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ABSTRACT 
   

 

Accelerated life testing (ALT) is the process of subjecting a product to stress conditions 

(temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate 

failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-

stress factor ALTs are challenging as they increase the number of experiments due to the stress 

factor-level combinations resulting from the increased number of factors. Chapter 2 provides an 

approach for designing ALT plans with multiple stresses utilizing Latin hypercube designs that 

reduces the simulation cost without loss of statistical efficiency. A comparison to full grid and 

large-sample approximation methods illustrates the approach computational cost gain and 

flexibility in determining optimal stress settings with less assumptions and more intuitive unit 

allocations. 

Implicit in the design criteria of current ALT designs is the assumption that the form of the 

acceleration model is correct. This is unrealistic assumption in many real-world problems. 

Chapter 3 provides an approach for ALT optimum design for model discrimination. We utilize the 

Hellinger distance measure between predictive distributions. The optimal ALT plan at three stress 

levels was determined and its performance was compared to good compromise plan, best 

traditional plan and well-known 4:2:1 compromise test plans. In the case of linear versus 

quadratic ALT models, the proposed method increased the test plan’s ability to distinguish among 

competing models and provided better guidance as to which model is appropriate for the 

experiment. 

Chapter 4 extends the approach of Chapter 3 to ALT sequential model discrimination. An 

initial experiment is conducted to provide maximum possible information with respect to model 

discrimination. The follow-on experiment is planned by leveraging the most current information to 

allow for Bayesian model comparison through posterior model probability ratios. Results showed 

that performance of plan is adversely impacted by the amount of censoring in the data, in the 

case of linear vs. quadratic model form at three levels of constant stress, sequential testing can 

improve model recovery rate by approximately 8% when data is complete, but no apparent 
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advantage in adopting sequential testing was found in the case of right-censored data when 

censoring is in excess of a certain amount. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1. Introduction 

In this dissertation, we are interested in Accelerated life test planning methods under 

practical constraints, with particular focus on Bayesian methods to incorporate existing 

engineering knowledge in the planning phase of the experiment.  

Accelerated life tests (ALTs) are widely used throughout industry, primarily to estimate 

lifetime performance of products at field or use conditions. Testing at use conditions is impractical 

due to the length of testing time required to produce fails. Therefore, reliability engineers would 

instead perform testing at increased levels of applied stresses (for example, temperature, 

temperature amplitude (  )  humidity, voltage/bias, or pressure) to produce fails within 

reasonable time durations. Obtained data at test levels would then be used to make predictions of 

product performance at use conditions through extrapolation using an appropriate ALT model. 

This will enable timely decision making satisfying a business need.  

Accelerated life models have two parts: a life distribution which is a statistical model for 

the time to failure data at each stress level, and a physical model or relationship which is a 

mathematical model that links the parameters of life distribution to stress levels. The intent of ALT 

testing is to accelerate a given physical mechanism without introducing new fail mechanism that 

do not exist in the use environment. Therefore, overstressing should be avoided.  

Testing resources such as time, test units and test equipment (e.g. stress chambers) are 

usually very limited. Therefore, careful test planning is critical for the efficient use of such 

resources while extracting maximum possible information. Typically, ALT plans specify the levels 

of accelerating variable/s and the allocation of available test units to these levels. Optimum test 

plans are obtained given different criteria of interest; for example, the estimation precision of a life 

distribution quantile at use conditions. Optimum test plans serve as the base for obtaining good 

practical compromise test plans. ALT planning methods can be grouped into constant-stress, 

step-stress, and ramp-stress ALT methods. For the constant-stress methods see, e.g., Meeker 

and Han [11], Nelson [13], Nelson and Kielpinski [14], and Nelson and Meeker [15]. Majority of 
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available research has focused on optimal plans for the single stress-factor as in Nelson and 

Meeker [15]. However, in reality there are increased numbers of failure mechanisms that are 

driven by a combined effect of multiple stress factors affecting the product simultaneously.  

Hence our interest focuses on ALT plans for the constant-stress multi-stress factor case, as 

shown in Chapter 2 of this dissertation, and we tackle the design problem from a Bayesian 

perspective, as we are motivated by the fact that engineers acquire wealth of knowledge during 

the course of their experimentation that should be utilized in planning of future ALTs. 

Majority of today’s Bayesian experimental design work follows a decision theoretic 

approach to experimental design as outlined in Lindley [9], and Raiffa and Schlaiffer [17]. This 

approach suggests that a good way to design experiments is to specify a utility function reflecting 

the purpose of the experiment, to regard the design choice as a decision problem, and to select a 

design that maximizes the expected utility. However, the difficulty with this approach is that the 

exact utility function is often a complicated integral of high dimension, and as such approximation 

or simulation methods must be used for its evaluation, (Chaloner and Verdinelli [4]). With 

advances in computing power nowadays, the Simulation-based strategies have gained solid 

grounds and can be used to approximate the expected utility function necessary for the 

evaluation of the Bayesian optimal design. To avoid intensive sampling and computation as a 

result of increased number of stress factor-level combinations, we explore the use of a Latin 

hypercube designs for sampling the design space, alongside non-parametric surface smoothing 

techniques to approximate the pre-posterior variance of a quantity of interest at use condition to 

arrive at our optimal design. 

Implicit in the design criteria used in current ALTs is the assumption that the form of the 

acceleration model is correct. In many real-world problems this assumption could be unrealistic. A 

more realistic goal of an initial stage of ALT experimentation is to find an optimal design that 

helps in selecting a model among rival or competing model forms; i.e., a design that could assist 

in model discrimination. The ability to choose between competing model forms in an early 

experimentation stage has an important impact on the effective design of subsequent 
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experimentation phases. A considerable work has been done in the development of experimental 

designs for discrimination among regression models. See, for example, Hunter and Reiner [7], 

Box and Hill [3], Hill et al. [6], Atkinson and Cox [1]. More recently, many authors focused on the 

development of T-optimum criterion for model discrimination; see, for example, Atkinson and 

Donev [2], Ponce de Leon and Atkinson [8]. However, all of the above attempts at model 

discrimination work has been in the context of traditional experimental design, i.e., standard 

experimental designs such as factorial, fractional factorial, Box central composite, etc. None to 

our knowledge has been explicitly targeting model discrimination in planning of accelerated life 

tests experiments, where failure time censoring is commonly expected. Nelson [13] (p. 350) has 

cautioned that the statistical theory for traditional experimental design is correct only for complete 

data (all units fail in a test), and one should not assume that properties of standard experimental 

designs hold for censored and interval-censored data as they usually do not hold. Therefore, our 

work in Chapter 3 draws its importance from its attempt at contributing to model discrimination 

literature in accelerated life test planning when censoring is inevitable due to practical test 

constraints.  

Motivated by the sequential nature of the learning process in general, we investigate the 

effect of sequential experimentation on ALT model discrimination in Chapter 4 as compared to 

the non-sequential method proposed in Chapter 3. The Bayesian theory allows us to implement a 

sequential scheme and make use of the most recent information obtained from data. In addition 

to that, any available prior information about the models under investigation can be considered in 

the analysis. The MCMC-based methods have the advantage of its capacity to handle both linear 

and nonlinear models. Hence, our proposed methodology is utilizing Bayesian MCMC methods.  

Sequential testing and design of experiments have been studied previously, one may 

refer to Chernoff [5], Pilz [16], Wetherill and Glazebrook [19] and Michlin et at. [12]. Sequential 

testing in the context of ALT planning and inference has been studied by Liu and Tang [10], and 

Tang and Liu [18] for the single-variable constant-stress accelerated test. However, we know of 

no previous work that aimed at sequential testing in the context of ALT model discrimination. That 
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is an additional motivation to the work presented in Chapter 4. 

1.2. Dissertation Organization 

This dissertation consists of three papers corresponding to Chapters 2, 3, and 4 

respectively. Chapter 2 provides a simulation-based method for the design of multi-stress factor 

accelerated life tests in a Bayesian decision theoretic framework. Multi-stress factor ALTs are 

challenging due to the increased number of experiments required as a result of stress factor-level 

combinations resulting from the increased number of factors to be studied. The methodology 

introduces the use of Latin hypercube sampling scheme to meet that challenge and reduce the 

simulation cost without loss of statistical efficiency. Optimization of expected utility function; the 

posterior variance of a life distribution quantile of interest at use condition, is carried out by a 

developed algorithm that utilizes Markov chain Monte Carlo methods (Gibbs sampler) and 

nonparametric smoothing techniques applied to the Latin hypercube design space in which each 

stress factor has as many levels as there are runs in the design with levels chosen to maximize 

the minimum distance between design points. The approach illustrated with an application to an 

ALT planning problem with practical constraints. A comparison of proposed approach to the full 

blown grid simulation is provided to illustrate computational cost gain, and a comparison to the 

large-sample approximation method reveals the flexibility of our approach in determining optimal 

stress settings with less assumptions being made and more intuitive unit allocations. 

Chapter 3 discusses Bayesian accelerated life test planning with a focus on 

differentiating among competing acceleration models, when there is uncertainty as to whether the 

relationship between log mean (life) and the stress (possibly transformed) is linear or exhibits 

some curvature. The proposed criterion is based on the Hellinger distance measure between 

predictive distributions. The optimal stress-factor setup and unit allocation are determined at three 

stress levels subject to test-lab equipment and test-duration constraints. Optimal designs are 

validated by their recovery rates, where the true, data-generating, model is selected under the 

DIC (Deviance Information Criterion) model selection rule. We also compare performance of 
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obtained plans with other test plans including the typically used three stress-levels good 

compromise plan, the best traditional plan and the well-known 4:2:1 compromise ALT test plans.  

Chapter 4 extends the approach of Chapter 3 to sequential model discrimination in 

accelerated life test planning. Comparison of model recovery rates under the two approaches are 

made and the possibility of identifying a “winning” model form at a much earlier stage than would 

be possible with non-sequential testing, at consequently lower experimental cost is investigated.  

Chapter 5 provides overall discussion and conclusions based upon the results obtained 

in Chapters 2, 3, and 4 respectively. 
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CHAPTER 2 

SIMULATION-BASED BAYESIAN OPTIMAL DESIGN FOR MULTI-FACTOR ACCELERATED 

LIFE TESTS 

Ehab Nasir
1
, Rong Pan

2 

1
 Industrial Engineer, Intel Corporation, Chandler, Arizona. 

2 
Associate Professor, School of Computing, Informatics, and Decision Systems Engineering, 

Arizona State University 

Abstract 

We consider simulation-based methods for the design of multi-stress factor accelerated 

life tests ALTs in a Bayesian decision theoretic framework. The Bayesian methodology is an 

attractive alternative to the maximum likelihood MLE approach when considerable uncertainty 

exists in the planning values of the model parameters. Multi-stress factor ALTs are challenging 

due to the increased number of experiments required as a result of stress factor-level 

combinations resulting from the increased number of factors to be studied. This negatively 

impacts the overall cost of the experiment and its practical feasibility. We propose the use of Latin 

hypercube sampling scheme to meet that challenge and reduce the simulation cost without loss 

of statistical efficiency. Exploration and optimization of expected utility function, the posterior 

variance of a life distribution quantile of interest at use condition (design stress) in our case, is 

carried out by a developed algorithm that utilizes Markov chain Monte Carlo methods (Gibbs 

sampler) and nonparametric smoothing techniques applied to the Latin hypercube design space 

in which each stress factor has as many levels as there are runs in the design with levels chosen 

to maximize the minimum distance between design points. We illustrate our approach with an 

application to an ALT planning problem with practical constraints when the underlying life model 

has a Weibull distribution with type-I censored data. A comparison of proposed approach to a full 

blown grid simulation is provided to illustrate computational cost gain. We also provide a 

comparison to the large-sample approximation method that reveals the flexibility of our approach 
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in determining optimal stress settings with the advantage of less assumptions being made and 

more intuitive unit allocations.  

Key Words - Bayesian inference, Monte Carlo simulation, Gibbs sampler, Latin hypercube 

sampling, nonparametric smoothing.  

2.1. Introduction 

Accelerated life tests (ALTs) are widely used in reliability studies. Data from ALTs usually 

involve type-I censoring (fixed time tests; more often used in practice) and/or type-II censoring 

(fixed number of failures tests; less practical). Testing resources such as time, test units and test 

equipment (e.g. stress chambers) are usually very limited. Therefore, careful test planning is 

critical for efficient use of such resources while extracting maximum possible information. 

Typically, ALT plans specify the levels of the accelerating variable/s and the allocation of 

available test units to these levels. One can find an optimum test plan for a given criterion, such 

as the estimation precision of a life distribution quantile at use conditions. Optimum test plans 

serve as the base for obtaining good practical test plans (compromise plans).  

Accelerated life tests (ALTs) methods and results have been studied by other 

researchers, and can be generally categorized into methods for test planning and methods for 

analysis of/ inference from test data. Test planning methods can be further subdivided into 

constant-stress, step-stress, and ramp-stress ALT methods. For the constant-stress methods 

see, e.g., Meeker and Han [22], Nelson [30], Nelson and Kielpinski [31], and Nelson and Meeker 

[32]. Majority of available research has focused on optimal plans for the single stress-factor as in 

Nelson and Meeker [32]. However, in reality more and more failure mechanisms are driven by a 

combined effect of multiple stress factors affecting the product simultaneously (e.g. temperature, 

humidity and voltage or current stresses).  In this study we focus on Bayesian ALT plans for the 

constant-stress multi-stress factor case.  

Most of today’s Bayesian experimental design work follows a decision theoretic approach 
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to experimental design as outlined in Lindley [19], and Raiffa and Schlaiffer [38]. This approach 

suggests that a good way to design experiments is to specify a utility function reflecting the 

purpose of the experiment, to regard the design choice as a decision problem, and to select a 

design that maximizes the expected utility. Selecting a utility function that appropriately describes 

the goal of the experiment is very important. A design that is optimal for estimation may not 

necessarily be optimal for prediction. However, the exact utility function is often a complicated 

integral of high dimension, and as such approximation or simulation methods must be used for its 

evaluation, Chaloner and Verdinelli [8]. Most approximations to the expected utility function 

involve using a normal approximation to the posterior distribution. Several normal approximations 

are possible as outlined in Berger [5], and involve either the expected Fisher information matrix or 

the matrix of second derivatives of the logarithm of either the likelihood or the posterior density, 

Bai and Kim [3]. Analytic and approximation-based strategies can be found in Behnken and Watts 

[4], Chaloner and Larntz [6, 7], Polson [37], Verdinelli et al. [47], Clyde et al. [11], and Zhang and 

Meeker [51]. With the help of modern advances in computing power, the Simulation-based 

strategies have gained solid grounds and can be used to approximate the expected utility function 

necessary for the evaluation of the Bayesian optimal design. Simulation based methods, such as 

Monte Carlo simulation are available, provided that the prior distribution of the model parameters 

and sampling distribution of the data are available for efficient random variable generation, and 

the utility function can be evaluated for any given realization of the experiment. Simulation-based 

methods have been used in Erkanli and Soyer [12], Sun et al. [42], Hamada et al. [16], and Xiao 

and Loon-Ching [20].   

In this paper we develop a simulation-based Bayesian method for planning accelerated 

life tests for the constant-stress case in the presence of multiple factors affecting the response of 

interest. We outline the methodology for a case where the fail mechanism is activated by three 

stress factors, temperature, relative humidity and voltage bias, under an assumed Weibull life 

distribution and Type-I censoring. To avoid intensive sampling and computation as a result of 

increased stress factor-level combinations, a Latin hypercube designs for sampling the design 
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space are utilized, alongside non-parametric surface smoothing techniques to approximate the 

pre-posterior variance of a quantity of interest at use condition (design stress).     

In the remainder of this paper, we present the motivation for Latin hypercube designs 

LHDs in Section 2.2, the Bayesian ALT design problem in Section 2.3, model description in 

Section 2.3.1, and the optimization criterion in Section 2.3.2. Section 2.4 outlines the optimization 

algorithm, and in Section 2.5 we provide a case study that demonstrates the approach and 

discuss results. Section 6 provides a comparison of our proposed method to the full grid method, 

while in Section 2.7 we show how it compares to the large-sample approximation method with a 

reference solution point using the full grid method as well. Section 2.8 concludes the study and 

provides future research directions.  

2.2. Motivation for Latin Hypercube Designs (LHD)  

Majority of available ALT planning studies have focused on optimal plans for the single 

stress-factor. However, in reality fail mechanisms that are driven by a combination of different 

stress factors are common and should be further investigated in methods for ALT planning. 

Products in the field typically operate under several simultaneous stresses that contribute to their 

overall fail rate. Multi-stress factor ALTs are challenging due to the increased number of 

experiments required as a result of stress factor-level combinations resulting from the increased 

number of factors to be studied. This negatively impacts the overall cost of the experiment and its 

practical feasibility. We propose the use of Latin hypercube designs to meet that challenge and 

reduce the simulation cost of the proposed methodology. A factorial design, full or fractional could 

have been used instead of a LHD, but it will fail to address the challenge in the multi-stress factor 

ALT planning. A full factorial design would require    experiments for a test with   factors and   

levels for each factor, compared to   experiments only as required by an LHD ( , ) design. 

Fractional factorials, on the other hand, can help in reducing the number of experiments, but add 

the challenge of how to decide on which fraction to use and allocation of test units. Additional 

advantages of LHD designs are the fact that they are computationally cheap to generate and can 
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cope with many input variables, Sacks and Welch [39], and they allow the user to tailor the 

number of samples to the available computational budge. In the following sections we give formal 

definition of a Latin hypercube design LHD, its draw backs as related to design space coverage 

and their identified remedies.  

