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ABSTRACT  
   

Categories are often defined by rules regarding their features. These rules may be 

intensely complex yet, despite the complexity of these rules, we are often able to learn 

them with sufficient practice. A possible explanation for how we arrive at consistent 

category judgments despite these difficulties would be that we may define these complex 

categories such as chairs, tables, or stairs by understanding the simpler rules defined by 

potential interactions with these objects. This concept, called grounding, allows for the 

learning and transfer of complex categorization rules if said rules are capable of being 

expressed in a more simple fashion by virtue of meaningful physical interactions. The 

present experiment tested this hypothesis by having participants engage in either a Rule 

Based (RB) or Information Integration (II) categorization task with instructions to engage 

with the stimuli in either a non-interactive or interactive fashion. If participants were 

capable of grounding the categories, which were defined in the II task with a complex 

visual rule, to a simpler interactive rule, then participants with interactive instructions 

should outperform participants with non-interactive instructions. Results indicated that 

physical interaction with stimuli had a marginally beneficial effect on category learning, 

but this effect seemed most prevalent in participants were engaged in an II task.  
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CHAPTER 1 

INTRODUCTION 

For any given agent, learning can be broken down into several essential parts: the 

perception of a stimulus, a response, and feedback to that response. When a student 

taking a test provides an incorrect answer to a question, they are given a grade reflecting 

their correct and incorrect responses thus providing feedback on how well the student 

understands the topic. When a child reaches up to touch a stove, a parent may grab their 

hand, or perhaps the child experiences pain when he burns his hand, teaching the child 

the dangers of the stovetop. A child sees a dog bearing its teeth and shaking its tail and it 

only takes a single bite for the child to learn that a dog shaking its tail is not always 

friendly. The environments in which we find ourselves are defined by many dimensions 

which can vary greatly and the rules which determine a correct response to these stimuli 

and environments are not always simple. Actions with this environment often result in 

feedback which may be delayed, ambiguous, or even completely absent. The challenge, 

then, is to explain how we are capable of learning given such a difficult scenario. 

Traditional Categorization: Simple and Complex Rules 

To better understand how we learn “complex” rules, we must also understand 

how we learn “simple” rules. One of the dominant methods of studying such 

categorization behavior utilizes two similar yet distinct tasks (Ashby & Gott, 1988). 

These tasks use stimuli, usually defined by only a few dimensions, which can be 

separated into different categories by some dimensional rule. When the rule is 

unidimensional (e.g., if stimulus has dimension X > 5 then it belong in category A) it is 

called a Rule Based (RB) task. When the rule is multidimensional (e.g., if stimulus has 
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dimension X > dimension Y then it belongs in category B) it is called an Information 

Integration (II) task. The tasks, while sharing similar cognitive processes such as 

attention and memory, have different constraints. Namely, the RB task requires only that 

participants understand one aspect of the stimulus while the II task requires that 

participants understand a relationship between two dimensions so that a stimulus may be 

correctly categorized. 

 As should be expected, Rule Based and Information Integration tasks differ over 

more than their dimensional definitions. Ashby, Queller, & Berretty (1999) had 

participants engage in either the RB or II task. Some participants were provided feedback 

on their categorization responses while others were not. Participants in the RB task were 

able to learn to correctly categorize stimuli regardless of whether they received feedback 

or not, while participants in the II task were only able to learn the multidimensional 

boundary when feedback was provided.  They concluded that, in the absence of feedback, 

individuals will attempt to use the simplest possible rule and it should be noted that these 

effects are limited to situations in which only two category assignments are possible. A 

later study by Maddox, Ashby, and Bohil (2003) had participants engage in either RB or 

II tasks and participants were provided with either immediate feedback for their decisions 

or feedback that was delayed by 2.5, 5, or 10 seconds. While their results showed that 

participants made more accurate category judgments in the RB task over the II task, they 

also showed that participants engaged in the RB task were not affected by the delay in 

feedback. In contrast, participants in the II task found their performance significantly 

hindered by the delay in feedback.  
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Maddox, Ashby, and Bohil (2003) argued that the reason for these differential 

effects of feedback presentation on category learning between II and RB tasks was due to 

different underlying neurological mechanisms being utilized by each task. Specifically, 

they hypothesized that Rule Based learning depends upon executive attention and explicit 

hypothesis testing, a process which depends heavily on the prefrontal cortex, while 

information integration relies on an implicit procedural learning system which relies upon 

a dopamine reward based in the caudate nucleus. As such, the impairing effects of 

delayed feedback on learning in an II task are explained by the denying or delaying the 

essential neurological reward signal generated by feedback.  

Overcoming Complexity Naturally 

This dependency upon feedback for learning to occur in an II task has the 

significant implication that learning complex categories likely requires both reliable and 

immediate feedback. Yet, we are likely to have experiences with objects and 

environments which may not always occur within the presence of an informed and 

responsive teacher, and naturally occurring feedback may not always be reliable or 

immediate. Despite these difficulties, there is evidence that we are capable of learning 

complex rules. Mervis and Rosch (1978) thought of humans (and other organisms) as 

learning agents within a massively complex environment which struggle to gain the 

maximum amount of meaningful information from their environment while utilizing the 

least amount of cognitive effort. An essential part of this argument arose from Rosch et 

al. (1976), which gave evidence of “basic level” categories; categories which are more 

easily distinguished from one another because they differ along (comparatively) easily 

perceivable dimensions and because the rules which designate these categories are related 
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to information meaningful to the individual. For instance, while a dog and a cat have 

many features in common (in comparison to, say, a bird), an observer with minimal 

experience is unlikely to confuse one for the other. However, an observer with minimal 

experience may have a hard time distinguishing between different breeds of dogs because 

the rules which distinguish the different breeds are either difficult to perceive and/or 

because little meaningful information is gained from the capacity to distinguish between 

them.  

This theory of basic categories has accurately predicted that participants would 

categorize objects at the basic level faster than they would for super- or sub-ordinate 

levels of categorization (Murphy & Smith, 1982). For example, shown an image of a 

Golden Retriever, most individuals would identify the image as a “dog” rather than the 

sub-ordinate level category, “Golden Retriever”, or superordinate level category, 

“mammal” or “animal”. However, this tendency for basic level categories to be the 

primary level of categorization does not mean that other levels of categorization are 

inaccessible. Tanaka & Taylor (1991) had dog and bird experts engage in a series of 

tasks. First, experts and novices listed features for various categories of differing levels: 

subordinate, basic, and superordinate. Experts listed as many distinguishing, or unique, 

features for subordinate categories (breeds of dogs or species of birds) as they did for 

basic level categories; experts perceived subordinate categories to be just as distinct from 

one another as basic level categories. In a second experiment, experts and novices were 

shown images of various dogs and birds and asked to identify them as quickly as 

possible. Experts were significantly more likely than novices to respond with the 

subordinate category level responses (i.e., calling an image of a Golden Retriever a 
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Golden Retriever rather than just a dog). Lastly, when shown images of birds and dogs 

presented with a correct or false subordinate, basic level, or superordinate label, experts 

responded just as quickly to subordinate level labels as basic level labels. These findings 

imply that, the basic level of categorization is established by not only the dimensions of 

the stimuli perceived, but also the meaningful feedback we receive from the environment. 

