EndOfProgram 
 
ECHO Finished 
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APPENDIX G  

STUDY TO VERIFY GENERATED RESPONSE DATA 
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The surprising result of the overall observed 40 - 60 percent split for AT-PT items 

regardless of condition, DIF status, or region of difficulty for the item lead to an 

examination of what other analyses might find within the data and a desire to confirm that 

the data had been generated to the desired specifications. A random iteration (run number 

10) of the condition with the largest AT sample (750), largest difference in the modification 

of DIF items (referent versus Focal Group 1), largest number of DIF items (20%), equal 

proportion of referent and focal group simulees,  and both groups of simulee abilities drawn 

from normal N(0,1) distributions was chosen for four additional analyses. The iteration was 

selected without regard to ATFIND results. For the selected iteration, ATFIND placed 5 

DIF items (2 modified for U-DIF and 3 modified for NU-DIF, 41.7%) in the ATLIST and 

the remaining 7 DIF items (58.3%) in the PTLIST. Four additional analyses were performed 

on this dataset: 1) a confirmatory factor analysis using Mplus (Muthen, & Muthen, 1998), 2) 

an exploratory principal axis factor analysis using SPSS (SPSS, Inc., 1989), 3) a MH analysis 

(difMH within the difR package, Magis, Beland, & Raiche, 2013) using R (The R Project for 

Statistical Computing, 2012), and 4) a parameter recovery check using BILOG-MG 3 

(Zimowski, Muraki, Mislevy, & Bock, 2003). The results of these additional analyses are 

discussed in order below. 

The confirmatory factor analysis undertaken with MPLUS (Muthen & Muthen, 

1998) revealed a unidimensional structure as would be expected given that the data were 

generated using a unidimensional 3-parameter IRT model. Both the one factor and two 

factor models (second factor made up of the items modified to exhibit DIF) exhibited good 

fit (RMSEA = 0.009, CFI = 0.985, and TFI= 0.984 for both, with a weighted root mean 

square residual of 0.932 and 0.931, respectively). Within the two factor analysis, the first 
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factor (made up of non-DIF modified items) had a 0.966 correlation to the second factor, 

which indicates that the two factors function essentially as one. The covariance matrix 

however, revealed that the second factor, made up of items modified for DIF, had a larger 

variance (0.178) than that of the first factor (0.047) indicating that while the factors might be 

highly correlated; the items with which they are comprised function very differently. An 

analysis of a three factor structure with the first factor again non-DIF modified items, a 

second factor of U-DIF modified items, and a third factor of NU-DIF modified items 

produced a latent variable covariance matrix that was not positive definitive due to estimated 

correlations of the third factor with both of the other two factors of over the maximum at 

1.008 and 1.047, respectively. 

When the exploratory principal axis factor analysis using SPSS (SPSS, Inc., 1989) was 

performed the DIF modified items loaded most heavily on three different rotated factors. 

This analysis was performed using Varimax rotation with Kaiser normalization. The first 

factor, consisted of 24 of the 60 items and contained all of the U-DIF modified items and 

three of the NU-DIF modified items (initial Eigenvalue = 6.823) accounted for 11.37% of 

the variance observed. The second factor which consisted of 18 of the 60 items (initial 

Eigenvalue = 1.623) and contained two of the remaining three NU-DIF items, accounted 

for 2.70% of the remaining variance. Where the third factor which contained the remaining 

18 items but only the 1 remaining NU-DIF modified item had a slightly lower initial 

Eigenvalue (1.475) and accounted for a slightly lower amount (2.58) of the remaining 

variance. Since 37.5% of the first factor is comprised of DIF modified items (all located 

within the top 17 rotated factor loadings) it might not seem unreasonable to name this factor 

as the DIF factor with the other two factors collapsed to one “non-DIF factor” since the 
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addition of the third factor does not increase the amount of variance accounted for greatly. 

Interestingly, this 24/36 split is exactly the 40-60 percent split generally found between the 

AT and PT lists within the ATFIND analyses. 

To examine if the items had actually been modified for DIF within the response 

generation,  a MH analysis (difMH within the difR package, Magis, Beland, & Raiche, 2013) 

coded in R (The R Project for Statistical Computing, 2012) was performed using the 

available standard purification process. MH identified 14 items as exhibiting U-DIF, 5 of 

which had not been modified as well as all 6 items that had been modified to exhibit U-DIF 

and 3 (Item Numbers 10, 20, and 60) of the 6 that had been modified to exhibit NU-DIF.  

Two of the NU-DIF modified items that the analysis did not identify (Item Numbers 30 and 

50) had both been modified using a small difference between the referent and focal difficulty 

parameters (less than 0.50) and an increase from the referent discrimination parameters (by a 

factor of over 1.40). Given that MH is primarily a U-DIF detection analysis; its insensitivity 

to these smaller differences in difficulty parameter might be expected (Donoghue, Holland, 

& Thayer, 1993). The last NU-DIF modified item that MH failed to detect (Item Number 

40) had been coded to have a slightly higher difference in difficulty parameter (-0.55) and 

had a discrimination parameter that had been reduced by a factor of 0.72 from that of the 

referent parameters. The changes to this item's parameters resulted in very low 

discrimination and difficulty parameters (a = 0.324, b= -2.04, respectively) from which to 

generate focal simulee responses.  Some researchers have found that this combination of low 

discrimination and low difficulty, especially paired with a relatively low difference between 

the difficulty parameters of the referent and focal groups, impacts MH's ability to identify 

DIF items (Donoghue, Holland, & Thayer, 1993; Rogers, & Swaminathan, 1993). 
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As an additional check of the data generation process that produced the data that 

was analyzed by ATFIND, an estimation, and following equating, of parameters was 

performed using BILOG-MG 3 (Zimowski, Muraki, Mislevy, & Bock, 2003). To achieve 

estimates for all three item parameters (difficulty, discrimination, and pseudo-guessing) for 

each of the groups (referent and focal), the ATFIND simulee responses for iteration number 

10 used for the other analyses was separated by group and then analyzed separately. The 

parameter estimates for the two groups were then equated using a non-equivalent group 

anchor test (NEAT) design (Cook, & Eignor, 1991) with the 48 non-DIF modified 

comprising 80% of the test as the anchor. The difference between the expected difference in 

parameters between referent and focal groups (based on item response generation code) and 

the observed difference in parameters between the two groups as they related to the 

distribution of simulee abilities was explored. 

For the difficulty parameter, the magnitude of the difference between the observed 

and expected difficulty parameter difference was generally low (less than 0.15) in the area of 

the simulee ability distribution where the most simulees might be expected in a random draw 

between -1.01 to 0.91. The magnitude increased markedly, however, outside this region. 

There was one exception to the general trend, NU-DIF modified Item Number 30 (simulee 

ability, referent-generated difficulty of -0.09) which was expected to have a focal to referent 

parameter difference of -0.49 was observed to have a difference of -0.85 resulting in a 

magnitude difference of 0.36.  

The analysis of discrimination parameter changes led to similar, though slightly more 

discrepant findings. Here again, the general trend was for the magnitude of difference 

between the expected and observed changes in the parameter to be less than 0.15 in the 
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central region of the ability scale and increase the referent item difficulty increased or 

decreased (where fewer and fewer simulees might be expected to be selected in a random 

draw from a normal distribution). With this parameter, there were three items in the middle 

of the scale that showed abnormally high (greater than 0.20 magnitude) difference between 

expected and observed difference. While two of the items (both NU-DIF modified, Item 

Number 20 and again Item Number 30) had a difference in the moderate range, 0.23 and 

0.25, respectively, one item (U-DIF modified Item Number 49, with a referent difficulty 

location of 0.03) had an observed difference for the discrimination parameter of 0.46 where 

none was expected. 

The magnitude of difference between the observed and expected differences 

between the referent and focal group for the pseudo-guessing parameter were all less than 

0.10 with only a very slight increase noticeable for NU-DIF modified items as referent item 

difficulty/simulee ability increased. For U-DIF modified items, the magnitude of difference 

was consistently less than 0.05 which is very close to the expect 0 change for these items.  

There are indications that a mismatch between item location and ability distribution 

increases the error of estimation in item parameter recovery (Hulin, Lissak, & Drasgow, 

1982; Baker, 1987) and in particular that BILOG-MG 3 analysis’ performance is dependent 

on both the distribution of examinees and the location of the items (Mislevy, & Stocking, 

1989; Toland, 2008). Therefore, the simulee-distribution, dependent, results observed in the 

estimation of the difficulty and discrimination parameter changes may be a function not of 

the data generation but of the estimation procedure. The results of both of the factor 

analyses and of the MH DIF analysis seem to support this alternative hypotheses, that most 
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if not all of the items intended to be modified to exhibit DIF for this random iteration of 

this selected condition actually were. 
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APPENDIX H  

TABULAR RESULTS FOR TYPE I ERROR RATES 
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Table H1a 

 Total Type I Error Rate for the 60 Non-DIF Modified Items in 0% DIF. 

Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

Overall  6.5 6.7  2.8 3.5 2.3 3.0 4.4 5.4 

N=500  5.3 5.5  2.9 3.5 2.2 2.8 4.3 5.2 

Normal Distribution (All Groups) 

     10% Focal  3.6 3.9  2.2 2.9 2.1 2.4 3.7 4.4 

     50% Focal  4.3 4.5  1.4 2.0 1.8 2.4 2.7 3.6 

Focal - Moderately Skewed Distribution 

     10% Focal  4.4 4.3  2.7 3.4 1.8 2.3 3.9 4.9 

     50% Focal  5.2 5.3  2.6 2.7 2.0 2.3 3.8 4.0 

Focal - Large Skewed Distribution 

     10% Focal  6.1 5.7  3.8 4.3 2.4 2.8 5.4 6.2 

     50% Focal  7.2 8.0  3.7 5.3 2.6 4.1 5.2 7.4 

Focal - Both Skewed Distributions 

     10% Focal  5.2 5.5  3.1 3.7 2.6 2.9 5.0 5.7 

     50% Focal  6.4 6.6  3.4 3.9 2.6 3.0 5.0 5.6 
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Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

N=1250  7.6 8.0  2.7 3.5 2.4 3.2 4.4 5.5 

Normal Distribution (All Groups) 

     10% Focal  4.6 4.7  1.9 2.3 1.8 2.3 3.0 3.8 

     50% Focal  4.7 4.6  1.7 2.0 1.8 2.1 2.8 3.4 

Focal - Moderately Skewed Distribution 

     10% Focal  6.0 6.0  2.5 3.0 2.1 2.6 4.0 4.8 

     50% Focal  7.4 7.6  2.5 3.2 2.3 3.0 4.1 5.2 

Focal - Large Skewed Distribution 

     10% Focal  8.7 9.0  3.1 4.2 2.5 3.7 4.9 6.7 

     50% Focal  13.4 14.9  4.1 6.2 3.8 5.9 6.7 9.2 

Focal - Both Skewed Distributions 

     10% Focal  6.7 6.8  2.6 3.6 2.3 2.8 4.4 5.3 

     50% Focal  9.7 10.5  3.5 3.7 3.0 3.5 5.5 5.9 

Note: Regardless of the Focal group distribution, Referent group abilities were 

consistently drawn from a N(0,1) distribution. All percentages calculated by dividing by 

60 (the number of items in the test). 
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Table H1b  

Total Type I Error Rate for the 54 Non-DIF Modified Items in 10% DIF. 

Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

Overall  5.6 7.1  1.7 3.4 1.6 2.9 2.8 5.0 

N=500  4.5 5.0  1.5 3.1 1.4 2.4 2.5 4.5 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  4.0 4.0  1.6 3.2 1.6 2.4 2.7 4.7 

        Large DIF  4.2 4.5  2.0 2.9 1.6 2.3 3.1 4.3 

        Both DIF  4.4 4.4  1.8 3.1 1.6 2.5 2.7 4.5 

     50% Focal   

        Moderate DIF  4.3 4.7  1.2 2.2 1.5 1.9 2.2 3.4 

        Large DIF  4.2 5.5  1.1 2.8 1.2 2.4 1.9 4.0 

        Both DIF  4.5 4.9  1.0 2.4 1.3 2.1 1.9 3.6 

Focal - Moderately Skewed Distribution 

     10% Focal  4.3 5.0  2.1 3.3 1.3 2.2 3.0 4.6 

     50% Focal  5.9 6.4  1.6 3.8 1.6 2.9 2.7 5.4 

Focal - Large Skewed Distribution 

     10% Focal  6.0 6.3  2.6 4.6 1.8 3.1 3.9 6.5 

     50% Focal  7.5 10.1  2.5 6.3 2.1 4.0 3.9 7.9 

Focal - Both Skewed Distributions 

     10% Focal  5.1 5.9  2.6 4.4 1.8 3.1 3.9 6.5 
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Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

     50% Focal  6.4 8.0  2.4 4.4 2.0 3.2 3.6 5.8 

N=1250  6.7 9.1  1.9 3.7 1.7 3.5 3.0 5.6 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  4.3 4.9  1.5 2.4 1.5 2.1 2.5 3.6 

        Large DIF  4.6 6.4  1.4 3.2 1.3 2.5 2.3 4.5 

        Both DIF  4.5 5.2  1.3 2.2 1.2 1.9 2.0 3.4 

     50% Focal   

        Moderate DIF  4.7 5.6  1.2 2.3 1.0 2.2 1.8 3.6 

        Large DIF  4.4 7.3  1.2 2.7 1.1 2.9 1.9 4.3 

        Both DIF  4.8 6.5  1.5 2.5 1.4 2.2 2.2 3.7 

Focal - Moderately Skewed Distribution 

     10% Focal  6.1 7.4  2.1 3.1 1.8 2.8 3.3 5.0 

     50% Focal  7.3 10.0  2.0 3.5 1.9 3.9 3.3 5.9 

Focal - Large Skewed Distribution 

     10% Focal  9.3 11.9  2.4 4.6 2.2 3.8 3.9 6.9 

     50% Focal  13.7 19.5  3.5 7.8 3.0 7.8 5.4 11.4 

Focal - Both Skewed Distributions 

     10% Focal  7.1 9.1  2.4 4.4 2.1 3.6 3.8 6.5 

     50% Focal  10.0 15.4  2.4 5.7 2.4 5.8 4.1 8.4 

Note: Regardless of the Focal group distribution, Referent group abilities were 
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consistently drawn from a N(0,1) distribution. All percentages calculated by dividing by 

54, the number of items not modified to exhibit DIF. 
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Table H1c  

Total Type I Error Rate for the 48 Non-DIF Modified Items in 20% DIF. 

Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

Overall  5.6 7.9  1.0 3.6 1.1 3.2 1.7 5.3 

N=500  4.4 6.0  0.9 3.1 1.0 2.8 1.6 4.8 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  3.9 4.4  0.8 3.0 1.3 2.5 1.8 4.5 

        Large DIF  4.3 5.5  1.0 3.2 0.9 2.2 1.6 4.5 

        Both DIF  4.1 4.9  1.2 3.1 1.0 2.4 1.7 4.6 

     50% Focal   

        Moderate DIF  4.7 5.9  0.5 2.5 0.8 2.5 1.2 3.9 

        Large DIF  4.2 7.8  0.7 3.2 0.6 2.8 1.1 4.6 

        Both DIF  4.3 6.6  0.7 2.4 0.9 2.6 1.4 3.9 

Focal - Moderately Skewed Distribution 

     10% Focal  4.8 5.5  1.1 3.4 1.2 3.2 2.0 5.6 

     50% Focal  5.2 6.7  0.9 3.8 0.9 3.0 1.5 5.4 

Focal - Large Skewed Distribution 

     10% Focal  6.1 7.4  1.5 5.0 1.7 2.7 2.8 6.7 

     50% Focal  7.2 10.2  1.6 6.2 1.4 4.5 2.5 8.5 

Focal - Both Skewed Distributions 

     10% Focal  4.9 5.8  1.4 4.6 1.1 3.4 2.3 6.6 
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Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

     50% Focal  6.1 8.2  0.9 4.8 1.0 3.8 1.8 6.7 

N=1250  6.7 9.8  1.1 4.1 1.2 3.6 1.9 5.9 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  4.1 4.7  0.7 2.1 1.3 2.1 1.4 3.6 

        Large DIF  4.0 6.3  1.0 3.1 0.8 2.3 1.4 4.3 

        Both DIF  3.8 5.4  0.7 2.5 1.0 2.1 1.4 3.7 

     50% Focal  
 

        Moderate DIF  5.0 8.3  0.7 3.6 0.9 2.8 1.3 4.9 

        Large DIF  4.5 12.1  0.9 4.0 1.2 3.4 1.7 5.5 

        Both DIF  4.8 9.2  0.8 3.4 0.9 2.9 1.4 5.1 

Focal - Moderately Skewed Distribution 

     10% Focal  6.0 6.9  1.1 3.0 0.9 2.9 1.7 4.7 

     50% Focal  8.4 10.8  1.2 3.8 1.5 3.6 2.3 5.7 

Focal - Large Skewed Distribution 

     10% Focal  9.2 10.8  1.1 4.4 1.3 3.6 2.2 6.6 

     50% Focal  13.4 19.7  2.1 9.4 1.5 8.0 3.2 12.2 

Focal - Both Skewed Distributions 

     10% Focal  7.3 8.5  1.3 3.7 1.1 2.9 2.0 5.4 

     50% Focal  10.2 15.1  1.4 6.3 1.6 6.3 2.7 9.2 

Note: Regardless of the Focal group distribution, Referent group abilities were 
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consistently drawn from a N(0,1) distribution. All percentages calculated by dividing by 

48, the number of items not modified to exhibit DIF. 
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Table H2a 

Analyzed Type I Error Rate for the Non-DIF Items in 0% DIF Conditions. 

Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

Overall  6.5 6.7  8.4 9.0 7.0 7.6 13.1 13.7 

N=500  5.3 5.5  8.6 8.9 6.7 7.0 13.0 13.2 

Normal Distribution (All Groups) 

     10% Focal  3.6 3.9  6.7 7.2 6.4 5.8 11.2 10.9 

     50% Focal  4.3 4.5  4.3 5.0 5.5 5.9 8.2 9.0 

Focal - Moderately Skewed Distribution 

     10% Focal  4.4 4.3  8.1 8.8 5.3 5.8 11.7 12.7 

     50% Focal  5.2 5.3  7.8 6.8 5.9 5.8 11.3 10.2 

Focal - Large Skewed Distribution 

     10% Focal  6.1 5.7  11.4 10.9 7.3 7.1 16.1 15.9 

     50% Focal  7.2 8.0  11.0 13.2 7.7 10.2 15.7 18.3 

Focal - Both Skewed Distributions 

     10% Focal  5.2 5.5  9.3 9.4 7.8 7.4 15.0 14.5 

     50% Focal  6.4 6.6  10.2 9.9 7.9 7.6 15.0 14.3 
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Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

N=1250  7.6 8.0  8.2 9.0 7.3 8.3 13.3 14.1 

Normal Distribution (All Groups) 

     10% Focal  4.6 4.7  5.6 5.9 5.4 5.7 9.1 9.6 

     50% Focal  4.7 4.6  5.1 5.1 5.3 5.5 8.3 8.6 

Focal - Moderately Skewed Distribution 

     10% Focal  6.0 6.0  7.6 7.2 6.4 6.3 12.0 11.5 

     50% Focal  7.4 7.6  7.6 8.3 7.0 7.8 12.4 13.4 

Focal - Large Skewed Distribution 

     10% Focal  8.7 9.0  9.4 10.9 7.6 9.5 14.6 17.3 

     50% Focal  13.4 14.9  12.4 15.9 11.5 15.1 20.2 23.5 

Focal - Both Skewed Distributions 

     10% Focal  6.7 6.8  7.9 9.1 6.8 7.2 13.2 13.6 

     50% Focal  9.7 10.5  10.4 9.7 8.9 9.1 16.6 15.6 

Note: Regardless of the Focal group distribution, Referent group abilities were 

consistently drawn from a N(0,1) distribution. Percentages were calculated by dividing 

by the number of items analyzed for DIF (60 for Mantel-Haenszel, 20 for all SIBTEST 

Best analyses, and the number of items in the AT List for SIBTEST PT analyses). 
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Table H2b  

Analyzed Type I Error Rate for the Non-DIF Items in 10% DIF Conditions. 

Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

Overall  5.6 7.1  6.6 8.6 6.1 7.5 10.6 12.8 

N=500  4.5 5.0  6.0 7.8 5.4 6.0 9.6 11.2 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  4.0 4.0  6.3 7.8 6.0 5.9 10.4 11.5 

        Large DIF  4.2 4.5  7.6 7.5 6.0 6.0 11.9 11.3 

        Both DIF  4.4 4.4  6.8 7.6 6.1 6.2 10.5 11.2 

     50% Focal   

        Moderate DIF  4.3 4.7  4.6 5.6 5.7 4.9 8.6 8.8 

        Large DIF  4.2 5.5  4.4 7.0 4.5 5.9 7.5 10.0 

        Both DIF  4.5 4.9  4.0 6.0 4.9 5.4 7.4 9.0 

Focal - Moderately Skewed Distribution 

     10% Focal  4.3 5.0  8.1 8.4 5.0 5.7 11.5 11.8 

     50% Focal  5.9 6.4  6.3 9.7 6.1 7.3 10.3 13.8 

Focal - Large Skewed Distribution 

     10% Focal  6.0 6.3  10.0 11.6 6.9 7.9 15.1 16.6 

     50% Focal  7.5 10.1  9.7 15.7 8.1 9.9 14.9 19.7 

Focal - Both Skewed Distributions 

     10% Focal  5.1 5.9  10.2 10.8 6.9 7.7 15.1 15.9 
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Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

     50% Focal  6.4 8.0  9.2 11.0 7.6 8.1 13.7 14.6 

N=1250  6.7 9.1  7.3 9.5 6.7 8.9 11.7 14.4 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  4.3 4.9  5.9 6.0 5.6 5.4 9.5 9.1 

        Large DIF  4.6 6.4  5.5 8.0 5.0 6.1 8.9 11.2 

        Both DIF  4.5 5.2  5.1 5.7 4.5 5.0 7.6 8.8 

     50% Focal   

        Moderate DIF  4.7 5.6  4.5 6.0 3.7 5.8 6.9 9.5 

        Large DIF  4.4 7.3  4.5 7.1 4.3 7.6 7.2 11.3 

        Both DIF  4.8 6.5  5.9 6.7 5.4 5.9 8.6 9.9 

Focal - Moderately Skewed Distribution 

     10% Focal  6.1 7.4  8.0 8.0 6.9 7.2 12.6 12.7 

     50% Focal  7.3 10.0  7.6 9.2 7.4 10.2 12.6 15.3 

Focal - Large Skewed Distribution 

     10% Focal  9.3 11.9  9.1 11.7 8.6 9.9 14.9 17.7 

     50% Focal  13.7 19.5  13.4 20.1 11.5 19.9 20.7 29.3 

Focal - Both Skewed Distributions 

     10% Focal  7.1 9.1  9.1 11.1 8.1 9.2 14.6 16.5 

     50% Focal  10.0 15.4  9.1 14.6 9.4 14.9 15.7 21.5 

Note: Regardless of the Focal group distribution, Referent group abilities were 
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consistently drawn from a N(0,1) distribution. Percentages were calculated by dividing by 

the number of non-DIF modified items analyzed for DIF (54 for Mantel-Haenszel, 14 

for all SIBTEST Best analyses, and the number of non-DIF items in the AT List for 

SIBTEST PT analyses). 
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Table H2c  

Analyzed Type I Error Rate for the Non-DIF Items in 20% DIF Conditions. 

Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

Overall  5.6 7.9  5.9 9.3 6.4 8.1 10.5 13.6 

N=500  4.4 6.0  5.3 7.9 5.9 6.9 9.6 11.9 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  3.9 4.4  4.6 7.5 7.5 6.2 10.9 11.2 

        Large DIF  4.3 5.5  6.1 7.9 5.1 5.4 9.4 11.1 

        Both DIF  4.1 4.9  7.0 7.9 6.1 6.1 10.4 11.7 

     50% Focal   

        Moderate DIF  4.7 5.9  3.0 6.3 4.8 6.2 7.0 9.7 

        Large DIF  4.2 7.8  4.0 8.1 3.9 7.2 6.6 11.6 

        Both DIF  4.3 6.6  4.1 6.0 5.1 6.5 8.5 9.8 

Focal - Moderately Skewed Distribution 

     10% Focal  4.8 5.5  6.4 8.2 7.1 7.9 12.0 13.7 

     50% Focal  5.2 6.7  5.5 9.5 5.6 7.6 9.3 13.7 

Focal - Large Skewed Distribution 

     10% Focal  6.1 7.4  9.1 12.4 10.4 6.6 16.8 16.4 

     50% Focal  7.2 10.2  9.6 15.4 8.6 11.2 15.1 21.2 

Focal - Both Skewed Distributions 

     10% Focal  4.9 5.8  8.4 11.3 6.8 8.3 13.6 16.2 
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Aggregation 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both 
SIBTESTS 

 Best PT  Best PT Best PT Best PT 

     50% Focal  6.1 8.2  5.5 11.9 6.3 9.5 10.5 16.8 

N=1250  6.7 9.8  6.6 10.7 6.8 9.3 11.4 15.4 

Normal Distribution (All Groups) 

     10% Focal   

        Moderate DIF  4.1 4.7  4.4 5.3 5.4 5.4 8.4 9.2 

        Large DIF  4.0 6.3  5.9 8.0 4.9 6.1 8.6 11.3 

        Both DIF  3.8 5.4  4.4 6.4 6.3 5.3 8.5 9.5 

     50% Focal   

        Moderate DIF  5.0 8.3  4.4 9.0 5.4 7.1 7.8 12.3 

        Large DIF  4.5 12.1  5.1 10.9 7.3 9.4 10.1 14.9 

        Both DIF  4.8 9.2  4.8 8.9 5.1 7.6 8.4 13.1 

Focal - Moderately Skewed Distribution 

     10% Focal  6.0 6.9  6.9 7.9 5.3 7.6 10.1 12.2 

     50% Focal  8.4 10.8  7.3 10.3 8.9 9.7 13.8 15.4 

Focal - Large Skewed Distribution 

     10% Focal  9.2 10.8  6.9 11.3 8.0 9.3 13.4 17.0 

     50% Focal  13.4 19.7  12.6 24.5 9.1 21.0 19.4 31.8 

Focal - Both Skewed Distributions 

     10% Focal  7.3 8.5  7.8 9.4 6.8 7.3 12.1 13.8 

     50% Focal  10.2 15.1  8.4 16.2 9.9 16.2 16.0 23.8 

Note: Regardless of the Focal group distribution, Referent group abilities were 
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consistently drawn from a N(0,1) distribution. Percentages were calculated by dividing by 

the number of non-DIF modified items analyzed for DIF (48 for Mantel-Haenszel, 8 for 

all SIBTEST Best analyses, and the number of non-DIF items in the AT List for 

SIBTEST PT analyses). 
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APPENDIX I  

TABULAR RESULTS FOR POWER RATES 
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Table I1a  

Percent of DIF Items Correctly Identified in 10% DIF Conditions 

Aggregation/ 
Severity of 

DIF 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTs 

 
Best PT  Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

Overall  53.8 49.5  51.5 19.8 48.4 39.1 14.7 35.9 55.0 21.2 51.9 

N=500  41.6 38.1  40.0 15.5 38.1 27.5 10.2 24.9 43.8 17.1 41.8 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate   21.5 18.2  24.3 8.2 22.2 14.3 4.8 13.1 28.0 9.0 24.4 

    Large   41.7 38.7  41.7 17.5 39.8 26.2 9.0 20.5 46.0 19.2 43.6 

    Both   27.3 24.7  27.3 10.2 25.5 18.7 7.0 17.6 31.8 13.0 32.6 

  50% Focal      

    Moderate   46.5 42.5  49.8 20.0 47.8 36.7 15.0 35.9 52.8 21.7 51.8 

    Large   77.0 71.5  77.7 27.2 67.6 67.2 22.8 56.8 79.0 28.3 70.5 

    Both   65.7 60.2  67.0 25.3 63.1 54.0 19.0 47.3 71.0 26.3 65.6 

Focal - Moderately Skewed Distribution 

  10% Focal  19.0 16.8  18.8 6.0 16.8 9.7 2.0 5.6 22.7 6.5 18.2 

  50% Focal  40.8 35.2  34.8 15.3 35.8 22.2 8.5 19.8 39.3 18.3 42.8 

Focal - Large Skewed Distribution 

  10% Focal  29.5 29.7  27.2 12.2 29.1 12.3 6.5 15.5 32.5 13.8 33.1 

  50% Focal  58.0 51.8  48.8 18.2 46.6 32.0 11.5 29.5 53.0 20.0 51.3 

Focal - Both Skewed Distributions 

  10% Focal  22.3 22.0  18.3 8.0 18.5 10.0 4.7 10.8 23.2 9.7 22.3 
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Aggregation/ 
Severity of 

DIF 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTs 

 
Best PT  Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

  50% Focal  50.0 46.3  43.7 18.3 44.0 26.7 11.2 26.8 46.8 19.0 45.6 

N=1250  65.9 60.9  63.1 24.1 58.7 50.7 19.3 46.8 66.1 25.3 61.9 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate   43.7 38.5  44.0 17.3 39.8 34.2 13.2 30.3 49.2 19.7 45.2 