2.2.1. Latin Hypercube Designs (LHD) – Definition 

Latin hypercube sampling, McKay, et al. [21], is a method of sampling that can be used to 

generate input values for estimation of expected value of functions of output variables. It was 

originally developed as an alternative to pseudo Monte Carlo sampling. Latin hypercube design 

LHD follows the idea of a Latin square design where there is only one sample in each row and 

each column. LHD generalizes this concept to an arbitrary number of dimensions. In LHD of a 

multivariate distribution, a sample size   from multiple factors is drawn such that for each factor 

the sample is marginally maximally stratified. A sample is maximally stratified when the number of 

strata equals the sample size   and when the probability of failing in each of the strata is    . Fore 

an example, given   factors          the range of each factor   is divided into   equally probable 

intervals (strata), then for each factor a random sample is taken at each interval (stratum). The   

values obtained for each of the factors are then paired with each other in a random way or based 

on some rules. Now we have   samples, where the samples cover the   intervals for all factors. 

Thus, the sampling scheme does not require more samples for more factors (dimensions). This 

method insures that each of the factors in   is represented in a fully stratified manner. 

2.2.2. Latin Hypercube Designs (LHD) – Drawback, and Remedy 

The application of the random generated LHD does not come without shortcomings as in 

some cases it show undesired properties and may act poorly in prediction and/or estimation. 

Some extreme arrangement, for example, when all samples happen to fall a long a diagonal, 

result in an LHD sample that performs poorly with respect to design space coverage (poor 

predictions in unexplored areas), and high spatial correlation (co-linearity). Several LHD design 

criteria have been proposed in literature to overcome these drawbacks and optimize the space-
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filling properties of an LHD. Interested readers may refer to the following sources: Tang [44], 

Owen [33], and Tang [45] for discussion on Orthogonal Array-based LHD (OALHD) which 

extends to low-dimensional projections the uni-variate stratification properties of the random LHD, 

and provides better balance for larger experiments, more uniform designs, and no correlation 

among estimation of linear effects. Park [36] for Optimal LHD design, where both optimal design 

and random LHD designs are combined to provide smaller prediction error as compared to the 

random LHD. Morris et al. [27] for Maximin LHD design that has good symmetric properties 

obtained by maximizing the minimum inter-site distance, and provides a compromise between 

entropy/maximin criterion and projective properties of LHD. Keramat et al. [18] for the Modified 

LHD Monte Carlo (MLHDMC) characterized with faster sample generation, particularly in an 

optimization procedure, smaller estimation variance with same computational time, and more 

accurate results for Average Quality Index (AQI) or parametric yield estimation than standard 

LHD. Ye [49] for the Orthogonal LHD (OLHD) where there is no correlation among estimation of 

linear effects. Ye et al. [50] for the Optimal symmetric LHD (SLHD), that provides compromise 

between computing effort and design optimality with better/ maximum entropy and minimum inter-

site distance criteria as compared to random LHD design. It also provides orthogonal properties, 

that is the estimation of the linear effect of each variable is uncorrelated with all quadratic effects, 

and bi-linear interactions, generalization of OLHD, flexibility in run size, yet retains some of the 

orthogonality of an OLHD. Fang et al. [14] for the Uniform LHD, which is a space filling design 

that minimizes the discrepancy between design points. Palmer et al. [34] for the Minimum Bias 

LHD, that provides compromise between empirical model bias reduction and dispersion of points 

within design space. Steinberg et al. [41] for the Orthogonal LHD (OLHD), where all main effects 

are orthogonal, no correlation among estimation of linear effects, and can be used to construct 

LHD designs with low correlation of first-order and second-order terms, the method generates 

orthogonality when many more factors are included as compared to Ye's OLHD. Cioppa et al. 

[10] for the Efficient Nearly Orthogonal LHD (EN-OLHD) which is characterized by near 

orthogonal properties in higher dimension space, provides flexibility in fitting models when 

exploring high-dimensional computer simulations where there is considerable a priori uncertainty 
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about the forms of the response surfaces. Joseph et al. [17] for the Orthogonal-Maximin LHD, 

where its fast algorithm provides optimal designs that are optimized for both of pairwise 

correlation and distance criteria. In our proposed algorithm, we chose to utilize the Uniform LHD 

of Fang et al. [14] as our base design for its space filling properties that minimizes the 

discrepancy between design points (i.e. requiring even spacing of design points), however 

modified by maximizing the minimum distance between pairs of design points (sphere-filling). As 

the number of variables increase, it becomes harder to fill the design space, and as optimization 

is pushing design points further apart, the sample tends to create a vacuum in the center of the 

design space. Thus, further enhancement to prediction coverage could be obtained by forcing 

inclusion of center points and/or corner points of the design space. 

2.3. The Bayesian ALT Design Problem 

Bayesian experimental design approach suggests that a good way to design experiments 

is to specify a utility function that reflects the purpose of the experiment and to select the design 

that maximizes the expected utility of the experiment. Assuming that the goal of an experiment 

can be formally expressed through a utility function of the general form  (     ), the Bayesian 

solution is to find the best design that maximize the expected utility  ( ) with respect to the joint 

density of (   ). Formally stated as 

)(maxarg* 


U
H



 where 

 dydypyuU   ),().,,()(                                                 (1) 

  (   ) is a probability distribution of parameter   and response y
 
that is possibly influenced by 

the selected design  . It can also be expressed as    (   )   ( )   ( | )  where  ( ) is the 

prior distribution of parameter  .  
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2.3.1. Acceleration Model Description 

In this study we consider practical ALT testing constraints in a semi-conductor industry. 

We assume pre-specified values for the total number of units available for stress testing ( ) as 

dictated by available budget for testing, maximum testing time (  )  as driven by stress chambers 

availability and/or time by which a data-driven decision is to be made. The feasible ranges for 

stress factors at both high and low levels are functions of the capability of the stress lab 

equipment. The optimal test plan specifies the high and low stress settings for stress factors 

given their allowable ranges, and unit allocation at each stress level while optimizing a criterion 

on interest at the design stress (use level). We outline the methodology with a case in which two 

stress factors are involved (i.e. temperature and relative humidity). Extending the methodology to 

more than two stress factors should be straightforward.  

Based on past experience with similar fail mechanism, the reliability engineer believes 

that the Weibull distribution would adequately describe C4 bump life (First level interconnect Cu 

bump in a semiconductor package), which implies a smallest extreme value (SEV) distribution for 

the log-life. That is, if    is assumed to have a Weibull distribution,      (   ), then 

   ( )    (   )  where   
 

 
  is the scale parameter and      ( ) is the location parameter. 

The Weibull CDF and PDF can be written as 

 ( |   )      (
   ( )  
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In above parameterization,     is the shape parameter and     is the scale parameter as well 

as the 0.632 quantile. 

 
Also, the Peck’s model (a special case of the more general Eyring model) was expected to 

describe the temperature (    ) and relative humidity (  ) acceleration. So the acceleration 

model is represented by  
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 (       )   (  )      (
  

       
)                                          (4) 

where, 

•  (       ) is the life characteristic related to temperature and relative humidity. 

•   is a constant, (  ) is the inverse power law parameter of      and  (  ) is the 

activation energy of the chemical reaction in electron volts. 

•      is temperature in Kelvin  (         ).  

•   is Boltzmann’s constant  (                 ) 

This model can be expressed in linearized form by taking the logarithmic of both sides as 

                                                                     (5) 

where  
 
denotes      (       ),     and    denote     (  ) and (

 

      
)  respectively. It is 

easy to see that     is     ( )  where   is constant.   is     the inverse power law parameter of 

     and      is      the activation energy of the chemical reaction in electron volts.  

We standardize the accelerating variables for simplicity and to maintain comparable 

relative scales for the variables. Therefore, above model (4) can be expressed as 

                                                                            (6)
 

Where the standardized variables are expressed as 

    
(         )

(              )
 ,                [   ]                                                      (7) 

    
(         )

(              )
                   [   ]                                                     (8) 

New coefficients are related to previous ones through  

{

                               

     (              )

      (              )
                                         (9) 

Thus, at                  ,   and   at                  . The same applies to     
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Thus,                          {
         

                   
                                                                             (10) 

For Type-I censored data; the probability of obtaining a censored observation at time    is given 

by 

  (    )     [ (
  

 
)
 

]                                                  (11) 

2.3.2. Optimization Criterion  

We consider a reliability goal of estimating an early 100      quantile of life distribution, 

  (  )   at the use condition or design stress     with as much precision as possible. Because 

  (  )    is positive, it is reasonable to use an ALT criterion based on the estimation precision of 

      [  (  )]  Similar criterion has been suggested in Zhang and Meeker [51]. 

     [  (  )]       
 

 
      [    (   )] 

                                                              [     (   )]                                                                                                                                   

                                                                                      (12) 

where   [             [     (   )]]
 
, and   (          ) are the ALT model parameters 

with two accelerating variables. 

A utility function can then be defined as the posterior variance of quantity in (12) and an 

optimum plan is obtained by minimizing it. The posterior variance for a given design η depends 

on the unobserved data  . Therefore, a pre-posterior expectation of the posterior variance over 

the marginal distribution of data y is used to average over the unobserved data  , and the 

following Bayesian planning criterion is obtained. 

 ( )    | [    |   (   [  (  )])]                                           (13) 

   | [    |   ( 
  )] 

   | [ 
      |   ( ) ] 
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The posterior variance of the model parameters,     |   ( )  is obtained from the joint posterior 

distribution of the parameters which can be obtained from Bayes’ theorem 

  |   ( )  
  |   ( )  ( )

∫  |   ( )  ( )
                                                     (14) 

where    |   ( ) is the likelihood of the data   under plan  ,  ( ) is the joint prior distribution of 

the model parameters    Criterion (13) that calculates the posterior variance and its marginal 

expectation over all possible data y has no closed form solution and exact numerical solution is 

intractable. Thus approximation or simulation techniques need to be used. 

2.4. Optimization Algorithm         

Our optimization algorithm is Monte Carlo simulation-based in which the optimal design 

   is arrived at by evaluating the design criterion in (13) for each of the candidate designs, and 

selecting the design with highest utility. We summarize the algorithm steps as outlined in 

subsections below. 

 

2.4.1.  Identify Potential Set of ALT Designs 

 

Typically an engineer will have an idea of the ALT test he/she is interested in running. For 

example, due to budget and/or test time constraints, the engineer would prefer to run a two 

stress-level test or could add a third level for robustness and run the test for a specified length of 

time. However, the setup of these stress levels and unit allocation to each level would need to be 

optimized according to a design criterion of interest for the experiment to yield the most benefit.  

Hence, in this step the engineer will list down potential designs to investigate    (       )  and 

practical constraints imposed on test, for example test budget    and test/censoring time   . 
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2.4.2. Construction of ALT Design Grid 

Equally spaced design grid of all combinations of the allowed ranges of stresses of 

interest, for example temperature and relative humidity can be used to simulate experiments. 

However, doing so is computationally inefficient. We, instead propose the use of Latin hypercube 

experimental designs as discussed in Section 2.2. These LHD designs are constructed at each 

level of the test. For example, in a two stress-level test, there would be a LHD at level 1 and 

another LHD at level 2. Since ALT data are used simultaneously from all stress levels to predict a 

quantity of interest at design stress (use condition), a combined LHD design grid for all test levels 

in generated from individual LHDs. The combined LHD is further augmented with corner and/or 

center points into an mLHD “modified Lantin hypercube”. ALT data are simulated and utility 

function is calculated over the finalized mLHD design grid. See case study for demonstration of 

steps.  

2.4.3. Evaluation Steps Over the ALT Design Grid 

 

1. Over the design grid; mLHD, randomly simulate fail data from the joint density of parameters 

and data (   ) 

(   )   (   )    ( )  ( | )                                                         (15) 

       ( )           ( | ) 

That is, independently generate random fail data using the acceleration model as in 

Equation (6).  

1.1. Simulated failure times are compared against a predetermined test time    to 

determine the censoring time for each test unit. Those units failing before or at    

are considered exact failures, while others exceeding    
 are considered right 

censored. If testing time availability of each stress chamber is different (additional 

stress lab constraint), then censoring scheme can easily be modified to account 

for that by comparing fail times at different stress levels against the individual 
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level test time     where           and   is the number of stress levels in the 

experiment, for example     in this case study. 

1.2. The number of simulated fail times at each cell of the mLHD design grid is 

determined by unit allocation for the design being considered. For example, in 

demonstrate case of the two-stress level testing, we loop over all possible 

combination of unit allocation to the two-stress levels specified. For example, if 

we consider corner cell (       ) of Figure 2.4, for a total       units, with a 

design that allocates      units to lower stress level    and      units to 

higher stress level   , there will be a total of 12 observations generated in corner 

cell (       ), i.e. 8 under stress level       and 4 under stress level    . This will 

carry on for the other cells identified by the      to complete fail data simulation 

for the identified design allocation (    ,     ). The same will be repeated for 

other design allocations. 

2. For each simulated experiment (fail times at a particular grid cell), use Gibbs sampler to 

evaluate the observed posterior utility 

       |    (   [  (   )])                                             (16) 

Where    (   ) is the 100     quantile of the lifetime distribution at use condition (design 

stress) and (       )  where   is the number of active cells with observations as 

identified by the grid of the     . 

2.1. While performing this step, the likelihood function must be adjusted to account for 

the censoring structure in the data. When using WinBUGS MCMC simulation 

through Gibbs sampler, this can be accomplished using the function  (    ) for 

the right censored observations (data). 

3. Since this is a planning phase of the test, the decision of design selection is based on the 

values of the pre-posterior expected utility. Thus, we do the following: 

3.1. Approximate pre-posterior utility function by fitting a smooth surface to the Monte 

Carlo sample generated in step (2) as a function of evaluated designs. 
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3.2. We used the local regression model LOESS in R “modreg” library with its default 

settings for the smooth surface fitting, details are given in Section 2.4.4. This step 

in effect is equivalent to evaluating the integration in the solution to the optimal 

design problem in Equation (1). 

4. The optimal design is found by maximizing the fitted surface (minimum pre-posterior 

variance).  

 

The expected utility  ( ) surface is generally of continuous nature. However, the direct 

application of the Monte Carlo simulation, in step (3.1) of the algorithm will require large scale 

simulations to be applied, and will only be computationally inefficient due to the large number of 

iterations needed and duplication of effort in neglecting valuable information already generated at 

a nearby design point. That is, repeated simulations at close by points on the design grid. 

Therefore, to reduce computational cost, step (3.1) of the algorithm utilizes the non-parametric 

surface fitting approach proposed by Muller and Parmigiani [28, 29] for finding optimal designs. 

The use of surface smoothing for finding optimal Bayesian designs has been previously 

considered by Erkanli and Soyer [12] in planning a constant-stress ALT, and Liu and Tang [20] in 

planning accelerated degradation tests.  

 

2.4.4. LOESS in R, Smooth Surface Fitting 

In section below, we give a brief description, usage and arguments used in the R-function 

LOESS that we used in creating the smooth surface in step (3.1) of the algorithm which is 

equivalent to evaluating the integration in the solution to the optimal design problem in Equation 

(1). We also show an example of the R-code we used in our program as pertains to step (3.1) of 

the algorithm.  

1) Description: fits a polynomial surface determined by one or more numerical predictors using 

local fitting.  
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2) Usage: 

 

loess(formula, data, weights, subset, na.action, model = FALSE, 
      span = 0.75, enp.target, degree = 2, 
      parametric = FALSE, drop.square = FALSE, normalize = TRUE, 
      family = c("gaussian", "symmetric"), 
      method = c("loess", "model.frame"), 
      control = loess.control(...), ...) 
 

 

3) Arguments description: 

 

formula 

A formula specifying the numeric response and one to four numeric predictors 

(best specified via an interaction, but can also be specified additively). Will be 

coerced to a formula if necessary. 

data 
An optional data frame, list or environment containing the variables in the 

model. 

weights Optional weights for each case. 

subset An optional specification of a subset of the data to be used. 

na.action The action to be taken with missing values in the response or predictors. The 
default is given by getOption ("na.action"). 

model Should the model frame be returned? 

span The parameter   which controls the degree of smoothing. 

enp.target An alternative way to specify span, as the approximate equivalent number of 
parameters to be used. 

degree The degree of the polynomials to be used, normally 1 or 2. 

parametric 
Should any terms be fitted globally rather than locally? Terms can be specified 
by name, number or as a logical vector of the same length as the number of 
predictors. 

drop.square 
For fits with more than one predictor and degree=2, should the quadratic 
term be dropped for particular predictors? Terms are specified in the same 
way as for parametric. 

normalize 

Should the predictors be normalized to a common scale if there is more than 

one? The normalization used is to set the 10% trimmed standard deviation to 

one. Set to false for spatial coordinate predictors and others know to be a 

common scale. 

family  If "Gaussian" fitting is by least-squares, and if "symmetric" a re-
descending M estimator is used with Tukey's biweight function. 

 

method Fit the model or just extract the model frame. 

control Control parameters 

... Control parameters can also be supplied directly. 
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4) Example: our R-code for the portion using LOESS regression  

stress1.1<- c(data.use$V7) # low rh 
stress1.2<- c(data.use$V8) # low temp 
stress2.1<- c(data.use$V9) # high rh 
stress2.2<- c(data.use$V10) # high temp 
tau.p.01.sd <- c(data.use$V11) # posterior std of 1st   percentile estimate at Use 
Condition 
mu.1<- c(data.use$V5) # low rh, low temp 
mu.2<- c(data.use$V6) # high rh, high temp 
s1<-stress1.1 
s2<-stress1.2 
s3<-stress2.1 
s4<-stress2.2 
sd<-tau.p.01.sd 
tau.p.01.var<-tau.p.01.sd^2 
model.lo <- loess(sd ~ mu.1 + mu.2, span=.5, degree=2) 
span<-50 
st1 <- seq(min(mu.1), max(mu.1), len=span) 
st2 <- seq(min(mu.2), max(mu.2), len=span) 
newdata <- expand.grid(mu.1=st1,mu.2=st2) 
fit.sd <- matrix(predict(model.lo, newdata), span, span) 
fit.var<-fit.sd^2 

 

 

2.5. Application: Industrial Case Study 

2.5.1. Description of Design Problem 

Reliability of first level C4 lead-free interconnect (First Level Interconnect Copper Bump) 

in a semi-conductor assembly is under evaluation. It is desired to conduct a two-stress factor 

accelerated life test at two levels in order to estimate the device lifetime at which no more than 

1% of the total population is likely to fail with high estimation precision. Fail mode of interest is C4 

bump electrical short failure, and fail mechanism is Cu migration in B-HAST testing (biased-highly 

accelerated stress test). Temperature and relative humidity are believed to accelerate the fail 

mechanism of interest. The use conditions are:  

• Temperature target of 40C, however it can range from a min of 30C to a max of 50C. 