As such, complex categories are not beyond understanding, given enough relevant 

interaction. 

The finding of a basic level of categorization, a series of complex yet accessible 

and learnable rules, potentially poses a challenge to the findings of Ashby, Queller, and 

Berretty (1999) and Maddox, Ashby, and Bohil (2003) which, as previously stated, claim 

that complex rules are not learnable without feedback and are difficult to learn when 

feedback is interrupted or unreliable. There must be an underlying phenomenon by which 

basic level categories are easily learned without the use of an instructor; wherein 

feedback is provided by the environment itself by virtue of the individual’s experience 

interacting with the environment. Such an example is provided by Warren (1984) who 

showed participants of varying heights projected images of stairs. The participants then 

responded if they believed the stairs were “climbable”. As perceived stair height 

increased, shorter participants would eventually respond that the stairs were no longer 

climbable. Of note, there was a direct relationship between the probability that a 

participant would respond that a set of stairs were climbable and the ratio of the height of 

the stair to the length of the participant’s leg. Warren concluded that such perceptual  
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categories exist as a function of the relationship of the agent and the environment, and are 

not simply due to the dimensions of the environment itself. Furthermore, these interactive 

categories were immediately perceivable to participants, due to the extent of experience 

they had interacting with stair-like objects. 

 This concept of immediately available information was extolled by Gibson (1966) 

who theorized that a perceptual system is constrained not only by the information which 

can be sensed in the environment but also by how the observer may act upon such 

information. These constraints allow for “direct perception” of meaningful information 

regarding the environment; the immediate perception of information within the 

environment which is useful to the agent. As an example, the slope of a terrain is 

considered to provide immediate information to the perceiver of whether it is traversable 

not only by virtue of the slope of the terrain but also by what the agent understands about 

its own ability to maneuver through space and along different slopes. These directly 

perceived possible interactions of the agent with the environment are called “affordances” 

(Gibson, 1986; Turvey, 1992) and are considered invariant: so long as the agent maintains 

its capacities to both act and to perceive and the environment continues to maintain its 

status (e.g. slope and firmness of terrain) the affordances of that environment do not 

change. 

 While these examples are related to physically interactive situations, affordances 

and invariants can also be expressed within the context of limited interactivity. Shepard 

(1984) tried to address the issue of mental rotation and motion ambiguity; two 

phenomenon which show that the individuals are capable of manipulating information 

and images internally. In order to explain these phenomena, Shepard proposed the 
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concept of resonance, which allows for completely external events, partially external 

events, and even internally imagined events to be biased by the same constraints of the 

perceived (or imagined) environment and capabilities of the agent. For example, 

McBeath, Schiano, and Tversky (1997) showed participants symmetric and asymmetric 

polygons and asked participants to describe them. Participants were more likely to 

perceive symmetric objects as silhouettes of 3D objects which were being viewed head 

on, while asymmetric shapes were perceived as being profile or oblique views of similar 

3D objects. According to the idea of resonance, these images resonated with the real 

world invariant that objects tend to be symmetrical about their axis of forward motion. 

Therefore, symmetric objects are perceived as facing the observer while asymmetric 

objects are perceived as not facing the observer because the supposed axis of symmetry is 

directed away from the observer. 

 This concept of resonance, that our perception of abstractions is still influenced 

by our capacity for physical interactivity, is strikingly similar to the grounding principle 

(Clark & Brennan, 1991) which assumes that even abstract concepts are based upon, not 

only the differences in perceived or imagined features, but also by individual’s ability to 

interact with the perceptions. To illustrate, Anderson (2003) gave the example of a tree 

stump being referred to as a “chair”. Despite the fact that a tree stump has very little in 

common with most encountered chairs, an observer would understand the reference 

because the tree stump affords the observer the possibility of sitting just as a chair would. 

In other words, the abstract concept of “chair” is given meaning, not by just the physical 

dimensions of a given stimulus, but the capacity that an agent has to interact with it.   
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The grounding principle also implies that any new thing, despite its possible physical 

dimensions, may be defined as a chair so long as it affords the agent the same sitting 

capacity of previously experienced chairs. 

These claims are supported by research which indicates that, when participants 

are dealing with objects with which they have a history of interaction, the visual 

inspection of the objects also activates the motor capacities involved with interacting with 

that object (Creem & Proffitt, 2001; Glenberg, Robertson, Kashak, & Malter, 2003). 

These pieces of evidence suggest that our capacities to learn concepts and to generalize 

from experiences onto new stimuli are constrained not only by the features of the 

environment, but are also related to our capacity to interact with the environment. This 

benefit of interactivity should render individuals capable of understanding complex 

categories defined by both physical and abstract stimuli so long as the interactive 

relationship between the participant and the stimulus is made clear (Anderson, 2003; 

Gick & Holyoak, 1983; Goldstone & Wilensky, 2008).  

The Shared Neurology of Perception and Motor Control 

The impact of interactivity on categorization is not limited to purely cognitive 

factors. There are also neurological aspects involved. Faillenot et al. (1997) utilized a 

variety of neuroimaging techniques to detect differences in neural activation patterns in 

both a visual recognition task (identifying when two objects were the same) and a motor 

task (grasping and moving one object at a time). These tasks were not done in any 

particular order. The researchers found that the intraparietal sulcus was activated for both 

the visual perception and the interaction with those objects. Jeannerod (2001) 

hypothesized that there was a motor simulation neural network within the brain that is 
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activated, not only as part of perception and action, but also in regards to imagined 

actions. Supporting evidence for such a system can be found in work by Frak, Paulignan, 

and Jeannerod (2001) who found that, when an individual estimates the feasibility of 

grasping an object, reaction time increases as the object is rotated further away from an 

ideal interaction, similar to a mental rotation (Shepard, 1978; 1984). 

This linking of action to cognition is not limited to simple object interaction tasks. 

Indeed, there is a body of evidence suggesting that both real and imagined action and 

other cognitive tasks, such as categorization, share neurological systems. Buccino and 

colleagues (2005) utilized Transcranial Magnetic Stimulation (TMS) to stimulate “hand” 

or “leg” areas of the motor cortex while participants listened to sentences containing 

actions utilizing hands or legs. They found that muscles within participants’ hands and 

legs were activated when listening to hand and leg action related sentences, respectively. 

Furthermore, these responses were altered with the application of TMS to the specific 

motor areas of the brain while the sentence was being heard. These findings were 

expanded by Glenberg and colleagues (2008) who found motor activation and subsequent 

effects of TMS on motor activation during the comprehension of sentences with abstract 

actions (e.g. delegating tasks or issuing orders) as well as concrete actions. These 

findings indicate an intimate functional relationship between motor action and language 

processing. 

While TMS offers the opportunity to alter brain function temporarily, the 

relationship between motor activation and sentence comprehension has been investigated 

in individuals with permanent damage to motor areas. Parkinson’s disease, damages 

dopamine receptors and destroys them over time resulting in a gradual loss of motor 
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control. Boulenger and colleagues (2008) found that individuals with Parkinson’s disease, 

when off of their dopaminergic medication, have more difficulty understanding action 

related words but their medication status does not affect their understanding of concrete 

nouns. Further interactions between motor functions, action related neurotransmitters, 

and the brain’s activation patterns and the comprehension of words are well established 

(see Mahon & Caramazza, 2008 for a summary). These findings indicate a strong link 

between actual and imagined motor control and cognitive capacities of the individual to 

process interactive stimuli. 

