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ABSTRACT  
   

Monitoring of air pollutants is critical for many applications and studies. In 

order to access air pollutants with high spatial and temporal resolutions, it is 

necessary to develop an affordable, small size and weight, low power, high 

sensitivity and selectivity, and wireless enable device that can provide real time 

monitoring of air pollutants. Three different kind of such devices are presented, they 

are targeting environmental pollutants such as volatile organic components (VOCs), 

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection 

methods, such as quartz crystal tuning fork coated with molecularly imprinted 

polymer and chemical reaction induced color change colorimetric sensing. These 

portable devices are validated using the gold standards in the laboratory, and their 

functionality and capability are proved during the field tests, make them great tools 

for various air quality monitoring applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Volatile organic compounds (VOCs), including aromatic and chlorinated 

hydrocarbons, have serious environmental and health impacts [1]-[2]. Human 

exposure to VOCs has become an important public health concern. VOCs exists both 

indoor and outdoor, with indoor concentration usually higher than the outdoor 

concentration. The main source of outdoor VOCs is the on road vehicle emissions 

and the industrial solvent usage [3]-[5], and the indoor VOCs source including paints, 

furniture, nail polish, printers and so on. A group of VOCs including benzene, toluene, 

ethyl benzene and xylenes, collectively known as BTEX, are of great concern of many 

epidemiologists. These VOCs are defined as class A pollutants by US Environmental 

Protection Agency (EPA) because they are potential carcinogens, and many cause 

leukemia, lymphomas and other diseases [6]-[13]. 

Even though the health impact of the VOCs is recognized, the most commonly 

used method for monitoring VOCs involve a sample collection followed by a gas 

chromatography and mass spectrometry test. It is expensive and time consuming. In 

order to assess VOCs concentration with high spatial and temporal resolutions at 

personal level, an affordable, low power, small size, light weighted, high sensitivity 

and selectivity device with wireless communication capability is much needed. 

Electrochemical sensors are usually commercialized as convenient portable gas 

monitors, their target analytes include oxygen, carbon monoxide, hydrogen sulfide 

and sulfur dioxide [14]-[15]. However, these sensors are not able to detect the BTEX. 
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Different detection methods combine with gas chromatograph (GC) is another 

approach. These detection methods include thermal conductivity (TCD) [16], 

photoionization (PID) [17]-[18], flame ionization (FID) [17], electrochemical [14], 

[19], and surface acoustic wave (SAW) sensors [20]. Micro machined columns and 

preconcentrators have been integrated with SAW and chemresistor detectors [21]. 

Portable GCs offer great capability and flexibility for epidemiological, environmental 

and safety applications. However, the micro fabricated GCs are still under 

development phase and the cost of tiny components seems to be higher than 

conventional parts. Commercially available GCs are still expensive, range from 

several to tens of thousands dollars), and not suitable for epidemiological studies. 

 

1.2 Tuning fork sensor platform 

Microfabricated quartz crystal tuning fork have been using in many 

applications which require precise timing, including wristwatch and microcontroller 

integrated circuit. Quartz is a piezoelectric material which means application of 

mechanical stress results in generation of an electrical signal and vice-versa, and 

that’s the basic principle used in the operation of the quartz tuning fork. The 

commercial quartz tuning fork are built in a way that the fragile prongs are 

protected in a metal can; this can also protect the prongs from outside pressure 

variation and other potential disturbances. Mechanical resonations are generated 

when a voltage is applied the prongs. The tuning forks require very low power 

consumption and are very stable and precise.  
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An important feature of the tuning fork is the high quality factor Q (ratio of 

energy stored to energy dissipated per oscillation), and this make it suitable for 

frequency-based measurements. Resonant frequency of a tuning fork can be 

expressed as follows: 

 

Where k represents effective spring constant and m is mass of the tuning fork. The 

typical Q factor of a tuning fork is 10,000 in the air. In order to use tuning fork as 

chemical sensor, it need to be modified. We removed the metal can enclosing the 

prongs, exposing the prongs of the tuning fork. Then, the tuning fork prongs are 

modified to be hydrophobic, and coated with molecular imprinted polymer. The 

molecular imprinted polymer forms a thin layer on the prongs, and binds with the 

target analyte. Once the analyte is bound with the polymer on the prongs, the mass 

of the prongs increase and therefore decrease the resonant frequency. The change of 

the frequency is given by: 

 

And based on the mass change, the concentration of the target analyte can be 

calculated. These commerically avaible (US $0.01/each) tuning forks is a great for 

portable chemical sensors.  
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CHAPTER 2 

A WIRELESS HYBRID CHEMICAL SENSOR FOR DETECTION OF ENVIRONMENTAL 

VOLATILE ORGANIC COMPOUNDS 

 

Abstract  

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been 

developed. The device combines a highly selective and sensitive tuning-fork based 

detector with a pre-concentrator and a separation column. The selectivity and 

sensitivity of the tuning-fork based detector is optimized for discrimination and 

quantification of benzene, toluene, ethyl benzene, and xylenes (BTEX) via a 

homemade molecular imprinted polymer, and a specific detection and control 

circuit. The device is a wireless, portable, battery-powered, and cell-phone operated 

device. The device has been calibrated and validated in the laboratory and using 

selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness 

are also demonstrated in some field tests. It provides rapid and reliable detection of 

BTEX in real samples, including challenging high concentrations of interferents, and 

it is suitable for occupational, environmental health and epidemiological 

applications. 
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2.1 Introduction and background 

2.1.1 Introduction 

 Human exposure to toxic chemical has become an important problem of public 

health. Many of these toxic chemicals are volatile organic compounds (VOCs). A group 

of VOCs include benzene, toluene, ethyl benzene and xylenes, collectively known as 

BTEX, which are of great concern of many epidemiologists. The main source of BTEX 

emission (more than 80 %) are automobile exhaust and other traffic related sources [3, 9, 

11], indoor sources consist of commonly used paint, detergent, nail polish. Typical BTEX 

concentrations range from low parts per billion (ppb) by volume [3, 10] to low parts per 

million (ppm) by volume levels [11]. These VOCs are defined as class A pollutants by 

US Environmental Protection Agency (EPA) because they are potential carcinogens (US 

EPA), and many cause leukemia, lymphomas and other diseases [1, 2, 4-9]. Therefore, 

detection and quantification of trace level BTEX in the air can be critical for many 

applications, including occupational health, industrial safety, epidemiological study and 

environmental monitoring. Up to date, gas chromatography and mass spectrometry 

(GC/MS) is the main technology of VOCs measurement in the air. The sample collection 

site and the analysis laboratory are usually at different locations, thus sampling collection 
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using canister, Tedlar bag and adsorbent tube are involved in almost all the GC/MS 

related VOCs measurement, and are at risk for sample contamination and loss during 

storage and transportation. The high cost and long turnaround time limit the data 

collection in field investigations. 

 

2.1.2 Gas chromatography and mass spectrometry 

 As we mentioned above, GC/MS is up to date the most common way of analyzing 

VOCs in a complex mixture. Gas chromatography is a common separation technology 

used in analytic chemistry. In gas chromatography, a mixture sample with different 

compounds is injected to a column, the mobile phase is the carries gas, and the stationary 

phase is a thin layer coating inside the capillary column. As the mobile phase moves 

along the stationary phase, different compound will be having different interaction with 

the stationary phase. Depend on how strong the interaction is, the compounds will move 

in the column at a different speed, result in a different retention time (the time a 

compound take between the injection and elution), which can be used to characterize the 

compound. Gas chromatography is usually coupled with mass spectrometry (MS). When 

a sample is loaded into the MS instrument, the compounds are ionized and then separated 

according to their mass-to-charge ratio in electromagnetic field. The ions then are 

detected and a mass spectrum is made from the signals. 

 

2.1.3 Portable chemical sensor for VOCs analysis 

 While reliable, Conventional GC/MS measurement is expensive, not real-time, 

and often required a trained technician. The tasks of analyzing VOCs in a complex 
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mixture of many interferents with a high sensitivity and selectivity inexpensive portable 

chemical sensor in real time, is still a challenge. There are two common approaches for 

developing a chemical sensor which can detect target analyte in a complex mixture. One 

common approach of target detection with the present of interferents makes the use of the 

specific binding between a probe and a target molecule. A strong binding of a probe and 

a molecule usually results in a high sensitivity, but also means a slow response time and 

low recovery rate, which requires long sampling time and frequently replacing the sensor, 

thus not a good candidate for real time detection. Another strategy is gas chromatography 

technology; a widely used technique is gas chromatography/mass spectrometry (GC/MS). 

Measurement of VOCs with GC/MS involves the sample collection using canister, Tedlar 

bag and adsorbent tube, the detection is not real-time and the cost is substantial. And 

obviously a bulky and expensive instrument is not suitable for real-time field testing. 

Commercial portable GC systems have been developed and marketed [12]-[16], but their 

sensitivity is limited. Carrier gas and computers are needed in some systems and the cost 

is still high. A miniaturize GC system consists of capillary column, a microfabracated 

preconcentrator and chemresistor or surface acoustic wave (SAW) detectors  has been 

reported [17], [18]; The combination of microfabracated GC column and metal 

oxide(MOX) gas sensors has also been developed [19], [20].  

 

2.1.4 Quartz crystal tuning fork as chemical sensor 

 Microfabricated quartz crystal tuning fork have been using in many applications 

which require precise timing, including wristwatch and microcontroller integrated circuit. 

Quartz is a piezoelectric material which means application of mechanical stress results in 
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generation of an electrical signal and vice-versa, and that’s the basic principle used in the 

operation of the quartz tuning fork. The commercial quartz tuning fork are built in a way 

that the fragile prongs are protected in a metal can; this can also protect the prongs from 

outside pressure variation and other potential disturbances. Mechanical resonations are 

generated when a voltage is applied the prongs. The tuning forks require very low power 

consumption and are very stable and precise.  

 An important feature of the tuning fork is the high quality factor Q (ratio of 

energy stored to energy dissipated per oscillation), and this make it suitable for 

frequency-based measurements. Resonant frequency of a tuning fork can be expressed as 

follows: 

 

Where k represents effective spring constant and m is mass of the tuning fork. The typical 

Q factor of a tuning fork is 10,000 in the air. In order to use tuning fork as chemical 

sensor, it need to be modified. We removed the metal can enclosing the prongs, exposing 

the prongs of the tuning fork. Then, the tuning fork prongs are modified to be 

hydrophobic, and coated with molecular imprinted polymer. The molecular imprinted 

polymer forms a thin layer on the prongs, and binds with the target analyte. Once the 

analyte is bound with the polymer on the prongs, the mass of the prongs increase and 

therefore decrease the resonant frequency. The change of the frequency is given by: 

 

 To overcome the difficulties of the current detection technologies, we have 

recently demonstrated a hybrid approach that integrates specific binding (e.g., 
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colorimetry) and selective separation (e.g. GC) of analytes [21]. The work confirmed the 

value of the hybrid approach, however, the sensitivity and selectivity fall short to meet 

the needs of environmental monitoring. In the present work, we introduced adsorbent 

packed preconcentrator that selectively collects and release analytes, a more sensitive 

microfabricated tuning fork sensor, an automated heat and flow control with a 

microcontroller-based circuit, and wireless communication with a cell phone. We have 

also integrated all the components into a single unit that weighs about 1.2 lbs., tested its 

analytical performance, and validated its usability in various real world scenarios. The 

device can reliably detect a few ppb-level of BTEX in complex real samples within 

minutes, more than three orders of magnitude improvement over the previous work. The 

system schematic and the performance of the key components of this device are 

described below. 

