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ABSTRACT

The problem of cooperative radar and communications signaling is investigated. Each

system typically considers the other system a source of interference. Consequently, the

tradition is to have them operate in orthogonal frequency bands. By considering the

radar and communications operations to be a single joint system, performance bounds

on a receiver that observes communications and radar return in the same frequency

allocation are derived. Bounds in performance of the joint system is measured in

terms of data information rate for communications and radar estimation information

rate for the radar. Inner bounds on performance are constructed.
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Chapter 1

INTRODUCTION

There is an ever increasing demand for spectrum and given the limit on resources,

communications and radar are forced to share bandwidth. This causes inter-system

interference and can degrade the performance of both systems. The standard solu-

tion is to separate (temporally, spatially or spectrally) the radar and communications

systems. In this thesis, we do not require this separation, and we explore the fun-

damental radar and communications coexistence performance bounds. An important

contribution that enables this exploration is the parameter of estimation information

rate.

1.1 Background

In this thesis we reformulate and extend the performance bounds introduced in [1].

It is worth noting that in our efforts presented here, we focus on the radar estimation

performance rather than radar detection considered in [2, 3, 4, 5, 6, 7, 8]. To be more

specific, in our work, we have focused on the estimation of a target parameter, time

delay or target range, from the received target return and the performance of the

radar system is measured in terms of the estimation rate.

The work presented in [2, 3, 4, 5] investigated the application of information

theory to improve radar system performance. It was in these works that the idea

that signal-to-noise ratio (SNR) does not measure information is introduced. At

the time, it was generally assumed that the higher the output SNR, the better the

detection performance of a radar system. Hence, most radar systems or waveforms

were designed to maximize the output SNR; however, this simple formulation misses
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some of the subtleties. The primary focus of these works is to dispel such a simplistic

interpretation by using information theory to formulate a new type of receiver, the a

posteriori radar receiver, that does not try and maximize output SNR but attempts

to maximize the quantity of information, given by the a posteriori distribution of a

target parameter.

In [6], the problem of designing optimal waveforms for the cases of detection and

target information extraction are considered. In the problem of target information

extraction, the radar waveform is designed so as to maximize the mutual information

between the target parameter of interest and the measurements obtained from the

receiver. However, target parameter estimation (in the traditional sense) is never

explicitly discussed, and the radar system performance is measured in terms of target

classification ability or average measurement error.

In [7, 8], the theory of matched illumination, the process of optimizing the pulse

shape of the radar waveform (finite duration and finite energy) and the impulse

response of the receiver, is used to design a target detection system that maximizes

the target SNR (which corresponds to maximizing the probability of detection in

gaussian noise and interference).

Current research has investigated the benefits of using methods similar to cooper-

ative sensing to solve the problem of radar and communications co-existence [9, 10].

Radar nodes that employ some form of cooperative sensing have shown an improve-

ment when compared to traditional nodes that did not employ cooperative sensing. In

[9] four regions of coexistence are defined between radar and communication systems

which are separated based on whether the two systems interfere with each other and

if this interference is detectable by either system. These regions are defined based

on a set of INR/SNR thresholds and probability of interference/detection thresholds.

The non-detectable/non-interfering region is the worst case region and the system
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parameters should be chosen in such a way so as to make this region of coexistence

as small as possible. Simple algorithms can be developed for the other regions. It is

then shown that coexistence between radar and communications is feasible for radar

nodes without cooperative sensing only when subject to stringent interference restric-

tions, low radar transmit power and among other constraints. However, among radar

nodes that utilize cooperative sensing, coexistence is not subject to such stringent

constraints. Furthermore radar nodes with cooperative sensing demonstrate an im-

provement in performance(especially if the nodes are spaced far apart, ensuring that

the channel correlation between nodes is low) in terms of detection probability, detec-

tion range etc. Another approach is employed in [10] wherein the surveillance space

of the radar system is divided into sectors and priorities are assigned to all radar

and communication systems that want to transmit in each sector. The priorities are

determined using fuzzy logic. The criteria used to assign these priorities include tar-

get separation, SNR , clutter etc. Bandwidth is allocated or ’shared’ based on these

priorities by performing multi-objective optimization.

Some other techniques such as interference mitigation [11], precoding or spatial

separation [12] or waveform shaping [13] allow both radar and communications to

share the spectrum and coexist. In [13], waveform shaping is done by projecting radar

waveforms onto the null space of the interference channel matrix, which ensures that

there is minimal interference on the communications system from the radar system.

The interference channel matrix can be extracted from the complete channel matrix.

The channel is assumed to be reciprocal (thus making it easier to estimate the channel

matrix) and the radar system is assumed to be a colocated MIMO radar in which

each antenna transmit mutually orthogonal waveforms. The channel matrix between

the primary and secondary user is estimated by the secondary user and either system

can be considered as the primary user. Once the channel matrix is estimated and the
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null space of the interference channel matrix is calculated, the original radar waveform

(any radar waveform) is then projected onto the null space and the resultant waveform

is transmitted. It is then shown that such a radar system is able to perform at levels

comparable to a case where null space projections on radar signals are not done and

the radar system has no interference.

Radar systems based on communication systems, where radar systems use OFDM

or DSSS signals as radar illumination signals, have also been considered [14, 15, 16,

17]. In [16], the radar system along with the communication system uses ODFDM

waveforms for transmission and algorithms are presented to assign OFDM sub-carriers

to each system in such a way so as to optimize channel capacity for the communi-

cation system and the target detection performance (Mahalanbolis distance [18]) for

the radar system. The first algorithm is a low-complexity algorithm that assigns

sub-carriers to each system such that the channel capacity and target detection per-

formance are optimized separately while the second algorithm jointly optimizes the

channel capacity and target detection performance.

Similarly, communication systems using radar illumination signals like linear fre-

quency modulation (LFM) chirp waveforms as modulation signals to transmit data

have been developed [19]. It has been shown in [19] that such a modulation scheme

when used with a radar system shows good system performance in terms of bit error

rate (for communications) and false-alarm rate (for radar). Signal sharing, a method

in which both radar and communication systems utilize the same waveform has also

been applied to the radar and communications coexistence problem [20, 21, 22].

1.2 Contributions

We consider the joint radar-communications receiver to be a radar node that can

act as a communications relay as well. This means that the receiver can simultane-
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ously estimate the radar target parameters from the radar return and decode a com-

munications signal. This functioning of such a receiver is shown in Figure 1.1. In this

thesis, we develop a new approach for producing joint radar-communications perfor-

mance bounds. The joint radar-communications system decodes the communication

signal jointly with the estimation of the radar channel. The principle contributions

of this thesis are that we:

• Develop novel joint receiver formulation analogous to communication multiple

access channel.

• Develop radar estimation rate, a metric analogous to data information rate.

• Derive the isolated sub-band inner bound.

• Derive the successive interference cancellation inner bound.

• Derive the communications water-filling inner bound.

• Derive the optimal fisher information inner bound.
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Figure 1.1: Joint Radar-Communications System

1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present the channel and

signal model for a joint radar-communications system that will be employed in this

thesis. We also introduce the idea of a observed signal with a predicted radar return

signal suppressed. In Chapter 3, we present the Cramer-Rao lower bound on time-

delay estimation for a joint radar-communications system considered in this thesis.