This detrimental effect of damage to dopaminergic systems is not limited to 

interactions and interactive concepts. Parkinson’s disease patients have been shown to 

perform comparably with normal participants when engaged in artificial grammar 

learning and in distinguishing category members from non-category stimuli (Reber & 

Squire, 1999), implying that damage to dopaminergic areas of the brain has little impact 

on perceptual learning tasks, such as information integration. However, Maddox and 

Filoteo (2001) compared Parkinson’s patients to control participants in their capacity to 

learn RB and II tasks. They found that Parkinson’s patients were just as likely to fail to 

learn in a RB task as controls, but were more likely to fail to learn in an II task than 

similarly aged controls. Maddox and Filoteo concluded that, although the basal ganglia 

(and its dopaminergic functions) are implicated in both RB and II task performance, 

different areas are utilized for each task; success in RB tasks depends upon the prefrontal 

cortex and the head of the caudate nucleus, while success in II tasks depends more upon 

the tail of the caudate nucleus (Ashby & Waldron, 1999). These findings imply that the 

learning of artificial grammar, RB, and II tasks all require unique neural pathways, 
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despite their sharing multiple neural modules. Furthermore, the impact of Parkinson’s 

disease on both motor control and category learning indicates that areas of the brain 

associated with motor control are also involved in the learning of category structures 

which, in turn, implies that these functions may be related. 

 The nature of this interaction between sensory motor regions in the brain and 

verbal cognition has been the cause of some debate as there have been several prominent 

theories which purport to explain these effects. The most radical of these theories, aptly 

identified as the embodied cognition hypothesis (ECH) (Glenberg, 1997), stipulates that 

all conceptual knowledge is inseparable from the motor and sensory systems of the 

individual; all memory and cognitive capacities of the individual are defined and 

constrained by their physical capacities to sense and interact with the environment. The 

weakness of this theory lies in its explanation of how we come to have and consistently 

utilize abstract concepts such as justice, beauty, or patience. Such concepts often do not 

rely on a single set of experiences actions: these concepts may be applied to a diversity of 

individuals, actions, or environments, yet the same concept is employed to encapsulate 

them. It should be noted that the presence of abstract concepts within individuals is 

nothing new in categorization literature (Posner & Keele, 1968; Minda & Smith, 2001; 

Homa, Hout, Milliken, & Milliken, 2011) and there is some evidence that the occurrence 

of such abstractions can arise from a cognitive system which stores such a vast array of 

individual experiences as unique exemplars (Nosofsky & Zaki, 2002; Zaki, Nosofsky, 

Stanton, & Cohen, 2003). However, the occurrence of abstract knowledge is still 

somewhat problematic to theories which stipulate a cognitive system which is rigidly 

constrained to interactivity. 
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 To account for such abstract knowledge, two other theories have been posited 

which stipulate the existence of “disembodied” concepts within the cognitive system: that 

certain concepts cannot be reliably and directly understood or generated by motor 

activation alone (Mahon & Caramazza, 2008). The antithesis of the ECH is the 

disembodied cognition hypothesis (DCH) which stipulates that the relationship between 

motor activation and conceptual understanding is simple conditioning; concepts exist as 

abstract knowledge and the activation of the motor response system is a byproduct rather 

than a cause of the activation of that abstract knowledge. DCH, while explaining the 

finding that motor and sensory areas of the brain are activated during cognition (Hauk et 

al. 2004; Pulvermüller, 2005), fails to acknowledge the previously discussed impact of 

motor and sensory capacity on word recognition (see also Neininger & P Pulvermüller, 

2003) or sentence comprehension (see also Glenberg & Kaschak, 2002). In essence, there 

is sufficient evidence to conclude that sensation and motor capacity are involved in 

concept formation and utilization, particularly when such concepts are active (e.g., 

hammer, kicking, chair). However, the embodied cognition hypothesis stipulates that 

concept use it constrained to specific instances and actions (Glenberg & Gallese, 2012) 

and therefore has difficulty explaining more abstract concepts such as justice or beauty 

which can be applied to multiple unique contexts. 

 Mahon and Caramazza (2008), in an attempt to explain all of these aspects of 

concept formation and utilization stipulated the Domain-Specific Sensory-Motor (DSSM) 

hypothesis which argues for the presence of abstract categorical knowledge which is 

grounded within, but not limited to, physical sensation and interaction.  To explain this, 

they provide the following example regarding the concept “beautiful”: 
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Consider the concept BEAUTIFUL. There is no consistent sensory or motor information 

that corresponds to the concept BEAUTIFUL. The diversity of sensory and motor 

information that may be instrumental in the instantiation of the concept BEAUTIFUL is 

unlimited: the mountains can be beautiful, or an idea, or the face of the beloved. The 

‘abstract’ and ‘symbolic’ representation BEAUTIFUL is given specificity by the sensory 

and/or motor information with which it interacts in a particular instantiation. Of course, 

this claim could be interpreted as indicating that anything that ‘happens’ to be activated 

in the mind/brain when a given concept is instantiated is ‘part of’ that concept. In this 

regard, the analogy to spreading activation during lexical access in speech production is 

relevant. So for instance, when a person says to another – you are beautiful – the 

activation of the phonological encoding system is not, in any sense, 

‘part’ of the concept BEAUTIFUL. On the other hand, one may be inclined to say that 

the perception of the setting sun behind the beloved, is in a relevant sense, part of the 

instantiation of the concept BEAUTIFUL in the utterance – you are beautiful. 

This example illustrates that, in the using of the concept of “beautiful” the individual 

accesses an abstraction which has been generated from a summed experience with other 

sensations which are also instances of “beautiful”, even if those specific sensations are 

not direct facsimiles of the current experience. If applied to more “interactive” concepts, 

such as “hammer”, the concept is grounded to specific instances of hammer interaction 

but the concept is abstract in that the instances need not be identical. Indeed, they can be 

extremely diverse; even a brick can be conceived of as a hammer just as a tree stump can 

be conceived of as a chair (Anderson, 2003). 
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If concepts are indeed grounded to our interactions and perceptions, then stimulus 

interactivity presents an opportunity to affect, and perhaps improve, category learning. If 

a visual stimulus is grounded to an interactive concept, such as weights which are 

separated into “heavy” and “light”, then the presentation of a stimulus activates not only 

the visual but also motor areas of the brain associated with that stimulus (Martin, 2007). 

Indeed, the possibility that new concepts may be easier to learn if grounded in previously 

learned concepts was predicted by Seger and Miller (2010) who argued that, because 

brain activity involved in executive functions, motor capacities, and vision have a shared 

neurological workspace (basal ganglia), it is possible that activation of motor loops may 

facilitate in the learning process, even if those activations are the result of a resonance 

from imagined interactions.  