 

2.2 Prototype Description and Experimental Methods 

In this hybrid chemical sensor device, three key components are combined: 1) 

specific pre-concentration for sample collection, 2) chromatographic separation for 

discrimination of interferents and target analytes, and 3) specific binding for detection of 

analytes. A distinctive feature of the device is a highly selective tuning-fork based 

detector. The portable hybrid device can detect VOCs in real-time at few part per billion-

levels. While the new detector allows sensitivity, specificity and low size, the 

preconcentration and separation further improves the selectivity in complex analysis 

environments. In addition, the device is rechargeable battery-operated and paired to a 

Smartphone App via a wireless connection, which further reduces weight burden and size. 
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A built-in Bluetooth chip in the hybrid device enables connectivity with a Bluetooth in 

the cell phone, which not only allows data retrieval from the device to the cell phone, but 

also remote control of the device from the cell phone. To introduce the working principle 

of the chemical sensor, we first present the key components, and then briefly describe the 

measurement procedure.  

 

A. The Quartz Crystal Tuning Fork Sensor  

 Quartz crystal tuning forks are mechanical resonators which have a resonance 

frequency of 32.768 KHz (Newark Electronics) with high quality factor (about 10000 in 

ambient air) and high sensitivity of mass detection (4pg/mm2) [22]-[25]. They also have 

low power consumption (1 µW maximum) and a small size (0.1×0.5×3 mm3). A digital 

counter build in the circuit is used to measure the tuning fork frequency change at a 1.8 

mHz resolution. To achieve the desired sensitivity and selectivity, the tuning forks are 

modified with molecular imprinted polymer (MIP). MIP is highly cross-linked 

polystyrene formed by divinylbenzene, synthesized with biphenyl as template and 

xylenes as porogens. The MIP binding sites bind with the hydrocarbons mainly through 

π- π interactions and van der Waals interactions, results in a selective and reversible 

sensing. The tuning fork prongs need to be hydrophobic so that the MIP can effectively 

stick to the prongs. To make the tuning fork hydrophobic, the prongs are first soaked in 

the Phenyl trimethoxy Silane, and then in dodecane ethiol. A MIP-coated tuning fork 

with ppb-level detection limits for common hydrocarbons like xylenes and toluene is 

typical. Figure. 2-2(a) shows a tuning fork sensitivity test. In this test, 250 ppb xylene is 

prepared and injected to the tuning fork sensor cartridge. The sensor signal is 0.168 Hz, 
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while the noise level is as low as 0.001 Hz. The detection limit is then determined by 

signal at 3 times of the noise level, which is about 4.4 ppb for xylenes. The sensor also 

shows a rapid response time and fast desorption process, which are very critical for real-

time detection. Figure. 2-2(b) shows a reproducibility test, in which the tuning fork 

sensor is exposed to the same concentration analyte for 12 complete measurement cycles. 

The mean of the responses is 0.26048 Hz, while the standard deviation is 0.00778 Hz, 

which is about 3% error. Overall, the sensor shows a fast response time, rapid desorption 

process and excellent reproducibility, together with the low power consumption and 

super small size features, the tuning fork sensor is a suitable for portable chemical sensor 

and real-time detection. Common interferents including acetone, ethanol and ammonia 

that have been tested at high concentrations (42ppm) shows no response on the MIP-

coated tuning fork sensor [26]. The tuning fork sensor used in this hybrid chemical sensor 

device is after the gas chromatography capillary column, plugged into the circuit board. It 

is protected inside a Teflon chamber with a very small dead volume which is only 12 µL. 

The plug and play feature of the tuning fork sensor makes it easy to change and maintain. 

B. The Preconcentrator 

 The preconcentrator located before the gas chromatography column, incoming 

samples will first go through the preconcentrator and get trapped. It is constructed from a 

stainless steel tube with a size of 1/16 inch diameter and 2.5 cm length. Packed adsorbent 

is retained with two glass fiber plug. A Nichrome heating wire which has a resistance of 

4 ohms is coiled around the stainless steel tube. The adsorbent can absorb the VOCs at 

room temperature; a voltage is applied to the heating wire to heat the preconcentrator to a 

desired high temperature (300 °C) during desorption stage and injection stage. The 
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adsorbent material is the key component in the preconcentrator, and a very important 

property of the adsorbent material is the capacity. We reviewed adsorbent properties and 

three different materials are tested. These three materials are Carbopack X, Carbopack B 

and Carboxen 1016 with surface area of 100 m2/g, 240 m2/g and 75 m2/g respectively. 

Carbopack B and Carbopack X are graphitized carbon blacks; Carbopack B is non-porous 

while Carbopack X is porous. Carboxen 1016 is carbon molecular sieve which is the 

carbon skeletal framework remaining after the pyrolysis of a polymer precursor. A gas 

sample of toluene at the concentration of 10 ppm is used to compare the breakthrough 

volume between these three compounds. A miniature pump brings the gas sample which 

is a 10 ppm toluene into the preconcentrator; a MIP-coated tuning fork sensor with 

circuits is located at the outlet of the preconcentrator. At room temperature, the 

adsorbents inside the preconcentrator can absorb the toluene, therefore, as long as the 

adsorbent materials are not saturated, the toluene can’t go through the preconcentrator or 

reach the tuning fork sensor. Therefore the sensor should not show any positive response 

of toluene until saturation of the preconcentrator is reached. In the experiments, each 

material is tested with the same amount which is 12 mg. The flow rate of the toluene gas 

sample is also the same, which is 700 mL/min. By comparing the time from the point of 

sample injection to when the sensor starts to show response, we can compare the capacity 

of each adsorbent material. The responses of the tuning fork for each adsorbent are 

shown in Figure. 2-3. It can be observed from Figure. 2-3 that the breakthrough time are 

11.5 minutes, 2.5 minutes and 3 minutes for Carbopack X, Carbopack B and Carboxen 

1016, respectively. Carbopack X has longest saturation time, and therefore it has the 

largest capacity. This is mainly due to the porous property and its high surface area.  
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An important parameter that describes how efficient the pre-concentrator traps 

and desorbs the analytes is pre-concentration factor. In our hybrid device, the factor is 

defined as the ratio of the tuning fork sensor response of a sample injection using the 

preconcentrator to that of a direct sample injection without using the preconcentrator. 

Figure. 2-4(a) shows the tuning fork sensor response of a direct injection of 10 ppm 

BTEX sample, and Figure. 2-4(b) shows the response of a 20 ppb BTEX injection after 

20 minutes of pre-concentration. The corresponding pre-concentration factor is ~800 for 

BTEX. This large preconcentration factor not only reflects the high trap efficiency, but 

also is a result of high desorption efficiency. We have tested and found that desorption 

efficient is as high as 99.2%, which is important for repeated detection and analysis of 

samples. Chemical sensors based n specific molecular binding in general lack this 

capability for repeated measurements. 

 

C. The Gas Chromatography Capillary Column 

 The MIP-coated tuning fork sensor provides a selective detection over 

hydrocarbons family, but including an additional separation mechanism to further 

improve the selectivity of the system is still desirable. The gas chromatography capillary 

column located after the preconcentrator and before the tuning fork detector. Two kinds 

of gas chromatography columns whose stationary phase material are carbowax and 

cyanopropylphenylsilicone are coupled together to provide the optimal separation. The 

column with a carbowax stationary phase is UAC-CW (Quadrex) and the column of 

cyanopropylphenylsilicone is UAC-502 (Quadrex). 2 meters of each column are coupled 

together, and implemented into the system. The use of the relativity short column 
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provides a fast gas chromatography measurement while still ensure sufficient separation 

over BTEX compounds. A typical chromatogram of the BTEX separation corresponding 

to an injection of subnanomole amount of BTEX mixture for 5 seconds is shown is 

Figure. 2-4(b), a complete separation analysis of BTEX only takes 200 seconds, a MIP-

coated tuning fork sensor is served as the detector in this test. While providing a fast 

separation of BTEX, the 4 meters columns sometimes don’t have enough capability to 

separate a very complicated sample. Longer column usually provide a better separation, 

but the analysis time will also increase significantly. There is a trade-off between the 

separation efficiency and analysis time, and with the easiness of changing the GC column, 

different columns can be plugged into this hybrid chemical sensor device to adjust the 

need of different applications.  

 

D. The circuit 

 The microcontroller-based circuit in this chemical sensor device is responsible for 

controlling, measuring and communication. It times and controls the valve switching 

between the five different operation stages: preconcentration stage, desorption, injection 

stage, analysis stage and cleaning stage. It also controls turning on or off the heater. The 

tuning fork is driven by the circuit, and the frequency is measured. The Bluetooth chip is 

connected to the microcontrollers so that the command can be sent to the circuit, and the 

data can be send out to the Smartphone user interface. 

 

2.3 Results and Discussion 

2.3.1 Prototype Development and Validation 
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A. Development of the prototype of the hybrid device 

 The integration of basic components of the hybrid device requires of smart 

engineering solutions to achieve maximum analytical performance. The analytical 

performance is evaluated by the capability of the system to separate sample components, 

and by signal-to-noise ratio quality of each separated component.  

Fluids components such as flow rate, dead volumes, materials, and fluid control 

were optimized and are as follows. First, an optimal flow rate of ~8 mL/s is used to reach 

good sample component separation, avoiding significant diffusional dispersion of sample 

components inside the column. Flow conditions are reached via a miniature 5.7-V pump 

(Parker). Second, dead volumes are minimized via home-made connectors to further 

decrease sample components dispersion, and separation peak broadening. Third, inert 

materials (Teflon and stainless steel) are used to prevent uncontrolled adsorption of 

sample components, excepting the preconcentrator, separation column, and detector. In 

addition, a zeroing filter based on activated carbon (Purafil) is integrated to generate 

clean air from ambient air as carrier gas, eliminating the burden of using external carrier 

gas cylinders, and further minimizing weight and size. Lastly, the hybrid device has a 

fluid system controlled by four miniature valves (Lee Co.) with work in synergic 

coordination via a built-in control circuit, which is wirelessly activated and set up from 

the user interface in the cell phone (Figure 2-1(b) insert). All above-mentioned 

components are packed together with the pre-concentrator, separation column, detector, 

and power components (two lithium-ion polymer batteries) into a size of 12.9×9.9×4.9 

cm3 project plastic box. The device weights a total of 1.2 lbs. Figure 2-1(a) shows a 

prototype hybrid device along with the Smartphone user interface. The integration of all 
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components leads to a truly portable and self-contained hybrid device for trace level 

VOCs detection in complex mixtures. 

 

 

 

B. The user interface and control of hybrid device function 

 The user interface is developed in a Motorola Q phone via Visual Studio 

(Microsoft) software. The user interface is another key component of the device. It allows 

receiving, displaying, and storing device data. Once the data have been acquired, it also 

allows further data transmission via seamless wireless network. As mentioned before it 

allows controlling the hybrid device functions and its time settings. The device functions 

consist of five major stages: 1) pre-concentration, 2) desorption, 3) injection, 4) analysis, 

and 5) cleaning. 

 

1) Pre-concentration stage: In this stage, the pump provides a constant flow of sample 

(e.g. indoor or outdoor air) to the pre-concentrator, and VOCs are adsorbed. 

Preconcentration times are adjusted based on VOC concentrations. Preconcentration 

times are inversely proportional to concentrations. Typically 9-min preconcentration 

allow detection of few ppb.  Once the pre-concentration time is finished, the valves are 

switched so that scrubbed clean air is purged into the GC column and tuning fork detector 

registers a baseline. 
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2) Desorption stage: After the pre-concentration stage, desorption stage starts with the 

pre-concentration heating to 300°C for 1 min, which allows VOC desorption and release 

to the gas phase. 

3) Injection stage: After desorption stage, the valves are switched again to a injection 

stage, and scrubbed (clean) air passes through the heated preconcentrator and takes the 

VOC vapors to the separation column. The injection stage lasts 15 seconds. 

4) Analysis stage: After the 15-sec. injection, the analysis stage follows with the 

separation of sample components in the column via a clean air carrier active flow. 

Concurrently, the tuning fork detector measures the sensor signals and sends them to the 

Smartphone. As the sample components exit the separation column, detection id perform 

from the recorded peaks in a chromatogram (Figure 2-4(b)). 

