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ABSTRACT

Multidimensional data have various representations. Thanks to their simplicity in

modeling multidimensional data and the availability of various mathematical tools

(such as tensor decompositions) that support multi-aspect analysis of such data, ten-

sors are increasingly being used in many application domains including scientific data

management, sensor data management, and social network data analysis. Relational

model, on the other hand, enables semantic manipulation of data using relational

operators, such as projection, selection, Cartesian-product, and set operators. For

many multidimensional data applications, tensor operations as well as relational op-

erations need to be supported throughout the data life cycle. In this thesis, we

introduce a tensor-based relational data model (TRM), which enables both tensor-

based data analysis and relational manipulations of multidimensional data, and define

tensor-relational operations on this model. Then we introduce a tensor-relational data

management system, so called, TensorDB. TensorDB is based on TRM, which brings

together relational algebraic operations (for data manipulation and integration) and

tensor algebraic operations (for data analysis). We develop optimization strategies

for tensor-relational operations in both in-memory and in-database TensorDB. The

goal of the TRM and TensorDB is to serve as a single environment that supports the

entire life cycle of data; that is, data can be manipulated, integrated, processed, and

analyzed.
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Chapter 1

INTRODUCTION

1.1 Motivation

From data collection to decision making, the life cycle of data often involves various

steps of operations, integration, manipulation, and analysis. Figure 1.1 depicts a life

cycle of data from the extraction to the data analysis through multiple operations.

Today’s complex data analytic problems involved in scientific, sensor data man-

agement, and social network data analysis require mathematically and algorithmically

sophisticated data processing and analysis more and more. In the data life cycle, data

are often integrated from different sources before it goes through other manipulation

steps and the final step of the data processing step is almost always the data analysis.

To be able to provide end-to-end support for the full data life cycle, today’s data

management and decision making systems increasingly incorporate operations for

data manipulation, integration with data analysis.

Today’s data are unprecedentedly large-scale. Scalability is one of the important

aspects to be satisfied in the data management frameworks. As conventional relational

models support query optimization strategies for the cost reduction in relational query

plans, the new data models require to design new query optimization strategies for the

cost reduction in query plans involving not only data manipulation and integration

operations but also data analysis operations.

Multidimensional data have various representations. Let A1, . . . ,An be a set of

attributes in a relation and D1, . . . ,Dn be the attribute domains. The relational

model [22] represents the data as sets of tuples, where each tuple is an instance in D1×
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Figure 1.1: Sample lifecycle of data; this includes various operations, such as cap-
ture, integration, projection, decomposition, and data analysis

. . .×Dn; the model also encodes the functional dependencies between the attributes.

The vector model [64] maps each attribute to a dimension in an n-dimensional space

and represents each tuple as a point in this space (a natural representation when

attributes are totally ordered). The tensor model, on the other hand, maps each

attribute to a mode in an n-dimensional array where each possible tuple is a cell, the

existence (absence) of a particular tuple in a database instance can be denoted as 1

(0) in the cell; similarly, the model can also represent fuzzy or probabilistic tuples by

filling the cells with values between 0 and 1. The clear notions of neighborhood in

tensor is important in data with ordered attribute domains such as text, image, and

video data and also data analysis operations, such as convolution, data clustering,

and compression, which heavily rely on the neighborhood definition in the data.

A tensor is a higher-order generalization of a matrix. While matrices have only

two dimensions, there are many scenarios that we need more; e.g., data analysis
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on time-evolving social network data (e.g., authors, keywords, timestamps) [70] and

computer vision problems since images are naturally formed by the interaction of

multiple factors that depend on scene geometry, viewpoint, and illumination condi-

tions [76]. Two-way analysis methods may not capture underlying information of the

data and two-way factor models are often not accurate nor unique. For example, for

a unique solution, SVD (Singular Value Decomposition) of a matrix requires addi-

tional constraints such as orthogonality constraints, on the other hand, CP [19, 34]

decomposition is unique with much weaker conditions [46]. Tensor-based data anal-

ysis has advantage over two-way data model in numerous research areas in terms of

uniqueness, robustness to noise, and easy interpretation, etc.

As well as the tensor model provides a natural representation in modeling multidi-

mensional data, the availability of mathematical tools, such as tensor decomposition,

that support multi-aspect analysis of multidimensional data promotes the use of ten-

sors in many application domains including scientific data management, sensor data

management, and social network data analysis. Relational model, on the other hand,

enables semantic manipulation of data using relational operators, such as projec-

tion, selection, Cartesian-product, and set operators such as union and intersection.

Therefore, combining the tensor model and the relational model enables to support

both data management and analysis operations, i.e., the relational algebraic opera-

tions support data manipulation and integration and the tensor algebraic operations

support data analysis.

1.2 Challenges in Tensor-Relational Data Management

Lack of Tensor-Relational based Data Management and High Cost in

Tensor Decomposition. However, there is little prior research done on efficient

implementation of complex and semantically-rich data operations, such as joins, in
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conjunction with tensor analysis operations, such as tensor decompositions. Moreover,

we need to deal with complex data processing plans where multiple relational algebraic

and tensor algebraic operations are composed with each other.

While, in traditional relational algebra, the costliest operation is known to be

the join, in a framework that provides both relational and tensor operations, tensor

decomposition tends to be the computationally costliest operation. In dense tensor

representation, the cost increases exponentially with the number of modes of the

tensor. While decomposition cost increases more slowly (linearly with the number of

nonzero entries in the tensor) for sparse tensors, the operation can often be prohibitive

for today’s large-scale data sets. Therefore, it is most critical to manipulate the data

processing plans in a way that reduces the cost of the tensor decomposition step.

There are several strategies to address this high cost of tensor decompositions for

efficient tensor-based data analysis.

Phan et al. [59] proposed a modified ALS PARAFAC algorithm called grid

PARAFAC for large scale tensor data. The grid PARAFAC divides a large tensor

into sub-tensors that can be factorized using any available PARAFAC algorithm in

a parallel manner and iteratively combines into the final decomposition. The grid

PARAFAC can be converted to grid NTF by enforcing nonnegativity. [78] parallelized

NTF by dividing a given original 3-mode tensor into three semi-non negative matrix

factorization problems. These matrices are distributed to independent processors to

facilitate parallelization. [10] presented an algorithm for NTF that is specialized for

Compute Uniform Device Architecture (CUDA) parallel computing framework.

GigaTensor [39] employed the MapReduce framework to address the intermediate

memory blow-up problem in PARAFAC and run large-scale tensor decomposition.

[58] proposed a highly parallelizable tensor decomposition algorithm, which produces

sparse approximation of tensor decompositions.
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When ALS-based tensor decomposition run in parallel, since one variable can be

optimized given that the other variables are fixed, the communication overhead is

not avoidable. Tucker decomposition [74] is even more challenging for parallelization.

Unlike the CP decomposition where the factors in different modes can only interact

factorwise, the core tensor of Tucker decomposition allows an interaction for a factor

with any factor in the other modes, which makes it hard for Tucker decomposition

to split and solve independently in parallel. Moreover none of these works provide

optimization strategies for tensor decomposition in conjunction with semantically-rich

data operations such as join operations.

In-Memory Limitation of Tensor-based Data Analysis. MATLAB is widely

used as a mathematical software package for manipulating and analyzing multidimen-

sional data which is represented in a multidimensional array. In MATLAB, many

external tools including [12] support a tensor model and tensor algorithms such as

CP [19, 34] and Tucker [74] for data analysis. While MATLAB-based in-memory

linear algebra operations are widely used for implementing tensor decomposition al-

gorithms, these implementations are limited with the amount of memory available

to the MATLAB software. As the today’s data sets get larger, these in-memory

based schemes for tensor decomposition become increasingly ineffective. Moreover

in-memory based tensor decomposition operations often result in dense (and hence

large) intermediary data, even when the input tensor is sparse (and hence small). This

is known as the intermediate memory blow-up problem and renders purely in-memory

implementations of tensor decomposition difficult. In-database tensor decomposition

operation on disk-resident tensor data can be a solution to eliminate the challenge

posed by the memory-limitations.

Challenges in In-Database Models for Tensor Representation. Relational

databases are not suitable for storage and manipulation of large arrays. Arrays are
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ordered and rely on the neighborhood definition which is important in ordered at-

tribute domain (text, image, and video, etc). However relational database is based on

set so the ordering information must be explicitly defined in the schema and stored

in the database [18]. Many data analytic algorithms on array data in aforementioned

domains are iterative tasks such as gradient descent, which is not suitable to be ex-

pressed in SQL due to the lack of convenient syntax for iteration in SQL [35]. Tables

with a primary key in relational database can be viewed as one dimensional array

however arrays can have any number of dimensions. Many relational databases sup-

port a built-in array type and a limited set of basic array operations. For extending

basic array-based operations, they provide user-defined functions (UDF) and aggre-

gates (UDA). However, one critical limitation of UDF/UDA-based approaches is that

the output data should be resided in the available memory [35] and it is not always

the case in tensor manipulation.

The array model [14, 18, 27, 75] is a natural representation to store multidi-

mensional data and facilitate multidimensional data analysis. There are several ap-

proaches to represent array based data. The first approach is to represent the array

in the form of a table: e.g., a 2D array A[row, column] can be represented using a re-

lational schema (row, column, value) [75] or, if the model allows vector data types, as

(row, row vector) [23]. A second approach is to use blob type in a relational database

as a storage layer for array data [14, 27]. Sparse matrices can also be represented

using a graph-based abstraction [51]. For example, in [51], ALS (alternating least

squares) is solved using a graph algorithm that represents a sparse matrix as a bipar-

tite graph. The last approach is to consider a native array model and an array-based

storage scheme, such as a chunk-store, as in [18].

Although array models fit in representation of tensor data, none of these ap-

proaches support tensor decomposition algorithms. Moreover, in-database tensor
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Figure 1.2: TRM and TensorDB support tensor-algebraic operations for data anal-
ysis as well as relational-algebraic operations for data manipulation and integration

decomposition algorithms tend to involve computationally expensive operations and

require significant amounts of data movement, which also results in high I/O load and

many operations involved in tensor decomposition are order sensitive and the way data

is laid on disk may have a big impact on the total cost of tensor decomposition task.

These necessitate optimization strategies for in-database tensor decompositions.

1.3 Contributions

1.3.1 TensorDB and Tensor-Relational Model (TRM)

The main goal of this thesis is to build a tensor-relational data management sys-

tem, so called, TensorDB. TensorDB is based on the tensor-based relational model

(TRM) in which we define tensor-relational operations on data represented as ten-

sor [41]. TRM and TensorDB bring together relational algebraic operations (for data

manipulation and integration) and tensor algebraic operations (for data analysis) to

support the entire life cycle of data (Figure 1.2).

We also consider the in-database implementations of tensor-relational operations

on disk-resident data to address the memory limitations and introduce the in-database

TensorDB on chunk-based array data stores. In-database TensorDB extends an open

source software platform of data management and analytic system for array data,
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SciDB [4]. As an extension of SciDB, TensorDB shares the basic system architecture

and the query languages of SciDB and performs all-in-one from the query interface

and query optimization to the query execution for tensor-relational operations.

1.3.2 Optimization Strategies in In-Memory and In-Database TensorDB

TensorDB deals with complex data processing plans where multiple relational

algebraic and tensor algebraic operations are composed with each other. As an opti-

mization strategy for the tensor-relational query plans, we consider the decomposition

push-down technique to reduce the cost of tensor decomposition (which is the most ex-

pensive operation in the tensor-relational model) when running with data integration

operations such as join and union and we propose join-by-decomposition (JBD)

and union-by-decomposition (UBD).

To address the high-cost of the tensor decomposition by reducing the number of

modes that is the main factor of the cost, we consider vertical partitioning strategy

and propose the decomposition-by-normalization (DBN) scheme that leverages

the vertical partitioning technique.

In these optimized schemes of decomposition push-down and vertical parti-

tioning strategies, i.e, join-by-decomposition, union-by-decomposition, and

decomposition-by-normalization, each individual decomposition of the sub-

tensors can also be obtained in parallel, leading to highly parallelizable execution

plans.

For the in-database TensorDB, to minimize the data movement in operations,

which causes the high I/O, we consider data-ordering optimization and materializa-

tion for the matricization operation in the in-database static tensor decomposition

and to optimize in-database matrix multiplications, the compressed matrix multi-

plication technique [57] is leveraged. We use the compressed matrix multiplication
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technique for the covariance matrix computation in the in-database incremental ten-

sor decomposition.

1.3.3 Join-By-Decomposition (JBD): Optimized Query Plan with Joins and

Decompositions

As we see in Figure 1.1, data are often integrated from different sources before it

goes through other manipulation steps and the final step of the tensor relational query

plan is almost always a tensor decomposition operation for data analysis. This is a

challenging situation since the decomposition operation is preceded by a join operation

increases the number of modes of the tensor to be decomposed and we develop a

decomposition push-down strategy for the query plan of the tensor decomposition

operation when combined with the join operation [41].

• Given a query plan that joins the two relational tensors and then performs

tensor decompositions on the joined tensor, we propose an alternative query

plan, so called join-by-decomposition (JBD), that would involve first de-

composing the input tensors into their spectral components and then combin-

ing these into the decomposition of the joined tensor. Since the join opera-

tion tends to push the cost of tensor decomposition higher, we argue that a

join-by-decomposition (JBD) scheme will be more efficient than the join on

the input tensors first, then the decomposition on the joined tensor, so called,

join-then-decompose (JTD).

• There are many different ways that one can decompose the input tensors and

combine them to obtain the final decomposition. Each different scheme may

have different processing costs and accuracies. We explore various measures to

determine the best approximation with respect to the original joined tensor.
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1.3.4 Union-by-Decomposition (UBD): Pushing-Down Tensor Decomposition

Strategy to Promote Reuse of Materialized Decompositions

As a data integration operation like the join operation, the union operation tends

to increase the size of the input tensor, so does the cost of tensor decomposition

when it is performed with tensor decomposition operation. Thus the pushing-down

tensor decomposition strategy can help optimize data processing workflows that in-

volve data integration from multiple sources through unions and tensor decompo-

sition tasks. Given a query plan that performs first the union operation on the

data and then performs the tensor decomposition on the union of the data, which

we refer to as union-then-decompose (UTD), an alternative query plan with de-

composition push-down first performs the tensor decompositions on each smaller

input data and then combines these decomposed tensors, which is referred to as

union-by-decomposition (UBD) [44]. We argue that a union-by-decomposition

(UBD) plan with decomposition push-down over the union operations reduces the

overall data processing times and promotes reuse of materialized tensor decompo-

sition results. Specifically the union-by-decomposition is advantageous over the

conventional union-then-decompose (UTD) plan as followings:

• Since the union operation can combine relatively small and sparse tensors into

a larger and denser tensor, the decomposition over the union data can be much

more expensive than the decompositions over the input data sources. Moreover

multiple tensor decompositions on input tensors can run in parallel, which will

further reduce the cost.

• A union-by-decomposition (UBD) based plan provides opportunities for ma-

terializing decomposition of data tensors and re-using these materialized de-

compositions in more complex queries requiring integration of data.
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1.3.5 Decomposition-by-Normalization (DBN): Leveraging Approximate

Functional Dependencies for Efficient Tensor Decompositions

To tackle the high computational cost of tensor decomposition process, since the

number of modes of the tensor data is one of the main factors contributing to the cost

of the tensor operations, we focus on how we reduce the number of modes and the

size of the input tensor. We argue that a higher-order tensor can be normalized (i.e.,

vertically partitioned) into multiple lower-order tensors which are decomposed inde-

pendently, then combined into the decomposition of the original data tensor and the

multiple compositions on lower-modal tensors is more efficient than one decompostion

on a higher-modal tensor. We refer to this as the decomposition-by-normalization

(DBN) scheme [42, 43].

• The decomposition-by-normalization scheme first normalizes the given re-

lation into smaller tensors based on the functional dependencies of the relation

and then performs the decomposition on these smaller tensors. The decomposi-

tion and recombination steps of the decomposition-by-normalization scheme

fit naturally in settings with multiple cores.

• For the normalization process, we identify the approximate functional depen-

dencies and partition the data into two partitions in such a way that will lead

to least amount of errors during later stages.

1.3.6 In-Database Implementations of Tensor Decomposition Operations

To address the constraints imposed by the main memory limitations when han-

dling large and high-order tensor data in the TensorDB, we consider in-database

implementations of tensor decomposition operations on disk-resident data sets and

propose in-database static and dynamic tensor decompositions and the optimization

schemes based on chunk-based array data stores.
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• For the static in-database tensor decomposition, we implement in-database al-

ternating least squares operations on a chunk-based data storage system. We

also focus on developing optimization strategies in the chunk-based data storage

system such as optimization of the data ordering in operations and materializa-

tion to save the execution time for expensive operations such as matricization.

• For the incremental in-database tensor decomposition, we develop dynamic ten-

sor analysis, so called DTA [70], which dynamically maintains and revises the

tensor decomposition to avoid the cost of decomposing the data tensor from

scratch with each update. We note that the covariance matrix computation of

the matricized input tensor is the most computationally challenging operation

in the in-database DTA thus we optimize it by leveraging recently introduced

compressed matrix multiplication techniques [57].
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1.3.7 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we review background and related works in the literature.

• In Chapter 3, we first introduce tensor-relational model (TRM) and we define

tensor-relational operations on this model.

• In Chapter 4, we present TensorDB, which is based on TRM. We also focus on

the optimization strategies for tensor-relational operations in both in-memory

and in-database TensorDB.

• In Chapter 5, we present the join-by-decomposition scheme for the query

plan of the tensor decomposition operation when combined with the join oper-

ation.

• In Chapter 6, we present the union-by-decomposition scheme that optimizes

data processing workflows for data integration from multiple sources through

unions and tensor decomposition tasks.

• In Chapter 7, we present the decomposition-by-normalization scheme for

optimization of tensor decomposition operation.

• In Chapter 8, we present in-database static and dynamic tensor decomposition

implementations, and optimization for core operations involved in in-database

tensor decompositions.

In Chapter 9. we conclude the thesis and discuss the future work.
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Chapter 2

BACKGROUND AND RELATED WORKS

We provide the relevant background and discuss the related works of the thesis.

2.1 Tensor Representations

Tensors are generalizations of matrices: while a matrix is essentially a two di-

mensional array, a tensor is an array of arbitrary dimensions. Thus, a vector can be

thought of as a tensor of 1st order and an object-feature matrix is a tensor of 2nd or-

der, while a multi-sensor data stream (i.e., sensors, features of sensed data, and time)

can be represented as a tensor of 3rd order. As in the case of matrices, the dimensions

of the tensor array are referred to as its modes. For example, an M ×N ×K tensor

of 3rd order has three modes: M columns (mode 1), N rows (mode 2), and K tubes

(mode 3). These 1D arrays are collectively referred to as the fibers of the given tensor.

Similarly, the M ×N ×K tensor can also be considered in terms of its M horizontal

slices, N lateral slices, and K frontal slices: each slice is a 2D array (or equivalently

a matrix, or a tensor of 2nd order).

As matrices can be multiplied with other matrices or vectors, tensors can also be

multiplied with other tensors, including matrices and vectors. For example, given an

M ×N ×K tensor, T, and a P ×N matrix, A,

T ′ = T ×2 A,

is an M × P ×K tensor where each lateral slice T[][j][] has been multiplied by AT .

In the above example, the tensor-matrix multiplication symbol “×2” states that the

matrix AT will be multiplied with T over its lateral slices. Multiplication of a tensor
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Figure 2.1: CP and Tucker decompositions

with a vector is defined similarly, but with a different notation: given M dimensional

vector, ~v,

T ′′ = T×̄1~v,

is a N ×K tensor, such that ~v has been multiplied with each column, T[][j][k]. The

symbol “×̄1” states that vector ~v and columns of T will get into dot products.

2.2 Tensor Decomposition

The order of a tensor is the number of modes (or ways). For example, a second-

order tensor is simply a matrix. Matrix data is often analyzed for its latent semantics

and indexed for search using a matrix decomposition operation known as the singular

value decomposition (SVD). This operation identifies a transformation which takes

data, described in terms of an m dimensional vector space, and maps them into

a vector space defined by k ≤ m orthogonal basis vectors (also known as latent

semantics) each with a score denoting its contributions in the given data set. The
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more general analysis operation which applies to tensors with more than two modes

is known as the tensor decomposition.

Tensor decomposition has been used in a large number of domains, including signal

processing, computer vision, and data mining. Tensor-based data representation and

tensor analysis are also increasingly popular in emerging fields, such as social network

analysis [13, 21, 28, 45, 47, 48, 49, 52, 71]. . The two most popular tensor decom-

positions are the CANDECOMP/PARAFAC [19, 34] decompositions (Figure 2.1(a))

and the Tucker [74] (Figure 2.1(b)).

CANDECOMP [19] and PARAFAC [34] decompositions (together known as the

CP decomposition) take a different approach and decompose the input tensor into a

sum of component rank-one tensors. The Tucker decomposition generalizes singular

value matrix decomposition (SVD) to higher-dimensional matrices and decomposes

a given tensor into a core tensor multiplied by a matrix along each mode.

More specifically, the rank-r CP Decomposition, CP (PI1×I2×···×IN ), of the tensor

PI1×I2×···×IN is defined as P(1), . . . ,P(N) such that

PI1×I2×···×IN ≈
r∑

k=1

P
(1)
k ◦ P

(2)
k ◦ · · · ◦ P

(N)
k . (2.1)

We also use the formulation where the column vectors of each factor are normalized

to the unit length with the weights absorbed into a vector λ; i.e., CP (PI1×I2×···×IN ) =

〈λ,P(1), . . . ,P(N)〉, such that

PI1×I2×···×IN ≈
r∑

k=1

λk ◦ P (1)
k ◦ P

(2)
k ◦ · · · ◦ P

(N)
k , (2.2)

where λi is the ith element of vector λ of size r and U
(n)
i is the ith unit-length column

vector of the matrix P(n) of size In × r, for n = 1, · · · , N .

Note that the CP decomposition operation is an approximate operation and P

may not be exactly reconstructed from P̃. In other words, the following weighted
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sum, P̂, of the rank-one tensors may be different from P:

P̂I1×I2×···×IN =
r∑

k=1

λk ◦ U (1)
k ◦ U

(2)
k ◦ · · · ◦ U

(N)
k . (2.3)

Therefore, the norm of P denoted by ‖P‖ may also be different from ‖P̂‖. Note

that ‖P̂‖ can be computed directly from the decomposition P̃ without having to

reconstruct the tensor P̂, since ‖P̂‖ = ‖P̃‖, which is computed in [11] as

‖P̃‖ = λT (U(N)TU(N) ∗ · · · ∗U(1)TU(1))λ. (2.4)

Tucker decomposition [74] generalizes singular value matrix decomposition (SVD)

to higher-dimensional tensors. The rank-(r1, r2, ..., rN) Tucker Decomposition of the

tensor PI1×I2×···×IN can be defined as

Tucker(PI1×I2×···×IN ) = P̃I1×I2×···×IN = 〈G,U(1), . . . ,U(N)〉,

such that

PI1×I2×···×IN ≈ G×1 U(1) ×2 U(2) · · · ×N U(N), (2.5)

where G is a core tensor of size r1× r2× · · · × rN and U(n) is the nth factor matrix of

size In × rn, for n = 1, ..., N . Again, the norm of Tucker decomposition of P, ‖P̂‖ is

computed directly from the decomposition P̃ (see [11] for the computation of ‖P̃‖).

For example, an M ×N ×K tensor, T, is decomposed for rank-(r, s, t) as follows:

TM×N×K ≈ Gr×s×t ×1 UM×r ×2 VN×s ×3 XK×t.

Tucker decomposition fails to guarantee a unique and perfect decomposition of the

input tensor. Instead, most approaches involve searching for orthonormal U, V,

X matrices and a G tensor that collectively minimize the decomposition error. For

example, the High Order SVD approach to Tucker decomposition first identifies the

17



left eigenvectors (with the highest eigenvalues) of the horizontal, lateral, and frontal

slices to construct U, V, and X.

Many of the algorithms for decomposing tensors are based on an iterative process

that approximates the best solution until a convergence condition is reached. The

alternating least squares (ALS) method is relatively old and has been successfully

applied to the problem of tensor decomposition [19, 34]. ALS estimates, at each

iteration, one factor matrix, maintaining other matrices fixed; this process is repeated

for each factor matrix associated to the dimensions of the input tensor. Non-iterative

approaches to tensor decomposition include closed form solutions, such as generalized

rank annihilation method (GRAM) [65] and direct trilinear decomposition (DTLD)

[66], which fit the model by solving a generalized eigenvalue problem.

Dynamic Tensor Analysis (DTA). While the CP/Tucker decompositions are

static tensor decompositions, there are dynamic tensor decompositions, such as Dy-

namic Tensor Analysis (DTA) [70]. When the data tensors are updated frequently,

incremental tensor techniques, which dynamically maintain and revise the tensor de-

composition are commonly used to avoid the cost of decomposing the data tensor

from scratch with each update [70].

Nonnegative Tensor Decomposition (NTF). Tensor decompositions can be in-

terpreted probabilistically, if additional constraints (nonnegativity and summation to

1) are imposed. In the case of the CP decomposition, for example, each nonzero ele-

ment in the core can be thought of as a cluster and the values of entries of the factor

matrices can be interpreted as the conditional probabilities of the entries given clus-

ters. FacetCube [21] is a framework that extends the existing nonnegative tensor fac-

torizations using probabilistic interpretation incorporated by users’ prior knowledge.

In [48], the nonnegative tensor factorization model is used as probability distributions
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to detect community structures in multi-dimensional social network data.

For a software tool to solve NTF, the N-way Toolbox for MATLAB [9] provides

both CP and Tucker decompositions with the nonnegativity constraints.

Scalable Tensor Decomposition. Tensor decomposition is a costly process. In

dense tensor representation, the cost increases exponentially with the number of

modes of the tensor. While decomposition cost increases more slowly (linearly with

the number of nonzero entries in the tensor) for sparse tensors, the operation can still

be very expensive for large data sets.

[73] uses randomized sampling to approximate the tensor decomposition where

the tensor does not fit in the available memory. A modified ALS algorithm proposed

in [59] computes Hadamard products instead of Khatri-Rao products for efficient

PARAFAC for large-scale tensors. [47] developed a greedy PARAFAC algorithm

for large-scale, sparse tensors in MATLAB. [60] proposed a fast approach for CP

that decomposes an unfolded tensor in lower order, instead of directly factorizing the

high order tensor. [45] proposed a memory-efficient Tucker (MET) decomposition to

address the intermediate blowup problem in Tucker decomposition. According to the

ALS method for solving Tucker Decomposition, the bottleneck computation is the

input tensor X of size I1× I2× · · · × IN times factor matrices A(n) of size In× rn for

n = 1, ..., N ,

Y = X×1 A(1) · · · ×(n−1) A(n−1) ×(n+1) A(n+1) · · · ×N A(N).

Since the intermediate result of a sparse tensor multiplied by factor matrices can be

dense, intermediate results may be too big to fit in the available memory, even when

the final result Y, whose size is maxn(In
∏

m6=n rm) may easily fit. MET addresses

this problem by calculating Y in an element-wise manner for reducing the size of

intermediate memory. Instead of updating the whole Y, MET updates a subset of
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the modes (e.g., each slice Y:j2: or fiber y:j2j3) As a result, the size of intermediate

result of MET is
∏

m/∈ε Im, where ε is a subset of modes computed element-wise.

Parallel Tensor Decomposition. [73] proposed a randomized Tucker decomposi-

tion algorithm, MACH, which is parallelizable. Phan et al. [59] proposed a modified

ALS PARAFAC algorithm called grid PARAFAC for large scale tensor data. The grid

PARAFAC divides a large tensor into sub-tensors that can be factorized using any

available PARAFAC algorithm in a parallel manner and iteratively combines into the

final decomposition. The grid PARAFAC can be converted to grid NTF by enforcing

nonnegativity.

[78] parallelized NTF by dividing a given original 3-mode tensor into three semi-

non negative matrix factorization problems. These matrices are distributed to in-

dependent processors to facilitate parallelization. [10] presented an algorithm for

NTF that is specialized for Compute Uniform Device Architecture (CUDA) parallel

computing framework.

Note that since these block-based parallel algorithms are based on ALS where one

variable can be optimized given that the other variables are fixed, the communication

cost among the blocks is not avoidable. In the proposed parallelized optimization

strategies in this thesis, on the other hand, each block is completely separable and

run independently.

GigaTensor [39] employed the MapReduce framework to address the intermediate

memory blow-up problem in PARAFAC and run large-scale tensor decomposition.

[58] proposed a highly parallelizable tensor decomposition algorithm, which produces

sparse approximation of tensor decompositions.
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2.3 Challenges in Tensor-based Data Representation and Analysis

Thanks to their simplicity in modeling high-dimensional data and the availability

of various mathematical tools (such as tensor decompositions) that support multi-

aspect analysis of such data, tensors are increasingly being used in many application

domains including scientific data management [6, 9, 17, 19, 34, 59, 74, 78], sensor

data management [70, 73], and social network data analysis [13, 21, 28, 45, 47, 48,

49, 52, 71]. In data (such as text, image, and video) with ordered attribute domains,

tensors are natural since the definition of a cell neighbor is clear. This becomes

important for data analysis operations, such as convolution to support data filtering

and summarization. Similarly, data clustering and compression which rely on the

neighborhood definition are easier to express over tensors. Because of these properties,

tensors have emerged as useful representations for analysis of multi-dimensional data.

Especially for social network data analysis, tensor-based representations have proven

to be useful for modeling the multiple aspects of the data to capture high-order

structures for recommendation systems [52, 71], community discovery [13, 21, 45, 48,

49], and web link analysis [28, 47] in a tensor-based framework. For example, social

network data consists of multiple types of objects (e.g., users, documents, tags) and

their relationships (e.g., friend, follow, post) and tensors can be used to conveniently

represent the relationships between different types of entities.

Spectral domain data analysis and data processing (such as spectral domain ma-

nipulation, analysis, and indexing [25, 38]) are commonly used techniques in domains,

such as text, image, and video processing, where the data matrix shows significant

degrees of redundancy. Spectral analysis of tensor data is often preceded by a tensor

decomposition operation, which involves partitioning a large tensor into a smaller core

tensor (i.e., spectral coefficients) and factor matrices (i.e., basis matrices) that repre-
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sent different facets of the data for multi-aspect analysis: each factor matrix describes

one specific aspect of the data, whereas the core tensor describes the strength (e.g.,

amount of correlation) of the relationships between these distinct data dimensions.

For example, nonnegative CANDECOMP/PARAFAC (CP) tensor decomposition is

often used for cluster analysis: the core tensor represents the weights (or the relative

strengths) of the clusters and each entry, Uij (normalized to between 0 and 1), of the

factor matrix, U, can be seen as the conditional probability of the given attribute

value to belong to the corresponding cluster; i.e., P (Ui|Cj) which is the conditional

probability of the ith element of mode U given the jth cluster, Cj.

Many data-intensive applications, such as social network systems, where these

tensor operations are used for the data analysis, handle large amounts of data. In

addition to being large-scale, another characteristic of such data is multi-dimensional.

Multi-aspect analysis for such data using tensor operations, such as tensor decompo-

sition, has high computing costs.

Therefore, tensor decomposition operation is often prohibitive when the tensor

data have a large number of modes:

• One obvious problem is the space needed to hold the input tensors. When the

tensor is dense (i.e., has a large number of nonzero entries) or when a dense

tensor representation is used for algorithmic reasons, the space required to hold

the data increases exponentially with the number of modes. This renders the

decomposition process expensive as all the data needed to perform the operation

often do not fit in the main memory.

• The Tucker decomposition may in fact be infeasible for large data sets (even if

the original tensor is sparse), since the tensors needed to represent intermediate

results are often dense. As a result, the memory can overflow even when the
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memory is sufficient to store the input and the output tensors [45].

While tensor decomposition is relatively cheaper when the tensor is sparse (linear

with the number of nonzero entries for CP decomposition [47]), the operation can

still be prohibitively expensive when the data sets are large data. Unfortunately,

recent attempts to parellelize tensor decomposition [10, 59, 78] also face difficulties,

including large synchronization and data exchange overheads and (while there are

some initial solutions for the CP decomposition) parallelizing Tucker decomposition

is still a challenging task.

2.4 Functional Dependencies

A functional dependency (FD) is a constraint between two sets of attributes X

and Y in a relation denoted by X → Y , which specifies that the values of the X

component of a tuple uniquely determine the values of the Y component.

The discovery of FDs in a data set is a challenging problem since the complexity

increases exponentially in the number of attributes [54]. Many algorithms for FD

and approximate FD discovery exist [36, 50, 54, 77]. TANE proposed in [36] used the

definition of approximate FDs based on the minimum fraction of tuples that should

be removed from the relation to hold the exact FDs.

The computation of FDs in TANE [36] and [50] is based on levelwise search [55].

Dep-Miner [50] finds the minimal FD cover of a hypergraph using a levelwise search.

Similarly to Dep-Miner, FastFD [77] finds the minimal cover, however, differently

from Dep-Miner, it uses a depth-first search that addresses the problem in a levelwise

approach which increases the cost exponentially in the number of attributes. The

main factor in the cost of FastFD is the input size. FastFD works well when the

number of attributes is large. TANE takes linear time with respect to the size of the

input whereas FastFD takes more than linear time of the input size.
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CORDS [37] generalized FDs to determine statistical dependencies, which is re-

ferred to as soft FD. In a soft FD, a value of an attribute determines a value of

another attribute with high probability. CORDS only discovers pairwise correla-

tions reducing a great amount of complexity that nevertheless can remove most of

correlation-induced selectivity error. In this thesis, we also leverage pairwise FDs to

measure dependency between partitions (interFD) and within a partition (intraFD).