Putting the Pieces Together 

As has been shown, there is ample evidence to predict that there is an effect of 

stimulus interactivity with category learning and categorization behavior. First and most 

likely, there is good reason to believe that interaction may aide in participants’ learning in 

an II task. While II tasks typically involve the difficult process of combining sensory 

information from two dimensions, interactivity offers a potential method to circumvent 

this difficulty, given the proper context. In essence, when the rule separating categories in 

an II task can be expressed as a simple, unidimensional, interactive rule such as when 

stairs, a complex visual rule, can be expressed as a unidimensional interactive rule such 

as stairs being “climbable” or “non-climbable” (Warren, 1984) or a ball being catchable  
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or not catchable (McBeath, Shaffer, & Kaiser, 1995; Oudejans, Michaels, Bakker, & 

Dolne, 1996). This effect should occur even when interaction is only imagined (Frak et 

al., 2001). 

Second, there is evidence that physical interaction may engage neurological 

systems upon which both RB and II task performance depend. This shared neurological 

workspace could imply that information from one system could be informative and 

instructive to the other. If so, it would be fairly reasonable to expect that physical 

interaction with stimuli should improve accuracy in both tasks. However, RB task 

performance is usually not difficult for participants (Ashby, Noble, Filoteo, Waldron, & 

Ell, 2003). Therefore, both participant learning and end categorization performance 

should be unlikely to improve as participant performance should begin at nearly peak 

levels. Also, the presence of additional, irrelevant information such as a co-occurring task 

has been shown to impair learning during a RB task (Waldron & Ashby, 2001) and, 

therefore, the presence of additional, non-diagnostic information gained from interaction 

may actually impede learning. As such, the inclusion of a task irrelevant interactivity may 

harm performance during the RB task, potentially even to the point of impairing learning.  

The current experiment was structured to test if the grounding principle is 

applicable in category learning and, if so, when and to what extent. In opposition to this 

principle are the disembodied theories of category learning: that experience and stimulus 

dimensional values are all that determine accuracy in categorization and, furthermore, 

that the potential interactivity of a participant with the stimuli has no impact on their 

capacity to grasp conceptual structure. Participants engaged in a Rule Based task or an 

Information Integration task and were given one of four different instructions: (1) 
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visually inspect these stimuli and then identify them as members of category A or 

category B, (2) visually inspect these stimuli and then identify them as one of two types 

of children’s toy (Type A or Type B), (3) visually inspect these stimuli and then imagine 

interacting with these objects and then identify them as members of category A or B, or 

(4) visually inspect these stimuli and then physically interact with the object and then 

identify them as members of category A or B. If embodied cognition is capable of 

impacting category learning, we should predict that, if participants can ground 

dimensionally complex categorization rules into simpler, interactive terms they should, 

therefore, be able to learn to categorize stimuli into those categories easier than 

participants who lack such grounding. On the other hand, traditional, non-embodied 

explanations of category learning would predict that interactivity would not alter the 

learning in the II task. Given the previously discussed difficulties in predicting the effects 

of interactivity on RB task performance, it was unclear if any benefit of interactivity was 

capable of overcoming the difficulty of additional, non-diagnostic information. As such, 

it was predicted that there would be no effect of interactivity on performance in a RB 

task. 

 To make specific hypotheses, it was predicted (1) that participant accuracy would 

increase across blocks and (2) participants engaged in the RB task would reduce the 

number of errors made within a block faster than participants engaged in the II task. 

Furthermore, if category grounding though embodied cognition aides in the learning of 

complex categories, but not simple categories, then there should be a significant 

interaction between block number, instruction group, and categorization task. Follow up 

model analysis comparisons will compare models which either treat responses from 
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participants in different instruction groups as responses from unique populations to 

models which treat all participants’ responses the same. If category grounding aides in 

the learning of complex categories, then models which treat participant responses from 

interactive instructions as separate from participant responses from non-interactive 

instruction groups should fit the data better than models which treat those groups as the 

same. 
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CHAPTER 2 

METHODS 

Participants 

 Participants were 280 ASU undergraduate students sampled from the Psychology 

101 student pool. These participants signed up for the study through the SONA system 

run through the ASU website. Participants were granted ½ credit hours of their 

participation. These credit hours are needed for the participants to receive a grade for 

their class. 

Stimuli 

 Stimuli were 20 wooden blocks each with a handle that was ½ in. x ½ in. x 1 in. 

These stimuli varied in length from 2 to 11 inches and in width from 1 to 4 inches. The 

stimulus dimensions are shown in Figure 1 and images of the actual stimuli are shown in 

Figures 2a and 2b.  

Category Structure 

 Category structure, as experienced by participants, was determined by the 

feedback they were provided. In the II task, the rule to distinguish between the two 

categories was (as shown in Figure 1) multidimensional. For this task, stimuli for 

which 𝐿𝐿 > 9 −𝑊𝑊  (in inches) are members of category A, and stimuli for which L < 9 – 

W (in inches) are members of category B. In the RB task stimuli with width greater than 

2.5 in. were members of group A and stimuli with width less than 2.5 in. were members 

of group B. 
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Information Integration Category Structure 

 

Rule Based Category Structure 

 

Figure 1. Stimulus Dimensions and Category Membership 
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Figure 2a. Stimulus Example as viewed by participants 

 

Figure 2b. Entire Stimulus Set 
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Figure 3a. II Category Structure by Rotational Inertia 

 

Figure 3b. RB Category Structure by Rotational Inertia 
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defined by width and rotational inertia where rotational inertia was roughly estimated 

such that a cubic inch of material at one inch distance from handle would equal one unit 

of torque.  

Procedure 

 Instructions 

 Participants were first instructed that they will be learning to sort objects into two 

categories. They were then given one of four different instructions: (1) some were simply 

told that the stimuli belong to two different categories and they should look at the stimuli 

and then make their choice, (2) some were told the objects were simplistic children’s toys 

but were instructed only to look at the stimuli, (3) some were told to imagine holding the 

stimuli by their "handles" and to imagine moving them around, while the object remained 

on the table, and (4) some were told to actually hold the stimuli by the "handles", pick 

them up, and manipulate them freely. The exact instructions may be found in Appendix 

A. 

 Learning 

 Participants went through 6 blocks of 20 trials each. On each trial, a stimulus, 

selected randomly without replacement, would be placed on the table in front of the 

participant. They would then obey their instructions (see above) and make a category 

assignment. They were immediately provided feedback on their judgments and the next 

trial would begin. Between each block, participants were given a brief reminder of their 

instructions. 

Backwards Learning Curve 
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 Concerns regarding aggregate data have been a constant concern in cognitive 

psychology, including in Multidimensional scaling of similarity data (Ashby, Maddox, & 

Lee, 1994) and even categorization behavior (Maddox, 1999;). The basic concern within 

these writings, particularly within categorization literature, is that this averaging process 

leads to an incorrect understanding of the behaviors of individuals. In order to investigate 

the effects that the instructions would have on individual behavior, rather than aggregate 

behavior of their groups, individual participant data was analyzed with an exploratory 

Backwards Curve analysis (Hayes, 1953; Estes, 1956).  

For this analysis, each participant was given a score dependent upon the block in 

which they made half or fewer errors than the previous block. It was assumed that, prior 

to any experience with the stimuli, the participants would perform at chance (10 errors). 