In Chapter 4, we develop the radar estimation information rate. The estimation

information rate is the metric which we will use to measure performance of the radar

system. In Chapter 5, we present the multiple access communications performance

bound as an analogy to the joint radar-communications system. In Chapter 6, we

develop several inner bounds on the performance of the joint radar-communications

system by considering various scenarios and developing estimation and data rates for

the radar and communications systems respectively. Finally, in Chapter 7, we present

a summary of results obtained in this thesis and avenues for future research.
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Chapter 2

JOINT RADAR-COMMUNICATIONS CHANNEL MODEL

In this chapter, we consider the joint radar-communications system received signal,

z(t), for a multiple-access communications and radar return channel. We present a

table of significant notation that will be employed in this thesis in Table 2.1. We

make the following assumptions:

• Target cross-section a is nuisance parameter.

• Target cross-section is estimated well.

• Targets well separated.

• Residual of unpredicted radar return is modeled well by a Gaussian distribution

before pulse compression.

• Target range known up to some Gaussian random process variation which is

within one over the bandwidth.

We consider only the portion of time during which the radar return overlaps with the

communications signal. For the sake of simplicity we focus on range estimation only,

as opposed to range and amplitude estimation. The joint system receiver will attempt

to suppress the radar return using the predicted target range and then proceed to

decode the communications signal as shown in [1].
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Table 2.1: Survey of Notation

Variable Description

〈·〉 Expectation

θ Estimation Parameters

s(θ; z(t)) Score function of z(t) with respect

to θ

B Bandwidth of the System

z(t) Observed signal including radar and

communications

z̃com(t) Observed signal with predicted

radar return removed

x(t) Unit-variance transmitted radar sig-

nal

Prad Radar power

τm Time delay to mth target

τ
(k)
m kth observation of delay for mth tar-

get

τm,pre Predicted time delay to mth target

am Complex combined antenna, cross-

section, and propagation gain for

mth target

T Radar pulse duration

N Number of targets

δ Radar duty factor

Continued on next page
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Table 2.1 – Continued from previous page

Variable Description

r(t) Transmitted communication signal

with variance σ2
noise

Pcom Total communications power

b Communications propagation loss

(amplitude)

n(t) Receiver thermal noise

σ2
noise Thermal noise power

kB Boltzmann constant

Ttemp Absolute Temperature

nint+n Interference plus noise for communi-

cations receiver

θ Set of nonspecific system and target

parameters

Brms Root-mean-squared radar band-

width

γ Radar spectral shape parameter

Bcom Communications only sub-band

Brad Radar only sub-band

Bmix Mixed radar and communications

sub-band

α Fraction of bandwidth for communi-

cations only

Continued on next page
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Table 2.1 – Continued from previous page

Variable Description

β Power fraction used by

communications-only sub-band

ρRO Power Spectral Density used by

radar only sub-band

ρMU Power Spectral Density used by

mixed use sub-band

μcom Channel of communications-only

sub-band

μmix Channel of mixed use sub-band

SNRradar Signal-to-noise-ratio of radar esti-

mator

2.1 Radar Return Signal Model

Unless stated otherwise, we always assume that all signals are in complex-baseband.

While this may not seem pertinent now, this becomes convenient later, when com-

puting the information rates (estimation and data) of both radar and communication

systems [23].

For N targets, the observed radar return zrad(t) without any communications

signal interference, is given by

zrad(t) =
N∑

m=1

am
√

Prad x(t− τm) + n(t) . (2.1)

Additionally, the observed signal at the receiver z(t) in the presence of a communi-
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cations signal is given by

z(t) = b
√
Pcom r(t) (2.2)

+
√
Prad

N∑
m=1

am x(t− τm) + n(t).

The zero-mean thermal noise is drawn from a complex Gaussian distribution with

variance σ2
noise = kB Ttemp B , where kB is the Boltzmann constant, Ttemp is the abso-

lute temperature, and B is the full bandwidth. Similar developments can be found

for amplitude estimation. A reasonable time-delay estimator (particularly if targets

are well separated) is the correlation estimator given by

τ̂m = argmaxτm

∫
dt z(t) x∗(t− τm) . (2.3)

As stated above, because we assume we are tracking the target, we have some knowl-

edge of the target’s range (based upon prior observations), up to some range fluctua-

tion in the return due to an underlying target random process. This range fluctuation

is interpreted as a fluctuation in time and this delay fluctuation is modeled by a Gaus-

sian distribution nτ,proc. During the kth observation, the delay for the mth target will

be given by,

τ (k)m = τ (k)m,pre + nτ,proc (2.4)

τ (k)m,pre = f(k;Tpri,θ) .

The function f(k;Tpri,θ) is a prediction function which depends on Tpri, the pulse

repetition interval, and a set of nonspecific system and target parameters, θ. The

variance of the range fluctuation process is given by

σ2
τ,proc =

〈‖nτ,proc‖2
〉
=
〈∥∥τ (k)m − f(k;Tpri,θ)

∥∥2〉 . (2.5)
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2.2 Communications Signal with Predicted Radar Return Suppressed

In order to improve performance of the communications system, we try to mitigate

unnecessary interference caused by the presence of the radar signal by using the

predicted target range to generate a predicted radar return and subtracting it from

the received signal at the receiver.

For N targets, the received signal at the communications receiver with the pre-

dicted radar return suppressed is given by

z̃com(t) =
√
Pcom b r(t) + n(t) (2.6)

+
√
Prad

N∑
m=1

am[x(t−τm)−x(t−τm,pre)] .

Note: we have assumed here that the estimated amplitude is equal to the actual

amplitude i.e. âm = am. This approach is only useful if the error in delay is smaller

that 1/B. For small fluctuations in delay, we can replace the difference between the

actual and predicted radar return waveforms with a derivative,

x(t− τm)− x(t− τm,pre)

= x(t− τm)− x(t− τm − nτ,proc)

≈ ∂x(t− τm)

∂t
nτ,proc . (2.7)

The signal observed by the communications receiver is then given by

z̃com(t) ≈
√
Pcom b r(t) + n(t)

+
√
Prad

N∑
m=1

am
∂x(t− τm)

∂t
nτ,proc . (2.8)

The interference plus noise from the communications system’s point of view is given

12



by

nint+n =
√
Prad

N∑
m=1

am[x(t−τm)−x(t−τm,pre)] + n(t)

≈
√

Prad

(
N∑

m=1

am
∂x(t− τm)

∂t
nτ,proc

)
+ n(t)

σ2
int+n =

〈‖nint+n‖2
〉

= Prad

(
N∑

m=1

‖am‖2 (2π)2 B2
rms σ

2
proc

)
+ σ2

noise (2.9)

Brms =

∫
df f 2 ‖X(f)‖2∫
df ‖X(f)‖2 , (2.10)

where Brms comes from employing Parseval’s theorem to convert ∂x(t−τm)/∂t into the

frequency domain and then using the differentiation property of the fourier transform

[23]. Brms is extracted from bandwidth B as follows

γ2 B2 = (2π)2 B2
rms, (2.11)

where the value γ is the scaling constant between B and Brms times 2π that is

dependent upon the shape of the radar waveform’s power spectral density. For a flat

spectral shape, γ2 = (2π)2/12.
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Chapter 3

CRAMER-RAO LOWER BOUND FOR TIME-DELAY ESTIMATION

In this cbapter, we will go over the Cramer-Rao lower bound on time-delay estimation

on a SISO (single-input single-output) channel with circularly symmetric Gaussian

noise [24]. We have gone over the derivation in more detail in Appendix A. The

Cramer-Rao bound gives the best performance (in terms of variance of error) of an

unbiased estimator.

