
Constrained Energy Optimization in Heterogeneous Platforms

using Generalized Scaling Models

by

Ujjwal Gupta

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved July 2014 by the
Graduate Supervisory Committee:

Umit Y. Ogras, Chair
Sule Ozev

Chaitali Chakrabarti

ARIZONA STATE UNIVERSITY

August 2014

ABSTRACT

Mobile platforms are becoming highly heterogeneous by combining a powerful multi-

processor system-on-chip (MpSoC) with numerous resources including display, memory,

power management IC (PMIC), battery and wireless modems into a compact package. Fur-

thermore, the MpSoC itself is a heterogeneous resource that integrates many processing

elements such as CPU cores, GPU, video, image, and audio processors. As a result, opti-

mization approaches targeting mobile computing needs to consider the platform at various

levels of granularity.

Platform energy consumption and responsiveness are two major considerations for mo-

bile systems since they determine the battery life and user satisfaction, respectively. In this

work, the models for power consumption, response time, and energy consumption of het-

erogeneous mobile platforms are presented. Then, these models are used to optimize the

energy consumption of baseline platforms under power, response time, and temperature

constraints with and without introducing new resources. It is shown, the optimal design

choices depend on dynamic power management algorithm, and adding new resources is

more energy efficient than scaling existing resources alone. The framework is verified

through actual experiments on Qualcomm Snapdragon 800 based tablet MDP/T. Further-

more, usage of the framework at both design and runtime optimization is also presented.

i

Dedicated to my parents

ii

ACKNOWLEDGEMENTS

The thesis represents a step towards the goal of unifying computing at various levels.

There have been several people who have directly or indirectly contributed to this work.

My deepest gratitude is to my advisor, Dr. Umit Ogras, for the patience, advice and

guidance he offered me throughout the last year. This thesis would not be possible without

his support. I would also like to thank Dr. Sule Ozev and Dr. Chaitali Chakrabarti for

taking out time and being in my thesis defense committee.

I would like to thank Navyasree Matturu, Spurthi Korrapati and Sanat Kumar Panda

for helping conduct the experiments on Qualcomm’s Snapdragon 800 MDP/T. Their work

helped accelerate the hardware validation of the proposed framework at least 2× faster.

Gaurav Singhla, Sankalp Jain and Jaspreet Kaur Sahota helped in the initial stages of board

bring-up for measurements as well. I would also like to thank Dr. Karam S. Chatha for

providing the idea of adding power constraint to the proposed framework.

My brother Dhruv and friend Ayush have been instrumental in providing feedback on

this work as well. My parents, Udai, Rashmi, and my girlfriend Ramandeep deserve most

of the credit for this work. I would like to thank them for their love, endless support and

understanding even though I am thousands of miles away.

My master’s term at Arizona State University provided an environment that made my

studies enjoyable and more productive. I want to especially thank Dr. Martin Reisslein,

whose course on Multimedia/ QoS gave me a teasing flavour of research and Dr. Ar-

mando Antonio Rodriguez whose teaching methodology inspired me to stay associated

with academia. I would also like to thank Dr. Sarma Vrudhula and Kyle Gilsdorf for pro-

viding financial support during early semesters of my masters study and giving me many

opportunities to teach in classroom.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Resource-Centric View of Mobile Devices . 3