The outcome of this analysis would assign to each participant a value between 1-7 

defining the block in which that participant made a significant improvement in accuracy 

for their categorization judgments. To illustrate, a hypothetical participant, w, makes 4 

errors on block one. He is given a score of 1 because he has made 50% or fewer errors 

than the initial estimate of chance performance (10 errors). Another participant, x, makes 

a total of 8 errors on block one and then 4 on block two. X is given a score of 2, because 

he has made 50% or fewer errors on block two than in block one. Participant Y makes 10 

errors in block one, 12 in block two, then 6 in block three and is given a score of 3. 

However, participant Z makes 10 errors, then 9, 8, 7, 6, and finally 4. Despite having 

made fewer errors in each block than in the preceding block, he has never made a 

significant improvement, and is therefore given a score of 7. 
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CHAPTER 3 

RESULTS 

Traditional Analyses 

 Instruction Groups 

Errors on blocks were subjected to a repeated measures analysis where block was 

treated as the repeated measure and participant instructions and category task were 

treated as between subject variables. As can be seen in Figures 4a and 4b, the results 

show participants made fewer errors across blocks (main effect of block), F(5, 268) = 

138.740, p < .001, η2 = .721 and participants made fewer errors in the RB task than in the 

II task, F(1, 272) = 112.153, p < .001, η2 = .292. These variables interacted, F(5, 268) = 

7.825, p < 0.01, η2 = .127, such that participants made fewer errors faster in the RB task 

than in the II task.  Lastly, the interaction between block and instructions was not 

significant F(5, 810) = 1.404, p = .138, η2 = .027, and the three way interaction between 

block, instructions, and task was also not significant, F(15, 810) = 1.217, p = .252, η2 = 

.025. All other effects and interactions were non-significant. 

Interaction Groups vs. Non-Interaction Groups  

Exploratory analyses were done in which the groups with “interactive” 

instructions (“Interact” and “Imagine”) were grouped together and the “non-interactive” 

instruction groups (“Kids Toys” and “A or B”) were grouped together. As can be seen in 

Figures 5a and 5b, the results show participants made fewer errors across blocks (main 

effect of block), F(5, 272) = 138.073, p < .001, η2 = .717 and participants made fewer 

errors in the RB task than in the II task, F(1, 199) = 52.520, p < .001, η2 = .290. 
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These variables interacted, F(5, 272) = 7.913, p < 0.001, η2 = .127, such that participants 

made fewer errors faster in the RB task than in the II task.  Lastly, while the interaction 

between block and instructions was not significant F(5, 272) = 1.773, p = .119, η2 = .032, 

there was a significant three way interaction between block, instructions, and task, F(5, 

272) = 2.368, p = .040, η2 = .042. This interaction implies that participants’ improvement 

across blocks was significantly affected by interactive definitions in the II task, but not in 

the RB task. Again, referring to Figures 5a and 5b, this effect was not linear (implying 

that the difference in learning between interactive and non-interactive stimulus definition 

groups was not that one was simply more accurate than the other). Post-hoc contrast 

analyses confirm that this effect is not linear, F(1, 276) = .163, p = .687. All other effects 

and interactions were non-significant. 

Backwards Learning Curves: Instructions 

 A univariate ANOVA was run comparing the Backwards Learning Curve data 

between instruction groups. Participants engaged in the RB made significant 

improvements in  accuracy in earlier blocks (M=1.64)  than participants engaged in the II 

task (M=3.48), F(1, 272) = 76.900, p < .001, η2 = .220.While there was no significant 

difference between instruction groups alone, F(1, 272) = 1.713, p = .165, η2 = .019, there 

was a significant interaction between instruction group and category structure, F(3, 272) 

= 2.654, p = .049, η2 = .028. As can be seen in Figure 6a, participants engaged in the RB 

task did not vary highly as a result of instruction group, while instructions had a 

significant impact on participants engaged in the II task. 
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 Backwards Learning Curves: Interaction Groups 

 Just as with the learning data, another analysis was done comparing the 

Backwards Learning Curve data between Interactive groups with non-interactive groups 

(See Figure 6b). Just as before, participants engaged in the RB task made significant 

improvements in their accuracy earlier than participants engaged in the II task, F(1, 276) 

= 75.554, p < .001, η2 = .215. Participants with Interactive stimulus (M=2.36) made 

marginal improvements (not significantly) earlier in learning than participants with non-

interactive definitions (M=2.76), F(1, 276) = 3.560, p = .060, η2 = .013. There was no 

interaction between stimulus definition group and task, F(1, 276) = 0.549, p = .549, η2 = 

.002. 
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Figure 6a. Significant Improvement Block by Instruction Groups 
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Figure 6b. Significant Improvement Block by Interaction Groups 

Bayesian Model Comparisons 

 To further investigate these results, three different Bayesian models were 

measured for the degree to which they fit the results presented. All models are based 

around the same basic structure shown in Figure 7. In essence, the function of each model 

is to attempt to predict, given the parameters and their interactions with one another, the 

number of errors a sampled participant will make within each block. As such, the model 

has a number of interacting parameters. The simplest parameter, N, is the number of trials 

(and therefore possible errors) in a given block. This value is fixed at 20. The next 

parameters to consider are T1 through T6. These parameters are meant to imply the degree 

of accuracy of the participants sampled in blocks 1 and 6, respectively. These parameters 

are multiplied by the total number of possible errors, N, to predict the number of errors in  
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each block. As such, the greater the value of T, the more errors the model predicts that 

participants will make in that given block. T is not a fixed value, and is instead given a 

distribution of possible values; a beta distribution, bounded to be between 0 and 1 (100% 

accuracy and 0% accuracy respectively). Finally, this predicted number of errors is 

expected to vary, and so the predicted outcome from the interaction of N and T is given a 

precision of τ, or tau. This precision can be more easily understood if conceived of as 

variance, where the variance of the estimated number of errors is equal to 1/ τ. As such, 

the greater the value of τ, the more accurate the model assumes its predictions will be. 

Tau is given a gamma distribution, which is bounded between 0 and infinity, (which 

prevents the model from predicting negative variance) and assumes that lower values are 

more likely than higher values (assumes greater variance than less). In sum, the basic 

model attempts to predict the number of total errors on a given block of trials (Y) by 

integrating the other parameters of the model, N, T, and τ.  

 

Note. Priors, including the distributions utilized for each parameter are given in the appendix. 

Figure 7. Basic Bayesian Model 
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 As a reminder, the basic process of Bayesian inference takes these prior 

distributions of possible values for a given variable (in this instance T) and updates them 

depending upon the distribution of probable scores given the data. WINBUGS, the 

software used for this modeling, uses Gibbs sampling to construct this posterior 

distribution. In brief, this method assigns values to the variables being analyzed (for the 

AGSL this means T for block 1, T for block 2, etc.). The software then attempts to 

choose a new value for one of the variables, say T1, by (1) choosing a random new value 

for T1 and then (2) sampling from the data. If the new value for T1 or the current value of 

T1, combined with the values for the other variables, T2-T6, fits the sampled data better, 

the model updates T1 to the new value. If not, it keeps the old value. The software then 

attempts to update the next variable in the sequence, T2 using the same methods and the 

new, or old, value of T1. This continues on through each variable until all variables have 

been updated. One run through all variables is considered a single “sample”. After a large 

number of samples have been taken, what is left is a distribution of possible values for 

each variable and with the best fitting values being more likely to be sampled; thereby 

giving those parameter values the highest probability density with similar values also 

having high probability. 