5) Cleaning stage: After the analysis time is finished, the device will clean up the pre-

concentrator with an additional heating step, and flow of clean air so that the device can 

be ready for the next testing event. 

It is important to mention that the above-described operation is fully automatic, and can 

be initialed by simply push a button in the Smartphone user interface. 

 

C. Laboratory Characterization and Calibration 

 We have calibrated the hybrid device using BTEX samples with various 

concentrations. The BTEX samples are prepared and the concentration of each compound 

is tested with a Selected Ion Flow Tube– Mass Spectrometer (Instrument Science, UK). 

Figure. 2-5(a) shows a chromatogram for one of BTEX calibration sample. 19 m column 

is being used in this calibration test. The BTEX components elute at the expected elution 
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sequence: benzene, toluene, ethylbenzene and xylenes, consecutively. Also note that the 

xylene isomers which are m-xylene, p-xylene and o-xylene are also well separated. The 

high separation efficiency allows the device to analyze a complex sample. The calibration 

curves (Figure. 2-5(b-d)) show that the peak heights of each component are proportional 

to the analyte concentrations. Notice that the linearity concentration goes up to 900 ppb 

for benzene, 2400 ppb for toluene and 800 ppb for xylene. The sensitivity factors are 

found to be 0.57 mHz/ppb, 0.50 mHz/ppb and 1.15 mHz/ppb for benzene, toluene and 

xylene, respectively. The detection limits are a few ppb for all the compounds. It is 

important to mention that a short pre-concentration time which is 45 seconds is used here; 

and the detection limits can be further lowered to about 1 ppb by increasing the pre-

concentration time to 5 minutes. These large linear calibration range and low detection 

limit levels are useful for most of outdoor and indoor environmental air monitoring 

scenarios, as well as industrial applications, and represent an extraordinary good 

performance for a portable hybrid sensor device. Once the calibration is established, 

unknown BTEX concentrations can be determined, using either the peak height or peak 

area of the chromatograms. 

 

2.3.2 Field testing 

In order to test the robustness of the hybrid device in the field, preliminary field tests 

under different scenarios were carried out and the findings are summarized below. 

 

A. Air quality test during the Gulf oil spill 
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  The Gulf oil spill in 2011 was a disaster to both the human and the environment. 

While the seawater was contaminated with over 160 billion of oil gallons, an unknown 

amount of petroleum VOC contaminated the air of the oil spill area and their 

surroundings, and represented a high concern hazard for the area inhabitants and workers 

engaged in oil remediation and cleaning activities [27]. Conventional monitoring 

equipment showed limited sensitivity and slow response time over this emergency [28]. 

Taking advantage of the portability of the hybrid device, our team rented a shrimp boat 

and tested air quality in multiple locations in an area located 69 miles from the spill site 

(Figure. 2-7(b)). For this field test, we used a single 2-m column (UAC-502) and 5 

minutes preconcentration time. 

A typical data set is shown in Figure. 2-6(a) as a blue curve. For comparison, a 

50-ppb BTEX calibration curve (Figure. 2-6(a) black curve) is also plotted in the same 

figure. The results reveal two important findings. First, peaks associated with BTEX are 

absent, which indicate their levels are below 1 ppb. This finding is in agreement with the 

data reported by EPA’s mobile units, which were deployed in the area at the time of the 

analysis (June 13th, 2010). The absence of BTEX in that area is presumably due to the 

high volatility of the BTEX compounds. Second, a large peak between where toluene and 

ethyl benzene peaks is found. This peak is due to an alkyl hydrocarbon, and its 

concentration is estimated to be ~50 ppb. We have confirmed the finding by analyzing 

water samples collected at the site with GC-MS. The GC-MS data is shown as inset in 

Figure. 2-6(a), which reveals a peak between toluene and ethyl benzene. This peak is 

identified as a hexane derivative, which is in excellent agreement with the finding of our 

hybrid device. 
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B. BTEX detection in gasoline vapors 

Gasoline is a petroleum-derived liquid, which is primarily used as engines fuel. It 

consists mostly of aliphatic and aromatic hydrocarbons. Gasoline vapor is one of the most 

complicated real samples [29], and is used to challenge the performance of the hybrid 

device. Because of the complexity of gasoline vapor, a longer separation column is used 

to provide better separation. Because of the trade-off between the separation and the 

analysis time, the latter is increased to 50 minutes. Figure. 2-7(a) shows the 

chromatogram of a real gasoline vapor. The preconcentration time for this sample is 5 

minutes, and the analysis time is 40 minutes. About 20 peaks are observed from the 

chromatogram, which include the BTEX peaks. Benzene is shown in Figure. 2-7(b). 

Figure. 2-7(c) and Figure. 2-7(d) present the peaks of toluene and xylenes respectively. 

Ethyl benzene, m-xylene, p-xylene and o-xylene are also separated in this case. The 

concentrations of BTEX in this sample are tested using a Selected Ion Flow Tube Mass 

Spectrometry (Trans Spectra Limited). The ability of the device to detect BTEX in a 

complex mixture with different kinds of interferents is demonstrated in this test. 

2.4 Conclusion 

 A hybrid chemical sensor device has been developed and validated. The key 

components of this portable device are a mini adsorbent packed preconcentrator, two 

series-coupled 2 meters or single 19 meters gas chromatography capillary column, and a 

novel tuning fork detector coated with molecular imprinted polymer. Filtered ambient air 

is used as the carrier gas. Other features include Lithium-ion polymer battery power 

source, a Bluetooth communication chip for remote control of the device and the data 
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transmission, and an application in Smartphone for remote command sending, data 

storage, data analysis and figure plotting.  

In most of the interesting applications, including indoor and outdoor air quality 

monitoring, limits of detection for VOCs in the parts per billion range are needed. The 

use of the adsorbent packed preconcentrator highly improves the sensitivity of the device. 

The GC column provide the device a chromatography separation, while maintain a fast 

measurement process. The use of the tuning fork detector is the most unique part of this 

device, this tuning fork sensor not only provide a sensitive but also a selective detection 

of VOCs. The device has been calibrated and validated in the lab with different column 

length configurations. The device is portable, battery operated, and wirelessly connected 

to a user-friendly cell phone application. Device applications in real world, such as 

outdoor air quality and BTEX in gasoline vapor detection are demonstrated. 

Even though the device has demonstrated its capability, there are improvements 

need to be done. One concern of the device is the relative long analysis time when 

equipped a long column. There are several approaches which could address this problem, 

one possible way is to use a more powerful pump which can provide a higher flow rate; 

another way is to heat the column. Both will result in an increase of power consumption. 

Finding a better stationary material to increase the separation efficiency, or using 

multiple columns in parallel to reduce the pump load and increase the separation 

efficiency could be solutions, too. MEMS technology could be used to approach these 

proposals. A microfabricated preconcentrator could be used to reduce the thermal mass 

and therefore reduce the heater power consumption. Instead of using a plastic box, we 

could design and machine a box which will be more specific to fit the device components, 
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therefore decrease the device size and increase the robustness. To summary, future work 

will aim on making the device more selective, sensitive, and faster and smaller, to 

provide a really valuable tool for various air quality monitoring applications. 
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Figure. 2-1. (a) Schematic representation of the hybrid device. (b) The picture of the 

hybrid device, insert: the smartphone user interface showing a real time detection of a 

BTEX mixture sample. 
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Figure. 2-2.  (a) Response of tuning fork sensor to 250 ppb xylenes. Detection limit: 4.4 

ppb xylenes. (b) Results of 12 measurements of the same xylenes sample using the tuning 

fork sensor. 
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Figure. 2-3.  The breakthrough time tests of three different adsorbents: (a) Carbopack X, 

(b) Cabopack B, (c) Carboxen 1016.  
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Figure. 2-4.  Chromatograms of BTEX sample with and without preconcentration. 

(a) BTEX sample direct injection without preconcentration, concentration:  

10 ppm. (b) BTEX sample injection with 20 minutes preconcentration time, 

concentration: 20 ppb. 
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Figure. 2-5.  (a) Separation chromatogram of BTEX mixtures with a 19 meters column [B] 

is benzene, [T] is toluene, and [X] is Ethylbenzene plus xylenes. (b), (c) and (d) are the 

calibration curves for benzene, toluene and xylene, respectively. 
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Figure. 2-6. (a) The testing result of gulf coast (blue line), the typical response of a 

laboratory prepared BTEX mixture (black line) and GC-MS result (insert).  

(b) Map showing test location and oil spill area, date: 6-13-2010. 

 
 
 
 
 
 
 
 
 
 
 
 



Figure. 2-7.  (a) The test result of a real gasoline vapor and the corresponding detailed 

separation of the in BTEX compounds: (b) benzene, (c) toluene, and (d) Ethylbenzene 

and xylenes. 
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test result of a real gasoline vapor and the corresponding detailed 

separation of the in BTEX compounds: (b) benzene, (c) toluene, and (d) Ethylbenzene 

 

test result of a real gasoline vapor and the corresponding detailed 

separation of the in BTEX compounds: (b) benzene, (c) toluene, and (d) Ethylbenzene 
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CHAPTER 3 

A PERSONAL EXPOSURE ASSESSMENT SYSTEM FOR CHEMICAL TOXICANTS 

 

Abstract  

An innovative device set, including a wearable volatile organic compounds (VOC) sensor 

and a docking station with gas chromatograph (GC) capability is described. Both devices 

employ a novel molecularly imprinted polymer (MIP) modified tuning fork VOC sensor. 

The wearable VOC sensor detects the total VOC concentration, it also includes a 

preconcentrator to absorb the VOC. This sensor can be plugged into the docking station, 

where a detailed GC analysis can be done. A smartphone with Bluetooth is used for data 

receiving, processing and storage. Data is plotted on the smartphone screen and the user 

can control the device from the phone also. Various key hardware components are 

discussed, laboratory characterization of both devices are presented and two field testing 

are conducted. 
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3.1 Introduction 

Toxic volatile organic compounds (VOCs), including aromatic and chlorinated 

hydrocarbons, have serious environmental and health impacts [1]-[2], but they are often 

used in large quantities [1]-[2]. A group of VOCs including benzene, toluene, ethyl 

benzene and xylenes, collectively known as BTEX, are of great concern of many 

epidemiologists. The main source of BTEX emissions (more than 80 percent) are 

automobile exhaust and other traffic related sources [3]-[5]. These VOCs are defined as 

class A pollutants by US Environmental Protection Agency (EPA) because they are 

potential carcinogens, and many cause leukemia, lymphomas and other diseases [6]-[13]. 

Precise identification of the VOCs remains a challenge. The health effects of 

pollutants may vary depending on the genes of the individuals and on acute vs. 

accumulated exposure levels. These facts and considerations underscore the important of 

a wearable device that can provide both in real-time and accumulated exposure levels of 

individuals. The device mush be also low cost and user friendly in order to have a real 

impact on large population studies.  

Electrochemical sensors are usually commercialized as convenient portable gas 

monitors, their target analytes include oxygen, carbon monoxide, hydrogen sulfide and 

sulfur dioxide [14]-[15]. However, these sensors are not able to detect the BTEX. 

Different detection methods combine with gas chromatograph (GC) is another approach. 

These detection methods include thermal conductivity (TCD) [16], photoionization (PID) 

[17]-[18], flame ionization (FID) [17], electrochemical [14], [19], and surface acoustic 

wave (SAW) sensors [20]. Micro machined columns and preconcentrators have been 

integrated with SAW and chemresistor detectors [21]. Portable GCs offer great capability 
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and flexibility for epidemiological, environmental and safety applications. However, the 

micro fabricated GCs are still under development phase and the cost of tiny components 

seems to be higher than conventional parts. Commercially available GCs are still 

expensive, range from several to tens of thousands dollars), and not suitable for 

epidemiological studies. 

Several years ago, we reported on a first generation wearable VOC device [22]. 