• Relative humidity target of 20%, however it can range from a min of 15% to a max of 

30%. 
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Stress lab constraints and assumptions are:  

• B-HAST stress chambers are available for 21 days (504 hours maximum test time). 

• Temperature (T), and relative humidity (RH) setting are as follows: 

– Lower stress chamber can be set to run temperature range from 70C to 95C, 

and relative humidity range from 30% to 55%.  

– Higher stress chamber can be set to run temperature range from 105C to 

130C, and relative humidity range from 60% to 85%. 

– Equipment’s tolerance allows both temperature and relative humidity to be varied 

in increments of    units on their respective scales.  

• Due to sample cost, a run budget of      are available for stress testing. 

Our objective is to determine optimal unit allocation and stress level settings so as to maximize 

the prediction precision of the first percentile of reliability at use condition subject to allowable 

testing budget. 

 

2.5.2. Acceleration Model 

Acceleration model details have been described in Section 2.3.1.  

 

2.5.3. Prior Distribution Elicitation 

From Equation (6) the parameter vector   is (          ) , and we would need to specify 

a prior distribution for each of the parameters or  ( ).
 
We would initially use the parameters in 

their original units (before transformation) to relate to the engineer’s prior knowledge. 

Standardization is applied once prior distributions in original units have been effectively solicited 

from engineers. 

Given historical learning and previous experience with similar fail mechanism, the reliability 

engineer believes that the appropriate independent prior distributions on the parameters can be 

specified as follows: For the activation energy, a uniform distribution that gives an equal likelihood 

for values that range from 1.8 to 2.1 would be appropriate to use, i.e., in the statistical software 
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R,      (          ). However, a wider range may need to be considered for the    inverse 

power law parameter, which is      (          ). Not much was known about the intercept so it 

was given a vague (diffuse) normal distribution with mean of 0.0 and very low precision of 

       (                 ). A positive density support was assumed for the Weibull shape 

parameter as:       (            ). The parameter     in above independent prior 

distributions reflects the sample size of random samples desired to be generated in simulation. 

Distribution notations used are in accordance with R-language syntax. 

 

2.5.4. Simulation Search for an Optimal Design 

Equally spaced design grid of all combinations of the allowed ranges for temperature 

(Temp) and relative humidity (RH) stresses can be used to simulate experiments. However, doing 

so is computationally inefficient and in a comparison study we contrast that with our proposed 

sampling scheme that aims at reducing computational burden without sacrificing statistical 

efficiency. We, instead, consider a set of testing conditions, in which each stress factor has as 

many levels as there are runs in the experiment and levels that are chosen to maximize the 

minimum distance between design points while requiring even spacing of design points. This is 

accomplished through a modified Latin hypercube experimental design as discussed in Section 

2.2.  

 

2.5.4.1. Construction of ALT Design Grid 

Since it is desired to conduct a two-stress factor accelerated life test at two levels in order 

to estimate the device lifetime at use condition, the construction of the ALT design grid following 

our proposed methodology will entitle three steps: 1) LHD design at the lower two-stress factor 

level, 2) LHD design at the higher two-stress factor level, and 3) an augmented “modified” mLHD 

incorporating both the high and low stress levels as the finalized ALT design grid to simulate fail 

data and evaluate utility function.  
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1) LHD for the Lower Two-Stress Factor Level 

Lower stress chamber can be set to run temperatures in the range from 70C to 95C, 

and relative humidity in the range from 30% to 55%. Note that fail mechanism is driven by the 

combined effect of temperature and relative humidity simultaneously, so lower stress,    is in the 

form of                     . A full grid for all combinations of temperature and relative 

humidity can be used, however it will be at high computational cost, we instead use a more 

efficient representation through an    . Taking into account equipment capability: 

– Lower stress chamber can be set to run temperature range from 70C to 95C, and 

relative humidity range from 30% to 55%.  

– Equipment’s tolerance allows both temperature and relative humidity to be varied in 

increments of    units on their respective scales.  

One can use equipment tolerance to equally divide both ranges for            and          

into six intervals, resulting in      (   ) as shown in Figure 2.1 and summarized in Table 2.1. 
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Figure 2.1: Latin Hypercube Grid for Lower Stress Chamber,      
(   ) 
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Lower Stress Chamber Setup 

Stress RH% (Low) TempC (Low) 

    55 75 

    30 85 

    45 90 

    35 80 

    40 70 

    50 95 

Table 2.1: Latin Hypercube Grid for Lower Stress Chamber,      
(   ) 

2) LHD for the Higher Two-Stress Factor Level 

Higher stress chamber can be set to run temperatures in the range from 105C to 130C, 

and relative humidity in the range from 60% to 85%. Higher stress,    is in the form of  

                   . Similar to the lower stress chamber, one can use equipment tolerance 

to equally divide both ranges for             and           into six intervals, resulting in 

     (   ) as shown in Figure 2.2 and summarized in Table 2.2. 

 

Figure 2.2: Latin Hypercube Grid for Lower Stress Chamber,      
(   ) 
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Higher Stress Chamber Setup 

Stress RH% (high) TempC (high) 

    75 125 

    80 120 

    65 110 

    60 130 

    70 105 

    85 115 

 

Table 2.2: Latin Hypercube Grid for Higher Stress Chamber,      
(   ) 

3) mLHD for the ALT Design Grid 

In accelerated life testing (ALT), data obtained from all stress levels are used to predict 

quantity of interest at use condition through acceleration factors AF. The design grid at witch fail 

data are simulated and point-wise local utility function are calculated is an      constructed 

from both      (   ) and      (   ) along with corner and/or center point augmentation. Figure 

2.3 shows the resulting pre-augmented    (     )(   ). Figure 2.4 shows the augmented design 

grid, augmentation points are represented by letter “O”. Finalized design grid is summarized in 

Table 2.3. Figure 2.5 displays the progression of the construction of the Latin hypercube design 

grid for our ALT problem.  
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Figure 2.3: Pre-augmented Latin Hypercube Grid for ALT,    (     )(   ) 

 

Figure 2.4: Augmented Latin Hypercube Grid for ALT,     (     )(   ) 
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Figure 2.5: Progression of Construction for the Latin Hypercube Design Grid for ALT 

Problem 
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Run # 

Lower Stress Chamber Setup Higher Stress Chamber Setup 

Run Source 

RH% (Low) TempC (low) RH% (High) TempC (High) 

1 55 75 75 125 mLHD 

2 30 85 80 120 mLHD 

3 45 90 65 110 mLHD 

4 35 80 60 130 mLHD 

5 40 70 70 105 mLHD 

6 50 95 85 115 mLHD 

7 30 70 60 105 AUG-C1 

8 55 95 85 130 AUG-C2 

9 30 70 85 130 AUG-C3 

10 55 95 60 105 AUG-C4 

11 42.5 82.5 72.5 117.5 AUG-CN 

LHD # 
(1) (2) 

 
(3) 

Table 2.3: Modified Latin Hypercube Grid with 6 Runs and Corner/Center Augmentations 

 

2.5.4.2. Decision Variables for the ALT Design 

Now that we have constructed the design grid for the two-stress factor ALT planning 

problem, we list the decision variables we would like to solve for to determine the optimal plan 

setup. Typical ALT plan would require specification of the following: 

1) Number of stress levels the test will be run at. In this case study, the number of 

stress levels has been already fixed at two levels given the engineer’s desire to 

run a two- stress level test. 

2) Magnitude of applied stress at each of the two stress levels? The engineer’s 

desire is to find this out given test constraints at hand. 

3) Allocation of units to each of the two stress levels? The engineer’s desire is to 

find this out given test constraints at hand. 

So given (1), the optimal design will determine the optimal set up for (2) and (3) under our 

proposed design optimization criterion discussed in Section 2.3.2. 



31 

2.5.4.3. Evaluation Steps Over the ALT Design Grid 

1. Over the design grid, mLHD, we randomly simulate fail data from the joint density of 

parameters and data (   ) 

(   )   (   )    ( )  ( | )                                                         (17) 

       ( )           ( | ) 

That is, independently generate random fail data using the acceleration model as in 

Equation (6).  

1.1. Simulated failure times are compared against a predetermined test time    to 

determine the censoring time for each test unit. Those units failing before or at    are 

considered exact failures, while others exceeding    
 are considered right censored. If 

testing time availability of each stress chamber is different (additional stress lab 

constraint), then censoring scheme can easily be modified to account for that by 

comparing fail times at different stress levels against the individual level test time     

where           and   is the number of stress levels in the experiment, for example 

    in this case study. 

1.2. The number of simulated fail times at each cell of the design grid is determined by 

unit allocation for the design being considered. We loop over all possible combination 

of unit allocation to the two stress levels specified in this study. For example, if we 

consider corner cell (       ) of Figure 2.4, for a total       units, with a design 

that allocates      units to lower stress level     and      units to higher stress 

level    , there will be a total of 12 observations generated in corner cell (       ), i.e. 

8 under stress level       and 4 under stress level    . This will carry on for the other 

cells identified by the      to complete fail data simulation for the identified design 

allocation (    ,     ). The same will be repeated for other design allocations. 

2. For each simulated experiment (fail times at a particular grid cell), use Gibbs sampler to 

evaluate the posterior utility 

       |    (   [  (  )])                                             (18) 
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Where    (   ) is the 100     quantile of the lifetime distribution at use condition (design 

stress) and (       )  where   is the number of active cells with observations as 

identified by the grid of the      . In this example, the engineer has chosen       
 

(the 1
st
 percentile).  

2.1. While performing this step, the likelihood function must be adjusted to account for the 

censoring structure in the data. When using WinBUGS MCMC simulation through 

Gibbs sampler, this can be accomplished using the function  (    ) for the right 

censored observations (data). 

3. Since we are in the planning phase of the test, we base our decision of design selection 

based on the values of the pre-posterior expected utility. Thus, we do the following: 

3.1. Approximate pre-posterior utility function by fitting a smooth surface to the Monte 

Carlo sample generated in step (2) as a function of evaluated designs. An example 

for a design would be [(               ) (                )     ] 

3.2. We used the local regression model LOESS in R “modreg” library with its default 

settings for the smooth surface fitting, details are given in Section 2.4.4. This step in 

effect is equivalent to evaluating the integration in the solution to the optimal design 

problem in Equation (1). 

4. The optimal design is found by maximizing the fitted surface (minimum pre-posterior 

variance), and can be read off as the mode. Since the engineer has started off with a fixed 

number of stress levels to be used (i.e. two), the optimal design will answer questions (2) 

and (3) of Section 2.5.4.2, where the magnitude of stress and unit allocation at the two 

stress levels are determined.   

 

2.5.5. Optimal Design: Simulation Search Results  

Table 2.4 summarizes the optimal test plans for the different designs of interest (i.e. test 

unit allocation and stress magnitude at the two stress levels). The table lists the minimum pre-

posterior variance of the logarithm of 1st percentile estimate of life distribution at use condition 



33 

(    |   (   [     (   )])), its mean pre-posterior value and the standard error mean of a sample 

of 2000 simulations per design. Each row in Table 2.4 represents an optimal design among 

designs sharing the same unit allocation (     ) according to the criterion of lower mean pre-

posterior variance of    [     (   )]. Then among all optimal designs having different allocations, 

we select an overall optimal design that minimizes the same criterion across obtained optimal 

designs, this is, design #10 in table 2.4 with optimality criterion value of [0.0004137]. Figure 2.6 

provides summary statistics for the different optimal designs per 2000 simulated runs of each 

design. In Section 2.5.6, we provide an evaluation study of the recommended optimal design in 

comparison with few others designs.  

Given our prior knowledge regarding model parameters and the simulated fail data that 

are constraint by test units availability, stress lab capability and available testing time, the optimal 

design is given by   
  (                 ) and   

  (                  )
 
with the 

optimal unit allocation that allocates majority of test units to the lower stress condition   
  (less 

extrapolation to the use condition will drive less variability in prediction) such as           . 

This, in effect, may be approaching the one-level design where all units are allocated to the lower 

stress level. It is in part due to the ranges of model parameters that the reliability engineer has 

specified as prior distributions.  For example, the range for the activation energy was set to run 

uniformly from 1.8 to 2.1, and this is considered as a precise estimate of this parameter to begin 

with; therefore, there would be no need for a larger sample size to be allocated at the higher 

stress condition to better estimate this parameter. 
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Design Optimal Stress Levels 
Minimum 

Pre-
posterior 

variance of 
log( 1

st
 

%tile) at UC 

Mean Pre-
posterior 

variance of 
log( 1

st
 

%tile) at UC 

Std Err 
mean of 

Pre-
posterior 

variance of 
log( 1

st
 

%tile) at UC 

# 

N =12 
units 

  
    

  

                        

1 1 11 45 90 85 115 2.94E-05 0.0011423 2.734E-05 

2 2 10 40 70 85 130 2.93E-04 0.0011668 2.733E-05 

3 3 9 30 70 85 130 1.76E-06 0.0009418 2.710E-05 

4 4 8 30 70 85 130 9.96E-09 0.0009229 2.636E-05 

5 5 7 55 75 60 105 9.57E-08 0.0008114 2.396E-05 

6 6 6 30 70 60 105 2.15E-04 0.0008557 2.367E-05 

7 7 5 30 70 60 105 1.16E-07 0.0005819 1.650E-05 

8 8 4 30 70 60 105 3.73E-06 0.0005064 1.606E-05 

9 9 3 30 70 60 105 2.13E-05 0.0005124 1.482E-05 

10* 10 2 30 70 60 105 1.37E-11 [0.0004137] 9.565E-06 

11 11 1 30 70 60 105 2.40E-09 0.0004983 1.463E-05 

Table 2.4: Two-level Optimal Designs for (N=12) Test Units 
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Figure 2.6: Summary Statistics for the Different Optimal Designs per 1000 Simulated Runs 

of Each Design 

 

2.5.6. Evaluation of Recommended Optimal Design 

In this section, we conduct an evaluation study of the obtained optimal design relative to 

three other designs that were not selected as optimal given our design criteria. We select 

comparison designs in terms of allocation. Thus, in Table 2.5, optimal design is numbered as # 3, 

comparison design # 4 is close to optimal in having more units allocated toward    , comparison 

design # 2 recommends equal unit allocation between    and    and comparison design # 1 

recommends opposite allocation with more units allocated toward   . 

In each trial a total budget of 12 units were assumed and data simulated according to the 

test levels and allocation as recommended by optimal designs as in Table 2.4. True model 

parameters are considered fixed and were taken as the means of the prior distributions assumed 

in previous case study except for activation energy that is assumed at the lower range of its 
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uniform distribution and set at 0.226, acceleration model and form of likelihood all maintained the 

same as in previous design problem. A total of 2500 data sets per design were simulated. For 

each of the simulated dataset, we computed the posterior mean and standard deviation of 

   [    (   )]  where      is the 50
th
 percentile of life distribution. Note that    (    ) is a function of 

parameters   and the posterior pdf of   is proportional to likelihood (data| ) x prior( ). Table 2.5 

summarizes the results. Table 2.6 interprets the 50
th
 percentile at use condition across the 

different designs in comparison with its true value.  

Design 
Optimal Stress Levels 

    (    ) Prediction at Use Condition 
(UC) 

  
    

      (            ) 

#                             ( ̂   )        [    ( ̂   )] 

1 2 10 40 70 85 130 9.712 0.3205 

2 6 6 30 70 60 105 10.061 0.3420 

3* 10 2 30 70 60 105 10.531 0.2909 

4 11 1 30 70 60 105 10.463 0.3034 

 
 

          ( 
   

)           

Table 2.5: Comparison across Optimal ALT Designs 

Design # 

Use condition(UC) Percentile Estimate at (UC) 

     

  

     

  

 ̂    

    

1 20 40 16,514.59 

2 20 40 23,411.90 

3* 20 40 37,458.91 

4 20 40 34,996.38 

         (  ) 38,599.71 hrs 

Table 2.6: UC 50
th

 Percentile Interpretation across Optimal ALT Designs 

Note that the true value of     (  ) is calculated through the linearized acceleration model at use 

condition. That is, 
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   [    (  )]        (
 

        

)          

• With parameter values fixed at the prior distribution means for    and    and activation 

energy                 is temperature in Kelvin  (         ) and   is Boltzmann’s 

constant  (              

 
)  

2.6. Comparison to Full Grid Method 

Equally spaced design grid of all combinations of the allowed ranges for temperature 

(Temp) and relative humidity (RH) stresses (Full grid) will be used in this section to simulate 

experiment in place of our modified mLHD. Stress equipment tolerances for both of temperature 

and relative humidity were considered as grid increments. R-function                   was 

used to create the design grid from all combinations of stress factors; {in R: expand.grid(temp.low 

= seq(70, 95, 5), rh.low = seq(30, 55, 5), temp.high = seq(105, 130, 5), rh.high = seq(60, 85, 5))}. 

That resulted in a total of 1,296 combinations to consider as opposed to 11 combinations as in 

our proposed algorithm.  