The measure used to determine model fit is the Deviance Information Criterion 

(DIC). A model’s DIC is a measure of how well the variable values sampled from the 

distributions deviate from the data. The lower the DIC, the better the variables 

approximate the data. The DIC also incorporates a measure called ‘pD’ which increases a 

models DIC for each parameter added. This, in essence, penalizes models for adding 

extraneous parameters to account for variability. The procedure, then, is to have a 
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measure of DIC for each model such that the model with the lowest DIC is considered to 

be the best model fitting the data. 

The three models analyzed using these methods were different from one another 

not in the basic construction of the model, but in how many iterations of the model were 

utilized to fit to participant responses and how participants’ data were entered into those 

versions. The hypotheses of the present experiment questioned if interaction, even 

imagined interaction, would allow for participants to learn complex categories faster than 

participants who lacked any interactive insight. The first model is called the “All Groups 

Same Learning” (AGSL) model, and it assumes that there was no difference between 

participants learning over blocks as a result of instructions. It uses only the basic model 

and it lumps all participant responses for a given block into the same distributions 

regardless of their instruction group. The second model is called the “All Groups 

Different Learning” (AGDL) model. It stipulates four different iterations of the basic 

model for each instruction group. The third model is the “Interactive Groups Different 

Learning” (IGDL). It utilizes two iterations of the basic model which samples 

participants’ errors for a given block depending upon whether they were given interactive 

(“Interact” or “Imagine”) or non-interactive (“Kids Toys” or “A or B”) instructions. 

These three different models, their assumed distributions, and their priors are detailed in 

the appendix. 

Multiple Sampling Chains 

When generating each model, each parameter was given a random initial value. In 

order to prevent these initial values from biasing the final distributions, each model was 

given three different sets of initial parameters, or 3 “chains”. These chains were first run 
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through 10,000 samples after which it was assumed that they were no longer biased by 

their initial starting values. These 30,000 samples (total) were not included in any 

analyses. Then an additional 100,000 samples using these three chains (for 300,000 total) 

were run to generate the posterior distributions and to gain the measure of the DIC. 

Bayesian Modeling Results 

 As can be seen in Table 1, AGSL had the lowest DIC, followed by the IGDL and 

finally the AGDL for not only the RB task but also for the II task, regardless of whether 

or not the data contained only participants who reached the learning criterion. It should 

be noted that the IGDL model always fit the data better but the additional parameters of 

the IGDL model increase its DIC such that the AGSL was always considered to be the 

better model to describe the data gathered. 

Table 1. Model DIC 

II Task Data 

Model DBar pD DIC 

AGSL 4178.970 7.969 4186.940 

AGDL 4179.820 25.301 4205.120 

IGDL 4175.660 13.864 4189.530 

RB Task Data 

Model DBar pD DIC 

AGSL 3383.270 7.737 3391.010 

AGDL 3386.690 22.365 3409.050 

IGDL 3382.770 12.946 3395.720 
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CHAPTER 4 

DISCUSSION 

The present experiment was designed to determine if stimulus interactivity, 

imagined or otherwise, would aide in the learning of complex categories. While averaged 

accuracy of participants showed no significant beneficial effect of interactive instructions 

on learning, individual analysis of participants’ improvement across blocks revealed that 

participants with interactive instructions made significant gains in learning during earlier 

blocks than participants with non-interactive instructions. Furthermore, while the 

Bayesian model comparisons showed that the AGSL model was the best fitting model, 

the IGDL model was actually a better predictor of participant accuracy and is described 

as a less fitting model only due to the additional parameters of the model. These results 

seem to indicate a consistent, albeit minor, effect; that stimulus interactivity provided a 

small benefit to category learning. 

 By no means should one consider this study and its results a full-throated 

confirmation of this potential benefit. Rather, this claim should be considered with the 

understanding that this study was aimed at detecting the presence of an effect given the 

most basic of experimental constraints. The only real differences between the present 

experiment and other similar categorization experiments conducted with the same 

category structures (e.g., Ashby & Gott, 1988; Maddox, Ashby, & Bohil, 2003) was the 

nature of the instructions and the use of physical rather than computer generated stimuli.  
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Yet, these simple differences resulted in a non-trivial impact on participants’ 

categorization accuracy. It is, therefore, likely that there exist more impactful alterations 

to instructions and to the stimulus dimensions, which may allow participants who interact 

with stimuli a more potent benefit to category learning and concept formation. 

 That being said, the structure of the categories in the II task was designed such 

that interactivity would allow participants easy access to an interactive, unidimensional 

rule, rather than having to rely on a difficult to learn multidimensional visual rule. 

Therefore, it is not unreasonable to have expected that participants with interactive access 

should have learned to categorize at similar rates when engaged in either the II or RB 

tasks. However, when considering just those participants with interactive instructions, 

participants engaged in the RB task made their first significant improvement an entire 

block sooner (M=1.743) than participants engaged in the II task (M=2.743). While this 

difference is too large to claim that participants in the two groups made significant 

improvements in categorization accuracy with similar amounts of experience, it should be 

noted that, participants who were given different instructions, showed larger differences 

in learning between task types (RB vs II). For participants with A or B instructions, 

participants engaged in the RB task made their first significant improvement in accuracy 

nearly two blocks sooner (M= 1.829) than participants engaged in the II task (M=3.400) 

and similar effects are found when considering participants with Kids Toys instructions 

(M=1.686 vs M=4.114) and with imagined interaction instructions (M= 1.286 vs 

M=3.657). We can, thereby, say with some small amount of confidence that participants 

who actually interacted with the stimuli were able to access the unidimensional rule of 

torque when engaged in the II task, making the learning of category structure easier. 
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Instructions and Interactions 

The qualitative self-report of participants also supports this claim. Among those 

participants who engaged in the II task, many who received interactive instructions 

reported categorizing stimuli according to some measure of torque or weight; they used 

the difficulty they experienced when manipulating the stimuli in their judgments of 

category membership, rather than visual information. In contrast, very few participants, 

even among those who were instructed to imagine picking up the objects, made similar 

reports. They instead often offered overall object size (e.g. B’s are bigger than A’s) as an 

explanation for their categorization decisions. It should be noted that there were some 

participants who engaged in the II task who also reported using stimulus “weight” in their 

judgments outside of the interaction instruction group. However, these cases were much 

less frequent. 

Perhaps surprising, instructions seemed to impact the self-reported explanations 

for categorization behavior for participants in the RB task as well. Several participants in 

both the imagined and actual interaction instruction groups reported using an interactive 

categorization rule of “difficulty to pick up”. In this paradigm, stimuli in category B (the 

thinner category in the RB task) were perceived as more difficult for participants to pick 

up due to an insufficient distance between the handle and the table for the participants’ 

thumbs to fit under to allow for lifting the block. Again, just as with the reports from the  
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II task, this effect was not universal, with many participants in both the imagined and 

actual interaction instruction groups reporting using the visual rule of stimulus width to 

determine a stimulus’ category membership. 

