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ABSTRACT  

   

   

Small metallic parts of size less than 1mm, with features measured in tens of microns, 

with tolerances as small as 0.1 micron are in demand for the research in many fields such 

as electronics, optics, and biomedical engineering. Because of various drawbacks with 

non-mechanical micromanufacturing processes, micromilling has shown itself to be an 

attractive alternative manufacturing method. Micromilling is a microscale manufacturing 

process that can be used to produce a wide range of small parts, including those that have 

complex 3-dimensional contours. Although the micromilling process is superficially 

similar to conventional-scale milling, the physical processes of micromilling are unique 

due to the scale effects. These scale effects occur due to unequal scaling of the 

parameters from the macroscale to the microscale milling. One key example of scale 

effects in micromilling process is a geometrical source of error known as chord error. The 

chord error limits the feedrate to a reduced value to produce the features within 

machining tolerances. In this research, it is hypothesized that the increase of chord error 

in micromilling can be alleviated by intelligent modification of the kinematic 

arrangement of the micromilling machine. Currently, all 3-axis micromilling machines 

are constructed with a Cartesian kinematic arrangement with three perpendicular linear 

axes. In this research, the cylindrical kinematic arrangement is introduced, and an 

analytical expression for the chord error for this arrangement is derived. The numerical 

simulations are performed to evaluate the chord errors for the cylindrical kinematic 

arrangement. It is found that cylindrical kinematic arrangement gives reduced chord error 

for some types of the desired toolpaths. Then, the kinematic redundancy is introduced to 
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design a novel kinematic arrangement. Several desired toolpaths have been numerically 

simulated to evaluate the chord error for kinematically redundant arrangement. It is 

concluded that this arrangement gives up to 5 times reduced error for all the desired 

toolpaths considered, and allows significant gains in allowable feedrates.  
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CHAPTER 1 

INTRODUCTION 

Micromilling is the preferred method of manufacture for many types of small 

metallic parts.  These small metallic parts are currently in high-demand in many 

industries which require either the metallic parts themselves, or molds for making small 

plastic parts through methods such as micro-injection molding [1].  These industries 

include biomedicine, the electronics field, and consumers of small optical parts like small 

lenses [2]. The biomedical engineering requires microparts for making devices for 

studying various processes in the human body [3,4], and for making human body 

implants [5,6]. The metallic parts are typically less than 1mm in size, and have sub-

micron tolerances.  Other methods besides micromilling can be used to produce these 

parts: micro-EDM, micro-ECM [7], and laser micro-machining [8] are examples of non-

mechanical methods available to produce these parts.  Other mechanical methods 

available for producing small metallic parts include micro lathe turning [9] and micro-

injection molding [1]. However, these methods have low material-removal-rates, making 

them undesirable for mass-production of small metallic parts.  

In this chapter, the process of micromilling is addressed first. Then, the scale 

effects that make the micromilling a different physical process from macroscale milling 

are explained. The concept of trajectory generation for micromilling is then presented, 

which is followed by the concept of kinematic redundancy adopted from robotics. The 

research objectives of this study are presented, along with the hypotheses that are to be 

tested to achieve the research objectives. Finally, the thesis overview is given to 

understand the flow of this thesis. 
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1.1 MICROMILLING 

On the surface, the micromilling process is abstractly equivalent to the macroscale 

milling process, as in both the processes, the spinning toothed endmill removes the 

material from the workpiece. Being similar to macroscale endmills, the microendmills are 

typically made of tungsten carbide with 2 or 4 flutes. However, in micromilling, the 

endmill size is smaller than 1 mm, and currently it is as small as 5 microns in diameter 

[10], and spindle speeds are one or two orders of magnitude higher than the macroscale 

milling. 

 

1.2 SCALE EFFECTS 

In addition to the endmill size and spindles speeds affecting the micromilling 

process on the surface, the ‘scale effects’ also make the microscale milling process 

different from the macroscale milling. These scale effects arise due to unequal scaling of 

physical parameters from macroscale to microscale milling processes. 

One key example of the scale effects is the increased ratio of tool size to the 

feature size [11] in micromilling process. This increased ratio of tool size to the feature 

size leads to a machining error known as chord error. Apart from scale effects, the 

desired toolpath, machining feedrate and the trajectory generation loop update time also 

affect the chord error. Altering the desired toolpath for achieving the reduced chord error 

is not desirable. On the other hand, the trajectory generation loop update time cannot be 

reduced due to several limitations on the system. Therefore, the only reasonable way to 

reduce the chord error is reducing the feedrate. However, reduced feedrate has two 

important negative effects on the micromilling process: 
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1. Reduced feedrate increases machining time, thus decreasing the part production rate 

and adding undue time cost to a mass-production operation and  

2. Reduced feedrate can cause decreased tool life due to rubbing of the tool on the 

workpiece without cutting when the minimum chip thickness is violated. 

 

Therefore, it becomes necessary to increase the feedrate for reducing the cost of 

micromilling, without increasing the chord error. The existing micromilling machines 

typically consist of 3 axes. In these machines, there are three linear axes in X, Y and Z 

directions. Typically, XY plane lies in the plane of the table on which a workpiece is 

fixed. The workpiece is usually fixed on a linear axis which is placed perpendicularly on 

the top of another linear axis, forming an XY plane. The third linear axis is placed along 

the Z axis, which means, all the three linear axes are mutually perpendicular to each 

other. Therefore, this arrangement can also be called Cartesian kinematic arrangement. A 

3-axis micromilling machine is capable of producing parts in 2.5-dimensions. The parts 

produced by this arrangement have depth, but the parts with contours outside of XY, XZ, 

or YZ planes cannot be produced with Cartesian kinematic arrangement. 

A micromilling machine is usually run with the help of Computer Numerically 

Controlled (CNC) systems. In CNC systems, a controller performs the trajectory 

generation from a toolpath desired by the user. The trajectory generation consists of 

determining the velocities of the motors attached to the joints. The controller performs 

this trajectory generation in real-time to compensate for the process errors. Therefore, the 

real-time trajectory generation requires reading the real-time positions of the axes and 

thus, updating the velocities of the axis motors. This process of performing the real-time 
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trajectory generation creates a trajectory loop apart from the standard velocity loop that 

operates on individual motors. This dual-loop control is illustrated in Figure 1.1. 

 

Figure 1.1: Diagram of the two control loops involved in CNC control 

 

The two controls loops as shown in Figure 1.1 do not operate at the same speed. 

The outer loop of trajectory generation operates at a slower rate than the inner velocity 

determination loop. The time required to compute the trajectories limits the rate at which 

the velocity commands are sent to the axis motors. The controller trajectory generation 

loop update time corresponds to the time required for trajectory generation, plus the 

communication delay between the controller and the machine. 

The spindles with very high speeds are used in a micromilling machine. The 

speeds of commercially-available spindles range from 50,000 RPM to 250,000 RPM. The 

spindle used in micromilling setup at Arizona State University is a high speed air spindle 

with maximum speed of 80,000 RPM. The electric spindles are also commercially 

available for micromilling process. Spindles with speeds of 1,000,000 RPM have recently 

become an active area of research [12]. However, high speed spindles require sufficiently 

high feedrates, which can be obtained by microendmills as small as 5 microns in diameter 

[10].  
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1.3 TRAJECTORY GENERATION 

The process of trajectory generation involves computing the joint velocities 

according to the desired toolpath. Trajectory generation is performed in real-time to 

compensate for the process errors. The trajectory generation controller loop update time 

depends upon the time required to generating the joint velocities. However, the non-

uniform B-spline (NURBS) definition increases the computational load on the process of 

trajectory generation, thus increasing the trajectory generation controller loop update 

time. Reducing this update time has become an active area of research [13, 14, 15]. 

 

1.4 KINEMATIC REDUNDANCY 

Path-planning in manufacturing is generating the path for the tool to follow. A 

CAM (Computer-Aided Manufacturing) software performs the path-planning by taking 

the desired part as the input and thus calculating the toolpath. In robotics, this process 

includes the process of inverse kinematics. The path-planning should not be confused 

with the trajectory planning, which is the stage after path-planning. Once the desired 

toolpath is generated by path-planning, the velocities of the tool to follow the desired 

toolpath are generated with the process of trajectory planning. In micro-manufacturing, 

the trajectory planning depends upon the number of kinematics equations to be solved.  

Path planning becomes difficult when the number of inverse kinematics equations 

are less than the total number of unknowns. This is the case when inverse kinematic 

equations are under-constrained. In robotics, this case is termed as kinematic redundancy. 

Though this case is widely addressed in robotics, it has not yet been addressed in 

micromanufacturing. A CAM software can generally handle maximum of five axes of 
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motion. These axes typically include three linear axes and two rotational axes. The 

inverse kinematic equations have to be well-constrained to be processed by the CAM 

software. A kinematically redundant robot was studied for milling at the macroscale by 

Andres et al. [16]. Six rotary joints on a linear track were addressed in this study. 

However, the study did not address the benefits of kinematic redundancy in milling, and 

did not apply to chord error in micromilling. In robotics, the kinematically redundant 

manipulator is typically used to avoid obstacles in the desired end-effector path. It is also 

used to avoid singularities in several cases. For this reason, Mi et al. [17] considered a 

kinematically redundant manipulator to make the end-effector perform specific 

macroscale operations such as welding, painting and soldering.  

As the case of kinematic redundancy occurs when the set of inverse kinematic 

equations is under-constrained, additional constraints are required to make this set well-

defined. Without the additional constraints, the CAM software would yield infinite 

number of solutions for the given set of inverse kinematic equations. These additional 

constraints can then be used for optimization of parameters. This additional constraint 

was used by Zhang and Wang [18] to develop an artificial neural control for a redundant 

manipulator for avoiding obstacles. Tatlicioglu et al. [19] used the additional constraints 

for avoiding singularity, joint limit and for bounding of impact forces and potential 

energy. 
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1.5 RESEARCH OBJECTIVES 

The enhancement of high-speed, high-precision milling at the macroscale is 

widely studied. However, the same at microscale has not yet been sufficiently studied due 

to incomplete understanding of scale effects impacting the micromilling. In order to 

improve the micromilling speed and precision, these scale effects must be properly 

addressed. This study aims to attain a new knowledge by addressing the limitations in the 

existing knowledge. More specific limitations are as follows: 

 

 Existing micromilling research does not fully take into account the chord error 

which is less significant at macroscale. 

 Existing micromilling research does not take into account the effect of kinematic 

arrangement on the high speed and high precision production. 

 

This research will discuss these limitations, and their impact on the precision and 

speed of micromilling. The following four objectives will be specifically addressed in 

this thesis. 

Objective 1: To achieve new knowledge which enhances the understanding of key 

factors affecting the high-speed, high-precision micromilling  

Objective 2: To utilize new knowledge to understand the need of a new mechanism 

which can be used to enhance high-speed, high-precision micromilling 

Objective 3: To apply the knowledge of robotics for developing a new kinematic 

arrangement for compensation of chord error in micromilling. 
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1.6 HYPOTHESES 

Reduced feedrate is one approach to achieve reduced chord error. However, 

because of high speed spindles used in micromilling, the feedrate also needs to be 

relatively high. So, it becomes necessary to introduce a way to reduce the chord error 

without negatively affecting the feedrate. 

It is hypothesized that the kinematic arrangements used at the macroscale is not 

desirable to be used at the microscale as it does not necessarily compensate for the scale 

effects. A better kinematic arrangement is introduced to compensate for the chord error. 

Productivity can be enhanced and high-speed spindles can also be used through increased 

feedrate achievable with new kinematic arrangements. 

Following three hypotheses are tested to achieve previously stated objectives: 

 

Hypothesis 1: The existing Cartesian kinematic arrangement used for macroscale and 

microscale milling is not optimal for the reduction of chord error. 

Hypothesis 2: A cylindrical kinematic arrangement reduces the chord error for some 

types of desired toolpaths.    