Run # 

Low Stress Chamber Setup High Stress Chamber Setup 

Run Source 

RH% (Low) TempC (low) RH% (High) TempC (High) 

1 70 30 105 60 Full Grid 

2 75 30 105 60 Full Grid 

3 80 30 105 60 Full Grid 

          Full Grid 

939 80 30 115 80 Full Grid 

          Full Grid 

1296 95 55 130 85 Full Grid 

 
Table 2.7: Equally Spaced Grid Design 
 

We applied the same settings, and followed the same simulation steps as described in 

section 2.4 with only exception of using a full grid instead of our mLHD design. Total sample size  

       , where    
is the unit allocation at stress level    and    

 
is the unit allocation at stress 
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level   . We applied 2500 simulated runs per design to arrive at an optimal design setting.  Given 

similar amount of model parameters prior knowledge as in section 2.5.3, the resulting simulated 

fail data that were constraint by test units availability, stress lab equipment capability and 

available testing time, resulted in optimal design given by:   
  (                 ) and 

  
  (                  )

 
with optimal unit allocation that allocates majority of test units to 

the lower stress condition   
  in which                 This unit allocation is in agreement with 

results from our method. This optimal unit allocation could also be explained relative to the 

ranges of model parameters that the reliability engineer has specified as prior distributions.  For 

example, the range for the activation energy was set to run uniformly from 1.8 to 2.1, which 

reflects strong knowledge with less variability around the estimate of this parameter to begin with; 

therefore, there would be a lesser need for a larger sample size allocated at the higher stress 

condition to better estimate this parameter. As far as stress magnitudes are concerned, the two 

approaches slightly differ in the Temperature setup, but share the same Temperature delta ( 

                      ). They slightly differ in Relative humidity delta (         

                    ). 

Tables 2.8a and 2.8b show a summary comparison of the optimal design between full 

grid approach and our proposed modified LHD design. By using our approach the gain is 

tremendous in the cost of computations as reflected by the run time with minimal loss of accuracy 

in the evaluated utility function of interest.  
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Design 

Low Stress Chamber Setup 
High Stress Chamber 

Setup 

Minimum 
Pre-

posterior 
variance 
of log( 1

st
 

%tile) at 
UC 

Mean Pre-
posterior 
variance 
of log( 1

st
 

%tile) at 
UC 

Std Err 

mean of 

Pre-

posterior 

variance 

of log( 1
st
 

%tile) at 

UC 

RH 

% 

Low 

Temp 

C  

Low 

Unit 

allocation 

(  ) 

RH 

%  

High 

Temp 

C  

High 

Unit 

allocation 

(  ) 

mLHD 30 70 10 60 105 2 1.370E-11 0.0004137 9.565E-06 

Full 
Grid 

30 75 10 65 110 2 1.364E-11 0.0004129 9.561E-06 

 
Table 2.8a: Equally Spaced Grid vs. mLHD Optimal Design Comparison 
 
 
 

Design 
% Gain in Estimate 

Accuracy 
% Reduction in 
Number of Runs 

% Reduction in Total 
Run Time* 

mLHD -- 99 96.7 

Full Grid 0.4 -- -- 

* HP EliteBook 8560w Workstation, Intel Core i5, 4 GB RAM, 2.6 GHz 

 
Table 2.8b: Equally Spaced Grid vs. mLHD Optimal Design Comparison 
 
 

2.7. Comparison to Large-Sample Approximate & Full Grid Methods 

In this section we compare designs obtained using our proposed simulation-based 

approach to its counterpart that is based on asymptotic or large-sample approximation of the 

Bayesian design criterion. For basis of comparison, we use the design problem described in 

Zhang and Meeker [51], where the recommended design was obtained using an asymptotic 

approximation method. Although we have shown the advantages of our proposed approach to the 
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full grid one in section 6, we do also provide the solution point obtained by the full grid as an 

additional comparison.  

2.7.1. Problem Description 

The reliability engineer is to investigate a new type of adhesive bond by estimating the 

      quantile of the lifetime distribution at 50
o
C. A sample of       units is available, and the 

testing time is restricted to 6 months (   = 183 day). No failures would be expected for testing at 

50
o
C. Thus a high-temperature ALT was proposed.  

Based on past experience with similar adhesive bonds, the engineer thought that the 

Weibull distribution would adequately describe adhesive bond life (implying an SEV distribution 

for the log-life). Also, the Arrhenius relationship was expected to describe the temperature 

acceleration up to 120
o
C. The acceleration model can be expressed as             and   

          (             )⁄    with the experimental region between             and 

                  is negative, implying more failures at higher temperatures.  |   | is interpreted 

as the effective activation energy of the chemical reaction in units of electron volts. Section 4.2 of 

Zhang and Meeker [51] discusses prior distribution specification for the different parameters. 

In their numerical search for the two-point optimum plan, Zhang and Meeker [51] 

assumed that one of the optimum test points must be the highest allowable variable level. 

Therefore, they fixed           to reduce the dimension of the optimization space. They argued 

that in most ALTs, censoring at the use condition is heavy which generally implies that one of the 

optimum test points must be the highest allowable variable level.  We did not place the same 

assumption/restriction (i.e. the highest stress level being one of the test points), but rather 

allowed our optimization procedure to determine optimal stress levels freely within their allowable 

ranges. We considered two ranges (high & low) for the acceleration factor (temperature) where 

optimization is done without restriction. Although temperature is one variable, this split in range 

reflects the fact that two stress ovens are available in the stress lab that differ in the temperature 
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range each is capable of. High temperature ovens are typically more expensive to buy due to 

material of construction of high tolerance to heat. The ranges considered were as follows: 

•          (Stress 1) has the range of 85 to 100
o
C, and  

•          (Stress 2) has the range of 105 to 120
o
C.  

2.7.2. Designs Comparison Result 

From Table 2.5, there seems to be an agreement in the setup of the high stress level 

between the three approaches. Although, we did not force the highest stress level to be one of 

the design points (less assumptions is preferable), our ALT design returns the value of 120
o
C 

(rounded up from 118.5
o
C) as highest temperature stress setup which is in agreement with the 

fixed value of 120
o
C  forced by the large-sample approximation method. It also returns the value 

of 85
o
C (rounded up from 84.73

o
C) as the lower stress setup which is 9

o
C lower than the value 

returned by the large-sample approximation method of 94
o
C. The Full Grid method returns the 

value of 120
o
C (rounded up from 119.2

o
C) as highest temperature stress setup which is in 

agreement with our method and the fixed value of 120
o
C forced by the large-sample 

approximation method. It also returns the value of 90
o
C (rounded up from 87.62

o
C) as the lower 

stress setup which 5
o
C higher than our proposed method of 85

o
C and is 4

o
C  lower than the value 

returned by the large-sample approximation method of 94
o
C. Thus, in effect both simulation 

methods stretch the low and high stress levels as far apart as possible which is known to be a 

good design practice that reduces the variance of the estimated quantities. The two simulation 

methods, ours and the full grid provide roughly close proportions for unit allocation that differ from 

the large-sample approximate method. Simulation-based designs tend to allocate more units 

toward the lower stress level (65%-35%, for our proposed method) and (63%-37%, for the full grid 

method)   as compared to the approximation method which splits the units almost (50%-50%). 

More units towards the lower stress level is preferable as the expected number of fails decreases 

with the decrease in stress, so adding more units aims at obtaining more fails at the lower stress 

level. This will improve predictions at use level. The large-sample approximation method reports 
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an average minimum posterior variance estimate of the 1
st
 percentile of life distribution at use 

condition as 0.0897, while the simulation methods yields a variance estimate of  0.07698 (our 

proposed method), and 0.07667 (full grid method) for the same quantity of interest at use 

condition. 

 

    Method     

Large-Sample Approximation 
 

   

Condition Temperature (  ) Proportion (  ) Unit Allocation (  ) 

Use 50 - - 

Low 94 0.501 150 

High 120 0.499 150 

Simulation-Based Method (mLHD) 
 

   

Condition Temperature (  ) Proportion (  ) Unit Allocation (  ) 

Use 50 - - 

Low 85 0.65 195 

High 120 0.35 105 

Simulation-Based Method (Full Grid) 
 

   

Condition Temperature (  ) Proportion (  ) Unit Allocation (  ) 

Use 50 - - 

Low 90 0.63 189 

High 120 0.37 111 

    

 

Table 2.9: Two-point Optimal ALT to Estimate     (   )  
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2.8. Conclusion and Areas for Future Research 

 We have presented a simulation-based Latin Hypercube method for the planning of 

accelerated life tests in a Bayesian decision theoretic framework. In this context the design 

problem is thought as a decision problem and optimal design is obtained by maximizing an 

expected utility function which reflects the objective of the experiment.  We illustrated the 

proposed approach through a problem with practical constraints when the underlying life model 

has a Weibull distribution with type-I censoring and failure mechanism that is driven by two 

accelerating variables (relative humidity and temperature). The applied approach was able to 

incorporate available prior information or knowledge on model parameters along with simulated 

future data from an appropriate probability model and use them to revise our knowledge 

according to Bayes’ Theorem. Comparison of proposed approach to the full grid method 

demonstrated a tremendous saving in the cost of computations as reflected by the run time with 

minimal loss of accuracy in the evaluated utility function of interest. A second comparison of 

proposed approach to the large-sample approximation method revealed our approach’s flexibility 

in determining optimal stress setting with less assumptions and more intuitive unit allocations.  

Figure 2.7: Contour Plot of Minimum Posterior Standard Deviation of 1
st

 Percentile 
Estimate at UC from Our Proposed Simulation-based Design 
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As with many of the complex MCMC problems, the main limitation is typically the 

computationally intensive calculations and the need for point-wise evaluation of utility function. 

We helped remedy it by using a modified Latin Hypercube sampling scheme reinforced with 

design point augmentation followed by the application of curve-fitting optimization approach. 

The simulation-based Bayesian approach described in this paper could be extended to the ALT 

planning problems with more than two accelerating variables and more complicated models, such 

as non-linear acceleration models and accelerated lifetime models with non-constant scale 

parameters.  
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Abstract 

Accelerated life test (ALT) planning in Bayesian framework is studied in this paper with a 

focus of differentiating competing acceleration models, when there is uncertainty as to whether 

the relationship between log mean (life) and the stress (with possibly transformation) is linear or 

exhibits some curvature. The proposed criterion is based on the Hellinger distance measure 

between predictive distributions. The optimal stress-factor setup and unit allocation are 

determined at three stress levels subject to test-lab equipment and test-duration constraints. 

Optimal designs are validated by their recovery rates, where the true, data-generating, model is 

selected under the DIC (Deviance Information Criterion) model selection rule, and by comparing 

their performance with other test plans including the typically used three stress-levels good 

compromise plan, best traditional plan and well known 4:2:1 compromise ALT test plans. Results 

show that the proposed optimal design method has the advantage of substantially increasing a 

test plan’s ability to distinguish among competing ALT models, thus providing better guidance as 

to which model is appropriate for the follow-on testing phase in the experiment.  

 

Key Words - Reliability test plans, Hellinger distance, Model selection, Deviance information 

criterion (DIC), Non-parametric curve fitting. 
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3.1. Motivation for Work 

Most work of the optimal Accelerated Life Testing (ALT) designs in literature has focused 

on finding test plans that allow more precise estimate of a reliability quantity, such as life 

percentile, at a lower stress level (it is usually the use stress level). See for example Nelson and 

Kielpinski [18, 28], Meeker [19], Nelson and Meeker [23, 30], Bai and Chung [6], Bai, Chung and 

Chun [7]. The associated confidence intervals of an estimate reflect the uncertainty arising from 

limited sample size and censoring at test, but do not account for model form inadequacy. Through 

the model-based extrapolation that characterizes ALTs, model errors can be quickly amplified 

and potentially dominate other sources of errors in reliability prediction.  Implicit in the design 

criteria used in current ALTs is the assumption that the form of the acceleration model is correct. 

In many real-world problems this assumption could be unrealistic. A more realistic goal of an 

initial stage of ALT experimentation is to find an optimal design that helps in selecting a model 

among rival or competing model forms; i.e., a design that may assist in model discrimination. The 

ability to choose between competing model forms in an early experimentation stage has an 

important impact on the effective design of subsequent experimentation phases. For example, the 

use-condition extrapolation of ALT using model form (1) can be quite different than that of model 

forms (2) or (3). 

  ( )                                                                               (1) 

  ( )                                                                       (2) 

  ( )                            
       

                        (3) 

Thus, the ALT designs that are good for model form discrimination could be quite different from 

those that are more appropriate for life percentile prediction under a specific model. 

Extrapolation in both stress and time is a typical characteristic of ALT inference. The 

most common accelerated failure time regression models (based, for example, on Lognormal or 

Weibull fit to the failure time distribution at a given stress level) are only adequate for modeling 

some simple chemical processes that lead to failure, see Meeker and Escobar [23]. However, for 

modern electronic devices, more sophisticated models with basis in the physics of failure 
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mechanisms are required. These complicated models are expected to have more parameters 

with possible interactions among stress factors. Therefore, investigating ALT designs with model 

selection capability is needed more than ever before.  

Meeker [22] in his discussion of figures of merit when developing an ALT plan 

emphasizes the usefulness of a test plan’s robustness to the departure from the assumed model  

by evaluating the test plan properties under alternative, typically more general, models. For 

example, when planning a single-factor experiment under a linear model, it is useful to evaluate 

the test plan properties under a quadratic model. Also, when planning a two-factor experiment 

under the assumption of a linear model with no interaction, it is useful to evaluate the test plan 

properties under a linear model with an interaction term. We strongly believe that it is worthwhile 

to consider these recommended practices ahead of time when the test plan is being devised in 

the first place by allowing a design criterion that is capable of model form discrimination.  

 

3.2. Previous Work 

A considerable work has been done in the development of experimental designs for 

discrimination among regression models. See, for example, Hunter and Reiner [19], Box and Hill 

[9], Hill et al. [18], Atkinson and Cox [2]. A comprehensive review of early contributions is given by 

Hill [17]. Atkinson and Fedorov [4, 5] described the T-optimality criterion (non-Bayesian) where it 

is assumed that the true model and its parameters are known. Early work of discrimination among 

non-linear models resulted in sequential experimentation procedures. See for example, A. C. 

Atkinson, and D. R. Cox [2], A. C. Atkinson, and A. N. Donev [3], A. C. Atkinson, and V. V. 

Fedorov [4], A. C. Atkinson, and V. V. Fedorov [5] 

More recently, many authors focused on the development of T-optimum criterion for 

model discrimination; see, for example, Atkinson and Donev [3], Ponce de Leon and Atkinson 

[21]. In addition, Ucinski and Bogacka [34] obtained optimal designs for discrimination of multi-

response dynamic models; Dette and Titoff [14] derived new properties of T-optimal designs and 

showed that in nested linear models, the number of support points in a T-optimal design is usually 
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too small to enable the estimate of all parameters in the full model; Agboto, Li and Nachtsheim [1] 

reviewed T-optimality among other new optimality criteria for constructing two-level optimal 

discrimination designs for screening experiments.  

Bayesian criteria were also considered in model discrimination; see, for example, Meyer 

et al. [26] where they considered a Bayesian criterion that is based on the Kullback-Leibler 

information to choose follow-up run after a factorial design to de-alias rival models. Bingham and 

Chipman [8] proposed a Bayesian criterion that is based on the Hellinger distance between 

predictive densities for choosing optimal designs for model selection with prior distributions 

specified for model coefficients and errors. For a comprehensive review on Bayesian 

experimental design reader is referred to Chaloner and Verdinelli [13].  

All of the above attempts at model discrimination work have been in the context of 

traditional experimental design, i.e., standard experimental designs such as factorial, fractional 

factorial, Box central composite, etc. None to our knowledge has been explicitly targeting model 

discrimination in planning of accelerated life test (ALT) experiments, where failure time censoring 

is commonly expected. Nelson [30] (p. 350) has cautioned that the statistical theory for traditional 

experimental design is correct only for complete data, one should not assume that properties of 

standard experimental designs hold for censored and interval-censored data as they usually do 

not hold. For example, aliasing of effects may depend on the censoring structure. In addition, the 

variance of an estimate of a model coefficient depends on the amount of censoring at all test 

conditions and on the true value of (possibly all) model coefficients. Thus, the censoring times at 

each test condition are part of the experimental design and affect its statistical properties. As 

such, our current work draws its importance from its attempt at contributing to model 

discrimination literature for accelerated life test planning when censoring is inevitable. 
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3.3. Proposed Methodology 

3.3.1. Rational for Model Discrimination Methodology 

Suppose that our objective is to arrive at an ALT test plan that is capable of 

discriminating among competing acceleration models. Assume that there are two rival models 

and it is better that the experimental data can help in choosing one model.  Intuitively, a good 

design should be expected to generate far apart results based on the two competing models, and 

then the experimenter can select the model based on the actual observations from the 

experiment. In ALT, the lifetime percentile is typically of interest; therefore the larger the distance 

(disagreement) in prediction the better our ability to discriminate (distinguish) among these 

competing models. That is, a good design will amplify the difference among models. Therefore, 

we propose to use the relative prediction performance of each model over the range of its 

parameters to identify the optimal design. Figure 3.1 shows how important it is for the 

experimenter to arrive at the best representative model to reduce prediction errors at use 

conditions (UCs). For example if   is the true model, and one selects    then under ALT 

extrapolation the error in prediction of a quantile of interest at use conditions,    ̂ (  )  is even 

worse and vice versa if     is the true model and one picks    to proceed with.  

 

 

Figure 3.1:  ̂  Versus  ̂  at UCs - Importance of Identifying Correct Model 
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Before discussing our proposed design criterion, we lay the ground for “distance” as 

measure between probability densities. In the following Section 3.3.2 we introduce the “distance” 

measure and show our selection of Hellinger distance as a measure of disagreement between 

predictive densities.   

3.3.2. Distance (Divergence) Measure of Probability Distributions 

There is a substantial number of distance measures applied in many different fields such 

as physics, biology, psychology, information theory, etc. See Sung-Hyuk Cha [11] for a 

comprehensive survey on distance/similarity measures between probability density functions. 