    Large   76.8 70.8  75.8 27.3 70.1 65.0 23.0 59.0 77.8 28.5 73.1 

    Both   60.5 54.3  60.2 23.8 55.4 47.5 18.8 43.8 63.3 24.8 57.8 

  50% Focal      

    Moderate   73.3 67.5  74.2 30.5 69.1 67.0 27.7 62.6 76.8 31.5 71.3 

    Large   85.0 84.2  85.7 40.3 86.7 85.0 40.3 86.7 87.0 41.0 88.2 

    Both   83.2 81.2  83.3 32.3 80.2 79.5 30.3 75.2 85.0 32.5 80.6 

Focal - Moderately Skewed Distribution 

  10% Focal  37.3 34.8  29.8 12.7 30.0 17.5 7.8 18.6 32.3 14.2 33.6 

  50% Focal  67.8 60.3  70.3 25.0 62.8 46.7 15.0 37.7 73.7 26.8 67.4 

Focal - Large Skewed Distribution 

  10% Focal  58.8 54.0  45.7 16.8 40.9 27.2 9.5 23.1 48.8 18.0 43.7 

  50% Focal  80.3 72.8  78.2 25.5 71.5 61.0 20.8 58.4 81.7 27.5 77.1 

Focal - Both Skewed Distributions 

  10% Focal  50.0 44.5  37.2 14.7 35.3 25.3 7.3 17.7 41.5 15.7 37.8 

  50% Focal  74.2 67.5  72.3 22.3 62.6 52.8 17.3 48.6 75.8 24.0 67.3 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages of Best and PT calculated by dividing by 6, 

where the divisors of DIF-AT percentages were the number of DIF items in the AT List. 
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Table I1b  

Percent of DIF Items Correctly Identified in 20% DIF Conditions 

Aggregation/ 
Severity of 

DIF 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTs 

 
Best PT  Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

Overall  39.8 34.4  40.2 14.8 35.9 32.4 11.7 28.3 46.1 17.3 41.9 

N=500  30.2 25.4  31.5 11.3 27.4 22.8 7.9 19.2 36.5 13.3 32.1 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate   14.3 10.7  17.9 6.2 15.9 11.2 3.9 10.1 21.7 7.5 19.3 

    Large   32.6 24.6  37.8 12.3 28.4 25.9 8.6 19.9 42.8 14.3 33.2 

    Both   22.3 15.8  25.9 7.6 19.0 17.6 5.6 14.0 30.4 9.5 23.8 

  50% Focal      

    Moderate   31.8 25.3  33.3 9.9 25.3 25.8 8.2 20.9 38.0 12.0 30.6 

    Large   65.0 55.8  66.3 24.3 59.5 60.3 19.6 48.1 72.0 26.3 64.6 

    Both   50.3 41.1  53.1 17.4 42.7 43.3 13.4 32.9 57.6 18.8 46.1 

Focal - Moderately Skewed Distribution 

  10% Focal  12.0 11.1  14.3 5.7 13.6 9.2 2.9 7.0 18.8 7.1 17.0 

  50% Focal  23.3 19.9  23.6 8.3 20.0 13.8 5.1 12.3 27.6 9.9 24.1 

Focal - Large Skewed Distribution 

  10% Focal  22.5 20.5  22.3 8.8 20.8 11.2 5.3 12.4 27.3 11.1 26.1 

  50% Focal  41.2 36.9  36.3 16.8 38.5 27.1 11.6 26.6 43.6 19.8 45.4 

Focal - Both Skewed Distributions 

  10% Focal  16.8 16.3  18.2 7.1 16.7 9.3 3.4 8.1 23.0 8.8 20.6 
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Aggregation/ 
Severity of 

DIF 

 Mantel-
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTs 

 
Best PT  Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

 
Best PT 

DIF-
AT 

  50% Focal  29.9 27.0  29.0 11.8 28.7 19.0 7.4 18.1 35.5 14.0 34.1 

N=1250  49.5 43.3  48.9 18.3 44.3 42.1 15.5 37.5 55.7 21.4 51.7 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate   27.7 22.8  27.6 9.5 23.4 23.3 8.3 20.3 32.9 11.9 29.4 

    Large   62.7 50.8  62.4 22.8 52.9 54.9 19.4 45.2 67.6 25.6 59.5 

    Both   47.4 36.6  48.8 17.9 40.2 38.2 13.8 31.0 52.9 20.4 45.8 

  50% Focal      

    Moderate   54.8 43.9  54.7 16.8 43.3 49.2 13.4 34.5 59.3 18.3 47.0 

    Large   79.5 72.9  79.6 30.5 76.9 83.8 30.4 76.7 88.1 33.5 84.5 

    Both   70.5 62.3  71.0 27.7 66.3 70.3 26.4 63.3 77.2 30.8 73.9 

Focal - Moderately Skewed Distribution 

  10% Focal  23.3 21.8  22.3 9.2 22.1 16.0 5.5 13.3 27.5 10.7 25.8 

  50% Focal  39.4 36.3  44.2 16.5 40.4 31.8 12.1 29.6 51.7 19.3 47.3 

Focal - Large Skewed Distribution 

  10% Focal  40.3 38.2  34.2 14.3 35.4 24.7 9.9 24.6 41.7 17.4 43.3 

  50% Focal  64.3 59.5  63.0 23.8 59.3 53.4 20.7 51.5 74.3 28.9 72.0 

Focal - Both Skewed Distributions 

  10% Focal  31.1 28.4  24.9 9.5 23.7 17.4 7.6 18.9 30.3 12.5 31.2 

  50% Focal  53.3 46.0  54.8 21.7 47.9 42.4 18.6 41.1 65.5 27.6 61.0 

Note: Regardless of the Focal group distribution, Referent group abilities were 
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consistently drawn from a N(0,1) distribution. Percentages of Best and PT calculated by 

dividing by 12, where the divisors of DIF-AT percentages were the number of DIF items 

in the AT List. 
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Table I2a  

Power Rates for All DIF Items by Difficulty for Best Subtest 10% DIF. 

Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

Overall 13.8 62.5 60.7  13.8 61.4 55.6 10.5 45.8 43.4 18.3 64.3 59.4 

N=500 9.1 47.6 48.9  10.3 47.3 43.9 8.8 31.6 30.6 14.4 50.8 48.1 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  4.0 25.3 24.5  9.0 31.0 22.0 6.0 17.0 14.5 10.0 34.7 27.0 

    Large  2.0 44.3 57.5  8.0 48.7 48.0 6.0 30.0 30.5 10.0 53.0 53.5 

    Both  8.0 29.3 34.0  11.0 33.7 26.0 9.0 25.0 14.0 13.0 39.0 30.5 

  50% Focal 
     

    Moderate  11.0 56.7 49.0  15.0 59.7 52.5 10.0 44.3 38.5 19.0 62.7 55.0 

    Large  5.0 90.3 93.0  5.0 91.0 94.0 8.0 78.0 80.5 10.0 91.7 94.5 

    Both  5.0 80.3 74.0  5.0 81.7 76.0 16.0 62.3 60.5 16.0 83.7 79.5 

Focal - Moderately Skewed Distribution 

  10% Focal 11.0 20.7 20.5  20.0 20.0 16.5 8.0 10.0 10.0 22.0 24.0 21.0 

  50% Focal 18.0 45.7 45.0  14.0 40.3 37.0 12.0 24.0 24.5 20.0 44.3 41.5 

Focal - Large Skewed Distribution 

  10% Focal 9.0 34.0 33.0  9.0 35.0 24.5 11.0 14.7 9.5 16.0 39.3 30.5 

  50% Focal 10.0 65.0 71.5  9.0 55.3 59.0 6.0 33.7 42.5 11.0 59.7 64.0 

Focal - Both Skewed Distributions 

  10% Focal 9.0 24.7 25.5  6.0 23.0 17.5 6.0 13.0 7.5 11.0 27.0 23.5 
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Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

  50% Focal 17.0 55.0 59.0  12.0 47.7 53.5 7.0 27.7 35.0 15.0 51.0 56.5 

N=1250 18.6 77.3 72.5  17.3 75.5 67.3 12.3 60.0 56.1 22.1 77.7 70.7 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  13.0 52.3 46.0  19.0 54.3 41.0 14.0 41.3 33.5 24.0 59.3 46.5 

    Large  10.0 91.0 89.0  11.0 89.7 87.5 7.0 75.0 79.0 15.0 90.7 90.0 

    Both  6.0 70.3 73.0  7.0 72.0 69.0 13.0 53.3 56.0 14.0 74.3 71.5 

  50% Focal      

    Moderate  17.0 96.0 67.5  19.0 96.7 68.0 23.0 85.7 61.0 29.0 97.0 70.5 

    Large  11.0 99.7 100.0  15.0 99.7 100.0 15.0 99.7 98.0 23.0 99.7 100.0 

    Both  12.0 99.3 94.5  13.0 99.0 95.0 18.0 94.3 88.0 21.0 99.0 96.0 

Focal - Moderately Skewed Distribution 

  10% Focal 22.0 44.0 35.0  13.0 35.0 30.5 5.0 20.3 19.5 13.0 37.3 34.5 

  50% Focal 33.0 78.7 69.0  35.0 85.3 65.5 12.0 56.7 49.0 36.0 88.3 70.5 

Focal - Large Skewed Distribution 

  10% Focal 24.0 64.0 68.5  14.0 51.7 52.5 10.0 32.3 28.0 16.0 55.3 55.5 

  50% Focal 26.0 89.3 94.0  29.0 89.3 86.0 8.0 67.7 77.5 32.0 92.0 91.0 

Focal - Both Skewed Distributions 

  10% Focal 20.0 57.0 54.5  9.0 45.7 38.5 9.0 32.0 23.5 13.0 49.3 44.0 

  50% Focal 29.0 86.0 79.0  24.0 87.7 73.5 13.0 61.3 60.0 29.0 90.0 78.0 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages were computed by dividing by the total 

number of items modified to exhibit DIF within the Referent difficulty range (Low = 1, 

Medium = 3, High = 2). 
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Table I2b  

Power Rates for All DIF Items by Difficulty for Best Subtest 20% DIF. 

Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

Overall 13.0 42.8 60.8  12.8 43.9 54.1 11.5 35.8 42.3 17.9 50.3 57.7 

N=500 9.6 32.2 48.8  10.4 34.7 42.3 8.1 24.9 29.8 14.1 39.8 46.7 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  7.0 13.9 25.0  10.0 19.1 17.0 6.7 10.4 12.0 12.7 22.4 22.0 

    Large  8.0 37.0 51.5  15.7 40.9 47.5 9.3 28.7 28.5 18.0 46.1 52.0 

    Both  8.7 23.7 37.0  10.7 26.9 32.0 9.7 18.0 17.0 14.7 30.7 36.5 

  50% Focal      

    Moderate  11.7 34.0 45.5  12.3 35.9 48.0 11.3 26.4 39.0 16.3 40.3 53.5 

    Large  21.0 70.4 89.0  17.7 72.3 91.5 13.0 68.1 84.5 21.0 79.6 92.5 

    Both  12.7 57.6 71.5  12.7 59.7 76.0 11.7 49.3 61.5 16.7 64.6 78.5 

Focal - Moderately Skewed Distribution 

  10% Focal 6.3 10.3 23.5  7.3 16.3 13.5 6.3 9.6 7.0 11.3 20.4 16.5 

  50% Focal 9.0 23.9 39.5  8.0 26.6 32.5 5.0 16.0 17.0 10.3 31.0 36.0 

Focal - Large Skewed Distribution 

  10% Focal 8.7 21.9 44.0  7.3 24.0 29.5 5.7 12.4 12.0 11.7 28.9 35.0 

  50% Focal 9.7 45.6 69.5  7.7 41.7 54.0 8.7 29.1 42.0 13.7 49.0 60.5 

Focal - Both Skewed Distributions 

  10% Focal 6.0 16.1 34.0  8.7 19.9 21.5 5.3 10.1 7.0 11.7 25.0 25.0 
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Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

  50% Focal 7.0 31.7 56.0  6.7 32.7 45.0 5.0 20.9 30.0 10.7 39.6 52.0 

N=1250 16.4 53.5 72.8  15.3 53.2 66.0 14.8 46.7 54.8 21.7 60.8 68.8 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  7.7 30.0 47.5  8.0 30.6 40.0 9.0 25.1 30.5 12.7 36.0 43.5 

    Large  16.7 67.7 93.5  18.3 66.7 87.5 18.0 60.0 73.5 23.7 72.7 88.0 

    Both  11.7 52.7 71.5  16.3 53.3 65.0 14.0 41.3 51.0 19.3 58.0 67.0 

  50% Focal 
     

    Moderate  23.7 59.7 73.0  21.7 59.3 74.0 16.7 54.6 65.0 24.0 64.6 75.5 

    Large  35.3 81.6 100.0  32.3 81.9 100.0 28.7 91.9 99.0 36.3 94.4 100.0 

    Both  29.0 74.3 96.0  27.0 74.4 96.0 22.0 79.6 89.0 31.3 82.7 96.5 

Focal - Moderately Skewed Distribution 

  10% Focal 6.0 25.6 40.0  3.3 26.3 29.5 6.0 19.0 16.0 8.7 31.7 32.5 

  50% Focal 12.7 42.6 62.0  14.3 48.6 56.5 13.3 35.6 43.5 23.0 56.9 58.5 

Focal - Large Skewed Distribution 

  10% Focal 10.0 44.9 63.0  5.3 39.6 47.0 11.3 28.6 24.0 15.7 46.6 50.5 

  50% Focal 14.7 72.4 93.5  15.7 69.9 83.5 16.0 60.6 77.0 28.0 81.6 90.5 

Focal - Both Skewed Distributions 

  10% Focal 13.0 32.7 50.5  5.3 27.7 36.5 7.0 18.7 24.0 10.0 32.7 42.5 

  50% Focal 17.0 57.9 83.5  16.0 59.7 76.0 15.7 46.0 65.0 27.7 71.1 80.5 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages were computed by dividing by the total 

number of items modified to exhibit DIF within the Referent difficulty range (Low = 3, 

Medium = 7, High = 2). 
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Table I3a  

Power Rates for Uniform DIF Items by Difficulty in Best Subtest 10% DIF. 

Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

Overall 
- 

55.6 40.8  - 56.9 37.4 - 41.9 28.1 - 60.1 42.4 

N=500 
- 

40.8 28.8  - 42.1 27.1 - 28.8 18.8 - 45.9 32.3 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  
- 

22.5 10.0  - 27.5 12.0 - 18.0 10.0 - 32.0 18.0 

    Large  
- 

43.5 42.0  - 52.0 33.0 - 30.0 23.0 - 55.5 42.0 

    Both  
- 

25.5 19.0  - 28.5 12.0 - 23.0 5.0 - 35.0 16.0 

  50% Focal      

    Moderate  
- 

54.0 21.0  - 58.5 23.0 - 43.0 11.0 - 61.0 26.0 

    Large  
- 

89.5 87.0  - 90.5 88.0 - 77.5 68.0 - 91.0 89.0 

    Both  
- 

75.5 52.0  - 76.0 55.0 - 60.0 39.0 - 78.0 61.0 

Focal - Moderately Skewed Distribution 

  10% Focal 
- 

16.0 6.0  - 18.0 8.0 - 8.5 7.0 - 22.0 13.0 

  50% Focal 
- 

36.5 17.0  - 33.0 18.0 - 23.0 15.0 - 37.5 24.0 

Focal - Large Skewed Distribution 

  10% Focal 
- 

20.0 10.0  - 27.5 10.0 - 7.0 5.0 - 30.5 14.0 

  50% Focal 
- 

52.0 44.0  - 43.5 29.0 - 26.0 23.0 - 50.0 38.0 

Focal - Both Skewed Distributions 

  10% Focal 
- 

15.5 9.0  - 14.0 10.0 - 9.0 4.0 - 18.5 13.0 
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Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

  50% Focal 
- 

39.0 28.0  - 36.0 27.0 - 21.0 16.0 - 40.0 33.0 

N=1250 
- 

70.4 52.8  - 71.7 47.8 - 54.9 37.3 - 74.2 52.5 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  
- 

47.5 14.0  - 51.0 9.0 - 39.5 10.0 - 57.0 15.0 

    Large  
- 

88.0 79.0  - 88.0 75.0 - 73.5 64.0 - 88.5 80.0 

    Both  
- 

65.0 52.0  - 69.0 49.0 - 48.5 34.0 - 72.0 50.0 

  50% Focal      

    Moderate 
DIF 

- 
94.0 35.0  - 95.0 36.0 - 81.5 24.0 - 95.5 41.0 

    Large DIF 
- 

99.5 100.0  - 99.5 100.0 - 99.5 96.0 - 99.5 100.0 

    Both DIF 
- 

99.0 89.0  - 98.5 90.0 - 93.0 77.0 - 98.5 92.0 

Focal - Moderately Skewed Distribution 

  10% Focal 
- 

30.0 15.0  - 28.0 9.0 - 14.5 6.0 - 30.0 13.0 

  50% Focal 
- 

70.0 41.0  - 80.5 36.0 - 48.0 21.0 - 85.0 43.0 

Focal - Large Skewed Distribution 

  10% Focal 
- 

48.0 38.0  - 43.0 29.0 - 26.5 11.0 - 47.5 33.0 

  50% Focal 
- 

84.0 88.0  - 85.0 73.0 - 58.5 60.0 - 88.5 83.0 

Focal - Both Skewed Distributions 

  10% Focal - 40.5 24.0  - 40.5 19.0 - 25.5 9.0 - 43.0 23.0 

  50% Focal - 79.5 58.0  - 82.5 48.0 - 50.5 36.0 - 85.5 57.0 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages were computed by dividing by the number 

of items modified to exhibit U-DIF within the Referent difficulty range (Low = 0, Medium 

= 2, High = 1). 
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Table I3b  

Power Rates for Uniform DIF Items by Difficulty in Best Subtest 20% DIF. 

Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

Overall 22.2 55.5 41.6  28.4 56.7 36.5 19.5 41.8 27.4 32.5 59.6 41.3 

N=500 14.0 40.0 29.5  19.4 43.3 26.3 15.0 28.7 18.3 24.2 46.4 31.5 

Normal Distribution (All Groups) 

  10% Focal 
            

 
  

    Moderate  8.0 21.0 10.0  17.0 31.5 7.0  17.0 16.0 3.0  21.0 35.5 9.0 

    Large  9.0 45.5 38.0  25.0 49.5 36.0  25.0 36.0 19.0  33.0 53.0 44.0 

    Both  6.0 35.0 21.0  27.0 37.0 18.0  22.0 23.0 10.0  33.0 39.5 25.0 

  50% Focal                

    Moderate  17.0 52.5 15.0  16.0 55.5 17.0  12.0 40.0 15.0  18.0 58.0 25.0 

    Large  54.0 88.5 78.0  53.0 89.5 83.0  39.0 78.0 73.0  59.0 90.5 85.0 

    Both  24.0 75.5 50.0  29.0 79.0 56.0  17.0 63.5 38.0  32.0 81.0 60.0 

Focal - Moderately Skewed Distribution 

  10% Focal 7.0 11.0 14.0  9.0 20.0 9.0 10.0 6.5 5.0 15.0 21.5 10.0 

  50% Focal 9.0 34.0 19.0  8.0 37.5 14.0 4.0 19.0 5.0 11.0 41.0 17.0 

Focal - Large Skewed Distribution 

  10% Focal 8.0 21.0 23.0  18.0 22.5 21.0 6.0 8.0 7.0 21.0 24.0 24.0 

  50% Focal 14.0 48.0 44.0  12.0 45.0 27.0 11.0 27.0 25.0 18.0 50.5 39.0 

Focal - Both Skewed Distributions 

  10% Focal 7.0 15.5 16.0  10.0 19.5 13.0 10.0 7.0 5.0 16.0 22.0 16.0 
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Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

  50% Focal 5.0 33.0 26.0  9.0 33.0 15.0 7.0 20.5 15.0 13.0 40.5 24.0 

N=1250 30.3 71.0 53.8  37.4 70.1 46.6 24.1 54.8 36.5 40.9 72.8 51.0 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  9.0 49.0 20.0  13.0 52.5 12.0 15.0 41.0 11.0 18.0 58.5 17.0 