Hypothesis 3: Chord errors can always be reduced by introducing a kinematically 

redundant arrangement into the design of a micromilling machine 

 

1.7 THESIS OVERVIEW 

In Chapter 2, the background information about chord error is presented, and the 

information on the kinematic arrangement of present micromilling machine is given. The 
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chord error for cylindrical arrangement is analytically derived, and the trajectory planning 

for micromilling is presented in Chapter 3. Chapter 4 reports the algorithm developed to 

numerically evaluate the hypotheses through experimentation setup, and the experimental 

results are given. The results are discussed and the conclusions are made in Chapter 5. 

Future work is outlined in Chapter 6. Then, the references are included, which is 

followed by an appendix that reports the code developed to perform numerical 

simulations. 
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CHAPTER 2 

BACKGROUND INFORMATION 

This chapter presents the details of the concepts that are necessary to understand 

the analysis and experimentation performed in this research. Section 2.1 defines the 

concept of chord error, the key process error addressed in this thesis. Section 2.2 

discusses the kinematic arrangement that is currently being used in industry for 

micromilling. This section also discusses the dimension of the joint space and the work 

space. Finally, the concept of kinematic redundancy is addressed and the significance of 

kinematically redundant arrangement is also discussed. 

 

2.1 CHORD ERROR 

In the process of trajectory generation, the velocities of the joints are calculated 

during the process of machining. As the velocities of the joints are constant within the 

sampling interval, the endmill in Cartesian arrangement traverses a linear path within that 

interval as shown in Figure 2.1. Figure 2.1 also illustrates the chord error along with other 

machining errors in a micromilling operation.  
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Figure 2.1: Chord Error and Interpolation Error in a micromilling toolpath [15] 

 

According to Figure 2.1, an interpolated toolpath is generated from the desired 

tool cutter locations. This interpolated toolpath then serves as the desired toolpath for the 

endmill. The actual toolpath shown in the Figure 2.1 is the toolpath traversed by the 

endmill in Cartesian arrangement in micromilling operation. 

Stoker in 1969 [21] was the first person to define the chord error in geometry. 

Stoker’s definition of chord error was then adopted in Cartesian arrangement milling 

operation by Sun et al in 2006 [22]. Chord error is defined as the maximum Euclidean 

distance between the interpolated toolpath and the actual toolpath. 

The chord error 𝛿 incurred in Cartesian arrangement micromilling operation can 

be calculated according to Equation 2.1 as determined by Sun et al [22], where 𝑇𝑠 is the 

sampling time, 𝜌 is the radius of curvature of the desired toolpath, and 𝑓 is the feedrate. 

 

𝛿 = 𝜌 − √𝜌2 − 
𝑓2𝑇𝑠2

4
  

 

(2.1) 
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From Equation 2.1, it can be seen that the chord error can be reduced- 

 By reducing the radius of curvature of the desired toolpath, 

 By reducing the machining feedrate, and/or 

 By reducing the sampling time. 

Apart from the relation in Equation 2.1, the feedrate is directly proportional to the 

speed of the spindle that holds the tool, and the feedrate has to be sufficiently high to 

maximize the tool life. Reduced feedrate also reduces the production rate, which is also 

not desirable. 

Feedrate optimization is one of the techniques to achieve reduced error. This 

technique is well addressed in the literature [20, 22, 23, 24]. This literature mainly 

addresses the milling operation at macroscale. According to this technique, the feedrate 

can be reduced to get the chord error within the specified tolerances. As an upper limit on 

the chord error is imposed, the maximum feedrate depends only upon the radius of 

curvature of the desired toolpath. Equation 2.2 [20] gives the maximum feedrate 𝑓𝑚𝑎𝑥 

that can be reached to get the chord error below 𝛿𝑚𝑎𝑥. The variables 𝜌 and 𝑇𝑠 are the 

radius of curvature of the desired toolpath, and the system’s sampling time respectively. 

 
𝑓𝑚𝑎𝑥 = 

2

𝑇𝑠
 √𝜌2 − (𝜌 − 𝛿𝑚𝑎𝑥)2  

(2.2) 

This study proposes that the maximum feedrate not only depends upon the radius 

of curvature, sampling time and maximum chord error, but also depends upon the 

kinematic arrangement of the operation. This study concentrates on increasing the 

feedrate without affecting the chord error, by introducing the Cylindrical and 

kinematically redundant arrangements. 
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2.2 KINEMATICS 

Kinematics of a mechanism involves the mechanism which determines the 

mechanical relation between the endmill and the workpiece. The standard Cartesian 

kinematic arrangement for a three-axis micromilling machine is as shown in Figure 2.2. 

 

 

Figure 2.2: Standard Cartesian kinematic arrangement for the micromilling machine 

 

The linear joints along X and Y axes are placed orthogonal to each other and in 

series, as shown in Figure 2.2. The workpiece is then placed on the top joint which is 

along the X-axis. Another linear joint along the Z-axis is attached in parallel with the 

series of the joints along X and Y axes. Then the endmill through the spindle is attached 

to this Z-axis. The endmill is not shown here for the sake of simplicity. 
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In the arrangement shown in Figure 2.2, the joint space consists of three linear 

joints, therefore it has three degrees of freedom. On the other hand, the workspace i.e. the 

space in which endmill moves is also three-dimensional. The endmill also rotates about 

its own axis because of a rotary joint present in the spindle. However, this rotation and 

the joint are not taken into the account as they do not affect the positioning of the endmill 

relative to the workpiece. 

If Q and R denote the joint and workspaces respectively, then the forward 

kinematic relation, f can be represented by Equation 2.3. 

 𝑓: 𝑄 → 𝑅 (2.3) 

The three-dimensional motion of the endmill can be easily controlled using the 

three joints, as there are three unknowns for three joints and three equations for desired 

toolpath in XYZ space. Therefore, the Equation 2.3 for this motion points out a one-to-

one mapping. 

 Multiaxis machining is a very commonly used process in manufacturing, in which 

there are 4 or more axes to rotate the tool and/or the table to which the workpiece is 

fixed. However, multiaxis machining is not considered as a kinematically redundant 

process, as the number of axes never exceeds the dimension of the workspace. Therefore, 

the 4-axis and 5-axis kinematic arrangements which are very common in the industries 

meet the main purpose of altering the position and/or orientation of the workpiece 

relative to the tool after completion of a machining operation. The automated alteration of 

the workpiece position and/or orientation reduces the amount of labor work. 

If another joint is introduced in 3-axis mechanism, the dimension of the joint 

space, Q changes from three to four. If this extra joint does not lead to a motion that 
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changes the dimension of the workspace, R remains same as three. Therefore the 

mechanism is said to be kinematically redundant. In the forward kinematic equations, 

there are now four unknowns and three equations, hence, it leads to infinitely many 

solutions for the joint variables. The solution set for the joint variables can be made 

unique, if one more independent equation is introduced. This additional equation is 

referred as a constraint, which is usually used to optimize a parameter. This is explained 

in mathematical form with the help of Equation 2.4. Matrix 𝐴 is a 𝑛 ∗ 𝑚 rectangular 

matrix with rank 𝑛 therefore 𝑚 > 𝑛. 𝑋 is a column matrix of the unknowns. Therefore, 

matrix 𝑋 has the dimension 𝑚 ∗ 1. The matrix 𝐵 then has dimension 𝑛 ∗ 1. Then 

Equation 2.4 represents the matrix form for solving linear equations. 

 𝐴𝑛∗𝑚𝑋𝑚∗1 = 𝐵𝑛∗1 (2.4) 

Equation 2.4 leads to infinitely many solutions. Therefore, there are infinitely 

many solutions to the set of equations. If 𝑚 − 𝑛 independent linear equations are 

introduced in matrix 𝐴 in Equation 2.4, its dimension and rank then become 𝑚 ∗ 𝑚 and 

𝑚 respectively, and hence the dimension of matrix 𝐵 becomes 𝑚 ∗ 1. This leads to the 

set of linear equations to have unique solution. Therefore, in kinematics, 𝑚 − 𝑛 

independent constraints have to be introduced to make the joint velocities have unique 

values.  
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CHAPTER 3 

ANALYSIS 

This chapter will present the concept of kinematic arrangements in detail. It will 

then present the kinematic arrangements that are hypothesized for this research. It will 

then define the chord error and present the analytical derivation of chord error for a 

micromilling machine which consists of a cylindrical joint and a linear joint which lies on 

any diameter of the rotary joint. First, the terminology to be utilized in derivation is 

defined. Next, the mathematical definitions are presented for key elements of the 

terminology. An expression for chord error is then derived. Finally, trajectory planning 

for all the kinematic arrangements considered in this analysis is addressed.  

 

3.1 KINEMATIC ARRANGEMENTS 

It has been hypothesized in this research that the kinematic arrangement plays an 

important role with the accuracy of the toolpath. The kinematic arrangement for the 

standard Cartesian micromilling machine as was shown in Figure 2.2 in the last chapter 

can be altered by changing the number of joints, by replacing the linear joints by 

rotational joints, or by both. The joints in a micromilling machine are connected to each 

other in series or in parallel. So, another way of altering the kinematic arrangement is to 

change the way in which the joints are connected.  

One example of an alternate kinematic arrangement for a micromilling machine is 

to replace the linear Y axis with a rotational joint, as shown in Figure 3.1.  
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Figure 3.1: Cylindrical kinematic arrangement for a micromilling machine 

 

It is hypothesized here that one of the benefits of an alternate kinematic 

arrangement is a variation in the type of toolpath achievable by the machine. 

The standard Cartesian kinematic arrangement consists of only linear joints. If the 

joint velocities are held constant, the endmill can only trace a path that is a straight line. 

In contrast, the micro-parts that can be manufactured by micromilling often consist of 

curved surfaces. So, in the two-dimensional case, micro-parts can be said to have 

curvilinear edges. Thus, the curvilinear edges are interpolated by the Cartesian 

micromilling machine as straight lines between any two subsequent sampling points. 
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In the alternate cylindrical kinematic arrangement shown in Figure 3.1, the 

endmill can be made to follow a certain curvilinear path. This curvilinear path is referred 

to as an Archimedean spiral. The cylindrical parametric coordinates of a point on an 

Archimedean spiral are given by Equations 3.1 and 3.2. 

 𝑟 = 𝑢 (3.1) 

 𝜃 = 𝑎 + 𝑏 ∗ 𝑢 (3.2) 

Figure 3.2 shows an example of Archimedean spiral drawn between two points 

(2,2) and (5,1).  

 

Figure 3.2: Archimedean Spiral 

In the example shown in Figure3.2, the center of the spiral is at the origin (0,0). A 

position vector is a vector that is drawn from the origin to a given point. If the 

magnitudes of position vectors drawn to two given points are equal, the Archimedean 

spiral is equivalent to a circular arc.  If the magnitudes of the position vectors are 
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different and the slopes of the position vectors are same, the Archimedean spiral is 

equivalent to a straight line.  

The standard Cartesian Arrangement and the new cylindrical arrangement can be 

combined into a single machine with a kinematically redundant arrangement, as shown in 

Figure 3.3. 

 

Figure 3.3: Proposed kinematically redundant micromilling machine 

 

The proposed kinematically redundant arrangement has three linear joints and one 

rotary joint, whereas the dimension of the task space remains to be three. Thus, the 

arrangement is kinematically redundant. In this arrangement, the endmill is attached to 

 



  20 

the linear joint along the Z-axis which is attached to another linear joint which is along 

X-axis. This joint is then attached to one more linear joint which is along Y-axis, forming 

a standard Gantry mechanism. The set of all these linear joints is then placed in parallel 

with a rotary joint. The workpiece is placed on this rotary joint. 

As discussed in Section 2.2, an additional dimension of the joint space leads to 

introduction of a free parameter which allows for an additional constraint equation. The 

constraint equation in this research is the chord error equation. 

 

3.2 DEFINITION OF CHORD ERROR 

The concept of chord error is well-defined in the literature for the standard 

Cartesian kinematic arrangement.  In order to evaluate the effectiveness of the proposed 

alternate kinematic arrangements, the concept of chord error for the new arrangements 

has to first be defined.   