From the mathematical point of view, distance is defined as a quantitative measure of how far 

apart two objects are. In statistics and probability theory, a statistical distance quantifies the 

dissimilarity between two statistical objects, which can be two random variables or two probability 

distributions. A distance between two populations can be interpreted as measuring the distance 

between two probability distributions, hence it is essentially the difference of probability 

measures.  

3.3.2.1. Distance Measure 

A measure  (   ) between two points     is said to be a distance measure or simply 

distance if 

I.  (   )    when     and  (   )    if and only if      

II.  (   )   (   )  

III.  (   )   (   )   (   )                                                                                                           

(4) 

Conditions (I) through (III) imply, respectively, that the distance must be non-negative (positive 

definite), symmetric and sub-additive (triangle inequality: the distance from point   to   directly 

must be less than or equal to the distance in reaching point   indirectly through point  . Note that 

distance  (   ) is also called         
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The definition of a metric space follows from the definition of distance or metric; i.e., a 

space   is said to be a metric space if for every pair of points (   ) in   there is defined a 

distance  (   ) satisfying conditions (I) through (III) in (4). Many statistical distances are not 

metrics, because they lack one or more of the properties of proper metric. For example, pseudo-

metrics can violate the “positive definiteness” property; quasi-metrics can violate the “symmetry” 

property; and semi-metrics can violate the “triangle inequality” property. Some statistical 

distances are referred to as divergences.  

 

3.3.2.2. Hellinger Distance 

The choice of a distance measure depends on the measurement type or representation 

of quantities under study. In this study, the Hellinger distance (  ), Deza and Deza [15], is 

chosen to measure the distance between the two probability distributions that represent the 

distributions of  ̂  at lower and higher ALT stress test conditions. Computing the distance 

between two probability distributions can be regarded as the same as computing the Bayes (or 

minimum misclassification) probability, see Duda, Hart and Stork [16], and Cha and Srihari [12]. 

This is equivalent to measuring the overlap between two probability distributions as distance, Cha 

and Srihari [12].  

For the discrete probability distributions   (     ) and    (     ), the Hellinger 

distance (  ) is defined as: 

  (   )  
 

√ 
√∑ (√   √  )

  
                                                              (5) 

This is directly related to the Euclidean norm of the difference of the square root vectors, 

  (   )  
 

√ 
‖√  √ ‖

 
                                                        (6) 

For the continuous probability distributions, the squared Hellinger distance is defined as: 

  
 (   )  

 

 
∫(  

 
    

 
 )
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   ∫√                                                               (7) 

Hellinger distance follows the triangle inequality, that is     (   )     The maximum distance 

of 1 is attained when   assigns probability zero to every set to which   assigns a positive 

probability, and vice versa. The Hellinger distance is related to Bhattacharyya coefficient  

   (   ) as it can be defined as 

  (   )  √    (   )                                                           (8) 

See Aman Ullah [35].  

Some examples of Hellinger distance are given below: 

 The squared Hellinger distance between two univariate normal densities    (     
 ) and 

   (     
 ) is given by   

 (   )    √
     

  
    

     ( 
 

 

(     )
 

  
    

 )                                           

 The squared Hellinger distance between two exponential densities      ( ) and 

     ( ) is given by   
 (   )    

√  
 

   
                                                            

 The squared Hellinger distance between two Weibull densities       (   ) and 

      (   )  where   is a common shape parameter and     are the scale parameters 

respectively, is given by 

   
 (   )    

 (  )   

                                                                 

 The squared Hellinger distance between two Poisson densities with rate parameters 

  and  , so that       ( ) and       ( ) is given by   
 (   )        (

  

 
(√  √ ) )                          

                      

3.3.3. Criterion for Model Discrimination  

As stated in Section 3.3.1, we proposed the use of the relative prediction performance of 

each model over the range of its parameters to identify the optimal design. Therefore, 

fail/censored data generated by each model is utilized to derive posterior predictions of a quantity 
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of interest (life percentile) at stress condition   ( ) by all competing models. Then it is followed by 

pairwise computation of the posterior prediction distance (disagreement) for all models. 

Maximization of those distances serves as a measure of model distinguishability in that sense. 

Under the key assumption of linear acceleration in ALT, it is expected that, the distance 

(disagreement) in prediction at use condition (UC) to be no less than those obtained at stress 

condition (due to extrapolation errors). Figure 3.3 illustrates proposed evaluation flow.  In what 

follows we formalize the problem in a Bayesian framework of experimental design. In Bayesian 

framework of experimental design, the problem of optimal design can be thought of as finding a 

design    that maximizes a utility function  ( ) that quantifies the objective of the experiment 

(i.e., model form distinguishability in our case). 

 

3.3.3.1. Criterion Formulation 

Suppose that under design    the experimental outcome may be generated by one of the 

following two models: 

 Model 1,   , with its parameter vector   , its outcome denoted by     (         ) 

 Model 2,   , with its parameter vector   , its outcome denoted by    (         )  

Consider as an initial utility function to be optimized (maximized), the difference in prediction of 

life percentile of interest    at the low stress    (  ) of the ALT test setup across all pairs of 

competing models. Ultimately, interest lies in the prediction of the 1
st
 percentile of life distribution 

at use condition,      . Since the low stress level is the closest to the use stress level, a large 

difference in prediction at the low level will give rise to an even larger difference in prediction at 

the use level (due to extrapolation errors). Therefore, a design is preferable in discrimination 

sense due to the fact that it causes competing models to predict same quantity of interest 

differently under the same data set. However, selection of the low stress level to optimize the 

local utility function may run the risk of not enough fails obtained to sufficiently estimate life 

distribution percentiles. Therefore, we modify the initially proposed utility function to be optimized, 
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by considering the simultaneous difference in prediction of life percentile of interest    at the low 

stress    (  ) and high stress   (  ) test setup across all pairs of competing models,  that is    
( ) 

and    ( ) respectively. At the high stress level it is expected to have sufficient fails to properly 

estimate a life distribution (due to less censoring). In this study, we consider constant-stress ALT 

plans where it is assumed that there is no interaction between stress variables. It is also assumed 

that spread in log (life) is constant, that is does not depend on stress, hence parallel lines through 

   at different stress levels for each model, see Figure 3.2.  

 

Figure 3.2: Failure Time versus Stress (Constant Spread) 

 

 

For the demonstration example with two models,    and   , the pairwise local utilities are as 

follows: 

  | (    (     )   (     ))      ( ̂  (  |  )  ̂  (  |  ))      ( ̂  (  |  )  ̂  (  |  ))  

  |                                                                                                                                                                                                   

(9) 

  | (    (     )   (     ))     ( ̂  (  |  )  ̂  (  |  ))     ( ̂  (  |  )  ̂  (  |  ))   

  |                                                                                                                                                                                                 

(10) 

Equation (9) represents the difference in     prediction of model (  ) conditional on data from 

model (  ) relative to model (  ) prediction of the same quantity, while equation (10) represents 

the difference in     prediction of model (  ) conditional on data from model (  ) relative to 
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model (  ) prediction of the same quantity. That is the relative prediction performance of each 

model over the range of its parameter vector. 

At the time of designing an experiment, the experimental outcome is yet to observe, so 

we do not know which model form and its parameter vector are correct. Therefore, 

a) We assess the utility   | ( ) of a design by its expectation with respect to the sampling 

distribution of the data  (  |    ), and  (  |    ) , and the prior distribution of the parameter 

vectors  (  ) and  (  )   That is calculating the pre-posterior expectation. 

 (  | )  ∬  |   (  |    )  (  | )                                                        (11) 

 (  | )  ∬  |   (  |    )  (  | )                                                       (12) 

Equation (11) gives an expression of the expected pre-posterior prediction difference in    of 

model (  ) conditional on data from model (  ) relative to model (  ) prediction of the same 

quantity. Similarly, equation (12) gives an expression of the expected pre-posterior prediction 

difference in    of model (  ) conditional on data from model (  ) relative to model (  ) 

prediction of the same quantity. 

b) Since it is not known which of the two models (  ) or (  ) is the true model, we combine a 

weighted expected utilities  (  | ) to obtain the desired global utility function  ( ) to be 

maximized. The weighing is achieved by priors assigned to the models,  (  ) and  (  ) 

respectively.  

 ( )  ∑  (  )  (  | )
        

   

 

  (  )  (  | )   (  )  (  | )                                       (13) 

Equation (13) can be interpreted as a measure of model distinguishability between two models. 

The larger the value of  ( )  the dissimilar the two models are to each other. Extending (13) to 

account for situations where more than two models are to be distinguished among is 

straightforward. 
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As can be seen from equations (11)-(13), arriving at an optimal design    that maximizes 

(13) is a nontrivial task due to the high dimensional integration and optimization required. There is 

no closed form solution to (13). Numerical evaluation of the multiple integral for a given choice of 

design ( ) will be needed, which in itself a formidable task given the fact that the integration is 

defined over the data space and parameter space. The obtained estimate of  ( ) must then be 

maximized over the design variable  , which is in often cases a multidimensional vector. We use 

a Monte Carlo simulation-based approach to find the optimal design      

 

 

Figure 3.3: High Level Methodology Flow 
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Figure 3.3 represents a high level flow of the proposed methodology. Fail data    resulting from 

acceleration model   ; step 1, are combined through Bayes’ theorem with prior info available on 

parameters    (  ) to generate posterior estimates of the parameters given observed 

data    (  |  ); step 2. Then posterior distribution of predictions of life percentile of interest    is 

obtained using Gibbs sampler at both high and low stress conditions; step 3 (a, b). Same steps 

are repeated on same data set    using rival model    (all dashed boxes in Figure 3.3).  That 

gives the relative prediction performance of each model over the range of its parameters 

conditioned on same data set. The sum of Hellinger distances between prediction distributions 

are obtained as local utility; step 4 (a, b). This process is repeated for models    through   . 

Local utilities are then weighted by model priors into a global utility to be maximized. More 

detailed steps of Figure 3.3 are illustrated in section 5.5.  

3.4. Model Selection Under Optimal Discriminant Design 

In section 3, we outlined the proposed methodology for obtaining an ALT model-

discriminant optimal design. In this section, the tools that are used to validate that obtained 

optimal designs are introduced. It is shown that these designs are indeed optimal under desired 

optimality criterion as they maximize the proportion of times (recovery rate) in which the true, 

data-generating, model is selected under an appropriate model selection rule.  

3.4.1. Deviance Information Criterion (DIC)  

 

The Deviance information criterion (DIC) was introduced by Spiegelhalter et al. [33] as an 

easily computed and rather universally applicable Bayesian criterion for posterior predictive 

model comparison. It compromises between data fit and model complexity, like many other non-

Bayesian criteria.  It generalizes Akaike’s information criterion (AIC) that appears as a special 

case under a vague prior (negligible prior information), and Bayesian information criterion (BIC), 

also known as Schwarz criterion. DIC is particularly useful in Bayesian model selection problems 
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where the posterior distributions of the models have been obtained by Markov chain Monte Carlo 

(MCMC) simulation. It is an asymptotic approximation as the sample size gets large in a similar 

behavior to (AIC) and (BIC).   It also requires that the posterior distribution be approximately 

multivariate normal. Claeskens and Hjort (Ch. 3.5) [10] show that the (DIC) is large-sample 

equivalent to the natural model-robust version of the (AIC). 

Define the following 

 Deviance as    ( )       [ ( | )]   , where   are the data,   are vector of 

model unknown parameters,  ( | ) is the likelihood function and   is a constant term 

that cancels out when comparing models.  

 Expectation as    ̅̅ ̅̅ ̅    [   ( )]. This measures how well a model fits the data, the 

larger its value, the worse the fit.  

 Effective number of model parameters as       ̅̅ ̅̅ ̅     ( ̅), where  ̅ is the 

expectation of    The larger     the easier for the model to fit the data. 

Then, the Deviance information criterion (DIC), is defined as a classical estimate of fit, plus twice 

the effective number of parameters, to give  

       ( ̅)                                                                                           

    ̅̅ ̅̅ ̅                                                                              (14) 

3.4.2.  Interpretation of Values of (DIC) 

When comparing models; models with smaller (DIC) are preferred to models with larger 

(DIC). Models are penalized both by the value of    ̅̅ ̅̅ ̅, which favors a good fit, but also (in 

common with AIC and BIC) by the effective number of parameters   . Since    ̅̅ ̅̅ ̅  decreases as 

the number of parameters in a model increases, the    term compensates for this effect by 

favoring models with a smaller number of parameters. 
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3.4.3. Calculation of (DIC) 

The (DIC) is preferable over other criteria in Bayesian model selection due to the fact that 

the (DIC) can be easily calculated from the samples generated by a Markov chain Monte Carlo 

simulation. (AIC) and (BIC) would require calculating the likelihood at its maximum over  , which 

is not readily available from the MCMC simulation. To calculate (DIC), one computes    ̅̅ ̅̅ ̅ as the 

average of    ( ) over the samples of  , and    ( ̅) as the value of     evaluated at the 

average of the samples of  . Then the (DIC) follows directly from these approximations. 

OpenBUGS or WinBUGS can also be used to calculate the (DIC), from the “Inference” menu 

simply add a (DIC) monitor (similar to adding monitors for all the other quantities of interest) after 

burn-in.  

3.5. METHODOLOGY ILLUSTRATION  

 

3.5.1. Description of Design Problem 

Reliability engineer is interested in studying the intermetallic growth of Au-Al interface in a 

semi-conductor assembly. It is known that fail mechanism of interest is activated by temperature 

stress so an accelerated life test is desired in order to estimate the device lifetime. However, 

there is uncertainty as to whether the relationship between log (life) and the stress (possibly 

transformed) is linear or exhibit some curvature as indicated by an early look-ahead data set. As 

a result, current interest lies in an accelerated life test plan that is capable of discriminating 

between linear and quadratic acceleration models in temperature stress. There are also 

constraints imposed by available budget for testing (test units), and stress-lab equipment 

availability and capability as shown below.  

• Bake stress chambers are available for 42 days (1,008 hours maximum test time). 

• Two types of bake ovens are available with different temperature range capabilities.  

– Lower stress bake oven can be set to run temperature range from 60C to 

115C. 
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– Higher stress bake oven can be set to run temperature range from 100C to 

250C. 

– Equipment’s tolerance estimated at +/-  . 

• Experimental budget allows for no more than 20 runs.  

The engineer’s objective is to determine optimal unit allocation and stress level settings so as to 

discriminate between the two competing acceleration models.  

 

3.5.2. Competing Acceleration Models 

Based on past experience with similar fail mechanism, the reliability engineer believes 

that the Weibull distribution would adequately describe Au-Al intermetallic growth life in a 

semiconductor package, which implies a smallest extreme value (SEV) distribution for the log-life. 

That is, if    is assumed to have a Weibull distribution,      (   ), then    ( )    (   )  

where   
 

 
  is the scale parameter and      ( ) is the location parameter. The Weibull CDF 

and PDF can be written as 

 ( |   )      (
   ( )  
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In above parameterization,     is the shape parameter and     is the scale parameter as well 

as the 0.632 quantile. 

The Arrhenius Life-Temperature relationship was expected to describe the acceleration behavior.  

 (    )       (
  

       
)                                                                  (17) 

where, 

•  (    ) is the life characteristic related to temperature. 

•   is a constant  and  (  ) is the activation energy of the chemical reaction in electron 

volts. 
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•      is temperature in Kelvin (
o
C+273.15). 

•   is Boltzmann’s constant  (                 ) 

Reliability engineer would like to consider two life-stress relationships to discriminate 

between experimentally; namely the linear relationship M1 and the quadratic relationship M2. 

M1 model can be expressed in linearized form by taking the logarithmic of both sides as 

                                                                      (18) 

By standardizing the accelerating variable, the above model (18) can be expressed as 

                                                                      (19)
 

where the standardized variables are expressed as 

   
(      )

(          )
 ,               [   ]                                                      (20) 

New coefficients are related to previous ones through 

             , 

     (          )                                                                       (21) 

At              ,   and   at              . Thus, 

               

                                                                               (22) 

M2 model can be expressed in linearized form by taking the logarithmic of both sides as 

             
                                                                       (23) 

By standardizing the accelerating variable, the above model (23) can be expressed as 
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                                                                     (24)
 

where 
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     (          )                                                                                                        

     ( 
 
       

   )                                                                    (25) 

At              ,   and   at              . Thus, 

            

                                                                           (26) 

For both models, for Type-I censored data (time censoring), the probability of obtaining a 

censored observation at time    is given by 

  (    )     [ (
  

 
)
 

]                                                              (27) 

3.5.3. Design Criterion 

The optimization criterion and its formulation were discussed in detail in section 3.3 and 

its subsections.  Criterion summarized in equation (13), reproduced below for the two models 

under consideration (  ) or (  ) with model priors;  (  ) and  (  ) respectively.  

 ( )  ∑  (  )  (  | )
        

   

 

  (  )  (  | )   (  )  (  | )                                                                                                                                     

3.5.4. Prior Distributions Elicitation 

Engineer assumed an equal weight for both models to begin with. That is,  (  )  

 (  )      (or 50%). For model    , equation (19) shows parameter vector    as(       ) , and 

for model    , equation (24) shows parameter vector    as(          )  . One would need to 
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specify a prior distribution for each of the parameters or    ( ) and    ( ) .We would initially use 

the parameters in their original units (before transformation) to relate to the engineer’s prior 

knowledge. Standardization is applied once prior distributions in original units have been 

effectively solicited from engineers. 

Given historical learning and previous experience with similar fail mechanism, the 

reliability engineer believes that appropriate independent prior distributions on the parameters 

can be specified as follows: for the activation energy, a uniform distribution that gives an equal 

likelihood for values that range from 1.0 to 1.05 eV would be appropriate to use. Note that in the 

case of the quadratic model    this parameter may no longer directly correspond to the activation 

energy of the chemical reaction. Not much was known about the intercept, and the quadratic 

coefficient in    so both were given a vague (diffuse) normal distribution with mean of 0.0 and 

low precision of        (                 ). A positive density support was assumed for the 

Weibull shape parameter as gamma distribution with shape of 2 and scale of 1. 