We assume that the received signal of the time-delay estimator is given by

z(t) = a x(t− τ) + n(t), (3.1)

where x(t) is the transmitted signal whose frequency representation, X(f) has full

bandwidth B, x(t − τ) is the delayed version of the transmitted signal, a is the

combined radar cross-section, antenna and propagation gain and n(t) is circularly

symmetric Gaussian noise with zero mean and variance σ2.

Let θ = τ be the parameter to be estimated. From equation (3.1), we see that

z(t) ∼ CN (x(t− τ), σ2) and has the following probability density function,

p(z(t); θ) =
1

πσ2
e−

‖z(t)−a x(t−τ)‖2
σ2 . (3.2)

Eventually, we see that the Cramer-Rao lower bound for time delay estimation,

σ2
τ ;est (as derived in Appendix A) is given by

σ2
τ ;est = J−1 =

(
1

8π2 B2
rms ISNR

)
(3.3)

where ISNR stands for integrated SNR. By centering the spectrum at an appropriate

point( i.e. choosing the origin of the spectrum), we get the RMS bandwidth Brms,

given by Equation (2.10).
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Chapter 4

RADAR ESTIMATION INFORMATION RATE

In order to compare the performance of the radar and communications systems in

terms of information rate, we need a metric analogous to data information rate for

the communications system that can be used to measure the performance of the radar

system. We consider this information rate by considering the entropy of a random

parameter being estimated and the entropy of the estimation uncertainty of that

parameter [1]. As an observation, if the targets are well separated, then each target

estimation can be considered an independent information channel.

Motivated by the mutual information rate (or radar estimation rate) in terms of

estimation entropy, random process entropy of the radar and bits per pulse repetition

interval Tpri = T/δ, the radar estimation information rate is bounded by

Rest ≤
∑
m

hτ,rr − hτ,est

Tpri

, (4.1)

where hτ,rr is the random process entropy and hτ,est is the estimation entropy.

The random process entropy of the radar or the entropy of the process uncertainty

plus estimation uncertainty, assuming that both are Gaussian, is given by [25, 23]

hτ,rr = log2
[
π e (σ2

τ,proc + σ2
τ,est)

]
. (4.2)

To find the estimation entropy, we find the delay estimation uncertainty for each

target. Under the assumption of Gaussian estimation error, the resulting entropy of

the error is given by

hτ,est = log2[π e σ2
τ,est]

= log2

[
π e

kB Ttemp

2γ2 B (TB) ‖am‖2 Prad

]
, (4.3)
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where the variance of delay estimation for the mth target is given by Equation (3.3).

Finally, after putting it all together, we see that the radar estimation information

rate is given by

Rest ≤
∑
m

δ

T
log2

(
1 +

σ2
τ,proc

σ2
τ,est

)

=
∑
m

B log2

[
1 +

2σ2
τ,proc γ

2 B (TB) ‖am‖2 Prad

kB Ttemp

]δ/(TB)

(4.4)

=
∑
m

B log2[1 + SNRm,radar]
δ/(TB) .

Note: the effective SNRm.radar is not a real signal to noise ratio, but it has a form

reminiscent of the traditional SNR.

It is worth noting, that by employing this estimation entropy in the rate bound,

it is assumed that the estimator achieves the Cramer-Rao performance. If the error

variance is larger, then the rate bound is lowered.
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Chapter 5

MULTIPLE-ACCESS COMMUNICATIONS PERFORMANCE BOUND

We present the multiple-access communications system performance bound [25, 23] as

motivation to develop inner bounds on the performance of a joint radar-communications

system [1]. In this scenario, the channel propagation gain for the first communications

system is given by a1 and channel propagation gain for the second communications

system is given by a2. The power of the first communications transmitter is denoted

by P1 and the power of the second communications transmitter is given by P2. Their

corresponding rates are denoted R1 and R2. Assuming that the noise variance is given

by σ2
noise, the fundamental limits on rate are given by

R1 ≤ log2

(
1 +

‖a1‖2P1

σ2
noise

)

R2 ≤ log2

(
1 +

‖a2‖2P2

σ2
noise

)

R1 +R2 ≤ log2

(
1 +

‖a1‖2P1 + ‖a2‖2P2

σ2
noise

)
(5.1)

Vertices are found by jointly solving two bounds to get,

{R1, R2} =

{
log2

(
1 +

‖a1‖2P1

1 + ‖a2‖2P2

)
,

log2

(
1 +

‖a2‖2P2

σ2
noise

)}
,

and

{R1, R2} =

{
log2

(
1 +

‖a1‖2P1

σ2
noise

)
,

log2

(
1 +

‖a2‖2P2

1 + ‖a1‖2P1

)}
.

The region that satisfies these theoretical bounds is depicted in Figure 5.1.
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Figure 5.1: Pentagon containing Communications Multiple-Access Achievable Rate
Region.

The achievable rate region is obtained by taking the convex hull [26] of the vertices

1-4. Depending on the amount of time each user occupies the channel, we can jump

between vertex 1 and 3 along the convex hull. If user 1 utilizes the channel for a

larger percentage of time, the closer we are to vertex 3 and vice versa. It is worth

noting that there is no sense of the bits from user 1 are more or less important than

the bits from user 2. The bound sets a joint limit that can be traversed depending

on the percentage of time each user occupies the channel.

Since a radar signal is not derived from a countable dictionary, this violates the

fundamental assumption of a communications signal and the bounds presented here

can never be achieved by a joint communication-radar system. However, by employing

an approach similar to the one discussed above, an outer bound on the performance

of a joint radar-communications can be obtained.
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Chapter 6

PERFORMANCE BOUNDS OF A JOINT RADAR-COMMUNICATIONS

SYSTEM

In this chapter, we will derive inner bounds on the performance of the joint radar-

communications system. As mentioned earlier, performance is measured in data

information rate for the communications system and estimation information rate for

the radar system. We consider a bound similar to the multiple-access communications

performance bound derived in the previous chapter as an outer bound. We do not

expect that the bound is achievable. We will also derive achievable inner bounds. The

fundamental system performance limit lies between these achievable inner bounds and

the outer bound. To find these inner bounds, we hypothesize an idealized receiver

and determine the bounding rates. To simplify the discussion, we consider only a

single target with delay τ and gain-propagation-cross-section product a2.

When deriving the bounds presented in this chapter, the radar pulse duration or

T has always been fixed as constant. In some scenarios, this implies that the time-

bandwidth product of the radar system will not be constant. In [1], a case was made

for ensuring that the time-bandwidth product of the radar system would be fixed as

constant which meant that the radar pulse duration would be constant. This would

cause the duty-factor of the radar system δ to vary as well, which is not a desirable

feature for radar systems. Furthermore, in some cases, a varying radar pulse duration

would cause the radar pulse duration to exceed the pulse repetition interval of the

radar system , i.e. T > Tpri, which would render the radar system unable to function

correctly. It is for these reasons that the radar pulse duration has been fixed constant

in all the scenarios presented in this chapter.
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6.1 Isolated Sub-band Inner Bound

In this section, we derive an inner bound by considering a scenario in which we

partition the total bandwidth into two sub-bands, one for radar only and the other for

communications. Each system functions without any interference in their respective

sub-band.