2.5 Array Databases

There are several in-database data models for modeling tensor data. Column-

oriented organizations [69] are efficient when many or all rows are accessed, such as

during an aggregate computation. Row-oriented organizations, on the other hand,

are efficient when many or all of the columns on a single row are accessed or written

on a single disk seek. Key-value organizations [3] are useful when working with less

structured data, such as documents, which tend not to be relational. The array

model [14, 18, 27, 75] is a natural representation to store multidimensional data

and facilitate multidimensional data analysis. How arrays are organized and stored

depends largely on whether they are dense or sparse. Approaches to represent array

based data can be broadly categorized into four types. (a) The first approach is to

represent the array in the form of a table: e.g., a 2D array A[row, column] can be

represented using a relational schema (row, column, value) [75] or, if the model allows

vector data types, as (row, row vector) [23]. (b) A second approach is to use blob type

in a relational database as a storage layer for array data [14, 27]. (c) Sparse matrices

can also be represented using a graph-based abstraction [51]. For example, in [51],

ALS (alternating least squares) is solved using a graph algorithm that represents a

sparse matrix as a bipartite graph. (d) The last approach is to consider a native array

model and an array-based storage scheme, such as a chunk-store, as in [18].
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Chapter 3

TENSOR-RELATIONAL MODEL (TRM)

3.1 Introduction

Multi-dimensional data have various representations. Let A1, . . . ,An be a set

of attributes in a relation and D1, . . . ,Dn be the attribute domains. The relational

model [22] represents the data as sets of tuples, where each tuple is an instance in D1×

. . .×Dn; the model also encodes the functional dependencies between the attributes.

The vector model [64] maps each attribute to a dimension in an n-dimensional space

and represents each tuple as a point in this space (a natural representation when

attributes are totally ordered). The tensor model, on the other hand, maps each

attribute to a mode in an n-dimensional array where each possible tuple is a cell, the

existence (absence) of a particular tuple in a database instance can be denoted as 1

(0) in the cell; similarly, the model can also represent fuzzy or probabilistic tuples by

filling the cells with values between 0 and 1.

3.2 Tensor-based vs. Relational Data Manipulation

We can manipulate multidimensional data in several ways, including tensor al-

gebra [46] and relational algebra [22]. Tensor algebra includes operators, such as

addition, multiplication of a mode with a vector, multiplication of a mode with a

matrix, inner product of tensors, and the norm of a tensor. Relational algebra, on

the other hand, manipulates relational data using operators such as projection, se-

lection, Cartesian-product, and set operators such as union and intersection. The

difference between the two algebras is that tensor algebra focuses on manipulation
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Relational operation Tensor manipulation

Select Slicing of a tensor (or taking a single or subset of elements across a

given mode)

Project Creating a sub-cube with a smaller set of modes

Cartesian-Product and Equi-Join Composition of multiple tensors through outer-product

Union Cell-wise OR (and row/slice insertion)

Intersection Cell-wise AND (and row/slice elimination)

Table 3.1: Implementation of relational operations through tensor manipulation

of tensors, such as norms and inner products, whereas relational algebra focuses on

set operations, such as union and intersection or operations on the attributes such

as projection and joins. Therefore, data management systems increasingly need to

support both tensor-algebraic operations (for analysis) as well as relational-algebraic

operations (for data manipulation and integration – Figure 1.1).

3.3 Tensor-based Relational Data Model (TRM)

Common tensor operations (such as scalar addition/multiplication and tensor ad-

dition/multiplication) are well understood. While, logically, many relational alge-

braic operators can be implemented by manipulating tensors (Table 3.1), there is lit-

tle prior research on efficient implementation of complex and semantically-rich data

operations, such as joins, in conjunction with tensor analysis operations, such as de-

compositions. Therefore, in this thesis, we first introduce a tensor-based relational

data model (TRM) and define tensor-relational algebraic operations on this model.

As we mentioned earlier, tensors have been used for representing and manipulating

relational data. For example, [13] presented a multi-way clustering framework which

operates on relational data represented in the form of multi-mode tensor. Most exist-

ing works assume that the available data has been pre-integrated into a single multi-

mode tensor, which can then be manipulated using tensor operations. In practice,

however, data rarely exists in a pre-integrated form and its lifecycle (from collection
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Figure 3.1: (a) A sample relation, (b) the occurrence tensor, and (c) the value tensor
(assuming that the attribute set {A,B} is a candidate key for the relation)

to analysis) involves various integration and other manipulation steps (Figure 1.1).

In this section, we present a tensor-relational model (TRM) for data represented as

tensors.

3.3.1 Types of Tensors Representing Relations

Let A1, . . . ,An be a set of attributes in the schema of a relation, R, and D1, . . . ,Dn

be the attribute domains. Let the relation instance R be a finite multi-set of tuples,

where each tuple t ∈ D1 × . . .×Dn.

Occurrence Tensor. We define an occurrence tensor Ro corresponding to the rela-

tion instance R as an n-mode tensor, where each attribute A1, . . . ,An is represented

by a mode. For the ith mode, which corresponds to Ai, let D′i ⊆ Di be the (finite)

subset of the elements such that

∀v ∈ D′i ∃t ∈ R s.t. t.Ai = v

and let idx(v) denote the rank of v among the values in D′i relative to an (arbi-

trary) total order, <i, defined over the elements of the domain, Di. The cells of the

occurrence tensor Ro are such that

Ro[u1, . . . , un] = 1↔ ∃t ∈ R s.t. ∀1≤j≤n idx(t.Aj) = uj
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and 0 otherwise. Intuitively, each cell indicates whether the corresponding tuple exists

in the multi-set corresponding to the relation or not (Figures 3.1(a) and (b)).

Counting Tensor. Note that the relation instance R is a finite multi-set of tuples;

i.e., there can be two tuples, ta and tb, in R such that ∀1≤j≤n ta.Aj = tb.Aj. We define

the corresponding n-mode counting tensor, Rc, such that

Rc[u1, . . . , un] = |{t ∈ R | ∀1≤j≤n idx(t.Aj) = uj}|

Intuitively, each cell counts the number of corresponding tuples in the multi-set cor-

responding to the relation.

Value Tensor. Let again A = {A1, . . . ,An} be the set of attributes in the schema of

the relation, R. In the relational model, a candidate key of the relation R is defined

as a subset, K, of the attributes that uniquely determines the tuple. More formally,

∀ta, tb ∈ R (∀Ai∈Kta.Ai = tb.Ai) → (∀Ai∈Ata.Ai = tb.Ai) .

Given a relation R with an attribute set A = {A1, . . . ,An} and a candidate key K =

{AK(1), . . . ,AK(m)} ⊂ A, let X = {AX(1), . . . ,AX(n−m)} denote the set of remaining

attributes; i.e., (X ∪ K = A) ∧ (X ∩ K = ∅). Then, for this relation, we define the

corresponding value tensor as an m-mode tensor, Rv, such that

Rv[u1, . . . , um] = 〈v1, . . . , vn−m〉 s.t.

∃t ∈ R (∀AK(i)∈K idx(t.AK(i)) = ui ∧ ∀AX(j)∈X t.AX(j) = vj).

If K = A, then the value tensor is not defined. Intuitively, in this case, each mode

corresponds to an attribute in the candidate key of the relation and each cell represents

the values of the attributes determined by the corresponding instance of the candidate

key. Figure 3.1(c) presents an example.
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Tensor Conversion. A counting or value tensor can be converted into an occurrence

tensor by adding an additional mode, which represents the count in the counting

tensor or the value in the value tensor, respectively. Let P be a counting or value

tensor; the mapping occ(P) gives the corresponding occurrence tensor. Similarly,

given a candidate key K, an occurrence tensor, P, can be converted into a value

tensor, val(P,K).

3.3.2 Tensor Relational Algebra

Next, we introduce tensor relational algebra operations to manipulate relations

represented as tensors. Let P and Q be two tensors, representing relation instances

P and Q, with attribute sets, AP = {AP
1 , . . . ,A

P
n } and AQ = {AQ

1 , . . . ,A
Q
m}, respec-

tively. In the rest of this section, we denote the index of each cell of P as (i1, i2, ..., in);

similarly, the index of each cell of Q is denoted as (j1, j2, ..., jm). The cell indexed as

(i1, . . . , in) of P is denoted by P[i1, . . . , in] and the cell indexed as (j1, . . . , jm) of Q

is denoted by Q[j1, . . . , jm].

Selection (σ). In relational algebra, the selection operation is an operation which

takes as input a single relation and a condition, ϕ, and returns all the tuples in the

relation satisfying the given condition:

(t ∈ σϕ(P)) ↔ (t ∈ P) ∧ ϕ(t).

Given an occurrence or counting tensor P and a selection condition, ϕ, we define the

condition tensor, Cϕ, as a tensor of the same dimensions as P, such that for i1, i2, ..., in,

if ϕ(i1, i2, ..., in), then Cϕ[i1, i2, ..., in] = 1 and Cϕ[i1, i2, ..., in] = 0, otherwise. Given

the condition tensor, Cϕ, the tensor selection operation for the given occurrence or

counting tensor P is defined as

σϕ(P)
def
= comp(P ∗ Cϕ),
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where ∗ is the cell-wise product of P and Cϕ and comp() is the compaction operator

which eliminates all-0 slices from the resulting tensor to ensure that the elements along

all modes correspond to attribute values that occur in at least one tuple satisfying

the selection condition.

If P is a value tensor with a candidate key K, on the other hand, the selection

operation is defined as

σϕ(P)
def
= val(comp(occ(P) ∗ Cϕ),K).

Projection (π). In relational algebra, the projection operation takes as input a

single relation R with an attribute set, AP = {AP
1 , . . . ,A

P
n }, and an attribute set

A = {Aa1 , . . . ,Aak} ⊆ AP and maps the relation into a new relation πA(R) with the

attribute set A such that

∀t ∈ R ∃t′ ∈ πA(R) s.t. ∀Aah
∈A t′.Aah = t.Aah .

The corresponding tensor projection operator eliminates all the modes that do not

belong to the target attribute set A; i.e., given P with an attribute set, AP , and the

projection attribute set A ⊆ AP , the result is a new tensor πA(P) with the attribute

set A. More specifically, if P is an occurrence tensor, then

πA(P)[ia1 , ..., iak ] = 1 ↔ ∃P[. . . , ia1 , . . . , iak , . . .] = 1.

On the other hand, if P is a counting tensor, then

πA(P)[ia1 , ..., iak ] =
∑

(...,ia1 ,...,iak ,...)

P[. . . , ia1 , . . . , iak , . . .].

As before, if P is a value tensor, we can define the projection by first converting it

into an occurrence tensor:

πA(P) = val(πA(occ(P)),K).
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Cartesian product (×). Given two relations P and Q, with attribute sets, AP =

{AP
1 , . . . ,A

P
n } and AQ = {AQ

1 , . . . ,A
Q
m}, the cartesian product operator returns a new

relation, P ×Q, with an attribute set {AP
1 , . . . ,A

P
n ,A

Q
1 , . . . ,A

Q
m}:

t ∈ P ×Q ↔ ∃t1∈P∃t2∈Q t = concatenate(t1, t2).

If we consider two occurrence or counting tensors, P and Q, as inputs, we can define

the tensor relational algebraic cartesian product simply in terms of the outer product

(⊗) of the two input tensors:

P×Q
def
= P⊗Q.

As before, for value tensors, we can define the cartesian product by first converting

the tensors into occurrence tensors:

P×Q = val((occ(P)× occ(Q)), KP ∪KQ).

Join (on). In relational algebra, given two relations P and Q, and a condition ϕ, the

join operation is defined as a cartesian product of the input relations followed by the

selection operation. Therefore, given two relational tensors P and Q, and a condition

ϕ, we can define their join as

P onϕ Q
def
= σϕ(P×Q). (3.1)

Given two relations P and Q, with attribute sets, AP = {AP
1 , . . . ,A

P
n } and AQ =

{AQ
1 , . . . ,A

Q
m}, and a set of attributes A ⊆ AP and A ⊆ AQ, the equi-join operation,

on=,A, is defined as the join operation, with the condition that matching attributes

in the two relations will have the same values, followed by a projection operation

that eliminates one instance of A from the resulting relation. While this equi-join

operation can be implemented using the outer product based definition in Equation

(3.1), the cost of the outer product operation for high-order tensors can be prohibitive.
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Therefore we also consider a more efficient version of the equi-join operator using inner

products: Let P of size I1×I2×· · ·×J×· · ·×INp and Q of size I ′1×I ′2×· · ·×J×· · ·×I ′Nq

be two occurrence tensors we want to equi-join on the join mode J whose size is J .

Let us consider an augmented tensor P′ of size I1× I2× · · · × J × J × · · · × INp from

P by replicating the mode J:

∀k=1...J∀k′=k P′[. . . , k, k′, . . .] = P[. . . , k, . . .].

This duplicated mode becomes the mode J of the joined tensor after the mode J of

each tensor is removed by an inner product of the two tensors in the mode J. Given

this, the equi-join operation can be defined as

∀k′=1...J P on=,J Q[. . . , k′, . . .] =
J∑
k=1

P′[. . . , k, k′, . . .]Q[. . . , k, . . .],

which can be implemented as an inner product operation for sparse tensors involving

the cost of sorting all the nonzero entries of P and Q thus O((|P|+ |Q|) log(|P|+ |Q|))

where |P| and |Q| are the number of nonzero entries of P and Q respectively [11] 1 .

Union (∪).

P ∪Q = {t|t ∈ P or t ∈ Q}.

Intersection (∩).

P ∩Q = {t|t ∈ P and t ∈ Q}.

Set difference (−).

P−Q = {t|t ∈ P and t /∈ Q}.
1In the implementation, we use the sparse tensor inner product operator available in the MATLAB

Tensor Toolbox [12]. Although details are not presented in this thesis, this provides a performance
similar to the equi-join operations implemented using the MySQL DBMS.
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CP Decomposition. The rank-r CP Decomposition of the tensor PI1×I2×···×IN can

be defined as

CP (PI1×I2×···×IN ) = P̃I1×I2×···×IN = 〈λ,U(1), . . . ,U(N)〉,

such that

PI1×I2×···×IN ≈
r∑

k=1

λk ◦ U (1)
k ◦ U

(2)
k ◦ · · · ◦ U

(N)
k , (3.2)

where λi is the ith element of vector λ of size r and U
(n)
i is the ith column vector of

the matrix U(n) of size In × r, for n = 1, · · · , N .

Note that the CP decomposition operation is an approximate operation and P

may not be exactly reconstructed from P̃. In other words, the following weighted

sum, P̂, of the rank-one tensors may be different from P:

P̂I1×I2×···×IN =
r∑

k=1

λk ◦ U (1)
k ◦ U

(2)
k ◦ · · · ◦ U

(N)
k . (3.3)

Therefore, the norm of P denoted by ‖P‖ may also be different from ‖P̂‖. Note

that ‖P̂‖ can be computed directly from the decomposition P̃ without having to

reconstruct the tensor P̂:

‖P̂‖2 = ‖P̃‖2 = λT (U(N)TU(N) ∗ · · · ∗U(1)TU(1))λ. (3.4)
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Chapter 4

TENSORDB: TENSOR-RELATIONAL DATA MANAGEMENT SYSTEM

4.1 Introduction

Today’s data management systems increasingly need to support both tensor-

algebraic operations (for analysis) as well as relational-algebraic operations (for data

manipulation and integration – Figure 1.1). Based on tensor-relational data model

that we defined in the previous chapter, we build such a data management system that

supports tensor-relational operations, so called, TensorDB. We propose two types of

TensorDB, in-memory and in-database based TensorDB.

TensorDB supports tensor-relational query plans and query optimization strate-

gies for tensor-relational operations. Since the costliest operation in TRM is tensor

decomposition among both relational and tensor operations, we focus on develop-

ing optimization strategies for the tensor decomposition operations in the in-memory

TensorDB.

In-database TensorDB is to address the in-memory limitation of MATLAB-based

implementation of tensor-relational operations in the in-memory TensorDB. We focus

on building the in-database implementation of these tensor-relational operations in

an array database, SciDB [4], which is an open source software platform of data man-

agement and analytic system for array data. We also consider optimization strategies

for efficient in-database tensor decomposition operations on disk-resident tensor data.
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Figure 4.1: In-Memory TensorDB

4.2 In-Memory TensorDB

While, in traditional relational algebra, the costliest operation is known to be

the join, in the TensorDB that provides both relational and tensor operations, ten-

sor decomposition tends to be the computationally costliest operation. TensorDB

involves complex query plans of both tensor-algebraic and relational-algebraic oper-

ations and when we run such a query plan where tensor decomposition operations

are performed with data integration operations such as join and union, the data to

be decomposed gets larger and the cost of tensor decomposition gets more expensive

on this larger data. Therefore, the main optimization strategies we consider are to

optimize query plans involving the tensor decompositions, especially, with the data

integration operations.
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Figure 4.2: Query optimization in relational algebra: (a) A logical query plan involv-
ing selection, projection, and join operations: (b) an equivalent physical plan where
the selection and projection operations are pushed-down to minimize the amount of
data fed into the join operator

In this section, we discuss these optimization strategies in the in-memory Ten-

sorDB. Figure 4.1 shows the in-memory optimization techniques and optimized query

plans in the in-memory TensorDB.

4.2.1 Decomposition Push-Down Strategy for Optimizing TRM Workflows

In relational algebra, the costliest operation is the join operation. Consequently,

given a complex query plan, the relational optimizers push-down data reduction oper-

ations, such as selections (which reduce the number of tuples) and projections (which

reduce the number of data attributes) over join-operations to reduce the amount of

data fed into the join operators (Figure 4.2). In TensorDB, however, tensor decompo-

sition operation tends to be the computationally costliest operation: for dense tensors,

the cost is exponential in the number of modes of the data. While the operation is

relatively cheaper for sparse tensors, the cost and memory requirement still outweigh

other more traditional relational operators. The cost of tensor decomposition relies

on the number of non-zero entries and number of modes. Therefore, a key criterion for
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Figure 4.3: (a) A query plan with a join operation of two tensors, P and Q, preceding
a tensor decomposition operation and (b) an alternative query plan with two tensor
decomposition operations followed by a join operation

optimizing query workplans in TensorDB is to reduce the number of data modes and

non-zero data entries in the tensors that need to be decomposed. In TensorDB, we

consider optimization strategies for complex queries involving tensor decomposition

with tensor manipulation operations, particularly, join and union operations that in-

tegrate data from multiple sources since the data integration operations increase the

cost of tensor decomposition.

Firstly, we consider query plans that involve join operations and tensor decompo-

sitions (Figures 4.3(a)) and propose a decomposition push-down strategy that reduces

the number of modes of the data tensors being decomposed, which is referred to as

join-by-decomposition (JBD). This join-by-decomposition (JBD) strategy pushes-down

the tensor-decomposition operation so that the input tensors (which have smaller

number of modes than the join tensor) are decomposed into their spectral compo-

nents and then these decompositions are combined to obtain the final decomposition

as shown in Figure 4.3(b).

Secondly, we focus on query plans that involve tensor decomposition and union

operations (as in Figure 4.4(a)) and propose the second decomposition push-down

strategy, so called, union-by-decomposition (UBD) strategy (as in Figure 4.4(b)) that

help reduce the overall cost of the query plan. The query plan with decomposition
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Figure 4.4: (a) A query plan with an union of two tensors, P and Q preceding
tensor decomposition and (b) an alternative query plan where the decomposition is
pushed-down over union

push-down, which first performs the tensor decompositions on each input data source

and then combines these decomposed tensors as the union-by-decomposition (UBD)

plan.

4.2.2 Vertical Partitioning Strategy for Optimizing Tensor Decomposition Process

An optimization strategy to tackle the high computational cost of the tensor de-

composition process is vertical partitioning. Since the number of modes of the tensor

data is one of the main factors contributing to the cost of the tensor operations,

we argue that if a tensor with large number of modes can be vertically partitioned

into tensors with smaller number of modes and each sub-tensor is decomposed in-

dependently, then the resulting partial decompositions can be efficiently combined

to obtain the decomposition of the original tensor. We propose decomposition-by-

normalization (DBN) scheme as the vertical partitioning optimization strategy for

the tensor decomposition operations.

4.3 In-Database TensorDB

We introduce the in-database TensorDB for efficient implementations of in-

database tensor decompositions on chunk-based array data stores. In-database Ten-

sorDB extends an open source software platform of data management and analytic
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Figure 4.5: In-Database TensorDB

system for array data, SciDB. As an extension of SciDB, TensorDB shares the basic

system architecture and the query languages of SciDB and performs all-in-one from

the query interface and query optimization to the query execution for tensor-relational

operations.

Leveraging the SciDB engine and SciDB languages, we develop tensor operations

such as tensor decomposition and TensorDB supports tensor-relational query plans

of tensor decomposition operations, along with relational operations such as selection

and join operations.

While the in-database TensorDB can address the memory-limitations in in-

memory TensorDB, in-database implementation for tensor operations on disk-resident

data can bring in other challenges. We will discuss several optimization strategies in

developing in-database tensor decomposition operations later in this section.

Figure 4.5 illustrates the query processing workflow of in-database TensorDB for

tensor-relational query plans using tensor-algebraic and relational-algebraic opera-
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tions and optimization strategies in in-database tensor decomposition operations.

Before we introduce in-database TensorDB operations and optimization strategies,

we first review the SciDB architecture and operations and how we leverage these to

build the in-database TensorDB.

4.3.1 SciDB Preliminary

SciDB [4] is an open-source array-based DBMS. SciDB uses multidimensional

arrays as its basic storage and processing unit. Arrays are partitioned into chunks

and each chunk is processed in a parallel manner, whenever possible. Figure 4.6

illustrates the pipelined chunk-based query processing. Especially for data types, such

as images, where nearby cells are correlated, SciDB stores/loads arrays in run-length

encoding/decoding to leverage correlations in consecutive data elements. SciDB also

provides various chunk-based array manipulation operations, including linear algebra

operators.

These operations are provided by SciDB’s two query language interfaces. The first

one is AQL, the Array Query Language and the second is AFL, the Array Functional

Language. SciDB’s Array Query Language (AQL) is a high-level declarative language

as the SQL for relational databases, providing operations such as data loading, data

selection and projection, aggregation, and joins. SciDB’s Array Functional Language

(AFL) is a functional language for working with SciDB arrays. In order to issue
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commands of the AQL and AFL commands, SciDB provides a command-line query

interface, iquery to run these operations. Below, we briefly review the relevant SciDB

operators that we leverage to build the tensor-relational operations.

A new tensor is created using CREATE ARRAY command. When factor matrices,

which are results of the tensor decomposition are initialized randomly, the build

command is used.

• CREATE ARRAY name <attributes> [dimensions]; This operator creates the

template for an array with the specified name and schema (attributes and

dimensions). For instance, CREATE ARRAY A <val:double> [i=1:100,10,0,

j=1:100,10,0] creates an array template A that has one attribute named val of

type double and two dimensions of length 100, chunk size 10, and chunk overlap 1 0.

• build(template array|schema def.,expression); This operator produces an

array with the shape of the given template, with values equal to the given

expression. For example, build(<val:double>[i=1:100,10,0,j=1:100,10,0],

random()) produces an array that has one attribute named val of type double and

two dimensions of length 100, chunk size 10, and chunk overlap 0, populated with

random values. While CREATE ARRAY creates a template of an array, build populates

the array with values defined the given expression.

To store the result from a build operator, we use store command.

• store(operator(args),array); This operator updates array with the result of

the operation specified in operator(args). The store operator creates a new version

of the destination array (with all previous versions also maintained). The store

operator utilizes run-length encoding to compress the array data.

SciDB’s AQL Data Manipulation Language (DML) provides queries to access and

operate on array data such as the AQL SELECT for selecting data from a SciDB

1Chunk overlap specifies the number of overlapping dimension-index values for adjacent chunks.
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array.

• SELECT expression [INTO target array] FROM array expression |

src array [WHERE expression];

• SELECT expression FROM src array1, src array2; The inner join of src array1

and src array2.

There are operations reducing an array by taking some subsets of the data or

concatenating arrays into an array.

• slice(src array,dimension1,values1[dimension2,value2,...]); Return a

subset of the source array on the value(s) of the given dimension(s).

• subarray(array,low coord1[,low coord2,...], high coord1[,high coord2,...]);

Return a result array by selecting a contiguous area of cells of each dimension.

• concat(left array,right array); Concatenate two arrays.

Now, we review matrix operations.

• multiply(left array,right array); 2 This operator performs matrix multipli-

cation of two input arrays, left array and right array, and returns a result array.

• transpose(array); This operator transposes the given array.

• reshape(src array,template array|schema def.); This operator reshapes

src array with template array or schema definition. The template array or

schema definition has the same number of cells as the source array, but a dif-

ferent shape. For example, this can be used to transform a 3x4 array into a 6x2

array.

• redimension(src array,template array|schema def.); This operator is used

to re-arrange dimensions of src array with template array or schema definition.

Unlike reshape, it does not alter the dimension sizes, but it switches the dimension

order.

2we use the multiply operator supported in SciDB 12.12.
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4.3.2 Tensor Manipulation on Chunks

Currently, most array databases provide limited built-in array operations and leave

the responsibility of implementing complex operations through user-defined functions

(UDF) and aggregates (UDA) [23, 27, 30] to the users. One critical limitation of

UDF/UDA-based approaches is that the data, such as coefficient vectors, should

comfortably reside in the available memory [23, 30] and this is not always the case,

in many tensor operations, such as tensor decomposition.

In building the in-database TensorDB, we describe how to extend a native array

database, SciDB [18], with tensor manipulation operations; specifically we focus on

in-database, chunk-based implementation of the operations needed to achieve tensor

decomposition. Naturally, there are optimization and scalability issues in in-database

implementation of tensor manipulation operations, including how we partition the

data into chunks and how we move them in and out of the memory.

4.3.3 TensorDB Operators

TensorDB deals with complex query plans where relational operations run along

with tensor operations. SciDB supports relational operations for data manipulation

and integration such as selection, projection, join, etc. and linear algebra opera-

tions, such as transpose, multiply. However it lacks the tensor-algebraic operations

such as tensor decomposition operations. Therefore in-database TensorDB focuses on

building in-database implementation of tensor operations such as static and dynamic

tensor decompositions.

For a static tensor decomposition, we consider an alternating least squares (ALS)

based implementation of CP decomposition [19, 34]. While we leverage some of

the operations in SciDB, most of the operations involved in implementing the CP
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decomposition in an array database are not available in common array databases.

We provide chunk-based implementations of the various operations involved in the

CP decomposition.

For a dynamic tensor decomposition, we adapt the Dynamic Tensor Analysis

(DTA) algorithm [70] for in-database operation. Note that, unlike CP, DTA assumes

a dense core matrix as in Tucker decomposition [74]; but, as shown in [8], results

of Tucker decompositions can be used as a first step towards bootstrapping CP de-

composition. DTA incrementally maintains covariance matrices for each mode and

computes factor matrices by taking the leading eigen-vectors of the covariance matri-

ces.

The in-database CP and DTA algorithm are implemented using the TensorDB op-

erators along with SciDB operators. The TensorDB operators are chunk-based tensor

operators (matricization, Khatri-Rao product, Hadamard product, normalization, and

copyArray operators) needed for implementing in-database tensor decompositions.

Each of these leverages the chunk ordering and access mechanism in Figure 4.6.

In addition to the above chunked operators, we also implement two non-chunked

operators, pseudoinverse and eigen-decomposition. While these require their inputs

to fit into the memory, since (during tensor decomposition) inputs are often rela-

tively small matrices, this rarely constitutes a problem. More details of each of these

TensorDB operators are described in Section 8.

4.3.4 Tensor-Relational Query Plans

TensorDB supports tensor-relational query plans needed for both data manipula-

tion and integration, and data analysis. SciDB provides data manipulation operations

such as SELECT, subarray, slice, etc. and data integration operations such as JOIN.

For details of the SciDB operators, see the SciDB user guide [4]. TensorDB provides

44



tensor decomposition operations for data analysis, e.g., cp als.py, which is a python

application for the CP decomposition 3 . The followings show a number of query

examples for tensor-relational query plans.

Example 4.3.1 slice and cp als operations.

• iquery -nq "SELECT * into T slice FROM slice(T, i, 1)"

- Selects the 1st slice of mode i of a tensor T of size I1× I2× I3× I4 with chunk

size J1 × J2 × J3 × J4 and saves the result into T slice. iquery is the SciDB

query interface.

• cp als.py T slice I2, I3, I4 J2, J3, J4 rank

- Runs cp als on T slice. (Usage: cp als.py <tensor name> <tensor size>

<chunk size> <target rank>).

3The source code and user guide of TensorDB are available at https://github.com/mkim48/
TensorDB
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Example 4.3.2 subarray and cp als operations.

• iquery -nq "SELECT * into T subarray FROM subarray(T, 1, 1, 1, I ′1,

I ′2, I ′3)"

- Takes a sub-tensor of size I ′1 × I ′2 × I ′3 from a tensor T of size I1 × I2 × I3

with chunk size J1 × J2 × J3 and saves the result into T subarray.

• cp als.py T subarray I ′1, I
′
2, I
′
3 J1, J2, J3 rank

- Runs cp als on T subarray.

Example 4.3.3 join and cp als operations.

• iquery -nq "SELECT ratings.val * genre.val into ratings genre

FROM ratings JOIN genre ON ratings.movie id = genre.movie id"

- Joins the two tensors, ratings of size I1× I2× I3 with chunk size J1×J2×J3

and genre of size I1 × I4 with chunk size J1 × J4 on the 1st mode of each

tensor, movie id and saves the result into ratings genre.

• cp als.py ratings genre I1, I2, I3, I4 J1, J2, J3, J4 rank

- Runs cp als on ratings genre.

Example 4.3.4 dta operations.

• dta.py T1 I1, I2, I3 J1, J2, J3 r1, r2, r3

- Takes a tensor T1 of size I1×I2×I3 with chunk size J1×J2×J3 and decomposes

the tensor with target ranks r1 × r2 × r3.

• dta.py T2 I1, I2, I3 J1, J2, J3 r1, r2, r3 T1

- Takes a tensor T2 of size I1 × I2 × I3 with chunk size J1 × J2 × J3 and

incrementally updates the tensor decomposition with target ranks r1× r2× r3 of

the old tensor T1 with the new tensor T2.
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4.3.5 Optimization Strategies in In-Database TensorDB

Many operations involved in tensor decomposition are order sensitive and the way

data is laid on disk may have a big impact on the total cost of tensor decomposition

task. Specifically we consider the matricization operation. The matricization oper-

ation transforms a tensor into a matrix by arranging the fibers of a mode into the

columns of the resulting matrix. The matricization is a costly operation due to the

data movements that it may require and depending on how the data is laid out physi-

cally, different matricizations may involve different amount of data movements, which

(when data is stored on secondary storage) may result in high I/O load. Thus we

consider an optimization strategy that minimizes the data movement in matricization

operations and introduce a chunk-optimized matricization operator.

To further reduce the cost of matricization, we can also leverage materialization

of the matricization results. The materialization of the matricization can help reduce

the running time of in-database CP, especially on input tensors with higher number

of modes and dense representations.

In-database tensor decomposition algorithms tend to involve computationally ex-

pensive operations such as matrix multiplication. The in-database matrix multiplica-

tion can be costly, for example, the covariance matrix computation in the in-database

DTA [70] that involves the matrix muliplication of matricized tensor and its transpose.

Since the matricized tensor is as big as the input tensor, the covariance matrix com-

putation can be very costly. We propose to address this by leveraging the compressed

matrix multiplication technique [57] to optimize the covariance matrix computation.

The idea of the compressed matrix multiplication is that the matrix product can be

approximated with high probability if the matrix product is compressible, i.e., if the

Frobenius norm of the matrix product is dominated by a sparse subset of entries of
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the product and this condition is often satisfied for the covariance matrix computa-

tion since covariance matrices tend to be skewed. We can also determine in advance

whether regular or compressed matrix multiplication is advantageous, based on the

sparsity of the initial covariance matrix. When considering chunk-based in-database

implementations, various further optimizations need to be considered such as chunk

density and chunk shaped based optimizations.

48



Chapter 5

JOIN-BY-DECOMPOSITION (JBD) FOR EFFICIENT TENSOR

DECOMPOSITION WITHIN THE JOIN OPERATION

In traditional relational algebraic systems the join operation and in tensor-

algebraic framework the tensor decomposition operation tend to be the computa-

tionally costliest operations. In the data lifecycle, data are often integrated from

different sources before it goes through other manipulation steps and the final step

of the tensor relational query plan is almost always a tensor decomposition operation

for data analysis. For an efficient tensor decomposition operation when combined

with the join operation, we propose a highly efficient, effective, and parallelizable

join-by-decomposition (JBD) approach and the corresponding optimization strate-

gies for analysis of integrated multidimensional data. Experimental results show

that the proposed join-by-decomposition performs faster than the conventional

join-then-decompose scheme on large data sets and also confirm that the proposed

join-by-decomposition scheme enables effective parallelization of smaller rank de-

compositions to achieve higher efficiencies, especially for large-scale problems.

5.1 Introduction

The lifecycle of data involves multiple operations to support the data manipula-

tion/integration and analysis. Consider the following example involving analysis of

data integrated from multiple data sources: the query in the example requires both

a join operation (costliest relational algebraic operation) for data integration and a

decomposition (costliest tensor manipulation operation) for data analysis:
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(a) join-then-decompose (b) join-by-decomposition

Figure 5.1: (a) join-then-decompose: rank-r CP decomposition of the tensor
obtained by joining (user, movie, rating) and (movie, genre) relations. (b)
join-by-decomposition: rank-r1 CP decomposition of (user, movie, rating) re-
lation and rank-r2 CP decomposition of (movie, genre) relation are combined on
the movie mode into rank-r CP decomposition of the joined tensor.