Our sensor device employs novel design polymer coated tuning fork sensors. These 

tuning forks are commercially available at a very low price (~ US$0.01/each). The device 

was capable of detecting ppb level VOCs [22]. In addition, a hybrid VOCs detector with 

GC capability was also reported [23]-[24], which adds GC and preconcentration to the 

original designed VOC device. 

The device set described here includes a wearable VOC device and a hybrid 

docking station with GC capability. Both units use the novel tuning fork sensor which is 

highly sensitive and selective to VOCs. The wearable unit is able to output the total 

VOCs concentration results, and the docking station will provides a detailed chemical 

discrimination and speciation of VOCs. This chapter provides a complete 

characterization of the device set with a few field testing examples.  

 

3.2 Prototype Description and Experimental Methods 

3.2.1 Prototype features and operation modes overview 

Figure 3-1 presents the overall view of the wearable VOC device and hybrid 

docking station device set. Figure 3-2(a) and (b) shows the schematic of the wearable 



38 

VOC device and hybrid docking station, respectively. And Figure 3-2(c) shows the 

schematic when the two are combined. 

The wearable VOC device is essentially the same as the wearable unit being 

developed by us in previous project [22], [25]-[26]. To briefly summary, it used quartz 

crystal tuning fork as a sensor [22], [25]-[26], which is coated with a layer of molecularly 

imprinted polymer (MIP). The MIP is synthesized in the lab using DVB as monomer and 

cross-linker, xylene as template and AZBN as initiator.  

The wearable VOC device is powered with one 2200 mAh battery (6050100, 

Tenergy) and one 1000 mAh battery (PRT-00339, Unionforture Electronic Co, Ltd), it 

has two modes: purging and sampling. Under purging period, air is drawn by the on-

board miniature diaphragm pump (135 FZ-LC, Schwarzer Precision) through an zero 

filter at a flowrate about 400 mL/min, the tuning fork sensor is being cleaned during this 

time and the VOCs inside chamber or bonded to the sensor are blown away, replaced by 

clean air. After two minutes of purging, the miniature 3-way latch valve (LHLA_11211H, 

The Lee Company) then switch from the zero filter to a particle fiber made of polyester 

fiber for one minute. This filter will stop the particles but let the VOCs through, during 

this time, the air is drawn into the sensor chamber, and the VOCs molecular will bond 

onto the MIP coated on the sensor.  

The quartz tuning fork (CFS145-32.768KDZF-UB, CITIZEN AMERICA) has its 

oscillation frequency at 32.768 KHz with a very high Q factor (up to 10,000) [22]. After 

coated with MIP, the oscillation frequency will shift downwards, and the Q factor will 

also decrease because of the mass loading [22]. The sensor is then employed in the 

wearable VOC device. Its oscillation frequency will decrease upon the absorption of the 
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VOC molecular. The circuit inside the device performs the function of frequency 

counting. The raw data is then sent to the on-board Bluetooth (RN-41, Roving Networks 

Inc.), which can be paired with a smartphone with Bluetooth capability, and with the 

VOCs application installed in it. In this project, we use a Motorola Q9h smartphone, it 

runs on Windows Mobile 6 operation system. The raw signal, which is the frequency 

shift during a sampling period, is proportional to the concentration of injected VOCs. The 

calibration, which will be discussed later, will give relationship between the VOCs 

concentration and the raw frequency shift. The calibration factors are then stored in 

phone, for the VOC application to calculate the VOCs concentration when given the raw 

frequency shift data. 

However, a critical difference between the wearable VOC device in this project 

versus the previous one is that, is contains also a preconcentration component that 

collects analytes. The preconcentration unit is located in serial with the zero filter, but 

closer to the air inlet. So during the purging period, when air is drawn through the zero 

filter, it went through the preconcentration unit first. The preconcentrator unit is a 

stainless steel tube filled with preconcentration materials, which is a graphitized carbon 

black (corbopack X, Simga-Aldrich). The preconcentrator unit will trap the VOCs 

molecular, but it will not interfere with the normal operation of the wearable VOC device 

because it is placed in the purging channel, which is supposed to remove the VOCs from 

the air.  

An additional particle filter is placed in front of the preconcentrator to protect it 

from contamination, and two addiction valves are used, with one between the extra 

particle filter and the preconcentrator, the other one between the preconcentrator unit and 
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the zero filter. Both of valves have their common port connected to the preconcentrator, 

then the extra ports connect to flow plug 1 and 2, respectively. The preconcentrator is 

wrapped with a heating wire along with a thermistor, both buried in a layer of heat 

conductive electrically insulation coating. An electrical plug that contains the pins for the 

two valves, thermistor and heating wire is also included in the new unit. 

At the end of each day, the user plugs the wearable device into the hybrid docking 

station much like a battery charger, and the device operates in the “sleep” mode.  

The docking station contains a zero filter, a flow pump, two valves, a gas 

chromatography column, control circuit, Bluetooth chip, and a tuning fork sensor sitting 

inside a chamber with very small dead volume. It also includes two flow plugs and one 

electrical plug receptor, all in corresponding to the ones on the wearable device, as shown 

in Figure 3-1 and Figure 3-2. 

Once the wearable is plug into the docking station, the two pairs of flow plugs 

conduct and the because of the electrical plug, the two extra valves inside the wearable 

device are now under control of the docking station.  

The docking station now analyze the VOCs that trapped in the preconcentrator. 

There are three different flow paths and four operation modes during this measurement, 

as shown in Figure 3-3. The analyze starts with mode 1, sample releasing. During this 

mode, the preconcentrator is heated up to 300 °C, by turning on and off the heater (the 

heating wire) based on the temperature measurement feedback from the thermistor. The 

absorbed VOCs will be released from the preconcentrator material but trapped inside the 

preconcentrator tube in gas phase. This mode lasts for 1 minute, in the meantime, the 
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pump purges clean air to the sensor chamber through the GC column, and the sensor 

establishes its baseline during this period. 

The docking station then enters operation mode 2, sampling injection. As shown 

in Figure 3-3(b), the pump purges the preconcentrator with clean air, carry all the 

released gas phase VOCs into the GC column. This sample injection mode will last for 15 

seconds, which is sufficient to purge the released VOC vapor into the inlet of the GC 

column. 

Operation mode 3, shown in Figure 3-3(c), is called analysis mode, since the 

VOCs vapor is also injected into the GC column, scrubbed clean will be drawn to 

continuously carry the vapor through the GC column. The analytes will be separated 

while travelling through the GC column, and enter the sensor chamber at different elution 

time, cause the tuning fork sensor to show corresponding responses. The tuning fork 

sensor is exactly the same kind as in the wearable VOC device. 

The duration of operation mode 3 will vary depends on the flow rate and column 

length of the system. There are two different column lengths we have implemented into 

the system, 2 meters column and 19 meters column, for different analyte complexities. 

And because of the very small inner diameter of the column, elution times for the same 

analyte is much longer in 19 meters column than in 2 meters column. 

After the analysis mode is done, the docking station enters the cleaning mode. In 

this mode shown in Figure 3-3(d), the preconcentrator will be heated to 300 °C, and clean 

air is drawn to purge the preconcentrator to remove analyte residues. The preconcentrator 

is then regenerated and ready for next sampling.  
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The docking station uses the same tuning fork sensor as in the wearable VOC 

device, so same frequency counting circuit was used, and the raw frequency data is sent 

to a smartphone via Bluetooth for processing and storage.  

 

3.2.2 The preconcentrator in the wearable device 

The preconcentrator traps the VOCs analyte and release them upon high 

temperature. Its housing material is very critical; it needs to have good heat conductivity 

and a low thermal mass, so it can be heat up quickly and uniformly.  It also need to be 

chemically inert and stable under high temperature (up to 300 °C), and mechanically 

strong. All these requirements are met by stainless steel tube. A large tube would increase 

the thermal mass and introduce some unnecessary dead volume, on the other hand, if the 

stainless steel tube diameter is too small, the flow rate of the system would be restrained. 

We found a diameter of 1/8 inch wells served our purpose.  

The preconcentrator material is a very important component, it need to be able to 

efficiently collect the low concentration targeted molecular, like benzene or toluene, 

while avoid absorbing other high concentration interferents like alcohol or ketones. 

Commercially available absorbent materials have been reviewed (table 1) and several of 

them have been chosen for further studies due to the great capability of absorbing VOCs, 

these are Carbopack X, Carbopack B and Carboxen 1016 from Simga-Aldrich [23]-[24].  

Carbopack B and Carbopack X are graphitized carbon blacks; Carbopack B is 

non-porous while Carbopack X is porous. Carboxen 1016 is carbon molecular sieve 

which is the carbon skeletal framework remaining after the pyrolysis of a polymer 

precursor. The absorption capacity, release efficiency have been compared and 
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Carbopack X had the best performance. The breakthrough volume tests were also carried 

out and the mass of the chosen absorbent, which was Carbopack X, was decided to be 12 

mg, which will fit into a 5.5-cm length stainless steel tube with the 1/8 inch mentioned 

above. The 12 mg Carbopack X was placed in the middle of tube, and was confined with 

two plugs of glass fiber that will prevent the material from leaking out. 

During the normal operation of wearable device, the preconcentrator material 

Carbopack X absorbs the VOCs. When the wearable unit is plugged onto the docking 

station, it will be heated to 300 Celsius in order to release the absorbed analyte. A Joule 

effect heater is employed for providing heat. First, a layer of ceramic coating is applied 

on the surface of stainless steel tube as an electrically insulation and heat conductive 

layer. Then a nichrome wire is wrapping around the stainless steel tube. The length of the 

wire was optimized. If it was too long, the resistance would be proportionally big, and the 

heating power, which is reversely proportional to the resistance, will be reduced. 

However, if it was too short, then the wrapping density on the tube would be reduced, 

and the uniformity of the heating cannot be guaranteed. A final length of 30 cm is chosen, 

and the resistance is about 15 ohms. Lastly, another ceramic coating is applied on the 

nichrome wire to help the heat spreading, and a thermistor is also buried in this coating. 

Upon heating, a DC 12 voltage is applied to the wire, providing about 9.6 watts heating 

power. The resistance of the thermistor (10M5321, Honeywell Sensing and Control) will 

change when the temperature changes. The actual resistance of the thermistor is 

measured by the circuit, and is converted into temperature by the microcontroller. The 

same microcontroller then sends a control signal to turn on and off the heater based on 

that information.  
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3.2.3 Fabrication and optimization of the GC components of the docking station 

Several GC columns with different stationary phase are compared. For the 

purpose of hydrocarbon VOCs separation, especially the separation of BTEX group, a 

column with cyanopropylphenyl stationary phase gave the best performance. Besides the 

stationary phase, the diameter and the length of the column are also essential to its 

performance. Usually small diameter column is preferred because the analyte interact 

more with the stationary phase. However, in a portable GC system, smaller diameter 

means increased flow resistance, which may not be feasible for a miniature pump that is 

usually employed in such a system. The length of the column needs optimization, as well. 