In the definition of chord error, the term “Desired toolpath” is defined as the 

curve the endmill is supposed to follow. This desired toolpath is discretized to get the 

sampling points. These points on the desired toolpath are equidistant along the curve.  

Because of limitations of the hardware as well as the kinematic arrangement, the endmill 

fails to exactly follow the desired toolpath. So, the “actual toolpath” can be defined as the 

path followed by the endmill. “Chord error” is then defined as the maximum Euclidean 

distance between the desired and actual toolpaths between two subsequent sampling 

points, such that the chord error segment is always perpendicular to the actual toolpath. 

The desired and actual toolpaths along with four subsequent sampling points and chord 

error are illustrated in Figure 3.4. 
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Figure 3.4: Desired toolpath, actual toolpath, sampling instants and chord error 

 

In both of the proposed kinematic arrangements, one of the axes used in the 

kinematic arrangement is rotary. Thus, the actual toolpath is not necessarily a straight line 

between two subsequent sampling instants.   

 

3.3 ANALYTICAL DERIVATION OF CHORD ERROR FOR CYLINDRICAL 

MICROMILLING MACHINE 

In this section, the chord error is analytically derived for the Cylindrical 

Arrangement. The axes velocities are assumed to be constant between two subsequent 

sampling points. The linear axis velocity is denoted by 𝑟̇, whereas that of the rotary axis 

is denoted by 𝜃̇. The variable T is the sampling time of the control system. The sampling 

time of the control system depends on the capability of the hardware, the efficiency of the 

programming, and the complexity of the calculations that have to be performed between 

sampling points. Figure 3.5 shows the desired toolpath and the actual toolpath along with 

the intermediate points. 
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Figure 3.5: Desired toolpath, actual toolpath and intermediate points 

 

The variables (𝑟1,𝜃1) and (𝑟2,𝜃2) are the polar coordinates of sampling points 1 

and 2, then 𝑟̇ and 𝜃̇ are given by Equations 3.3 and 3.4 respectively. 

 𝑟̇ =  
𝑟2 − 𝑟1

𝑇
 

(3.3) 

 
𝜃̇ =  

𝜃2 − 𝜃1

𝑇
 

(3.4) 

The polar coordinates of a point on the toolpath at any time instant 𝑡𝑖, between 

subsequent sampling points can be defined as in Equations 3.5 and 3.6. 

 𝑟(𝑡𝑖) = 𝑟1 + 𝑡𝑖  𝑟̇ (3.5) 

 𝜃(𝑡𝑖) = 𝜃1 + 𝑡𝑖 𝜃̇ (3.6) 

The Cartesian coordinates of the same point can be written according to Equations 

3.7 and 3.8. 

 𝑥(𝑡𝑖) = 𝑟(𝑡𝑖)cos(𝜃(𝑡𝑖)) (3.7) 

s=1 

(𝑟1,𝜃1) 

 

s=2 

(𝑟2,𝜃2) 

Desired  

Toolpath (c) 

Actual Toolpath (t) 

Sampling point 

Instances corresponding to i=1,2,…N 

c1 

c2 

t1 
t2 

cN 

tN 
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 𝑦(𝑡𝑖) = 𝑟(𝑡𝑖)sin(𝜃(𝑡𝑖)) (3.8) 

The 𝑟(𝑡𝑖) and 𝜃(𝑡𝑖) from Equations 3.5 and 3.6 respectively can be substituted 

into Equations 3.7 and 3.8 to get Equations 3.9 and 3.10 respectively. 

 𝑥(𝑡𝑖) = (𝑟1 + 𝑡𝑖 𝑟̇)cos(𝜃1 + 𝑡𝑖 𝜃̇) (3.9) 

 𝑦(𝑡𝑖) = (𝑟1 + 𝑡𝑖  𝑟̇) sin(𝜃1 + 𝑡𝑖 𝜃̇) (3.10) 

As the chord error segment is perpendicular to the toolpath, its equation is derived 

by finding out its slope. The partial derivatives of Cartesian coordinates given by 

Equations 3.9 and 3.10 with respect to 𝑡𝑖 are given by Equations 3.11 and 3.12 

respectively. 

 𝜕𝑥

𝜕𝑡𝑖
= −𝜃̇(𝑟1 + 𝑡𝑖 𝑟̇) sin(𝜃1 + 𝑡𝑖  𝜃̇) + 𝑟̇ cos (𝜃1 + 𝑡𝑖  𝜃̇) 

(3.11) 

 𝜕𝑦

𝜕𝑡𝑖
= 𝜃̇(𝑟1 + 𝑡𝑖  𝑟̇) cos(𝜃1 + 𝑡𝑖 𝜃̇) + 𝑟̇ sin (𝜃1 + 𝑡𝑖 𝜃̇) 

(3.12) 

Now, the slope m of the chord error segment is given by Equation 3.13 

 

𝑚 =
−

𝜕𝑥
𝜕𝑡𝑖

    
𝜕𝑦
𝜕𝑡𝑖

 

 

(3.13) 

Partial derivatives given by Equations 3.11 and 3.12 can be substituted into 

Equation 3.13 to get the slope represented by Equation 3.14. 

𝑚 = 
𝜃̇(𝑟1 + 𝑡𝑖 𝑟̇) sin(𝜃1 + 𝑡𝑖  𝜃̇) − 𝑟̇ cos (𝜃1 + 𝑡𝑖  𝜃̇)

𝜃̇(𝑟1 + 𝑡𝑖 𝑟̇) cos(𝜃1 + 𝑡𝑖 𝜃̇) + 𝑟̇ sin (𝜃1 + 𝑡𝑖  𝜃̇)
 

(3.14) 

The general equation of the chord error segment can be written as Equation 3.15. 

𝑦 = 𝑚𝑥 + 𝑏 (3.15) 
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The line given by Equation 3.15 passes through the point whose coordinates are 

given by Equations 3.9 and 3.10.  

𝑏 = 𝑦(𝑡𝑖) − 𝑚𝑥(𝑡𝑖) (3.16) 

Let (𝑥(𝑐𝑖), 𝑦(𝑐𝑖)) be the point on the curve which is closest to a point 

(𝑥(𝑡𝑖), 𝑦(𝑡𝑖)) which is given by Equations 3.9 and 3.10. Therefore, the chord error 

segment also passes through (𝑥(𝑐𝑖), 𝑡(𝑐𝑖)). 

𝑦(𝑐𝑖) = 𝑚𝑥(𝑐𝑖) + 𝑦(𝑡𝑖) − 𝑚𝑥(𝑡𝑖) (3.17) 

Therefore, the chord error which will be denoted (𝛿𝑖) at any time instant 𝑡𝑖, is 

given by Equation 3.18. 

𝛿𝑖 = √(𝑥(𝑐𝑖) − 𝑥(𝑡𝑖))2 + (𝑦(𝑐𝑖) − 𝑦(𝑡𝑖))2 (3.18) 

Equation 3.17 is then used to substitute the value of 𝑦(𝑐𝑖) into Equation 3.18. 

𝛿𝑖 = √(𝑥(𝑐𝑖) − 𝑥(𝑡𝑖))2 + (𝑚𝑥(𝑐𝑖) + 𝑦(𝑡𝑖) − 𝑚𝑥(𝑡𝑖) − 𝑦(𝑡𝑖))2 (3.19) 

Equation 3.19 is simplified to get Equation 3.20. 

𝛿𝑖 = √(𝑥(𝑐𝑖) − 𝑥(𝑡𝑖))2 + 𝑚2(𝑥(𝑐𝑖) − 𝑥(𝑡𝑖))2 (3.20) 

Equation 3.20 can be further simplified to get Equation 3.21. 

𝛿𝑖 = √(1 + 𝑚2)(𝑥(𝑐𝑖) − 𝑥(𝑡𝑖)) (3.21) 

At sampling point 1 as illustrated in Figure 3.4, 𝑥(𝑐𝑖)= 𝑥(𝑡𝑖) and 𝑦(𝑐𝑖)= 𝑦(𝑡𝑖). 

Also, 𝑡=c=0 can be assumed at the same point, as it is the starting point of the toolpath. 

The values of the points (x, y) at the toolpath starting point is defined in Equations 3.22 

and 3.23. 

 𝑥(𝑐0) = 𝑟1 cos 𝜃1 (3.22) 

 𝑦(𝑐0) = 𝑟1 sin 𝜃1 (3.23) 
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Therefore, at any time instant 𝑡𝑖, the coordinates of a point on the curve can be 

written according to the Equation 3.24 and Equation 3.25. 

 

𝑥(𝑐𝑖) = (𝑟1 + ∫
𝜕𝑟(𝑐)

𝜕𝑐

𝑐𝑖

0

 𝑑𝑐) cos(𝜃1 + ∫
𝜕𝜃(𝑐)

𝜕𝑐

𝑐𝑖

0

 𝑑𝑐) 

 

(3.24) 

 

𝑦(𝑐𝑖) = (𝑟1 + ∫
𝜕𝑟(𝑐)

𝜕𝑐

𝑐𝑖

0

 𝑑𝑐) sin(𝜃1 + ∫
𝜕𝜃(𝑐)

𝜕𝑐

𝑐𝑖

0

 𝑑𝑐) 

 

(3.25) 

Equation 3.24 is then used to substitute 𝑥(𝑐𝑖) into Equation 3.21 to get the chord 

error at instant 𝑡𝑖 which is given by Equation 3.26. 

 

𝛿𝑖 = √1 + 𝑚2  ((𝑟1 + ∫
𝜕𝑟(𝑐)

𝜕𝑐

𝑐𝑖

0

 𝑑𝑐) cos(𝜃1 + ∫
𝜕𝜃(𝑐)

𝜕𝑐

𝑐𝑖

0

 𝑑𝑐)                

− (𝑟1 + 𝑟̇𝑡𝑖)𝑐𝑜𝑠(𝜃1 + 𝜃̇𝑡𝑖))

 

 

 

(3.26) 

The maximum of 𝛿𝑖s of all the instants between two sampling points is termed as 

the chord error. This maximum δ is the expression for chord error for a cylindrical 

coordinate system. Equation 3.26 gives a very complex expression. However, it can be 

inferred that this expression gives zero value for the case of circular desired toolpath. For 

a circular arc, 
𝜕𝑟(𝑐)

𝜕𝑐
 and 𝑟̇ are zero, and ∫

𝜕𝜃(𝑐)

𝜕𝑐

𝑐𝑖

0
 𝑑𝑐=𝜃̇𝑡𝑖, which lead to zero chord error 

for circular arc. As it is difficult to conclude anything about other types of curves, the 

necessity of numerical simulation arises.  
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3.4 TRAJECTORY PLANNING 

 Trajectory planning involves determining the velocity of the joints. The time 

taken to execute a trajectory between two consecutive sampling points is the sampling 

time of the control system. In this study, it is assumed that the joint motors have very 

high acceleration. The stages being used in the micromilling setup at Arizona State 

University have acceleration of 1g, so the total of acceleration and deceleration time 

within a sampling interval for these motors is less than 5% of the sampling time. 

Therefore, the velocities of the joints are assumed to be constant throughout a sampling 

interval.  

 

3.4.1 Determination of sampling points 

 Sampling points are specific points on the desired toolpath which are recognized 

by the system in an interval that corresponds to the sampling time. Sampling points are 

defined by the feedrate of the machine. If the sampling points are chosen far apart, they 

will correspond to a large feedrate, and vice versa. To keep the chip thickness constant, 

and hence to stabilize the machining process, the feedrate is kept as close to a constant 

value as possible. 

 The curve equation is the only information needed about the desired toolpath for 

trajectory generation. The convenient way to input a curve is in its parameterized form. 