The bandwidth will be split between the two sub-bands according to some α such

that,

B = Brad +Bcom (6.1)

Bcom = αB

Brad = (1− α)B.

The corresponding communication rate (for the communications only sub-band)

is given by

Rcom ≤ Bcom log2

[
1 +

b2 Pcom

kB Ttemp Bcom

]

≤ αB log2

[
1 +

b2 Pcom

kB Ttemp αB

]
. (6.2)

and the corresponding radar estimation rate is given by

Rest ≤ Brad log2

(
1 +

2σ2
proc γ

2 B2
rad T ‖a‖2Prad

kB Ttemp

)δ/(TBrad)

= (1− α)B log2(1 + SNRradar)
δ/([1−α]TB) (6.3)

SNRradar =
σ2
proc γ

2 (1− α)B ([1− α]TB) ‖a‖2 Prad

kB Ttemp

. (6.4)

This inner rate bound follows the water-filling bound until the water-filling bound

reaches the critical point (the transition between using one or both channels for

communications) described by Equation (6.13). This is because before the critical
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point is reached, both systems in the water-filling approach exist in isolated sub-

bands and do not interfere with each other. Once the critical point has been reached,

the water-filling approach starts allocating power to both sub bands, which causes

the water-filling bound to deviate from the isolated sub-band bound.

6.2 Successive Interference Cancellation (SIC) Inner Bound

We consider a simple scenario in which the joint radar-communications system

takes the received communications signal with suppressed predicted radar return and

attempts to decode the communications signal. After the receiver has finished the

decoding process, it can then remove the communications signal from the observed

waveform and with some radar signal processing, we can obtain the original radar

return signal free of any communications interference. The inner bound on perfor-

mance derived through this scenario is called the SIC bound. The block diagram of

the receiver considered in this scenario is shown in Figure 6.1.

Figure 6.1: Receiver Block Diagram for SIC Scenario

If Rest ≈ 0, it is as if the radar interference is not present and the communications

system can operate at a data rate determined by the isolated communications bound,

Rcom ≤ B log2

(
1 +

b2 Pcom

σ2
noise

)

= B log2

(
1 +

b2 Pcom

kB Ttemp B

)
. (6.5)
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If Rcom is sufficiently low for a given transmit power, then as described above, the

receiver can successfully decode the communications signal and remove it from the

observed waveform, leaving just the radar return. Thus, the radar parameters, such as

target range, can be estimated without corruption from any outside interference. This

implies that from the communications receiver’s perspective, it observes interference

plus noise as described by Equation (2.9),

Rcom ≤ B log2

[
1 +

b2 Pcom

σ2
int+n

]
(6.6)

= B log2

[
1 +

b2 Pcom

‖a‖2 Prad γ2B2 σ2
proc + kB Ttemp B

]
,

In this regime, the corresponding estimation rate bound Rest is given by Equation

(5.1).

These two vertices correspond to the points 2 (associated with Equation (6.5))

and 3 (associated with Equations (6.6) and (5.1)) in Figure 5.1, assuming that R1

is the estimation rate, and R2 is the communications rate. An achievable rate lies

within the quadrilateral constructed by constructing the convex hull between these

points. This is the SIC inner bound.

6.3 Communications Water-filling Inner Bound

In this section, we consider a scenario in which the total bandwidth is split into

two sub-bands, one sub-band for communications only and the other sub-band for

both radar and communications. We use a water-filling approach to distribute the

total communications power between the two bands [1]. Water-filling optimizes the

power and rate allocation between multiple channels [25, 23]. The mixed use channel

operates at the SIC rate vertex defined by Equations (5.1) and (6.6). The block

diagram of the receiver considered in this scenario is shown in Figure 6.2.
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Figure 6.2: Receiver Block Diagram for Communications Only and Mixed Use Sub-
bands

Given some α that defines the bandwidth separation,

B = Bcom +Bmix (6.7)

Bcom = αB

Bmix = (1− α)B ,

then we optimize the power utilization, β,

Pcom = Pcom,com + Pcom,mix (6.8)

Pcom,com = β Pcom

Pcom,mix = (1− β)Pcom .

There are two effective channels

μcom =
b2

kB Ttemp Bcom

=
b2

kB Ttemp αB
, (6.9)
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for the communications only channel and

μmix =
b2

σ2
int+n

(6.10)

=
b2

‖a‖2 Prad (1− α)2γ2B2 σ2
proc + kB Ttemp (1− α)B

for the mixed use channel. The communications power is split between the two

channels [25, 23],

Pcom = Pcom,com + Pcom,mix

=

(
α ν − 1

μcom

)+
+

(
(1− α) ν − 1

μmix

)+
. (6.11)

The critical point (the transition between using one or both channels for communi-

cations) occurs when

(1− α) ν − 1

μmix

= 0

Pcom = α ν − 1

μcom

, (6.12)

so both channels are used if

Pcom ≥ α

(1− α)μmix

− 1

μcom

. (6.13)

If the communications-only channel is used exclusively for communications, then

Pcom = Pcom,com. If both channels are employed for communications then

Pcom,com = α ν − 1

μcom

Pcom,mix = (1− α) ν − 1

μmix

, (6.14)

and thus when Equation (6.13) is satisfied

Pcom = α ν − 1

μcom

+ (1− α) ν − 1

μmix

ν =

(
Pcom +

1

μcom

+
1

μmix

)
. (6.15)
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The value of power fraction β is then given by

β =
Pcom,com

Pcom

=
α ν − 1

μcom

Pcom

=
α
(
Pcom + 1

μcom
+ 1

μmix

)
− 1

μcom

Pcom

= α +
1

Pcom

(
α− 1

μcom

+
α

μmix

)
;

when Pcom ≥ α

(1− α)μmix

− 1

μcom

. (6.16)

The resulting communications rate bound in the communications-only sub-band is

given by

Rcom,com ≤ Bcom log2

[
1 +

Pcom,com b2

kB Ttemp Bcom

]

≤ αB log2

[
1 +

β Pcom b2

kB Ttemp αB

]
. (6.17)

The mixed use communications rate inner bound is given by

Rcom,mix ≤ Bmix log2

[
1 +

b2 Pmix

σ2
int+n

]

= (1− α)B log2

[
1 +

b2 (1− β)Pcom

σ2
int+n

]
(6.18)

σ2
int+n = ‖a‖2 Prad (1− α)2 γ2 B2 σ2

proc + kB Ttemp (1− α)B.

The corresponding radar estimation rate inner bound is then given by

Rest ≤ Bmix

log2

(
1 +

2σ2
proc γ

2 Bmix (TBmix) ‖a‖2 Prad

kB Ttemp

)δ/(TBmix)

= (1− α)B log2(1 + SNRradar)
δ/([1−α]TB) (6.19)

SNRradar =
2σ2

proc γ
2 (1− α)B ([1− α]TB) ‖a‖2 Prad

kB Ttemp

. (6.20)
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6.4 Optimal Fisher Information Inner Bound

In this section, we construct another inner rate bound by considering an approach

similar to the one utilized in the previous section. We split the total bandwidth into

two sub-bands and distribute the radar power (or power spectral density) between

the two sub-bands (instead of the communications power) in a way that minimizes

the Cramer-Rao lower bound (or maximizes the Fisher information) on the variance

of a time-delay estimator. Hence, we will have one channel that has radar only and

the other channel will have both communications and radar. The block diagram of

the receiver considered in this scenario is shown in Figure 6.3.