Longer column will usually provide better separation, but the peak broadening may 

increase as well. Again for such a portable GC system, where the pressure that the pump 

can provide is limited, longer column will decrease the flow rate and increase the analysis 

time. The carrier gas flow rate will affect the column separation performance. The best 

flow rate for a given column is given by Van Deemter equation. However in a portable 

system, the available miniature pump determine the highest available flow rate. Among 

the commercially available low noise and small size pumps, we found that a diaphragm 

pump (T3EP-1ST-05-3FFP, Parker) suits our needs best. The optimal diameter we chose 

is 0.25 mm. During the study, two different column lengths are tested. One is 2 meters 

and the other is 19 meters. The 2 meters column will provide a super-fast measurement of 

a benzene, toluene, ethyl benzene and xylenes (BTEX) mixture with acceptable 

separation; while the 19 meters column will provide a superior separation over the BTEX 

mixture, at the cost of the much longer duration.  
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3.2.4 The flow plug between the wearable device and docking station 

The flow plug between the wearable device and the docking station makes it 

possible for the docking station to analyze the VOCs trapped in the preconcentrator, 

which is located inside the wearable unit. This flow connector needs to have a very small 

volume to avoid sample dilution. It also has to be strong, inert and air tight when plugged 

in. At the same time, to be user friendly, it has to be easy to plug in and plug out. Teflon 

tubes are used for this purpose. As shown in Figure 3-4, Teflon tube A’s outer diameter is 

1/4 inch, and the inner diameter is 1/8 inch; Teflon tube B’s outer diameter is 1/8 inch 

and inner diameter is 1/16 inch; Teflon tube C’s outer and inner diameters are 1/16 inch 

and 1/83 inch, respectively. When Teflon tube C is inserted into Teflon tube B, it fills the 

inner volume of tube B, and the combination effectively becomes another Teflon D with 

outer diameter 1/8 inch and inner diameter 1/83 inch. Notice that now when Teflon tube 

D is inserted into Teflon tube A, it fills the inner volume of tube A, and leaves very small 

volume inside. In practice, Teflon tube D is placed in the docking station, and Teflon tube 

A is inside the wearable device. The inlet of tube A is tapered so that the two parts can be 

relatively easy plugged in and out, but still with excellent sealing. The dead volume 

introduced from the connector is almost negligible because of the extremely small tube 

diameter. 

 

3.2.5 Zero filters and particle filters 

As shown in Figure 3-2, the wearable device contains two particle filters and one 

zero filter; and the docking station contains one zero filter.  
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The zero filter is made of 120 mg activated carbon (Purakol Media, Purafil) and 

220 mg of potassium permanganate (Odoroxidant SP Media, Purafil), both in 12/16 mesh. 

These two are used in combination for broad-spectrum pollutant removal. At the inlet and 

outlet of the filter, there is also a polyester fiber plug, to prevent the materials from 

moving, and also serving the purpose of filtering the incoming particles. All these 

material are placed into a 15 cm long Teflon tube with 1/16 inch inner diameter. The 

particle filter is simply made of 30 mg polyester fiber contained in the same type of tube 

mentioned above. 

 

3.2.6 The user interface on a smartphone 

Powerful smartphones are now widely available, they not only have great 

computing power, but also have many peripherals that can be very useful for a person 

monitor [27]-[29]. For example, the light intensity sensor in a phone can indicate whether 

the person is indoor or outdoor; the accelerometer will give information regarding a 

person’s activity; and a GPS chip makes it easy to record the location of events.  

As shown in Figure 3-1, we created two applications for the two units on the 

Motorola Q9h smartphone, which contains a Bluetooth and GPS chip. The application 

(app) can establish a wireless connection with the devices through Bluetooth. The device 

then sends the raw data of the tuning fork sensors and the valve status to the smartphone. 

The app then process the data, apply the factors and display the results on the screen.  

For the wearable unit, the app display the most recent 3 minutes of real time 

reading of the sensor, which is updated every second. The user can also switch the view 

to concentration plot, where the concentration data is shown, and is updated every 3 
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minutes. Besides the two graphs, the app also shows the current time, the current 

operation mode, the temperature measured by the circuit, the sensor working status, and 

the GPS location data. The left function key lets the user choose which tuning fork sensor 

in the sensor array will be shown on the screen, as well as the option to switch between 

real time data plot and concentration plot as mentioned above. The right function key 

offers the GPS on/off option, and also allow the user to apply different calibration factor 

to the results, this calibration factor will be discussed in detail later. Raw data as well as 

the concentration data will be saved on phone, the user can also exit the app through the 

right function key menu. 

The phone application for the docking station has some differences compared 

with the one for the wearable unit. After this app established a Bluetooth connection with 

the docking station, the docking station is in stand-by mode. The user then has two 

options: define the individual duration for the sample releasing mode, analysis mode and 

the cleaning mode and then start the measurement, or just start the measurement using the 

default duration values for those modes. Once the measurement starts, the real time 

reading of the tuning fork sensor is plotted on the screen, updated every second. The 

current time and current mode information are also shown. Raw data will be saved on the 

phone, and the user is able to exit the app through the right function key menu. 

 

 

 

 

 



48 

3.3 Results and Discussion 

3.3.1 The wearable VOC device operation  

The operation of our previous generations of wearable VOC devices is briefly 

described in the introduction part of this thesis. A more detailed description is given 

below.  

As mentioned before, this wearable unit is essentially the same as the previous 

VOC device with a few more components, and it will function like a normal VOC device 

[22], [25]-[26] by itself. The interior of this unit is shown in Figure 3-5. It contains one 

particle filter and one zero filter, one miniature diaphragm pump, one latch valve, control 

circuit, Bluetooth chip, tuning fork sensor and chamber, a nafion tube, one battery with 

2200 mAh capacity, another battery with 1000 mAh capacity and several flow connection 

components. These are the essential parts of a wearable VOC device. In addition, one 

particle filter, one preconcentrator, two latch valves, two flow connector and one 

electrical connector are included in this unit as well, so that it can preconcentrate the 

VOCs during its normal sampling, and work with the docking station for a more precious 

analysis. 

Upon turning on, the wearable unit turns on the circuit, Bluetooth, the pump and 

the valve. The device starts with purging mode (Figure 3-6(a)), the pump draws air 

through the zero filter, cleans the tuning fork sensor and establish a baseline for the 

sensor. This mode lasts for 2 minutes. Notice that the preconcentrator also collects 

sample during this period. The valve then switches to the particle filter channel, and this 

is so called sampling mode (Figure 3-6(b)). The sample air is drawn into the sensor 

chamber, causing the tuning fork sensor response. 
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The wearable unit was calibrated using o-xylene. Figure 3-6(c) shows the tuning 

fork response to 1 ppm (parts per million) xylene. The 2 minutes purging and 1 minute 

sampling cycle was repeated automatically, the signal is taken from the frequency change 

during the 1 minute sampling period. Notice that the frequency change is negative upon 

sampling, due to the adding mass to the tuning fork sensor.  

 

3.3.2 The wearable device validation using selected-ion flow-tube mass spectrometry 

As mentioned above, once the calibration factor was found, we can measure 

unknown sample using the raw sensor response and the obtained factor. The accuracy of 

the device is evaluated using a selected-ion flow-tube mass spectrometry (SIFT-MS).  

The sensor’s calibration factor was determined prior to this test. During the 

validation, four Tedlar sample bags contain different unknown concentrations of o-xylene 

were created. Each of them was then sampled by the device as well as the SIFT-MS. 

Figure 3-7(a) shows the device readings plotted against the values of the SIFT-MS. 

Notice there were two tuning fork sensors in the sensor chamber. When putting two 

sensors in one device, in case one sensor stopped functioning, the other will still be able 

to output measurement results. And extra sensor data also offers more data processing 

possibilities. 

Figure 3-7(b) shows the correlation between the average of the two sensors 

readings and the SIFT-MS readings. The value of R-square is 0.99619, indicates a very 

good correlation. 
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3.3.3 Temperature effect on the sensor response 

When temperature increases, the kinetic energy of the VOCs molecular will also 

increase. And because of that, upon equilibrium, less VOCs molecular will bond on the 

molecularly imprinted polymer coating on the tuning fork sensor, resulting in a smaller 

response, thus a lower sensitivity. 

To investigate the temperature effect on the sensor response, we tested four 

different environmental temperatures besides the room temperature, which is 25 °C. In 

each test, the device and the VOCs gas sample were kept in a refrigerator or an oven for 

half an hour so that they can reach the equilibrium temperature. Then the measurement 

starts, and the sensor responses and the environmental temperature were recorded.  

Figure 3-8 shows how the sensitivity decrease when the temperature increase. The 

y axis is the relative sensitivity at that temperature compared to the sensitivity at 25 °C. 

The 0.97444 R-square value indicates a pretty good linearity for this relationship. And a -

0.03944 slope shows that with every increasing °C from 25 °C, the sensitivity would drop 

3.944%.  

When the temperature coefficient of the sensor was determined in this method, it 

then can be used for temperature compensation of the device results. There was a 

temperature sensor inside the device which reports the temperature reading to the 

microcontroller, and the information was then sent the application on the smartphone. 

The temperature coefficient was implemented in the phone application and the 

compensation was automatically done. 
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 3.3.4 The Operation of the Hybrid Docking Station 

The interior of the hybrid docking station is shown in Figure 3-9. The major 

components include a miniature gas pump, two latch valves, one GC column, one zero 

filter, one sensor chamber with a tuning fork sensor, control circuit, Bluetooth chip, two 

flow plugs, and one electrical plug.  

As shown in Figure 3-2(c), when the wearable device is plugged into the docking 

station, the two pairs of flow plugs connect and the electrical connection grants the 

docking station ability to control the two valves, thermistor and heater of the 

preconcentrator inside the wearable unit.  

And then the docking station will go through the four operation modes in 

sequence: sample releasing, sample injection, analysis and cleaning, as shown in Figure 

2-3.  

The combined operation is illustrated in Figure 3-10. First, a one liter volume 

Tedlar bag is filled with standard 1 ppm BTEX gas sample. This sample bag is then 

connected to the wearable device for measurement. This measurement lasts for six 

minutes. As mentioned above, the device starts in purging mode, which last two minutes, 

then switches into sampling mode, lasts one minute. And this three-minute cycle is 

repeated automatically. The configuration of this test is shown in Figure 3-10(a). Also 

shown in Figure 3-10(a) is the tuning fork sensor response in this test. A change of 0.36 

Hz of the tuning fork sensor is developed by the 1 ppm BTEX gas sample. Only one 

complete cycle is shown here.  

Because two thirds of the time, the device is in purging mode, which means the 

preconcentrator is working for four minutes out of the six minutes test duration. The 
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wearable unit is then plugged into the docking station as shown in Figure 3-10(b). This 

action connects the two flow plugs and one electrical plug. As illustrated in Figure 3-3, 

the docking station now has control of the preconcentrator, and the hybrid docking station 

is now ready to analyze the trapped BTEX sample in the preconcentrator. 

The analysis starts with mode 1, shown in Figure 3-3(a). In this sample releasing 

mode, the docking station supplies 12 V DC to the heater, quickly brings the 

preconcentrator to 300 °C. Once the temperature reaches 300 °C, the docking station 

maintains that temperature by turning on and off the heater, based on the temperature 

reading from the thermistor. The thermistor is a resistor that will change its resistance 

value when the temperature changes. A fixed value resistor is placed in serial with this 

thermistor, and a 3 V DC voltage is applied across this two resistors voltage divider 

circuit. Then the voltage �� across the fixed value resistor is measured using the ADC 

(analog to digital convertor) pin on the micro controller. In this way, the resistance of the 

thermistor can be found using the formula below: 
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In which �� is the voltage drop on fixed resistor � = 100 ohms, and ��  is the 

resistance of the thermistor. 

Then we substitute RT into the formula to find T: 
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Where 	  is beta value of the thermistor, in this case, 	 = 3947 K. Room 

temperature  
� = 298.15 K, and room temperature resistance of the thermistor  �� = 100 

K ohms. 
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For the purpose of saving the micro controller processing power and time, instead 

of calculating the temperature using the formulas above every second, and compare it 

with 300 °C (573.15 K), we just simply calculate the corresponding voltage �� when 
 = 

573.15 K. That way, we can just compare the measured voltage value �� with ��(
 = 

573.15 K), and avoid all the complex calculations. A simple calculation gives the ��(
 = 

573.15 K) = 1.516 V. 

The value of �� is sampled every second, which is not extremely fast, there is 

then some overshot or drop in the temperature. When simultaneously monitored using an 

external thermal coupler, the steady state temperature variation is found to be ±5 °C, 

meaning the temperature is kept within 300 ± 5 °C, which is well acceptable for our 

purpose.  

In general, the temperature ramps up to 300 °C in 30 seconds, and then it 

maintains at that 300 ± 5 °C for the remaining 30 seconds of this sample releasing mode. 