The parameter of the curve can be used to determine the Cartesian location of the curve at 

each sampling point. In order to keep the feedrate approximately constant, the sampling 

points must be evenly spaced along the curve. So, the curve is parameterized by arc-

length prior to the trajectory generation stage. 
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 The parametric equation of the curve is represented by 𝑟(𝑡), where 𝑡 is called the 

curve parameter. Then, 𝑟̇(𝑡) represents the derivative of 𝑟(𝑡) with respect to the 

parameter 𝑡. The length of the arc of the curve between 𝑡 = 0 to 𝑡 is represented by 𝑠. 

The process of parameterization by arc length is to express the curve as a function of the 

arc length 𝑠, rather than the general parameter 𝑡. 

Figure 3.6 shows the flow diagram for parameterization of the curve by arc-

length. 
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Figure 3.6: Flow-Diagram for parameterization of the curve equation by arc-length 

 

 

Input the parametric 

curve equation:  

 𝑟(𝑡) =< 𝑥(𝑡),  𝑦(𝑡) > 

Differentiate 𝑟(𝑡) with respect to t: 

 𝑟̇(𝑡) 

Calculate the length of the arc between 0 

and t:  

𝑠 = ∫ |𝑟̇(𝑡)|
𝑡

0

𝑑𝑡 

Invert the mapping to get 

  𝑡 = 𝑓(𝑠) 

Substitute this t in the original curve 

equation:  

 𝑟(𝑓(𝑠)) =< 𝑥(𝑓(𝑠)),  𝑦(𝑓(𝑠)) > 

Simplify to get the arc parameterized by 

arc-length: 

 𝑟(𝑠) =< 𝑥(𝑠),  𝑦(𝑠) > 
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The initial stage in parameterization of the curve involves inputting the 𝑟(𝑡). 

Once 𝑟(𝑡) is inputted, the next task is to differentiate it with respect to 𝑡 to get 𝑟̇(𝑡). 

Then, 𝑟̇(𝑡) is integrated with respect to 𝑡 with limits from 0 to 𝑡. This finite integral gives 

the relation of the arc-length 𝑠 to the parameter t. The mapping can be inverted to get 𝑡 as 

function of 𝑠. Then the 𝑡 = 𝑓(𝑠) can be substituted in original equation of the curve to 

get the equation parameterized by arc-length.   

Once the desired toolpath curve is parameterized by arc-length, the next task is to 

determine the coordinates of the sampling points. Figure 3.7 presents a flow diagram for 

determining the x and y coordinates of sampling points. The variable 𝑇𝑖𝑚𝑒 in the Figure 

3.7 is denotes the time for which the numerical simulation for calculating the chord error 

is run. The variable 𝑇 is the sampling time that depends upon the CNC systems. Two 

variable arrays 𝑋(𝑖) and 𝑌(𝑖) represent the x and y coordinates of the sampling points 

respectively. The total number of sampling points is finally represented by the variable- 

𝑁.  
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Figure 3.7: Flow Diagram for determining x and y coordinates of sampling points 

 

Initialize 𝑠 = 0 and 𝑖 = 1 

  

Form two arrays for x and y values at 

the sampling points 

𝑋(𝑖) = 𝑥(𝑠) 

𝑌(𝑖) = 𝑦(𝑠) 
  

Increment t by sampling time and i 

by 1: 𝑠 = 𝑠 + 𝑓 ∗ 𝑇 and 𝑖 = 𝑖 + 1 

Check if s is less 

than total arc 

length: 

𝑠 <= 𝑓 ∗ 𝑇𝑖𝑚𝑒 

Total Number of sampling points,   

N: 𝑁 = 𝑖 
  

Input the Feedrate 

(𝑓), Sampling time 

(𝑇) and Total 

simulation time 

(𝑇𝑖𝑚𝑒)  

YES 

NO 
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 First, the feedrate, the total simulation time and the sampling time are inputted. 

Two arrays 𝑋(𝑖) and 𝑌(𝑖) are formed to store the x and y coordinates of the sampling 

points. The curve parameter is increased by the feedrate times the sampling time after 

every loop. The curve parameter is kept increasing until it reaches the total curve length, 

i.e. feedrate times total simulation time. The total number of sampling points is stored in 

the variable 𝑁 which was updated with the help of a counter. 

 

3.4.2 Determination of joint velocities 

 Once the sampling points are determined, the next task is to determine the joint 

velocities at those points which is commonly known as trajectory generation. The joint 

velocities at each point are chosen in such a way that the endmill reaches the next 

sampling point after one sampling time. Therefore, these velocities depend upon the 

sampling time apart from the curve. In this section, the method of determining joint 

velocities for standard, cylindrical and kinematically redundant arrangements are 

described. 

3.4.2.1 Determination of joint velocities for Standard Kinematic Arrangement 

The standard kinematic arrangement used for micromilling is a Cartesian 

arrangement as was illustrated in Figure 2.1. The joints involved in this arrangement are 

the linear joints along X, Y and Z axes. As this research concentrates on geometry 

involved in X-Y plane, commonly known as 2.5-D in manufacturing, the linear joint 

along Z axis is neglected in this analysis.  

The joint velocities along X and Y axes are represented by two arrays 𝑉𝑋(𝑖) and 

𝑉𝑌(𝑖) respectively. The variable 𝑖 corresponds to a counter.    
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Figure 3.8 shows the flow diagram for determining the velocities of the joints 

along X and Y axes at the sampling points in standard kinematic arrangement.  

First, the sampling time is inputted. Then with the help of two arrays 𝑋(𝑖) and 

𝑌(𝑖), the velocities of the two linear joints are calculated. At every sampling point, the 

velocity of the linear axis along X axis is equal to difference of x coordinate of next 

sampling point and that at the current point, whole divided by the sampling time. The 

velocity of linear axis along Y axis is calculated in similar way. These two velocities are 

stored in two arrays 𝑉𝑋(𝑖) and 𝑉𝑌(𝑖) respectively. The loop is updated with the curve 

parameter 𝑠 and the counter 𝑖 until the velocities at all sampling points are determined.   
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Figure 3.8: Flow-Diagram for determining joint velocities for standard kinematic 

arrangement at the sampling points 
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3.4.2.2 Determination of joint velocities for Cylindrical Kinematic Arrangement 

The cylindrical kinematic arrangement used for micromilling was shown in 

Figure 3.1. The Z axis is neglected in this analysis for the same reason as explained in 

Section 4.1.2.1. The cylindrical coordinate of the sampling points can be written 

according to Equations (4.1) and (4.2), where 𝑅(𝑖), 𝑇𝐻(𝑖) are the cylindrical coordinates 

of the sampling point i and tan−1(𝑋(𝑖), 𝑌(𝑖)) is the two-argument arctangent. 

 𝑅(𝑖) = √𝑋(𝑖)2 + 𝑌(𝑖)2 (4.1) 

 𝑇𝐻(𝑖) = tan−1(𝑋(𝑖), 𝑌(𝑖)) (4.2) 

The velocity of the rotary joint at the sampling points is represented by an array 

𝑉𝑇𝐻(𝑖), and that of the radial linear axis represented by 𝑉𝑅(𝑖). Figure 3.9 shows the 

flow diagram for determining the velocities of the rotary joint and the linear joint in the 

cylindrical kinematic arrangement shown in Figure 3.1.  
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Figure 3.9: Flow-Diagram for determining joint velocities for Cylindrical kinematic 

arrangement at the sampling points 
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The process is similar to that of standard kinematic arrangement, however, the 

axes involved in this case are different from those in the case of the standard kinematic 

arrangement. The velocities of the axes are chosen according to Figure 3.8 in such a way 

that the endmill reaches the next sampling point in a time equal to the sampling time. The 

velocities of rotary and linear joints at the sampling points are stored in the arrays 

𝑉𝑇𝐻(𝑖) and 𝑉𝑅(𝑖) respectively. 

 

3.4.3 Trajectory planning of Kinematically Redundant Arrangement 

 For the trajectory planning of kinematically redundant arrangement, as the 

feedrate is constant, same sampling points as determined in Section 3.4.1 are considered. 

However, the kinematically redundant arrangement involves more axes than that in each 

of the standard and cylindrical kinematic arrangements. Therefore, the joint velocities 

determination is not as simple as that presented in Section 3.4.2. 

In kinematically redundant arrangement, both the linear joints, along X and Y 

axes and the cylindrical joint about Z axis are working simultaneously. This arrangement 

assumes: 

1. The linear joints are attached to the endmill which is at the top of the system. 

2. The cylindrical joint is attached to the workpiece. 

Figure 3.10 shows two adjacent sampling points, and an intermediate point A.  
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Figure 3.10: Start and End points, Desired Toolpath ‘C’ with Intermediate point A  

 

In Figure 3.10, Point 1 is the starting point of the path, the endmill is right above 

point 1 initially. The desired toolpath is shown by C. This approach proposes that the 

endmill travels to point A from point 1 with the help of two linear joints. At the same 

time, the rotary joint holding the workpiece rotates point 2 such that it overlaps with point 

A. Note that the point A is assumed to be fixed with x-y plane, and it does not move with 

any of the three joints.   

When the point 2 on the workpiece overlaps point A on the fixed frame, the 

endmill completes the path as it has reached point 2 from point 1. In this approach, point 

A is a free choice. It will be shown later in Chapter 4 that the shape of the toolpath 

depends on the choice of point A. So, this choice is used to minimize the chord error. 

Figure 3.11 explains joint velocities for kinematically redundant arrangement. 
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Figure 3.11: Flow-Diagram for determining joint velocities for Kinematically Redundant 

Arrangement at the sampling points 
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 The joint velocities in a sampling interval depend on the consecutive sampling 

points as well as the intermediate point A. The loop of determining the joint velocities is 

continued until all sampling intervals are covered. 
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CHAPTER 4 

NUMERICAL SIMULATION 

 In previous chapters, the analytical facet of the effects of the kinematic 

arrangements on the chord error was addressed. This chapter presents a numerical 

simulation used to evaluate the chord error for standard, cylindrical and redundant 

kinematic arrangements. First, the simulation setup is explained by listing all the 

intermediate stages. The chapter also explains the algorithm involved in the intermediate 

stages. After the numerical simulation setup is addressed, a detailed explanation is given 

on the desired toolpath and parameters selections for the numerical experiments 

performed. Finally, the experimental results of the evaluation of the chord errors are 

presented. 

 

4.1 SIMULATION SETUP 

 This section presents the flow chart and algorithm to determine the actual toolpath 

by taking the trajectory planning results into account. Once the actual toolpath is 

determined, this section explains the algorithm for determining the chord error for each 

sampling interval. The algorithms are presented in form flow charts for better 

visualization.  All the stages in the numerical simulation are shown in Figure 4.1. 
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Figure 4.1: All the stages in the numerical simulation 

 

 First, all the parameters including desired toolpath equation, sampling time, 

feedrate and discrete time are inputted. The joint velocities are calculated during 

trajectory planning as explained in Section 3.4. The trajectory planning is done in real-

time, during the process of machining. However, for the simulation purposes, the 

trajectory planning is performed ahead of all other stages in the numerical simulation. 

The joint velocities are then used to determine the actual toolpaths within all the sampling 
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intervals. Once the actual toolpath is determined, the chord errors are calculated for all 

the sampling intervals.  

 

4.1.1 Determination of Desired Toolpath between two sampling points 

 Once the joint velocities are determined at the sampling points, the next task is to 

find out the desired and actual toolpath within two sampling points. In numerical 

simulation, the desired or actual toolpath need not be determined at all intermediate 

points, rather it is desirable to divide a sampling interval further into several sub-

intervals. As one sampling interval corresponds to a sampling time 𝑇, another discrete 

time 𝑇𝑑 is chosen corresponding to small discrete instants. The variable 𝑇𝑑 is chosen to 

be fifty times smaller than the sampling time 𝑇, the reason behind this will be explained 

later in this chapter. 

This section explains the determination of the desired toolpath between the 

consecutive sampling points. The desired toolpath determination process is independent 

of the kinematic arrangement. So, this algorithm remains same for all the arrangements.  