Example 5.1.1 Consider two relations described as tensors 1 : a 3-mode rela-

tional tensor of (user, movie, rating) and a 2-mode relational tensor of (movie,

genre). Let us assume that we have an application that requires us to first combine

these two relations based on the movie attribute and then obtain the decomposition

of the integrated tensor: Figure 5.1(a) illustrates how we would first combine these

two relational tensors on the movie attribute into a 4-mode multi-relational tensor

(user, rating, movie, genre) and then perform a tensor decomposition. In the

rest of the chapter, we refer to this as the join-then-decompose processing. ♦

Note that in this example the combined tensor is higher-dimensional than both input

tensors (see Figure 5.1(a)), therefore its decomposition is likely to be significantly

more expensive than the decompositions of the two original input tensors for dense

data sets. Even for sparse data sets, for which there are decomposition algorithms that

have time complexities linear in the number of nonzero entries [70], join operations

1Since we use a tensor model to describe relational data, the corresponding terms in the tensor
and the relational model (e.g., a relation and a tensor, an attribute and a mode, etc) can be used
interchangeably throughout the thesis.
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with high-join rates may result in decomposition operations that are prohibitively

costly. Since the costliest operation in the join-then-decompose processing is not

the join operation (as in the traditional relational systems), but the decomposition

operation and since the join operation tends to push the cost of tensor decomposition

higher, we argue that a join-by-decomposition scheme will be more efficient than

the conventional join-then-decompose scheme.

Example 5.1.2 Consider the query in the previous example. An alternative pro-

cessing scheme would involve first decomposing the input tensors into their spectral

components and then combining these into the decomposition of the joined tensor.

Figure 5.1(b) illustrates this join-by-decomposition scheme. ♦

However, implementing the join-by-decomposition scheme presented in the above

example requires overcoming a number of challenges:

• Challenge I: Tensor decomposition can be seen as searching for the eigen-basis

of the given tensor and a mapping of the input data onto this eigen-basis. While

this representation is very useful when a fixed basis for analysis is not available,

it also poses challenges when integrating decompositions of multiple tensors:

since each tensor has its own eigen-basis, combining different decompositions to

obtain the decomposition of the joined tensor is not straightforward.

• Challenge II: Unlike the decomposition of the joined tensor, which captures

the relationships between all four modes (user, movie, rating, and genre)

simultaneously in the above example, the individual decompositions of the input

tensors capture the relationships of the partial subsets of these four modes. As

a result, it is important to be able to select a join-by-decomposition strategy

that will closely approximate the conventional join-then-decompose strategy.
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In this chapter, we focus on query-plans including nonnegative CP tensor decomposi-

tions of joined tensors and, to tackle the above challenges, we propose an approximate

tensor decomposition scheme for joined tensors which involves combining two smaller

rank decompositions of the input tensors (rather than decomposing the joined tensor

itself). Since in nonnegative CP tensor decomposition,

• the elements of the core tensor can be seen as clusters of the data and

• each entry, Uij, can be seen as the conditional probability P (Ui|Cj) of the ith

element of mode U to belong to the jth cluster, Cj,

we propose to obtain rank-r decomposition of the joined tensor by combing two rank

decompositions whose ranks are the factors of r such that r1 × r2 = r. Intuitively,

each of the r clusters of the joined tensor is constructed by combining a pair of

clusters from the two input tensors. While finding factorizations of a given value r is

a computationally hard problem [24], in most applications of interest, the value of r

is too small (at most 10s or 100s) for this to be an issue.

It is important to note that, given an r (e.g., 6) with multiple factorizations (e.g.,

1 × 6, 2 × 3, 3 × 2, and 6 × 1) into multiplicand-multiplier pairs, different factor-

izations may result in different time gain/approximation error trade-offs. Therefore,

as highlighted in Challenge II, we need to select, among all possible multiplicand-

multiplier factorization of r, one pair that is likely to provide the best gain/error

trade-off. Therefore we need to find a way to (efficiently) predict the degree of fit

of the overall decomposition from the decompositions of each pair. In this chapter,

we explore various measures to determine the best pair which is likely to have the

least fit error and show that the norm of the combined decomposition leads to a good

approximation of the fitness with respect to the original joined tensor.
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One advantage of the proposed join-by-decomposition strategy, as opposed to

the conventional join-then-decompose strategy, is that we need to operate with

multiple smaller tensor decompositions, performed independently from each other.

As a consequence, often these small decomposition operations can naturally fit in

multiple cores of a given processor and be executed in a parallel manner. This leads to

a highly efficient, effective, and parallelizable algorithm for join-by-decomposition

strategy. Therefore, in this chapter, we also investigate parallel multi-core execution

strategies.

5.2 Challenge: Query Plans with Joins and Decompositions

In Chapter 3, we presented the tensor-relational model and basic tensor relational

algebraic operations. As in the case of relational algebra, a query (or data manip-

ulation) plan can be visualized as a tree, where the leaves of the tree are the input

tensors and each node of the tree is a tensor relational operation, selecting, project-

ing, or joining its inputs. As illustrated in Figure 1.1, however, the tensor-relational

operations are part of a larger framework that involves other tensor operations, such

as tensor decompositions. In fact, in most cases, the tensor relational operations pre-

cede a tensor decomposition operation to manipulate the data into a form ready for

the context of the analysis. Therefore, the root (i.e., the final step) of the tensor rela-

tional query plan tree is almost always a tensor decomposition operation (Figure 4.3

(a)).

In traditional relational algebra, the costliest operation is known to be the join

operation which, depending on the implementation, can take up to O(|P| × |Q|)

where |P| and |Q| are the numbers of tuples of two relations P and Q respectively,

in tensor-algebraic framework, tensor decomposition tends to be the computationally

costliest operation of all, which is exponential in the number of modes for dense
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tensors. Tensor decomposition is an expensive operation also for sparse tensors. The

situation is especially aggravated when the decomposition operation is preceded by a

join operation which increases the number of modes of the tensor to be decomposed

(for dense tensors) or increases the number of tuples, i.e. nonzero entries in the

resulting tensor (for sparse tensors). In both of these cases, data integration through

joins tends to increase the cost of the whole plan significantly and even renders the

whole query infeasible if sufficient resources and time are not available.

The rest of the chapter is as follows:

• We provide an overview of the proposed join-by-decomposition scheme in

Section 5.3.

• We then focus on the problem of selecting the best pair of factors of r and

present various approaches to find the best pair that is likely to provide good

time/accuracy tradeoffs (Section 5.3.4).

• In Section 5.3.6, we show that the proposed join-by-decomposition scheme

gives rise to novel parallelization opportunities.

• In Section 5.4, we experimentally evaluate the proposed

join-by-decomposition scheme in both stand-alone and parallel config-

urations for CP and Tucker decompositions. We focus on the accuracy

and the running time of the alternative algorithms. Experimental results

show that the norm of join-by-decomposition can approximate the fitness of

join-by-decomposition with respect to the original joined tensor. This helps

ensure the efficiency and effectiveness of the proposed join-by-decomposition

approach.
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5.3 Optimization of Tensor Decompositions within Join Plans

As described above, tensor decompositions following joins in a query plan tend to

be expensive when processed in a traditional, join-then-decompose manner (Fig-

ure 4.3(a)). In this section, we present an alternative join-by-decomposition ap-

proach to obtain decompositions of joined tensors. In particular, as visualized in

Figure 4.3(b), instead of decomposing the higher-modality joined tensor as in the

join-then-decompose scheme, we first decompose the lower-modality input tensors

and then combine these decompositions to obtain the final decomposition.

A key challenge is that, in general, there may be many different ways that one

can decompose the input tensors and combine them to obtain the final decomposi-

tion. These different join-by-decomposition schemes may have different process-

ing costs and accuracies. Therefore, we present approaches to select an effective

join-by-decomposition scheme among the alternatives.

5.3.1 Overview of the Join-by-Decomposition (JBD) Process

In this section, we present the proposed join-by-decomposition approach for

obtaining decompositions of joined tensors for both CP decompositions and Tucker

decompositions of joined tensors. We refer to the JBD algorithm for CP decom-

position and Tucker decompositions as JBD-CP and JBD-Tucker, respectively. For

simplicity and clarity, we limit the discussion to nonnegative CP decompositions,

with probabilistic interpretations. While JBD-CP and JBD-Tucker are formulated

for nonnegative decompositions, they can generally perform for tensor decomposi-

tions involving negative values.
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Figure 5.2: (a) When two groups of clusters on join factor matrices are combined,
each cluster in one group is combined with all the clusters of the other group. If one
group has three clusters and the other has two clusters, then there are potentially up
to six combination clusters. (b) Clusters in other factor matrices than the join factor
matrices are extended to as many clusters as the number of the combined clusters.

5.3.2 Join-by-Decompositio (JBD) for Nonnegative CP Decomposition (JBD-CP)

The JBD-CP scheme works as follows: as illustrated in Figure 5.1(b), to construct

a rank-r decomposition of the joined tensor, we consider two integers, r1 and r2, such

that r1 × r2 = r and we find rank-r1 and rank-r2 decompositions of the two input

tensors. We then combine these two decompositions along the given factor matrix

which corresponds to the join attribute in the equi-join operation (the process is

trivially extended to the case where there are multiple equi-join attributes in the

query). Intuitively, we treat each diagonal element in the core tensor as a cluster and

the factor matrices as the conditional probabilities of the attribute values along the

modes belonging to the given clusters. Therefore, we seek to obtain the r clusters

of the joined tensor by finding r1(≤ r) and r2(≤ r) clusters of the input tensors

(where r1× r2 = r) respectively and combining them based on the equi-join attribute

(Figure 5.2). Figure 5.3 illustrates an example of rank-12 decomposition of a joined

tensor by JBD-CP.

Let us consider two 3-mode relational tensors, P and Q, with u × l × m and

u × d × s dimensions, respectively, and an equi-join operation on the first mode of
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Figure 5.3: Rank-12 decomposition of a joined tensor by JBD-CP: there are 6 pairs
of decompositions and the join of the pair with the least predicted likelihood of error
is chosen as the final decomposition

these tensors (note that for simplicity, we assume that both modes have u slices

along the join attribute, representing the common values for the two relations along

the equi-join attribute. The rank-rp and rank-rq CP decompositions of P and Q are

as follows:

Pu×l×m ≈
rp∑
a=1

λa ◦ Ua ◦ La ◦Ma, Qu×d×s ≈
rq∑
b=1

λ
′

b ◦ U
′

b ◦Db ◦ Sb.

When decompositions are nonnegative and the tensors are properly normalized, the

equation for P can be interpreted probabilistically as

Pu×l×m ≈
rp∑
a=1

P (Cp
a)

u∑
i=1

P (Ui|Cp
a)

l∑
j=1

P (Lj|Cp
a)

m∑
k=1

P (Mk|Cp
a).

(5.1)

Here Cp
∗ are the clusters of P; analogously, the equation for Q can also be interpreted

probabilistically.

Let us denote the equi-join tensor P on=,U Q as X. Similarly to the input tensors

P and Q, we can also probabilistically interpret the rank-r decomposition of X:
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Xu×l×m×d×s ≈
r∑
c=1

P (Cx
c )

u∑
i=1

P (Ui|Cx
c )

l∑
j=1

P (Lj|Cx
c )

m∑
k=1

P (Mk|Cx
c )

d∑
f=1

P (Df |Cx
c )

s∑
g=1

P (Sg|Cx
c ),

(5.2)

where Cx
∗ are the clusters of the joined tensor. Note that if the rp and rq clusters of

the input tensors are independent from each other and rp × rq = r, we can rewrite

this in terms of the clusters and membership probabilities of the input tensors as

X̂u×l×m×d×s =

rp∑
a=1

rq∑
b=1

P (Cp
a)P (Cq

b )

u∑
i=1

P (Ui|Cp
a)P (Ui|Cq

b )

l∑
j=1

P (Lj |Cp
a)

m∑
k=1

P (Mk|Cp
a)

d∑
f=1

P (Df |Cq
b )

s∑
g=1

P (Sg|Cq
b ).

(5.3)

This gives us a way to reconstruct the decomposition of the join tensor directly

from the decompositions of the input tensors, which are much cheaper to obtain.

However, this reconstruction makes sense only if the clusters of the input tensors are

independent from each other:
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P (Cx
a,b) = P (Cp

a ∧ C
q
b ) = P (Cp

a)P (Cq
b ),

P (U∗|Cx
a,b) = P (U∗|Cp

a ∧ C
q
b ) = P (Ua|Cp

a)P (Ub|Cq
b ),

P (L∗|Cx
a,b) = P (L∗|Cp

a ∧ C
q
b ) = P (L∗|Cp

a),

P (M∗|Cx
a,b) = P (M∗|Cp

a ∧ C
q
b ) = P (M∗|Cp

a),

P (D∗|Cx
a,b) = P (D∗|Cp

a ∧ C
q
b ) = P (D∗|Cq

b ),

P (S∗|Cx
a,b) = P (S∗|Cp

a ∧ C
q
b ) = P (S∗|Cq

b ).

(5.4)

Otherwise, there will be a nonzero difference between X and X̂. Next we describe

how to minimize the approximation error, ‖X− X̂‖.

5.3.3 Join-by-Decomposition (JBD) for Nonnegative Tucker Decomposition

(JBD-Tucker)

In this subsection, we extend JBD to nonnegative Tucker decompositions (JBD-

Tucker). Similarly to the formulation of JBD-CP, we formulate JBD-Tucker as follows.

Consider two 3-mode relational tensors, P and Q, with u × a × b and u × d × e di-

mensions, respectively. The rank-(Rp, S, T ) and rank-(Rq, V,W ) nonnegative Tucker

decompositions of P and Q are as follows:

P ≈ Gp ×1 U×2 A×3 B =

Rp∑
rp=1

S∑
s=1

T∑
t=1

Gp[rp, s, t] Urp ◦ As ◦Bt.

Q ≈ Gq ×1 U
′ ×2 D×3 E =

Rq∑
rq=1

V∑
v=1

W∑
w=1

Gq[rq, v, w] U
′

rq ◦Dv ◦ Ew.

Here, each core tensor of P and Q, Gp and Gq respectively, expresses the weight

(or strength) of the interaction between the different components. Similarly to CP

decomposition in Section 5.3.2, if decompositions are nonnegative and normalized,
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the Tucker decomposition for P can be interpreted probabilistically with respect to

rank Rp as

P ≈
Rp∑
rp=1

P (Cp
rp)

u∑
i=1

P (Ui|Cp
rp)

a∑
j=1

Aj

b∑
k=1

Bk,

where Cp
∗ are the clusters of the values of the join attribute for P and P (Cp

rp) =∑S
s=1

∑T
t=1 P (Cp

rp ∧C
p
s ∧C

p
t ). Analogously, the Tucker decomposition for Q can also

be interpreted probabilistically with respect to rank Rq as

Q ≈
Rq∑
rq=1

P (Cq
rq)

u∑
i=1

P (Ui|Cq
rq)

d∑
l=1

Dl

e∑
m=1

Em,

where Cq
∗ are the clusters of the values of the join attribute for Q and P (Cq

rq) =∑V
v=1

∑W
w=1 P (Cq

rq ∧ C
q
v ∧ Cq

w).

Let us denote the equi-join tensor P on=,U Q as X. Similarly to the input tensors

P and Q, we can also interpret the rank-(R, S, T, V,W ) Tucker decomposition of X

probabilistically with respect to R:

X ≈ X̂ =
R∑
r=1

P (Cx
r )

u∑
i=1

P (Ui|Cx
r )

a∑
j=1

Aj

b∑
k=1

Bk

d∑
l=1

Dl

e∑
m=1

Em,

where Cx
∗ are the clusters of the values of the join attribute for the joined tensor X

and P (Cx
r ) =

∑S
s=1

∑T
t=1

∑V
v=1

∑W
w=1 P (Cx

r ∧ Cx
s ∧ Cx

t ∧ Cx
v ∧ Cx

w).

Note that if the Rp and Rq clusters of the input tensors are independent from each

other and Rp×Rq = R, we can rewrite this in terms of the clusters and membership

probabilities of the input tensors as

X ≈
Rp∑
rp=1

Rq∑
rq=1

P (Cp
rp)P (Cq

rq)P (Ui|Cp
rp)P (Ui|Cq

rq)
a∑
j=1

Aj

b∑
k=1

Bk

d∑
l=1

Dl

e∑
m=1

Em. (5.5)

Once again, this gives us a way to reconstruct the nonnegative Tucker decomposition

of the join tensor directly from the nonnegative Tucker decompositions of the input

tensors, which are much cheaper to obtain. However, this reconstruction makes sense
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only if the clusters of the input tensors are independent from each other:

P (Cx
rp,rq) = P (Cp

rp ∧ C
q
rq) = P (Cp

rp)P (Cq
rq),

P (U∗|Cx
rp,rq) = P (U∗|Cp

rp ∧ C
q
rq) = P (U∗|Cp

rq)P (U∗|Cq
rq).

Otherwise, there will be a nonzero difference between X and X̂. As in JBD-CP, we

employ norm-based pair selection (psmnorm) method for selecting the rank-(...,Rp,...)

and rank-(...,Rq,...) Tucker decompositions of P and Q. Again, ‖X̂‖ can be computed

directly from the decomposition X̃, thus psmnorm is computed much more efficiently

than ‖X − X̂‖. Also psmnorm approximates the fit error effectively in JBD-Tucker

(psmnorm selected the best pair in terms of fit in all the cases of JBD-Tucker experi-

ments in Table 5.9).

5.3.4 Minimization of the Approximation Error

Since the above formulation is based on the assumption that the conditional prob-

abilities of the attribute values given the clusters of the input tensors P and Q are

independent of each other, the natural approach to minimize the approximation error

involves searching for input clusters (i.e., decompositions of the input tensors) that

are the most independent relative to the join attribute.

Independency Desideratum: The decompositions of the input tensors

should be the most independent relative to the join attribute.

However, once a pair of rank-rp and rank-rq decompositions of P and Q (where

rp × rq = r) are given, there is no room for carrying out such a search. Yet, if we

consider the set {(rp,i, rq,i) | rp,i × rq,i = r} which is all possible factorizations of r,

then we can select among all these pairs the one that leads to clusters that are the

most independent relative to the join attribute. This presents two challenges:
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• We need to enumerate pairs of ranks that multiply to r and then obtain the

corresponding decompositions of the input tensors P and Q. As we will see in

the experiment section (Section 5.4), while this involves enumeration of multiple

(low-modal) decompositions, the overall cost of the process is often much less

than the cost of decomposing the (high-modal) joined tensor.

• Given a pair of rank-rp and rank-rq decompositions of P and Q, this requires

a measure to quantify the independence of the clusters relative to the join

attribute. The problem is that the term P (U |Cp
a∧C

q
b ) in Equation (5.4) requires

counting joins falling within a cluster given by the decomposition of the joined

tensor; but this is not known.

• In addition, we have to consider whether rank-rp and rank-rq decompositions

are, in fact, appropriate for the input tensors P and Q. Selecting inappropriate

decomposition ranks for P and Q may increase the overall error, since the final

decomposition will also depend on the accuracy of the decompositions of P and

Q.

Next we discuss alternative approaches for selecting the rank-rp and rank-rq de-

compositions of P and Q in such a way that the resulting clusters are independent

from each other.

KL-based Pair Selection (psmKL)

The first alternative is a Kullback-Leibler divergence (KL)-based pair selection mea-

sure (psmKL). Intuitively, we could say that two input clusterings are independent

relative to the join attribute if given a join value Uj that connects clusters Cp
a and

Cq
b , another join value Ul is neither more likely or less likely to connect these two

clusters. More specifically, given the join elements in Cp
a , we would expect to see the
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distribution of the corresponding Cq
∗ to be uniformly distributed. Similarly, given

the join elements in Cq
b , the distribution of the corresponding Cp

∗ should be uniform.

One way to quantify this would be to measure the KL-divergence of the conditional

probabilities of the values in the join mode against the uniform distribution:

psmKL(rp, rq) = (
∑
b

KL[P (Cp
∗ |C

q
b ), uniform] +∑

a

KL[P (Cq
∗ |Cp

a), uniform])−1.

A potential problem with this approach is that these conditional probabilities

are not directly comparable for the different pairs since there are different numbers

of clusters for the join mode of each pair and probability distributions tend to be

more uniformly distributed as the sample size, which in this case is the number of

clusters, increases. For example, (1, 12)-rank and (12, 1)-rank pairs are likely to be

more uniformly distributed, in other words have smaller KL-divergence against the

uniform distribution than (3, 4)-rank and (4, 3)-rank pairs. A second drawback of

this measure is that it takes into account only the independence between the join

modes without considering the other factor matrices.

Fit-based Pair Selection (psmin)

The second alternative, psmin(rp, rq) measures the degree of fit between the input

tensors and their decompositions:

psmin(rp, rq) = ( ‖P− P̂rp‖+

‖Q− Q̂rp‖)−1,

where Ŵ is the tensor obtained by recombining its (approximate) decomposition W̃

of the tensor W. This measure takes all factor matrices into account and is not

affected by the number of clusters. However, it also has a potential weakness: it does
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not account for the errors that may be generated when combining the two tensor

decompositions. This error is likely to be high especially when the two tensors are

correlated.

Norm-based Pair Selection (psmnorm)

For a joined tensor X of size K1 × K2 × · · · × KNk
, it is clear that an approximate

decomposition X̂ with the minimum fit error ‖X− X̂‖ is the best pair. However the

direct computation of the fit error ‖X− X̂‖ would require large amounts of memory

(often impossible for large-scale data) for obtaining X̂. Therefore the third alternative

we consider is to use the difference between the norm of X and the norm of X̂ as an

approximation for ‖X − X̂‖; in other words, we can use the following measure to

select the appropriate pair.

psmnorm(rp, rq) = |‖X‖ − ‖X̂rp,rq‖|−1.

Note that we have seen in Equation (3.4) that ‖X̂‖ can be computed directly from

the decomposition X̃ using the formulation for X̃.

The intuition behind this pair selection measure is as follows: Since W,Ŵ ≥ 0,

we can use the reverse triangle inequality: ‖W − Ŵ‖ ≥ |‖W‖ − ‖Ŵ‖|, i.e., while

the term |‖W‖ − ‖Ŵ‖| is only a lower bound on ‖W − Ŵ‖, it may still provide

an indication of the size of the term and thus we may be able to minimize the term

‖W− Ŵ‖ by minimizing |‖W‖ − ‖Ŵ‖|.

Note that the computation of the norm based pair selection measure involves

combining the tensor decompositions P̃rp and Q̃rq to obtain X̃rp,rq for all pairs of rp

and rq, where rp × rq = r. The cost of the combination step (see Figure 5.2(a)) for

each entry of the joined mode J, is O(J
∑n

i=1 rp,i ·rq,i) where J is the size of the mode

J and n is the number of (rp, rq) pairs. The computation of ‖X‖ requires O(|X|)
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Table 5.1: Notation used in this chapter
Notation Description

P the 1st input tensor of size I1 × I2 × · · · × J × · · · × INp

Q the 2nd input tensor of size I′1 × I′2 × · · · × J × · · · × I′Nq

X the joined tensor of P and Q on the mode J of size J ; i.e., P on=,J Q of size

K1 ×K2 × · · · × J × · · · ×KNx

r the rank of X

rp,i and rq,i the ith ranks of P and Q, resp.; i.e., (rp,i, rq,i) ∈ {(rp,i, rq,i) | rp,i × rq,i = r}

Np # of modes of P

Nq # of modes of Q

Nx # of modes of X

αr,∗ # of ALS iterations needed to rank-r decompose the tensor denoted by “*”

|P| # of nonzero entries of a tensor P

|Q| # of nonzero entries of a tensor Q

|X| # of nonzero entries of a tensor X

n # of (rp, rq); i.e., |{(rp,i, rq,i) | rp,i × rq,i = r}|

Table 5.2: Cost for join-then-decompose and join-by-decomposition

Algorithm Step Cost

join-then-decompose
Decomp.

dense tensors O(
∏Nx

i=1Ki)
†

sparse tensors O(αr,X r |X| Nx)††

(Equi-)Join O((|P|+ |Q|) log(|P|+ |Q|))

join-by-decomposition

Decomp.
dense tensors O(n(

∏Np

i=1 Ii +
∏Nq

i=1 I
′
i))
†

sparse tensors O(
∑n

i=1(αrp,i,P rp,i |P| Np + αrq,i,Q rq,i |Q| Nq))††

(Equi-)Join O(J
∑n

i=1 rp,i · rq,i)

Norm comp. O(|X|+ nr2
∑Nx

i=1Ki)

†The execution time cost for dense tensors is based on [70].

††The execution time cost for sparse tensors is based on the analysis of the code in [12].

time, where |X| is the number of nonzero entries of X [11] and the norm computation

for each pair takes O(nr2
∑Nk

i=1Ki) from Equation (3.4).

5.3.5 Time Complexities of join-then-decompose and join-by-decomposition

Table 5.2 presents the time complexities for the join-then-decompose and

join-by-decomposition operations. The symbols used in this table and the rest

of this chapter are described in Table 7.1.
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• The join-then-decompose process includes the join and decomposition

costs. As discussed in Section 3.3.2, for the join operation in the

join-then-decompose, we use an efficient equi-join operator based on the inner

product for sparse tensors; the cost for this operator is described in Section 3.3.2.

• The join-by-decomposition involves the decomposition and join oper-

ations, and norm computation. The decomposition operation in the

join-by-decomposition takes as many operations as the number of each rank

rp and rq of the rank pairs (rp, rq). The join operation and norm computation of

join-by-decomposition are performed for each pair (rp, rq) (see Section 5.3.4

for the details of the costs of the join operation and norm computation).

Dense Tensors

For dense tensors, decomposition is clearly the most dominant cost and tensor decom-

positions with smaller number of modes, as in join-by-decomposition, are much

more efficient than the tensor decompositions with large number of modes, as in the

join-then-decompose.

Sparse Tensors

The cost of the decomposition operation for sparse tensors depends on the rank, the

number of nonzero entries, and the number of modes for each iteration of the ALS in

CP algorithm [12].

In the case of sparse tensors, in order to predict whether join-then-decompose

or join-by-decomposition will be more efficient, we need to consider the number of

nonzero entries in the input tensors as well as the output tensor: if the join selectivity

js = |P on=,J Q|/(|P||Q|)
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of the join operation is high and we have more tuples (nonzero entries) in the joined

tensor than the input tensors, then the join-by-decomposition will be more ef-

ficient than the join-then-decompose; otherwise, join-then-decompose may be

competitive.

In particular, for the join-by-decomposition approach to outperform

join-then-decompose in the costly decomposition step, (assuming the number of

ALS iterations of the decompositions are similar) the following must hold:

r|X|Nx >

n∑
i=1

(rp,i|P|Np + rq,i|Q|Nq),

or, equivalently,

|X| >
n∑
i=1

(rp,i|P|Np + rq,i|Q|Nq)/(rNx).

Since we have |X| = |P on=,J Q|, we can rewrite the above inequality as

js(|P||Q|) >
n∑
i=1

(rp,i|P|Np + rq,i|Q|Nq)/(rNx),

and this gives us a lower bound, js⊥, on the join selectivity:

js > js⊥ =
n∑
i=1

(rp,i|P|Np + rq,i|Q|Nq)/(|P||Q|rNx).

This lower bound threshold provides a practical predictor to judge whether the

join-by-decomposition will be more advantageous the join-then-decompose op-

eration for sparse tensors. In Section 5.4.3, we evaluate this effectiveness of this

predictor for sparse tensors.

5.3.6 Parallelization of the Join-by-Decomposition Operation

Let us reconsider Figure 5.3 which graphically illustrates a rank-12

join-by-decomposition process. As this figure shows, the join-by-decomposition
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pp-JBD (input: two tensors P, Q, rank r, and the modes of the join factor matrices of P and

Q)

1: parfor each pair (rp, rq) such that rp × rq = r do {parfor denotes Parallel for-loops of MATLAB Parallel

Computing Toolbox}

2: Run any available nonnegative CP algorithm to get P̃rp and Q̃rq such that P̃rp = rank-rp nonnegative CP of

P, Q̃rq = rank-rq nonnegative CP of Q

3: Combine P̃rp and Q̃rq on their join factor matrices into X̃rp,rq

4: Compute and record the pair selection measure, psm(rp, rq), for rp and rq

5: end parfor

6: Return X̃rp,rq corresponding to (rp, rq) with the best psm(rp, rq) value

Figure 5.4: Pseudo-code of pair-wise parallel join-by-decomposition
(pp-JBD)

ip-JBD (input: two tensors P, Q, rank r, and the modes of the join factor matrices of P and

Q)

1: parfor each factor k of a pair (rp, rq) ∈ {(rp,i, rq,i) | rp,i × rq,i = r} do

2: if k = rp then

3: Tk = P

4: else {k = rq}

5: Tk = Q

6: end if

7: Run any available nonnegative CP algorithm to get T̃k such that T̃k = rank-k nonnegative CP of Tk

8: end parfor

9: parfor each pair (rp, rq) such that rp × rq = r

10: Combine P̃rp and Q̃rq on their join factor matrices into X̃rp,rq

11: Compute and record the pair selection measure, psm(rp, rq), for rp and rq

12: end parfor

13: Return X̃rp,rq corresponding to (rp, rq) with the best psm(rp, rq) value

Figure 5.5: Pseudo-code of input parallel join-by-decomposition (ip-JBD)
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involves creation of many alternative join pairs, which are independently evalu-

ated for accuracy and the one that is predicted to provide the best accuracy is

used for obtaining the final result. This provides a natural way to parallelize the

join-by-decomposition operation: we can associate each pair of rank decomposi-

tions (and the computation of the corresponding pair selection measure) to a different

processor core. In addition, when more cores are available, standard parallel tensor

decomposition [59] and parallel join processing techniques [26] can also be used to

further parallelize each pair.

Figures 7.3 and 5.5 show two alternative ways in which the

join-by-decomposition operation can be parallelized; we refer to these two

strategies as the pair-wise parallel join-by-decomposition (pp-JBD) and the

input parallel join-by-decomposition (ip-JBD), respectively:

• In the pair-wise parallel join-by-decomposition (pp-JBD) strategy,

each (rp, rq) rank pair is assigned to a separate core.

• In the input parallel join-by-decomposition (ip-JBD), on the other

hand, each individual decomposition is assigned to a separate core.

It is important to note that parallelization comes with certain amount of over-

head. First of all, moving the data to the different cores can add to the running time

of each individual decomposition. Furthermore, balancing the work may not always

be possible since decompositions with a higher rank tend to take more time than de-

compositions with a lower rank. In Section 5.4, we compare the parallelized versions

of the join-by-decomposition with a block-based join-then-decompose using the

grid NTF [59]. Note that the grid NTF based join-then-decompose divides the

joined tensor into sub-tensors whose modes are same as that of the joined tensor. It

then follows an iterative update process to reconstruct the original factors from each
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individual sub-factor of sub-tensor decompositions. This means that, unlike parallel

join-by-decomposition, the subtasks of the parallel join-then-decompose can-

not run completely separately from each other since each factor matrix construction

depends on other factors within the iterative process.

5.4 Experimental Evaluation

In this section, we present experimental results assessing the efficiency and effec-

tiveness of the proposed join-by-decomposition scheme relative to the conventional

implementation of the join-then-decompose approach in both stand-alone and par-

allelized versions.

5.4.1 Implementation Details

We ran our experiments on an 6 cores Intel(R) Xeon(R) CPU X5355 @ 2.66GHz

with 16GB of RAM. We used MATLAB Version 7.11.0.584 (R2010b) 64-bit (glnxa64)

for the general implementation and MATLAB Parallel Computing Toolbox for the

parallel implementations of join-by-decomposition and join-then-decompose.

We used the MATLAB Tensor Toolbox [12] to manipulate a relational ten-

sor as a sparse tensor using a sparse tensor model. For implementing the ten-

sor decomposition operation, we experimented with several algorithms for both

join-by-decomposition and join-then-decompose operations.

5.4.2 Evaluation Criteria

Each experiment is run at least 5 times and we report the average accuracy and

execution time of these runs.
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Accuracy

We use the following fit function to measure tensor decomposition accuracy:

fit(X, X̂) = 1− ‖X, X̂‖
‖X‖

, (5.6)

where ‖X‖ is the norm of a tensor X. The fit is a normalized measure of how accurate

the tensor decomposition X̂ is with respect to the input tensor X.

Our evaluation criteria also include relative fit which indicates how accurate the

join-by-decomposition approach is compared to the join-then-decompose scheme

in terms of fit to the joined tensor. The relative fit (fitrel) is defined as

fitrel =
fit(X, X̂jbd)

fit(X, X̂jtd)
(5.7)

where X is the joined tensor, X̂jtd is the tensor obtained by re-composing the

join-then-decompose tensor, and X̂jbd is the tensor obtained by re-composing the

join-by-decomposition tensor. Note that the higher relative fit is, the better the

proposed join-by-decomposition scheme is.

Execution Time

The execution times are measured by MATLAB’s tic and toc commands to start

and stop the clock at the beginning and the end of the process, respectively.