This illuminates what is likely the aspect which most cripples the formation of 

any bold conclusions for the current experiment: for those participants engaging in the II 

task, the unidimensional, interactive rule was not universally perceived and learned by 

participants who could physically interact with the stimuli. This is an important factor in 

establishing the context of current marginal results. It suggests a significant difference 

between the perception of the stimuli from the current experiment and the perceptions of 

stimuli such as stairs (Warren, 1984) or passable gaps such as doorways (Warren & 

Whang, 1986). One of the critical differences between these examples and the present 

experiment was that the categories in the present experiment are defined by an interactive 

definition which delimitates a level of difficulty, rather than the boundary between 

possible and impossible action. This represents a qualitative distinction between the 

present experiment and previous experiments regarding the immediately perceived 

affordances or non-affordances of the environment. 

The nature of affordances is that they are immediately perceived aspects of the 

environment based not only on the dimensions of the environment but also upon the 

capacity of the agent perceiving them to interact with them (Gibson, 1979). In essence, 

affordances are binary dimensions: they either exist or do not. A surface is either 

considered stable, solid, and angled properly so that it can be traversed, or it is not, and 

this is immediately perceived by the agent, guiding its action. If cognition is to be 

grounded by way of these affordances, such as in the example of the chair, it may be 
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difficult for such a system of perception and action to deal with complex category 

boundaries which are not interactive absolutes; the “ease of action” is not as easily 

perceived as the “capacity for action”.  

Yet, while it is a reasonable explanation that the weak effects expressed in the 

current experiment are due to this distinction between ease of action and capacity for 

action, it forgoes the fact that we are capable of understanding that certain tasks are easier 

than others. It is easier to hit a thrown ball with a bat if the ball is traveling at 25 miles 

per hour than if it were traveling at 95, yet the capacity for both actions exist. We are just 

as capable of sitting down on a tree stump which is 3 feet wide as a tree stump 1 foot 

wide, although we understand that one is easier to balance on than the other (as well as 

being more comfortable). In essence, it is possible that complex stimuli and environments 

may be definable by unidimensional, interactive rules, some of which are absolute while 

others are relative. However, it is a safe assumption that we learn and utilize absolute 

boundaries, such as the capacity for action, differently than relative boundaries, such as 

ease of action. Whether this is a function of perceptual input or feedback is at this time 

unclear. However, given the findings of Tanaka and Taylor (1991), these boundaries, 

even absolute boundaries, may only become clear with extensive experience. 

The Bigger Picture 

Taken in whole, the results of this experiment indicate important aspects 

regarding the relationship between stimulus interactivity and categories and concepts by 

which we define those stimuli. First, given that instructions had differential impacts on 

participants’ category learning as a result of category structure, it is concluded that 

stimulus interactivity has a strong connection to categorization behavior when categories 
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and concepts are intimately tied to interactive capacities between the stimulus and the 

agent. However, when dealing with category structures which are not well defined by 

interactivity (such as the RB task in the present experiment) or instances in which 

interactivity is not explicitly used in the construction of categories, interactivity is not 

related to concept formation or use.  

While it tempting to derive conclusions on the strength of the various embodied 

cognition theories given the present results, such a step would not be wise at this time. 

The current results do show that individuals are more likely to incorporate interactivity 

into their category definitions when they are allowed to actually interact with the stimuli. 

However, this does not necessarily eliminate the viability of disembodied cognitive 

explanations. The interactive category rule in the II task is unidimensional, and should, 

therefore, be dominant (Ashby, Queller, & Berretty, 1999). As such, rather than 

considering the finding that some participants with interactive instructions utilized the 

interactive rule to be a surprising result, it could actually be considered odd that 

participants with interactive instructions did not utilize the simpler rule more reliably. We 

must also consider the knowledge that a great deal of support for embodied theories of 

cognition rely on tasks using imagined interactivity, such as the imagined grasping of 

objects (Frak, Paulignan, & Jeannerod, 2001). In the present experiment, however, 

participants who imagined lifting and wielding these objects in the present experiment 

showed no to little benefit to categorization accuracy in the II task, compared to 

participants who actually interacted with the objects.  This is more a curiosity than a 

strong test of embodiment and indeed the sum of these findings do not allow for a strong 

confirmation or disconfirmation of embodied theories of concept learning and use, 
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allowing only the conclusion that stimulus interactivity may be used in concept learning 

in instances where interactivity is not only active, as opposed to imagined, but also 

uniquely informative (II task). 

However, determining graspability is innately tied to physical interaction while 

mere identification does not necessarily require interactivity. Therefore, it is possible that 

imagined interaction may yet yield results similar to actual interaction when it comes to 

affecting category learning, but this may be limited to instances in which the goal of the 

interaction with a stimulus is more than identification. For example, one of the vital 

points for learning the differences between chairs and tables, which share a great deal of 

important characteristics both physical (solid, sturdy, above ground level, etc.) and 

interactive (e.g., a surface to support weight that also allows objects placed on it to 

remain in place), is that they are used to support different objects; namely that chairs are 

meant to support people while tables are meant to support objects. Individuals may, 

therefore, benefit from using imagined interactions when learning to differentiate 

between these two concepts. In fewer words, imagined and actual interactions may show 

similar effects on concept formation when concepts are defined by an interactive goal 

which depends upon a dimensional rule rather than when the concept is defined by the 

dimensional rule alone. 

If the goal or intent of interaction is vital to concept formation, then the impact of 

interactivity on concept formation may well be found within such interactive concepts 

such as hammers, stairs, and chairs. However, it is still unclear if interaction, with or 

without intention or goals, will have any impact on the learning of more abstract concepts 

such as “beauty” or “justice”. While it may be the case that interactivity is the progenitor 
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of many concepts and categories, it may be just as difficult to define the specific 

interactive origins of such abstract concepts as it is to confine those defining interactions 

to a specific intention. The concept of justice, for example, may be invoked by many 

potential interactions. A thief may be imprisoned, fined, have his hand cut off, or even be 

forced to apologize and return the stolen goods. These interactions are unique, and so are 

their intentions: some are meant to be deterrents, some are meant to isolate, and some are 

meant to recompense those injured. While there are likely significant differences in how 

an individual defines justice, each of these instances can be said to be representative of 

the concept of justice for that individual. As such, it may be that the diversity of both the 

defining interaction and intentions may limit the impact of interactivity on the use of such 

abstract, diverse concepts despite the possibility that interactivity is essential for the 

learning and formation those same abstract concepts,  

Future Directions 

 The results of the present experiment present several opportunities for future 

research. The first aims to improve upon the construction of the present experiment 

through some minor alterations. As previously stated, it is likely the effects witnessed in 

the present experiment may have been tempered due to the categories’ interactive rule 

being defined by ease of action, rather than absolute capacity. Ideal future learning tasks 

could perhaps increase the beneficial effects found in the present experiment by having 

the rule come closer to these more absolute rules. Of course, these interactive rules are 

subject to the interactive capacities of the individual (Gibson, 1979; Warren, 1984; 

Warren & Whang, 1986), so establishing the rule for “capacity to interact” will be subject 

to alterations between participants. There is also the possibility that merely coming close 
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to this capacity to interact will improve learning. Say, for instance, that a future 

experiment, utilizing similar stimuli establishes category B as being heavier than category 

A by virtue of a multidimensional rule just as in the present experiment. However, unlike 

the present experiment, several members of category B should be nearly impossible to 

lift/manipulate. Perhaps access to absolute interactivity would increase the likelihood of 

participants utilizing the interactive rule, thereby avoiding the difficulties inherent in the 

II task. 