 Figure 4.2 shows the flow diagram for determining the desired toolpath between 

two consecutive sampling points. 
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Figure 4.2: Flow-Diagram for determining the desired toolpath between two sampling 

points 
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 First, the sampling time, discrete time and the original parametric desired toolpath 

equation is inputted. The number of sub-intervals is then determined with the help of total 

simulation time and sampling time. Once the parameters at the sub-intervals are known, 

with the help of desired toolpath equation, the desired toolpath position can be 

determined at those discrete points. The coordinates of sampling points were determined 

in Section 4.1.1. Starting with a sampling point, the desired toolpath parameter can be 

increased by discrete time until it reaches next sampling point. 

 

4.1.2 Determination of Endmill Position between two sampling points 

In this section, endmill position at discrete points between two consecutive 

sampling points is determined. The joint velocities are held constant between two 

consecutive sampling points. The system can sense the desired joint velocities after every 

sampling time. The algorithm for determination of endmill position within a sampling 

interval is not same for all the three kinematic arrangements.  

4.1.2.1 Determination of endmill position for Standard Kinematic Arrangement 

 The standard kinematic arrangement consists of all linear joints. Because all joint 

velocities must be constant between two consecutive sampling points, the endmill 

traverses a straight line between two consecutive sampling points.  

 Figure 4.3 shows the flow diagram for determining the endmill position at the 

discrete points between any two consecutive sampling points. 
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Figure 4.3: Flow-Diagram for determining the endmill position between two sampling 

points for standard kinematic arrangement 
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 First, the number of sub-intervals with the help of total simulation time and the 

sampling time is determined. As the velocities of the linear joints along X and Y axes are 

constants, equation of motion is then applied separately to both X and Y directions to get 

X and Y coordinates of the discrete points. The process is repeated until X and Y 

coordinates of the endmill position at all discrete points are determined. 

4.1.2.2 Determination of endmill position for Cylindrical Arrangement 

 The Cylindrical Kinematic Arrangement consists of a rotary joint and a linear 

joint over it. The endmill position at every discrete point is determined by finding out the 

cylindrical coordinates at that point. The rotary and the linear joint have constant 

velocities within a sampling interval. The cylindrical coordinates are updated with the 

help of equation of motion. 
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Figure 4.4: Flow-Diagram for determining the endmill position between two sampling 

points for cylindrical kinematic arrangement 
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Figure 4.4 shows the flow diagram for determination of the endmill position 

within a sampling interval for cylindrical kinematic arrangement. First, the number of 

sub-intervals is determined. Equation of motion is then applied separately for the motion 

of both the rotary and linear joints to get R and TH coordinates of the discrete points. The 

process is repeated until R and TH coordinates of the endmill position at all discrete 

points are determined. 

4.1.2.3 Determination of endmill position for Kinematically Redundant Arrangement 

In this arrangement, both the endmill and workpiece are in motion. So, to obtain 

the toolpath on workpiece, relative motion has to be addressed. For the purpose of 

obtaining the relative motion in numerical approach, the rotary joint is kept motionless, 

and only two linear joints attached the endmill are moved. At each discrete point, the 

toolpath is shifted by rotating it by -𝜃 as if the rotary joint is rotated by 𝜃.  

This is illustrated in Figure 4.5 which shows the flow diagram for determining the 

endmill position between two sampling points for the kinematically redundant 

arrangement. 
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Figure 4.5: Flow-Diagram for determining the endmill position between two sampling 

points for kinematically redundant arrangement 
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4.1.3 Determination of chord error 

 This section presents the algorithm for determining the chord error as defined in 

Chapter 3. The chord error depends on the desired toolpath and endmill position between 

two consecutive sampling points. So, this algorithm is unique for all the three kinematic 

arrangements.  

 The goal of this algorithm is to find the length of the longest perpendicular 

distance between the desired and actual toolpaths between two sampling points. Figure 

4.6 shows the desired and actual toolpaths drawn between two sampling points: s=1 and 

s=2. 

 

Figure 4.6: Desired and actual toolpaths between two chosen sampling points 

 

Now, the algorithm is developed to find the chord error, and illustrative plots for 

the above case are presented. Figure 4.7 shows the flow diagram for the first step in 

determining the chord error. 

s=1 s=2 

Desired  

Toolpath 

Actual Toolpath 

Sampling point 



  51 

Figure 4.7: Flow-Diagram for determining the length of the chord perpendicular to the 

actual toolpath for every discrete point 
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The algorithm shown in Figure 4.7 determines the length of the chord 

perpendicular to the actual toolpath for the first discrete point. First, the sampling time, 

discrete sampling time, the array of desired toolpath position at all the discrete points are 

inputted. The number of sub-intervals is then calculated with the help of total simulation 

time and the sampling time. The only point on desired toolpath considered in this stage of 

algorithm is the one that corresponds to the first discrete point. Distance between this 

point and all the discrete points on actual toolpath are calculated. The chord that 

corresponds to the shortest distance is chosen for further analysis. This algorithm is then 

repeated for all discrete points on the desired toolpath. 

Figure 4.8 shows the desired and actual toolpaths discretized according to the 

discrete sampling time, Td. This discrete sampling time is chosen such that the line 

segment corresponding to shortest distance out of the distances between any discrete 

point on the desired toolpath to all the discrete points on the actual toolpath, makes an 

angle of 90±1 degree with the actual toolpath. 

 

Figure 4.8: Discretization of desired and actual toolpaths 
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Figure  4.9 shows the segments joining a discrete point on the desired 

toolpath with all the discrete point on the actual toolpath 

 

Figure 4.9: Segments joining a discrete point on the desired toolpath with all the 

discrete points on the actual toolpath 

 

Figure 4.10 shows the shortest segments out of the segments shown in the Figure 

4.9. 

 

Figure 4.10: Shortest of the segments joining a discrete point on the desired 

toolpath with all the discrete points on the actual toolpath 
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The analysis is repeated to find the shortest segments for all the discrete points on 

the desired toolpath, which is shown in the Figure 4.11. 

 

Figure 4.11: Shortest segments for all the discrete points on the desired toolpath 

 

According to geometry, the shortest line segment drawn from a point to a curve is 

perpendicular to that curve. As the segments shown in the Figure 4.11 are drawn from 

each discrete point on the desired toolpath, those are perpendicular to the actual toolpath. 

This complies with the fact that the chord has to be perpendicular to the actual toolpath. 

Figure 4.12 shows the flow diagram for second and last part of algorithm for 

determining the chord error by finding the segment that corresponds to the maximum 

length. 
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Figure 4.12: Flow-Diagram for determining the chord error by finding maximum of the 

chord lengths 

 

First, the array of chord error segments for discrete points which was generated 

from the algorithm shown in Figure 4.7 is inputted. Then the element corresponding to 

largest chord error segment length is selected. The largest of the distances shown in 

Figure 4.11 corresponds to the chord error between these two toolpaths. This chord error 

is shown in Figure 4.13. 
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Figure 4.13: Chord error segment 

 

4.1.4 Evaluating chord error for the kinematically redundant arrangement 

This section discusses the effect of kinematically redundant arrangement on the 

chord error. First of all, two sampling points are arbitrarily taken into account. A 

trajectory is then generated between these two sampling points. This trajectory is treated 

as a desired toolpath. A limit on the allowable chord error is denoted by variable δ. So, 

the task is to trace this desired toolpath such that the chord error is less than the limit δ.  

An initial guess is made on the actual toolpath. Depending upon the chord error 

for this guess, more accurate toolpaths are generated with successive iterations. Figure 

4.14 shows an Archimedean spiral which is to be traced using the kinematically 

redundant arrangement. Figure 4.15 shows the desired toolpath along with the initial 

guess of actual toolpath.  Figure 4.16 includes the actual toolpaths after next two 

iterations. Finally, Figure 4.17 shows the trend of chord error with number of iterations.  
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Figure 4.14: Desired toolpath 

 

Figure 4.15: Desired toolpath with initial guess  
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Figure 4.16: Subsequent iterations of possible trajectories with initial guess 

 

Figure 4.17: Chord error vs number of iterations 
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The analysis for evaluating the chord error for kinematically redundant kinematic 

arrangement presented the effect of redundant kinematic arrangement on the actual 

toolpath and the chord error. According to results shown in Figure 4.16, the actual 

toolpath can be optimized to approach the desired toolpath such that the chord error goes 

on decreasing. This optimization was obtained through two iterations. Figure 4.17 

showed that how the chord error decreased with number of iterations for an Archimedean 

spiral. The process of iterations can be continued until the chord error falls below the 

maximum allowable chord error for micromilling. 

 

4.2 EXPERIMENTAL DESIGN  

 This section presents the experimental design for the numerical simulations 

performed to analyze the effect of kinematic arrangements on chord error. Section 4.2.1 

explains how the desired toolpaths were selected for the numerical simulation 

experiments. Sections 4.2.2 and 4.2.3 present the design of experiments for comparison 

of the standard kinematic arrangement with the cylindrical kinematic arrangement and 

the kinematically redundant arrangement, respectively.   

 

4.2.1 Selection of desired toolpaths 

 While analyzing the differences in the chord errors for standard and cylindrical 

kinematic arrangement, the selection of desired toolpath is important to consider as many 

curve features as possible. The desired toolpaths considered in this analysis include- a 

line, circular arc, circle involute, logarithmic spiral, a power function and Archimedean 

spiral. A line is considered as it is expected to show zero error for standard kinematic 
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arrangement. Similarly, a circular arc is expected to show zero error for the cylindrical 

kinematic arrangement. A circle involute is not expected to show zero error in either of 

these arrangements. The unique feature about the logarithmic spiral is that its radius of 

curvature increases linearly along the arc length. A power function is chosen such that 

only rotary joint velocity is constant along the arc length. It is used to observe the 

behavior of the chord error along the arc length for these two arrangements. Finally, an 

Archimedean spiral is chosen as it has the special characteristics of being a locus of 

points whose 𝑟 coordinate linearly varies with its 𝜃 coordinate. It is an interesting 

characteristic because the actual toolpath generated by a cylindrical kinematic 

arrangement within a sampling interval is always an Archimedean spiral. 

 

4.2.2 Parameter Selection 

In these experiments, the independent variable is the kinematic arrangement of the 

micromilling machine, and the dependent variable is the chord error.  The variable 

parameter is the desired toolpath. One of the parameters that is kept constant in this 

analysis is the sampling time. Sampling time depends upon the computer and the 

hardware used during the processing, and so it is kept because it is not related to the 

independent variable; the same sampling time can be achieved on a micromilling 

machine regardless of the kinematic arrangement. 

The second parameter that is kept constant in this analysis is the feedrate. If the 

feedrate is varied, the distance between two consecutive sampling points is also varied. 

Figure 4.18 illustrates the effect of feedrate on the chord error in case of standard 

kinematic arrangement. 
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Figure 4.18: Illustration of effect of (A) faster feedrate and (B) slower feedrate, on the 

chord error  

 

In Figure 4.18 (A) and (B), curves in black represent the desired toolpath, blue 

lines represent the actual toolpath between two sampling points. The intersection of 

actual toolpath with the desired toolpath corresponds to two sampling points. Therefore, 

the blue lines correspond to the length that the endmill travels relative to the workpiece in 

one sampling time. Equation 4.1 gives the relation between length of the blue segment 

and the feedrate. 

𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑒 =
𝐶ℎ𝑜𝑟𝑑 𝐿𝑒𝑛𝑔𝑡ℎ

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒
 

(4.1) 

 The red line segments in Figure 4.18 are the chord errors for the corresponding 

cases. With the help of Figure 4.19 and Equation 4.1, it can be shown that the chord error 

depends upon the feedrate.  

(A) 

(B) 

Desired Toolpath 

Actual Toolpath 

Chord Error 
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Decreased feedrate decreases the production rate. In addition, changing the 

feedrate causes uneven chip thickness, and hence it disturbs machining stability. 