    Large  44.0 88.5 88.0  52.0 86.5 78.0 38.0 69.0 59.0 55.0 87.5 79.0 

    Both  26.0 71.0 49.0  33.0 71.5 42.0 25.0 57.0 26.0 37.0 74.0 46.0 

  50% Focal      

    Moderate  28.0 95.0 47.0  28.0 94.5 48.0 28.0 88.0 34.0 36.0 94.5 51.0 

    Large  84.0 100.0 100.0  85.0 100.0 100.0 78.0 99.0 98.0 87.0 100.0 100.0 

    Both  54.0 99.0 92.0  58.0 99.0 92.0 43.0 97.0 79.0 60.0 99.0 93.0 

Focal - Moderately Skewed Distribution 

  10% Focal 5.0 30.0 14.0  14.0 28.0 9.0 9.0 17.5 4.0 17.0 31.5 11.0 

  50% Focal 19.0 70.5 29.0  34.0 77.0 23.0 5.0 46.5 15.0 36.0 80.0 27.0 

Focal - Large Skewed Distribution 

  10% Focal 20.0 40.0 34.0  23.0 31.5 21.0 14.0 20.5 12.0 26.0 35.5 26.0 

  50% Focal 39.0 86.5 87.0  53.0 81.5 67.0 15.0 55.0 55.0 56.0 86.5 81.0 

Focal - Both Skewed Distributions 

  10% Focal 10.0 39.5 18.0  16.0 35.5 14.0 9.0 17.5 8.0 19.0 38.5 19.0 

  50% Focal 26.0 82.5 67.0  40.0 83.5 53.0 10.0 50.0 37.0 44.0 88.5 62.0 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages were computed by dividing by the number of 

items modified to exhibit U-DIF within the Referent difficulty range (Low = 1, Medium = 

4, High = 1). 
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Table I4a  

Power Rates for Non-uniform DIF Items by Difficulty in Best Subtest 10% DIF. 

Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

Overall 13.8 76.2 80.6  13.8 70.3 73.7 10.5 53.7 58.6 18.3 72.7 76.4 

N=500 9.1 61.3 69.0  10.3 57.6 60.7 8.8 37.3 42.4 14.4 60.7 63.9 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  4.0 31.0 39.0  9.0 38.0 32.0 6.0 15.0 19.0 10.0 40.0 36.0 

    Large  2.0 46.0 73.0  8.0 42.0 63.0 6.0 30.0 38.0 10.0 48.0 65.0 

    Both  8.0 37.0 49.0  11.0 44.0 40.0 9.0 29.0 23.0 13.0 47.0 45.0 

  50% Focal      

    Moderate  11.0 62.0 77.0  15.0 62.0 82.0 10.0 47.0 66.0 19.0 66.0 84.0 

    Large  5.0 92.0 99.0  5.0 92.0 100.0 8.0 79.0 93.0 10.0 93.0 100.0 

    Both  5.0 90.0 96.0  5.0 93.0 97.0 16.0 67.0 82.0 16.0 95.0 98.0 

Focal - Moderately Skewed Distribution 

  10% Focal 11.0 30.0 35.0  20.0 24.0 25.0 8.0 13.0 13.0 22.0 28.0 29.0 

  50% Focal 18.0 64.0 73.0  14.0 55.0 56.0 12.0 26.0 34.0 20.0 58.0 59.0 

Focal - Large Skewed Distribution 

  10% Focal 9.0 62.0 56.0  9.0 50.0 39.0 11.0 30.0 14.0 16.0 57.0 47.0 

  50% Focal 10.0 91.0 99.0  9.0 79.0 89.0 6.0 49.0 62.0 11.0 79.0 90.0 

Focal - Both Skewed Distributions 

  10% Focal 9.0 43.0 42.0  6.0 41.0 25.0 6.0 21.0 11.0 11.0 44.0 34.0 
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Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

  50% Focal 17.0 87.0 90.0  12.0 71.0 80.0 7.0 41.0 54.0 15.0 73.0 80.0 

N=1250 18.6 91.1 92.3  17.3 83.1 86.8 12.3 70.1 74.8 22.1 84.7 88.8 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  13.0 62.0 78.0  19.0 61.0 73.0 14.0 45.0 57.0 24.0 64.0 78.0 

    Large  10.0 97.0 99.0  11.0 93.0 100.0 7.0 78.0 94.0 15.0 95.0 100.0 

    Both  6.0 81.0 94.0  7.0 78.0 89.0 13.0 63.0 78.0 14.0 79.0 93.0 

  50% Focal      

    Moderate  17.0 100.0 100.0  19.0 100.0 100.0 23.0 94.0 98.0 29.0 100.0 100.0 

    Large  11.0 100.0 100.0  15.0 100.0 100.0 15.0 100.0 100.0 23.0 100.0 100.0 

    Both  12.0 100.0 100.0  13.0 100.0 100.0 18.0 97.0 99.0 21.0 100.0 100.0 

Focal - Moderately Skewed Distribution 

  10% Focal 22.0 72.0 55.0  13.0 49.0 52.0 5.0 32.0 33.0 13.0 52.0 56.0 

  50% Focal 33.0 96.0 97.0  35.0 95.0 95.0 12.0 74.0 77.0 36.0 95.0 98.0 

Focal - Large Skewed Distribution 

  10% Focal 24.0 96.0 99.0  14.0 69.0 76.0 10.0 44.0 45.0 16.0 71.0 78.0 

  50% Focal 26.0 100.0 100.0  29.0 98.0 99.0 8.0 86.0 95.0 32.0 99.0 99.0 

Focal - Both Skewed Distributions 

  10% Focal 20.0 90.0 85.0  9.0 56.0 58.0 9.0 45.0 38.0 13.0 62.0 65.0 

  50% Focal 29.0 99.0 100.0  24.0 98.0 99.0 13.0 83.0 84.0 29.0 99.0 99.0 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages were computed by dividing by the number of 

items modified to exhibit NU-DIF within the Referent difficulty range (Low = 1, Medium = 

1, High = 1). 
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Table I4b  

Power Rates for Non-uniform DIF Items by Difficulty in Best Subtest 20% DIF. 

Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

Overall 17.2 32.4 80.0  19.3 33.1 71.8 17.2 32.7 57.2 26.8 43.7 74.2 

N=500 12.5 25.4 68.2  15.6 28.0 58.3 12.2 22.8 41.3 21.1 35.6 61.8 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  8.5 12.0 40.0  15.0 16.7 27.0 10.0 9.3 21.0 19.0 19.3 35.0 

    Large  10.0 21.0 65.0  23.5 27.0 59.0 14.0 20.0 38.0 27.0 32.3 60.0 

    Both  10.5 12.3 53.0  16.0 14.7 46.0 14.5 14.0 24.0 22.0 21.0 48.0 

  50% Focal      

    Moderate  17.5 25.7 76.0  18.5 28.7 79.0 17.0 24.0 63.0 24.5 35.3 82.0 

    Large  27.5 42.0 100.0  26.5 45.3 100.0 19.5 50.7 96.0 31.5 61.3 100.0 

    Both  17.0 35.0 93.0  19.0 36.3 96.0 17.5 35.3 85.0 25.0 45.7 97.0 

Focal - Moderately Skewed Distribution 

  10% Focal 9.0 12.7 33.0  11.0 17.3 18.0 9.5 12.3 9.0 17.0 22.7 23.0 

  50% Focal 12.0 25.7 60.0  12.0 29.7 51.0 7.5 18.7 29.0 15.5 34.3 55.0 

Focal - Large Skewed Distribution 

  10% Focal 10.5 24.7 65.0  11.0 26.7 38.0 8.5 18.7 17.0 17.5 34.3 46.0 

  50% Focal 11.0 38.7 95.0  11.5 38.3 81.0 13.0 30.7 59.0 20.5 47.0 82.0 

Focal - Both Skewed Distributions 

  10% Focal 7.0 19.7 52.0  13.0 21.7 30.0 8.0 16.3 9.0 17.5 31.7 34.0 
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Aggregation/ 
Severity of 

DIF 

Mantel-          
Haenszel 

 
SIBTEST 

Crossing 
SIBTEST 

Both        
SIBTESTS 

Low Med High  Low Med High 
 
Low Med High 

 
Low Med High 

  50% Focal 10.0 35.3 86.0  10.0 34.0 75.0 7.5 23.3 45.0 16.0 42.3 80.0 

N=1250 21.9 39.4 91.9  23.0 38.2 85.3 22.2 42.6 73.1 32.5 51.8 86.6 

Normal Distribution (All Groups) 

  10% Focal      

    Moderate  9.0 21.3 75.0  12.0 21.3 68.0 13.5 19.7 50.0 19.0 28.0 70.0 

    Large  23.5 38.7 99.0  27.5 40.3 97.0 27.0 42.7 88.0 35.5 51.7 97.0 

    Both  15.5 33.3 94.0  24.5 33.7 88.0 21.0 31.3 76.0 29.0 41.7 88.0 

  50% Focal      

    Moderate  33.0 35.3 99.0  32.5 35.7 100.0 25.0 41.7 96.0 36.0 46.3 100.0 

    Large  49.5 57.0 100.0  48.5 57.7 100.0 43.0 81.7 100.0 54.5 87.0 100.0 

    Both  40.0 43.3 100.0  40.5 43.7 100.0 33.0 58.7 99.0 47.0 63.0 100.0 

Focal - Moderately Skewed Distribution 

  10% Focal 8.0 32.7 66.0  5.0 32.0 50.0 9.0 24.7 28.0 13.0 38.3 54.0 

  50% Focal 16.0 37.3 95.0  21.5 36.3 90.0 20.0 38.3 72.0 34.5 48.7 90.0 

Focal - Large Skewed Distribution 

  10% Focal 12.0 44.0 92.0  8.0 38.3 73.0 17.0 35.7 36.0 23.5 50.0 75.0 

  50% Focal 19.0 51.0 100.0  23.5 49.3 100.0 24.0 61.3 99.0 42.0 70.3 100.0 

Focal - Both Skewed Distributions 

  10% Focal 16.5 37.3 83.0  8.0 28.0 59.0 10.5 25.3 40.0 15.0 36.3 66.0 

  50% Focal 20.5 41.3 100.0  24.0 41.7 99.0 23.5 50.7 93.0 41.5 60.7 99.0 

Note: Regardless of the Focal group distribution, Referent group abilities were consistently 
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drawn from a N(0,1) distribution. Percentages were computed by dividing by the number of 

items modified to exhibit NU-DIF within the Referent difficulty range (Low = 2, Medium = 

3, High = 1). 
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APPENDIX J 

EXAMINATION OF ADDITIONAL CONDITIONS 
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To explore the reasons ATFIND performed so differently than expected, several 

additional conditions were run. These additional conditions focused on changes in sample 

size but also explored severity of DIF modification. Sample size was chosen as a variable of 

interest both because of the slight increase found in the Medium difficulty items chosen for 

the AT List with an increase in sample size and because the DIF analyses tended to have 

higher power as sample size increased. Severity of DIF modification was included in these 

conditions because it was found to influence the DIF analyses ability to identify items, 

especially when the matching subtest had DIF contamination.  