5.4.3 JBD-CP Experiments

Data Sets

We used two movie rating data sets obtained from [56]: (a) MovieLens 100K data set

consists of 100,000 ratings from 1,000 users on 1,700 movies, (b) MovieLens 1M data

set consists of 1 million ratings from 6,000 users on 4,000 movies. In addition to the

rating information, these two data sets also include movie metadata, such as movie
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Table 5.3: Input relations and joined relations
Data set 1st input relation (P) 2nd input relation (Q) Join mode Joined relation (X)

MovieLens 100K
(user,rating,movie) (movie,genre) (movie) (user,rating,movie,genre)

(movie,rating,user) (user,occupation) (user) (movie,rating,user,occupation)

MovieLens 1M
(user,rating,movie) (movie,genre) (movie) (user,rating,movie,genre)

(movie,rating,user) (user,occupation) (user) (movie,rating,user,occupation)

Table 5.4: Statistics of the joined relations
Data set Joined relation #cases Tensor sizes #nonzero entries

MovieLens (user,rating,movie,genre) 153 100×5×100×19 to 900×5×1600×19 1051 to 194361

100K (movie,rating,user,occupation) 153 100×5×100×21 to 1600×5×900×21 532 to 91992

MovieLens (user,rating,movie,genre) 50 800×5×1000×18 to 6000×5×3800×18 72098 to 1825034

1M (movie,rating,user,occupation) 50 1000×5×800×21 to 3800×5×4000×21 34189 to 819185

genre, and user metadata, such as user location and occupation. From the data sets,

we created two pairs of relational tensors (see Tables 5.3):

• The first data set includes a 3-mode (user, movie, rating) and a 2-mode

(movie, genre); these join into a 4-mode (user, rating, movie, genre)

tensor.

• The second set includes a 3-mode (movie, user, rating) and a 2-mode

(user, occupation) tensors; these join into a 4-mode (movie, rating,

user, occupation) tensor.

For each of these, we created relational tensors corresponding to different table sizes

by randomly selecting entries from the MovieLens 100K and 1M data sets (see Ta-

bles 5.4). Note that all tensors are encoded as occurrence tensors, where each entry is

set 1 or 0 which indicates whether the corresponding tuple exists or not. Therefore,

we also record the number of nonzero entries of each tensor. The averages of tensor

sizes and numbers of nonzero entries of each relation are shown in Table 5.5.

In the set of experiments reported here, we consider rank-12 decompositions. The

join-by-decomposition scheme uses 6 combinations (1 × 12, 2 × 6, 3 × 4, 4 × 3,
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Table 5.5: Averages of tensor sizes and numbers of nonzero entries of the input
relations

Data set Average of tensor sizes and # nonzero entries

MovieLens 100K

(user, rating, movie) (movie, genre) (user, rating, movie, genre)

650× 5× 900 40484.25 900× 19 1501.375 650× 5× 900× 19 84840.5

(movie, rating, user) (user, occupation) (movie, rating, user, occupation)

900× 5× 650 20963.375 650× 21 457 900× 5× 650× 21 20963.375

MovieLens 1M

(user, rating, movie) (movie, genre) (user, rating, movie, genre)

3392× 5× 2704 397055.18 2704× 18 4385.82 3392× 5× 2704× 18 836104.1

(movie, rating, user) (user, occupation) (movie, rating, user, occupation)

2616× 5× 2352 264911.24 2352× 21 2352 2616× 5× 2352× 21 264911.24

6× 2, and 12× 1) for rank-12 decomposition for each relation in Table 5.4.

Single-Core Implementations

Firstly, we used the N-way PARAFAC algorithm with nonnegativity constraint (we

call this simply N-way PARAFAC in the rest of the section) which is available in

the N-way Toolbox for MATLAB [9]. We refer to join-by-decomposition and

join-then-decompose using the N-way PARAFAC as JBD-NWAY and JTD-NWAY

respectively.

Since the N-way PARAFAC implementation of MATLAB uses a dense tensor

(multi-dimensional array) representation, it is not suitable for large data sets. The

main memory required by this algorithm for the MovieLens 1M data set (the largest

tensor in our experiments is 6000 × 5 × 3800 × 18 – see Table 5.4 for details.) is

beyond the capability of common hardware/software setting. Another PARAFAC

implementation, the CP-ALS algorithm [12], on the other hand, can run with both

sparse and dense tensors. In the sparse tensor model, the cost increases linearly as

the number of nonzero entries of the tensor increases. The basic CP-ALS algorithm,

however, does not support nonnegative constraints. Therefore, we implemented a

variant of the single grid NTF [59] using CP-ALS as the base PARAFAC algorithm.
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We refer to the join-by-decomposition and join-then-decompose based on CP-

ALS as JBD-CP and JTD-CP respectively.

Multi-Core Implementations

We use two alternative approaches for the parallel join-by-decomposition, which

are pp-JBD and ip-JBD. Since pp-JBD has a slightly better performance and also for

simplicity in parallelization, we mainly use pp-JBD.

The parallelized (multi-core) versions of the join-then-decompose were imple-

mented using the grid NTF technique [59], with three different partition strategies.

We used N-way PARAFAC and CP-ALS as the base PARAFAC algorithm. For

simplicity, we use the same grid size for the movie and user mode; the genre,

occupation, and rating modes are not divided because their sizes are already small

(19 or 18, 21, and 5 respectively). For the movie and user modes (each mode becomes

the 1st mode or the 3rd mode), we use 2, 4, and 8 grid cells. Therefore we divided the

given tensor into sub-tensors of size 2× 1× 2× 1, 4× 1× 4× 1, and 8× 1× 8× 1. We

refer to the grid NTF algorithm for the parallel join-then-decompose using N-way

PARAFAC of grid size 2× 1× 2× 1, 4× 1× 4× 1, and 8× 1× 8× 1 as JTD-NWAY-

GRID2, JTD-NWAY-GRID4, and JTD-NWAY-GRID8 respectively. Similarly, we

refer to as JTD-CP-GRID2, JTD-CP-GRID4, and JTD-CP-GRID8 for CP-ALS.

Each cell of the grid is run with the base PARAFAC algorithm separately in

parallel and iteratively combined into the final decomposition using a modified ALS

approach.

Table 7.8 lists the various algorithms we consider in our experiments.
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Table 5.6: Algorithms. Note that the decomposition algorithms in parentheses are
used as the base PARAFAC for the grid NTF

Algorithm Description

JBD-NWAY join-by-decomposition using N-way PARAFAC

JBD-CP join-by-decomposition using single grid NTF (CP-ALS)

pp-JBD-NWAY pair-wise parallel join-by-decomposition using N-way PARAFAC

pp-JBD-CP pair-wise parallel join-by-decomposition using single grid NTF (CP-ALS)

ip-JBD-CP input parallel join-by-decomposition using single grid NTF (CP-ALS)

JTD-NWAY join-then-decompose using N-way PARAFAC

JTD-CP join-then-decompose using single grid NTF (CP-ALS)

JTD-NWAY-GRID2 join-then-decompose using 2× 1× 2× 1 grid NTF (N-way PARAFAC)

JTD-NWAY-GRID4 join-then-decompose using 4× 1× 4× 1 grid NTF (N-way PARAFAC)

JTD-NWAY-GRID8 join-then-decompose using 8× 1× 8× 1 grid NTF (N-way PARAFAC)

JTD-CP-GRID2 join-then-decompose using 2× 1× 2× 1 grid NTF (CP-ALS)

JTD-CP-GRID4 join-then-decompose using 4× 1× 4× 1 grid NTF (CP-ALS)

JTD-CP-GRID8 join-then-decompose using 8× 1× 8× 1 grid NTF (CP-ALS)

Table 5.7: Correlations between pair selection measures and accuracy for different
joined relations

Measure Joined relation Correlation

psmkl

(movie, rating, user, occupation) 0.46

(user,rating,movie,genre) -0.56

psmin

(movie, rating, user, occupation) 0.76

(user,rating,movie,genre) 0.56

psmnorm

(movie, rating, user, occupation) 0.86

(user,rating,movie,genre) 0.82

Evaluation of the Alternative Pair Selection Measures

As discussed in Section 5.3.4, given a target rank-r decomposition for the joined ten-

sor, the proposed join-by-decomposition strategy first identifies alternative rank-rp

and rank-rq decompositions of the input tensors (such that rp × rq = r) and then se-

lects the most promising pair of decompositions to compute the final result. We

have listed three alternative pair selection measures (psmkl, psmin, and psmnorm) in

Section 5.3.4. Before we provide a detailed comparison of join-by-decomposition

and join-then-decompose strategies, we first evaluate these different pair selection
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measures in terms of accuracy. In order to quantify the benefits of the different psm

functions, we measure the correlation of the alternative psm values with the corre-

sponding accuracy. In these experiments, we use the MovieLens 100K data. The

results reported in Table 5.7 can be summarized as follows:

• The psmkl measure shows slight correlation for the

(movie,rating,user,occupation) relation, but it does not show any

meaningful correlation for the (user,rating,movie,genre) relation.

• The correlation between the psmin measure and the accuracy is stronger than

the correlation of psmkl for both relations.

• Finally, the psmnorm measure has the strongest correlation with accuracy for

both relations.

In fact, the largest psmnorm corresponds the best fit for 92% for the (user,

rating, movie, genre) relation and 97% for the (movie, rating, user,

occupation) relation.

Also, even for the cases where the largest psmnorm does not give the best fit,

the difference between the best fit and the fit with the largest psmnorm is only

0.67% and 0.02% of the best fit in average for (user, rating, movie, genre)

and (movie, rating, user, occupation), respectively.

These results indicate that the norm based measure provides the best accuracy.

Therefore in the rest of this section, we use psmnorm as the default pair selection

measure.

An interesting observation is that all measures show higher degrees of correlation

for the (movie, rating, user, occupation) relation than for the (user, rating,

movie, genre) relation. We conjecture that this is because the attributes of the pair
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Table 5.8: Join selectivity and threshold when obtaining for different joined relations
Data set Joined relation js⊥ js

MovieLens 100K
(user, rating, movie, genre) 0.00119 0.00221

(movie, rating, user, occupation) 0.00388 0.00253

MovieLens 1M
(user, rating, movie, genre) 0.00040 0.00054

(movie, rating, user, occupation) 0.00075 0.00055

of relations (movie, user, rating) and (user, occupation) contributing to the

former have less dependence with each other than the attributes of the pair of relations

(user, movie, rating) and (movie, genre) contributing to the latter.

Evaluation of the Join Selectivity based Performance Predictor for Sparse

Tensors

As discussed in Section 5.3.5, for sparse tensors, the join selectivity (js) can

be used for predicting whether the join-by-decomposition can have time gain

over the join-then-decompose. In Table 7.10, we report js⊥ and js values for

the two pairs of relations, (user, rating, movie, genre) and (movie, rating,

user, occupation) of each data set. As shown in the table, the (user, rating,

movie, genre) relation has a higher js than js⊥ lower bound, whereas js of the

(movie, rating, user, occupation) relation is lower than js⊥. Therefore we ex-

pect that, for sparse tensors, join-by-decomposition will be more effective than

join-then-decompose for the (user, rating, movie, genre) relation, but not for

the (movie, rating, user, occupation) relation. We will also evaluate this pre-

diction in the following sections.

Single-core Execution Time Results

MovieLens 100K Data Set. First of all, we present the execution time results for

the smaller MovieLens 100K data set and compare the efficiency of the various imple-
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Figure 5.6: Running times of JTD-NWAY vs. JBD-NWAY for obtaining decompo-
sitions of the joined relations (a) (user, rating, movie, genre) and (b) (movie,
rating, user, occupation) of MovieLens 100K data set

mentations of the join-by-decomposition and join-then-decompose algorithms.

The total times reported in the plots includes all of the costs, including the time

to compute the norms, which were negligible (< 0.01 sec) and, thus, are not shown

separately. Since the data size is small, in this case, we are able to evaluate execution

times with both dense (NWAY) and sparse (CP) tensor representations.

Dense Representation. Overall, JTD-NWAY has the slowest running time (see

Figure 5.8). Since JBD-NWAY performs decompositions on tensors with much

smaller number of modes, JBD-NWAY has a much lower decomposition cost than

JTD-NWAY. As the tensor size increases, the time gain of JBD-NWAY over

JTD-NWAY increases both for the (user, rating, movie, genre) and (movie,

rating, user, occupation) relations (see Figure 5.6). Figure 5.8 shows how the
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Figure 5.7: Running times of JTD-CP vs. JBD-CP for obtaining decompositions of
the joined relations (a) (user, rating, movie, genre) and (b) (movie, rating,
user, occupation) of MovieLens 100K data set

execution time is distributed among the join and decomposition subtasks. As ex-

pected, for both schemes the cost is dominated by the cost of the decomposition step.

In terms of join processing times, join-by-decomposition (JBD) is slightly faster

than join-then-decompose (JTD). JBD does the join operation on the join factor

matrices which always have smaller (or equal) number of modes than those of the

input tensors which JTD does the join operation on.

Sparse Representation. Note that on this small data set, JTD-CP and JBD-CP are

showing similar running times for decomposition: This is because CP-ALS, which

assumes a sparse tensor model, is not as much affected by the number of tensor

modes as the NWAY based implementation which relies on the dense tensor model.

JBD-CP performs against JTD-CP differently, as predicted by the join selectivity
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Figure 5.8: Breakdown of average running times (log10 scale) of each algorithm of
join-then-decompose vs. join-by-decomposition for MovieLens 100K data set:
both algorithms are dominated by the decomposition step

lower bound (see Table 7.10). For the (user, rating, movie, genre) relation

(where js > js⊥), JBD-CP outperforms JTD-CP as the number of nonzero entries

increases (see Figure 5.7(a)); on the other hand, for the (movie, rating, user,

occupation) relation (where js < js⊥) as expected, JBD-CP is outperformed by

JTD-CP (see Figure 5.7(b)). We next compare JTD-CP and JBD-CP for large data

sets.

MovieLens 1M Data Set. Here we compare JTD and JBD decompositions based

on sparse representations on two different 1M data sets.

We first present the results for the (user, rating, movie, genre) relation. Fig-

ures 5.9(a) and (b) present the breakdowns of the average running times of JTD-CP

and JBD-CP with respect to the number of nonzero entries of tensors in the MovieLens

1M data set without parallelization. Since (as shown in Table 7.10) for this data set

we have js > js⊥, we expect that the total running time of JTD-CP increases faster

than that of JBD-CP as the tensor gets larger. This expectation is confirmed in the

log10 scale plots of Figures 5.9(a) and (b). The decomposition step in both schemes

dominates the running time even more than that in the result of the MovieLens 100K

data set and the join processing time of join-by-decomposition (JBD) scales better

with the larger data compared to that of join-by-decomposition (JTD). Note that
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Figure 5.9: Breakdown of average running times (log10 scale) of (a)
join-then-decompose, (b) join-by-decomposition, and (c) average total running
times of join-then-decompose and join-by-decomposition without paralleliza-
tion for obtaining the decomposition of the joined relation (user, rating, movie,
genre) of MovieLens 1M data set

the norm computation overhead of JBD is negligible. Figure 5.9(c) reconfirms that

the join-by-decomposition scheme scales much better than join-then-decompose.

Figure 5.9 shows the execution time results for the (movie, rating, user,

occupation) relation. Also in this case, similarly to the result of the (user,

rating, movie, genre) relation in Figure 5.9, the decomposition cost is the most

dominant component for both join-by-decomposition and join-then-decompose

(see Figures 5.10(a) and (b)). On the other hand, for the (movie, rating, user,

occupation) relation, we have js < js⊥ (see Table 7.10) thus we expect that

the decomposition cost of the join-by-decomposition will exceed that of the

join-then-decompose. Indeed, as shown in Figure 5.10(c)), the running time of
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Figure 5.10: Breakdown of average running times (log10 scale) of (a)
join-then-decompose, (b) join-by-decomposition, and (c) average total running
times of join-then-decompose and join-by-decomposition without paralleliza-
tion for obtaining the decomposition of the joined relation (movie, rating, user,
occupation) of MovieLens 1M data set

join-by-decomposition increases faster than that of the join-then-decompose.

This confirms that the join selectivity based threshold can be used to decide when to

use join-by-decomposition instead of join-then-decompose.

Multi-core Execution Time Results

MovieLens 100K Data Set. Figure 5.11 presents average multi-core running

times for the MovieLens 100K data set, for both dense and sparse representations.

The parallelized versions of the algorithms ran on 6 cores - i.e., in the case of rank-12

join-by-decomposition (JBD) each pair was assigned to a separate core. For the

parallel strategies of join-then-decompose (JTD), we report the average of three
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Figure 5.11: Average running times of JTD and JBD with parallelization on 6 cores
for MovieLens 100K data set

different partition schemes (see Table 7.8).

As can be seen in the figure, both JBD-NWAY (dense) and JBD-CP (sparse)

benefit more from parallelization than JTD-NWAY (dense) and JTD-CP (sparse). It

is also important to note that, while on a single core (as was reported in Figure 5.8)

JTD-CP and JBD-CP take almost the same time, on 6 cores, JBD-CP significantly

outperforms JTD-CP.

MovieLens 1M Data Set. In Figure 5.12, we compare the average running times

of JTD-CP and JBD-CP with vs. without parallelization for the MovieLens 1M Data

Set under sparse representation. For parallel JTD, we report the average running

time for 3 different grid settings (JTD-CP-GRID (AVG)). We also report the best

running time for all grid settings – which is the running time for the JTD-CP-GRID2

configuration 2 .

As Figure 5.12(a) shows, similarly to the result of the MovieLens 100K data set,

JBD-CP performs better than JTD-CP-GRID (AVG) as well as JTD-CP-GRID2 for

the (user, rating, movie, genre) relation (where js > js⊥). A very interest-

ing result (reported in Figure 5.12(b)) is that also on the (movie, rating, user,

2We conjecture that this is because, with sparse tensors (where the memory requirement is small),
the gains from higher core utilization due to the smaller sizes sub-tensors may be lower than the
increase in the communication overhead due to the larger number of sub-tensors.
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Figure 5.12: Average running times of JTD-CP and JBD-CP on single vs. multiple
numbers of cores for obtaining the decompositions of the joined relations (a) (user,
rating, movie, genre) and (b) (movie, rating, user, occupation) of Movie-
Lens 1M data set

occupation) relation (where js < js⊥ and, hence, JTD-CP outperforms JBD-CP on

a single core), JBD-CP performs better than JTD-CP-GRID (AVG) when given more

cores. Even the best of the all JTD-CP configurations, JTD-CP-GRID2, performs

only slightly better than JBD-CP with more cores. This drop in performance for the

JTD based approaches in multi-core architecture is due to the increased communica-

tion overhead, which is avoided by the JBD-based schemes.

It is also interesting to note that the performance of the algorithms saturates with

around 4 cores. This is explained in Figures 5.13(a) and (b), which show the average

running times for two different parallelization strategies presented in Section 5.3.6 as

well as the distributions of the execution times for different sub-tasks:
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Figure 5.13: Total and sub-task execution times for join-by-decomposition (a)
when each pair is assigned to a separate core (pp-JBD) and (b) when each decompo-
sition is assigned to a separate core (ip-JBD) for obtaining the decomposition of the
joined relation (user, rating, movie, genre) of MovieLens 1M data set. The fig-
ure also shows the total and sub-task execution times when join-by-decomposition
is running on a single core (JBD).

• As can be seen here, the two parallelization strategies are comparable in exe-

cution time: in fact, the per-decomposition parallelization strategy is slightly

slower than per-pair parallelization (due to increased parallelization overheads),

but the difference between the two schemes is negligible.

• For both pp-JBD and ip-JBD schemes, there is a parallelization overhead for

the sub-tasks due to data movement among the cores.
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Figure 5.14: Relative fit of JBD-CP to JTD-CP for obtaining the decompositions of
the joined relations (user, rating, movie, genre) and (movie, rating, user,
occupation) of MovieLens 100K data set

• The distributions of the costs of the different tasks are not uniform – for this

data set, the pair (rank-12, rank-1) is the costliest task and dominates the

overall execution time. As a result, as shown in Figures 5.13(a) and (b), the

same execution time speed-up as 6 cores can be obtained using only 4 cores by

assigning more than one of the cheaper tasks onto one single shared core.

Note that when there are more cores available, it would be possible to further divide

the work of the pair (rank-12, rank-1) to smaller chunks and assign to more cores

to achieve further speed-ups. We will consider further parallelization of individual

pairs (using a block-based decomposition, such as the grid NTF, or using JBD in a

hierarchical manner) in our future work.

Accuracy Results

In this subsection, we compare the accuracy of join-by-decomposition to

join-then-decompose. Note that we focus on accuracy results for JTD-CP and

JBD-CP (results for JTD-NWAY and JBD-NWAY are similar). We use the Movie-

Lens 100K data set for fit measurement for both algorithms since fit computation for

the MovieLens 1M data set requires more main memory than is available.

We first present the relative fit (see Equation (8.8)) of JBD-CP to JTD-CP with
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Figure 5.15: Relative fit of JBD-CP to JTD-CP and pp-JBD-CP to JTD-CP-GRID
(AVG) (the average fit of all different grid settings with parallelization) for obtaining
the decompositions of the joined relations (a) (user, rating, movie, genre) and
(b) (movie, rating, user, occupation) of MovieLens 100K data set

respect to the number of nonzero entries of the joined tensor (see Figure 5.14). The

relative fit increases as the number of nonzero entries increases, getting higher than

0.8 for both (user,rating,movie,genre) and (movie,rating,user,occupation)

relations. This result shows that join-by-decomposition works quite consistently,

not being affected by the increase of the number of nonzero entries while the quality of

join-then-decompose degenerates more severely for the larger tensors. Note that the

relative fit is slightly higher for (movie,rating,user,occupation) relation which is

likely to have higher independence among the clusters of its input relations than those

of the (user,rating,movie,genre) relation: a movie rating of a user is more likely

to be affected by the movie genre than the user occupation. This confirms the basic

premise of the proposed join-by-decomposition scheme that the algorithm is likely

to work better when the clusters from each decomposition are more independent from

each other.

Interestingly, as Figure 5.15 shows, the relative fit increases in the case of paral-

lelized execution, even exceeding 1.0 in some cases. This is because the accuracy of

join-then-decompose can degenerate when the input tensor is divided into a grid

of sub-tensors for parallelization, whereas join-by-decomposition does not suffer
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Table 5.9: Input relations and joined relations for JBD-Tucker experiment
Data set 1st input relation (P) 2nd input relation (Q) Join mode Joined relation (X)

MovieLens 1M
(user,rating,movie) (movie, genre) (movie) (user,rating,movie,genre)

(movie,rating,user) (user,occupation) (user) (movie,rating,user,occupation)

Enron (time,sender,recipient)
(recipient,

(recipient)
(time,sender,recipient,

recipient’s position) recipient’s position)

Table 5.10: Statistics of the joined relations for JBD-Tucker experiment
Data set Joined relation Tensor sizes #nonzero entries

MovieLens 1M
(user, rating, movie, genre) 6000× 5× 3800× 18 1825034

(movie, rating, user, occupation) 3800× 5× 4000× 21 819185

Enron (time, sender, recipient, recipient’s position) 5632× 184× 184× 8 34257

from such degradations during parallelization.

5.4.4 JBD-Tucker Experiments

As discussed in Section 5.3, we extended JBD to Tucker decomposition (JBD-

Tucker). We, therefore, evaluate JBD-Tucker in Section 5.4.4 using the MovieLens

1M data set obtained from [56] and the Enron data set [61] (Table 5.9):

• The MovieLens 1M data set consists of 1 million ratings from 6,000 users on

4,000 movies. In addition to the ratings information, this data set also includes

various movie metadata, such as movie genre, and user metadata, such as user

occupation. From this data set, we created two pairs of relational tensors:

– The first data set includes a 3-mode (user, movie, rating) and a 2-

mode (movie, genre); these join into a 4-mode (user, rating, movie,

genre) tensor.

– The second set includes a 3-mode (movie, user, rating) and a 2-mode

(user, occupation) tensors; these join into a 4-mode (movie, rating,

user, occupation) tensor.
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Table 5.11: Algorithms
Algorithm Description

Tucker-ALS Tucker-ALS algorithm

MET* “*” modes element-wise Memory-Efficient Tucker

JTD-Tucker-ALS JTD-Tucker using Tucker-ALS

JTD-MET* JTD-Tucker using MET*

JBD-Tucker-ALS JBD-Tucker using Tucker-ALS

JBD-MET* JBD-Tucker using MET*

• The Enron data set consists of email exchanges among 184 email ad-

dresses during 5,632 days. This data set is used to create a 3-mode

relation (time, sender, recipient) and a 2-mode relation (recipient,

recipient’s position). These two relations join into a 4-mode relation,

(time, sender, recipient, recipient’s position).

Data tensor dimensions and the number of nonzero entries are shown in Table 5.10.

Tucker Decomposition Algorithms (Single Core)

Conventional Tucker decomposition algorithms, such as [9], quickly become ineffective

on dense data sets. Therefore, we focus on Tucker decompositions of sparse data

sets. We consider Tucker-ALS algorithm which is available in the Tensor Toolbox

for MATLAB [12]. We also use MET (Memory-Efficient Tucker) in [45]. For MET,

there are multiple variations that we denote MET* according to how many modes are

handled element-wise; the number of modes handled element-wise is denoted by “*”.

Tucker-ALS and MET* are also used as the base Tucker algorithm for JBD-Tucker;

these are referred to as JBD-Tucker-ALS and JBD-MET*, respectively.

Tucker Decomposition Algorithms (Parallel, Multi-core)

Since neither of the conventional decomposition algorithms, Tucker-ALS and MET,

supports parallelization, we only consider parallelization of JBD-Tucker. In partic-
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Figure 5.16: Running time and bottleneck memory consumption of JBD-Tucker vs.
JTD-Tucker for obtaining decompositions of the joined relations (a) (user, rating,
movie, genre) and (b) (movie, rating, user, occupation) of MovieLens 1M
data set

ular, we consider two parallelizations: JBD-Tucker-ALS and JBD-MET*, which are

referred to as pp-JBD-Tucker-ALS and pp-JBD-MET* respectively.

Results: JBD for Tucker Decomposition (JBD-Tucker)

As discussed earlier, we extended JBD to Tucker decompositions (JBD-Tucker). We

first evaluate the efficiency and effectiveness of the JBD against the conventional join-

then-decompose (JTD) approach. Since we extended JBD to Tucker decompositions,

our experiments focus on Tucker decomposition (JBD-Tucker vs. JTD-Tucker) (see [?

] for the experimental result for JBD-CP vs. JTD-CP). Especially for dense tensors

and Tucker decomposition, memory usage can be the major bottleneck. Thus we

report the maximum intermediate memory use provided by the MET* algorithm.

Figure 5.16 shows the running times and the memory consumption of JBD-Tucker

(single core and parallel) and JTD-Tucker schemes for the two relations of MovieLens

1M data set. Since both JBD-Tucker and JTD-Tucker can be implemented using

different Tucker implementations, each with different memory consumption, the figure

displays only best performing alternative for JTD-Tucker (JTD-MET1), single-core
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Figure 5.17: Running time and bottleneck memory consumption of JBD-Tucker vs.
JTD-Tucker for Enron data set using configurations that provide (a) (target: running
time) and (b) (target: memory)

JBD-Tucker (JBD-Tucker-ALS), and parallel JBD-Tucker (pp-JBD-Tucker-ALS). As

we see in the figure, JBD-Tucker schemes outperform JTD-Tucker both in terms

of execution time and memory. Moreover, the parallelized version of JBD-Tucker

can further bring the running time cost significantly down (though at the expense

of increased memory consumption) relative to the single-core JBD-Tucker. Note

also that the advantage of the JBD-Tucker is especially pronounced for the (user,

rating, movie, genre) relation, which is denser than the (movie, rating, user,

occupation) relation (0.089% vs. 0.051%). This confirms our observation that JBD-

Tucker is especially useful in cases where JTD-Tucker is likely to fail.

As we see in Figures 5.17 (a – “running time” targeted configurations) and (b

– “ memory” targeted configurations), on the other hand, the Enron data set is

challenging for JBD-Tucker: this is because, as discussed in Section 7.5, the reduc-

tion in the number of modes when using JBD-Tucker is only one and the savings

obtained through JBD-Tucker (in this case JBD-MET2) does not amortize the addi-

tional overheads to outperform JTD-Tucker in terms of execution time (JTD-MET2 in

Figure 5.17(a) and JTD-MET3 in Figure 5.17(b)). However, when the parallelization
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Table 5.12: Relative fit of JBD-Tucker to JTD-Tucker of the joined relations
Data set Joined relation rank-6 rank-12

MovieLens 1M
(user, rating, movie, genre) 0.8534 0.7685

(movie, rating, user, occupation) 0.9569 0.9457

Enron (time, sender, recipient, recipient’s position) 0.8919 0.7026

opportunities provided by JBD-Tucker are leveraged, JBD-Tucker easily outperforms

JTD-Tucker. Moreover, in terms of memory consumption, JBD-Tucker outperforms

JTD-Tucker.

Finally, Table 5.12 shows the relative fit (see Equation ??) of JBD-Tucker relative

to JTD-Tucker: the relative fit is bigger than 0.7 for all cases and for the (movie,

rating, user, occupation) relation, it reaches to ∼ 0.95.
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Chapter 6

UNION-BY-DECOMPOSITION (UBD): PUSHING-DOWN TENSOR

DECOMPOSITION STRATEGY TO PROMOTE REUSE OF MATERIALIZED

DECOMPOSITIONS

From data collection to decision making, the life cycle of data often involves many

steps of integration, manipulation, and analysis. To be able to provide end-to-end

support for the full data life cycle, todays data management and decision making

systems increasingly combine operations for data manipulation, integration as well

as data analysis. Tensor-relational model (TRM) is a framework proposed to sup-

port both relational algebraic operations (for data manipulation and integration) and

tensor algebraic operations (for data analysis). In this chapter, we consider joint

processing of relational algebraic and tensor analysis operations. In particular, we fo-

cus on data processing workflows that involve data integration from multiple sources

(through unions) and tensor decomposition tasks. While, in traditional relational

algebra, the costliest operation is known to be the join, in a framework that provides

both relational and tensor operations, tensor decomposition tends to be the compu-

tationally costliest operation. Therefore, it is most critical to reduce the cost of the

tensor decomposition task by manipulating the data processing workflow in a way

that reduces the cost of the tensor decomposition step. Therefore, in this chapter,

we consider data processing workflows involving tensor decomposition and union op-

erations and we propose a novel scheme for pushing down the tensor decompositions

over the union operations to reduce the overall data processing times and to promote

reuse of materialized tensor decomposition results. Experimental results confirm the

efficiency and effectiveness of the proposed scheme.
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6.1 Introduction

As a higher-order generalization of matrices, tensors provide a suitable data repre-

sentation for multidimensional data sets and tensor decomposition (which is a higher-

order generalization of SVD/PCA for multi-aspect data analysis) helps capture the

higher-order latent structure of such datasets. Consequently, the tensor data model is

increasingly being used by many application domains including scientific data man-

agement [19, 34, 59, 74], sensor data management [73], and social network data anal-

ysis [45, 47, 58]. On the other hand, from data collection to decision making, the

life cycle of data often involves many steps of integration, manipulation, and analy-

sis. Therefore, to be able to provide end-to-end support for the full data life cycle,

today’s data management and decision making systems increasingly need to combine

different types of operations for data manipulation, integration, and analysis.

The tensor-relational model (TRM) brings relational algebraic operations (for

data manipulation and integration) and tensor algebraic operations (for data analy-

sis) together and supports complex data processing plans where multiple relational

algebraic and tensor algebraic operations are composed with each other.

In this chapter, we focus on query plans that involve tensor decomposition and

union operations (as in Figure 4.4(a)) and propose novel decomposition push-down

strategies (as in Figure 4.4(b)) that help reduce the overall cost of the query plan. We

refer to the query plan that first performs the union operation on the data and then

applies the tensor decomposition on the union of the data as union-then-decompose

(UTD) plan. The query plan with decomposition push-down, which first performs the

tensor decompositions on each input data source and then combines these decomposed

tensors as the union-by-decomposition (UBD) plan.
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6.1.1 Contributions

A union-by-decomposition (UBD) plan, with decomposition push-down, has vari-

ous advantages over the conventional union-then-decompose (UTD) plan:

• Firstly, especially when the overlaps between the input data sources are small,

the union operation can combine relatively small and sparse tensors into a larger

and denser tensor. Consequently, the decomposition over the union data can

be much more expensive than the decompositions over the input data sources.

Moreover multiple tensor decompositions on input tensors can run in parallel,

which will further reduce the cost.

• Secondly, a union-by-decomposition (UBD) based plan provides opportunities

for materializing decomposition of data tensors and re-using these materialized

decompositions in more complex queries requiring integration of data.

Despite these advantages, however, implementing the UBD strategy requires us to

address a number of key challenges:

• Challenge 1: How can we combine the factor matrices of tensor de-

compositions with their own eigen basis into the eigen basis of the

union tensor? If tensor decomposition is thought of as a group of clusters,

combining different groups of clusters for different tensors into another group

of clusters for the union of the tensors is not straightforward.

• Challenge 2: For the common data elements at the intersection of

multiple data sources, which factors (clusters when the clustering

analogy is used) among the different tensor decompositions should

we choose? This is critical as the choice can impact the final accuracy of the

UBD based plan.
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Figure 6.1: (a) Tensor decomposition on the union of the two relations and (b) the
union operation on the two tensor decompositions of the input relations

In this chapter, we present algorithms and techniques to address these questions. In

Section 6.2, we extend TRM with the proposed union-by-decomposition operation: we

discuss strategies for combining the tensor decompositions for the union of the tensors

from different sources and consider alternative selection measures to choose a group

of factors for data entries common to input data sources. We also consider query

plans that include both join and union operations along with tensor decomposition.

We, then, experimentally evaluate the proposed scheme in Section 6.4.

6.2 Union-by-Decomposition (UBD) and Decomposition Push-Down

In this section, we describe our proposed union-by-decomposition (UBD) approach

that pushes down tensor decompositions over union operators: Unlike the more con-

ventional union-then-decompose (UTD) scheme, which applies decomposition on the

union of the two relations (Figure 6.1(a)), UBD first performs the tensor decomposi-

tion on the input tensors then these decompositions are combined into the final result

(Figure 6.1(b)).
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Figure 6.2: Naive grid-based UBD: (a) Input tensors are partitioned into an inter-
secting sub-tensor and non-intersecting sub-tensors; (b) intermediary decompositions
of grid-based UBD

6.2.1 Challenge 1: Implementing UBD through Partition-based ALS

Naive Grid-based UBD.