The heating end temperature and the heating duration determine how efficient the trapped 

sample will be released from the preconcentrator material to gas phase. To find the 

minimum required temperature, initial tests on lower temperatures are conducted. It is 

found that heating the preconcentrator up to 200 °C can well release benzene and toluene, 

but not ethyl benzene and xylenes, for which, 300 °C is required. Although these 

preconcentrator materials are stable to above 400 °C, for thermal desorption, the 

temperature is typically 330 °C [30]. So it is possible to increase the heating temperature 

even further. However, even though the preconcentrator tube itself is made from stainless 

steel, the other connections are made of Teflon, including the flow tubes and the valve. 

Heating at 300 °C for a minute is within but very close to the limit of these components, 
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going for even higher temperature may significantly degrade their quality. It is also an 

option to replace all these Teflon flow tubes with stainless steel tubes, that way we can 

employ higher temperatures. However, we still favor Teflon tubes for their flexibility, 

which is very important in device prototyping stage, allow us to quickly change designs.  

And as shown in Figure 3-3 (a), while the preconcentrator is undergone heating, 

the pump draws air through the zero filter, and push it into the sensor chamber. This is 

very necessary to establish the sensor response baseline, because we are looking for 

changes in the signal once the actual analyte comes in.  

At the end of the mode 1, the circuit switches the four valves to form a flow 

channel from the pump to the preconcentrator, then to the GC column. This is the so-

called injection mode. During this mode, the pump draws clean air through the zero filter, 

purge through the preconcentrator and carries the released sample into the GC column. 

This mode lasts for 15 seconds. Upon calculation, the volume from beginning of the 

preconcentrator to the beginning of the GC column is around 400 µL, and the flow rate in 

this mode is at least 3 mL/min. ideally, it takes about 8 seconds to purge this much 

volume. However, to be safe and sure that the pump can bring all the sample into the GC 

column, 15 seconds injection time is chosen. This doubles the minimum required time 

and ensures that 100% of the sample is carried into the GC column. The heater tries to 

maintain the preconcentrator at 300 °C during this period.  

When the injection ends, the valves are switched so that the device enters the 

analysis mode. The sample has been sent into the GC column, and in this mode, the pump 

draws clean air to carry the sample through the column. As the sample goes through the 

column, they interact with the column stationary phase. The interaction strength is 
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different for different components. The stronger the interaction is, the slower that 

component moves along the column. The component with the least interaction will come 

out of column first. The GC column used in this device, which is UAC-502 from 

QUADREX Corporation, uses volatile organics phase. The volatile organic components 

generally come out according to their boiling point. So in the case of BTEX sample, the 

order is benzene, toluene, ethyl benzene and xylenes.  

As shown in Figure 3-10(b), benzene reaches the sensor chamber first (even 

before the injection period ends), followed by toluene and xylenes. The xylenes contains 

ethyl benzene, o-xylene, p-xylene and m-xylene, and that’s why two peaks are seen for 

xylenes. The length of this column in this test is 2.5 meters. In the later chapter, we 

should see that when the column length is increased up to 19 meters, the separation 

becomes much better with the pump, ethyl benzene, m-xylene, p-xylene and o-xylene are 

well separated. However, the increased separation is at the cost of increasing analysis 

time. And if the length of the column is reduced from 2.5 meters to 2 meters, the 

separation performance is scarified but the analysis time becomes even shorter. 

The elution time, which is the time duration from the injection to when the peak 

appears, is 11 seconds for benzene, 22 seconds for toluene, 55 seconds and 67 seconds 

for the first and second peak of xylenes. 

The tuning fork sensor at the end of the GC column is the same as the one used in 

the wearable unit, it responds to the BTEX components and shows peaks as they arrives 

at the sensor chamber. 
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The analysis mode’s duration varies depends on the length of the column. In this 

test, the elution time of the slowest component is 67 seconds, and the analysis time is set 

to be 120 seconds to make sure all analytes can exit the column. 

When the analysis time is up, the device goes to into cleaning mode. As shown in 

Figure 3-3(d), the valves are switched so that the pump can blow air into the 

preconcentrator to clean it. Again the heater is turned on to release any residual analyte in 

the preconcentrator. This step lasts for 60 seconds. After that, the preconcentrator is 

refreshed and ready for next use. 

The data is saved on the smartphone by the application. Every second one piece 

of data is added into a text file. Each piece contains the current date and time, the sensor 

raw reading and the valve status (mode status). The real time plot is shown on the 

smartphone. The data file can be downloaded into a computer for further analysis.  

Based on the elution time information, one is able to identify the individual 

component of a VOC mixture. The following section describe the calibration of the 

docking station device under different column length configurations. 

 

3.3.5 The Calibration of the Hybrid Docking Station 

With the elution time information, we can identify the individual component of a 

VOC mixture. To accurately know the concentration of each component, the docking 

station needs to be calibrated. 

To calibrate the device, known concentration of BTEX are prepared. First, 40 

ppm BTEX is prepared using a 40 L Tedlar sample bag. Then a 50 mL syringe is used to 

transfer some of the 40 ppm BTEX gas to another 40 L Tedlar sample bag. If we take 50 
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mL, then the final concentration in the other bag will be 50 ppb because of the dilution. 

The reason that the low ppb BTEX sample is not prepared directly is that it’s difficult to 

make sure the accuracy because of the extremely low BTEX liquid amount needed. For 

example, to prepare a 40 ppb BTEX sample using a 40 L Tedlar bag, one needs to put 

6.32 nL benzene, 7.52 nL toluene and 9.04 nL xylene into the bag, which is very hard to 

measure and transfer accurately. However, preparing a 40 ppm BTEX sample then needs 

6.32 µL benzene, 7.52 µL toluene and 9.04 µL xylene, which is much easier to archive. 

For this reason, we choose to dilute a high concentration sample to get a low 

concentration sample. 

Once the known concentration BTEX sample is prepared, it is sampled by the 

wearable unit for a fixed amount of time, and the preconcentration time is then calculated 

as two third of the sampling time of the wearable unit. After the preconcentration is done, 

the wearable unit is then plugged into the docking station for analysis.  

The first column configuration is 2.5 meters. Figure 3-11 shows the results of 

docking station analysis when the wearable unit is used to preconcentrate 50 ppb, 30 ppb 

and 10 ppb BTEX for 9 minutes. The first peak belongs to benzene, the second is due to 

toluene and the last one peak with a shoulder is because of the ethyl benzene and xylenes 

can’t be fully resolved. Notice the sensor response to benzene is the smallest and that to 

xylenes is the largest, a result of the different sensitivity of the sensor to different VOCs. 

Figure 3-12 shows the calibration curve for benzene, toluene and xylene. Notice 

for xylenes, only the first peak is taken into account. The slope is 0.0147 Hz/ppb for 

benzene, 0.0385 Hz/ppb for toluene and 0.0766 Hz/ppb for xylenes. The sensitivity ratio 

is about 19: 50: 100 for benzene: toluene: xylene.  
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As mentioned above, for the 2.5 meters column, the elution time is 11 seconds for 

benzene, 22 seconds for toluene, 55 seconds and 67 seconds for the first and the shoulder 

of xylenes.  

The second column configuration is 2 meters. For a shorter column, one can 

expect poorer separation performance but faster analysis time. Figure 3-13 shows the 

results of the docking station for 50 ppb, 25 ppb and 10 ppb BTEX sample that is 

preconcentrated by the wearable unit for 10 minutes. Notice that the shoulder that can be 

seen in the previous test disappears, ethyl benzene, o-xylene, p-xylene and m-xylene now 

all converge into one peak, an indication of the poor separation performance. The elution 

time in this configuration is 6 seconds for benzene, 13 seconds for toluene and 32 

seconds for xylenes. These values are about 50% less than that in the 2.5 meters 

configuration. So this configuration can be used for ultra-fast analysis with acceptable 

separation performance, because benzene, toluene and xylenes are still well separated.  

Figure 3-14 shows the calibration curve for this configuration. The slope is 

0.01981 Hz/ppb for benzene, 0.0373 Hz/ppb for toluene and 0.05305 Hz/ppb for xylene. 

Compare this result with the previous one, the slope for benzene and toluene are similar, 

but not for xylene. And the reason could be due to converge of the two peaks lower the 

overall peak height.  

The last column configuration uses a 19 meters long column. This column 

provides the best separation but at the cost of an extremely long analysis time. This 

configuration can be very be useful when analyzing a complex VOC mixture. 

Figure 3-15 shows the results of the docking station analyze 25 ppb and 10 ppb 

BTEX sample that is preconcentrated by the wearable unit for 30 minutes. Notice for 
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these tests, there are drifts at the first part of the curves, from 0 to about 12 minutes. Also 

there is an unknown disturbance to the sensor at around 12 minutes which is not due to 

the analyte. 

The elution time is around 5 minutes for benzene, 14 minutes for toluene, 31 

minutes for ethyl benzene, 34 minutes for m-xylene and 43 minutes for p-xylene and o-

xylene, which is extremely long compared to the previous configurations, but with superb 

separation performance. Once the device is calibrated, it can be used on field to test real 

samples. Two examples are given below. 

 

3.3.6 Field tests of the device 

The first field test samples the lab air and office air at Biodesign institute, Arizona 

State University. Both areas are non-smoke, well ventilated. At each place, the wearable 

unit samples the air for 6 hours, which means a 4 hours preconcentration time. It is then 

plugged into the docking station for analysis. 2.5 meters column length configuration is 

used in this test. 

Figure 3-16 shows the results of the office air and lab air, along with a standard 1 

ppm BTEX sample. It shows that no benzene is found in either place. However, a tiny 

amount of toluene and xylene are found in these two samples. At the same time, there is 

one unknown peak appears between benzene and toluene, also another one between 

toluene and xylenes.  

The concentration of the toluene is 40 ppt for office air and 100 ppt for the lab air, 

and the concentration of xylene is 30 ppt and 90 ppt for office air and lab air, respectively. 

So that although they are both very clean, the lab does contains a little bit more toluene 
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and xylene. Which is not surprising considering all the chemical storage and chemical 

experiments in the lab. 

The second field test uses the 19 meters configuration. The wearable unit samples 

the lab air and a parking structure air for 6 hours, which again means a 4 hour 

preconcentration time. It is then plugged into the docking station for analysis.  

The results are shown in Figure 3-17. No trace of benzene is found in either 

sample. There is a relatively high concentration of toluene in the parking structure air 

sample, but a small amount of xylenes in the same sample. These two should be due to 

the car exhaust and the cigarette smoke in the parking structure. The lab air result is very 

similar to that in the first field test, it has tiny amount of toluene and xylenes. The 

concentration of toluene and xylenes in the parking structure sample is calculated to be 

40 ppb and 2.24 ppb, respectively; and for the lab air, they are 60 ppt and 30 ppt.  

 

3.4 Conclusion 

This study has characterized the performance of a wearable VOC device and 

hybrid docking station device set. The wearable unit is meant to provide real time overall 

VOC exposure measurement, where the hybrid docking station does a fine job in 

discriminate between the BTEX components and provide an extremely low detection 

limit. The key components of this device set are an adsorbent packed preconcentrator in 

the wearable unit, a GC column in the docking station and a novel tuning fork VOC 

detector. The tradeoffs associated with these components are illustrated. Flow plug and 

electrical connector are created to realize the idea of plug and play. The design criteria of 

these two components are also described. 
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In addition, two applications on smartphone are created for the two units. The 

application connects to the device via Bluetooth, its function includes data receiving, data 

storage, figure plotting and remote commanding. It can also activate the GPS function of 

the smartphone to enable location associated VOC exposure measurement, which can be 

very useful. 

Different lengths of GC column are used in the docking station unit and the 

tradeoff between the GC separation performance and the analysis time are discussed.  

Two different field tests are conducted, the high sensitivity of the device is proven 

to be very useful in situations where the sample are in ppt level.  