 

3.5.5. Construction of Optimal Design 

Our optimization algorithm is Monte Carlo simulation-based in which the optimal design 

   is arrived at by evaluating the design criterion in (13) for each of the candidate designs, and 

selecting the design that maximizes the design criterion (utility function of interest). We 

summarize the algorithm steps as follows: 

1. For a given experimental run budget ( ), and number of stress-factors to study ( ), construct 

a Latin hypercube      (   ) design at each stress level. Then generate a modified      

per Nasir and Pan [29] to create the finalized design grid. 

2. Over the finalized design grid, for each design    (       ) randomly simulate fail data 

from the joint density (   )     
 of each of the rival models    (       )  

(   )     
         

(   )    ( )  
       

( | )                                                 (28)                                                                   

That is, independently generate random fail data using the competing acceleration models 

(using equation (19) for model    and equation (24) for model   ). Consider all possible 

combinations of sample sizes (unit allocation) at each stress factor-level combinations. 
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Computational time can be reduced if units are allocated at increments >1 to each of the 

stress levels.   

3. Simulated experiments (failure times) are compared against a predetermined test duration    

to determine if a test unit failure time is censored.  

4. Calculate the relative prediction performance of each model over the range of its parameters. 

This is done by using Gibbs sampler (WinBUGS) to compute posterior predictions of,   (  ) , 

the 100     quantile of the lifetime distribution at both high and low stress conditions (  

                )  That is within experimental region where data are observed. A typical 

reliability interest is when       , so in the case of models    and   , the outcome of this 

step is the posterior distribution of predicted values for each model given same data set. 

4.1. For    (fail data generated under model   ) at         

 ̂     (  |  )      
 , and       ( ̂    )(  |  )      

                                                 (29) 

 ̂     (  |  )      
 , and       ( ̂    )(  |  )      

                                                 (30) 

4.2. For    (fail data generated under model   ) at        

 ̂     (  |  )     
 , and       ( ̂    )(  |  )     

                                                   (31) 

 ̂     (  |  )     
 , and       ( ̂    )(  |  )     

                                                   (32) 

4.3. For    (fail data generated under model   ) at         

 ̂     (  |  )      
 , and       ( ̂    )(  |  )      

                                                (33) 

 ̂     (  |  )      
 , and       ( ̂    )(  |  )      

                                                (34) 

4.4. For    (fail data generated under model   ) at        

 ̂     (  |  )     
 , and       ( ̂    )(  |  )     

                                                  (35) 

 ̂     (  |  )     
 , and       ( ̂    )(  |  )     

                                                  (36) 

 

5. Use Hellinger distance measure (  ), or any appropriate distance measure between 

probability distributions for that matter, to calculate pairwise local utilities (  | ) and (  | ) as 

in (9) and (10), reproduced below for convenience 
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5.1. For model    conditional on data from model    

  |         
( ̂     (  |  )  ̂     (  |  ))        

( ̂     (  |  )  ̂     (  |  ))       

5.2. For model     conditional on data from model    

  |         
( ̂     (  |  )  ̂     (  |  ))        

( ̂     (  |  )  ̂     (  |  ))       

6. Since it is unknown which of the two models is the true data generating model, we combine 

the Monte Carlo samples in local utilities   |  and   |  to obtain the desired total observed 

utility function  ( )    |    |  to be maximized for an optimal design. 

7. Approximate pre-posterior global utility  ( )   [ ( )] by fitting a smooth surface to the 

combined Monte Carlo sample generated in step (6) as a function of selected design.  

8. The optimal design    is found by maximizing the fitted surface (maximum pre-posterior 

Hellinger distance between predictive densities).  

Since the expected utility  ( ) surface is generally of continuous nature, the direct 

application of the Monte Carlo simulation, in step (7) of the algorithm will require large scale 

simulations to be applied, and will only be computationally inefficient due to the large number of 

iterations needed and duplication of effort in neglecting valuable information already generated at 

a nearby design points. That is, repeated simulations at close by points on the design grid. 

Therefore, to reduce computational cost, step (8) of the algorithm utilizes the non-parametric 

surface fitting approach originally proposed by Muller and Parmigiani [28] and Muller [27] for 

finding optimal designs.  

 

3.5.6. Results for Discriminating Linear vs. Quadratic ALT Models 

Table 3.1 lists the temperature stress ranges that were used in the planning of the ALT 

experiment. The surface fitting smoothing approach for finding optimal design requires simulation 

of experiments (        ) on a design grid. Full grid of the three temperature ranges can be used 

in the simulation. However, we instead use a modified Latin Hypercube design to replace the full 

grid and reduce computational cost at no loss of coverage and to allow available experimental 
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budget.  Table 3.2 shows the design grid created using a modified Latin Hypercube      for the 

available budget of 20 experimental runs.  

Bake Stress 

Temperature Range in oC (Oven tolerance ± 5 oC) 

Lower Upper 

      150 180 

        115 145 

     80 110 

 

Table 3.1: Temperature Stress Range Used in Experiment  

 

Run # 

Low Temp Oven Setup High Temp Oven Setup 

Run Source 

TempC (low) TempC (Mid) TempC (High) 

1 85 140 155 mLHD 

2 80 125 150 mLHD 

3 90 115 170 mLHD 

4 100 120 160 mLHD 

5 95 145 165 mLHD 

6 100 130 180 mLHD 

7 110 135 160 mLHD 

8 95 130 165 mLHD 

9 110 120 175 mLHD 

10 90 125 150 mLHD 

11 105 135 175 mLHD 

12 80 140 170 mLHD 

13 80 115 150 AUG-C1 

14 110 145 180 AUG-C2 

15 110 115 150 AUG-C3 

16 110 115 180 AUG-C4 

17 80 115 180 AUG-C5 

18 80 145 150 AUG-C6 

19 80 145 180 AUG-C7 

20 110 145 150 AUG-C8 

 

Table 3.2: mLHD Grid with 12 Runs and 8 Corner Augmentations  
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Following simulation algorithm steps outlined in Section 3.5.5, the optimal design under criterion 

(13) for discriminating between linear and quadratic acceleration models in single accelerating 

variable (temperature), and under practical constraints outlined in Section 3.5.1 is summarized in 

Figures 3.4 through 3.6. 

Figure 3.4 displays the pre-posterior expected value of the utility function (   [ ( )]) as 

a function of the stress magnitude and percent unit allocation to each of the three stress levels 

used in planning of the experiment. The utility function is maximized when  

1. Higher temperature level is set at the highest value (    ) of its range(      

     ), with approximate unit allocation of      

2. Middle temperature level is set at the intermediate value (    ) of its range 

(          ), with approximate unit allocation of      

3. Lower temperature level is set at  value (    ), slightly above the intermediate 

value of its range (          ), with approximate unit allocation of      

 

 

Figure 3.4: Pre-posterior Expected Log [U(d)] as a Function of Stress and Unit Allocation 

 

Figures 3.5 and 3.6 display, respectively, the distributions for unit allocation and stress 

levels at simulated optimal designs from 1500 simulation runs. Approximate mean values are 
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ones considered in Figure 3.4. Some designs were close to optimal with slightly different unit 

allocation and stress levels setup as shown in Figure 3.4. 

 

   

     ≈       (   ) 

 

     ≈       (   ) 

 

     ≈       (   ) 

 

Unit allocation at Lower Stress Unit allocation at Middle Stress Unit allocation at Higher Stress 

Figure 3.5: Distributions for Unit Allocation at Optimal Design  

 

   

     ≈       (oC) 

 

     ≈       (oC) 

 

     ≈       (oC) 

 

Lower Stress  Setup Middle Stress Setup High Stress Setup 

Figure 3.6: Distributions for Stress Levels at Optimal Design  
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3.5.6.1. Some Remarks on the Obtained Optimal Discriminant Test Plan  

The following remarks are drawn in comparison to the well-known “Optimum ALT Plans” 

(use two test stress levels, no intermediate level, with unequal numbers of test units; more 

allocation towards lower level), and the more practical “Good Compromise ALT Plans” (use three 

or four stress levels with unequal allocation of test units; more allocation towards lower level). 

Although the primary objective of these plans (estimation accuracy in most), is quite different than 

ours (model discrimination), pointing out similarities and dissimilarities between the two groups of 

plans is of an added value in our judgment; Nelson [30] has once said “a good plan should be 

multi-purpose and robust and provide accurate estimates.” 

1. The test plan allocates the larger proportion of units to the intermediate stress level (~55%). 

This is favorable for robustness and early failures and will be most sensitive for detecting 

nonlinearity of the relationship (minimize variance of the estimate of the quadratic coefficient).  

2. The test plan allocates more test units to the lower stress level (~33%) than to the higher 

stress level (~12%).  This is favorable for more accurate extrapolation with respect to stress, 

as suggested by optimum plans. 

3. The test plan sets the high temperature value to the highest possible in its allowable range, 

this is known to be a good practice when interest lies in minimizing the standard error of the 

estimate of any percentile at the design stress (a very common objective of ALTs). 

4. The test plan does not set the lower temperature value to the lowest possible in its allowable 

range as suggested by the optimum test plan (effective if the design stress is close to the test 

range), but rather choses an intermediate value. One drawback to having to test at the lowest 

extreme of the test range is the longer test time needed for units to fail. 

5. In comparison to Meeker-Hahn [33] (4:2:1) plans that use unequal allocation (close to 

optimum for short extrapolation), the test plan that is as close to the (4:2:1) allocation as 

possible (3.85:1.89:1.26) ranks low with respected to our discrimination criterion. From Figure 

3.4, it sets [stress, allocation] pairs at [90 , 55%] for high stress, [115 , 27%] for 

intermediate stress, and [170 , 18%] for lower stress.  
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3.5.6.2. Recovery Rate for the Obtained Optimal Discriminant Test Plan  

Optimal model discriminant designs are expected to maximize the proportion of times in 

which the true, data-generating, model is selected under an appropriate model selection criterion. 

We have chosen to use the (DIC) model selection rule as explained in details in section 3.4. 

Other methods of model selection such as BF (Bayes Factor) or BIC (Bayesian Information 

Criterion) could have also used. The following definitions were used in creating plan comparison 

in Figure 3.7 as function of total sample size across all three-stress levels. 

 True Model = acceleration model from which data was simulated. That is, equation (19) 

for the linear model, and equation (24) for the quadratic model. 

 Assumed Model = actual acceleration model fitted to the simulated data. 

 % Recovery Rate = fraction of times the true model recovered (correctly identified) under 

DIC-based model selection under optimal stress setup and unit allocation per each plan. 

Assumption used in the optimal stress setup and unit allocation for each plan: 

 Same prior distributions given to same parameters across all models.  

 All plans used three levels of stress (temperature) in the range of (           ) for 

high temp, (          ) for middle temp, and (          ) for low temperature 

stress. All plans share the same fixed experimental budget (sample size).  

 Stress setup and unit allocation were determined as follows 

 Model discriminant plan: unequally spaced test levels with unequal allocation that 

puts more units at the middle of the test range. Optimal design setup used: highest 

temp of (    ) with 12% allocation, intermediate temp of (    ) with 55% 

allocation, and lower temperature of (    ), slightly above the intermediate value 

in the low temp range, with 33% allocation.  

 Good compromise plan: equally spaced test levels with unequal allocation that 

puts more units at the extremes of the test range and fewer in the middle. We’ve 

used 50% at lower level, 30% at higher level, and remaining 20% at the middle 
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level. For the equal spacing of stress levels      was selected as highest 

possible,       as lowest, and      as the intermediate stress.  

 Best traditional plan: equally spaced test levels with equal allocation. Typically, 

highest stress needs to be specified. We selected, highest possible of     , while 

lowest stress is selected to minimize std. error of ML estimate of log mean life at 

design stress. We arbitrary select lowest possible of       without optimization, 

thus setting the intermediate stress at an equal space of     . Equal allocation 

puts approximately 33.33% of units at each stress level.  

 Meeker-Hahn [24] (4:2:1) compromise plan: High stress typically specified from 

practical constraint, we assumed it to be at     . Low stress is chosen to 

minimize asymptotic variance of MLE of a life percentile of log life at design stress, 

we arbitrary select lowest possible of       without optimization. Middle stress is 

set at midway between the others, that is     . Allocation of samples follows 

 

 
    (   ) to low stress, 

 

 
    (   ) to middle stress, and 

 

 
    (   ) to high 

stress. 

  

Figure 3.7: Recovery Rate versus Sample Size Comparison across Test Plans  
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As noted in Section 3.5.6.1 the primary objective/s of the test plans we’re comparing our 

plan to are parameter estimation and prediction accuracy of a quantity of interest at design stress, 

which is different than our test plan’s objective (model-form discrimination).  Therefore, the 

apparent superiority w.r.t. to the recovery rate under DIC model selection of our test plan as 

shown in figure 3.7 should come as no surprise, and should not be interpreted as overall 

superiority as objectives are different, by comparison across the different plans we intended to 

compare the effect of recommended stress setup and unit allocation for these plans on model 

discrimination. It appears that optimizing for one objective will take its toll on another.   Model-

discriminant plan tends to allocate higher percentage of units to the middle stress. That is 

intuitively appealing for robustness and early failures.  

 

3.6. Conclusion and Areas for Future Research 

In this study, we have presented a simulation-based Latin Hypercube Bayesian 

accelerated life test planning (ALT) method with the objective of discrimination between 

competing acceleration model forms. Our proposed criterion is based on the Hellinger distance 

measure between predictive distributions. We applied the criterion to accelerated life test 

planning in which interest lies in a test plan that is capable of differentiating between linear and 

quadratic acceleration models in one-accelerating variable (temperature) when there is 

uncertainty as to whether the relationship between log mean (life) and the stress (possibly 

transformed) is linear or exhibit some curvature. We used the criterion to determine optimal 

stress-factor setup and unit allocation at three stress levels subject to test-lab equipment and time 

constraints. Optimal designs were defined as those that maximize the proportion of times 

(recovery rate) in which the true, data-generating, model is selected under the DIC (Deviance 

Information Criterion) model selection rule. We compared our optimal test plan with that of the 

typically used three stress-levels good compromise, best traditional and well known 4:2:1 

compromise ALT test plans. Results showed that our obtained optimal design has the advantage 

of substantially increasing the test plan ability to distinguish among competing model forms. Thus 
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providing better guidance as to which model is appropriate for the follow-on testing phase in the 

experiment.  

As with many of the complex MCMC problems, the main limitation is typically the 

computationally intensive calculations and the need for point-wise evaluation of utility function. 

This has been eased by the use a modified Latin Hypercube sampling scheme reinforced with 

design point augmentation, and followed by the application of curve-fitting optimization approach. 

The simulation-based Bayesian approach described in this paper could be extended to model-

discriminant ALT planning problems with more than one accelerating variable and more 

complicated acceleration models.  
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Abstract 

In planning accelerated life tests (ALTs), very often there exist uncertainty regarding the 

form of the model that describes the relationship between the parameters of the life distribution of 

units under test and the, possibly transformed, stress. In this paper, we propose a sequential 

Bayesian model-discriminant scheme. The idea is based on an initial experiment planned and 

conducted at an optimal setup identified under a model-discriminant design criterion; the Hellinger 

distance measure between predictive densities, to provide the maximum possible information with 

respect to model discrimination while using less experimental budget. If a “winning” model could 

not be identified at the required statistical significance level, then a subsequent model-

discriminant experimentation is planned and conducted while budget allows. The subsequent test 

will leverage the most current information to allow for Bayesian model comparison through 

posterior model probabilities and their corresponding ratios in what is known as Bayes factor. 

Sequential testing is terminated upon exhaustion of available experimental budget and/or when 

strong evidence in favor of one model over another is demonstrated through Bayes factor. In our 

demonstration example we consider the case for single variable constant-stress accelerated life 

test at three levels where a sequential Bayesian framework is proposed to optimally discriminate 

between linear and quadratic model forms. Advantage of proposed methodology as compared to 

non-sequential testing under similar model-discriminant design criterion is evaluated through 

model recovery rate under the Bayes factor model selection rule. Results showed that 
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performance of sequential model discriminant in ALT is adversely impacted by the amount of 

censoring in the data, in the case of linear vs. quadratic model form with testing at three levels of 

constant stress, sequential testing can improve model recovery rate by approximately 8% in the 

case of complete data. In the case of censoring, two buckets were considered for right censored 

data; namely (30-40%) and (50-60%), and results showed that both testing schemes suffered in 

their ability to discriminate between models and there was no apparent advantage in adopting 

sequential testing. This finding is troublesome as majority of ALT data are characterized by 

censoring and complete data are rare. 

 

Key Words - Sequential Accelerated Life Test Design, Bayesian Design, Model Discrimination, 

Hellinger distance, Bayes Factor. 

 

4.1. Introduction 

Accelerated life tests (ALTs) are widely used throughout industry to gather valuable 

information on the life distribution of material of construction and product performance at use 

conditions (design stress) in relatively short duration of testing time. In an ALT, experimental units 

or prototypes are subjected to higher than normal operating conditions (stresses) to induce early 

failures that can be used to make inference about life distributional quantities of interest at normal 

operation conditions. In planning accelerated life tests (ALTs), very often there exist uncertainty in 

the form of the model used to describe the relationship between the parameters of the life 

distribution and applied stress. Moreover, in a typical ALT planning, initial values of the unknown 

model parameters are specified as “best-guessed at” values so as to obtain a locally optimum 

test plan under an unverified assumption of correctness of model being used. Very often there 

would be a miss-specification error of model parameters, and when combined with miss-

specification error of model being used, a high enough margin of combined error would result in 

preventing the test plan from achieving its desired statistical efficiency. Therefore, an experiment 

designed with the objective of model discrimination between competing models will be of great 

value in providing information about appropriateness of model being used. Better yet, if this 
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information can be obtained in the most efficient way at the lowest possible cost. With that in 

mind, we investigate the benefit of sequential testing in ALT model discrimination. In sequential 

testing the experimental budget is not fixed upfront. Instead information are evaluated as they 

become available and as soon as significant evidence in favor of one model over the rest become 

evident a “winning” model may be selected at a much earlier stage at lower cost than would be 

possible with a onetime large experiment at consequently higher financial and/or experimentation 

cost.  