Therefore, changing the feedrate during machining is not preferred. Second parameter 

that is kept constant in this analysis is therefore the feedrate. Keeping the feedrate 

constant for all of the desired toolpaths analyzed, the sampling points are determined. In 

the case of the standard kinematic arrangement, the feedrate is calculated to equate to the 

velocities of the linear joints along X and Y axes according to Equation 4.2. The 

variables 𝑥̇ and 𝑦̇ are the velocities of linear joints along x and y axes respectively. 

𝑓𝑒𝑒𝑑𝑟𝑎𝑡𝑒 =  √𝑥̇2 + 𝑦̇2 (4.2) 

4.2.2.1 Parameters for Experiment 1: Comparison of Cartesian and Cylindrical 

Kinematic Arrangements  

Chord errors for several desired toolpaths using both standard and cylindrical 

kinematic arrangements are compared. Table 4.1 summarizes the parameters with their 

values used for the numerical experimentation. 

 

Table 4.1: Parameters and their values for standard and cylindrical kinematic 

arrangement 

 

Parameters 
Standard Kinematic 

Arrangement 

Cylindrical Kinematic 

Arrangement 

Number of joints 

working at a time 
2 2 

Involved joints 
Linear joints along X 

and Y axes 

Linear joint along radial 

axis and rotary joint about 

Z axis 

Center of the joints (0,0) (0,0) 

Sampling time 5ms 5ms 

Feedrate 10 mm/s 10 mm/s 
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4.2.2.2 Parameters for Experiment 2: Comparison of Cartesian, Cylindrical and 

Kinematically Redundant Kinematic Arrangements  

 For this analysis as well, sampling time and feedrate are kept constant. Therefore, 

the same sampling points which were determined according to Section 4.2.2 are used. 

Table 4.2 lists the parameters and their values used for the kinematically redundant 

arrangement.  

 

Table 4.2: Parameters and their values for Kinematically Redundant Arrangement 

 

Parameters 

Standard 

Kinematic 

Arrangement 

Cylindrical 

Kinematic 

Arrangement 

Kinematically 

Redundant 

Arrangement 

Number of joints 

working at a time 
2 2 3 

Involved joints 
Linear joints along 

X and Y axes 

Linear joint along 

radial axis and rotary 

joint about Z axis 

Linear joints along 

X and Y axes, and 

rotary joint about Z 

axis 

Center of the joints (0,0) (0,0) (0,0) 

Sampling time 5ms 5ms 5ms 

Feedrate 10 mm/s 10 mm/s 10 mm/s 

  

Table 4.3 lists the limit values that will be imposed on the chord error while 

minimizing it within sampling intervals for the desired toolpaths considered. These 

limiting values are the maximum allowable limit of the chord error. The numerical 

simulation for minimizing the chord error stops once the chord error incurred falls below 

the limiting value. These limiting values on the chord error were determined such that the 

chord error minimizing simulation does not take more than one minute per one sampling 

interval on a basic configured computer system. 



  64 

Table 4.3: Imposed chord error limit for different desired toolpaths 

 

Desired Toolpath 
Limits on the Chord 

Error [mm] 

A Straight line 2.5x10-5 

Circular Arc 1x10-5 

Circular Involute 5x10-5 

Logarithmic Spiral 1x10-4 

Power Function 5x10-5 

 

4.3 EXPERIMENTAL RESULTS  

 This Section presents the experimental results based upon the set up explained in 

Section 4.2. First, comparison of chord errors for standard and cylindrical kinematic 

arrangements is presented for different desired toolpaths. Effect of redundant kinematic 

arrangement on chord error is then discussed. Finally, the chord error for kinematically 

redundant arrangement is compared with that of standard and cylindrical kinematic 

arrangements.  

 

4.3.1 Result of Experiment 1: Comparison of chord errors for Standard and Cylindrical 

Kinematic Arrangement 

 This section presents several desired toolpaths with different characteristics that 

are used to present the difference between the chord errors for standard and cylindrical 

kinematic arrangements. A few parameters as explained in Section 4.2 are kept constant 

for more precise analysis. All linear joints involved in this analysis are made to pass 

through the origin of the system. The rotary axis is also made to rotate about the Z axis. 
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The sampling time is kept constant to the value of 5ms. The feedrate is also set to the 

value of 10mm/s.  

4.3.1.1 Line 

 A linear desired toolpath is important to evaluate as the standard kinematic 

arrangement is expected show zero chord error for this type of desired toolpaths. The 

parametric equation of the line used for this analysis is given by Equation 4.3. This linear 

segment is shown in Figure 4.16. 

[
𝑥(𝑢)

𝑦(𝑢)
] = [

𝑢
1
] 

(4.3) 

 Figure 4.20 shows the velocities of the joints versus the arc length if this desired 

toolpath is traced with the help of standard kinematic arrangement. Similarly, Figure 4.21 

shows the velocities of the joints vs arc-length for the case of cylindrical kinematic 

arrangement. Finally, Figure 4.22 shows the chord error plotted against the arc length for 

both the kinematic arrangements.  
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Figure 4.19: A linear segment  

 

 

Figure 4.20: The standard arrangement joint velocities  
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Figure 4.21: The cylindrical arrangement joint velocities  

 

Figure 4.22: Chord error comparison for standard and cylindrical kinematic arrangements  
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4.3.1.2 Circular Arc 

A circular arc is considered as in this case the cylindrical kinematic arrangement 

is expected show zero chord error. The circular arc considered in this analysis is shown in 

Figure 4.23. It is a 90-degree circular arc segment of 1 mm radius. Figure 4.24 and Figure 

4.25 show the joint velocities versus the arc length in case of standard and cylindrical 

kinematic arrangements respectively. Finally, Figure 4.26 shows the chord error plotted 

against the arc length for both the kinematic arrangements.  

 

 

Figure 4.23: A circular arc segment  
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Figure 4.24: Standard arrangement joint velocities 

 

Figure 4.25: Cylindrical arrangement joint velocities 
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Figure 4.26: Chord error comparison for standard and cylindrical kinematic arrangements  

4.3.1.3 Circle Involute 

 The circle involute is chosen as it is not expected to show zero error for any of the 

kinematic arrangements considered in this analysis. The parametric equation of the circle 

involute considered here is shown by Equation 4.4. 

[
𝑥(𝑢)

𝑦(𝑢)
] = [

2(cos 𝑢 + 𝑢 ∙ sin 𝑢)

2(sin 𝑢 − 𝑢 ∙ cos 𝑢)
] 

(4.4) 

Figure 4.27 shows the circle involute corresponding to the Equation 4.4. Figure 

4.28 and Figure 4.29 show the joint velocities versus the arc length for standard and 

cylindrical kinematic arrangements respectively. Figure 4.30 shows the chord error 

plotted against the arc length for both the kinematic arrangements.  
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Figure 4.27: A circle involute 

 

Figure 4.28: Standard arrangement joint velocities 
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Figure 4.29: Cylindrical arrangement joint velocities 

 

Figure 4.30: Chord error comparison for standard and cylindrical kinematic arrangements  

0 1 2 3 4 5
0

2

4

6

8

10

Arc Length [mm]

V
el

o
ci

ti
es

 o
f 

P
o

la
r 

ax
es

 

 

Velocity in R (mm/s)

Velocity in theta (rad/s)

0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

-4

Arc Length [mm]

C
h

o
rd

 E
rr

o
r 

[m
m

]

 

 

Cylindrical Arrangement

Standard Arrangement



  73 

4.3.1.4 Logarithmic Spiral 

 The next desired toolpath considered in this analysis is the logarithmic spiral. Its 

parametric equation is given by Equation 4.5.  

[
𝑥(𝑢)

𝑦(𝑢)
] = [

𝑒𝑢cos 𝑢 
𝑒𝑢 sin 𝑢

] 
(4.5) 

 This spiral is plotted, and as shown in Figure 4.31. Figure 4.32 and Figure 4.33 

show the joint velocities for standard and cylindrical kinematic arrangements. Figure 4.34 

shows the chord errors versus the arc-length for both the kinematic arrangements.  

 

 

Figure 4.31: A logarithmic spiral 
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Figure 4.32: Joint velocities for standard kinematic arrangements  

 

 

Figure 4.33: Joint velocities for cylindrical kinematic arrangements  
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Figure 4.34: Chord error comparison for standard and cylindrical kinematic arrangements  

4.3.1.5 Power function 

 The power function is made up to analyze the arrangements for an arbitrary case. 

The function considered in this analysis is represented by Equation 4.6. 

[
𝑥(𝑢)

𝑦(𝑢)
] =

[
 
 
 
𝑢3

3
𝑢2

2 ]
 
 
 

 

 

(4.6) 

 Figure 4.35 shows the plot of this power function. Figure 4.36 and figure 4.37 

show the joint velocities plotted against the arc length for standard and cylindrical 

kinematic arrangement respectively. Finally, Figure 4.38 shows the chord error against 

the arc length for both the kinematic arrangements.  
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Figure 4.35: A power function 

 

Figure 4.36: Joint velocities for standard kinematic arrangement 
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Figure 4.37: Joint velocities for cylindrical kinematic arrangement 

 

Figure 4.38: Chord error comparison for standard and cylindrical kinematic arrangements 
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4.3.2 Results of Experiment 2: Comparison of Standard Cartesian and Cylindrical 

Kinematic Arrangements with Kinematically Redundant Kinematic Arrangement 

 This section presents the comparison of the chord errors for all the three 

kinematic arrangements. A limit is placed on the chord error for the processing using 

kinematically redundant arrangement such that it does not exceed the limiting value. This 

limiting value is chosen by considering the simulation time for the corresponding desired 

toolpath.  

 The same desired toolpaths as presented in Section 4.2 are chosen here. The chord 

error comparison for the linear toolpath is presented in Figure 4.39. The chord error for 

the circular toolpath same is presented in Figure 4.40. The Figure 4.41 shows the error 

comparison for all the three arrangements for circle involute. The chord error for the 

logarithmic spiral is presented in Figure 4.42. The Figure 4.43 represents the chord error 

comparison for the power function. 
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Figure 4.39: Chord error comparison for linear desired toolpath 

 

Figure 4.40: Chord error comparison for circular desired toolpath 

0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4
x 10

-4

Arc Length (mm)

C
h

o
rd

 E
rr

o
r 

(m
m

)

 

 

Cartesian and Redundant Arrangement	

Cylindrical Arrangement

0.2 0.4 0.6 0.8 1
-1

0

1

2

3

4
x 10

-4

Arc length (mm)

C
h

o
rd

 E
rr

o
r 

(m
m

)

 

 

Redundant and Cylindrical Arrangement

Standard Arrangement



  80 

 

 

Figure 4.41: Chord error comparison for a circle involute 

 

Figure 4.42: Chord error comparison for the logarithmic spiral 
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Figure 4.43: Chord error comparison for a power function 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

The body of research presented in this thesis has addressed the effect of kinematic 

arrangements in reduction of chord error in micromilling. This chapter will discuss the 

experimental results presented in Chapter 4. The effect of the kinematic arrangement on 

the chord error will also be discussed in details. Finally, the chapter will present the 

conclusions on the outline of the objectives and the hypotheses that were presented in the 

Chapter 1. 

 

5.1 SIMULATION RESULTS DISCUSSION 

 First, the comparison of chord error for standard and cylindrical kinematic 

arrangements will be discussed. Later, the chord error for the redundant kinematic 

arrangement will be discussed in details. As the sampling time and the feedrate are kept 

constant throughout the experiments, it has become easier to analyze the effect of 

different kinematic arrangements on chord error.  

 

5.1.1 Chord errors for standard and cylindrical kinematic arrangements 

 The chord error plot for a linear segment was first presented in Section 4.3.1. As 

the actual toolpath for the standard kinematic arrangement within a sampling interval is 

always a straight line, the linear desired toolpath is expected to be followed perfectly 

using the standard kinematic arrangement. On the other hand, the cylindrical arrangement 

does not produce a linear toolpath unless the two sampling consecutive points lie along a 

straight line along the axes of the linear joint. However, no two consecutive sampling 



  83 

points in this study are along the axis of the linear joint of cylindrical arrangement. 