However, there are still some shortcomings to address. One of the issues is the 

drifting of the elution time due the inconsistency of the pump and the surrounding 

temperature variance of the column. Some kind of flow regulator can be used to help with 

the pump inconsistency, and a temperature controlled enclosure for the column could 

solve the latter problem.  

Another issue the low long-term stability of the tuning forks. This requires some 

insight research on the sensing fundamental of the tuning for sensor. An alternative is to 

design such a sensor cartridge that it can be easily replaced each time.   
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Table 2-1. Comparison of different adsorbent 

Absorbent Structure Desorption 

Temp. (°C) 

Specific surface 

area (m2/g) 

Cost ($) per 

gram 

Carbopack B Carbon black 330 100 15.5 

Carbopack X Carbon black 330 240 42 

Carboxen 1016 Carbon molecular sieve 330 75 18.8 

Tenax GR Polymer 300 24 16.7 

Porapak N Polymer 180 300 5 

HayeSep D Polymer 180 795 5 

Tenax TA Polymer 350 35 14.6 

XAD-4 Polymer 150 750 0.15 
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Figure 3-1. Pictures of the wearable VOC device (top left), hybrid docking station 

(bottom left) and their combination (bottom middle). Their corresponding applications on 

the smartphone are also shown. The major function of each part (device and smartphone) 

is shown in blue blocks. 
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Figure 3-2. Block diagram of the devices. (a) Wearable VOC device; (b) hybrid docking 

station; (c) wearable VOC device plugged into the docking station. 
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Figure 3-3. Operation modes of the device set. (a) Releasing mode; (b) Injection mode; (c) 

analysis mode; (d) cleaning mode. 
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Figure 3-4. Different sizes of Teflon tubes for the flow connection between the two 

devices. 
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Figure 3-5. The interior of the wearable VOC device. 
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Figure 3-6. The operation modes of the wearable VOC device and the typical response. (a) 

Wearable device purging mode; (b) wearable device sampling mode; (c) typical response 

profile to 1ppm xylene. 
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Figure 3-7. Wearable VOC device validation using SIFT-MS. (a) SIFT-MS reading vs. 

wearable sensor reading, for different concentrations of xylene; (b) the linear fitting of 

the data. 
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Figure 3-8. Tuning fork sensor’s sensitivity vs. Temperature. 
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Figure 3-9. The interior of the hybrid docking station device. 
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Figure 3-10. Operation of the two devices. (a) Wearable device measuring 1 ppm BTEX; 

(b) The docking station analyzing the preconcentrated 1 ppm BTEX. 
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Figure 3-11. 2.5 meters column length configuration calibration. (a) 50 ppb BTEX 9 

minutes preconcentration; (b) 30 ppb; (c) 10 ppb.  
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Figure 3-12. 2.5 meters column length configuration calibration. (a) Benzene; (b) toluene; 

(c) xylene. 
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Figure 3-13. 2 meters column length configuration calibration. (a) 50 ppb BTEX 9 

minutes preconcentration; (b) 25 ppb; (c) 10 ppb. 
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Figure 3-14. 2 meters column length configuration calibration. (a) Benzene; (b) toluene; 

(c) xylene. 
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Figure 3-15. 19 meters column length configuration calibration. (a) 25 ppb; (b) 10 ppb. 
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Figure 3-16. Office air and lab air compared to a BTEX sample, 2.5 meters column 

configuration. (a) The docking station analysis result; (b) a zoom in of (a). 
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Figure 3-17. Parking structure air and lab air compared to a BTEX sample, 19 meters 

column configuration. (a) The docking station analysis result; (b) a zoom in of (a). 
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CHAPTER 4 

A MULTI-ANALYTE COLORIMETRIC ENVIRONMENTAL SENSOR 

 

4.1 Introduction 

Monitoring of air pollutions, such as NO2, ozone, volatile organic compounds 

(VOCs), is critical for environmental protection, human exposure protection and studies 

of different pollution related issues [1-4]. Such pollutants can cause serious health 

problems [5-6]. To date the most commonly used detection methods for these air 

pollutants is based on fixed monitoring sites using large equipment. 

A low cost, small size, light weighted device that can provide fast and continuous 

monitoring of air pollutants is required in order to assess these pollutants with high 

spatial and temporal resolutions.  

Colorimetric sensors detects the target analyte based on the color change upon the 

reaction of the sensing material and the analyte. This method is widely used for its high 

sensitivity and selectivity, as well as its simplicity. 

Here a colorimetric device platform is presented. This device is only 120 mm long, 80 

mm wide and 8 mm thick, it uses a miniature fan for the gas sample delivery. This circuit 

inside the device uses a high quality Sigma-Delta ADC chip to accurately measure the 

color change seen by the photodiode on the circuit, it also has a sensor chip that can host 

a colorimetric sensor that fits into its groove. The device has both wireless Bluetooth and 

wired cable communication interface, which will work with Bluetooth enabled android 

smartphone or iPhone. 

This platform is tested using a NO2 sensor to validate its capability.  
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4.2 Experimental 

4.2.1 Platform setup 

Figure 4-1 shows the schematic of the device. The sensor chip is made from a 

light weight, inert and transparent plastic. Up to four different sensors are placed on the 

sensor chip. The sensors are typically made from silicon paper coated with materials that 

will react with the target analytes and change colors upon reactions. On top of the sensor 

chip is a flat led board, which illuminates the sensor chip. There are four of same kind of 

photodiodes underneath the sensor chip to measure the light intensity through each sensor. 

On the right of the figure is a sampling fan which will deliver the environmental air into 

the sensor chip.  

Once the sensor material reacts with its target analyte, its color will change, thus 

the transmitted light intensity will also change. If one of the sensor is a reference sensor, 

which means it is a blank silicon paper without any material coating, and we define its 

transmitted light intensity as ��, and define the transmitted light intensity of a coated 

sensor one as ��, then the signal we are looking for, which is the light absorbance will be: 

�� �  �������
��

��

� 

The blank sensor is our reference sensor, the advantage of having this reference and 

calculate the absorbance is that it corrects the light source drift and environmental noise 

that is happening to all sensors.  

The fan is controlled by a microcontroller on the device circuit. It is off for two 

minutes and then turned on for one minute. During the time when the fan is off, the 
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reaction happens very slowly, and the baseline of the absorbance is collected. Once the 

fan is switched on, the reaction speeds up and the absorbance change is developed.  

Figure 4.2 shows the actual picture of the device. Some key components are marked on 

figure 4.2(a). In the middle is the sandwich configuration of the flat led board, the sensor 

chip and the photodiodes (underneath the sensor chip on the circuit, not shown in the 

picture). The sampling fan is on the bottom of the device, it draws air from top and blow 

it through the sensor chip. There is a LCD display chip on the top of the device, which 

will give indications of what the device is doing, as well as show concentration results of 

each measurement. This device allows for two kinds of communication: wired and 

wireless. The wired communication is done through the female headphone jack, where a 

cable can be plugged into and retrieve analyte concentration data from an iphone app. 

The wireless communication is realized through the Bluetooth chip. Smartphones with 

Bluetooth capability (right now we only support Android devices, more devices 

supporting are under development) can pair with the device and receive real time data 

from it. We offer two kinds of data retrieving methods for that each of them will become 

handy in certain circumstances. For example, if one just need to do a quick check up in a 

room, he or she can just run the device and look at the results from the LCD display, and 

retrieve the data from the device through a wired connection later. However, if the device 

needs to be placed in a remote location, then the Bluetooth communication becomes a 

must. All of the components are powered by a single lithium polymer battery with 800 

mAh capacity, and it’s good for at least 10 hours of continues operation, and the battery 

can be recharged through a mini USB cable. Figure 4.2(b) shows the device with the 

housing. The device measures 120mm*80mm, and the thickness is only 8 mm. The LCD 
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is displaying “TESTING” which means the device is in the middle of a measurement, and 

it will show the results after the testing is done. Next to the LCD display is the switch, 

and the inlet of the device is on the bottom. The sensor chip is plugged through a hole on 

the left side of the device. 

 

4.2.2 The photodiode measuring circuit.  

The core part of the device circuit is the photodiode measuring circuit. The quality 

of this measurement directly effects our signal quality. The schematic of this circuit is 

shown in Figure 4.3(a). In this configuration, the non-inverting terminal of the operation 

amplifier (opamp) is connected to the ground, the cathode of the photodiode is connected 

to the inverting terminal of the opamp, and a feedback resistor and capacitor is connected 

between the inverting terminal and the output of the opamp. The output voltage will be: 

Vout � �� � � 

ID is the photo induced current, and R is the feedback resistor. This output voltage is then 

fed into the ADC pin of the microcontroller. The first generation microcontroller we use 

is from Texas Instrument (TI), model MSP430F5438A, which has a 12-bit SAR 

(successive approximation) ADC. 

Figure 4.3(b) show typical results of photodiodes readings from this 

microcontroller. It can be seen that the curve is not smooth, it has a lot of steps, or in 

other words, repeated values in the result. And this problem of repeated ADC readings 

become more severe when the readings are near the 1.5 V mark. This repeated value 

results are not acceptable in our application, it largely increase the effective noise level of 

the signal and makes it difficult for ppb level detection.  
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The SAR ADC uses a capacitive network to digitalize the analog voltage value, 

and reference we use for the ADC is 3 V. So the ADC first compare the input voltage to 

3/2 V, which is 1.5 V, and if the input voltage is larger than 1.5 V, the most significant bit 

is set to be 1. Continue the comparison for 12 times and we get a 12 bits number. The 

most possible reason for the repeated 1.5 V value is that is wrongly set the most 

significant bit to be 1, and causing the rest of bits to be 0.  

Because of this significant problem associated with this ADC module, another 

kind of ADC, which is Sigma-Delta ADC is picked for experiment. The Sigma-Delta 

ADC uses a technique called oversampling to achieve high resolution ADC results. It 

usually provides higher resolution results than the SAR ADC, but with lower data 

sampling frequency. However, for our application, the data rate provided by the Sigma-

Delta ADC is more than enough. 

Figure 4.4(a) shows that a Sigma-Delta ADC experimental board is used to 

measure the photodiode readings from our device. Figure 4.4(b) shows the measurement 

results. It’s easy to see that results are much smoother that previous ADC, and the 

repeated value problem is gone.  

A replacement microcontroller from TI called MSP430F4794 has four channels of 

Sigma-Delta ADC, and also has all the peripherals that the previous microcontroller has, 

so the effects of adapting to this new chip is minimal.  

Figure 4.4(c) shows the new schematic of the device, the only change is the new 

microcontroller. Figure 4.5(a) and 4.5(b) show the photodiodes measurements from the 

new microcontroller. Figure 4.5(c) is a zoom-in of the figure 4.5(b) to show the noise. As 

we can see, the noise level is about 0.1 mV, which is very low. Notice that there is a big 
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dip and recovery in the readings, and it is caused by the fan turning on and off, not due to 

the chemical reaction. Ideally, this change should behave in the same manner on both 

photodiodes, and therefore, with the absorbance calculation, the reference sensor corrects 

the actual sensor, and no big change in the absorbance signal should show.  

Figure 4.6 (a) shows the absorbance change of photodiode 1 (PD1) due to the fan 

turning on and off, without using the reference photodiode 4 (PD4) reading. The 

absorbance shown is calculated using the following formula: 

�� �  �������
����

���� !� 
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And we can see that the fan on and off switch induced absorbance change is about 0.0225, 

which is comparable to our chemical reaction signal. And if it’s not corrected, it will 

largely effect our sensor readings.  

Figure 4.6(b) shows the absorbance of PD1 with the reference PD4 reading taking 

into account. So this time: 

�� �  �������
����

���"
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And this time, the fan on and off switch induced absorbance change is about 0.0001, 

which is significantly smaller than our chemical reaction signal, and therefore can be 

neglected.  

By using the reference method, the light source drift, circuit warm up drift and 

environmental change are corrected. The rejection ratio shown in the example above is 

225 times. Such a high reference rejection ratio is very helpful when ppb level detection 

is desired.  
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4.2.3 The wired communication interface 

As mentioned above, this platform incorporates two kinds of communication 

interface: a Bluetooth wireless communication and a wired cable communication. 