 Next, there exists the possibility that conceptual grounding may aide in the 

transfer of rule information to new experiences. Casale, Roeder, and Ashby (2012) 

looked at the capacity of participants to extend a learned linear categorization rule, either 

unidimensional (RB task) or multidimensional (II), to new stimuli with dimensions which 

placed them close, in psychological space, to that same rule (see Figure 8). They found 

that participants were much more successful transferring the rule to new stimuli in the RB 

task compared to the II task. They argued that such “analogical” transfer is difficult for 

rules learned in the II task because such learning is dependent upon knowledge of unique 

perceptual combinations rather than an attention based assessment of a single dimension 

(Maddox & Filoteo, 2001). Here, again, the possibility of conceptual grounding offers a 

potential, beneficial effect. If interactivity allows for participants to express 

multidimensional, vision-based categorization rules in terms of a unidimensional, 

interactivity-based rule, then it is likely that interactivity may allow participants to 

transfer a supposedly II rule as if it were a RB rule. The potential benefit of allowing 

individuals to easily transfer supposedly complex distinctions to new stimuli with relative 

ease represents a huge potential benefit which should not be ignored. 
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*Note.  This figure has been adapted from “Analogical transfer in perceptual categorization.” By Casale, 
M., Roeder, J., & Ashby, F. (2012), Memory and Cognition, 40, 434-449. Copyright 2012 by the American 
Psychological Association. 
Figure 8. Analogical Transfer in II and RB tasks  

 There also remains the possibility that the reason interactive instructions lacked 

any strong effect in the present experiment was due to the task: participants were learning 

to identify objects rather than on how to interact with them. This task demand may have 

caused participants to attend more to visual dimensions of stimulus (length and width) 

and less upon the interactive dimensions (weight/wieldability) of the stimuli. As such, it 

may be possible that participants with actual or imagined interactions may be more likely 

to use interactivity in their categorization of stimuli if their learning of categories was 

defined by the learning of an interactive goal. To illustrate, let us consider the possibility 

of teaching a young child the difference between a hammer and a wrench. To an adult, 
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this difference may be intuitive, yet to a child who is first experiencing these objects, 

their visual similarities (e.g., thinner on one end, weighted on one end, metallic, etc.) may 

lend themselves to confusability. Even early interactions may not necessarily allow for 

distinction as simply lifting and wielding the objects will not necessarily illuminate their 

unique functions. It is when each tool is paired with its interactive partner, the hammer 

with a nail and a wrench with a bolt, that the tools are easily distinguishable. To test this 

possibility in a future experiment, participants could learn to sort the same stimuli as the 

present experiment into two groups, however, in interacting with the objects they would 

be asked to use the stimuli to hammer small pegs into a board. In such a setup, those 

stimuli with more “weight” would be better “hammers” in essence allowing the same 

interactive rule to imply an interactive use to the object rather than an interactive rule left 

unrelated to object use.  

Finally, there remains the grand, yet distant outcome of utilizing grounded 

cognition to aide in the learning and instruction of complex, and potentially abstract 

concepts. It has been theorized that abstract concepts, such as mathematics, are embodied 

concepts; grounded to our capacity to interact with the world (Nuñez, 2000).  A strong 

piece of evidence said to support this claim has been the findings that instructors 

frequently utilize gesture in their explanations and descriptions of a variety of rules in 

mathematics and physics. Indeed, children taking a test covering a mathematical principle 

performed better when given prior instructions which included instructional pointing than 

when given instructions without pointing (Valenzeno, Alibali, & Klatsky, 2003). 

However, this type of research is the exception rather than the rule regarding the potential 

influence of conceptual grounding to the learning of complex information. A large 
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portion of the research on this topic has focused on describing the actions of teachers 

attempting to explain this material to students, with little concern for its efficacy (see 

Alibali & Nathan, 2012 for a summary). Additional research, akin to that of the present 

experiment as well as the work of Valenzeno et al. (2003) should seek to offer greater 

insight into the potential impact of conceptual grounding to the learning of complex 

concepts by controlling the types of instructions students receive, rather than by simply 

observing it. 

Conclusions  

 Grounded cognition offers a potentially beneficial and easily accessible method to 

aide in the learning of complex concepts by simplifying them to a more immediately 

available relationship between the individual and the environment. This possibility has 

important implications in potentially understanding how we learn complex rules and 

offers potential learning aides, so investigating it further is worthwhile. While the current 

results allow for some small confidence in the capacity of conceptual ground and 

stimulus interactivity to aide in learning, there remains much work to be done to flesh out 

the extent and limitations of this strategy. 
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APPENDIX A  

INSTRUCTIONS GIVEN TO PARTICIPANTS 
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To all participants: 

 “Thank you for your participation. If at any time you feel as though you cannot 

continue, you may stop the experiment at no penalty. Your task today will be to learn 

how to sort a series of objects into two distinct groups. You have never seen or interacted 

with these objects before so, at the beginning of the experiment you will have no idea as 

to which group an object belongs to, but you will learn, and here’s how: I will take these 

objects one at a time and place them on the table in front of you.” 

Then the instructions diverge 

A or B: 

 “You will then look at, but not touch, the object and then make your best guess as 

to whether it is an “A” or “B”. “ 

 

Kids Toys: 

 “The objects are simplistic children’s toys made out of wood. You will look at, 

but not touch these toys, and make your best guess as to whether it is a “Type A” or 

“Type B” toy.” 

 

Imagined Interactions: 

 “You will look at each object and imagine picking it up with your right hand on 

the right side of the object. Imagine manipulating the object: waving it around, swinging 

it, etc.  I only ask that you don’t imagine rotating the object so that you could see the 

opposite side. After imagining interacting with the object, make your best guess as to 

whether the object is an “A” or “B”.” 
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Actual Interactions: 

 “You will look at each object and the pick it up by the right side with your right 

hand. Feel free to manipulate the object: waving it around, swinging it, etc. I only ask that 

you don’t rotate the object so that you could see the opposite side. After imagining 

interacting with the object, make your best guess as to whether the object is an “A” or 

“B”.”  

Then the instructions converge 

 “After you have made your judgment, I will tell you if you are correct or 

incorrect. Then I will take the object behind the curtain and replace it with another. And 

the process will repeat. After going through each object once, we will repeat the process 

again, going through each object randomly. We will go through a total of 6 rounds. At the 

beginning of this experience, you will be simply guessing, but as we go through more and 

more stimuli, you will get better. Do you have any questions?”  
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APPENDIX B 

BAYESIAN MODEL PRIORS 
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N = 20 

τ1 ~ dgamma (ατ1, βτ1) 

ατ1 = 1 

βτ1 =1 

τ2 ~ dgamma (ατ2, βτ2) 

ατ2 = 1 

βτ2 =1 

Tk ~ dbeta(αk, βk) 

All α = 2 

All β1 = 2 

All β2 = 3 

All β3 = 4 

All β4 = 5 

All β5 = 6 

All β6 = 7  
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APPENDIX C  

BAYESIAN MODELS 
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AGSL Model 
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AGDL Model 
A or B      Kids Toys 

 
Imagine     Interactive 
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IGDL Model 
Non-Interactive     Interactive 
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