One way to implement the UBD operation is to divide the input tensors into common

(or intersection) and (2N − 1 many when the number of modes is N) uncommon

sub-tensors as shown in Figure 6.2(a) and then considering each partition as a cell

of a larger tensor partitioned into a grid as shown in Figure 6.2(b) and applying the

grid-based tensor decomposition strategy proposed in [59] to combine these into a

single decomposition.

Proposed Implementation of UBD.

An obvious shortcoming of the naive grid-based UBD discussed above is that it leads

to a very large number of intermediary decompositions and this number increases

quickly with the number of modes of the input tensors. To tackle this challenge,

we propose to decompose input tensors directly (through decomposition push-down)

and recombine the resulting factor matrices in a way that reflects the common and

non-intersecting sub-factors of these decompositions as shown in Figure 6.3. The

high-level pseudocode of this partition-based UBD scheme is shown in Algorithm 1.
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Figure 6.3: UBD: (a) first the inputs tensors are decomposed and (b) these decom-
positions are recombined by considering the common and non-intersection parts of
the factor matrices.

We next present the details of the proposed UBD process:

Let us assume that we are given two tensors PI1×I2×···×IN and QJ1×J2×···×JN and

let us assume we have already computed their CP decompositions

CP (P) = P̂ = 〈P(1), . . . ,P(N)〉 and CP (Q) = Q̂ = 〈Q(1), . . . ,Q(N)〉. (6.1)

Our goal is to estimate CP (P ∪Q) = 〈U(1), . . . ,U(N)〉 efficiently using these decom-

positions. To achieve this, we solve the ALS problem

min ‖(P ∪Q)− 〈U(1), . . . ,U(N)〉‖ (6.2)

by appropriately combining sub-factors of the input tensors. More specifically, each

factor of P and Q are split into two: a non-intersecting (P
(n)
(1) and Q

(n)
(3) ) and intersect-
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Algorithm 1: Union-By-Decomposition (UBD) (input: two tensors

PI1×I2×···×IN and QJ1×J2×···×JN , optional input: CP decompositions of P

and Q, 〈P(1), . . . ,P(N)〉 and 〈Q(1), . . . ,Q(N)〉, respectively, output: factors

U(1), . . . ,U(N) for P ∪Q)
1: if no existing decompositions given then

2: Run any available CP algorithm on P and Q in parallel to get factors P(1), . . . ,P(N) and

Q(1), . . . ,Q(N)

3: end if

4: for each mode n do

5: create sub-factors P̂
(n)
(1)

and P̂
(n)
(2)

,

and Q̂
(n)
(2)

and Q̂
(n)
(3)

with non-intersecting and intersecting sub-factors of P(n) and Q(n), respectively

(see Figure 6.3(a))

6: end for

7: select either P̂
(n)
(2)

and Q̂
(n)
(2)

for factors T(n) for intersection P ∩ Q by a selection measure (see Section 6.2.2)

8: repeat the update process for sub-factors U
(n)
(1)

, U
(n)
(2)

, and U
(n)
(3)

using Equation 6.7 until a stopping

condition is satisfied, which are combined to U(n) by Equation 6.5

ing (P
(n)
(2) and Q

(n)
(2) ) partitions. Given these, the CP decompositions of [k1, k2, . . . , kN ]-

th sub-tensor of P and Q are

CP (P(k̄)) = 〈P(1)
(k1), . . . ,P

(N)
(kN )〉 and CP (Q(k̄)) = 〈Q(1)

(k1), . . . ,Q
(N)
(kN )〉, (6.3)

respectively, where k̄ = [k1, k2, . . . , kN ] for kn ∈ {1, 2} for P(k̄) and kn ∈ {2, 3} for

Q(k̄). Given these, we can approximate the decompositions of each sub-tensor of P

and Q with the CP decompositions of P and Q, respectively (see Figure 6.3(a)):

CP (P(k̄)) ≈ 〈P̂(1)
(k1), . . . , P̂

(N)
(kN )〉 and CP (Q(k̄)) ≈ 〈Q̂(1)

(k1), . . . , Q̂
(N)
(kN )〉. (6.4)

Let us denote the CP decomposition of [k1, k2, . . . , kN ]-th sub-tensor of P ∪Q as

CP ((P ∪Q)(k̄)) = CP (Y(k̄)) = 〈U(1)
(k1), . . . ,U

(N)
(kN )〉,

where k̄ = [k1, k2, . . . , kN ] for kn ∈ {1, 2, 3}. Note that each factor of CP (P∪Q) can
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be split into three partitions

U(n) = [U
(n)T
(1) U

(n)T
(2) U

(n)T
(3) ]T , (6.5)

one corresponding to a non-intersecting sub-factor from one input matrix, the

other corresponding to a common sub-factor, and the last corresponding to a non-

intersecting sub-factor from the second input matrix. Given these, we can re-

formulate the minimization problem in Equation (6.2) for each sub-tensor Y(k̄) of

P ∪Q as minimizing D, where

D =
1

2

3∑
k1=1

· · ·
3∑

kN=1

‖Y(k̄) − 〈U(1)
(k1), . . . ,U

(N)
(kN )〉‖,

or, considering the n-mode matricized tensor Y
(k̄)
(n) of Y(k̄), as minimizing

D =
1

2

∑
k̄

‖Y(k̄)
(n) −U

(n)
(kn){U

(1)
(k1) �U

(2)
(k2) � · · · �U

(n−1)
(kn−1) �U

(n+1)
(kn+1) � · · · �U

(N)
(kN )}‖,

where � is the Khatri-Rao product.

This minimization problem can be solved using an ALS problem by identifying

gradient components with respect to sub-factors as in [59]. More specifically, the

gradient component with respect to sub-factor U
(n)
(kn) is

∆
U

(n)
(kn)

D =
∑

k̄n=kn

(
−Y

(k̄)
(n)U

�−n

(k̄)
+ U

(n)
(kn)U

�−nT

(k̄)
U
�−n

(k̄)

)
=
∑

k̄n=kn

(
−Y

(k̄)
(n)U

�−n

(k̄)
+ U

(n)
(kn){U

T
(k̄)U(k̄)}~−n

)
,

(6.6)

where ~ is the Hadamard (element-wise) product. Given this, each sub-factor U
(n)
(kn)

can be updated using the update rule

U
(n)
(kn) ←

 ∑
k̄n=kn

Y
(k̄)
(n)U

�−n

(k̄)

 ∑
k̄n=kn

(UT
(k̄)U(k̄))

~−n

−1

. (6.7)
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Note that, from Equation 6.4, for each sub-tensor Y(k̄) = P(k̄), considering to the first

input matrix we have

Y
(k̄)
(n)U

�−n

(k̄)
≈ P̂

(n)
(kn)P̂

�−nT

(k̄)
U
�(−n)

(k̄)
. (6.8)

Similarly, for each sub-tensor Y(k̄) = Q(k̄), considering to the second input matrix, we

have

Y
(k̄)
(n)U

�−n

(k̄)
≈ Q̂

(n)
(kn)Q̂

�−nT

(k̄)
U
�(−n)

(k̄)
. (6.9)

Finally, for each sub-tensor Y(k̄) such that Y(k̄) = P ∩Q,

Y
(k̄)
(n)U

�−n

(k̄)
≈ T(n)T�−nTU

�(−n)

(k̄)
, (6.10)

where T(n) are the factors of CP (P∩Q). Note that T(n) can be estimated from either

the CP decomposition of P(2̄)

CP (P ∩Q) = CP (P(2̄)) ≈ 〈P̂(1)
(2), . . . , P̂

(N)
(2) 〉,

where 2̄ = [k1, k2, . . . , kN ] for all kn = 2, or the CP decomposition of Q(2̄)

CP (P ∩Q) = CP (Q(2̄)) ≈ 〈Q̂(1)
(2), . . . , Q̂

(N)
(2) 〉.

The choice is critical and can impact significantly on the accuracy of the overall

process. Therefore, we next discuss how to select whether to use P̂
(n)
(2) or Q̂

(n)
(2) to

estimate T(n).

6.2.2 Challenge 2: Selection of Sub-Factors for the Overlapping Sub-Tensor

As described above, the factors T(n) of the overlapping sub-tensor, P ∩ Q (used

in the computation of CP (P ∪ Q)) can be selected from either P̂
(n)
(2) or Q̂

(n)
(2) . As

also explained before, the choice is critical as it may impact the accuracy of the final

decomposition, CP (P∪Q). Therefore, in this subsection, we explore alternative ways

for choosing the sub-factors, T(n), of CP (P ∩Q).
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Intersection-based selection criteria.

When we are choosing between P̂
(n)
(2) and Q̂

(n)
(2) to use as T(n), one criteria would be to

consider how well P̂
(2̄)

= 〈P̂(1)
(2) . . . P̂

(N)
(2) 〉 and Q̂

(2̄)
= 〈Q̂(1)

(2) . . . Q̂
(N)
(2) 〉 fit P ∩Q:

IC1(P̂
(2̄)

) = 1− ‖(P ∩Q)− P̂
(2̄)
‖

‖P ∩Q‖
and IC1(Q̂

(2̄)
) = 1− ‖(P ∩Q)− Q̂

(2̄)
‖

‖P ∩Q‖
.

One obvious difficulty with this fit-based intersection criterion, IC1, is that the fit

computations can be very costly. Alternatively, if we consider the two tensor decom-

positions, P̂
(2̄)

and Q̂
(2̄)

as two groups of clusters, then we need to choose the group

of clusters on which the membership of the shared elements (the overlapping part)

is more tight and we can use the norms of the sub-factors to quantify how strongly

elements belongs to the corresponding clusters. Intuitively, norms of the sub-factors

corresponding to the overlapping region

IC2(P̂
(2̄)

) = ‖〈P̂(1)
(2), . . . , P̂

(N)
(2) 〉‖, IC2(Q̂

(2̄)
) = ‖〈Q̂(1)

(2), . . . , Q̂
(N)
(2) 〉‖,

explain the contribution of each element to these clusters and the one with the larger

intersection criterion measure, IC2, can be used to T(n).

Note that the norm of the sub-factors of the overlapping region excludes any

knowledge about how the groups fit with the rest of the tensors. Alternatively, we

can account for the strengths of the groups in the whole tensor by also considering

the core tensor

IC3(P̂
(2̄)

) = ‖〈λp, P̂(1)
(2), . . . , P̂

(N)
(2) 〉‖, IC3(Q̂

(2̄)
) = ‖〈λq, Q̂(1)

(2), . . . , Q̂
(N)
(2) 〉‖,

and select the tensor which leads to the larger intersection criterion, IC3, measure.

Here, λp and λq are core vectors of P̂
(2̄)

and Q̂
(2̄)

, respectively.

Note that for IC2 and IC3, the columns of P̂
(n)
(2) and Q̂

(n)
(2) are normalized to length

one with the weights absorbed into the vector λp and λq, respectively.
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Union-based selection criteria.

The aforementioned intersection-based selection criteria have a potential weakness:

as we see later in Section 8.3, the selection measures based on intersection fit and

norm work well when the two input tensors are balanced in size. If the two tensors

are unbalanced in size (i.e. one of the tensors is much larger than the other) the

non-overlapping region of the larger tensor is likely to have a large impact on the

final accuracy and the intersection-based selection criteria which primarily focus on

the overlapping region of the tensors may fail to capture this. To address this limit

of intersection-based selection criteria, we also consider union-based selection criteria

that take into account both non-overlapping and overlapping parts of the tensors.

Firstly, we consider the fit of the union of the decomposed tensors to the union of

the two original tensors

UC1(〈U(1), . . . ,U(N)〉) = 1− ‖(P ∪Q)− 〈U(1), . . . ,U(N)〉‖
‖P ∪Q‖

,

and we choose between the two alternatives by setting the initial U(n) to

[P̂
(n)T
(1) P̂

(n)T
(2) Q̂

(n)T
(3) ]T and to [P̂

(n)T
(1) Q̂

(n)T
(2) Q̂

(n)T
(3) ]T and observing which one leads to a

better fit. UC1 is the initial fit of the union of the decomposed tensors to the union of

the two original tensors in the beginning of the update process of U
(n)
(kn) for kn = 1, 2, 3

(see Equation 6.7). Intuitively, this initial fit can be thought of as a rough indicator

of whether the final fit of the union of the decomposed tensors solved by the learning

process will be close to the decomposition on the union of two tensors or not.

As a second criterion, we consider the density of the input tensors, PI1×I2×···×IN

and QJ1×J2×···×JN ,

UC2(P) =
|P|∏N
i=1 Ii

, UC2(Q) =
|Q|∏N
i=1 Ji

,

where |X| is the number of non-zeros of X. Given this, we set the initial U(n),

U(n) = [P̂
(n)T
(1) P̂

(n)T
(2) Q̂

(n)T
(3) ]T , if P has a larger density, or
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and union-by-decomp. (UBD) and union-by-decomp. (UBD)

Figure 6.4: Three alternative query plans for implementing a complex query plan
with union, join, and decompose operations

U(n) = [P̂
(n)T
(1) Q̂

(n)T
(2) Q̂

(n)T
(3) ]T , if Q has a larger density.

Intuitively, the overlapping part will be more tightly connected with the non-

overlapping part in the input tensor with the larger density – simply because there

are less chances that an entry will be seen only in the overlapping part. Thus, given

the choice between using the decompositions (for the overlapping part) of the input

tensor with the larger density and of the tensor with the smaller density, the former

is likely to lead to lesser errors.

6.3 Parallelization, Materialization, and Further Optimizations

The proposed union-by-decomposition (UBD) scheme leads to various optimiza-

tion opportunities. First of all, assuming the availability of multiple computation
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Table 6.1: Tensor data sets
Data set Attributes Size Density (%)

3-mode MovieLens 1M (user, movie, rating) 6000× 3400× 5 0.8451

3-mode book rating (user, book, rating) 105283× 340556× 11 0.0003

4-mode Epinions (user, product, category, rating) 22111× 296000× 26× 5 0.000007

4-mode MovieLens 1M (user, movie, genre, rating) 6000× 3400× 18× 5 0.0994

units, the individual data sources can be decomposed in parallel. Moreover, each in-

dividual decomposition of the sub-tensors can also be obtained in parallel, leading to

highly parallelizable execution plans. Secondly, as we see in Section 8.3, in situations

where the same data source is integrated (unioned) with different data sources over

time, we can decompose this data source once and materialize the decomposition for

later reuse within a UBD process, thereby avoiding significant amount of runtime

work.

In addition, the proposed union-by-decomposition (UBD) operator is compatible

with other novel (decomposition push-down based) operators, including the join-by-

decomposition (JBD) operator, discussed in Chapter 5, and can be used as part of

a general optimization framework. Figure 6.4 provides an example: in Figure 6.4(b)

first the join is pushed down over union and then the decomposition is pushed down

over union, whereas in Figure 6.4(c) the decomposition is pushed down also over the

join operator leading to (as we see in Section 8.3) a highly efficient query plan.

6.4 Experimental Evaluation

In this section, we present experimental results assessing the efficiency and ef-

fectiveness of the proposed union-by-decomposition (UBD) scheme and the selection

criteria.

6.4.1 Experimental Setup

For these experiments, we used real data tensors (Table 6.1): (a) MovieLens

1M data set [56] with a 3-mode tensor (user, movie, rating) and (b) a 4-mode
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tensor (user movie, genre, rating), (c) a book rating data set [79] with a 3-mode

tensor (user, book, rating), and (d) Epinions data set [72] with a 4-mode tensor

(user, product, category, rating). From each data tensor, we created pairs of

sub-tensors (chosen randomly) with different degrees of intersection (10%, 20%, 40%,

60%). The target rank that we consider for the CP decomposition is 10. The default

selection measure is the density-based selection measure, UC2.

For evaluation, we consider both execution time and degree of fit defined as

fit(X, ˆP ∪Q) = 1− ‖X− ( ˆP ∪Q)‖
‖X‖

, (6.11)

where X is the union of P and Q and ˆP ∪Q is the tensor obtained by re-composing

the decomposition of P∪Q in the considered scheme. Comparing the fit with respect

to X enables us not only to measure how well P ∪ Q approximates the entries in

P ∪ Q, but also whether ˆP ∪Q includes any spurious entries that are not originally

in P ∪Q.

We ran all the experiments on a machine with Intel Core i5-2400 CPU @ 3.10GHz

×4 with 7.7 GB RAM. We used MATLAB Version 7.13.0.564 (R2011b) 64-bit for the

general implementation and MATLAB Parallel Computing Toolbox for the parallel

implementations. We used the MATLAB Tensor Toolbox [12] to represent relational

tensors as sparse tensors.

6.4.2 Results #1: UBD vs. UTD (with and without materialization)

We first compare the proposed UBD against the more conventional UTD scheme.

As a second competitor, we also consider the naive grid-based UBD discussed in Sec-

tion 6.2.

Firstly, as we see in Figure 6.5(a), when there are opportunities for reusing existing

materialized decompositions of the input tensors, as expected, UBD is much faster

than the UTD as well as the naive grid-based UBD.

Secondly, in Figure 6.5(c), we consider the case where there are no opportunities
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Figure 6.5: UBD vs. UTD vs. naive grid-based UBD on pairs of tensors with
different intersection sizes (10%, 20%, 40%, 60%)
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for reusing existing decompositions. As we see in this figure, as expected, when the

input tensors have to be decomposed as part of the UBD process, whether UBD

outperfoms UTD depends on the characteristics of the input tensors: in particular,

as expected, UBD is faster than UTD when (a) the degree of intersection is low

(≤ 20%) and (b) the input tensors are not extremely sparse: if these conditions are

not satisfied, the size of the union result is close to the sizes of input tensors and, if

the result is also sparse, there is no gain in pushing down the decompositions.

Note that, when materialized decompositions of the input tensors do not exist,

grid-based UBD can out-pace the proposed UBD and UTD in many configurations.

However, as we see in Figure 6.5(b), this comes at the cost of a significant drop in

accuracy: the proposed UBD scheme achieves fits close to the fit of UTD, whereas

the accuracy of the grid-based UBD is much lower. Note also that the accuracy of

UBD is especially good in data sets that are not extremely sparse.

6.4.3 Results #2: Evaluation of the Alternative Selection Measures

In Section 6.2.2, we considered various approaches (IC1, IC2, IC3, UC1, and

UC2) for choosing the sub-factors for the overlapping parts of the input tensors. Fig-

ure 6.6(a) shows that fit-based measures (intersection fit, IC1 and union fit, UC1) are

more expensive than norm-based measures (IC2, IC3). The density-based approach

(UC2) has an almost 0 execution cost. Note that, when we compare the computa-

tion times of these selection measures to the execution times of the UBD operators

(Figure 6.5), we see that even the most expensive selection strategy is, in practice,

affordable. Therefore, the major criterion for selecting among these measures should

be accuracy.

For measuring the accuracy of different selection measures, we considered the

percentage of the cases where each selection measure returned the best alternative.

As shown in Figure 6.6(b), the union-based fit (UC1) measure works best overall. The
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Figure 6.6: Efficiency and accuracy of the different selection measures in average of
different intersection sizes (10%, 20%, 40%, and 60%)

Table 6.2: Average fit of the different selection measures (The highest fits for each
data set are highlighted in bold)

Data set IC1 IC2 IC3 UC1 UC2

3-mode MovieLens 1M 0.0538 0.0539 0.0551 0.0551 0.0553

3-mode book rating 0.0127 0.0127 0.0134 0.0141 0.0138

4-mode Epinions 0.0133 0.0133 0.0144 0.0164 0.0164

4-mode MovieLens 1M 0.0380 0.0376 0.0378 0.0377 0.0380

density measure (UC2) also works well. The figure also shows that the intersection-

based measures (IC1, IC2, IC3) are not good indicators, even behave negatively in

some cases: among them the IC3 works the best since it also accounts for the non-

overlapping regions through the cluster strength indicated by the core. Table 6.2

further studies the average degree of fits returned by the different strategies. The

table confirms that the average fits obtained by the union-based selection measures

are overall better than the intersection-based selection measures. While the numbers

vary, the degrees of fit based on the union-based selection measures are up to 20%

better than IC1 and IC2.

To further study the impacts of various parameters on the selection accuracy,

we also created random tensors with different configurations, varying the balance

(ratio of densities) of the input tensors and intersection sizes. For each experiment,

we created 10 different random tensors of size 5000 × 5000 × 10 and measured the
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Figure 6.7: Success rate in predicting the best fit of UBD using the 5 selection
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percentage cases in which each measure selected the better fitting tensor. As the

default configuration, we set the ratio of non-zeros to 1 (most balanced), intersection

size to 4%, and the density of the union tensor to 0.01%.

In Figure 6.7(a), we first study the impact of balance. Here, the configuration

with ratio = 1 corresponds to the most balanced configuration. As we expected,

when the tensors are balanced, all measures work similarly (with a slight edge to

the intersection-based measures); however, as the imbalance among tensors increases,

intersection-based measures get worse, while the union based measures, especially

UC1, improve.

Unlike balance, the size of the intersection has no significant impact on the selec-

tion accuracy (Figure 6.7(b)), indicating that all measures are robust in this respect.

6.4.4 Results #3: Impact of Composition of UBD with other Operators

As we discussed in Section 6.3, the proposed union-by-decomposition (UBD) op-

erator is compatible with other operators and can be used as part of a general opti-

mization framework. In Figure 6.8 for a sample data, we study the alternative query

plans considered in Figure 6.4. As expected, the figure shows that pushing decompo-

sitions down the join and union operations (i.e., using UBD, proposed in this chapter,

and/or JBD, proposed in Chapter 5 provides a much faster execution times than the
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on 4-mode MovieLens 1M

union operation and join operation followed by a final CP decomposition step. As

shown in Figure 6.8(a), among these three alternative query plans, the query plan

using JBD and UBD is the fastest (faster than 5× of the union, join, and decompose

strategy) but comes with ∼ 20% drop in accuracy (Figure 6.8(b)). On the other hand,

using UBD proposed in this chapter along with the conventional join-then-decompose

(JTD) strategy instead of JBD reduces the execution time relative to “union, join,

and decompose” by ∼ 20% (Figure 6.8(a)), with a negligible impact on accuracy

(Figure 6.8(b)).
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Chapter 7

DECOMPOSITION-BY-NORMALIZATION (DBN): LEVERAGING

APPROXIMATE FUNCTIONAL DEPENDENCIES FOR EFFICIENT CP AND

TUCKER DECOMPOSITIONS

For many multi-dimensional data applications, tensor operations as well as re-

lational operations both need to be supported throughout the data lifecycle. Ten-

sor based representations (including two widely used tensor decompositions, CP

and Tucker decompositions) are proven to be effective in multi-aspect data analy-

sis and tensor decomposition is an important tool for capturing high-order structures

in multi-dimensional data. Although tensor decomposition is shown to be effective

for multi-dimensional data analysis, the cost of tensor decomposition is often very

high. Since the number of modes of the tensor data is one of the main factors con-

tributing to the costs of the tensor operations, we focus on reducing the modality of

the input tensors to tackle the computational cost of the tensor decomposition pro-

cess. We propose a novel decomposition-by-normalization (DBN) scheme that

first normalizes the given relation into smaller tensors based on the functional de-

pendencies of the relation, decomposes these smaller tensors, and then recombines

the sub-results to obtain the overall decomposition. The decomposition and recom-

bination steps of the decomposition-by-normalization scheme fit naturally in set-

tings with multiple cores. This leads to a highly efficient, effective, and parallelized

decomposition-by-normalization algorithm for both dense and sparse tensors for

CP and Tucker decompositions. Experimental results confirm the efficiency and effec-

tiveness of the proposed decomposition-by-normalization scheme compared to the

conventional nonnegative CP decomposition and Tucker decomposition approaches.
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7.1 Introduction

Tensor based representations, including two widely used decompositions, CP [19,

34] and Tucker [74] decompositions, are proven to be effective in multi-aspect data

analysis. Consequently, tensor decomposition is an important tool for capturing high-

order structures in multi-dimensional data [10, 45, 46, 47, 59, 73, 78].

Unfortunately, tensor decomposition operation can be prohibitively costly when

the tensor data have a large number of modes:

• One obvious problem is the space needed to hold the input tensors. When the

tensor is dense (i.e., has a large number of nonzero entries) or when a dense

tensor representation is used for algorithmic reasons, the space required to hold

the data increases exponentially with the number of modes.

• The Tucker decomposition may be infeasible for large data sets (even if the

original tensor is sparse) since the tensors needed to represent intermediate

results are often dense.

Recent attempts to overcome these problems using parellel tensor decomposition [10,

59, 78] techniques also face difficulties, including synchronization and data exchange

overheads.

7.1.1 Contributions

Our goal is to tackle the high computational cost of the tensor decomposition

process. Since, as described above, the number of modes of the tensor data is one of

the main factors contributing to the cost of the tensor operations, we argue that if

• a tensor with large number of modes can be normalized (i.e., vertically parti-

tioned) into tensors with smaller number of modes and
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• each sub-tensor is decomposed independently,

then the resulting partial decompositions can be efficiently combined to obtain the

decomposition of the original tensor. We refer to this as the decomposition-

by-normalization (DBN) scheme.

Example 7.1.1 Consider the 5-attribute relation, R(workclass, education, ID,

occupation, income) in Figure 7.1(a) and assume that we want to decompose the

corresponding tensor for multi-dimensional analysis.

Figure 7.1(a) illustrates an example normalization which divides this 5-attribute

relation into two smaller relations with 3 attributes, R1(workclass, education,

ID) and R2(ID, occupation, income), respectively.

Figures 7.1(b) and (c), then, illustrate the proposed DBN scheme for CP and

Tucker decompositions, respectively: In both cases, once the two partitions are de-

composed, we combine the resulting core tensors and factor matrices to obtain the

decomposition of the original tensor corresponding to the relation R. ◦

Benefits of DBN for CP Decompositions: In the CP decomposition example

above (Figure 7.1(b)),

• if the input relation R is dense, we argue that decompositions of partitions R1

and R2 will be much faster than that of the original relation R and the gain will

more than compensate for the normalization and recombination costs of DBN.

• If the input relation R is sparse, on the other hand, the decomposition cost is

not only determined by the number of modes, but also the number of nonzero

entries in the tensor. Consequently, unless the partitioning provides smaller

numbers of tuples in both partitions, we cannot theoretically expect DBN to

provide large gains. However, as we experimentally verify in Section 7.6, DBN
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(b) DBN process for CP decomposition (c) DBN process for Tucker decomposition

Figure 7.1: (a) Normalization of a relation R(workclass, education,
ID, occupation, income) into two relations R1(workclass, education,
ID) and R2(ID, occupation, income) based on the key (ID);
decomposition-by-normalization (DBN): normalization of R into R1 and
R2, (b) rank-r1 CP decomposition of R1 and rank-r2 CP decomposition of R2

that are combined on the ID mode into rank-(r1 × r2) CP decomposition of R,
and (c) rank-(..., r1, ...) Tucker decomposition of R1 and rank-(..., r2, ...) Tucker
decomposition of R2 that are combined on the ID mode into rank-(..., r1 × r2, ...)
Tucker decomposition of R
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scheme fits naturally in multi-core implementations, thus in practice provides

significant advantages even for sparse input tensors.

Benefits of DBN for Tucker Decompositions: Since the scale of the interme-

diate blowup problem [45] depends largely on the modality of the input tensor, we

argue that dividing the tensor into sub-tensors with smaller number of modes will

help eliminate this notorious bottleneck. Moreover, similarly to the case in CP de-

compositions, each individual sub-tensor decomposition can run on an available core

without having to communicate with other sub-tensor decompositions running on

different cores, leading to effective parallelizations of Tucker decompositions.

Challenges and Contributions: Note that in general, a given tensor can be par-

titioned into two in multiple ways. The key challenges we address in this chapter are

(a) how best to partition a given tensor into smaller tensors and (b) how to recom-

bine the sub-result to obtain the decomposition of the original tensor. In particular,

achieving the projected advantages of the DBN strategy requires us to address the

following key challenges:

• Challenge 1. First of all, we need to ensure that the join attribute is selected in

such a way that the normalization (i.e., the vertical partitioning) process does

not lead to spurious tuples. Secondly, the join attribute needs to partition the

data in such a way that the later steps in which decompositions of the individual

partitions are combined into an overall decomposition do not introduce errors.

One way to prevent the normalization process from introducing spurious data is

to select an attribute which functionally determines the attributes that will be

moved to the second partition. This requires an efficient method to determine

functional dependencies in the data.
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• Challenge 2. A second difficulty is that many data sets may not have perfect

functional dependencies to leverage for normalization. In that case, we need to

be able to identify and rely on approximate functional dependencies in the data.

• Challenge 3. Once the approximate functional dependencies are identified, we

need a mechanism to partition the data into two partitions in such a way that will

lead to least amount of errors during later stages. We argue that partitioning

the attributes in a way that minimizes inter-partition functional dependencies

and maximizes intra-partition dependencies will lead to least amount of errors

in the recombination step.

• Challenge 4. Moreover, after data is vertically partitioned and individual parti-

tions are decomposed, the individual decompositions need to be recombined to

obtain the decomposition of the original relation. This process needs to be done

in a way that is efficient and parallelizable.

The chapter is organized as follows: We provide an overview of the proposed DBN

scheme in Section 7.2. We then focus on selecting the best partitions for the normal-

ization step of DBN (Section 7.3). In Section 7.4, we present rank-pruning strategies

to further reduce the cost of DBN. We experimentally evaluate DBN in Section 7.6 in

both stand-alone and parallel configurations. We focus on the accuracy and the run-

ning time of the alternative algorithms. Experimental results provide evidence that

in addition to being significantly faster than conventional decompositions, DBN can

approximate well the accuracy of the conventional tensor decomposition techniques.

7.2 Decomposition-By-Normalization (DBN)

Our goal is to tackle the high computational cost of decomposition process through

what we refer to as the decomposition-by-normalization (DBN). In this section,
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we first introduce the relevant notations, provide background on key concepts, and

then present an overview of the DBN process.

7.2.1 Key Concepts

Without loss of generality, we assume that relations are represented in the form

of occurrence tensors (Section 3.3.1).

Functional Dependencies

A functional dependency (FD) between two sets of attributes, X and Y, is defined as

follows [29].

Definition 7.2.1 (Functional Dependency) A functional dependency (FD), de-

noted by X → Y, holds for relation instance R, if and only if for any two tuples t1

and t2 in R that have t1[X] = t2[X], t1[Y] = t2[Y] also holds.

We refer to a functional dependency as a pairwise functional dependency if the

sets X and Y are both singleton. ◦

Intuitively, a functional dependency is a constraint between two sets of attributes

X and Y in a relation denoted by X → Y, which specifies that the values of the X

component of a tuple uniquely determine the values of the Y component. Note that if

A = {A1, . . . , An} is a set of attributes in the schema of a relation, R, and X,Y ⊆ A

are two subsets of attributes such that X → Y, then the relation instance R can be

vertically partitioned into two relation instances R1, with attributes A \ Y, and R2,

with attributes X ∪ Y, such that R = R1 on R2; in other words the set of attributes

X serves as a foreign key and joining vertical partitions R1 and R2 on X gives back

the relation instance R without any missing or spurious tuples.

Note that, discovery of FDs in a given data set is a challenging problem since

the complexity increases exponentially in the number of attributes [54]. Moreover, in
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many data sets, attributes may not have perfect FDs due to exceptions and outliers in

the data. In such cases, we may only be able to locate approximate FDs [36] instead

of exact FDs:

Definition 7.2.2 (Approximate Functional Dependency) An approximate

functional dependency (aFD), denoted by X σ→ Y holds for relation instance R, if

and only if

• there is a subset R′ ⊆ R, such that |R′| = σ × |R| and, for any two tuples t1

and t2 in R′ that have t1[X] = t2[X], t1[Y] = t2[Y] also holds; and

• there is no subset R′′ ⊆ R, such that |R′′| > σ× |R| where the condition holds.

We refer to the value of σ as the support of the aFD, X σ→ Y. ◦

Many algorithms for FD and approximate FD discovery exist, including

TANE [36], Dep-Miner [50], FastFD [77], and CORDS [37].

7.2.2 Overview of the Decomposition-by-Normalization (DBN) Process

The overall structure of the decomposition-by-normalization (DBN) process,

visualized in Figure 7.1, is similar for both CP and Tucker decompositions. In this

subsection, we present and discuss the pseudo code of DBN. In the following sections,

we will study the key steps of the process in greater detail.

The pseudo code of DBN algorithm is presented in Figure 7.2. In its first step

(Line 1), DBN evaluates the pairwise (approximate) FDs among the attributes of

the input relation. For this purpose, we employ and extend TANE [36], an efficient

algorithm for discovering FDs. Our modification of the TANE algorithm returns a set

of (approximate) FDs between attribute pairs and, for each candidate dependency,

Ai → Aj, it provides a corresponding support value, σi,j.
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DBN algorithm (input: a relation R, a decomposition algorithm (CP or Tucker))

1: Identify paFD (pairwise approximate FDs between the pairs of attributes of R)

2: Select the attribute Ak with the highest
∑

k 6=j σk,j such that σk,j ≥ τsupport as the vertical partitioning (and

join) attribute X (Desiderata 1 and 2)

3: if R is a sparse tensor then

4: if X (approximately) determines all attributes of R then

5: findInterFDPartition(paFD,false) (see Figure 7.3)

6: else

7: Move X and all attributes determined by X to R1; move X and remaining attributes to R2 (Desideratum

4 and 5).