Figure 4.7 shows the connector used in the wired communication between the device and 

the iPhone. The cable is called male to male 3.5 mm headphone cable, it has two of such 

connectors on the both ends of the cable, and one goes into the iPhone headphone jack, 

and one goes into the device female receptor. One connector contains a ground, a left 

channel, a right channel and a mic. 

Figure 4.8 shows the circuit schematic of the data transmission from the device to 

the iPhone. The mic channel is used here. A general input/output pin of the 

microcontroller is used to generate the information, it can either output 3 V or 0 V, by 

altering its output, digital numbers can be represented, the details of this algorithm will be 

explained later. From the microcontroller pin to the mic of the iPhone, there is a RC filter. 

This filter is here for two purposes. First it blocks the DC components from the 

microcontroller. And we do this because the iPhone headphone jack is AC coupled, and 

for it to recognize that a headphone cable has been plugged in, a capacitor is needed. 

Second, this RC network lowers the voltage seen by the iPhone. Upon test, we find out 

that the iPhone mic doesn’t take voltage more than 0.3 V, and the output voltage from a 

microcontroller pin is 3 V, so it has to be lowered by a voltage divider circuit, which is 

part of this RC network.  

Additionally, this RC band pass filter also filters out the high frequency noise. 

After this RC filter, the iPhone measures the mic voltage, and recover the digital 

information.  
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Figure 4.8 shows the data transmission from the device to the iPhone, and figure 

4.9(a) shows how the iPhone triggers the device. This control signal goes through the left 

channel of the cable. The app in the iPhone generates a 20 Hz sinusoid wave, it goes 

through a diode first, so the negative part of the sinusoid wave is cut. It then goes through 

non-inverting configured opamp, being amplified to the positive supply voltage of the 

opamp, which is 3 V, then feed into the general input/output pin of the microcontroller. 

This transformation is illustrated in figure 4.9(b). When this 20 Hz sinusoid wave goes 

through the opamp, because of the high amplification factor, the sinusoid wave will 

become almost like a square wave with its positive value being 3 V, which is the positive 

supply voltage of the opamp. Using the interrupt capability of the microcontroller port, it 

can count the numbers of the high-to-low or low-to-high edges of the square wave and 

when a preset number of interrupts is reached, the data transmission from the device to 

the iPhone will begin. 

Figure 4.10 shows how the zeros and ones are represented using a microcontroller 

pin. In this algorithm, each bit lasts a fixed duration of t0, and during this fixed period, the 

pin will go high (3 V) for a short period of time (t1) and then go back to low (0 V), it’s so 

called a pulse. The zeros are represented by one pulse and the ones are represented by 

two pluses. The iPhone then reads the voltage and decides the bit value by it. For the 

iPhone to decide the starting point of the first bit, a synchronizing signal is sent at the 

beginning of the data transmission. The synchronizing signal used here is four continuous 

pulses, the iPhone app will count the number of the pulses, and when it reaches four, the 

app will know that the data information is coming next and start to receive and decode it. 
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Figure 4.11 shows the information received by the iPhone app when the 

synchronizing signal as well as 16 bits are sent. The 16 bits are “010100110110111”, and 

its decimal value is 10679. The difference between the three results in figure 4.11 is the 

synchronizing signal length and the bit length. In each graph, the x-axis shows the sample 

number from the iPhone. The iPhone app samples the mic voltage at 44.1 KHz, so the 

time length between each sample point is 
�

"".� $%&
, which is 22.675 µs.  

To determine the optimal synchronizing wave length and bit length, different 

length parameters are tested. In figure 4.11(a), the synchronizing square wave signal 

period length is 14 iPhone samples, and the bit length is 120 iPhone samples. And in 

figure 4.11(b), the values are 1.4 iPhone samples and 12 iPhone samples, respectively. 

Compare these two figures, one can conclude that figure 4.11(a) presents a better result. 

The reason is that in figure 4.11(a), for each pulse, the reading reaches the maximum, and 

the four pulses of the synchronizing signal is easily recognized. However, in figure 

4.11(b), only two of the four synchronizing pulses can be seen, and the pulses of the bits 

cannot reach a consistent maximum reading, which makes it difficult to be recognized by 

the iPhone app. 

However, if parameters in figure 4.11(a) are used, each bit last 120 iPhone 

samples, which is 2721µs, the data transmission rate would be only 46 Bytes/second, and 

for 1 KB of data, it would take 21.7 seconds to transmit, which seems a little too long.  

Figure 4.11(c) shows an optimal solution. Its bit length is 49 iPhone samples, which is 

1111.075µs and its data transmission rate would be 112 Bytes/second, and now for 1KB 

of data, it only takes 9 seconds to transmit, which is much more acceptable. 
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The unit on the y-axis is an arbitrary unit, and the maximum is 231, which is the 

maximum that a signed variable in the iPhone app can represent. 

 

4.2.4 The firmware of the microcontroller 

There is only one microcontroller on the device circuit, and it is also the most 

important part of the circuit. The primary tasks for this microcontroller includes 

controlling the fan, sampling the photodiode voltage, sending the data to the Bluetooth 

chip, doing real-time calculation of the raw data and communicating with iPhone through 

a cable. Besides that, it also controls the power of all the major components of the device, 

they are Bluetooth chip, fan, LED board and all other circuit components such as opamp. 

All of these are done through the firmware inside the microcontroller. The 

microcontroller interrupts make the program react to the hardware of the microcontroller. 

In this program, four different interrupts are used.  

The first two interrupts controls the device on and off. Port 1 pin 1 (P1.1) of the 

microcontroller MSP430F4794 is connected to the middle terminal of a switch, and it’s 

either connected to 3 V or the ground. When this P1.1 is switched from 3 V to ground, 

the microcontroller detects a high-to-low edge change, and it sets the “DeviceON” flag in 

the program to be 0, and disables all the voltage regulators except the one for the 

microcontroller itself, the LCD will display “OFF”, and this is a switch off interrupt. 

When P1.1 is switched from ground to 3 V, the microcontroller sees a low-to-high edge 

change, and it will set the “DeviceON” flag to be 1, then enable all the voltage regulators, 

initialize all the preset parameters.  
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While the device is turned on, a 0.25 second interrupt is enabled. This interrupt is 

trigged by another small chip called MSP430F2001 from TI, and it sends 0.25 second 

duration square wave to the main microcontroller, so the interrupt is trigged every 0.25 

second. The Sigma-Delta ADC is working at continuous mode, and the result for each 

photodiode is accumulated. Upon the trigger of the 0.25 second interrupt, ADC stops its 

conversion, and goes into the interrupt routine. In which, the fan on and off timer is 

counted, and the photodiode ADC readings are sent to the Bluetooth. Data processing 

also happen here, the absorbance is calculated and stored in the memory, and the LCD 

displays the results at the end of each measurement.  

While the device is switched off, the data transmission interrupt is enabled. This 

interrupt is trigged by the 20 Hz square wave sent from the iPhone, and the interrupt 

routine calculates the individual bit of each integer that is stored in the memory, and 

sends it to the iPhone as described above. 

 

4.3 Results and discussion 

The described colorimetric device is tested with a NO2 sensor chip. The coated 

sensing material is o-phenylenediamine (PDA), its reaction with NO2 is irreversible with 

a colored phenazine derivative, which allows NO2 detection and quantification with this 

device.  

The device with the NO2 sensor is kept within a closed chamber with 4 liter of 

volume. Then a certain amount of NO2 gas is injected into the chamber. This NO2 comes 

from a standard NO2 gas cylinder with 40 ppm concentration. The concentration of NO2 

inside the chamber is then calculated based on the dilution rate. 
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The device is turned on after 2 minutes when the NO2 is injected. It automatically 

performs the 2 minutes fan off and 1 minute fan on sampling routine. Figure 4.12(a) 

shows the absorbance of the sensor for three consecutive tests under three different NO2 

concentrations: 125 ppb, 218 ppb and 343 ppb. Clear absorbance increase is seen during 

the sampling time. Figure 4.12(b) shows the calibration curve of the device. The 

sensitivity is 1.296E-4 absorbance change per ppb NO2. Given the 1E-4 absorbance noise 

level, the detection limit for NO2 would be 2.3 ppb. 

 

4.4 Conclusion 

A sensor platform that is suitable for colorimetric sensor application is developed. 

This badge size device is only 120 mm long, 80 mm wide and 8 mm thick. It has a low 

noise Sigma-Delta ADC for accurate photodiode sampling, with both wireless Bluetooth 

and wired cable communication interface with Android phone or iPhone. The wired 

communication interface works with a cable plugged into the iPhone headphone jack, and 

can synchronize 1 KB of device memory data within 10 seconds. The platform has a 

battery to support continuous monitoring of at least 10 hours. The sample is drawn 

through a tiny fan, instead of a sampling pump, which reduces the weight and size the 

device. The capability of the device is validated using a NO2 sensor chip, 2.3 ppb 

detection limit is achieved with the device. This low cost, small size and weight, high 

performance and battery powered device with both wireless and wired data transmission 

capability provides a great platform for colorimetric mobile gas sensing. 
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Figure 4-1. The schematic of the colorimetric device. 
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Figure 4-2. (a) The picture of the device, with marked important components. (b) The 

picture of the device with the housing. 
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Figure 4-3. (a) The diagram of the photodiode circuit. (b) The repeated value problem of 

the photodiode reading. (c) The repeated value problem at 1.5 V. 
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Figure 4-4. (a) Picture of using a Sigma-Delta ADC to measure the photodiode voltage. 

(b) The results of two photodiodes. (c) The new diagram of the photodiode circuit. 
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Figure 4-5. (a) The photodiode 1 reading using MSP430F4794 microcontroller with 

Sigma-Delta ADC. (b) The photodiode 4 reading. (c) The noise level of photodiode 4 

reading.  
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Figure 4-6. (a) Absorbance change without using the reference. (b) Absorbance change 

with the reference. 



101 

 

Figure 4-7. The iPhone headphone jack. (1) Left earphone, (2) right earphone, (3) ground, 

(4) mic. 

 

 

 

 

 

 

 

 

 

 

 



Figure 4-8. The diagram of the data transmission from the device microcontroller to the 

iPhone. 
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of the data transmission from the device microcontroller to the of the data transmission from the device microcontroller to the 
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Figure 4-9. (a) The diagram of the control signal from the iPhone to the device 

microcontroller. (b) Signal transformation diagram. 
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Figure 4-10. The representation of the zeros and ones, as well as the synchronizing signal. 

The high voltage is 3 V and low voltage is 0 V. 
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Figure 4-11. Data transmission with different bit length. (a) 2721 µs (b) 272 µs (c) 1111 

µs. 
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Figure 4-12. (a) Absorbance change of a NO2 sensor when tested against different NO2 

gas concentrations. (b) The calibration plot.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In the previous chapters, three different portable devices have been shown. Two 

devices are shown for VOCs detection based on a molecularly imprinted polymer coated 

tuning fork, and one device is shown using the colorimetric detection method. The tuning 

fork VOC sensor is combined with a gas chromatography column and an adsorbent 

packed preconcentrator to further increase its sensitivity and selectivity. The integrated 

device uses four latch valves and one sampling pump, with a Bluetooth enabled circuit, 

and is capable of detecting ppb level BTEX in real-time. The colorimetric device is only 

120 mm long, 80 mm wide and 8 mm thick. It has a low noise Sigma-Delta ADC for 

accurate photodiode sampling, with both wireless Bluetooth and wired cable 

communication interface with Android phone or iPhone. It provides a great platform for 

colorimetric sensor applications. 

However, further reduction on the size and cost of the devices are needed for it to 

be convenient for everyday use. With that, it is even possible to integrate one chemical 

sensor into a popular smartphone, such as an iPhone, and it could open of a lot of 

possibilities, such as mobile air quality sensor network. 
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