1.2 Do Not Overlook the Background Power . 4

1.3 Key Contributions . 6

1.4 Thesis Organization . 7

2 RELATED WORK . 9

3 ENERGY OPTIMIZATION FRAMEWORK FORMULATION 14

3.1 Performance Model . 14

3.1.1 Speed-up: Amdahl’s Law Generalization . 15

3.2 Validation of Performance Model . 17

3.3 Power and Energy Models . 19

3.4 Validation of Power Model . 21

3.5 Solution of the Optimization Problem . 25

3.6 Illustrative Example . 26

3.7 Dynamic Implementation of Framework . 28

4 EXPERIMENTAL SETUP AND METHODOLOGY . 31

4.1 Data Measurement Setup . 31

4.1.1 Host Platform . 31

4.1.2 Benchmarks . 32

4.1.3 Power and Response Time Measurement . 34

4.1.4 Energy Measurement . 35

iv

CHAPTER Page

4.2 Data Analysis . 35

4.2.1 Average Battery Power . 35

4.2.2 Average CPU Delta Power . 35

4.2.3 Average CPU Absolute Power . 36

5 EVALUATION AND VALIDATION OF FRAMEWORK 37

5.1 Analytical Evaluation . 37

5.1.1 Methodology . 37

5.1.2 Optimization Using Scaling Only . 38

5.1.3 Optimization Using Additional Resources . 39

5.1.4 Assumptions . 40

5.1.5 Observations . 41

5.2 Experimental Evaluation . 45

5.2.1 JPEG Benchmark with Four and Two Cores Online 45

5.2.2 Basic Math Large Benchmark with Four and Two Cores Online . 47

5.2.3 Patricia Benchmark with Four and Two Cores Online 49

5.2.4 Benchmarks with One Core Online . 51

5.2.5 Increasing the Number of CPU Cores . 54

5.2.6 Increasing Background Power . 54

6 CONCLUSION AND FUTURE DIRECTIONS . 65

REFERENCES . 67

APPENDIX

A DATA MEASUREMENT METHOD . 73

B RAW DATA . 75

C SCRIPT FOR HOT-PLUGGING AND CHANGING CPU FREQUENCY . . . 79

v

LIST OF TABLES

Table Page

3.1 Voltage and Frequency Table for Snapdragon 800 Processor. 24

3.2 Illustrative Example Showing Optimal Sets of Frequencies in GHz for Three

KPIs. 29

4.1 Frequency Table for Snapdragon 800 Processor. 33

5.1 Normalized Energy of Docconv and Puploader Apps with Memory (Disk

for Puploader), CPU and Network Processing Element (NPE). 44

5.2 Root Mean Square Error, Mean Percentage Error and Maximum Percentage

Error for Predicted Values of Response Time and Power. 59

5.3 Root Mean Square Error, Mean Percentage Error and Maximum Percentage

Error for Predicted Values of Energy With and Without Background Power. 60

B.1 Raw Data Table for Basic Math Large Benchmark Running with 4 CPU

Cores Online. 76

B.2 Raw Data Table for Basic Math Large Benchmark Running with 2 CPU

Cores Online. 76

B.3 Raw Data Table for Basic Math Large Benchmark Running with 1 CPU

Core Online. 76

B.4 Raw Data Table for JPEG Benchmark Running with 4 CPU Cores Online. . 77

B.5 Raw Data Table for JPEG Benchmark Running with 2 CPU Cores Online. . 77

B.6 Raw Data Table for JPEG Benchmark Running with 1 CPU Core Online. . . 77

B.7 Raw Data Table for Patricia Benchmark Running with 4 CPU Cores Online. 78

B.8 Raw Data Table for Patricia Benchmark Running with 2 CPU Cores Online. 78

B.9 Raw Data Table for Patricia Benchmark Running with 1 CPU Core Online. . 78

vi

LIST OF FIGURES

Figure Page

1.1 Mobile Platform: A Heterogenous Device Consisting of Several Compo-

nents/Resources [44]. 2

1.2 (a) Intel c© AtomTM Processor Z2760 [32], (b) Illustration of the Resource

Centric View. 3

1.3 An Example of Total Power Consumed in a Qualcomm Snapdragon 800

MDP Tablet for Full Brightness, Dimmed and Off Display. 5

3.1 Result for Response Time Fitting with the Proposed Performance Model

for JPEG Benchmark Running on 4 CPU Cores. 18

3.2 Result for Response Time Fitting with the Proposed Performance Model

for JPEG Benchmark Running on 1 CPU Core. 19

3.3 Result for Power Fitting (Excluding Background Power) with the Proposed

Power Model for JPEG Benchmark Running on 4 CPU Cores. 22

3.4 Result for Power Fitting (Excluding Background Power) with the Proposed

Power Model for JPEG Benchmark Running on 1 CPU Core. 23

3.5 Result for Voltage Fitting With a Linear Model. 24

3.6 Illustrative example of the Optimization Problem Presented in Section 3.5

with Two Resources (N=2). 27

4.1 A State of the Art Mobile Development Platform/Tablet Based on Qual-

comm Snapdragon 800 [52], Used in Experimental Evaluation. 32

5.1 Normalized Energy Consumption with Increasing Number of Cores for

Docconv Application, After Including Background Power and Co-optimization. 40

5.2 Normalized Energy Consumption with Increasing Equivalent Core Work-

load for Docconv Application, After Including Background Power and Co-

optimization. 41

vii

Figure Page

5.3 Normalized Energy Consumption with Increasing Number of Cores for Pu-

ploader Application, After Including Background Power and Co-optimization. 42

5.4 Normalized Energy Consumption with Increasing Equivalent Core Work-

load for Puploader Application, After Including Background Power and

Co-optimization. 43

5.5 Measurement Results Showing Predicted and Actual Values for JPEG Bench-

mark Running on 4 CPU Cores. 47

5.6 Measurement Results Showing Predicted and Actual Values for JPEG Bench-

mark Running on 2 CPU Cores. 48

5.7 Measurement Results Showing Predicted and Actual Values for Basic Math

Large Benchmark Running on 4 CPU Cores. 49

5.8 Measurement Results Showing Predicted and Actual Values for Basic Math

Large Benchmark Running on 2 CPU Cores. 50

5.9 Measurement Results Showing Predicted and Actual Values for Patricia

Benchmark Running on 4 CPU Cores. 51

5.10 Measurement Results Showing Predicted and Actual Values for Patricia

Benchmark Running on 2 CPU Cores. 52