8: end if

9: else {i.e., R is a dense tensor}

10: if X (approximately) determines all attributes of R then

11: findInterFDPartition(paFD,true)

12: else

13: Move X and attributes determined by X to R1; move X and remaining attributes to R2 – these moves

are constrained such that the number of attributes of R1 and R2 are similar (Desideratum 3 and 5)

14: end if

15: end if

16: Partition R into R1 and R2.

17: If the selected X does not perfectly determine the attributes of R1 then remove sufficient number of outlier tuples

from R to enforce the FDs between X and the attributes of R1

18: Create occurrence tensors of R1 and R2

19: Run JBD-CP (Figure ??) or JBD-Tucker (Figure ??) algorithm according to the input decomposition algorithm

with the tensors corresponding to R1 and R2

Figure 7.2: Pseudo-code of DBN

The next steps of the algorithm involve selecting the attribute, X, that will serve

as the foreign key (Line 2) and partitioning the input relation R into R1 and R2

around X (Lines 3 through 16). If the selected join attribute X does not perfectly

determine the attributes of R1, then to prevent introduction of spurious tuples, we

need to remove (outlier) tuples from R to restore the discovered FDs between the

attribute, X, and the attributes that are selected to be moved to partition R1 (Line

17). Note that a major part of the DBN algorithm involves deciding how to partition

120



findInterFDPartition ( input: paFD, balanced)

1: Create a complete pairwise approximate FD graph with weighted nodes, G, where each node is an attribute with

the weight, which is the size of the corresponding attribute and edge weights are the support values of paFD.

2: if balanced == false then

3: Run minimum average cut on G to find a maximally independent partitioning (Desideratum 5)

4: else {i.e., balanced == true}

5: Run balanced cut on G to find a balanced cut first and in case that there are alternative balanced cuts,

maximally independent partitioning (Desideratum 3 and 5)

6: end if

Figure 7.3: Pseudo-code of interFD-based partition algorithm; this is detailed in Section 7.3.2

the input data into two in the most effective manner. In Section 7.3, we will discuss

the partitioning process in detail.

Finally, once R1 and R2 are obtained, we create the occurrence tensors for the

two partitions (Line 18) and execute the JBD-CP and JBD-Tucker modules which

we proposed in Chapter 5.

7.3 Vertical Data Partitioning

As discussed in Section 7.2.2, a significant challenge that DBN has to address is to

partition the input data into two in such a way that they can be recombined effectively

through the JBD process introduced in the previous section. In this section, we discuss

vertical partitioning strategies for CP and Tucker decompositions. Below we first

list the key desiderata that govern how the DBN algorithm makes the partitioning

decision.

• Desideratum 1: As we discussed above, when we need to use approximate

FDs when partitioning the input data, this may result in the removal of outlier

tuples to preserve the semantics of the FDs. Therefore, to prevent over-thinning

of the relationR, the considered approximate FDs need to have few outliers and

high support; i.e., σi,j ≥ τsupport, for a sufficiently large support lower-bound,

τsupport.
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Secondly, when we vertically partition the relation R with attributes A =

{A1, . . . , An} into R1 and R2, one of the attributes (X) of R2 should serve as a

foreign key into R1 to ensure that joining of the vertical partitions R1 and R2 (on

X) gives back R without missing any tuples or introducing any spurious ones.

• Desideratum 2: If A1 is the set of attributes of vertical partition R1 and A2

is the set of attributes of vertical partition R2, then there must be an attribute

X ∈ A2, such that for each attribute Y ∈ A1, X
σ→ Y , for σ ≥ τsupport.

Since the overall size (in terms of modes and their dimensionalities) of the input

tensor is a major cost factor for dense (for CP and Tucker decompositions) or Tucker

decomposing sparse tensors, we prefer that the partitions are balanced in terms of

their dimensionalities.

• Desideratum 3: For dense (CP and Tucker decompositions) and sparse

(Tucker decomposition), vertical partitioning should be such that the sizes of

R1 and R2 are similar.

When CP decomposing sparse tensors, the major contributor to the decomposition

cost is the number of nonzero entries in the tensor.

• Desideratum 4: For CP decomposition of sparse tensors, vertical partitioning

should be such that the total number of tuples of R1 and R2 are minimized.

Any information encoded by the FDs crossing the two relations R1 and R2 is po-

tentially lost when R1 and R2 are individually decomposed. This leads to our final

desideratum:

• Desideratum 5: The vertical partitioning should be such that the support for

the inter-partition FDs (except for the FDs involving the join attribute X) are

minimized.
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7.3.1 Overview of the Partitioning Strategies

We use different strategies to satisfy the above desiderata depending on whether

we work on sparse or dense tensors and whether we seek CP or tucker decompositions:

• Case 1: CP Decomposition on Sparse Tensors. This case has two sub-

cases:

– Case 1.1: Exact Functional Dependencies: When the join attribute X

determines all attributes of R, we apply the interFD-based vertical parti-

tioning strategy detailed in Section 7.3.2.

– Case 1.2: Approximate Functional Dependencies: When the join attribute

X approximately determines a subset of the attributes of R, we create a

partition R1 with all the attributes determined with a support higher than

the threshold (τsupport) by the join attribute. This helps us satisfy Desider-

ata 1 and 2. The second partition, R2, consists of the join attribute X and

all the remaining attributes. Note that, since we can include any attribute

in R1 as long as it is determined by X, there may be still multiple ways

to partition the data. Therefore, we apply the interFD-based partitioning

strategy discussed in Section 7.3.2 to choose the two partitions. Note also

that, the size of R2 is, by construction, equal to the number of tuples in

R independent of which attributes are included in it. On the other hand,

the size of R1 can be reduced down to the number of unique values of X

by eliminating duplicate tuples (to satisfy Desideratum 4).

• Case 2: CP Decomposition on Dense Tensors or Tucker Decomposi-

tion. When we are operating on dense tensors or when we seek Tucker decom-

positions of sparse or dense tensors, we consider Desideratum 3, which prefers
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balanced partitions as discussed in Section 7.3.2. When there are alternative

balanced partitioning cases, we apply the interFD-based vertical partitioning

strategy to break ties, which is also discussed in Section 7.3.2.

7.3.2 InterFD Criterion and Vertical Partitioning Algorithms

Minimizing the Likelihood of Decomposition Errors

As discussed in Section 5.3, given a partitioning, R = R1 onA R2, the accuracy of

the decomposition is likely to be high if the non-join attributes of the two relations

R1 and R2 are independent from each other. Building on this observation (which we

also validate in Section 7.6), DBN tries to partition the input relational tensor R in

such a way that the resulting partitions, R1 and R2, are as independent from each

other as possible. We refer to this as the InterFD criterion.

Remember that the support of an approximate FD is defined as the percentage

of tuples in the data set for which the FD holds. Thus, in order to quantify the

dependence of pairwise attributes, we rely on the supports of pairwise FDs. Since

we have two possible FDs (X → Y and Y → X) for each pair of attributes, we

use the average of the two as the overall support of the pair of attributes X and Y .

Given these pairwise supports, we approximate the overall dependency between two

partitions R1 and R2 using the average support of the pairwise FDs (excluding the

pairwise FDs involving the join attribute) crossing the two partitions.

Let the pairwise FD graph, Gpfd(V,E), be a complete, weighted, and undirected

graph, where:

• each vertex v ∈ V represents an attribute (mode),

• the size of the domain (dimensionality) of the mode corresponding to vertex, v,

is represented as a weight of the vertex, wv, and
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• the weight, we, of the edge e between nodes vi and vj is the average support of

the approximate FDs vi → vj and vj → vi.

We argue that the interFD-based vertical data partitioning problem can be for-

mulated in terms of locating a cut on Gpfd with the minimum average weight. To

solve the problem efficiently, we extend the minimum total weighted cut algorithm

presented in [68] to identify the minimum average weight. The overall process is

similar to that presented in [68] and has the same time complexity of complexity,

O(|V ||E|+ |V |2log|V |):

Given an undirected graph Gpfd(V,E), the algorithm copies V into V ′, where each

edge e ∈ E is annotated with a counter ne initially set to 1. The algorithm then first

picks a vertex v with the cut with the minimum average weight. We compute the

average edge weight of a cut between a set of vertices S and V \S, denoted by w̄S,

such that

w̄S =
∑

we/
∑

ne, for e ∈ {(v1, v2) ∈ E|v1 ∈ S, v2 ∈ V \S}. (7.1)

Then, the algorithm selects a neighbor v′ of v such that {v,v′} has a cut from V ′\{v, v′}

with the smallest average weight. The algorithm shrinks V ′ by merging v and v′ into

a new vertex, v′′. Any pair of edges e = a → v and e′ = a → v′ originating from

the same vertex a is replaced by a new edge e′′ = a → v′′, where w′′e = we + w′e and

n′′e = ne + n′e. Any other edge to v or v′ is simply re-routed to v′′. The process is

stopped when |V ′| = 1. The minimum of the minimum average cuts at each step of

the algorithm is returned as the minimum average cut. The following example shows

how the minimum average cut algorithm runs on a graph step by step.

Example 7.3.1 Consider the graph Gpfd(V,E) in Figure 7.4(a). Initially, as shown

in Figure 7.4(a), the weight of each edge is assigned with the average support of

pairwise approx. FDs.
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• Step 1: Among the vertices a, b, c, and d (w̄{a} = (0.40+0.50+0.43)/3 = 0.4433,

w̄{b} = (0.40 + 0.48 + 0.44)/3 = 0.44, w̄{c} = (0.43 + 0.48 + 0.45)/3 = 0.4533,

and w̄{d} = (0.44 + 0.50 + 0.45)/3 = 0.4633), the minimum average cut is

the cut between {b} and {a,c,d} with the average weight (w̄{b} = 0.44) (see

Figure 7.4(b)).

• Step 2: Vertex b is merged with vertex c into {b, c} with the smallest average

weight among vertices a (w̄{a,b} = (0.43 + 0.48 + 0.50 + 0.44)/4 = 0.4625),

c (w̄{b,c} = (0.43 + 0.40 + 0.45 + 0.44)/4 = 0.43), and d (w̄{b,d} = (0.45 +

0.48 + 0.50 + 0.40)/4 = 0.4575). Edges a → b and a → c are replaced by

the edge a → {b, c} with weight wa→{b,c} = 0.40 + 0.43 = 0.83 and counter

na→{b,c} = 2. Edges d → b and d → c are replaced by the edge d → {b, c}

with weight wd→{b,c} = 0.44 + 0.45 = 0.89 and counter nd→{b,c} = 2. The

minimum average cut is the cut between {b,c} and {a,d} with the average weight

(w̄{b,c} = 0.43) (see Figure 7.4(c)).

• Step 3: {b, c} is merged with vertex d into {b, c, d} with the smallest average

weight among vertices a (w̄{a,b,c} = (0.89 + 0.50)/3 = 0.4633) and d (w̄{b,c,d} =

(0.83 + 0.50)/3 = 0.4433). Edges a → {b, c} and a → d are replaced by the

edge a → {b, c, d} with weight wa→{b,c,d} = 0.83 + 0.50 = 1.33 and counter

na→{b,c,d} = 3. The cut between {a} and {b, c, d} is the last cut with weight

w̄{b,c,d} = 0.4433 (see Figure 7.4(d)).

• Step 4: The process ends since |V ′| = 1 (see Figure 7.4(e)). The minimum of

the minimum average cuts at each step is {b, c} and {a, d} in Step 2.
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Figure 7.4: An example of the minimum average cut algorithm for Gpfd(V,E) (see
Example 7.3.1)

Balanced Partitioning

When targeting Desideratum 3, we seek a balanced partitioning of the attributes. Un-

fortunately, the general problem of obtaining balanced partitions is an NP-complete

problem even for simple sets of values [33]. While there are various approximation

and heuristic algorithms including [40], applying these directly would only optimize

balance, but ignore other criteria. We therefore choose the average cut based parti-

tioning scheme discussed above in a way that also considers balance of attributes. In

particular, we associate a balance score to each vertex, v:

balance score(v) =
max{size(Vv), size(V \Vv)}
min{size(Vv), size(V \Vv)}

, (7.2)

where Vv is the set of original vertices merged into v (if v is a original vertex, then

Vv is {v}) and size(Vv) is
∏

vorg∈Vv wvorg (wvorg is the weight of vorg), and minimize
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the balance score as the vertices are merged in a similar manner that interFD-based

vertex partitioning minimizes the average edge weight. Note that the balance score

will be 1.0 for the most balanced cut and the higher the score is, the less the partitions

are balanced. Instead of using average weights as in interFD based partitioning, we

now select the next cut based on the resulting balance score.

Given an undirected graph Gpfd(V,E), the algorithm makes a copy V ′ or V and

first picks the vertex v with the minimum balance score, among all vertices in V ′.

If there are multiple alternatives, then the algorithm selects the one which has the

cut with the minimum average weight among the alternatives. Then, the algorithm

selects a neighbor v′ of v such that {v, v′} has the smallest balance score; again, if

there are alternatives, then the algorithm selects the neighbor such that {v,v′} has a

cut from V ′\{v, v′} with the smallest average weight. The algorithm then shrinks V ′

by merging v and v′ into a new vertex, v′′, with the vertex weight, wv′′ = wv × wv′

and the balance score of v′′ is computed using Equation 7.2. For any pair of edges

e = a → v and e′ = a → v′ originating from the same vertex a, we create a new

edge e′′ = a → v′′, where the edge weight w′′e = we + w′e and counter n′′e = ne + n′e.

Any other edge to v or v′ is simply re-routed to v′′. The process is stopped when the

balance score is 1.0 or |V ′| = 1. The most balanced cut among the most balanced cuts

of each step is returned. The following is an example of the balanced cut algorithm.

Example 7.3.2 For the balanced cut algorithm, we consider the graph Gpfd(V,E)

with weighted edges and weighted vertices (see Figure 7.5(a)).

• Step 1: The cut between {b} and {a, c, d} with the minimum average cut is

chosen out of the two alternative cuts, (1) {b} and {a, c, d} (w̄{b} = 0.44) and

(2) {c} and {a, b, d} (w̄{c} = 0.4533), with the equal balance score, (10 × 20 ×

10) / 20 (see Figure 7.5(b)).
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a:10 b:20

c:20 d:10
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0.45
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a:10 b:20

c:20 d:10

0.43

0.40

0.45

0.44

a:10
b,d:

20×10 

c:20 

0.43

wa->{b,d}=0.90 
na->{b,d}=2

wc->{b,d}=0.93 
nc->{b,d}=2

(a) Gpfd(V,E) (b) Step 1 (c) Step 2

Figure 7.5: An example of the balanced cut algorithm for Gpfd(V,E) with weighted
edges and weighted vertices (see Example 7.3.2.)

• Step 2: The vertex d is chosen with the minimum average weight out of two

neighbors of the vertex b, (1) vertex a (w̄{a,b} = (0.43 + 0.48 + 0.50 + 0.44)/4 =

0.4625) and (2) vertex d (w̄{b,d} = (0.45 + 0.48 + 0.50 + 0.40)/4 = 0.4575) with

the equal smallest balance score 1.0 and merged with the vertex b into {b, d}

with the vertex weight (20×10). Edges a → b and a → d are replaced by

the edge a → {b, d} with weight wa→{b,d} = 0.40 + 0.50 = 0.90 and counter

na→{b,d} = 2. Edges c → b and c → d are replaced by the edge c → {b, d}

with weight wc→{b,d} = 0.48 + 0.45 = 0.93 and counter nc→{b,d} = 2. The cut

between {a, c} and {b, d} is the most balanced cut (balance score: 1.0) with the

minimum average weight (w̄{b,d} = 0.4575); the process ends since the balance

score is 1.0 (see Figure 7.5(c)).

7.4 Further Optimizations: Rank Pruning based on Intra-Partition Dependencies

As discussed in the previous section, given a partitioning of R into R1 and R2, to

obtain a rank-r decomposition of R using JBD, we need to consider rank-r1 and rank-

r2 decompositions of R1 and R2, such that r = r1×r2 and pick the (r1, r2) pair which

is likely to minimize recombination errors. In this section, we argue that we can rely

on the supports of the dependencies that make up the partitions R1 and R2 to prune
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(r1, r2) pairs which are not likely to give good fits. In particular, we observe that

the higher the overall dependency between the attributes that make up a partition,

the more likely the data in the partition can be described with a smaller number

of clusters. Since the number of clusters of a data set is related to the rank of the

decomposition, this leads to the observation that the higher the overall dependency

between the attributes in a partition, the smaller should be the decomposition rank

of that partition.

Thus, given R1 and R2, we need to consider only those rank pairs (r1, r2), where if

the average intra-partition FD support for R1 is larger than the support for R2, then

r1 < r2 and vice versa. We refer to this as the intraFD criterion for rank pruning.

Similarly to interFD, given the supports of FDs, we define intraFD as the average

support of the pairwise FDs (excluding the pairwise FDs involving the join attribute)

within each partition. In Section 7.6, we evaluate the effect of the interFD-based

partitioning and intraFD-based rank pruning strategy of DBN for both dense and

sparse tensor decomposition in terms of the efficiency and the accuracy.

7.5 Cost Analysis

In this section, we provide cost analyses for decomposition-by-normalization

strategies for CP and Tucker decompositions (DBN-CP and DBN-Tucker, respec-

tively).

Unlike the conventional tensor decomposition process, DBN involves a data par-

titioning (normalization) step followed by a series of partial decompositions, joins,

and candidate selection steps (see Section 7.2.2): For a target r decomposition, DBN

performs as many partial decompositions as the number, npair, of rank pairs (rp, rq)

where r = rp×rq. Join and norm-based candidate selection steps of the DBN are also

performed once for each pair (rp, rq). Since these costs are negligible compared to the
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Table 7.1: Notations used in this chapter
Notation Description

X the input tensor of size K1 ×K2 × · · · × J × · · · ×KNx

let X be partitoned into P and Q on the join mode J of size J ; i.e.,

P on=,J Q

J the size of the join mode J

P the 1st partition tensor of size I1 × I2 × · · · × J × · · · × INp

Q the 2nd partition tensor of size I′1 × I′2 × · · · × J × · · · × I′Nq

r the rank of X

rp,i and rq,i the ith ranks of P and Q, resp.; i.e., (rp,i, rq,i) ∈ {(rp,i, rq,i) | rp,i×rq,i =

r}

Np # of modes of P

Nq # of modes of Q

Nx # of modes of X

αr,∗ # of ALS iterations needed for the rank-r CP decomposition of the tensor

denoted by “*”

|P| # of nonzero entries of a tensor P

|Q| # of nonzero entries of a tensor Q

|X| # of nonzero entries of a tensor X

npair # of (rp, rq); i.e., |{(rp,i, rq,i) | rp,i × rq,i = r}|

Table 7.2: Execution time cost for CP decomposition
Algorithm Cost

CP
dense tensors O(

∏Nx
i=1Ki)

†

sparse tensors O(αr,X r |X| Nx)††

DBN-CP
dense tensors O(npair(

∏Np

i=1 Ii +
∏Nq

i=1 I
′
i))
†

sparse tensors O(
∑npair

i=1 (αrp,i,P rp,i |P| Np + αrq,i,Q rq,i |Q| Nq))††

†The execution time cost for dense tensors is based on [70].

††The execution time cost for sparse tensors is based on the analysis of the code in [12].

tensor decomposition cost, in this section, we focus on tensor compositions cost.

7.5.1 Cost of DBN-CP

Table 7.2 presents an overview of the execution times for conventional CP (simply

called CP in the rest of this section) and DBN-CP. Symbols used in this section are

introduced in Table 7.1.
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CP Decomposition of Dense Tensors

As we see in Table 7.2, For dense tensors, the DBN strategy increases the number

of decomposition operations from one to npair (the number of rank-pairs), but each

decomposition involves smaller numbers of modes. Since, in the case of dense tensors,

the cost of the CP decomposition is exponential in the numbers of modes and since

DBN-CP reduces the number of modes that need to be considered, as we experi-

mentally observe in Section 7.6, DBN-CP is more efficient than the conventional CP

decomposition.

CP decomposition of Sparse Tensors

As we also see in Table 7.2, the execution time cost of the conventional CP operation

for sparse tensors depends on the rank, the number of nonzero entries, the number of

modes, as well as the number of alternating least squares (ALS) iterations [12].

When all things equal, the main contributor to the cost of the CP decomposition

on sparse tensors is the number of nonzero entries. Therefore, in order to predict

whether CP or DBN-CP will be more efficient, we need to consider the number of

nonzero entries in the input tensors: In particular, if the ratio

φ = |X|/(|P||Q|)

is high and we have more tuples (nonzero entries) in the input tensor than the partition

tensors, then DBN-CP is likely to be more efficient than the CP; otherwise, CP may

be competitive. In other words, DBN-CP is likely to outperform CP if the following

holds:

r|X|Nx >

npair∑
i=1

(rp,i|P|Np + rq,i|Q|Nq),

or, equivalently,

|X| >
npair∑
i=1

(rp,i|P|Np + rq,i|Q|Nq)/(rNx).
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Table 7.3: Notations for Tucker decomposition used in this chapter
Notation Description

rx,1, ..., rx,Nx decomposition ranks for X

rp,1, ..., rp,Np decomposition ranks for P

rq,1, ..., rq,Nq decomposition ranks for Q

rp,i,l, rq,j,l, and rx,k the lth rank pair (rp,i,l, rq,j,l) of the join modes (ith and jth modes)

of P and Q and the rank (rx,k) of the join mode (kth mode) of X;

i.e., (rp,i,l, rq,j,l) ∈ {(rp,i,l, rq,j,l) | rp,i,l × rq,j,l = rx,k}

npair # of (rp,i,l, rq,j,l); i.e., |{(rp,i,l, rq,j,l) | rp,i,l × rq,j,l = rx,k}|

β(r1,...rN ),∗ # of ALS iterations needed for the rank-(r1, ..., rN ) Tucker decom-

position of the tensor denoted by “*”

ε∗ a subset of modes that are computed element-wise in MET for the

tensor denoted by “*”

Cm,∗ the eigen decomposition cost for the mth mode of the tensor denoted

by “*” †

†For eigen decomposition, we assume that MATLAB’s eigs function based on ARPACK uses an iterative

power method to identify eigenvalues. Therefore, the overall eigen decomposition cost is a function of this

iteration count.

Since we have |X| = |P on=,J Q| = φ|P||Q|, we can rewrite the above inequality as

φ(|P||Q|) >
npair∑
i=1

(rp,i|P|Np + rq,i|Q|Nq)/(rNx).

This gives us a lower bound, φ⊥, on the join selectivity:

φ > φ⊥ =

npair∑
i=1

(rp,i|P|Np + rq,i|Q|Nq)/(|P||Q|rNx).

This lower bound threshold provides a practical predictor to judge whether DBN-CP

will be more advantageous, for sparse tensors, than CP.

7.5.2 Cost of DBN-Tucker

Table 7.3 lists additional notations needed for the analysis of the Tucker decom-

position costs.

The main cost of Tucker decomposition for dense tensors is the number of modes,

which is similar to CP decomposition for dense tensors. Therefore, the costs analysis
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Table 7.4: Execution time cost for Tucker decomposition on sparse tensors
Algorithm Cost

MET

TTMx(m)† O(
∑

m′ 6=m(|X|Km′rx,m′ )
∏

m′ 6=εx
rx,m′ )

SV Dx(m)† O(K2
m ×

∏
m′ 6=m rx,m′ + Cm,X)

Total O(β(rx,1,...,rx,Nx ),X

∑Nx
m=1(TTMx(m) + SV Dx(m))

TTMp(m)† O(
∑

m′ 6=m(|P|Im′rp,m′ )
∏

m′ 6=εp
rp,m′ )

SV Dp(m)† O(I2m ×
∏

m′ 6=m rp,m′ + Cm,P)

DBN-Tucker TTMq(m)† O(
∑

m′ 6=m(|Q|I′
m′rq,m′ )

∏
m′ 6=εq

rq,m′ )

(using MET) SV Dq(m)† O(I′2m ×
∏

m′ 6=m rq,m′ + Cm,Q)

Total
O(

∑npair

l=1 (β(rp,1,...,rp,i,l,...,rp,Np ),P

∑Np

m=1(TTMp(m) + SV Dp(m))+

β(rq,1,...,rq,j,l,...,rq,Nq ),Q

∑Nq

m=1(TTMq(m) + SV Dq(m))

†MET algorithm we consider consists of two major steps applied to each mode m: (a) TTM computation

and (b) SVD computation; see [45] for details.

Table 7.5: Bottleneck memory cost for Tucker decomposition
Algorithm Cost

MET O(maxεx (
∏

m/∈εx Km))†

DBN-Tucker (using MET) O(max(maxεp (
∏

m/∈εp Im),maxεq (
∏

m/∈εq I
′
m)))

†The costs are based on [45].

for DBN-Tucker on dense tensors also follows the cost analysis of DBN-CP on dense

tensors presented in Table 7.2.

The cost analysis for sparse tensors, on the other hand, is more complex. We

focus on Tucker decomposition for sparse tensors.

In Table 7.4, we present the cost analysis of DBN-Tucker on sparse tensors assum-

ing that it is build on MET [11]. As before, DBN-Tucker, involves as many partial

Tucker decompositions as the number, npair, of rank pairs (rp, rq) where r = rp × rq,

but each decomposition involves smaller number of modes. Since, as we see in Ta-

ble 7.4, the cost of Tucker tensor decomposition is exponential in the number of

modes, we expect that DBN-Tucker will be more efficient than conventional Tucker

decompositions. Experiment results reported in Section 7.6 verify this.

Note that as reported in Table 7.5, one major benefit for the proposed DBN based

Tucker decomposition scheme is that the size of the intermediate results is smaller
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than that for conventional Tucker decomposition: this is because DBN decomposes

smaller sub-tensors. Since a major challenge in Tucker decompositions is the memory

needed to store the intermediary results, for large data sets, and especially when

the available memory is limited, DBN-Tucker is likely to be more advantageous. We

experimentally verify this in Section 7.6.

7.6 Experimental Evaluations

In this section, we present the result of the experiments we have carried out to

assess the efficiency and effectiveness of the decomposition-by-normalization (DBN)

strategy. We consider both CP and Tucker decompositions and use both sparse and

dense tensors. We ran our experiments on a 6-core Intel(R) Xeon(R) CPU X5355 @

2.66GHz machine with 24GB of RAM.

7.6.1 Setup - Data Sets

For evaluating DBN under different scenarios, we used various data sets from the

UCI Machine Learning Repository [31]. In particular, we considered the two cases

introduced in Section 7.3:

Case 1. We first evaluate DBN in situations where the join attribute X de-

termines all attributes of the relation R. For these experiments, we considered 15

different data sets (D1-D15) with different sizes and different attribute sets (Ta-

ble 7.6). All tensors were encoded as occurrence tensors. In the cases where a suit-

able join attribute did not exist in the data, we selected an attribute with FD support

≥ τsupport = 75% against all other attributes. We then removed all non-supporting

tuples to make sure that the data set R satisfies the properties of Case 1. Note

that, each partitioned data set contains as many tuples (nonzero entries) as the input

relation R.
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Table 7.6: Relational tensor data sets with the same number of nonzero entries for
partitions for DBN

Data set Size # nonzero

D1

Adult

118×90×20263×5×2 20263

D2 7×20263×5×6×16 20263

D3 72×20263×90×2×2 20263

D4 20263×14×2×6×94 20263

D5 20263×5×2×90×72 20263

D6 645×10×11×2×10 630

D7 10×645×9×10×10 630

D8 Breast Cancer Wisconsin 10×10×11×10×645 630

D9 [53] 2×10×10×10×645 630

D10 10×10×645×9×10 630

D11 3890×4×13×3×3 4863

D12 IPUMS Census Database 545×3×17×3×2 698

D13 [63] 11×3×4×5×3 27

D14 Mushroom 10×3×5×2×7 24

D15 Dermatology 62×5×5×5×3 58

Table 7.7: Relational tensor data sets with different numbers of nonzero entries for
partitions for DBN

Data set Mode Size # nonzero of R1 # nonzero of R2

D16 Adult (subset)† 5 118×90×1000×5×2 1000 1102

D17 Adult

4 118×90×20263×94 20263 25331

5 118×90×20263×94×72 20263 27351

6 118×90×20263×94×72×42 20263 27424

D18

IPUMS 4 2241×1096×191×209 1096 2359

Census 5 3888×2241×1096×191×209 1096 5881

Database 6 3890×2241×51×1096×192×209 1096 6436

†For D16, we used a subset of randomly selected 1,000 entries from this data set for experiments with

dense tensor model: the whole data set is too large for conventional decomposition operators under the

dense tensor model.
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Case 2. Secondly, we evaluate DBN in situations where the join attribute X

determines only a subset of the attributes of the relationR. In this case, we considered

three different data sets (D16-D18). All tensors were encoded as occurrence tensors.

The tensor size and numbers of nonzero entries of each relation are shown in Table 7.7.

Note that the partition R1 containing X and the attributes determined by X has

potentially smaller number of nonzero entries than R; the number of nonzero entries

of the other partition R2 is same as that of R. As we discussed in Section 7.3, for

dense tensors and Tucker decompositions, we targeted partitions where sizes of R1

and R2 are similar.

7.6.2 Setup - Target Ranks

Both for CP and Tucker decomposition experiments, we considered three target

ranks: 6, 12, and 24. These lead to 4 rank pairs (〈1, 6〉, 〈2, 3〉, 〈3, 2〉, 〈6, 1〉) to be

considered for the target rank 6, 6 pairs (〈1, 12〉, 〈2, 6〉, 〈3, 4〉, 〈4, 3〉, 〈6, 2〉, 〈12, 1〉)

for the target rank 12, and 8 pairs (〈1, 24〉, 〈2, 12〉, 〈3, 8〉, 〈4, 6〉, 〈6, 4〉, 〈8, 3〉, 〈12, 2〉,

〈24, 1〉) for the target rank 24.

7.6.3 Setup - Alternative Tensor Decomposition Algorithms

We experimented with various alternative algorithms for CP and Tucker decom-

positions. Table 7.8 lists the various algorithms we use in our experiments. We

used MATLAB Version 7.11.0.584 (R2010b) 64-bit (glnxa64) and MATLAB Parallel

Computing Toolbox.

CP Decomposition (Single Core)

The first decomposition algorithm we considered is the N-way PARAFAC algorithm

with nonnegativity constraint which is available in the N-way Toolbox for MAT-
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Table 7.8: Algorithms
Algorithm Description

CP

DBN-NWAY DBN-CP using N-way PARAFAC

DBN-CP-ALS DBN-CP using single grid NTF (CP-ALS)†

NNCP-NWAY NNCP using N-way PARAFAC

NNCP-CP-ALS NNCP using single grid NTF (CP-ALS)†

NNCP-NWAY-GRID* NNCP using grid NTF with “*” grid cells (N-way

PARAFAC)†

NNCP-CP-GRID* NNCP-CP-ALS with “*” grid cells

DBN*-CP-ALS intraFD-based DBN-CP-ALS with “*” pairs

DBN*-NWAY intraFD-based DBN-NWAY with “*” pairs

pp-DBN*-CP-ALS pairwise parallel DBN*-CP-ALS

pp-DBN*-NWAY pairwise parallel DBN*-NWAY

Tucker

MET* “*” modes element-wise Memory-Efficient Tucker

DBN-MET* DBN-Tucker using MET*

pp-DBN-MET* pairwise parallel DBN-MET*

†The algorithms in parentheses are the base PARAFAC for grid NTF

LAB [9]. We refer to DBN-CP and conventional non-negative CP (NNCP) imple-

mented using this N-way PARAFAC implementation as DBN-NWAY and NNCP-

NWAY, respectively.

Since MATLAB’s N-way PARAFAC implementation uses a dense tensor (multi-

dimensional array) representation, it is too costly to be practical for sparse tensors.

Therefore, we implemented a variant of the single grid NTF [59] using CP-ALS as

the base PARAFAC algorithm. We refer to DBN-CP and NNCP based on CP-ALS

as DBN-CP-ALS and NNCP-CP-ALS respectively.

CP Decomposition (Parallel, Multi-core)

For the parallel version of the NNCP, we implemented the grid NTF algorithm [59]

with different number of grid cells (2, 4, 6, and 8 grid cells along the join mode)

using N-way PARAFAC and CP-ALS as the base PARAFAC algorithms. Each grid

is run with the base PARAFAC algorithm separately in parallel. We refer to the grid
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NTF algorithm for parallel NNCP implemented using N-way PARAFAC as NNCP-

NWAY-GRID* (* denotes the number of partitions). Similarly, we refer to CP-ALS

based implementations of parallel NNCP as NNCP-CP-GRID*.

The parallel version of DBN-CP are implemented using pairwise parallel DBN-

NWAY and DBN-CP-ALS strategies where each pair is assigned to a separate process-

ing unit; these are referred to as pp-DBN-NWAY and pp-DBN-CP-ALS respectively.

Tucker Decomposition (Single Core)

Conventional Tucker decomposition algorithms, such as [9], are ineffective on large

dense data sets. Therefore, we focus on Tucker decompositions of sparse data sets. We

consider MET (Memory-Efficient Tucker) in [45]. For MET, we considered different

variants, denoted as MET* according to the number of modes handled element-wise;

MET* is also used as the base Tucker algorithm for DBN-Tucker; this is referred to

as DBN-MET*.

Tucker Decomposition (Parallel, Multi-core)

Since MET does not support parallelization, we only consider parallelization of DBN-

MET*, which is referred to as pp-DBN-MET*.

7.6.4 Setup - Rank Pruning

For the experiments where we assess the impact of the intraFD-based rank pruning

strategy described in Section 7.4. We considered 2, 3 and 4 pairs as limits; these are

referred to as DBN2, DBN3, and DBN4, respectively (e.g., DBN-CP-ALS with 2 pairs

selected is referred to as DBN2-CP-ALS).