Since the DIF analyses tended to have their best performance in Large sample, 20% 

DIF items, Large DIF conditions with 50% Focal simulees, and ability distributions for both 

the referent and focal groups drawn from the normal distribution, this condition was used as 

a basis for comparisons to the additional conditions. One of the differences between this 

original condition and the additional ones is that in all original conditions both uniform and 

non-uniform DIF items were modelled (with 20% DIF, 6 of each type), where in the 

additional conditions, all DIF items were modified to exhibit uniform DIF (only a change in 

the difficulty parameter for the focal group as compared to that of the referent). Both the 

non-DIF and the referent item parameters were held constant with those used in the original 

conditions. 

The process for DIF modification selection also changed between the original 

conditions and the additional ones. With the original conditions, focal item parameters for 

each DIF item were randomly drawn from a uniform distribution and then applied 

consistently across the various conditions. In the additional conditions, only two values (1.00 

and 0.80) were chosen to subtract from the referent item difficulty. These were held constant 
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for all items within a condition, but varied across conditions. The value of 1.00 was chosen 

to align with that used by Gierl, Jodoin, and Ackerman (2000), where the value of .80 was 

approximately halfway between their value and that used by Swaminathan and Rogers (.64) 

in their 1990 study. Both of these studies referred to the values they chose as a Large DIF 

modification. The values subtracted from the referent difficulty parameter for Large DIF in 

the original conditions were drawn from a uniform distribution of .50 to .80; however, only 

two values over .70 were chosen. The variables that were held constant across all of the 

additional conditions were 50% Focal simulees, N(0,1) ability distribution for both groups, 

50% of the total sample used for the ATFIND analysis, 20% DIF (12 out of 60 items), and 

100% of the DIF items modified with uniform DIF. Table J1 presents a summary of the 

original and additional conditions. The sample size of 1,500 was chosen to match the 

“Large” sample size for ATFIND, N=750, in the original condition and then was doubled 

so that an equal number of simulees was available for DIF analyses. 

Table J1. 

Summary of the original and additional conditions. 

Condition 
 

Total N 
 

% 
ATFIND 

 
% Focal 

 
% DIF 

 

% Uniform 
DIF 

 

DIF 
Modification 

Original 2000 37.5 50 20 50 Varied 

1 1500 50 50 20 100 -1.00 

2 20000 50 50 20 100 -1.00 

3 1500 50 50 20 100 -0.80 

4   20000   50   50   20   100   -0.80 

Note: The total sample size of 1500 was chosen to match the large sample size of 750 used 

for ATFIND in the original condition. 



 

  268 

Figure J1 presents the hit frequencies for the number of DIF items selected for the 

AT List in the original condition and all four additional conditions. As can be seen in these 

graphs, ATFIND selects DIF items very differently for the two sample sizes. With the Large 

sample, especially with a DIF modification of 1.00 (Condition 2), ATFIND tended to select 

either all of the DIF items for the AT List, or none at all. Where with the Small sample and a 

DIF modification of 1.00 (Condition 1), ATFIND selected between 3 and 10 DIF items 

many more times. The slight decrease in severity of DIF modification to -0.80 was seen to 

impact the Small sample size (Condition 3) much more than that of the Large (Condition 4), 

with Condition 3 approaching the distribution of DIF hits seen with the Original condition. 

It seems that the sample size used in the Original condition simply did not provide ATFIND 

enough power to identify the DIF items, especially when DIF was modeled within the 

ranges found in real data. 

An examination of item parameters for the non-DIF items chosen by ATFIND for 

the AT List when the DIF items were selected for that list, and when DIF items were all 

selected for the PT List provides a possible answer to ATFIND’s behavior in Condition 2. 

To evaluate how well the discrimination and difficulty item parameters for the 48 non-DIF 

items predicted their placement 1) with the DIF items in the AT List or 2) in the AT List 

when all of the DIF items were placed in the PT List, a series of multiple regression analyses 

were performed. In Condition 2, there were 30 replications where only the 12 DIF items 

were selected for the AT List, 27 replications where all (or almost all, 11 in one condition) of 

the DIF items plus a few non-DIF items (between 1 and 11) were selected, and 41 

replications where only non-DIF items (between 22 and 30) were selected for the AT List. 
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Condition 1: N=1,500; DIF-Mod = -1.00 

 

Condition 3: N= 1,500; DIF-Mod = -0.80 

 

Original: N= 2,000; DIF-Mod = Various 

 

Condition 2: N= 20,000; DIF-Mod = -1.00 

 

Condition 4: N= 20,000; DIF-Mod = -0.80 

 

Figure J1. Hit frequencies for the number of DIF items selected for the AT List. These 

frequencies are for all DIF items. For Conditions 1 through 4, DIF items were only 

modelled for uniform DIF where for the Original Condition; only 50% of the DIF items 

had a uniform DIF modification. 
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The linear combination of the discrimination and difficulty parameters of the non-

DIF items was significantly related to the item’s placement with the DIF items on the AT 

List, F(2,45) = 10.66,   p < .01, with the sample multiple correlation (.57) indicating that the 

linear combination of the parameters accounts for approximately 29% (adjusted) for the 

variance in placement with the DIF items on the AT List. Both of the item parameters were 

negatively correlated with placement on the AT List with the DIF items; however, only the 

discrimination parameter was significantly related (-.52, p < .01). Figure J2 presents a graph 

of the percentage of times non-DIF items were placed on the AT List along with the DIF 

items by discrimination parameter. As can be seen in this graph, items with lower 

discrimination parameters were much more likely than items with high discrimination 

parameters to be placed on the AT List along with the 12 DIF items. Since ATFIND places  

 

Figure J2. Percentage of times non-DIF items were placed on the AT List along with the 12 

DIF items in Condition 2 by item discrimination parameter. 
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the items on the AT List that are dimensionally homogenously distinct from those on the PT 

List, it would seem, based on these results, that ATFIND is sometimes finding the DIF 

items to be of a similar dimension to non-DIF items that have low discrimination. 

Similarly, the linear combination of the two parameters was significantly related to their 

placement on the AT List when the DIF items were placed on the PT List, F(2,45) = 19.38, 

p < .01. The sample multiple correlation (.68) for this analysis indicates that the two item 

parameters for the non-DIF items accounts for approximately 44% (adjusted) of the 

variance in placement on the AT List when the DIF items were placed on the PT List. As 

expected, given the results of the first analysis, both of the item parameters were positively 

correlated to placement on the AT List without the DIF items. Here again, only one of the 

correlations was statistically significant; however, for this analysis the parameter was item 

difficulty (.61, p <  .01). Figure J3 presents a graph of the percentage of times non-DIF items 

were placed on the AT List without the DIF items by difficulty parameter. As can be seen in 

this graph, items with difficulty parameters in the middle of the range (-.75 to 1.19) were 

much more likely than items with either high or low difficulty parameters to be placed on the 

AT List when the 12 DIF items were placed on the PT List.  

Because of the apparent quadratic nature of the non-DIF difficulty parameter 

selection for the AT List, a curve estimation regression procedure was performed. This 

analysis was also statistically significant F(2,45) = 49.43, p < .01 and accounted for 

approximately 67% (adjusted) of the variance of non-DIF items placement on the AT List 

without the DIF items. The resultant regression equation was 

 

�¯��©®©_T :_ ÃD Ä`�T � 5.67 y`AA`�^T¯g � 8.35 y`AA`�^¯Tg& � 65.01. 
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Figure J3. Percentage of times non-DIF items were placed on the AT List along without the 

12 DIF items in Condition 2 by item difficulty parameter. 

 

ATFIND selected this group of medium difficulty non-DIF items for the AT List at 

approximately the same, but lower, rate (41%) as it did the DIF items (57%). This indicates 

that ATFIND was having difficulty identifying which of the two groups of items was most 

"relatively dimensionally homogeneous" (Froelich & Habing, 2008, p. 144), even when both 

the sample size (10,000 used for ATFIND) and the DIF modification (-1.00 from difficulty) 

were quite large. Given the results found here for Condition 2, which used both a very large 

sample and a very large DIF modification, perhaps it should be less of a surprise that it had 

similar issues when a much smaller sample and lower DIF modification was used as in the 

Original condition. 
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Not only were ATFIND results examined for the additional conditions, but MH’s, 

SIB’s, and X-SIB’s results were also examined and compared to the results found for all DIF 

items in the Original condition. Figure J4 presents the Total Power rates for the uniform 

DIF items in the Best matching subtest and the PT matching subtest for the three DIF 

analyses, as well as the Analyzed power rates for SIB and X-SIB for the PT matching subtest 

(noted DIF-AT). Also included in Figure J4 are the results of the Original condition where 

one-half of the DIF items were modeled for uniform DIF and the rest were modified to 

exhibit non-uniform DIF. As can be seen with these graphs, with the Best matching subtest, 

all three analyses have very high power (consistently100% with sample size of 20,000) and 

power of over 90% with a sample size of 750. This is comparable with the power rates in the 

Original condition for uniform DIF items using the Best matching subtest which were 97.3, 

97.5, and 95.7 percent for MH, SIB, and X-SIB, respectively. It was only with the inclusion 

of non-uniform DIF items in this Original condition that the power for these three analyses 

dropped below 90%, 79.5, 79.6, and 83.8 percent, respectively.  