Figure 6.3: Receiver Block Diagram for Radar Only and Mixed Use Sub-bands

The bandwidth will be split between the two sub-bands according to some α such

that,

B = Brad +Bmix (6.21)

Brad = αB

Bmix = (1− α)B,

26



and we will optimize the power spectral densities, ρRO and ρMU, utilized by the radar

only and mixed use sub-bands respectively, to maximize the Fisher information, where

Prad = Prad,rad + Prad,mix (6.22)

Prad,rad = Brad ρRO

= αB ρRO (6.23)

Prad,mix = Bmix ρMU

= (1− α)B ρMU. (6.24)

We will have the following constraints on power and energy of the radar system in

the two sub-channels,

Prad = αB ρRO + (1− α)B ρMU (6.25)

Erad = T Prad = αTB ρRO + (1− α)TB ρMU. (6.26)

Now, consider a radar signal x(t) with bandwidth B, whose frequency spectrum X(f)

is centered around BO. We assume that X(f) is spectrally flat. We will now partition

the frequency spectrum into two portions, XRO(f) and XMU(f) with bandwidths αB

and (1−α)B respectively, thereby creating two new signals, xRO(t) and xMU(t) which

will be used in transmissions in the radar only sub-channel and mixed use sub-channel

respectively. Since X(f) is spectrally flat, this implies that both XRO(f) and XMU(f)

are spectrally flat as well. This partitioning in the frequency domain also makes the

two signals orthogonal in frequency. Additionally, the two signals have the following

property as well

xRO(t) + xMU(t) = x(t). (6.27)

Thus, after transmission, the radar receiver will observe the following return signal

z(t) = [a xRO(t− τ) + nRO(t)]

+ [a xMU(t− τ) + nMU(t) + b r(t)],
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where r(t) is the communications signal that is present in the mixed use chan-

nel, nRO(t) ∼ CN (0, ασ2) is complex AWGN in the radar only sub-channel and

nMU(t) ∼ CN (0, (1 − α)σ2) is complex AWGN in the mixed use sub-channel and

σ2 = kB/, Ttemp B is the variance of additive white gaussian noise in a channel that

was the sum of both sub channels. Using the property of addition of two gaussian

random processes and the property described in equation (6.27), we get

z(t) = a x(t− τ) + b r(t) + n(t). (6.28)

Using this return signal, we will derive the Cramer-Rao lower bound on the variance

for joint time delay-phase estimation. Let θ = τ be the parameter to be estimated.

From equation (6.28), we see that z(t) ∼ CN (x(t−τ)+r(t), σ2) and has the following

probability density function,

p(z(t); θ) =
1

πσ2
e−

‖z(t)−a x(t−τ)−b r(t)‖2
σ2 . (6.29)

The corresponding log-likelihood function is given by

logp(z(t); θ) = −log(πσ2)− ‖z(t)− a x(t− τ)− b r(t)‖2
σ2

(6.30)

and the score function, s(θ; z(t)) is given by

s(θ; z(t)) =
∂

∂θ
{logp(z(t); θ)} =

n∗(t) a x′(t− τ)

σ2
+ c.c. (6.31)

where c.c. stands for complex conjugate term and x′(t − τ) = ∂
∂τ
x(t − τ). Now, the

Fisher information for this estimation problem, J , is given by

J = 〈s(θ; z(t))s∗(θ; z(t))〉

=〈(
n∗(t)ax′(t− τ)

σ2
+ c.c.

)(
[a∗x′(t− τ)]∗n(t)

σ2
+ c.c.∗

)〉
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On simplification, we see that

J = 2

〈‖a‖2 n(t)n∗(t)x′(t− τ)[x′(t− τ)]∗

σ4

〉
(6.32)

where the cross-terms in the product become 0 due to 〈n(t)〉 = 0 and the independence

of x(t−τ) and n(t). The factor of two comes from the complex conjugate term. Using

the fact that 〈n(t)n∗(t)〉 = σ2 and simplifying, we see that

J =
2‖a‖2 〈x′(t− τ)[x′(t− τ)]∗〉

σ2

=
2‖a‖2 ‖x′

RO(t− τ) + x′
MU(t− τ)‖2

σ2

By multiplying the terms out, converting to frequency domain and applying Parseval’s

Theorem, the time-shift and differentiation properties of the Fourier Transform and

the orthogonality of XRO(f) and XMU(f), for spectrally flat XRO(f) and XMU(f), we

get

J =
2‖a‖2
σ2

[∫ BO−B
2
+αB

BO−B
2

df(2πf)2〈XRO(f)X
∗
RO(f)〉

+

∫ BO−B
2
+αB

BO+B
2

df(2πf)2〈XMU(f)X
∗
MU(f)〉

]

=
2

σ2

[
4π2 ‖a‖2αTB ρRO

3
f 3

∣∣∣∣
BO−B

2
+αB

BO−B
2

+
4π2 ‖a‖2(1− α)TB ρMU

3
f 3

∣∣∣∣
BO+B

2

BO−B
2
+αB

]

to finally get

J =
8π2 ‖a‖2αTB ρRO

3kBTtempB

[(
BO − B

2
+ αB

)3

−
(
BO − B

2

)3
]

+
8π2 ‖a‖2(1− α)TB ρMU

3kBTtempB

·
[(

BO +
B

2

)3

−
(
BO − B

2
+ αB

)3
]
.

(6.33)
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We consider BO to be a free parameter. We select a value of BO by looking at the

reduced Fisher information [23, 27] for time-delay estimation derived from the Fisher

information matrix of joint amplitude and time-delay estimation. We set the value

of BO such that the regular Fisher information for time-delay estimation, given by

Equation (6.33), and the reduced Fisher information for time delay estimation will

be equal. In general, the reduced Fisher information is given by Equation (B.15). As

shown in Appendix B, the resultant value for BO is given by

BO =
αB (α− 1)[ρMU(α− 1) + ρROα]

2(ρMU(α− 1)2 + ρROα2)
. (6.34)

From equation (6.25), we see that,

ρRO =
Prad − (1− α)B ρMU

αB
(6.35)

ρMU =
Prad − αB ρRO

(1− α)B
. (6.36)

The value of the power spectral density utilized by the radar only sub-band, ρRO, that

maximizes the Fisher information for a time-delay estimator is obtained by plugging

in Equations (6.34) and (6.36) into J and taking it’s derivative with respect to ρRO,

setting the resultant equation to 0 and solving for ρRO. ρMU is obtained in a similar

way, except that equation (6.35) is used in J instead of equation (6.36). ρRO and ρMU

are given by the following equations,

ρRO =
Pradα(4α

5 − 12α4 + 20α3 − 20α2 + 9α− 1)

B α2Q

−
√

3P 2
rad(α

3 − α2)2(−4α4 + 8α3 − 12α2 + 8α− 1)

b α2Q
(6.37)

ρMU =

√
3P 2

rad(α
3 − α2)2(−4α4 + 8α3 − 12α2 + 8α− 1)

B (α− 1)2Q

+
Pradα(−4α5 + 12α4 − 20α3 + 20α2 − 9α + 1)

B (α− 1)2Q
, (6.38)
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where

Q = (8α5 − 20α4 + 32α3 − 28α2 + 10α− 1).