Therefore, the cylindrical arrangement was expected to give higher chord error compared 

to that given by standard kinematic arrangement. As can be observed in Figure 4.22, the 

chord error for standard kinematic arrangement is zero, whereas the chord error for 

cylindrical arrangement is comparatively higher and it reduces as the arc length increases. 

It approaches zero as the sampling points considered increase distance from the origin.  

 The next desired toolpath considered was the circular arc. As discussed earlier, 

the toolpath produced by the cylindrical kinematic arrangement between a sampling 

interval is an Archimedean spiral, and a circular arc is a special case of Archimedean 

spiral. Therefore a cylindrical kinematic arrangement was expected to show zero chord 

error for a circular arc. However, standard kinematic arrangement was expected to show 

non-zero constant errors, as the velocities of the cylindrical joints were constants along 

the arc length. The chord error for cylindrical kinematic arrangement was always zero, 

and the chord error for standard kinematic arrangement was always constant and non-

zero, as can be observed in Figure 4.26. 

 The results for the circle involute were followed by the circular arc. The joint 

velocities for both the kinematic arrangements do not show any particular patterns. 

Therefore, the chord error for none of the arrangements was predictable. As shown in 

Figure 4.30, the chord errors for both the arrangements reduce with the increasing arc-

length. However, the cylindrical arrangement showed less error as compared to the 

standard arrangement. 

 The next desired toolpath in the desired toolpath selection was the logarithmic 

spiral. In this case too, the joint velocities do not show any specific trend, except that the 
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joint velocity of the linear joint in cylindrical arrangement was constant along the 

increasing arc length. The chord error as can be seen in Figure 4.34, was higher with 

standard arrangement as compared to that with cylindrical arrangement.  

 Similar to that of the logarithmic spiral was presented next, in which only the 

linear joint in cylindrical arrangement had constant velocity with change in arc-length. As 

shown in Figure 4.38, reduced chord error was seen with the cylindrical arrangement. 

However, the chord error for standard arrangement is lesser than for cylindrical one 

beyond 1mm of arc-length. 

 

5.1.2 Chord errors for kinematically redundant arrangements 

This Section discusses the results for chord error for kinematically redundant 

arrangements which were presented in Section 4.3.2. The desired toolpaths for which the 

chord errors were compared for standard and cylindrical arrangements in Section 5.1.1 

will be discussed in this Section, which also includes the chord error for redundant 

kinematic arrangement.  

 For the linear toolpath, the standard kinematic arrangement had shown zero chord 

error. As was shown Figure 4.39, the redundant kinematic arrangement has also shown 

zero chord error, as the standard arrangement is a special case of redundant arrangement, 

when the rotary joint does not rotate at all. Similarly for the circular arc, the redundant 

kinematic arrangement can turn into a special case to work exactly as the cylindrical 

kinematic arrangement and yield zero error, as was shown in Figure 4.40. 

 For circle involute as a desired toolpath, the chord error was minimized until it 

fell below the maximum allowable limit. Therefore, for each sampling interval, the chord 
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error was just below the limit, as can be seen in Figure 4.41. Similarly, for the 

logarithmic spiral and the power function, the chord errors were minimized to their 

corresponding limits, as shown in Figure 4.42 and Figure 4.43 respectively. These plots 

also conclude that the chord errors for redundant kinematic arrangement always remain 

less than that for standard and cylindrical arrangements, except for the case of any of the 

arrangements giving zero chord error. In this special case, the plot for chord error for 

redundant arrangement overlaps with that for the arrangement which shows zero chord 

error along the increasing arc length.     

 

5.2 CONCLUSIONS 

 The research presented in this thesis addresses the enhancement of high level of 

precision required in micromilling. More specifically, the work studies the impact of the 

kinematic arrangement on the compensation of scale effects. This section discusses the 

conclusions for the objectives explained in the Chapter 1. Table 5.1 shows the maximum 

chord errors over 1 mm of arc length for each desired toolpath for all kinematic 

arrangements. 
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Table 5.1: Maximum chord errors for each desired toolpath for all kinematic 

arrangements 

 

Desired Toolpath 

Cartesian 

Kinematic 

Arrangement 

[mm] 

Cylindrical 

Kinematic 

Arrangement 

[mm] 

Kinematically 

Redundant 

Arrangement 

[mm] 

A Straight line 0  3.13x10-5  0 

Circular Arc 3.12x10-4 0 0 

Circular Involute 1.1x10-3 1.05x10-3 4.98x10-5 

Logarithmic Spiral 9.62x10-4 6.82x10-4 9.94x10-5 

Power Function 6.77x10-4 3.02x10-4 5x10-5 

 

The Table 5.2 shows the mean chord errors over 1 mm of arc length for each 

desired toolpath for all kinematic arrangements.  

 

Table 5.2: Mean and Standard Deviation chord errors for each desired toolpath for all 

kinematic arrangements 

 

Desired Toolpath 

Cartesian 

Kinematic 

Arrangement 

[mm] 

Cylindrical 

Kinematic 

Arrangement 

[mm] 

Kinematically 

Redundant 

Arrangement 

[mm] 

A Straight line 0 (2.93±0.19)x10-5 0 

Circular Arc (3.12±0.00)x10-4 0 0 

Circular Involute (3.13±2.18)x10-4 (2.07±2.35)x10-4 (4.85±0.19)x10-5 

Logarithmic Spiral (5.37±1.90)x10-4 (3.80±1.35)x10-4 (9.88±0.05)x10-5 

Power Function (2.07±1.58)x10-4 (1.30±0.61)x10-4 (4.99±0.00)x10-5 
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Table 5.3 shows the percentage mean reductions in chord errors for each desired 

toolpath over 1 mm of arc length for all cylindrical and kinematically redundant 

kinematic arrangements compared to Cartesian kinematic arrangement. 

Table 5.3: Mean reductions in % of chord errors for each desired toolpath for cylindrical 

and redundant kinematic arrangements compared to Cartesian kinematic arrangement 

 

Desired Toolpath 

Cylindrical 

Kinematic 

Arrangement 

Kinematically 

Redundant 

Arrangement 

A Straight line 0.0 0.0 

Circular Arc 100.0 100.0 

Circular Involute 44.4 80.2 

Logarithmic Spiral 29.2 79.4 

Power Function 26.5 58.8 

 

Objective 1: To achieve new knowledge which enhances the understanding of key 

factors enhancing the high-speed, high-precision micromilling 

 The knowledge of key factors affecting the high speed and high precision milling 

was insufficient for application to the microscale. 

 The key factors affecting the production rate have been addressed. These key 

factors include the sampling time, the allowable feedrate and the scale effects. 

 Key scale effect which affects the production rate the most was identified as the 

chord error, and hence addressed. 

 New knowledge to enhance high-speed, high-precision micromilling has been 

attained. According to this new knowledge, the key factors affecting the 

production rate also include the kinematic arrangement used for the micromilling. 
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Objective 2: To utilize new knowledge to understand the need of a new mechanism 

which can be used to enhance high-speed, high-precision micromilling 

 New cylindrical kinematic arrangement was introduced to minimize the chord 

error.  

 The chord error for the new cylindrical kinematic arrangement was determined 

for several desired toolpaths and compared with the chord error for the standard 

arrangement. 

 It proved the Hypotheses 1 and 2 that the standard Cartesian Kinematic 

Arrangement is not optimal for reduction of chord error in micromilling, and the 

cylindrical kinematic arrangement gives reduced error for some types of the 

desired toolpaths.  

 It was also found that the chord error largely depends upon the kinematic 

arrangement, and zero chord error can also be achieved for some of the desired 

toolpaths if proper kinematic arrangement is chosen. 

 

Objective 3: To apply the knowledge of robotics for developing a new kinematic 

arrangement for compensation of chord error in micromilling 

 Adopting concept of kinematic redundancy from robotics, a new kinematically 

redundant arrangement was introduced.  

 It proved the Hypothesis 3 that the kinematically redundant arrangement always 

gives reduced chord error for all different types of desired toolpaths. 

 

 



  89 

CHAPTER 6 

FUTURE WORK 

A number of paths of possible supplementary study have been identified, during 

this research. This Section will present the future work for extension of this study. Topics 

are organized according to the importance of the work. 

 

REAL-TIME TRAJECTORY PLANNING 

The study presented in this thesis presents the way of trajectory planning. This 

method of trajectory planning can also be used in real-time. Real-time trajectory planning 

compensates for dynamic errors which can occur during machining. However, for real-

time trajectory planning, the time required for trajectory planning between two 

consecutive sampling points should be less than the sampling time of the system. 

Therefore, the code for the trajectory planning for kinematically redundant arrangement 

should be so optimized that it cannot take more than the sampling time of the system.  

The detrimental obstacles in real-time trajectory planning are as follows: 

 Effect of high spindle speeds has to be compensated by high feedrates. If the 

feedrate increases, while sampling time remains same, the distance between 

the two sampling points increases. In most of the cases, it leads to increase in 

the chord error. Larger the chord error is, longer is the time for trajectory 

planning.  

 Advancing technology has also been producing the systems with very short 

sampling times. It also shortens the allowable time for the trajectory planning. 
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APPENDIX A  

MATLAB CODE 
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Following MATLAB code was written for comparison of Standard Cartesian and Cylindrical 

Kinematic Arrangements for circular desired path. 

clc 
clear 

  
ts=50;                      %sample time 
tss=1;                      %sample time for calculating the errors 
time=5;                     %simulation time 

  
t=0;                        %initial time for inputting the curve equation 
i=1;                        %counter     

  
%Inputting the curve in cartesion and converting it in to polar 

  
while(t<=time) 

     
     xy(i,1)= cos(t);   % x co-ordinate        
     xy(i,2)=sin(t);   % y co-ordinate 
     xy(i,3)=t; 

     
     pos_polar(i,1)= sqrt(xy(i,1)^2+xy(i,2)^2); % r co-ordinate 
     pos_polar(i,2)= atan(xy(i,2)/xy(i,1));     % theta co-ordinate 
     pos_polar(i,3)=t; 

     
     i=i+1; 
     t=t+ts/1000; 
end 

  
%calculating the velocities of cartesion axes 
i=1; 

  
for t = 0: ts/1000 : time-2*ts/1000 
    vel(i,1)=(xy(i+1,1)-xy(i,1))/(ts/1000); %velocity in x 
    vel(i,2)=(xy(i+1,2)-xy(i,2))/(ts/1000); %velocity in y 
    vel(i,3)=t; 

        
    vel(i,4)=sqrt((vel(i,1))^2+(vel(i,2))^2); 

     
    i=i+1; 
end     

  
%calculating the radius of the curvature 

  
i=1; 

  
for t = 0: ts/1000 : time-3*ts/1000 
    acc(i,1)=(vel(i+1,1)-vel(i,1))/(ts/1000); %accl in x 
    acc(i,2)=(vel(i+1,2)-vel(i,2))/(ts/1000); %accl in y 
    acc(i,3)=t; 

     



  95 

    i=i+1; 
end     

  
i=1; 

  
for t = 0: ts/1000 : time-3*ts/1000 

     
    a1=sqrt((vel(i,1))^2+(vel(i,2))^2); 
    a2=(vel(i,1))*(acc(i,2)); 
    a3=(vel(i,2))*(acc(i,1)); 

     
    if (a2>a3) 
        a4= a2-a3; 
    else  
        a4=a3-a2;  
    end 

     
    rc(i,1)=(a1^3)/a4; 
    rc(i,2)=t; 

     
    i=i+1; 
end     

  
%change in radius of curvature 
i=1; 

  
for t = 0: ts/1000 : time-4*ts/1000 

     
    rc_change(i,1)=(rc(i+1,1)-rc(i,1))/rc(i,1); 
    rc_change(i,2)=t; 

     
    i=i+1; 
end   

  