The Bayesian theory allows us to implement a sequential scheme and make use of the 

most recent information obtained from data. In addition to that, any available prior information 

about the models under investigation can be considered in the analysis. The MCMC-based 

methods have the advantage of its capacity to handle both linear and nonlinear models. Hence, 

our proposed methodology is utilizing Bayesian MCMC methods.  

 

4.2. Related Work 

Experimental design theory for precise estimation of model parameters has been the 

focus of majority of the available research and development efforts. For example, Atkinson and 

Donev [4], Fedorov and Hackl [16], Box and Hill [9], Kiefer [20], Chaloner and Verdinelli [11]. 

Various design criteria were considered, among which the one that has received the most 

attention is that of identifying an experimental design that makes the variances of a model’s 

parameter estimates as small as possible. It was termed as the D-optimal criterion, under which 

the optimal design will maximize the determinant of the variance-covariance matrix. Implicit in the 

D-optimal design is the assumption that the model is true in that it is the correct model that 

generated the data. Obviously, this assumption is far from true in most of real-world problems, as 

the true model may never be known for certainty but close approximation to it is expected to be of 

value.  On the other hand, the design problem for discrimination between rival models has 

received less attention and has been developed for simple models only. Previous work in 

literature has discussed the model discrimination experimental designs for linear models, and 

various criteria were considered as well. For example,  Atkinson and Fedorov [5, 6], Burke et al. 
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[10], Stewart et al. [31], Box and Hill [9], Ponce de Leon and Atkinson [28], Muller and Ponce de 

Leon [25], Felsenstein [18], Fedorov and Khabarov [17], Ucinski and Bogacka [33], Dette and 

Titoff [15], Agboto, Li and Nachtsheim [1]. The focus of these criteria shifted to designs that 

maximally discriminate between two or more models. The most popular such criterion, termed as 

T-optimal, was first introduced by Atkinson and Fedorov [5, 6] for the single response case. It has 

the statistical interpretation as the power of a test for the fit of a second model when the first 

model is true. Bayesian criteria were also considered in model discrimination. See, for example, 

Ponce de Leon and Atkinson [28] where T-optimality was extended to Bayesian T-optimality to 

include prior information in the design process. Meyer et al. [23] considered a Bayesian criterion 

that is based on the Kullback-Leibler information to choose follow-up run after a factorial design to 

de-alias rival models; Bingham and Chipman [7] proposed a Bayesian criterion that is based on 

the Hellinger distance between predictive densities for choosing optimal designs for model 

selection with prior distributions specified for model coefficients and errors. Chaloner and 

Verdinelli [11] provided a comprehensive review on Bayesian experimental design. However, 

applications of T-optimal designs have been limited possibly due to the poor estimation properties 

of these designs, the computational burden of implementation and the requirement to assume a 

true model. Modifications to the D-optimal criterion have also been suggested for model 

discrimination purposes. See Atkinson [2], Lim and Studden [21] and Atkinson and Cox [3]. Other 

approaches of interest have been proposed by Dette [14] in the context of polynomial regression 

models.  

Sequential testing and design of experiments have been also studied previously, one 

may refer to Chernoff [12], Pilz [27], Wetherill and Glazebrook [34] and Michlin et at. [24]. 

Sequential testing in the context of ALT planning and inference has been studied by Liu and Tang 

[22], and Tang and Liu [32] for the single-variable constant-stress accelerated test. However, as 

far as we know, no previous work has aimed at sequential testing in the context of ALT model 

discrimination. That is an additional motivation to the work presented in this study. 

In the remainder of the paper, we present the proposed framework of the sequential 
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model-discriminant testing scheme in Section 3, a case study in Section 4, and discussion and 

concluding remarks in Section 5. 

 

4.3. Proposed Methodology 

 

4.3.1. Sequential Testing Scheme 

We consider the problem of discriminating between rival models when planning 

accelerated life test (ALTs). Very often there exist uncertainty regarding the form of the model 

that describes the relationship between the parameters of the life distribution and the applied 

stress. Assume that uncertainty in model form can be summarized by a finite number of rival 

models   that are described by the random variable             with associated prior 

probability  (   ) of a particular model   being true. Each model has its own set of 

parameters    with a likelihood function  ( |      ) given data    Relevant prior distributions 

are placed on the parameters of each model,    and are denoted as  (  |   )   In this paper 

we propose a sequential Bayesian model-discriminant scheme. Bayesian methods allow us to 

implement a sequential scheme and make use of the most recent information obtained from data. 

Figure 4.1 shows a schematic illustration of the proposed sequential model-discriminant ALT 

planning.  
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Figure 4.1: Sequential Model-discriminant ALT Scheme 

 

The proposed sequential scheme consists of the following main steps: 

1. Initial experiment design 

2. Model selection analysis 

3. Follow-on experiment design 

4. Exit (stop) criterion 

The scheme starts with an initial experiment that is planned and run at an optimal setup identified 

under a model-discriminant design criterion. This will provide the maximum possible information 

with respect to discrimination between models while using less experimental budget. We use a 

criterion that is based on Hellinger distance between predictive distributions; details of design 

optimality criterion are covered in section 4.3.3. If the output of the initial experiment enabled 
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clear differentiation between competing models, then no further experimentation is needed and a 

“winning” model is selected. Details of model selection procedure are covered in section 4.3.2. If 

no winning model can be selected, then further experimentation, while budget is available, is 

recommended and a follow-on experiment is conducted. The test setup for the follow-on 

experiment at which new data are to be collected is identified under similar model-discriminant 

optimality criterion as one utilized in the initial experiment with the advantage of inputs that are 

now updated with the outcome from previous experiment in a natural way following Bayes rule. 

The sequential testing is terminated upon exhaustion of available experimental budget and/or 

when a pre-determined stopping criterion is met, for example when one model displays strong 

evidence against the rest of rival models as indicated by an appropriate value of Bayes factor BF. 

 

4.3.2. Model Selection 

Thinking in terms of models     rather than parameters   , the posterior probability 

 (   | ) of a model             given data   is given by Bayes’ theorem as: 

 (   | )  
 ( |   )  (   )

 ( )
                                             (1) 

Data-dependent term  ( |   ) is a likelihood, and represents the probability that data is 

generated under model    . Bayesian model comparison is based on evaluating this data-

dependent term. In the remainder of this article     will be abbreviated with   for simplicity.  

For example, in the case of two rival models    and    (or two hypotheses    and   ), Bayesian 

comparison is performed via the posterior model probabilities and their corresponding ratio 

 

 (  | )

 (  | )
 

 ( |  )

 ( |  )
   

 (  )

 (  )
        

 (  )

 (  )
                                   (2) 

That is  

                                  (  )                    

 

As can be seen from above expression, Bayes factor (    ) of model    versus model    is 

defined by the ratio of the integrated (or marginal likelihoods) of the two models being compared 
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 ( |  ) and  ( |  ), whereas the prior model odds is the ratio of the prior model probabilities  

 (  ) and  (  )  In light of our ignorance (lack of knowledge) as to which model is true, the 

                    since  (  )   (  )    .5. This results in                      

             (  ). Hence, Bayes factor (BF) calculation depends on how to compute integrated 

likelihoods, 

      
∫ ( |     )  (  |  )    

∫ ( |     ) (  |  )    
                                          (3) 

In simply suitable models, one can calculate the integrals in (3) analytically. However, most of the 

times (3) is hard to evaluate, especially in high dimensions in problems lacking neat, closed-form 

solution. See Kass and Raftery [19] for a survey. 

 

4.3.2.1. Interpretation of Values of Bayes Factor (BF) 

When no prior information is available on model structure, then equal prior model 

probabilities are considered resulting in model comparison being based solely on Bayes factors. If 

one considers model comparison as hypothesis testing in which interest lies in evaluating the null 

hypothesis    (corresponding to model   ) against the alternative    (corresponding to model 

  ), then both the posterior model odds and the corresponding Bayes factor      evaluate the 

evidence against the null hypothesis, similar to classical significance tests. Suggested 

interpretation of Bayes factor is provided by Kass and Raftery [19]; see also Table 4.1. 

 

    (    )                                                                      

0 – 1                               1 – 3                              Negligible 

1 – 3                               3 – 20                            Positive 

3 – 5                               20 – 150                        Strong 

> 5                                  > 150                            Very strong  

Table 4.1: Bayes Factor Interpretation as Given by Kass and Raftery 
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4.3.2.2. Computation of the Marginal Likelihood 

There are a number of methods that seek to estimate the marginal density  ( |  

 ) for each model, and subsequently calculate Bayes factor (BF) using equation (3). Majority of 

them operate on a posterior sample that has already been produced by some non-iterative or 

Markov chain Monte Carlo (MCMC) sampling methods. A review on the different computational 

methods for the estimation of the marginal likelihood and their comparison can be found in Bos 

[8]. Chib [13] proposed estimating the marginal likelihood by sampling from the posterior 

distribution using the Gibbs sampler. We use the most popular approximation of the marginal 

likelihood known as Laplace approximation which is given by 

 ( | ) ≈ (  )
  
  | ̃ |

 

   ( | ̃   ) ( ̃ | )                                (4) 

 

where  ̃  is the posterior mode of the parameters of model   and  ̃  (  ( ̃ ))
  

, with 

  ( ̃ ) being equal to the minus of the second derivative matrix of the log-posterior density 

     ( |   ) evaluated at the posterior mode  ̃ . 

 To avoid analytic calculation of  ̃  and  ̃ , we use the Laplace-Metropolis estimator 

proposed by Raftery [29] and Lewis and Raftery [30]. Using this approach, we estimate  ̃  and 

 ̃  from the output of MCMC algorithm by the posterior mean  ̅  and variance-covariance matrix 

   of the simulated values, respectively. Hence the Laplace-Metropolis estimator is given by 

 ( | ) ≈ (  )
  
  |  |

 

   ( | ̅   ) ( ̅ | )                                  (5) 

where  

 ̅   
 

 
 ∑   

( ) 
     and      

 

   
 ∑  (  

( ) 
     ̅ )(  

( )   ̅ )   

To estimate the Laplace-Metropolis estimator using WinBUGS, the following steps are 

used: 

1. Generate an MCMC sample output in WinBUGS. 

2. Estimate the following from the MCMC sample output: 
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a. The posterior mean of the parameters of interest from each model denoted by 

 ̅   

b. The posterior standard deviation of the parameters of interest from each model 

denoted by:    
 (       ). 

c. The posterior correlation between the parameters of interest from each model by 

denoted by    
  This is done using the command Correlation from the Inference 

menu in WinBUGS. 

3. Calculate the expression 

    ̂( | )  
 

 
       (  )  

 

 
   |   

|   ∑      
  

   

  ∑     (  | ̅   )      ( ̅ | )
 

   
   

 

where    are the posterior standard deviations of    parameter estimated from the MCMC 

output. 

 

4.3.2.3. Model Recovery Rate  

Model discriminant optimal designs are expected to maximize the proportion of times in 

which the true, data-generating, model is selected under an appropriate model selection criterion. 

In this study we have used    (Bayes Factor) for model selection. However, other criteria such 

as DIC or BIC could have also been used. In determining model recovery rate under the optimal 

design, the following definitions were used: 

 True model = acceleration model from which data was simulated. In the 

demonstration example it is Equation (15) for the linear model, and Equation (20) for 

the quadratic model. 

 Assumed model = actual acceleration model fitted to the simulated data. 
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 Recovery rate (  ) = fraction of times the true model recovered (correctly identified) 

given    model selection criterion under optimal test plan (i.e. stress setup and unit 

allocation). 

 

4.3.3. Description of Design Criterion 

Our optimality criterion is based on a simple, yet intuitive idea, that a good design is 

expected to generate data set that will cause competing models to predict same quantity of 

interest differently. The larger the distance (disagreement) in prediction the better our ability to 

discriminate (distinguish) between rival models. That is, a good design should amplify the 

difference among models and ease the selection of a winning one. We have proposed the use of 

this criterion in Nasir and Pan [26] in the context of non-sequential ALT model selection. The 

criterion uses the relative prediction performance of each model over the range of its parameters 

to identify the optimal design (different models may have different set of parameters). Criterion 

formulation is explained in details in Chapter 3 and its subsections.  

Herein, we briefly describe the criterion, for the case of two competing models,    and 

   with model priors;  (  ) and  (  ) respectively. Under design    model    has parameter 

vector    and experimental outcome    (         ), while model     has parameter vector    

and experimental outcome    (         )   The utility function to be optimized (maximized), is 

the difference in prediction of life percentile of interest    at the low stress    (  ) and high stress 

  (  ) test setup across all pairs of competing models. That is    ( ) and    ( ) respectively. The 

pairwise local utilities,   |  and    |  , were defined as 

  | (    (     )   (     ))     
 ( ̂  (  |  )  ̂  (  |  ))     

 ( ̂  (  |  )  ̂  (  |  ))  

  |                                                                                                                                                                               (6) 

  | (    (     )   (     ))     ( ̂  (  |  )  ̂  (  |  ))     ( ̂  (  |  )  ̂  (  |  ))   

  |                                                                                                                                                                            (7) 

Equation (6) represents the difference in     prediction of model (  ) conditional on data from 

model (  ) relative to model (  ) prediction of the same quantity, while equation (7) represents 
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the difference in     prediction of model (  ) conditional on data from model (  ) relative to 

model (  ) prediction of the same quantity. That is the relative prediction performance of each 

model over the range of its parameter vector. 

The utility   | ( ) of the design is assessed by its expectation with respect to the sampling 

distribution of the data  (  |    ), and  (  |    ) , and the prior distribution of the parameter 

vectors  (  ) and  (  )   That is by calculating the pre-posterior expectation. 

 (  | )  ∬  |   (  |    )  (  | )                                                       (8) 

 (  | )  ∬  |   (  |    )  (  | )                                                       (9) 

Equation (8) gives an expression of the expected pre-posterior prediction difference in    of 

model (  ) conditional on data from model (  ) relative to model (  ) prediction of the same 

quantity. Similarly, equation (9) gives an expression of the expected pre-posterior prediction 

difference in    of model (  ) conditional on data from model (  ) relative to model (  ) 

prediction of the same quantity. 

A critical distinction from the non-sequential (one-time large DOE) design, as compared 

to sequential design, is the sequential updating of the prior distribution of the model parameters 

from one stage to another. At the onset of each sequential experiment, the current posterior 

distribution becomes the new prior distribution going into the new experiment.  

Since it is not known which of the two models (  ) or (  ) is the true model that will 

generate the experimental outcome, a combined weighted expected utilities  (  | ) were used to 

obtain the desired global utility function  ( ) to be maximized. The weighing is achieved by priors 

assigned to the models,  (  ) and  (  ) respectively.  

 ( )  ∑  (  )  (  | )
        

   

 

  (  )  (  | )   (  )  (  | )                                (10) 

Equation (10) is interpreted as a measure of model distinguishability between two models. The 

larger the value of  ( )  the dissimilar the two models are to each other. Extending (10) to 
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account for situations where more than two models are to be distinguished among is 

straightforward.     

                             

4.4. Case Study 

The demonstration example presented here has been previously used in Chapter 3; 

Nasir and Pan [26], in the context of non-sequential model discriminant ALT planning. The intent 

is to provide a comparison of sequential to non-sequential testing with respect to model recovery 

rate for identifying correct model. In this study the total sample size and testing duration are pre-

determined given budget and testing equipment availability constraints.  

Description of the design problem and the linear versus quadratic competing models can 

be found in Chapter 3 of this dissertation. Model recovery rate for both testing schemes is 

evaluated in terms of Bayes factor.  

 

4.4.1. Model Discrimination Results  

We make use of computer simulation to generate experimental data and explore the 

performance of proposed method. As illustrated in Figure 4.1, the sequential scheme starts with 

an initial experiment that is planned and run at an optimal setup identified under a model-

discriminant design criterion providing the maximum possible information with respect to 

discrimination between models while using less experimental budget. We use a criterion that is 

based on Hellinger distance between predictive distributions. Under this criterion, the optimal 

experimental setup for the discrimination between the linear and quadratic model forms given the 

constraints described in “Description of Design Problem” section was identified in Chapter 3 as 

1. Higher temperature level is to be set at the highest value (    ) of its 

range(           ), with approximate unit allocation of      

2. Middle temperature level is to be set at the intermediate value (    ) of its range 

(          ), with approximate unit allocation of      

3. Lower temperature level is to be set at  value (    ), slightly above the intermediate 

value of its range (          ), with approximate unit allocation of      
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Above set up was shown to be the condition at which the pre-posterior expected value of the 

utility function (   [ ( )]) is maximized as a function of the stress magnitude and percent unit 

allocation to each of the three stress levels used in the non-sequential planning of the 

experiment. See Nasir and Pan [26] for details.  

When adopting the same design problem in the context of sequential testing for model 

discrimination, we are faced with the initial question of how to conduct a meaningful comparison 

between the two test planning schemes. Questions such as test unit allocation, stress-level set up 

and testing durations come to mind as key considerations. Therefore, we assume the following: 

 Sample size: both testing schemes have the same budget of a total of 300 units 

available for testing. Non-sequential testing will consume all of the 300 units in one 

large experiment, while sequential testing will be carried out in two phases for the total 

sample size of 300 units. Sequential testing will split total sample size equally by the 

number of phases planned for testing. For example, in a two-phase sequential test, 

phase one uses 150 units as same as phase-two. 