The resultant estimation rate bound for the radar System in both sub-channels is

given by

Rest ≤ B log2

[
1 +

σ2
proc

σ2
est

] δ
TB

= B log2
[
1 + σ2

procJ
] δ

TB (6.39)

where σ2
est is the variance of the time-delay estimation given by σ2

est = J−1 and J is

given by Equation (??). The corresponding communications rate bound in the mixed

use channel is

Rcom,MU ≤ Bmix log2

[
1 +

b2 Pcom

σ2
int+n

]

= (1− α)B log2

[
1 +

b2 Pcom

σ2
int+n

]
(6.40)

σ2
int+n = ‖a‖2(1− α)B ρMU γ2 (1− α)2B2σ2

proc

+ (1− α)kB TtempB.

6.5 Examples

In Figures 6.5, we display an example of outer and inner bounds on performance.

The parameters used in the example are displayed in Table 6.1. It is assumed that

the communications system is received through an antenna sidelobe, so that the radar

and communications receive gain are not identical.

In general, the inner bound is produced by the convex hull of all contributing

inner bounds. According to [26, p. 3], the convex hull for a finite set P of n points

can be visualized as follows

Imagine that the points are nails sticking out of the plane, take an

elastic rubber band, hold it around the nails, and let it go. It will snap
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around the nails, minimizing its length. The area enclosed by the rubber

band is the convex hull of P.

For the optimal fisher information bound, while optimizing the distribution of

radar power between the two sub-channels, it was found that the power becomes

complex for α < 0.19 and α > 0.81. In order to get a inner-bound on rate over

all values of α, the power in each sub-channel has been set linearly for α < 0.19

and α > 0.81 such that the total power used by both sub-channels at α value is

always the total radar power, Prad. Using the parameters given in Table 6.1, we get

a power distribtuion as shown in Figure 6.4. We get similar power distributions for

the parameters given in Tables 6.2 and 6.3.

Additional inner bounds constructed using parameters given in Tables 6.2 and 6.3

are shown in Figures 6.6 and 6.7.

In Figures 6.5-6.7, we indicate an outer bound in red. We indicate the convex

hull of all inner bounds in purple. We indicate in green, the bound on successive

interference cancellation (SIC), presented in Equation (6.6). The best case system

performance given SIC is at the vertex (at the intersection of the green and red lines),

which is determined by the joint solution of Equations (6.6) and (5.1). The inner

bound that linearly interpolates between this vertex and the radar-free communica-

tions bound in Equation (6.5) is indicated by the gray dashed line. The water-filling

bound is indicated by the blue line. The water-filling bound is not guaranteed to

be convex. The water-filling bound is not guaranteed to be greater than the linearly

interpolated bound. The isolated sub-band inner bound is indicated by the brown

line and the optimal fisher information bound is indicated by the black line.

In the example, we see that the water-filling bound exceeds the linearly interpo-

lated bound and all other inner bounds, that the optimal fisher information bound

is always lower than the water-filling bound and can either exceed both the isolated
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sub-band bound and the linearly interpolated bounds, exceed the isolated sub-band

bound only or be lower than both the linearly interpolated bound and the isolated

sub-band bound depending on the value of α used. We also very clearly see that the

isolated sub-band inner bound and the water-filling bound deviate after the critical

point is reached.

Table 6.1: Parameters for Example Performance Bound #1

Parameter Value

Bandwidth 5 MHz

Center Frequency 3 GHz

Temperature 1000 K

Communications Range 10 km

Communications Power 300 mW

Communications Antenna Gain 0 dBi

Radar Target Range 200 km

Radar Antenna Gain 30 dBi

Radar Power 100 kW

Target Cross Section 10 m2

Target Process Standard Deviation 50 m

Time-Bandwidth Product 100

Radar duty factor 0.01
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Figure 6.4: Power distribution vs. (α) for Optimal Fisher Information Bound.
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Figure 6.5: Data Rate and Estimation Rate Bounds for Parameters in Table 6.1.
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Table 6.2: Parameters for Example Performance Bound #2

Parameter Value

Bandwidth 10 MHz

Center Frequency 3 GHz

Temperature 1000 K

Communications Range 50 km

Communications Power 1 W

Communications Antenna Gain 0 dBi

Radar Target Range 60 km

Radar Antenna Gain 30 dBi

Radar Power 0.5 kW

Target Cross Section 10 m2

Target Process Standard Deviation 80 m

Time-Bandwidth Product 200

Radar duty factor 0.05
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Figure 6.6: Data Rate and Estimation Rate Bounds for Parameters in Table 6.2.
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Table 6.3: Parameters for Example Performance Bound #3

Parameter Value

Bandwidth 5 MHz

Center Frequency 3 GHz

Temperature 1000 K

Communications Range 10 km

Communications Power 100 mW

Communications Antenna Gain 0 dBi

Radar Target Range 150 km

Radar Antenna Gain 30 dBi

Radar Power 100 kW

Target Cross Section 10 m2

Target Process Standard Deviation 100 m

Time-Bandwidth Product 10

Radar duty factor 0.01
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Figure 6.7: Data Rate and Estimation Rate Bounds for Parameters in Table 6.3.

39



Chapter 7

CONCLUSION

7.1 Summary

In this thesis, we provided a novel approach for producing joint radar-communications

performance bounds. We first developed a unique joint receiver signal model similar

to the communication multiple access channel which enabled us to consider many

novel approaches to designing a joint radar-communications system. In order to ana-

lyze the performance of the joint receiver in terms of information rates, we needed to

derive a metric analogous to the data information rate of a communication system.

This was done in Chapter 4, where we went about developing such a metric, called

the radar estimation information rate, by using the concept of mutual information

between the estimation parameter and the estimation (process) uncertainty of that

parameter. The performance for the various joint systems we considered were then

evaluated in terms of the data rate and the estimation rate.

We derive the SIC inner bound by considering a joint system in which both systems

occupy the same frequency band and we vary both the data rate and the estimation

rate such that at one extreme the estimation rate is almost zero and the data rate is

the capacity of the channel to the other extreme where the data rate is sufficiently

low that the communications signal can be successfully decoded and removed from

the underlying received signal, thereby removing any interference in estimating the

radar parameter. We also derive the isolated sub-band inner bound by considering a

joint system in which the communications system and the radar system both occupy

different sub-channels with different frequencies and then the total power of each
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system is utilized completely in each respective sub-band. This implies that there is

no interference between either systems. Furthermore, we derive the communications

water-filling inner bound by considering a joint system in which the communications

system bandwidth is split across two sub-channels with different frequencies and then

the total communications power is split across the two sub-bands by using the water-

filling algorithm. Finally, we derive the optimal Fisher information inner bound by

considering a joint system in which the radar system bandwidth is split across two

sub-channels with different frequencies and then the total communications power is

split across the two sub-bands in such a way that the fisher information of the time-

delay estimator is maximized (Cramer-Rao lower bound is minimized).

Given a set of parameters and constraints on the radar and communication sys-

tems, we can use the derived inner bounds to design appropriate joint systems. In the

case where we have full control over all parameters for both systems, we can simply

derive all the inner bounds and calculate the convex hull of all inner bounds. This

gives a complete profile of all possible data and estimation rates for the joint system.