139



Table 7.9: Different attribute sets, join attributes (X), supports of X (the lowest of
all the supports of X → ∗), and execution times for FDs discovery for D1-D18 where
An is the nth attribute of each data set

Data set Attributes Join attr. (X) Support of X exec. time for FDs

D1 {A11, A12, A3, A9, A10} A3 97% 0.024s

D2 {A2, A3, A9, A8, A4} A3 80% 0.022s

D3 {A1, A3, A12, A15, A10} A3 80% 0.025s

D4 {A3, A7, A15, A8, A13} A3 75% 0.023s

D5 {A3, A9, A15, A12, A1} A3 80% 0.023s

D6 {A1, A4, A7, A11, A6} A1 96% 0.004s

D7 {A4, A1, A10, A8, A9} A1 96% 0.003s

D8 {A6, A5, A7, A8, A1} A1 96% 0.002s

D9 {A11, A9, A6, A3, A1} A1 98% 0.003s

D10 {A5, A4, A1, A10, A8} A1 96% 0.003s

D11 {A8, A17, A19, A3, A2} A8 99% 0.007s

D12 {A53, A2, A21, A3, A4} A53 98% 0.006s

D13 {A13, A48, A17, A14, A2} A13 98% 0.005s

D14 {A4, A9, A18, A17, A2} A2 88% 0.004s

D15 {A34, A24, A33, A25, A11} A34 80% 0.002s

D16 {A11, A12, A3, A9, A10} A3 98% 0.024s

D17

4-mode {A11, A12, A3, A13}

A3 96% 0.024s5-mode {A11, A12, A3, A13, A1}

6-mode {A11, A12, A3, A13, A1, A14}

D18

4-mode {A49, A50, A51, A54}

A50 95% 0.007s5-mode {A8, A49, A50, A51, A54}

6-mode {A8, A49, A50, A51, A54, A58}

7.6.5 Setup - Functional Dependency Discovery

As discussed in Section 7.2.2, we extended TANE [36] to find approximate FDs.

The supports of the approximate FDs for each attribute set of different relational

data sets are shown in Table 7.9. The table also shows the execution times needed to

discover the FDs for each data set. As the table shows, the modified TANE algorithm

is very efficient for the considered numbers of attributes, i.e., 4 to 6 attributes in these
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experiments 1 . Since the execution times for finding approximate FDs are negligible

compared to the tensor decomposition time, in the rest of the section, we focus only

on the decomposition times.

7.6.6 Setup - Evaluation Criteria

Each experiment is run at least 5 times and we report the average accuracy and

execution time of these runs.

Accuracy

We use the following fit function to measure tensor decomposition accuracy:

fit(X, X̂) = 1− ‖X, X̂‖
‖X‖

. (7.3)

Here, ‖X‖ is the Frobenius norm of a tensor X. The fit is a normalized measure of

how accurate a tensor decomposition of X, X̂ w.r.t. a tensor X.

Execution Time

The execution times are measured by MATLABs tic and toc commands to start and

stop the clock at the beginning and the end of the decomposition process, respectively.

Memory

Especially for dense tensors and Tucker decomposition, memory usage can be a major

bottleneck. For Tucker decompositions, we report the maximum intermediate memory

use provided by the MET* algorithm. For single core DBN, we report the maximum

of the memory used by each rank-pair (evaluated one after the other). For parallel

DBN, we report the sum of the memory used by each rank-pair (evaluated in parallel).

1Note that the cost increases linearly in the size of the input relation [36]
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Table 7.10: Join selectivity (φ) and thresholds with and without rank pruning (φ′⊥
and φ⊥). The bold fonts are the cases where the join selectivity is greater than the
threshold.

Data set mode rank φ⊥ φ′⊥ with rank pruning φ

D1-D5 5-mode
rank-6 0.00012 0.00006

0.00005
rank-12 0.00014 0.00007

D6-D10 5-mode
rank-6 0.00381 0.00190

0.00159
rank-12 0.00444 0.00222

D11 5-mode
rank-6 0.00049 0.00025

0.00021
rank-12 0.00058 0.00029

D12 5-mode
rank-6 0.00344 0.00172

0.00143
rank-12 0.00401 0.00201

D13 5-mode
rank-6 0.08889 0.04444

0.03704
rank-12 0.10370 0.05185

D14 5-mode
rank-6 0.10000 0.05000

0.04167
rank-12 0.11667 0.05833

D15 5-mode
rank-6 0.04138 0.02069

0.01724
rank-12 0.04828 0.02414

D16 5-mode
rank-6 0.00229 0.00117

0.001
rank-12 0.00267 0.00137

D17

4-mode
rank-6 0.00011 0.00007

0.00005
rank-12 0.00013 0.00008

5-mode
rank-6 0.00010 0.00006

0.00005
rank-12 0.00012 0.00007

6-mode
rank-6 0.00010 0.00004

0.00005
rank-12 0.00012 0.00007

D18

4-mode
rank-6 0.00179 0.00113

0.00091
rank-12 0.00209 0.00136

5-mode
rank-6 0.00130 0.00087

0.00091
rank-12 0.00152 0.00105

6-mode
rank-6 0.00137 0.00042

0.00091
rank-12 0.00191 0.00122
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7.6.7 Execution Time Results for CP Decompositions

We first present experimental results assessing the efficiency of the proposed DBN

scheme relative to the conventional implementation of the CP based tensor decom-

position in both stand-alone and parallelized versions. Note that, as discussed in

Section 7.5, for sparse tensors, CP decomposition cost depends largely on the num-

ber of nonzero entries and this necessitates a way to leverage the join selectivity

(of the partitioning attribute) to predict whether DBN will outperform conventional

CP decomposition schemes. In Table 7.10, we report the join selectivity φ and se-

lectivity cut-off, φ⊥, values (with and without rank pruning) for each of the data

sets we considered in our experiments: we predict that DBN will most easily out-

perform the conventional CP decomposition schemes (even for sparse data) in the

cases where φ > φ⊥. As we see in this table, however, in many cases, φ is lower

than φ⊥. Therefore, we expect these situations to be challenging for DBN against

conventional schemes. We evaluate this prediction in the following subsections and

also show that DBN provides advantages even in these cases when parallel execution

plans are considered.

As described in Section 7.3, for CP decompositions, we need to consider two

distinct situations. In the first of these (D1-D15), the join attribute X determines

all attributes of the relation R; i.e., nnz(R1) = nnz(R2) = nnz(R), where nnz(X )

denotes the number of nonzero entries of X . In the second case, the join attribute X

determines only a subset of the attributes of the relation R; i.e., nnz(R1) ≤ nnz(R)

and nnz(R2) = nnz(R).
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Case 1: X Determines all Attributes of R

Dense Tensors: In Figure 7.6, we first compare the execution times for (NWAY

based) DBN with NNCP for dense tensors. The figure includes results both for

single-core and multi-core setups. As we see in these results, in both setups, DBN

outperforms NNCP when the problems get more difficult to solve and tensor de-

composition algorithms require more time. As the problem difficulty increases DBN

provides ∼ 1 order (for single core) to ∼ 2 orders (for multi core) time gains over

NNCP.

Sparse Tensors: In Figure 7.7, we compare the execution times for (CP-ALS based)

DBN with NNCP for sparse tensors. The figure includes results both for single-

core and multi-core setups. Remember that in this case, we predict that when φ of

the input relations are lower than φ⊥, we expect DBN to have difficulties. This is

confirmed in Figure 7.7(a), where we see that in single core scenarios, DBN-CP based

schemes are not as competitive as NNCP as predicted based on the φ and φ⊥ values

in Table 7.10.

It is important to note, however, that DBN still provides significant advantages

even when φ < φ⊥ when parallel execution opportunities are leveraged. As we see

in Figure 7.7(b), on the same data, when using multiple cores, DBN based scheme

outperforms NNCP in most cases.

Case 2: X does not Determine all Attributes of R

Figure 7.8(a) shows the results for the corresponding subset of the Adult data set

(D16) for which the conventional NWAY based decomposition schemes is feasible.

As expected, DBN-CP based schemes outperform conventional CP decomposition

schemes for different target ranks (rank-6 and rank-12) in both single-core and multi-
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Figure 7.6: Average running times of DBN2,3-NWAY (DBN2 and DBN3 for rank-
6 and rank-12, respectively) vs. NNCP-NWAY on (a) a single core and (b) 4 and
6 cores for rank-6 and rank-12, respectively (NNCP-NWAY-GRID is avg of GRID2
and GRID4 and avg of GRID2 and GRID6 for rank-6 and rank-12, respectively).
On both a single core and multi cores, majority of data points are located under the
diagonal, which indicates that DBN-NWAY outperforms NNCP-NWAY, especially
when running times are bigger. Note that rank-24 results have been excluded from
these charts because the conventional NWAY based NNCP is not feasible for this
target rank with the hardware setup used for the experiments.

core settings.

In Figures 7.8(b) and (c), we compare DBN-CP against the CP-ALS based algo-

rithms for different target ranks (rank-6, rank-12, and rank-24) on Adult (D17) and

IPUMS (D18) data sets, respectively and in Figure 7.9 (a) and (b), we compare DBN-

CP against the CP-ALS based algorithms for different number of modes (4-mode,

5-mode, and 6-mode) for rank-12 decomposition on Adult (D17) and IPUMS (D18)

data sets, respectively.

As we see here, in almost all cases (especially when the data modality is high),

DBN-CP based schemes outperform CP-ALS based schemes and pp-DBN-CP-ALS

is the fastest in all cases. Note that these high modality cases are also the cases

where the join selectivity φ of the relations are higher than the lower bound φ′⊥

with rank pruning (see Table 7.10) and the results confirm that DBN-CP is more

advantageous in these cases as discussed in Section 7.5.1. It is interesting to note
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Figure 7.7: Average running times of DBN2,3,4-CP-ALS (DBN2, DBN3, and DBN4
for rank-6, rank-12, and rank-24, respectively) vs. NNCP-CP-ALS on (a) a single core
and (b) 4, 6, and 8 cores for rank-6, rank-12, and rank-24 respectively (NNCP-CP-
GRID is avg of GRID2 and GRID4, avg of GRID2 and GRID6, and avg of GRID2
and GRID8 for rank-6, rank-12, and rank-24, respectively). On a single core, more
than half points are upper the diagonal; i.e., DBN-CP is beaten by NNCP. However,
when DBN-CP and NNCP are parallelized, DBN-CP outperforms NNCP in most
cases.

Table 7.11: Different partitioning cases for Adult (D17) and IPUM (D18) data sets.
The partitions in bold are the most balanced among all three.

Data set
Partition size

R1 R2

D17

118×20264 91×20264×95×73

91×20264 118×20264×95×73

118×91×20264 20264×95×73

D18

3888×1096 2241×1096×191×209

2241×1096 3888×1096×191×209

3888×2241×1096 1096×191×209

that while GRID-based parallel version of CP-ALS may in practice negatively impact

performance (since the underlying ALS-based combining approach involves significant

communication overheads), parallelized DBN-CP is effective in reducing execution

times.
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Figure 7.8: Running times of (a) DBN-CP vs. NWAY based algorithms on 5-mode
Adult(subset) data set (D16) and DBN-CP vs. CP-ALS based algorithms on (b) 5-
mode Adult data set (D17) and (c) 5-mode IPUM data set (D18) with different target
ranks in both single core and multi-core

7.6.8 Execution Time Results for Tucker Decompositions

For the Tucker decomposition experiments, we focus on the data sets, D17 and

D18, where the sizes of the modes are large. For comparison against the DBN strategy,

we consider the MET (Memory-Efficient Tucker) [45] implementation of Tucker. Since

there are multiple mode-selection strategies for MET, unless otherwise specified, we

present the results for the strategy that leads to best running time and memory

consumption for MET. We also consider different implementations of MET, denoted

as MET1 and MET2.
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Figure 7.10: Running time and bottleneck memory for different partitioning cases
where the two relations R1 and R2 have different sizes (see Table 7.11), which are
run by DBN-MET1 and DBN-MET2 for 5-mode (a) Adult data set (D17) (b) IPUM
data set (D18) for rank-(12,12,12,12,12) decomposition

Impact of Partition Balance

Before we compare the DBN strategy against conventional Tucker decompositions,

we investigate the impact of partition balance on the performance of DBN. As we

discussed in Section 7.3, for Tucker decompositions, we expect that partition strate-

gies that lead to balanced sub-relations will lead to better DBN performance. In

Figure 7.10, we present execution time and memory consumption results for three dif-

ferent partitioning strategies for each of the D17 and D18 data sets in Table 7.11. We

note that(R1: 118×91×20264, R2: 20264×95×73) and (R1: 3888×2241×1096,
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Figure 7.11: The running time and bottleneck memory consumption for Adult data
set (D17) of DBN-MET vs. MET: in (a) the optimization target is the running time,
whereas in (b) the optimization target is the memory. Here, we use rank 12 for each
mode of the relation. When the tensor has 6 modes none of the conventional MET
algorithms fit the available memory and thus they are not included in the plots.

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1.E+08 

1.E+09 

1

10

100

1000

10000

4-mode 5-mode 6-mode 

M
e

m
o

ry
 (

lo
g

1
0

 s
c

a
le

d
 b

y
te

s
) 

R
u

n
n

in
g

 t
im

e
 (

lo
g

1
0

 s
c

a
le

d
 s

e
c

) 

DBN-MET vs. MET (target: running time) 
IPUMS data (D18), rank: 12 

Memory (MET) 

Memory (DBN-MET) 

Memory (pp-DBN-MET) 

Running time (MET) 

Running time (DBN-MET) 

Running time (pp-DBN-MET) 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1.E+08 

1.E+09 

1

10

100

1000

10000

4-mode 5-mode 6-mode 

M
e
m

o
ry

 (
lo

g
1
0
 s

c
a
le

d
 b

y
te

s
) 

R
u

n
n

in
g

 t
im

e
 (

lo
g

1
0
 s

c
a
le

d
 s

e
c
) 

DBN-MET vs. MET (target: memory) 
IPUMS data (D18), rank: 12 

Memory (MET) 

Memory (DBN-MET) 

Memory (pp-DBN-MET) 

Running time (MET) 

Running time (DBN-MET) 

Running time (pp-DBN-MET) 

(a) Target: running time (b) Target: memory

Figure 7.12: The running time and bottleneck memory consumption for IPUM data
set (D18) of DBN-MET vs. MET: in (a) the optimization target is the running time,
whereas in (b) the optimization target is the memory. Here, we use rank 12 for each
mode of the relation.

R2: 1096×191×209) partitioning alternatives are the most balanced among all three

for the D17 and D18 data sets, respectively.

The results confirm that, as expected, the most balanced partitioning case (in

terms of both size and number of modes) shows the best performance in terms of

both running time and memory consumption.
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(a) 5-mode Adult data set (D17) (b) 5-mode IPUM data set (D18)

Figure 7.13: The running time and bottleneck memory consumption of DBN-MET
vs. MET for rank-(6,6,6,6,6), rank-(12,12,12,12,12), vs. rank-(24,24,24,24,24) (here
we simply denote rank: 6, rank: 12, and rank: 24 respectively) for 5-mode Adult
data set (D17) and IPUM data set (D18). For the D17 data set, for target rank 24,
none of the conventional MET algorithms fit the available memory and thus they are
not included in the plot.

DBN-MET vs. Conventional MET – Impact of the Number of Modes

We next compare the DBN strategy against conventional MET with respect to the

impact of the number of modes of the tensor on the decomposition performance. Since

there are multiple MET strategies with different run-times and memory consumptions,

we present two sets of results, the first targeting better MET run-time and the second

better MET memory consumption.

Figure 7.11 presents results for the Adult data set (D17). As we see here, as

the number of modes increases, the running times of all decomposition algorithms

increase. Experiment results confirm that the increase in the execution time is much

slower for the DBN based decompositions and, as expected, the parallelized version of

DBN (pp-DBN) is the fastest among all alternatives. The results with the IPUMS data

set (D18), reported in Figure 7.12 re-confirm these results. Note that, the time results

for this IPUM data set are presented in log-scale due to the significant differences in

execution times between DBN-based and conventional decomposition strategies.
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DBN-MET vs. Conventional MET – Impact of the Rank

In Figure 7.13, we compare the performance of DBN against conventional MET for

different target ranks. Again, since there are different MET implementations, we

present results for the strategy that provides the best running time for MET.

As we see in the figure, as the target rank increases, the running time of the

conventional MET algorithm increases very quickly. In contrast, the running times

of DBN-based strategies increase much more slowly. Again, the parallelized version

of DBN (pp-DBN) is the fastest among all alternatives. Note that, as expected, the

memory consumption of pp-DBN is higher than DBN-MET; however, it is still at

least an order lesser than MET.

7.6.9 Accuracy Results

So far, we have shown that DBN-based strategies are significantly more efficient

than their conventional counterparts. In this subsection, we experimentally assess

the accuracy of DBN-based strategies.

Impacts of the IntraFD-based Rank Pruning and InterFD-based Partition-

ing on Accuracy

Before we compare DBN-based strategies against conventional decompositions, we

first study the impacts of the interFD-based partitioning (Section 7.3) and intraFD-

based rank pruning (Section 7.4) strategies on accuracy. These results are presented

in Figure 7.14(a) and (b), respectively, where we compare the fit values obtained

when using the proposed strategies against the maximum potential fit values one can

obtain using a DBN-based strategy. In these plots, the closer to the 45 degree line the

results are, the more effective are the FD based rank pruning and data partitioning

strategies.
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Table 7.12: Correlation between fits of DBN vs. NNCP and MET in original and
outlier-eliminated (85% cumulative value preserved) CP and Tucker decomposition
for all partitioning cases of D1-D15

Correlation

Original 85%

DBN-CP-ALS vs. NNCP-CP-ALS
rank-6 0.94 0.97

rank-24 0.93 0.96

DBN-MET vs. MET
join mode rank: 6 0.99 0.99

join mode rank: 24 0.99 0.99

In Figure 7.14(a), we study the impact of the interFD-based partition selection

approach on the decomposition accuracy. The results show that, for both CP and

Tucker decompositions, the interFD-based partitioning strategy results in accuracies

that are very close to the maximum possible accuracy, using an optimal partitioning

strategy for all rank configuration.

In Figure 7.14(b), we investigate the impact of intraFD-based rank pruning (with

only the best 50% of the rank pairs considered by the JBD module among the poten-

tial rank pairs). Since the intraFD strategy ignores pairwise FDs involving the join

attribute, we consider only the situations where each sub-tensor has more than 2 at-

tributes (the join attribute and a determined attribute). As we see in Figure 7.14(b),

the intraFD-based rank pruning strategy is very effective: except in a very few cases,

the intraFD-based rank pruning does not eliminate the rank pair that will lead to the

maximum possible fit with a DBN strategy.

DBN vs. Conventional Decompositions

We next evaluate the accuracy of DBN based decompositions against conventional

decomposition algorithms, NNCP-CP-ALS for CP decomposition (since results for

DBN-NWAY and NNCP-NWAY are similar we only present NNCP-CP-ALS) and

MET for Tucker decomposition. We report accuracy results for data sets D1-D15 since
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Figure 7.14: (a) InterFD-based fit vs. maximum fit and (b) intraFD-based fit vs.
maximum fit of DBN-CP-ALS and DBN-MET for D1-D15 (we omit D13 and D15 for
Tucker decomposition as the sizes of the join mode in the data sets are smaller than
rank 24)

reconstructing the decomposed tensor needed for computing the fit value on larger

data sets is not feasible with the available resources. Figures 7.15 and 7.16 present the

accuracy results of DBN vs. NNCP and MET for CP and Tucker decompositions for

different data sets, respectively. We also present the correlations between accuracies

of DBN and conventional decomposition strategies in Table 7.12.

Figures 7.15(a), (b) and Table 7.12 shows that the accuracy of DBN is highly

correlated with the accuracy of NNCP. There are, however, cases in which DBN has

lower accuracies than NNCP. In order to understand whether this is a fundamental

limitation of the DBN strategy or whether it is due to simple outliers in the data,

we next consider whether the problem also occurs in the cases where the decompo-

sition results are sparcified by ignoring the outliers: for this purpose we leverage a

commonly used decomposition sparcification strategy [7]: treating each core element
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Figure 7.15: Accuracies of DBN vs. NNCP for original and outlier-eliminated (85%
cumulative value preserved) CP decompositions for all partitioning cases of D1-D15

as a cluster and each factor entry as a cluster membership probability, we eliminate

those elements that have very small likelihood of being a member of a given cluster.

In particular, we remove sufficient outlier elements to eliminate the lowest 15% of the

membership probabilities. Figures 7.15(c), (d) and Table 7.12 show that once the

outliers are removed from consideration, DBN-based strategies perform as good as

the conventional CP decomposition strategies. In fact, once the outliers are ignored

in the decomposition, in a significant portion of the cases, the DBN strategy results in

higher accuracies than the conventional DBN (indicated by an increase in the number

of results above the 45 degree line).

For Tucker decomposition, the correlations between the fits of DBN and MET are

very high (almost 1.0) for both original and outlier-eliminated tensors (see Figure 7.16

and Table 7.12). These results confirm that the proposed DBN scheme is especially
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Figure 7.16: Accuracies of DBN vs. MET in original and outlier-eliminated (85%
cumulative value preserved) Tucker decomposition for all partitioning cases of D1-
D15 (we omit D13 and D15 as the sizes of the join mode in the data sets are smaller
than rank 24)

effective for Tucker decompositions.
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Chapter 8

IN-DATABASE TENSOR DECOMPOSITION OPERATIONS AND

OPTIMIZATION STRATEGIES IN IN-DATABASE TENSORDB

Tensor decomposition techniques, such as CP decomposition, are commonly used

for discovering underlying structures (e.g. clusters) of multidimensional data sets.

However, as the relevant data sets get large, existing in-memory schemes for tensor de-

composition become increasingly ineffective and, instead, memory-independent solu-

tions, such as in-database analytics, are necessitated. In this chapter, we present tech-

niques for efficient implementations of in-database tensor decompositions on chunk-

based array data stores. The proposed static and incremental in-database tensor

decomposition operators and their optimizations address the constraints imposed

by the main memory limitations when handling large and high-order tensor data.

Firstly, we discuss how to implement alternating least squares operations efficiently

on a chunk-based data storage system. Secondly, we consider scenarios with frequent

data updates and show that compressed matrix multiplication techniques can be ef-

fective in reducing the incremental tensor decomposition maintenance costs. To the

best of our knowledge, this thesis presents the first attempt to develop efficient and

optimized in-database tensor decomposition operations. We evaluate the proposed

algorithms using tensor data sets that do not fit into the available memory and results

show that the proposed techniques significantly improve the scalability of this core

data analysis technique.
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8.1 Introduction

As the today’s data sets get large, the in-memory based schemes for tensor decom-

position become increasingly ineffective. A key difficulty in tensor decomposition is

that the operation results in dense (and hence large) intermediary data, even when the

input tensor is sparse (and hence small). This is known as the intermediate memory

blow-up problem [39, 45] and renders purely in-memory implementations of tensor-

decomposition difficult. While today MATLAB-based in-memory linear algebra op-

erations are widely used for implementing tensor decomposition algorithms [45, 47],

these implementations are limited with the amount of memory available to the MAT-

LAB software. Moreover, exporting data from a large database to import into MAT-

LAB is often costly and elimination of this overhead can provide performance gains

of several orders of magnitude [23].

8.1.1 In-Database Tensor Decompositions: Opportunities and Challenges

Because of the above limitations of in-memory solutions, we consider in-database

implementations of tensor decomposition operations on disk-resident data sets. In

particular, we argue that the ability to implement tensor decomposition operations

on disk-resident tensor data can eliminate the challenge posed by the memory-

limitations. However, we also recognize that in-database tensor analytics brings its

own challenges

• Challenge 1: Tensor decomposition algorithms tend to involve computation-

ally expensive operations (such as matrix multiplication) and require significant

amounts of data movement, which (when data is stored on secondary storage)

may result in high I/O load.
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• Challenge 2: Many operations involved in tensor decomposition are order sen-

sitive and the way data is laid on disk may have a big impact on the total cost

of tensor decomposition task.

In this chapter, we attempt to address these challenges. In particular, we consider an

array model 1 representation of the tensor data, leverage a chunk-based framework to

store and retrieve data, extend array operations to tensor operations, and introduce

optimization schemes for efficient in-database tensor decompositions.

8.1.2 Frequent Data Updates

In order to avoid the cost of decomposing the data tensor from scratch with each

update when the data is frequently updated, we consider incremental tensor decom-

positions such as Dynamic Tensor Analysis (DTA) [70]. Despite the cost savings they

provide, however, these incremental tensor decomposition techniques still suffer from

high memory overheads. In this chapter, we show that the cost of this operation can

be significantly reduced by leveraging recently introduced compressed matrix multi-

plication techniques, such as [57], instead of using traditional matrix multiplication

implementations. In particular, we show that the proposed chunk-based operations,

complemented with compressive matrix multiplication, can be highly effective in re-

ducing the incremental tensor decomposition maintenance costs.

8.1.3 Contributions

To the best of our knowledge, this thesis is the first to study in-database tensor

decomposition on a chunk-store. The proposed static and incremental in-database

tensor decomposition techniques and the optimizations in the in-database TensorDB

and address the memory limitations when handling large and high-order tensor data.

1We extend SciDB [18], an open source array-based DBMS.
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Table 8.1: Notations used in this chapter
Notation Description

X a tensor

r rank (number of target component)

A a matrix

ai ith column vector of a matrix A

aij (i, j)-th element of a matrix A

I1 × I2 × · · · × IN N -mode tensor size

K1 ×K2 × · · · ×KN N -mode chunk size

i1, i2, ..., iN an element index of a N -mode tensor

c1, c2, ..., cN a chunk index of a N -mode tensor

X(m) mode-m matricization

Xij(m)
(i, j)-th chunk of mode-m matricization X(m)

Aij (i, j)-th chunk of a matrix A

U(d) factor matrix of mode-d

M† Moore-Penrose pseudoinverse of a matrix M

◦ outer product

⊗ Kronecker product

� Khatri-Rao product

∗ Hadamard product

‖X‖ Frobenius norm of a tensor X

The chapter is organized as follows:

• We first provide an overview of the proposed in-database tensor operations

(Section 4.3.2). We discuss the implementation and optimizations for various

(chunk-based and otherwise) core operations involved in in-database tensor de-

composition.

• We next focus on data updates and, in Section 8.2, we discuss efficient imple-

mentation of in-database dynamic tensor analysis operations through compres-

sive matrix multiplication.

• We experimentally evaluate the static and dynamic in-database tensor decom-

position operators and their optimizations in Section 8.3.
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Figure 8.1: Execution plans for the different steps involved in the in-database CP
decomposition of a tensor X

8.1.4 Overview of Chunk-based CP

We consider an alternating least squares (ALS) based implementation of CP de-

composition [19, 34]. Let us consider a 3-mode tensor X (Figure 2.1(a)). CP decom-

position involves finding three factor matrices, such that

min
X̂

‖X− X̂‖ with X̂ =
r∑

k=1

ak ◦ bk ◦ ck, (8.1)

where ak, bk, and ck are the kth column vectors of the factor matrices A, B, and C,

respectively. This optimization problem can be solved through an alternating least

squares process (Figure 8.2), where at each step all but one of the factor matrices are

fixed and the remaining factor matrix is updated using least square estimation:

• Initialize factor matrices: Firstly, we create a factor matrix U(d) for each mode

d and initialize these with random data. Tensors and matrices are represented as

multidimensional arrays in in-database CP and created by a SciDB operation, create

array. Random data matrices are initialized by build operation. In our in-database

CP implementation, all factor matrices are updated in an iterative manner by a new

copyArray operator, described in Section 8.1.5. This operator performs in place array

updates, thus as shown in the experiment section, significantly reduces I/O costs.
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Alternating Least Squares for in-database CP algorithm (input: a tensor X ∈ I1 × I2 × · · · × IN with the chunk size

K1 ×K2 × · · · ×KN , a target rank r)

1: for each mode d = 1, . . . , N do

2: create array U(d) <val:double>[i=1:r, r,0,j=1:Id,Kd,0]

3: copyArray(build(<val:double>[i=1:r, r,0,j=1:Id,Kd,0],random()),U
(d)) {initialize a factor matrix U(d)

randomly}

4: end for

5: repeat

6: for each mode d = 1, . . . , N do

7: copyArray(multiply(multiply(matricize(X,d),khatrirao(...,khatrirao(khatrirao(U(1),U(2)),...,),

U(d−1)),U(d+1)),...,U(N))), pseudoinverse(hadamard(...,hadamard(multiply(transpose(U(1)),

U(1)),multiply(transpose(U(2)),U(2))),..., multiply(transpose(U(d−1)),U(d−1))),

multiply(transpose(U(d+1)),U(d+1))),..., multiply(transpose(U(N)),U(N))))),U(d))

{U(d) = X(d)(U
(N)�· · ·�U(d+1)�U(d−1)�· · ·�U(1))(U(1)TU(1)∗· · ·∗U(d−1)TU(d−1)∗U(d+1)TU(d+1)∗

· · · ∗U(N)TU(N))†}

8: normalize(U(d)) {Normalize columns of U(d) (storing norms in vector λ)}

9: end for

10: until fit converges or maximum iterations are exhausted

11: return λ, factor matrices U(1),U(2), . . . ,U(N)

Figure 8.2: Alternating Least Squares for in-database CP algorithm

• (Iteratively) solve for factor matrices: Next, one mode at a time, we iteratively

solve for each factor matrix U(d) (of mode d) given U(1), . . . ,U(d−1),U(d+1), . . . ,U(N).

For example, for a 3-mode tensor X and factor matrices A, B, and C, solving for a

factor matrix A can be formulated as

min
A
‖X(1) −A(C�B)T‖, (8.2)

where X(1) is mode-1 matricization of X and � denotes a Khatri-Rao product. The

optimal solution for Equation 8.2 can be formulated as

A = X(1)[(C�B)T ]† = X(1)(C�B)(CTC ∗BTB)†. (8.3)

Here M† is the Moore-Penrose pseudo inverse of M. Figure 8.1(a) shows the query

plan for Equation 8.3.

• Evaluate fit (after each factor matrix computation): After obtaining a factor matrix,
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the columns of the factor matrix are normalized and each norm is stored in the core

λ. Solving each factor matrix continues repeatedly until a measure of fit (defined as

fit(X, X̂) = 1− ‖X− X̂‖
‖X‖

, (8.4)

where X̂ is the approximate reconstruction of the X tensor from the current decom-

position and ‖Y‖ is the Frobenius norm of a tensor Y) converges or a target maximum

number of iterations are exhausted. The reconstruction of X̂ is done through a series

of Khatri-Rao products and a reshape operation as shown in Figure 8.1(b).

Figure 8.2 shows the outline of the steps involved in implementing the CP decom-

position in an array database. Note that while some of the operations involved in

the process (such as multiply) are already implemented in SciDB [18] and other array

databases, most of the operations needed to implement Equation 8.3 are not avail-

able in common array databases. Furthermore, as we discuss next, even those existing

array operations may require new implementations, more suitable for implementing

tensor decomposition operations. In the next subsections, we will discuss chunk-based

implementations of the various operations involved in the process and the proposed

optimizations.

8.1.5 Chunk-based Tensor Operators

In this subsection, we introduce the novel chunk-based tensor operators (matri-

cization, Khatri-Rao product, Hadamard product, normalization, and copyArray op-

erators) needed for implementing in-database tensor decompositions. Each of these

leverages the chunk ordering and access mechanism in Figure 4.6. In what follows,

we refer to an array with two modes as matrix and to an array with more than two

modes as tensor.
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(a) Physical layout

(b) Mode-1 matricization

(c) Mode-2 matricization

(d) Mode-3 matricization

Figure 8.3: (a) Physical layout of a 3-mode input tensor in the physical memory;
(b-d) different matricizations involve different amount of data movement

matricize(tensor, m)

Matricization transforms a tensor into a matrix along the given mode, m. More

specifically, an element (i1, i2, ..., im, ..., iN) of tensor X ∈ RI1×I2×,··· ,×IN is mapped to

(im, j) of mode-m matricization, X(m), such that (assuming row-major representation

of the result)

j =
N∑
k=1
k 6=m

 N∏
n=k+1
n 6=m

In

 ik.

Note that a tensor can be matricized using different column orderings 2 and,

as shown in Figure 8.3, depending on how the data is physically laid out, different

matricizations may involve different amounts of data movements. Therefore, our goal

is to reduce this data movement.

2But the same order should be used in all related calculations [46]. In our work, the data ordering
is aligned with the ordering of the result of Khatri-Rao product (see Equation 8.3).
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Figure 8.4: (a) Matricization on each mode of a chunk of a 3-mode tensor: gray-
shaded cells of the result matrices cannot be retrieved from the same chunk; (b)
proposed chunk-based matricization

Impact of Data Ordering on Chunk-based Matricizations. One straight-

forward way to implement matricization would be to use SciDB’s reshape and

redimension operators as illustrated in the following example.

Example 8.1.1 Consider a 3-mode tensor of size 100×100×100. We can imple-

ment mode-1 matricization of this tensor, assuming chunk sizes of 100×100, using

the reshape operator, as follows:

reshape(tensor, <val:double>

[i=1:100,100,0,j=1:10000,100,0]).

Mode-2 and mode-3 matricizations of the tensor, on the other hand, can be imple-

mented by first re-arranging the dimensions using the redimension operator,

redimension(tensor,<val:double>

[j=1:100,100,0,i=1:100,100,0,k=1:100,100,0]),

followed by the reshape operator as above.