 Unit allocation: since both testing schemes utilize the same utility function for 

optimization, a good starting point for both is optimal allocation identified in Chapter 3. 

That is 12%, 55%, and 33% at high, middle, and low stress-level respectively.  

 Test duration: total length of testing time is same for both testing schemes. However, 

sequential testing will split total duration equally by the number of phases planned for 

testing. For example, in a two-phase sequential test, given demonstration case at hand, 

phase one has 21 days available for testing as same as phase-two. Non-sequential 

testing is conducted in 42 days.  

 Stress-level setup: non-sequential test will adopt optimal setup identified in Chapter 3. 

The sequential test optimizes stress level setup subject to fixed unit allocation at stress 

levels (12% at high, 55% at middle, and 33% at low), and test duration constraints. 

Algorithm for constructing optimal design, as in Chapter 3 is used.  
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With above assumptions in place, we consider two cases for fail data, namely complete 

data (100% failure) and right censored data.  

 

4.4.1.1. Complete Data 

Summary of performance comparison in model recovery rates between the non-

sequential and sequential model discriminant testing schemes for the case of compete data 

(100% failure) is shown in Table 4.2. 

 

Total 
budget  

Testing Scheme 

Non-Sequential Sequential 

Exp # 
Sample 

Size/Exp 
Recovery 

Rate  
Exp # 

Sample 
Size/Exp 

Recovery 
Rate  

300 
1 300 0.85 1 150 0.74 

2 n/a n/a 2 150 0.92 

  

Table 4.2: Recovery Rate Comparison for Sequential vs. Non-sequential Model 

Discriminant Testing for Complete Data 

 

From summary results in Table 4.2, it can be seen that in the case of total budget of 300 

units, sequential testing in two phases, each having 50% of available budget, results in a lower 

recovery rate as compared to non-sequential testing in phase-one (74% vs. 85%). However, it 

compensates for that drop in second phase with recovery rate of 92% as compared to 85%. This 

is influenced by the fact that the starting point for phase-two experimentation has already been 

updated with information obtained from phase-one testing. For the total budget of 300 units, there 

was a roughly 8% gain in recovery rate by conducting sequential testing. Table 4.3 shows the 

optimal stress setup and %unit allocation for both testing schemes. In phase-one of sequential 

testing with a reduced budget of 150 units (as compared to 300 units) and fixed unit allocation at 

the three stress levels (12%, 55%, 33%), the plan optimizes the stress levels to test at higher 

levels for all three stress levels              as compared to non-sequential test. This can be 
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explained as a compensation for testing for shorter time duration with less total sample size (1/2 

of that for non-sequential for both time and sample size). However, phase-two of the sequential 

testing is constraint only by total sample size available (150 units), and optimizes both of the 

stress levels and unit allocation. It can be noticed that given updated model parameters from 

phase-one, the plan tests at reduced stress levels with more unit allocation towards lower level.  

 

Total 
budget  

Testing Scheme 

Non-Sequential Sequential 

Exp # 
Stress 
level 

Unit 
allocation  

Exp # 
Stress 
level 

Unit 
allocation 

300 

1 

  (    ) 12% 

1 

  (    ) 12% 

  (    ) 55%   (    ) 55% 

  (    ) 33%   (    ) 33% 

2 n/a n/a 2 

  (    ) 10% 

  (    ) 31% 

  (   ) 59% 

 

Table 4.3: Stress Setup and Unit Allocation for Sequential vs. Non-sequential Model 

Discriminant Testing for Complete Data 

 

4.4.1.2. Right Censored Data 

Summary of performance comparison in model recovery rates between the non-

sequential and sequential model discriminant testing schemes for the case of right censored data 

is shown in Tables 4.4 - 5. Table 4.4 shows comparison results when censoring is in the range of 

30-40%, while Table 4.5 shows comparison results when censoring is in the range of 50-60%. 
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Total 
budget  

Testing Scheme 

Non-Sequential Sequential 

Exp # 
Sample 

Size/Exp 
Recovery 

Rate  
Exp # 

Sample 
Size/Exp 

Recovery 
Rate  

300 
1 300 0.67 1 150 0.61 

2 n/a n/a 2 150 0.68 

 

Table 4.4: Recovery Rate Comparison for Sequential vs. Non-sequential Model 

Discriminant Testing with 30-40% Censoring in Fail Data 

 

Total 
budget  

Testing Scheme 

Non-Sequential Sequential 

Exp # 
Sample 

Size/Exp 
Recovery 

Rate  
Exp # 

Sample 
Size/Exp 

Recovery 
Rate  

300 
1 300 0.63 1 150 0.57 

2 n/a n/a 2 150 0.64 

 

Table 4.5: Recovery Rate Comparison for Sequential vs. Non-sequential Model 

Discriminant Testing with 50-60% Censoring in Fail Data 

 

From summary results in Tables 4.4-4.5, it can be seen that the gain in model recovery 

rate obtained by testing sequentially diminishes as the amount of censoring in the data increases. 

As a matter of fact, the ability of the test plan to discriminate model form adversely impacted even 

in the case of the non-sequential testing. This is troublesome finding as majority of ALT data are 

characterized by censoring. Complete data are rare, especially for high reliable components.  
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4.5. Conclusion and Areas for Future Research 

In this paper, we have considered the problem of discriminating between rival models 

when planning accelerated life test (ALTs) as often there exist uncertainty regarding the form of 

the model that describes the relationship between the parameters of the life distribution and the 

applied stress. We assumed that uncertainty in model form can be summarized by a finite 

number of rival models   that are described by the random variable             with 

associated prior probability  (   ) of a particular model   being true. We proposed a 

sequential Bayesian model-discriminant scheme to address the design problem as Bayesian 

methods allow us to implement a sequential scheme and make use of the most recent prior 

information about the models under investigation.  

The idea was based on an initial experiment planned and conducted at an optimal setup 

identified under a model-discriminant design criterion; the Hellinger distance measure between 

predictive densities was used to provide the maximum possible information with respect to model 

discrimination while using less experimental budget. If no model can be identified, then ta 

subsequent model-discriminant experimentation is planned and conducted while budget allows by 

leveraging the most current information to allow for Bayesian model comparison through posterior 

model probabilities and their corresponding ratios. Sequential testing is terminated upon 

exhaustion of available experimental budget and/or when strong evidence in favor of one model 

over another is demonstrated through Bayes factor. In our demonstration example we considered 

the case for single variable constant-stress accelerated life test at three levels where proposed 

methodology was applied to optimally discriminate between linear and quadratic model forms. 

Advantage of proposed methodology as compared to non-sequential testing under similar model-

discriminant design criterion was evaluated through model recovery rate under Bayes factor 

model selection rule. Results showed that performance of sequential model discriminant in ALT is 

adversely impacted by the amount of censoring in the data, in the case of linear vs. quadratic 

model form with testing at three levels of constant stress, sequential testing can improve model 

recovery rate by approximately 8% in the case of complete data. In the case of censoring two 
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buckets were considered for right censoring, namely (30-40%) and (50-60%). Results showed 

that both testing schemes suffered in their ability to discriminate between rival models and there 

was no apparent advantage in adopting sequential testing. This finding is troublesome as majority 

of ALT data are characterized by censoring and complete data are rare. 

Much more interesting work remains to be investigated in this area, to name a few: 

sample size optimization across the different phases of sequential testing, optimal number of 

phases for sequential testing, effectiveness of proposed scheme in discrimination of other forms 

of models, and impact of different model selection criteria on recovery rate.   

 

References 

 

[1] V. Agboto, W. Li, and C. Nachtsheim, Screening designs for model discrimination, Journal of 
Statistical Planning and Inference, vol. 140, no. 3 (2010), pp. 766-780. 
 

[2] A. C. Atkinson, Planning experiments to detect inadequate regression models, Biometrika 59 
(1972), 275-293. 

 
[3] A. C. Atkinson, and D. R. Cox, Planning experiments for discriminating between models, J. 

Roy. Statist. Soc. Ser. B 36 (1974), 321-348. 
 
[4] A. C. Atkinson, and A. N. Donev, Optimum experimental designs, Oxford, England: Oxford 

University Press (1992). 
 
[5] A. C. Atkinson, and V. V. Fedorov, The design of experiments for discriminating between two 

rival models, Biometrika 62 (1975a), 1, pp. 57-70. 
 
[6] A. C. Atkinson, and V. V. Fedorov, Optimal design: Experiments for discriminating between 

several models, Biometrika 62 (1975b), 2, pp. 289-303. 
 
[7] D. R. Bingham, and H. A. Chipman, Optimal designs for model selection, Technical Report 

388, University of Michigan and University of Waterloo (2002). 
 
[8] C. S. Bos, A comparison of Marginal Likelihood Computation Methods, Technical Report, 

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (2002). 
 
[9] G. E. P. Box, W. J. Hill, Discrimination among mechanistic models, Technometrics 9 (1967), 

57-71. 
 
[10] A. L. Burke, T. A. Duever, and A. Pendilis, Model discrimination via designed experiments: 

Discriminating between the terminal and penultimate models on the basis of composition 
data, Macromolecules 27 (1994), 386-399. 

 
[11] K. Chaloner and I. Verdinelli. Bayesian Experimental Design: A Review. Statistical Science, 

10 (1995), 273-304. 



99 

 
[12] H. Chernoff, Sequential Analysis and Optimum Design, Society for Industrial and Applied 

Mathematics (SIAM), Philadelphia (1972). 
 
[13] S. Chib, Marginal likelihood from the Gibbs output, Journal of the American Statistical 

Association 90 (1995), 1313-1321. 
 
[14] H. Dette, Optimal designs for identifying the degree of a polynomial regression, Annals of 

Statistics 23 (1995), 1248-1267. 
 
[15] H. Dette, and S. Titoff, Optimal discrimination designs, The Annals of Statistics, vol. 37 

(2009), no. 4, pp. 2056-2082. 
 
[16] V. V. Fedorov and P. Hackl, Model-Oriented Design of Experiments, Lecture Notes in 

Statistics (1997), New York: Springer-Verlag. 
 
[17] V. V. Fedorov and V. Khabarov, Duality of optimal design for model discrimination and 

parameter estimation, Biometrika 73, 1, (1986), 183-190. 
 
[18] K. Felsenstein, Optimal Bayesian design for discriminating among rival models, 

Computational Statistics & Data Analysis 14 (1992), 427-436. 
 
[19] R. Kass, and A. Raftery, Bayes factors, Journal of the American Statistical Association 90 

(1995), 773-795. 
 
[20] J. Kiefer and J. Wolfowitz, Optimum design in regression problems, The Annals of 

Mathematical Statistics 30 (1959), 271-294. 
 
[21] Y. B. Lim and W. J. Studden, Efficient Ds-optimal designs for multivariate polynomial 

regression on the q-cube, Annals of Statistics 16 (1988), 1225-1240.  
 
[22] X. Liu and L. C. Tang, A Sequential Constant-Stress Accelerated Life Test Scheme and its 

Bayesian Inference, Quality and Reliability Engineering International 25 (2009), 91-109. 
 
[23] R. D. Meyer, D. S. Steinberg, G. E. P. Box, Follow-up designs to resolve the confounding in 

multifactor experiments, Technometrics 38 (1996), 303-313. 
 
[24] Y. H. Michlin, L. Meshkov and I. Grunin, Improvement on Sequential Testing in MIL-HDBK-

781A and IEC 61124, IEEE Transactions on Reliability 57 (2008), 379-387. 
 
[25] W. G. Muller and A. C. Ponce de Leon, Discriminating between two binary data models: 

sequentially designed experiments, Journal of Statistical Computation and Simulation 55 
(1996), 87-100.  

 
[26] E. Nasir, R. Pan, Simulation-based Bayesian Optimal ALT Designs for Model Discrimination, 

Reliability Engineering & System Safety (Submitted) (2014). 
 
[27] J. Pilz, Bayesian Estimation and Experimental Design in Linear Regression Models, John 

Wiley & Sons, Germany (1991). 
 
[28] A. C. Ponce de Leon and A. C. Atkinson, Optimum experimental design for discriminating 

between two rival models in the presence of prior information, Biometrika 78 (1991), 601-
608. 

 



100 

[29] A. Raftery, Hypothesis testing and model selection, in W. Gilks, S. Richardson, and D. 
Spiegelhalter, eds., Markov Chain Monte Carlo in Practice, Chapman & Hall, Suffolk, UK, 
(1996b) pp. 163-188. 

 
[30] A. Raftery, D. Madigan, J. Hoeting (1997), Bayesian model averaging for linear regression 

models, Journal of the American Statistical Association 92 (1997), 179-191. 
  
[31] W. E. Stewart, Y. Shon, and G. E. P. Box, Discrimination and goodness of fit of multi-

response mechanistic models, AIChE Journal 44, 6, (1998), 1404-1412. 
  
[32] L. C. Tang and X. Liu, Planning and Inference for a Sequential Accelerated Life Test, 

Journal of Quality Technology 42, No.1 (2010). 
 
[33] D. Ucinski and B. Bogacka, T-optimum design for discrimination between two multi-response 

dynamic models, Journal of the Royal Statistical Society: Statistical Methodology 67(B) 
(2005), 3-18. 

  
[34] G. B. Wetherill and K. D. Glazebrook, Sequential Methods in Statistics, 3

rd
 edition. London, 

UK: Chapman and Hall (1986). 
 



101 

CHAPTER 5 

CONCLUSION 

Accelerated life tests (ALTs) are widely used throughout industry. Engineers rely on data 

from ALTs to drive critical business decisions. Continual research in new methods for ALT 

planning and ALT data analysis is crucial for many industries. The challenge with ALTs is a 

combined effect of factors that can be classified into two main groups, namely: 

1. The typical characteristics of ALTs  

 Statistical theory for traditional experimental design and properties of standard 

experimental designs do not hold for censored and interval-censored data 

(majority of data). It is correct only for complete data (100% failure) which is rare 

in industry nowadays. 

 Extrapolation in both stress and time. 

 Model dependence on parameters and the implicit assumption in design criteria 

used in current ALTs that the form of the acceleration model is correct.  

2. The business environment need 

 Informative data (precise estimate/prediction) for on-time business decision 

 At lowest possible cost 

 In least possible amount of time  

In this dissertation, we contribute to the ALT planning literature by proposing three ALT 

planning methods in a Bayesian framework with the third method being an extension to the 

second proposed methodology. We strongly believe that reliability engineers have accumulated a 

tremendous wealth of knowledge regarding failure modes, mechanisms, reliability models and 

associated model parameters from experimentation and documentation over the years. Unless it 

is a breaking through technology, most of new product introductions are based on incremental 

improvements in technology. As such available knowledge from experimentation should be 

readily available for use to reduce the amount and duration of new testing required to meet a 

business need. The vehicle for incorporating available information into test planning is Bayesian 

methods, hence our favorable choice to implement a Bayesian framework in our study.   
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In Chapter 2, we proposed a simulation-based approach for the design of ALT plans with 

multiple stresses utilizing Latin hypercube sampling scheme to overcome the practical difficulty 

arising from the increased number of experiments required due to the increased number of stress 

factor-level combinations to be studied. When applied to an industrial case study it was able to 

incorporate available prior information on model parameters along with new data to update 

information going into the planning problem. A comparison to its counterpart of full grid simulation 

quantified the computational cost gain at no loss of statistical efficiency, and a comparison to the 

large-sample approximation method revealed the flexibility of the proposed approach in 

determining optimal stress settings with less assumptions being made and more intuitive unit 

allocations.  

In Chapter 3, we provided an approach for optimum ALT design with the objective of 

model discrimination among rival model forms. Our proposed criterion was based on the Hellinger 

distance measure between predictive distributions. The optimal stress-factor setup and unit 

allocation were determined at three stress levels subject to stress lab equipment and test-

duration constraints. We compared the performance of obtained test plans with other test plans 

including the typically used three stress-levels good compromise plan, best traditional plan and 

well known 4:2:1 compromise ALT test plans. Results showed that when approach is applied to 

the case of linear versus quadratic ALT models, our optimal design method has the advantage of 

substantially increasing a test plan’s ability to distinguish among competing ALT models and 

provide better guidance as to which model is appropriate for the experiment. 

In Chapter 4 we extended the approach of model discrimination discussed in Chapter 3 

to sequential model discrimination in accelerated life test planning. The idea was based on an 

initial experiment planned and conducted at an optimal setup identified under a model-

discriminant design criterion; the Hellinger distance measure between predictive densities, to 

provide the maximum possible information with respect to model discrimination while using less 

experimental budget. If an appropriate model could not be identified, then a follow on model-

discriminant experimentation is planned and conducted while budget allows by leveraging the 

most current information to allow for Bayesian model comparison through posterior model 



103 

probabilities and their corresponding ratios. Results showed that performance of sequential 

model discriminant in ALT is adversely impacted by the amount of censoring in the data, in the 

case of linear vs. quadratic model form with testing at three levels of constant stress, sequential 

testing can improve model recovery rate by approximately 8% in the case of complete data. In the 

case of censoring, two buckets were considered for right censored data; namely (30-40%) and 

(50-60%), and results showed that both testing schemes suffered in their ability to discriminate 

between models and there was no apparent advantage in adopting sequential testing. This 

finding is troublesome as majority of ALT data are characterized by censoring and complete data 

are rare. 

Much more work remains to be investigated in this area, to name a few: sample size 

optimization across the different phases of sequential testing, optimal number of phases for 

sequential testing, effectiveness of proposed scheme in discrimination of other forms of models, 

impact of different model selection criteria on recovery rate, and formal introduction of cost in 

utility function when finding optimal designs.  

The problem of ALT planning and execution to meet business needs is of great interest 

and poses tremendous challenges at the same time. Engineers would like to know how to plan 

effective ALTs in ever increasing complex industrial environments where a decision based on the 

trio of good data at low cost in minimal time is the measure of success. We will continue our 

investigation into the subject in future research with focus on improvement areas identified.  
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