Depending on the requirements of the system, we can choose which region to operate

in, thus also choosing the algorithm that will be implemented by the system.

In the case where we have no control over some of a system’s parameters, we can

design a joint system based on just an appropriate subset of the derived inner bounds.

By choosing an appropriate subset of inner bounds and taking the convex hull of the

contributing inner bounds, a unique profile of all possible data and estimation rates

is developed. We can then choose which region to operate in, depending on the re-

quirements of the system, thus also choosing the algorithm that will be implemented

by the system. An example would be that if in a certain channel there is a communi-

cations system (over which we have no control) that occupies the a part or the entire

bandwidth and we need to design a radar system that can coexist with the communi-
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cations system, we could decide that either the SIC algorithm or a set containing the

optimal fisher information algorithm and the isolated sub-band algorithm would be

the most appropriate algorithm to implement (depending on how much bandwidth is

occupied by communications). We then take the convex hull of all contributing inner

bounds (SIC or set of optimal fisher information and isolated sub-band) and develop

a unique profile of all possible data and estimation rates for the given constraints.

7.2 Future Research

We intend on applying the concepts presented in this thesis to a joint radar-

communications system where the radar system being utilized is a continuous wave

(CW) radar and re deriving all the inner bounds on performance. CW radars are

simplistic in design and can be highly accurate. They also can potentially reduce

the required radar bandwidth significantly [28]. CW radars can also through Doppler

processing, increase the detection range with out increasing the radar transmit power.

It is due to all these advantages that we intend on designing a joint system utilizing

a CW radar.

We also intend on designing joint radar-communications systems in which the

radar system estimates the amplitude (Cross Section) of the target along with the

time delay. In this thesis, we have assumed that the target amplitude is known.

Furthermore, we intend on adding a target tracking algorithm to the radar system

(using Kalman filters) instead of assuming that the target range is always known up

to some underlying target range uncertainty.
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APPENDIX A

DERIVATION OF CRAMER-RAO LOWER BOUND FOR TIME-DELAY

ESTIMATION

In this chapter, we will be deriving the Cramer-Rao Lower bound on time-delay
estimation on a SISO (single-input single-ouput) channel with circularly symmetric
Gaussian noise [24]. The Cramer-Rao bound gives the best performance (in terms of
variance of error) of an unbiased estimator.

We assume that the received signal of the time-delay estimator is given by

z(t) = a x(t− τ) + n(t), (A.1)

where x(t) is the transmitted signal whose frequency representation, X(f) has full
bandwidth B, x(t − τ) is the delayed version of the transmitted signal, a is the
combined radar cross-section, antenna and propagation gain and n(t) is circularly
symmetric Gaussian noise with zero mean and variance σ2.

Let θ = τ be the parameter to be estimated. From equation (A.1), we see that
z(t) ∼ CN (x(t− τ), σ2) and has the following probability density function,

p(z(t); θ) =
1

πσ2
e−

‖z(t)−a x(t−τ)‖2
σ2 . (A.2)

The corresponding log-likelihood function is given by

logp(z(t); θ) = −log(πσ2)− ‖z(t)− a x(t− τ)‖2
σ2

(A.3)

and the score function, s(θ; z(t)) is given by

s(θ; z(t)) =
∂

∂θ
{logp(z(t); θ)} =

a n∗(t)x′(t− τ)

σ2
+ c.c. (A.4)

where c.c. stands for complex conjugate term and x′(t − τ) = ∂
∂τ
x(t − τ). Now, the

Fisher information for this estimation problem, J , is given by

J = 〈s(θ; z(t))s∗(θ; z(t))〉
=

〈(
n∗(t)ax′(t− τ)

σ2
+ c.c.

)(
a∗[x′(t− τ)]∗n(t)

σ2
+ c.c.∗

)〉

On simplification, we see that

J = 2

〈‖a‖2 n(t)n∗(t) x′(t− τ) [x′(t− τ)]∗

σ4

〉
(A.5)
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where the cross-terms in the product become 0 due to 〈n(t)〉 = 0 and the independence
of x(t−τ) and n(t). The factor of two comes from the complex conjugate term. Using
the fact that 〈n(t)n∗(t)〉 = σ2 and simplifying, we see that

J =
2‖a‖2 〈x′(t− τ)[x′(t− τ)]∗〉

σ2
(A.6)

By converting to frequency domain and applying Parseval’s Theorem and the time-
shift and differentiation properties of the Fourier Transform, we get

J =
2‖a‖2
σ2

[∫ B
2

−B
2

df(2πf)2〈X(f)X∗(f)〉
]

=
2

σ2

[
4π2‖a‖2TPrad

3
f 3

∣∣∣∣
B
2

−B
2

]
(A.7)

to finally get

J =
8π2‖a‖2TBPradB

2

12kBTtempB

= 2

(
(2π)2‖a‖2TBPradB

2

12kBTtempB

)

= 2

(
(2π)2(B2

rms‖a‖2TBPrad

σ2

)
= 2
(
(2π)2B2

rmsISNR
)
, (A.8)

where ISNR stands for integrated SNR, and γ2 = (2π2)/12 is the scaling constant
for a flat spectral shape and by centering the spectrum at an appropriate point( i.e.
choosing the origin of the spectrum), we get the RMS bandwidth Brms.

Thus, the Cramer-Rao lower bound for time delay estimation, σ2
τ ;est is given by

σ2
τ ;est = J−1 =

(
1

8π2 B2
rms ISNR

)
. (A.9)
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APPENDIX B

DERIVATION OF REDUCED FISHER INFORMATION FOR TIME-DELAY

ESTIMATION FROM FISHER INFORMATION MATRIX FOR JOINT

AMPLITUDE AND TIME-DELAY ESTIMATION

In this chapter, we will first derive the fisher information cross terms for joint am-
plitude and time-delay estimation and find the value of the free parameter BO that
sets these cross-terms to 0. We will then show that by setting the cross-terms to 0,
the reduced fisher information for time-delay estimation is the same as the Fisher
information for time-delay estimation, given by Equation (6.33).

We consider the same scenario as described in Section 6.4.The total bandwidth is
split into two sub-bands and the radar power (or power spectral density) is distributed
between the two sub-bands. The bandwidth will be split between the two sub-bands
according to some α such that,

B = Brad +Bmix (B.1)

Brad = αB

Bmix = (1− α)B,

and the power spectral densities, ρRO and ρMU, utilized by the radar only and mixed
use sub-bands respectively, will be split according to the same α,

Prad = Prad,rad + Prad,mix (B.2)

Prad,rad = Brad ρRO

= αB ρRO (B.3)

Prad,mix = Bmix ρMU

= (1− α)B ρMU. (B.4)

We will have the following constraints on power and energy of the radar system in
the two sub-channels,

Prad = αB ρRO + (1− α)B ρMU (B.5)

Erad = T Prad = αTB ρRO + (1− α)TB ρMU. (B.6)