  
%Formulating the velocities of polar axes 

  
i=1; 

  
for t = 0: ts/1000 : time-2*ts/1000 
    vel_polar(i,1)=(pos_polar(i+1,1)-pos_polar(i,1))/(ts/1000); %velocity in 

r 
    vel_polar(i,2)=(pos_polar(i+1,2)-pos_polar(i,2))/(ts/1000); %velocity in 

theta 
    vel_polar(i,3)=t; 

     
    vel_polar(i,4)=sqrt((vel_polar(i,1))^2+(vel_polar(i,2))^2); 

     
    i=i+1; 
end     

  
%Determining the Tool position cac 



  96 

  
ind=0; 
iter=0; 
for t=0:tss:(time*1000-ts) 
  if mod(t,ts) == 0  
      ind=ind+1; 
      iter=t+1; 
      k=0; 
      pos_tool_cac(t+1,1)=xy(ind,1); 
      pos_tool_cac(t+1,2)=xy(ind,2); 

       
      pos_tool_cac(t+1,3)=t/1000; 

       
  else 
      k=k+1; 
      pos_tool_cac(t+1,1)=pos_tool_cac(iter,1)+k*0.001*vel(ind,1)*tss; 
      pos_tool_cac(t+1,2)=pos_tool_cac(iter,2)+k*0.001*vel(ind,2)*tss; 

       
      pos_tool_cac(t+1,3)=t/1000; 

         
  end 
end 

  

  
%Determining the Tool position pac 

  
ind=0; 
iter=0; 
for t=0:tss:(time*1000-ts) 
  if mod(t,ts) == 0  
      ind=ind+1; 
      iter=t+1; 
      k=0; 
      pos_tool_pac(t+1,1)=pos_polar(ind,1); 
      pos_tool_pac(t+1,2)=pos_polar(ind,2); 

       
      pos_tool_pac(t+1,3)=t/1000; 

       
      pos_tool_pac(t+1,4)= pos_tool_pac(t+1,1)*cos(pos_tool_pac(t+1,2)); 
      pos_tool_pac(t+1,5)= pos_tool_pac(t+1,1)*sin(pos_tool_pac(t+1,2)); 

       
  else 
      k=k+1; 
      pos_tool_pac(t+1,1)=pos_tool_pac(iter,1)+k*0.001*vel_polar(ind,1)*tss; 
      pos_tool_pac(t+1,2)=pos_tool_pac(iter,2)+k*0.001*vel_polar(ind,2)*tss; 

       
      pos_tool_pac(t+1,3)=t/1000; 

       
      pos_tool_pac(t+1,4)= pos_tool_pac(t+1,1)*cos(pos_tool_pac(t+1,2)); 
      pos_tool_pac(t+1,5)= pos_tool_pac(t+1,1)*sin(pos_tool_pac(t+1,2)); 

       
  end 
end 
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%Calculation of the curve position 

  
t=0; 
j=1; 

  
while(t<time) 
    pos_curve(j,1)=cos (t); %t^2;curve position x 
    pos_curve(j,2)=sin(t); %t+0.0001;curve position y 
    pos_curve(j,3)= t; 

         
    t=t+tss/1000; 
    j=j+1; 
end 

  
%Error calculation pac 

  
index = 0; 

  
for i =0: tss: time*1000-2*ts 
    x1=pos_tool_pac(1+i/tss,4); 
    y1=pos_tool_pac(1+i/tss,5);     

     
   if  mod(i,ts) == 0 
       prev = i;  
    end 

     
    min=999; 
    if mod(i,ts)~=0 
    j=prev+tss; 
    while (mod(j+1,ts)~=0) 
      x2=pos_curve(1+j/tss,1); 
      y2=pos_curve(1+j/tss,2); 

       
      dist = sqrt((x2-x1)^2+(y2-y1)^2); 
        if dist<min 
            min=dist; 
        end   
    j=j+tss;     
    end 
    smallest(i,1) = min; 
    end 

            
    if mod((i+tss),ts) == 0 
        max=0; 
        for k = prev+tss:tss: i-1 
            if smallest(k,1) > max 
                max=smallest (k,1);                 
            end 
        end     
        index = index+1; 
        max_interval_pac(index,1)=max; 
        max_interval_pac(index,2)=(i+tss)/1000; 
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    end   
end 

  
%Error calculation cac 

  
index = 0; 

  
for i =0: tss: time*1000-2*ts 
    x1=pos_tool_cac(1+i/tss,1); 
    y1=pos_tool_cac(1+i/tss,2);     

     
   if  mod(i,ts) == 0 
       prev = i;  
    end 

     
    min=999; 
    if mod(i,ts)~=0 
    flag=1; 
    j=prev+tss; 
    while (mod(j+1,ts)~=0) 
      x2=pos_curve(1+j/tss,1); 
      y2=pos_curve(1+j/tss,2); 

       
      dist = sqrt((x2-x1)^2+(y2-y1)^2); 
        if dist<min 
            min=dist; 
        end   
    j=j+tss;     
    end 
    smallest(i,1) = min; 
    end 

            
    if mod((i+tss),ts) == 0 
        max=0; 
        for k = prev+tss:tss: i-1 
            if smallest(k,1) > max 
                max=smallest (k,1);                 
            end 
        end     
        index = index+1; 
        max_interval_cac(index,1)=max; 
        max_interval_cac(index,2)=(i+tss)/1000; 
    end   
end 
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Following MATLAB script was written for evaluating chord error for circle using Kinematically 

Redundant Arrangement. 

clc 
clear 

  
tic 

  
ts=50; %ms 
tss=0.025; %ms 
time=1; %seconds 

  
thk=0.1; 

  
t=0; 
i=1; 

  
while(t<=time) 

         
    xy(i,1)=cos(t);   % x co-ordinate        
    xy(i,2)=sin(t);   % y co-ordinate 

     
    pos_polar(i,1)=sqrt(xy(i,1)^2+xy(i,2)^2); 
    pos_polar(i,2)=atan(xy(i,2)/xy(i,1)); 

     
    i=i+1; 
    t=t+ts/1000; 

     
end 

  
%velocities 

  
i=1; 

  
for t=0:ts/1000:time-2*ts/1000 

     
    vel_xyc(i,1)=(-

pos_polar(i,1)*cos(pos_polar(i,2))+pos_polar(i+1,1)*cos(pos_polar(i+1,2)))/(t

s/1000); 
    vel_xyc(i,2)=(-

pos_polar(i,1)*sin(pos_polar(i,2))+pos_polar(i+1,1)*sin(pos_polar(i+1,2)))/(t

s/1000); 

     
    vel_xyc(i,3)= (thk-pos_polar(i+1,2))/(ts/1000); 
    vel_xyc(i,3)=t; 

     
    i=i+1; 
end 

  
%toolpath 
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for i=1:length(vel_xyc) 

     
   thk=pos_polar(i+1,2); 

     
   [xdash, ydash, xdot, ydot, thdot]=toolpath(xy(i,1), xy(i,2), xy(i+1,1), 

xy(i+1,2), ts, tss, thk);  

    
   [xdash_c, ydash_c]= curve(ts, tss, ts*(i-1)/1000); 

     
   [error, tp_point, curve_point]=chorderror(xdash, ydash, xdash_c, ydash_c, 

(ts/tss)+1);  

    
   [optimized_error, tp_point, curve_point, iteration] = 

optimization(xy(i,1), xy(i,2), xy(i+1,1), xy(i+1,2), xdash, ydash, xdash_c, 

ydash_c, ts, tss, pos_polar(i,1), pos_polar(i+1,1), thk, 0.00005); 

    
   error_comparison(i,1)=error; 
   error_comparison(i,2)=optimized_error; 
   error_comparison(i,3)=iteration; 

  
end 

  
toc 
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MATLAB function for finding the actual toolpath is as follows: 

function [xdash ydash xdot ydot thdot] = toolpath(x1, y1, x2, y2, T, tss, 

thk) 

 
subparts=T/tss; 

  
%Start point- Cylindrical co-ordinates 
r1=sqrt(x1^2+y1^2); 
th1=atan(y1/x1); 

  
%End point- Cylindrical co-ordinates 
r2=sqrt(x2^2+y2^2); 
th2=atan(y2/x2); 

  
%Theta velocity 
thdot=(thk-th2)/T; 

  

  
%X-Y velocities 
xdot= (-r1*cos(th1)+r2*cos(thk))/T; 
ydot= (-r1*sin(th1)+r2*sin(thk))/T; 

  
%Small discrete time 
time=T/subparts; 

  
%start point in the following loop 
r(1,1)=r1; 
th(1,1)=th1; 

  
%start point in the following loop 
x(1,1)=x1; 
y(1,1)=y1; 

  
xdash(1,1)=x1; 
ydash(1,1)=y1; 

  
%Loop for determining intermediate discrete points 
for i=2:(subparts+1) 

     
    x(i,1)=x(i-1,1)+xdot*time; 
    y(i,1)=y(i-1,1)+ydot*time; 

     
    r(i,1)=sqrt((x(i,1))^2+(y(i,1))^2); 
    th(i,1)=(atan(y(i,1)/x(i,1)))-(i-1)*thdot*time; 

         
    xdash(i,1)=r(i,1)*cos(th(i,1)); 
    ydash(i,1)=r(i,1)*sin(th(i,1)); 

     

  
end 
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    plot(xdash(:,1),ydash(:,1)); 
    xlabel('X') 
    ylabel('Y') 
    hold on 
    axis equal 

     

  

  
end 
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MATLAB function for finding the desired toolpath locations is as follows: 

function [ xdash_c ydash_c ] = curve(ts, tss, current_t) 

 
t=current_t; 

  
subparts=ts/tss; 

  
for i=2:(subparts+1) 

  
    xdash_c(i,1)=cos(t); 
    ydash_c(i,1)=sin(t); 

     
    t=t+tss/1000; 

     
end 

  
    [rows columns]=size(xdash_c); 
    plot(xdash_c(2:rows,1),ydash_c(2:rows,1), 'r'); 
    axis equal 

  
end 
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MATLAB function for finding the chord error is as follows: 

function [ chord_error, tp_point, curve_point] = chorderror(xt, yt, xc, yc, 

subparts) 

     
    i=zeros(subparts); 
    j=zeros(subparts); 

  
    for i=1:subparts-3 
        for j=1:subparts-3 
           distance(i,j)=sqrt(((xt(i+2)-xc(j+2))^2)+((yt(i+2)-yc(j+2))^2)); 
        end 

         
        [error(i),c_point(i)]=min(distance(i,:)); 

         
%         x=[xt(i), xc(c_point(i))]; 
%         y=[yt(i), yc(c_point(i))]          
%         plot(x,y, 'k') 

  
    end 

     
    [chord_error, tp_point]=max(error); 
    curve_point=c_point(tp_point); 

     

     
    x=[xt(tp_point) xc(curve_point)]; 
    y=[yt(tp_point) yc(curve_point)]; 
    plot(x,y, 'k', 'Linewidth', 2) 
    hold on 

     
end 
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MATLAB function for optimizing the chord error is as follows: 

 
function [error tp_point curve_point iteration] = optimization(x1, y1, x2, 

y2, xdash, ydash, xdash_c, ydash_c, ts, tss, th1, th2, thk, max_error) 

 
    subparts=ts/tss; 

  
    [error, tp_point, curve_point]=chorderror(xdash, ydash, xdash_c, ydash_c, 

subparts+1); 

     
    delta=(sqrt((xdash(tp_point))^2+(ydash(tp_point))^2))-

(sqrt((xdash_c(curve_point))^2+(ydash_c(curve_point))^2)); 

     
    delta_sign=delta/abs(delta); 

     
    iteration=0; 

     
    while(error>max_error) 

         
       thk=thk-0.01;  
       [xdash, ydash, xdot, ydot, thdot]=toolpath(x1, y1, x2, y2, ts, tss, 

thk); 
       [error, tp_point, curve_point]=chorderror(xdash, ydash, xdash_c, 

ydash_c, subparts+1); 

     
       iteration=iteration+1; 

        
    end 

  
end 

 