The problem with these straightforward implementations is that (as we also see in
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the experimental evaluations section), in the presence of chunk-based storage, these

SciDB operators result in significant amounts of data traffic. Figure 8.4(a) visualizes

matricizations of a 3-mode tensor using the reshape and redimension operations.

As shown in the figure, when accessing data one chunk at a time, matricizations using

reshape and redimension require repeated chunk-swapping in and out of memory

to construct the output chunks, resulting in significant I/O overheads. Even in cases

where multiple chunks can be stored in the buffer, the movement of data across

chunks is costly. We address this problem by introducing a new chunk-optimized

matricization operator.

Chunk-Optimized Matricization. We implement chunk-based mode-m matri-

cization X(m) of X ∈ RI1×I2×,··· ,×IN with chunks of size K1 ×K2×, · · · ,×KN as

X(m) =



X11(m)
X12(m)

· · · X1J(m)

X21(m)
X22(m)

· · · X2J(m)

...
...

...
...

XIm1(m)
XIm2(m)

· · · XImJ(m)


,

where Xij(m)
is the (i, j)-th chunk of X(m) and J = I1× · · · × Im−1× Im+1× · · · × IN .

An element of (i1, i2, . . . , im, . . . , iN) in a chunk of (c1, c2, . . . , cm, . . . , cN) of X is

mapped to an element of (im, j) in a chunk of (cm, d) of X(m), such that

j =
N∑
k=1
k 6=m

 N∏
l=k+1
l 6=m

Kl

 ik and d =
N∑
k=1
k 6=m

 N∏
l=k+1
l 6=m

dIl/Kle

 ck. (8.5)

As Figure 8.4(b) illustrates, the proposed chunk-based matricization process does not

require repeated chunk-swaps to fill in the result chunks. Furthermore, since the data

movement is constrained within individual chunks, the global order in which chunks

are considered does not impact performance.
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Materialization of the Results of the Matricization Operation. Tensor ma-

tricization is a costly operation, requiring at least one full read-and-write of the

tensor data. Moreover, in CP decomposition, matricization of all modes of tensor

X are needed in each iteration (see Equation 8.3). Therefore, one way to minimize

the overall matricization overhead, is to materialize the matricization results: more

specifically, once a matricization is computed, the result can be materialized on disk

and this materialized matricization can be is used in all subsequent iterations. While

materialization of the matricization results introduces additional I/O costs and stor-

age requirements, especially in cases where the number of modes and number of

iterations are large, materialization can bring significant savings.

Khatri-Rao(left matrix, right matrix)

Given a left matrix, A ∈ RI×K , and a right matrix, B ∈ RJ×K , their Khatri-Rao

product is denoted by A�B. The result is a matrix of size (IJ)×K, defined as

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn · · · aK ⊗ bK ],

where an and bn are columns of A and B, respectively and⊗ is the Kronecker product.

Note that the Kronecker product, U⊗V, of matrices U ∈ Rx×y and V ∈ Rw×z results

in matrix of size (xw)× (yz), where

U⊗V =



u11V u12V · · · u1yV

u21V u22V · · · u2yV

...
...

. . .
...

ux1V ux2V · · · uxyV


.

Khatri-Rao products of factor matrices generate tall and generally dense matrices,

which often do not fit into main memory. This is a well-known bottleneck in CP
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decompositions. 3 The proposed chunk-based Khatri-Rao product addresses this

problem by dividing the resulting matrix into small enough chunks. We define the

chunk-based Khatri-Rao product for matrices A (with chunks A11, ..., AIJ) and B

(with chunks B11, ..., BIJ), as follows:

A�B =



A11 �B11 A12 �B12 · · · A1J �B1J

A21 �B21 A22 �B22 · · · A2J �B2J

...
...

...
...

AI1 �BI1 AI2 �BI2 · · · AIJ �BIJ


.

Once again, since the data movement is constrained within individual chunks, the

order in which chunks are considered does not impact performance.

Hadamard(left matrix, right matrix)

The Hadamard product is the elementwise matrix product; more specifically, given

matrices A and B, both of size I × J , their Hadamard product, denoted as A ∗ B,

results in the following size I × J matrix:

A ∗B =



a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ


.

Given this, we define the chunk-based Hadamard product for matrices A with

3Matricization times Khatri-Rao product together can be formulated in alternative ways for
sparse tensors [12, 39]. In this work, we consider the more general formulation also applicable to
dense data.
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chunks A11, ..., AIJ and B with chunks B11, ..., BIJ as follows:

A ∗B =



A11 ∗B11 A12 ∗B12 · · · A1J ∗B1J

A21 ∗B21 A22 ∗B22 · · · A2J ∗B2J

...
...

...
...

AI1 ∗BI1 AI2 ∗BI2 · · · AIJ ∗BIJ


.

Again, the data movement is constrained within individual chunks and, thus, the

order in which chunks are considered does not impact performance.

copyArray(operator(args), array)

This operator copies the result of operator(args) to a temporary array, array, and is

used for updating the intermediate results (e.g., in the in-database CP decomposition,

for updating the factor matrices, which get updated in each iteration). In contrast,

SciDB’s analogous operation, store, does not update an existing array but creates a

new version of the array (also maintaining the previous versions). Also, unlike store,

copyArray does not use run-length encoding/decoding, since frequently updated and

relatively small factor matrices, do not benefit from run-length encoding/decoding.

Other Chunk-based Operators

In addition to the above, our in-database CP implementation also requires chunk-

based implementations of other operators, such as operators for normalizing the

columns of the input matrix, or computing the Frobenius norm of the difference

between the given tensor and the decomposed tensor used for fit computation (see

Equation 8.4).
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8.1.6 Non-Chunked Tensor Operations

In addition to the above chunked operators, we also implement two non-chunked

operators, pseudoinverse and eigen-decomposition. While these require their inputs

to fit into the memory, since (during tensor decomposition) inputs are often relatively

small matrices, this rarely constitutes a problem.

pseudoinverse(matrix)

This operator returns the pseudo-inverse of the input matrix. We implement this

operator using a C++ linear algebra library from [67], where SVD is used to solve

pseudo-inverse problem. Since during CP decomposition, the input to the pseudo-

inverse operation is a matrix of size rank × rank, where rank is a relatively small

number of target components, this matrix easily fits the main memory and does not

require a chunk-based implementation.

eigen(matrix, r)

This operator returns r leading eigen-vectors of the input matrix. Similar to the

pseudoinverse operator, eigen-decomposition is an in-memory operation and we use

the eigen-decomposition function provided in [67] for implementation.

We use this eigen-decomposition operation to implement incremental tensor de-

composition. In particular, we take the leading eigen-vectors of the Id× Id covariance

matrix to generate factor matrices, where Id is the size of the mode d of the ten-

sor. Note that this matrix is often much smaller than the whole tensor and, thus,

we assume that the covariance matrix fits into the main-memory. In cases where

this does not hold, it is possible to leverage block decomposition techniques, such as

incremental SVD [15] to implement this on chunks.
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In-database DTA (input: a tensor X ∈ I1 × I2 × · · · × IN with the chunk size K1 × K2 × · · · × KN , a target rank

r1, r2..., rN , old covariance matrices C
(1)
old,C

(2)
old, ...,C

(N)
old )

1: for each mode d = 1, . . . , N do

2: create array C(d) <val:double>[i=1:Id,Id,0,j=1:Id,Id,0] {create a covariance matrix C(d)}

3: store(multiply(matricize(X, d), transpose(matricize(X, d)) {C(d) = X(d)X(d)T }

4: select a.val+b.val into C(d) from C
(d)
old a, C(d) b; {C(d) = C

(d)
old + C(d)}

5: end for

6: for each mode d = 1, . . . , N do

7: create array U(d) <val:double>[i=1:Id,Kd,0,j=1:rd,rd,0] {create a factor matrix of the mode d, U(d)}

8: copyArray(eigen(C(d), rd),U
(d)) {set the rd leading eigen vectors to factor matrices U(d)}

9: end for

10: Let T1,T2 . . .TN be temporary arrays to store intermediate results

11: store(reshape(X, <val:double>[i=I2 × · · · × IN,K2 × · · · ×KN , 0,j=1:I1,K1, 0]),T1)

12: for each mode d = 1, . . . , N − 1 do

13: store(reshape(multiply(Td, transpose(U(d))), <val:double>[i=1:I1×· · ·×Id−1×Id+1×· · ·×IN,K1×

· · · ×Kd−1 ×Kd+1 × · · · ×KN,0,j=1:Id,Kd, 0]),Td+1)

14: end for{compute the core tensor Y = X×1 U(1)T ×2 · · · ×N U(N)T and TN is the core tensor}

15: Y = TN

16: return core Y, factor matrices U(1),U(2) . . .U(N)

Figure 8.5: In-database DTA

8.2 Frequent Data Updates

As described in the introduction, when the data are frequently updated, techniques

which incrementally maintain tensor decompositions tend to be more efficient than

repeatedly decomposing the whole data tensor with each update.

8.2.1 Chunk-based Dynamic Tensor Analysis

In our work, we adapt the Dynamic Tensor Analysis (DTA) algorithm [70] for

in-database operation. Note that, unlike CP, DTA assumes a dense core matrix as

in Tucker decomposition [74]; but, as shown in [8], results of Tucker decompositions

can be used as a first step towards bootstrapping CP decomposition.

DTA incrementally maintains covariance matrices for each mode and computes
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factor matrices by taking the leading eigen-vectors of the covariance matrices. More

specifically,

• first, the algorithm computes the covariance matrix C(d) for each mode d;

• then, each C(d) is updated by adding the old covariance matrix C
(d)
old;

• next, rd leading eigen vectors of each covariance matrix are copied into corre-

sponding factor matrix;

• finally, the core tensor is obtained by multiplying the input tensor with factor

matrices along each mode.

Figure 8.5 provides the pseudo-code for in-database, chunk-based DTA, implemented

using the operators described in the previous section. Note that in-database DTA

benefits from chunk-based operators in reducing the I/O overhead when dealing with

disk-resident, large-scale data. However, as we also experimentally establish in Sec-

tion 8.3, a significant portion of the execution cost of the above algorithm is due to the

step in which the covariance matrix, C(d), for each mode, d, is computed. Therefore,

a key challenge is to reduce the cost of this step. We discuss this next.

8.2.2 Chunk-based Covariance Matrix Estimation

As shown in Figure 8.5, the covariance matrix of a given tensor along a given mode,

d, is computed by first matricizing the tensor along mode d and then multiplying the

matricized tensor with its transpose. Both the matricization operation and the matrix

multiplication can be implemented and optimized using chunk-based techniques (as

discussed in the previous section) to reduce I/O costs. However, given two matrix

chunks Uij and Vkl, which are (i, j)-th chunk of a matrix U and (k, l)-th chunk of a

matrix V respectively, (the first one from the matricized tensor and the second from its

transpose) brought into the memory, computation of UijVkl is still a costly process. We
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propose to address this by performing, when appropriate, (approximate) compressed

matrix multiplication, instead of using conventional multiplication operators.

Compressed Covariance Matrix Estimation

In general, for Uij of size n×m and Vkl of size m×n, the matrix product, UijVkl, can

be obtained as follows:

UijVkl =
n∑
r=1

urvr, (8.6)

where u1, ...,un are the row vectors of Uij and v1, . . . ,vn are the column vectors of

Vkl. Compressed matrix multiplication, on the other hand, is a recent technique which

leverages compressive sensing to obtain an approximation of the matrix multiplication

result, without performing n outer products explicitly [57]. While, the details of

this algorithm is outside of the scope of this thesis, it is sufficient to note that the

algorithm computes a linear count sketch [20] of the entries of each outer product of

Equation 8.6. The algorithm has two key parameters, b and d: b regulates the detail

of the count sketches obtained for each column vector of Uij and row vector of Vkl;

d, on the other hand, regulates the number of count sketches obtained to improve

accuracy.

[57] showed that it is possible to approximate a matrix product with high proba-

bility if the matrix product is compressible, i.e., if the Frobenius norm of the matrix

product is dominated by a sparse subset of entries of the product. We argue that this

condition is often satisfied when computing covariance matrices, as for most data of

interest, input matrices (i.e., matricized data tensors) have skewed distributions and,

thus, the resulting covariance matrices tend to be sparse. Consequently, in most prac-

tical cases, approximate compressed matrix multiplication can be applied to obtain

accurate estimates of covariance matrices. Most importantly, we can decide ahead of

the time whether to use regular or compressed matrix multiplication, based on the
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sparsity of the initial covariance matrix. On the other hand, as we see next, when

considering chunk-based in-database implementations, various further optimizations

need to be considered.

Chunk Density based Optimization

According to [57], given a parameter pair, b and d (which together govern the number

of collected sketches and two square matrices), the cost of multiplying two matrices

of sizes n1 × n2 and n2 × n3, is

O(dn2(n1 + n3 + b log b) + n1n3).

Since, when estimating covariance matrices, we multiply chunks of size n ×m with

chunks of size m × n (of the transpose matrix), the cost of the operation for each

chunk pair can be computed as

O(dm(2n+ b log b) + n2),

or equivalently as

O(dmn(2 +
b log b

n
+

n

dm
)). (8.7)

Since, when chunks are dense, multiplying these two chunks using a straightforward

matrix multiplication algorithm would cost O(mn2), as long as the inequality,

d(2 +
b log b

n
+

n

dm
) < n,

is true, compressed matrix multiplication is likely to outperform exact matrix multi-

plication.

When the matrices that are multiplied are sparse, however, there are faster ma-

trix multiplication algorithms [1]. Thus, as we experimentally show in Section 8.3,

when the input chunks are sparse, compressed matrix multiplication may not pro-

vide significant time gains. Therefore, we utilize compressed matrix multiplication
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only for pairs of chunks that are both dense; we revert back to the default matrix

multiplication algorithm if one of the chunks is sparse.

Optimization of the Chunk Shape

Chunks used in tensor decomposition are constrained by the amount of buffer available

for storing them once they are read from the secondary storage into the main memory;

on the other hand, it is possible to use chunk of different shapes, as long as the chunk

size fits the allocated memory (i.e., n×m ∼ β for some target buffer size, β). However,

we see that the cost function (Equation 8.7) and the associated inequality, together

provide additional constraints on n and m. These constraints can help determine the

optimal shape of the chunk under a given buffer constraint.

In particular, the cost function implies that, for a given parameter pair, b and d,

the running time gets faster when n gets smaller than m, given n×m fixed. On the

other hand, since when creating count sketches, the column (or row) vectors (of size

n) need to be scanned sequentially, matrices with n > m (when n ×m is fixed) are

likely to be scanned faster. Therefore, in practice, as we see in Section 8.3.3, the best

execution times are observed when m ∼ n.

8.3 Evaluation

In this section, we evaluate the proposed static and dynamic in-database, chunk-

based tensor decomposition operators. We ran experiments on Ubuntu 12.04 64-

bit, 7.7 GB RAM, Intel Core i5-2400 CPU @ 3.10GHz × 4, and 112.6 GB disk.

We implemented the proposed tensor manipulation operators by extending SciDB

12.12 [4]. In memory baselines are implemented using MATLAB tensor toolbox [12].
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Table 8.2: Tensor data sets for in-database CP decomposition
Data set Attributes Size Chunk size Density (%)

Enron email data (recipient’s position,
8×184×184×5632 8×184×184×200 0.0022

(Enron) sender,recipient,time)

MovieLens 1M
(rating,genre,movie,user) 5×18×3400×6000 5×18×200×200 0.1

(Movie)

Extended Yale Face Database B
(image no,x-coord,y-coord) 5000×480×640 250×240×320 100

(Face)

8.3.1 Experimental Setup

Tensor Representations. We use tensors of different densities and different tensor

representations: sparse tensor representation (shortly referred to as STR), where only

non-zero entries are kept, and dense tensor representation (DTR). We consider tensors

with different densities, and in each figure we highlight the tensor density along with

the tensor representation utilized; e.g., STR:0.001% for sparse representation of a

tensor of 0.001% density.

Evaluation Criteria. In addition to the execution times, our evaluation criteria

also include fit (Equation 8.4) and relative fit (fitrel), which indicates how accurate

the proposed scheme is compared to the baseline in terms of fit:

fitrel = fit(X, X̂opt) / fit(X, X̂base), (8.8)

where X is the input tensor, X̂base is the tensor obtained by re-composing the decom-

posed tensor in the baseline scheme, and X̂opt is the tensor obtained by re-composing

the decomposed tensor in the proposed scheme.

8.3.2 In-Database CP

Data Sets. In these experiments, in addition to random data sets, we also used real

data sets with different characteristics: Enron email data set (Enron) [61], Movie-

Lens 1M data sets (Movie) [56], and a face data set (Face) [5] with 5,000 images.
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Figure 8.6: (a) Running times of in-memory and in-database CP decomposition and
(b) average running times per iteration on 3-mode random tensors (DTR: 50%). Red
‘x’ marks show that in-memory CP runs out of memory

Table 8.3: Fit of in-database CP compared against the fit achieved by in-memory
CP

in-database CP in-memory CP [12]†

Enron 0.0774 0.0671

Movie 0.0447 0.0447

Face 0.5511 Not Enough Memory

†In-memory CP on Face data set is not feasible

Table 8.2 shows the detail of each data set. In these experiments, we considered

target decomposition rank of 10.

In-Database CP vs. In-Memory CP

Scalability. We first compare the running times of in-memory and in-database CP

on 3-mode dense random tensors (DTR: 50%). Here we use the same chunk dimen-

sionality (250) for all tensors. Figure 8.6 shows that, as expected, when the data

fits into the memory, in-memory decomposition is faster than in-database operation;

however, the proposed in-database decomposition operator is able to operate even in

situations where the in-memory decomposition is not feasible.

Accuracy. We next evaluate the accuracy of the in-database CP decomposition
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on various real data sets, listed in Table 8.3 – two sparse tensors (in sparse tensor

representation, STR) and a dense tensor (in dense tensor representation, DTR). The

sparse tensors we considered are small enough to fit into the main memory to enable

us compare the accuracy of the proposed in-database CP decomposition operator to

MATLAB based in-memory decomposition, specially designed for sparse tensors [12].

As we see in this table, on the datasets where the in-memory decomposition was

feasible, in-database CP decomposition achieves equal to or better fit than the in-

memory CP decomposition.

Detailed Analysis of In-Database CP

Next we study the cost of in-database CP in detail on random tensors where the

computation does not fit into the memory.

Cost Breakdown of a Single Iteration. Figure 8.7(a) provides a high-level break-

down of a single iteration. As we see here, the cost of fit computation step in in-

database CP is not negligible and thus the operations involved in this step also need

to be carefully optimized. Figure 8.7(b) confirms that the copyArray operator intro-

duced to efficiently update factor matrices (Section 8.1.5) provides significant savings

relative to SciDB’s store operator.

Cost Breakdown of Solving a Factor Matrix. Figure 8.7(c) focuses on the time

needed to solve factor matrices and show that, on dense data sets 4 , matricization

(which requires data re-ordering as discussed in Section 8.1.5) is the single costli-

est operation. Figure 8.7(d) further analyzes the running times of the remaining

operations 5 (i.e., all except matricization) involved in solving a factor matrix: as

4Matricization is much cheaper on sparse data sets; results are omitted due to space limitations.

5While these are negligible for dense input data, for sparse data sets where matricization is fast,
these operations, which always operate on dense factor matrices, even when the input tensor is
sparse, will constitute the dominant cost.
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Figure 8.7: (a) Execution time breakdown of a single in-database CP iteration
(input tensor – DTR:50%); (b) impact of the novel copyArray operator vs. store
(c) for dense input tensors time needed for solving a factor matrix is dominated by
matricization step; and (d) breakdown of the rest operations (except matricization)
in solving a factor matrix (these operations are performed on DTR whether the input
tensor is dense or sparse since factor matrices are generally dense

expected, multiplication of the result of matricization with the result of Khatri-Rao

product consumes the largest amount of time among these steps.

Impact of the matricize Operator. As we also discussed in Section 8.1.5, it is

possible to implement matricization using SciDB’s redimension and reshape oper-

ations, instead of the proposed special matricize operator. Figure 8.8 shows that

the proposed matricize operator is significantly more efficient than SciDB’s exist-

ing operators for all chunk densities and STR/DTR representations. Note that the
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Figure 8.8: Running times of (a) mode-1 matricization using matricize vs. reshape
operations, (b) mode-2 matricization that requires data re-ordering using matricize
vs. redimension and reshape operations, and (c) fit computation using matricize
vs. reshape

execution times reported in Figure 8.8(b) show the importance of using chunk-based

matricize on modes that would otherwise necessitate the use of redimension op-

erator: in this case, the savings in execution time through the use of chunk-based

matricize are multiple orders of magnitude.

In addition to being useful when solving a factor matrix, as we have seen in Sec-

tion 8.1.4, matricization is also useful while computing the degree of fit. Figure 8.8(c)

shows that, also in this case, using the proposed matricize operator helps reduce

the execution times.

Impact of Materialization of Matricization. To further reduce the cost of ma-
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Table 8.4: Tensor data sets for in-database DTA

Data set No. of inputs Attributes Size Chunk size
Avg density

(%)

Epinions 4 windows
(user,product,category,

5000×5000×26×5×5 500×500×13×5×5 0.00002
rating,helpfulness)

MovieLens 10M 5 windows (user, movie, rating) 5000×5000×10 500×500×10 0.28

Aerial view 6 image frames (x-coord, y-coord) 2000×20004 2000×2000 100

tricization, we can also leverage materialization of the matricization results. As seen

in Figure 8.9, the materialization of the matricization can help reduce the running

time of in-database CP, especially on input tensors with higher number of modes and

dense representations.

Note that the cost of materializing matricization gets amortized as the number

of iterations increases. Note also that materialization of matricization requires addi-

tional storage on the hard disk (equal to the tensor size for each matricized mode).

While this is often not an issue, when the storage is a concern, one can selectively

materialize the matricization on a subset of modes.

8.3.3 In-Database Dynamic Tensor Analysis

We next present the experiment results for in-database dynamic tensor analysis

(DTA) and in-database DTA with compressed matrix multiplication (C-DTA). For
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Figure 8.10: Running times of in-database DTA of sparse data (STR) on (a) 4
windows of Epinions data and (b) 5 windows of MovieLens 10M data (note that in
the last window, the tensor is much denser than the previous windows)

implementing the FFT process involved in the compressed matrix multiplication al-

gorithm, we used a C subroutine library [32]. In these experiments, we set the ranks

to 5 for each mode.

Data Sets. For these experiments, in addition to the randomly generated data, we

used Epinions [72], MovieLens 10M [56], and Aerial views II [2] (Aerial view) data

sets. For the Epinions data, we ran the in-database DTA for 4 windows on the input

tensor of product ratings (user, product, category, rating, helpfulness). This tensor is

of size 5000×5000×26×5×5 (we considered 5000 frequent users and products). For

the MovieLens 10M data, we used 5 windows of the movie rating data (movie, user,

rating) on the input tensor of size 5000×5000×10 (we considered 5000 frequent users

and movies). For Epinions and MovieLens 10M data, each entry of the input tensors

denotes whether the rating exists (1) or not (0) on the corresponding attributes in

the window. For the Aerial view data, in-database DTA is performed on 6 gray-

scale image frames (x-coord, y-coord) where each entry represents a gray-scale color

(0-255). Table 8.4 shows the data sets.
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Table 8.5: Average fit of in-database DTA compared against in-memory DTA on
various data sets

in-database DTA in-memory DTA [70]†

Epinions 0.016 Not Enough Memory

MovieLens 10M 0.043 0.043

Aerial view 0.77 0.77

†In-memory DTA on Epinions data set is not feasible in available memory, while in-database DTA suc-

cessfully completes the task.

In-Memory DTA vs. In-Database DTA

Firstly, Table 8.5 shows the accuracy (fit) results for in-database and in-memory DTA

for various real data sets. As we see, the accuracy of the in-database DTA is the same

as the accuracy of in-memory DTA. Moreover, in-database DTA is able to operate

in cases (such as the Epinions data set) that are too large to run in the available

memory.

Impacts of the Number of Modes and Data Density on DTA. We next

evaluate the impact of the number of modes and data density on DTA, using Epinions

data and MovieLens 10M data (Figure 8.10). As we see here, on sparse data, the

number of tensor modes is a significant factor and 5-mode Epinions data requires

much larger decomposition time than 3-mode MovieLens 10M data. As shown in

Figure 8.10(b), running times get larger for denser data and the largest contributor

to the execution time of DTA is the covariance matrix computation.

In-Database DTA vs. In-Database C-DTA

The default values of b is set to n/2 for n× n chunk of the covariance matrix and d

is set to 30 (as explained later in this section).

Sparse vs. Dense Tensors. As we see in Figure 8.11, as expected, C-DTA is

not advantageous for data with sparse representation (STR). On the other hand,

for data with dense representation (DTR), C-DTA provides significant time gains.
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Figure 8.12: (a) Running times and (b) fits of incremental C-DTA vs. DTA on 5
image frames of Aerial view data

These confirm the observations reported in Section 8.2.2. Note that Figure 8.11

re-confirms that the running times of covariance matrix computation is the most

dominant component in DTA and C-DTA.

Accuracy of C-DTA. Figure 8.12 presents the running times and fits of C-DTA

vs. DTA on 5 consecutive image frames of the Aerial view data set. As we have

already seen in Figure 8.11(b), on this data set, C-DTA consistently outperforms

DTA (∼ 3×) and, despite the significant drops in execution time, the fits of C-DTA

are close to those of DTA (∼ 80% relative fit). Interestingly, while the fit of DTA
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Figure 8.13: (a) Running times of compressed vs. exact matrix multiplication on
random matrices with varying sizes, (b) running time ratios of DTA vs. C-DTA
(the higher the running time ratio, the more efficient is C-DTA) and (c) relative fit
of C-DTA vs. DTA (the higher the relative fit, the more accurate is C-DTA) – in
(b) and (c) we vary the parameter d (# of count sketches) in compressed matrix
multiplication. In all cases, we use random tensors (DTR:50%)

drops as more update windows are considered, the degree of fit of C-DTA remains

mostly consistent.
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Analysis of Covariance Matrix Maintenance through Compressed Matrix

Multiplication

As we have confirmed above, C-DTA is useful mainly for dense tensors. Thus, here,

we focus on dense matrices.

Scalability of Compressed Matrix Multiplication. We first compare the run-

ning time of compressed matrix multiplication with running time of exact matrix

multiplication. As we have seen in Section 8.2.2, as the row length of the matrix

increases, the time complexity of compressed matrix multiplication increases linearly,

whereas the running time of the exact matrix multiplication increases quadratically.

This is confirmed in the results presented in Figure 8.13(a).

Time/Accuracy Trade-Offs for Covariance Computation. Next, we evaluate

the time/accuracy trade-offs in computing the covariance matrix with and without

compressed matrix multiplication in in-database DTA (C-DTA vs. DTA). In par-

ticular, we consider different values of the parameter, d, which controls the number

of count sketches of the matrix product. In Figures 8.13(b) and (c), the tensor size

is 5000x100x10 and we considered the covariance matrix on the first mode (of size

5000x5000). As we see in these figures, as we obtain more count sketches, the accu-

racy of C-DTA improves, but the execution time gains drop. Based on these results,

we choose d = 30 as the default value for our experiments.

Impact of Chunk Density in Compressed Matrix Multiplication. The cost

analysis of the compressed matrix multiplication in Section 8.2.2 as well as C-DTA

vs. DTA experiments reported in Figure 8.11 implied that compressed matrix mul-

tiplication is not effective for sparse data. We next evaluate the running times of

compressed matrix multiplication on chunks of different densities. Figure 8.14(a) re-

confirms that, as expected, compressed matrix multiplication is not advantageous for
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Figure 8.14: (a) Impact of chunk density on the running time ratio of exact vs.
compressed matrix multiplication; (b) impact of chunk shape on the running time of
compressed matrix multiplication

sparse data, but the execution time gains become significant (e.g., 2.5×) as the chunk

size and density increase.

Impact of Chunk Shape in Compressed Matrix Multiplication. As discussed

in Section 8.2.2, shapes of the chunks can impact the performance of the compressed

matrix multiplication. In Figure 8.14(b), we evaluate execution times for different

chunk shapes (of the same size). The results show that, as the cost analysis in

Section 8.2.2 implies, the running times are highest when n is largest. Moreover,

running times are smallest when n and m are close to each other.
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Chapter 9

CONCLUSION AND FUTURE WORK

In this chapter, we conclude the thesis and present our future work.

9.1 Conclusion of the thesis

Lifecycle of most data includes a diverse set of operations, from capture, integra-

tion, projection, to data decomposition and analysis. Tensor is a natural represen-

tation for multi-dimensional data due to its simplicity and tensor-based operations,

particularly tensor decompositions have been used to capture higher-order structure

of data as higher-order extensions of the matrix singular value decomposition: so

they are widely used in multi-aspect analysis. For many multidimensional data ap-

plications, tensor operations as well as relational operations need to be supported

throughout the data lifecycle. We introduced Tensor Relational Model (TRM) and

defined tensor-relational operations on this model in Chapter 3. In Chapter 4, we

introduced TensorDB, a tensor-relational data management system, based on TRM,

which brings together relational algebraic operations (for data manipulation and in-

tegration) and tensor algebraic operations (for data analysis). Although tensor-based

representations have proven to be useful for multi-dimensional analysis, the high cost

of the operations, due to its high-modality and exponentially increasing complexity

in the dimension of the data, makes the applications still challenging. We considered

optimization strategies to deal with these challenges in TensorDB. We also focused

on building the in-database implementation of static and dynamic tensor decompo-

sitions for the in-database TensorDB to address in-memory limitations in in-memory

TensorDB.
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• In Chapter 5, we proposed a highly efficient, effective, and parallelized

join-by-decomposition (JBD) strategy for approximately evaluating decom-

positions within join operations. We also proposed pair selection schemes for

the join-by-decomposition strategy to approximate the fitness of the com-

bined decomposition. Experimental results confirmed that the efficiency and

effectiveness of the proposed join-by-decomposition scheme compared to the

join-then-decompose.

• In Chapter 6, we focused on data processing workflows involving both tensor

decomposition and data integration (union) operations and proposed a novel

scheme for pushing down the tensor decompositions over the union operations

to reduce the overall data processing times and to promote reuse of materialized

tensor decomposition results. Experimental results confirmed the efficiency and

effectiveness of the proposed decomposition push-down strategy and the corre-

sponding union-by-decomposition (UBD) operator.

• In Chapter 7, we proposed a highly efficient, effective, and parallelized

decomposition-by-normalization (DBN) strategy for approximately evalu-

ating decompositions by normalizing a large relation into the smaller tensors

based on the FDs of the relation and then performing the decompositions of

these smaller tensors for both CP and Tucker decompositions which are the two

most widely used tensor decomposition methods. We also proposed interFD-

based partitioning and intraFD-based rank pruning strategies for DBN based

on pairwise FDs across the normalized partitions and within each normalized

partition, respectively. Experimental results confirmed the efficiency and ef-

fectiveness of the proposed DBN scheme, and its interFD and intraFD based

optimization strategies, compared to the conventional tensor decomposition.
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• In Chapter 8, we focused on in-database implementation of static and dynamic

tensor decompositions by leveraging an array database. To tackle the high cost

of the operations, due to its high-modality and exponentially increasing com-

plexity in the number of dimensions of the data on disk resident data sets,

we discussed implementation of tensor decompositions on a chunk-based ar-

ray store, and proposed in-database (static and dynamic) tensor decomposi-

tion operations to address memory blowup problems when dealing with large,

higher-order tensor data, such as in social network and scientific applications.

9.2 Future Work

In this section, we discuss our future research directions.

9.2.1 New Optimization Strategies for Tensor-Relational Model

We proposed optimization strategies for tensor-relational query plans involving

data integration operations such as join and union and tensor decomposition opera-

tions. Our future work extends these to new optimization strategies for data manip-

ulation operations such as selection along with tensor decomposition operations.

Consider that we keep analyzing a massive amount of data and we want to analyze

the data in multiple different contexts. If we already have a tensor compressed domain

updated over time, since tensor decomposition is an expensive operation, we want to

select only the data of interest in the compressed domain without performing multiple

tensor decomposition operations on each subset of the data. For example, Figure 9.1

shows two alternative query plans. As shown in the figure, in the first query plan (a)

and the second query plan (b), each query plan on a tensor X performs a selection

operation, which is followed by a tensor decomposition. In the third query plan (c),

two selection operations are performed on a tensor decomposition of X, which is more
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Figure 9.1: In (a) and (b), a Tucker decomposition follows a selection operation
on a tensor X. Alternatively, two different selection operations are performed on a
Tucker decomposition of X in (c).

efficient than the first and second query plans together.

The problem of performing selection operations on an existing model can also

be generalized to a dynamic tensor update problem, which includes removing and

inserting sub-tensors on the model. Online updating model in matrix factorization [62]

and SVD [16] have been studied to update the model dynamically as the features are

updated without rebuilding the model. Incremental tensor decomposition [70] is such

an example for tensor decompositions.

These models can be extended to be a general tensor updating model for ten-
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sor decompositions with relational operations such as selection, projection, union,

intersection, etc. and within this model, optimization strategies for tensor-relational

operations can be developed.

9.2.2 Extension of TensorDB

We proposed query optimization strategies in the tensor-relational model

such as decomposition push-down and vertical partitioning and the optimiza-

tion schemes such as join-by-decomposition, union-by-decomposition, and

decomposition-by-normalization. So far we implemented these optimization

schemes in in-memory TensorDB. Our future work includes supporting these opti-

mization schemes and a query optimizer that applies the query optimization strategies

for the tensor-relational query processing in in-database TensorDB. Figure 9.2 shows

the extended TensorDB with the query optimizer and new optimization strategies.
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In addition, future work will include exploring opportunities of parallelizing tensor-

relational operations of TensorDB in high performance cluster or multicore environ-

ments.
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