Now, consider a radar signal x(t) with bandwidth B, whose frequency spectrum
X(f) is centered around BO. We assume that X(f) is spectrally flat. We will
now partition the frequency spectrum into two portions, XRO(f) and XMU(f) with
bandwidths αB and (1− α)B respectively, thereby creating two new signals, xRO(t)
and xMU(t) which will be used in transmissions in the radar only sub-channel and
mixed use sub-channel respectively. Since X(f) is spectrally flat, this implies that
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bothXRO(f) andXMU(f) are spectrally flat as well. This partitioning in the frequency
domain also makes the two signals orthogonal in frequency. Additionally, the two
signals have the following property as well

xRO(t) + xMU(t) = x(t). (B.7)

Thus, after transmission, the radar receiver will observe the following return signal

z(t) = [a xRO(t− τ) + nRO(t)]

+ [a xMU(t− τ) + nMU(t) + b r(t)],

where r(t) is the communications signal that is present in the mixed use chan-
nel, nRO(t) ∼ CN (0, ασ2) is complex AWGN in the radar only sub-channel and
nMU(t) ∼ CN (0, (1 − α)σ2) is complex AWGN in the mixed use sub-channel and
σ2 = kB/, Ttemp B is the variance of additive white gaussian noise in a channel that
was the sum of both sub channels. Using the property of addition of two gaussian
random processes and the property described in equation (B.7), we get

z(t) = a x(t− τ) + b r(t) + n(t). (B.8)

Let θ = [ τa ] be the parameters to be estimated. From equation (B.8), we see that
z(t) ∼ CN (x(t− τ), σ2) and has the following probability density function

p(z(t); θ) =
1

πσ2
e−

‖z(t)−a x(t−τ)‖2
σ2 . (B.9)

The corresponding log-likelihood function is given by

log p(z(t); θ) = −log(πσ2)− ‖z(t)− a x(t− τ)‖2
σ2

(B.10)

and the score function, s(θ; z(t)) is given by

s(θ; z(t)) =
∂

∂θ
{logp(z(t); θ)} =

⎛
⎝an∗(t)x′(t−τ)

σ2 + c.c.

n∗(t)x(t−τ)
σ2 + c.c.

⎞
⎠ (B.11)

where c.c. stands for the complex conjugate term and x′(t − τ) = ∂
∂τ
x(t − τ). Now,

the Fisher Information Matrix for this estimation problem, J, is given by

J = 〈s(θ; z(t))s†(θ; z(t))〉

=

〈⎛⎝an∗(t)x′(t−τ)
σ2 + c.c.

n∗(t)x(t−τ)
σ2 + c.c.

⎞
⎠(a∗ [x(t−τ)]∗ n(t)

σ2 + c.c.∗ x∗(t−τ)n(t)
σ2 + c.c.∗

)〉

=

(
Jτ,τ Jτ,a
Ja,τ Ja,a

)
,
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where

Jτ,τ =

〈(
a n∗(t) x′(t− τ)

σ2
+

a∗ n(t) [x′(t− τ)]∗

σ2

)(
a∗ [x′(t− τ)]∗ n(t)

σ2
+

a n∗(t) x′(t− τ)

σ2

)〉

Jτ,a =

〈(
a n∗(t) x′(t− τ)

σ2
+

a∗ n(t) [x′(t− τ)]∗

σ2

)(
x∗(t− τ)n(t)

σ2
+

n′(t) x(t− τ)

σ2

)〉

Ja,τ =

〈(
n∗(t) x(t− τ)

σ2
+

n(t) x∗(t− τ)

σ2

)(
a∗ [x′(t− τ)]∗ n(t)

σ2
+

a x′(t− τ)n∗(t)
σ2

)〉

Ja,a =

〈(
n∗(t) x(t− τ)

σ2
+

n(t) x∗(t− τ)

σ2

)(
x∗(t− τ)n(t)

σ2
+

x(t− τ)n∗(t)
σ2

)〉
.

We will now simplify the cross terms of the Fisher information matrix. Starting with
Jτ,a, we see that on simplification,

Jτ,a =

〈
a n(t)n∗(t) x′(t− τ) x∗(t− τ)

σ4

〉
+

〈
a∗ n(t)n∗(t) [x′(t− τ)]∗ x(t− τ)

σ4

〉
(B.12)

where the cross-terms in the product become 0 due to 〈n(t)〉 = 0 and the independence
of x(t− τ) and n(t). Using the fact that 〈n(t)n∗(t)〉 = σ2 and simplifying, we see that

Jτ,a =
a 〈x′(t− τ)x∗(t− τ)]〉

σ2
+

a∗ 〈[x′(t− τ)]∗x(t− τ)〉
σ2

By multiplying the terms out, converting to frequency domain and applying Parseval’s
Theorem and the time-shift and differentiation properties of the Fourier Transform,
for spectrally flat X(f) ( or XRO(f) and XMU(f)), we get

Jτ,a =
a

σ2

∫ BO+B
2

BO−B
2

df〈(j2πf)X(f) e−j2πfτ [X(f) e−j2πfτ ]∗〉

+
a∗

σ2

∫ BO+B
2

BO−B
2

df〈[(j2πf)X(f) e−j2πfτ ]∗ X(f) e−j2πfτ 〉

=
j a

σ2

∫ BO+B
2

BO−B
2

df(2πf)〈X(f)X∗(f)〉 − j a∗

σ2

∫ BO+B
2

BO−B
2

df(2πf)〈X∗(f)X(f)〉

=
(j a− j a∗)

σ2

∫ BO+B
2

BO−B
2

df(2πf)〈X(f)X∗(f)〉
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Using the property of x(t) described in Equation (B.7) and simplifying, we get

Jτ,a =
(j a− j a∗)

σ2

[∫ BO−B
2
+αB

BO−B
2

df(2πf)〈XRO(f)X
∗
RO(f)〉

+

∫ BO+B
2

BO−B
2
+αB

df(2πf)〈XMU(f)X
∗
MU(f)〉

]

=
(j a− j a∗)

σ2

[
π αTB ρROf

2
∣∣BO−B

2
+αB

BO−B
2

+ π (1− α)TB ρMUf
2
∣∣BO+B

2

BO−B
2
+αB

]

=
(j a− j a∗) π αTB ρRO

σ2

[(
BO − B

2
+ αB

)2

−
(
BO − B

2

)2
]

+
(j a− j a∗) π (1− α)TB ρMU

σ2

[(
BO +

B

2

)3

−
(
BO − B

2
+ αB

)3
]

(B.13)

Similarly, using the same properties as mentioned above, we can simplify the other
cross term in the Fisher Information Matrix to get

Ja,τ = Jτ,a =
(j a− j a∗) π αTB ρRO

σ2

[(
BO − B

2
+ αB

)2

−
(
BO − B

2

)2
]

+
(j a− j a∗) π (1− α)TB ρMU

σ2

[(
BO +

B

2

)3

−
(
BO − B

2
+ αB

)3
]

In order to find the value of BO that sets the Fisher information matrix cross-
terms Ja,τ and Jτ,a to 0, we set Ja,τ = Jτ,a = 0 and solve for BO. The resultant value
for BO is

BO =
B (α− 1)α(ρ2(α− 1) + ρ1α)

2(ρ2(α− 1)2 + ρ1α2)
. (B.14)

This means that the Fisher information cross terms will be 0 whenever the value of
BO is given by Equation (B.14). In this case, the reduced Fisher Information [23, 27]
for time-delay estimation is

J (R)
τ,τ =

(
Jτ,τ − Jτ,a J

−1
a,a Ja,τ

)
(B.15)

= (Jτ,τ − 0)

= Jτ,τ
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