When the PT matching subtest was used, MH was able to maintain its high power 

(over 90%) as long as the sample size was 20,000 or the DIF modification was 1.00. It 

dropped slightly below 90% to 88.6% when both sample size and DIF modification was 

reduced. As might be expected, due to SIBTEST’s default of examining only the suspect 

items in the AT List, all of the SIB and X-SIB Total power rates were much lower with the 

PT matching subtest. Both of these analyses reached over 50% power only with a sample 

size of 20,000 and the 1.00 DIF modification. Their Analyzed power rates however, similar 

to MH’s, were generally over 90%, with their lowest found with a sample size of 1500 and 

the .80 DIF modification (91.2 and 80.3 percent for SIB and X-SIB, respectively). While the 
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rates displayed within these graphs are generally very positive, power is only part of the 

story. 

 

 
Figure J4. Power rates for DIF items within all difficulty ranges. BEST = Best matching 

subtest; PT= PT List matching subtest; DIF-AT= Analyzed power rate with PT List 

matching subtest. DIF items within Conditions 1 through 4 were consistently modified for 

uniform DIF. 
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Figure J5 presents Analyzed Type I error rates for the Best matching subtest and the 

PT matching subtest for the three DIF analyses. As can be seen within these graphs, while 

Type I error was generally low (rarely higher than 5%) with the Best matching subtest, it was 

sometimes extremely high (over 90% in two instances) with the PT matching subtest. With 

the PT matching subtest, Type I error rates were seen to increase with the higher DIF  

 

Figure J5. Type I error rates for non-DIF items within all difficulty ranges. BEST = Best 

matching subtest; PT= PT List matching subtest.  
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modification (from an average of 13.0% to an average of 20.1%), but were found to greatly 

increase with the largest sample size (from an average of 16.6% with the Small sample size to 

an average of 73.7% with the Large). Error rates this large confirm the results of the main 

part of this dissertation, which found that the PT List is unusable as a matching subtest. 

Here, error rates are so large as to strongly advise against its use regardless of the additional 

examination of content of DIF identified items that are usually carried out in bias studies. 

Discussion and Opportunities for Future Investigations 

This section provides a discussion of the results found within the additional 

conditions and highlights the findings and what remains to be researched, as well as some 

suggestions as to how those research projects might be tied to this study. Consistent with 

both the original study and this additional one, the ATFIND analysis will be discussed first, 

followed by the DIF analyses. 

ATFIND. Within the results presented here, there were four findings. These were 

related to sample size, DIF modification, non-DIF item difficulty parameters, and non-DIF 

item discrimination parameters. These finding will be discussed in turn. 

Sample size has a large influence on ATFIND’s ability to identify DIF items as a 

homogenously dimensionally distinct group of items from the rest of the items. For 

example, when 10,000 simulees were used, it was generally able to select the DIF items 

together for either the AT or the PT List. It selected all of the DIF items together for one of 

these two lists in 97 of the 100 replications with DIF modification of -1.00, and in 79 of the 

100 replications with DIF modification of -.80. However, ATFIND was not generally able to 

group the DIF items together with a sample size of 750. With this sample size, ATFIND 

only selected all of the DIF items together for one of the two lists in 17 of the 100 
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replications, and in 5 of the 100 replications with DIF modification of -.80. Since only two 

sample sizes (750 and 10,000) were used for this study, we don’t know at what level of 

sample size ATFIND starts having difficulty grouping the DIF items together. One 

suggestion for a future study would be to use the large uniform DIF modification (1.00) and 

vary sample size to find out at what sample size level it stops selecting most of the DIF 

items together for one of the two lists. 

Severity of uniform DIF induced in the items has some influence on ATFIND’s 

ability to identify DIF items as a homogenously dimensionally distinct group of items from 

the rest of the items over and above sample size. An example of this was observed when 

10,000 simulees were used for ATFIND. ATFIND was able to select the DIF items together 

for either the AT or the PT List at a higher rate with the -1.00 DIF modification than with 

the -.80 DIF modification (in 97 and in 79 of the 100 replications, respectively). Even with 

the smaller sample size of 750, there was an observed decrease in all of the DIF items 

selected together for one of the two lists (in 17 and in 5 of the 100 replications for the -1.00 

and -.80 DIF modifications, respectively). The one replication in the smaller sample, lower 

DIF modification where all DIF items were selected for the AT List was still higher than 

found in the original study. Originally, with 20% DIF items in the 2400 replications, at no 

time did ATFIND select all 12 DIF items for the AT List and, it selected 11 DIF items in 

only two of the replications. Therefore, even with these additional conditions, we still don’t 

know at what level of DIF severity ATFIND starts selecting no DIF items for the AT List. 

A follow-up study could use the large sample size (10,000) and vary uniform DIF severity to 

find the level of severity at which ATFIND stops selecting all twelve DIF items together for 

the AT List. 
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Among the non-DIF items ATFIND selects for the AT List, when selecting all of 

the DIF items for the PT List, it tends to select items in the Medium difficulty range most 

often. For example, when 10,000 simulees were used for ATFIND in conjunction with the 

larger DIF modification (-1.00), all 23 of the non-DIF items selected for the AT List in at 

least 29 of the 41 replications (approximately 60%) when all of the DIF items were selected 

for the PT List had difficulty parameters in the middle of the range (-.75 to 1.19). 

Additionally, in this condition, none of the 25 non-DIF items selected for the AT List in less 

than 28 of the replications when all of the DIF items were selected for the PT List had 

difficulty parameters within this range. Since ATFIND’s tendency to select items in the 

Medium difficulty range was also found as a trend in the original study, especially when no 

DIF items were included in the dataset, we don’t know whether this behavior is caused by 

the severity of DIF induced in 20% of the items, or if it would be a significant factor also 

when no DIF items were included in a large sample size dataset. One way this could be 

explored would be to use the large sample size (10,000) and vary both the percentage of DIF 

items and uniform DIF severity to find at what combination, ATFIND’s selection of 

medium difficulty non-DIF items for the AT List, when selecting all DIF items for the PT 

List, becomes non-significant. 

Among the non-DIF items that ATFIND selects for the AT List, when also 

selecting all of the DIF items for the AT List, the items with a low discrimination tend to be 

selected most often. This was evidenced by the significant negative relationship between the 

placement of non-DIF items with low discriminations on the AT List and all of the DIF 

items on that list,  when 10,000 simulees were used in conjunction with the larger DIF 

modification (-1.00). Since the behavior of non-DIF items selected with the DIF items was 
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not explored in the original study or in any other of the additional conditions, we don’t 

know whether this selection is generalizable to other conditions such as lower sample sizes 

or lower severity of DIF. To investigate the generalizability of this relationship, the selection 

of non-DIF items for the AT List in the rest of the additional conditions could be examined, 

as well varying both sample size and uniform DIF severity in more additional conditions. 

The goal would be to find the combination at which low-discrimination non-DIF items 

selection for the AT List along with the DIF items becomes non-significant. 

DIF analyses. Both sample size and severity of DIF modification have an influence 

on MH’s, SIB’s, and X-SIB’s ability to identify uniform DIF items. The evidence for this 

statement was provided when 10,000 simulees were used for the DIF analyses. With this 

large sample size, all three procedures were able to identify all DIF items in all replications 

(100% power) for both DIF modifications, as long as there were no DIF items in the 

matching subtest. However, when the sample size was dropped to 750, a slight drop in 

power for them all was observed. Also, when the severity of DIF was decreased, regardless 

of sample size, power for all three analyses decreased. Since both DIF modifications used in 

the additional conditions were considered to be in the large range by previous researchers, 

we don’t know at what level of DIF modification, power rates would become unacceptable. 

The use of additional Condition 4 (.80 DIF modification and 10,000 simulees) as a base for 

more conditions that vary both sample size and severity of uniform DIF modification, may 

lead to a sample size for each of the DIF modifications where power becomes unacceptable. 

Type I error rates for all of three of the DIF analyses are inflated with inclusion of 

items with large DIF modification that contaminate the matching subtest, especially as 

sample size increases. With no DIF items contaminating the matching subtest, as with the 
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use of the Best matching subtest, all of three DIF analyses consistently had Analyzed Type I 

error rates below the 5% nominal rate with the large sample size. Also, only X-SIB had a 

slightly elevated rate (approximately 6%) with a sample size of 750. However, when the PT 

matching subtest which contained items modified to exhibit large DIF was used with a 

sample size of 750 and the lower DIF modification (-.80), all of the analyses had Analyzed 

Type I error rates of over 10%. When larger DIF modification was used, these error rates 

increased to approximately 20% for the same sample size. The Analyzed Type I error rates 

increased even further when the sample size used for DIF analysis was increased to 10,000, 

reaching over 90% for both SIB and X-SIB with the larger DIF modification. We don’t 

know the amount of DIF contamination (percentage of DIF items and the severity of DIF 

induced in those items) that the analyses can handle in their matching subtest at various 

sample sizes and still maintain an acceptable level of Type I error. Since Type I error 

increased with the larger sample size, the use of the Best matching subtest with Condition 4 

(sample size of 10,000 and DIF modification of .80) might serve as a basis for additional 

conditions. These conditions might change the matching subtests by adding various 

percentages of DIF items at various DIF modifications. The goal would be to identify both 

the severity of DIF and the percentage of DIF items that the analyses can handle, while 

maintaining an acceptable Type I error rate. 

Because all of the additional conditions were modeled only for uniform DIF, these 

suggestions are specifically for that type of DIF item. However, since previous studies have 

indicated that the use of accommodations could cause non-uniform DIF, all of these studies 

probably should also be done not only for uniform DIF items, but also for only non-

uniform DIF items, as well as for combinations of uniform and non-uniform DIF items.  