5.11 Measurement Results Showing Predicted and Actual Values for JPEG Bench-

mark Running on 1 CPU Core. 53

5.12 Timing Measurement Results for Basic Math Large Benchmark Running

on 1 CPU Core. 55

5.13 Timing Measurement Results for Patricia Benchmark Running on 1 CPU

core. 56

viii

Figure Page

5.14 Measurement Results Showing Predicted and Actual Values for Basic Math

Large Benchmark Running on 1 CPU Core. 57

5.15 Measurement Results Showing Predicted and Actual Values for Patricia

Benchmark Running on 1 CPU Cores. 58

5.16 Measurement Results Showing Predicted and Actual Values for JPEG Bench-

mark Running on 1, 2 and 4 CPU Cores. 61

5.17 Measurement Results Showing Predicted and Actual Values for Basic Math

Large Benchmark Running on 1, 2 and 4 CPU Cores. 62

5.18 Measurement Results Showing Predicted and Actual Values for Patricia

Benchmark Running on 1, 2 and 4 CPU Cores. 63

5.19 Measurement Results Showing Predicted Energy, power, and time values

for Basic Math Large Benchmark Running on 4 CPU Cores with increasing

Background Power. 64

ix

Chapter 1

INTRODUCTION

Increasing computational power at mobile form factor and new heterogeneous resources

are leading to emerging applications. These applications, in turn, drive the evolution of

embedded systems by demanding more energy efficiency and performance. Consequently,

mobile devices have evolved from being basic feature phones to smart-phones/tablets and

have taken the computing market by storm. The market push is towards integrating as

much functionality as possible. For example, today’s smart-phones are able to work as a

music player, video game, internet hot-spot, internet browsing device, GPS, money (NFC),

data storage, calender, personal digital assistant, and finally a phone. Due to a mixed view

of an embedded system and a general purpose computer, they have evolved into highly

heterogenous computing platforms as described in Figure 1.1.

As opposed to the traditional PC and server systems, the role of CPU is replaced with

a multiprocessor system-on-a-chip (MpSoC) which integrates many processing elements

(PEs). What is more, the application processor is just one of the many components in the

device. Other major resources include display, flash memory, DRAM, baseband and radio

frequency chips, power management IC, voltage regulators, camera, touch panel and bat-

tery. Application processor does not dominate the platform neither in terms of cost [44]

nor power consumption [10]. In particular, display consumes a significant portion of power

consumption (∼30%) across a wide range of application use cases. Application use cases

simply refer to different scenarios, such as phone talk, video playback, simultaneous brows-

ing and audio playback under which the platform is being used. Different scenarios of in-

terest are referred to as Key Performance Indicators (KPIs) and power/performance/thermal

behaviour of the mobile devices under tens of KPIs are tracked by device manufacturers

1

NAND Flash

Display

Application Processor

DRAM

Baseband

RF and FEM

Power
Amplifier

PMIC
Combo-chip

(WiFi/BT/FM)

Touch Controller GPS
Image

Sensors

Camera Module

Touch Panel

Battery (Li Polymer)

HDI PCB

Camera Lens

Gyroscope/
Accelerometer

LCD Driver IC

MEMs Microphone Compass

Audio Codecs Speaker
IC

Substrate

Figure 1.1: Mobile Platform: A Heterogenous Device Consisting of Several Components/Re-

sources [44]. Application Processor is Only One of the Resources Not Dominating in Cost or

Power.

for competitiveness. Furthermore, the key quality metrics such as power consumption and

responsiveness of the whole device is not anymore a function of application processor and

memory only due to the high degree of heterogeneity. A variety of resources such as camera

module, GPS, Long-Term Evolution (LTE) modules can be the key resource that determine

the user experience for different KPIs.

We also note that the application processor itself is also a heterogenous resource, as

shown in Figure 1.2. While still orchestrating the operation of other PEs, the CPU cores

neither dominate the power consumption, nor determine the performance under many ap-

plication scenarios [10]. Modern MpSoCs house close to hundreds of unique PEs from

multiple vendors integrated on a single chips. These PEs range from GPUs, which almost

take half of the silicon real estate, to tiny PEs used for processing sensor data such as

2

gyroscope readings. Notable PEs found in most of the mobile processors include image

signal processors, display processing engine, video encoder and decoders, digital signal

processors, memory controllers, security engines and on-chip communication networks

that interconnect the resources. As a result, research focus has to be broadened accordingly

to pay attention to the platform as a whole rather than focusing on a subset. As the first step

towards this goal, we present a resource centric view which expose the impact of individual

resources by modelling this heterogeneity explicitly.

PCU

CPU

Audio

2D/3D
Graphics Video

Proc.

Display
Proc.

Security

Storage

Image
Signal
Proc.

CPU

tD2H

trsp

tH2M

tH

tH2A

Host
program

execution

Application
kernel

execution
tA

tM2D

tA2M

Figure 1.2: (a) Intel c© Atom
TM

Processor Z2760 [32], (b) Illustration of the Resource Centric View.

1.1 Resource-Centric View of Mobile Devices

Despite the richness of the underlying platform only a subset of the resources are in-

voked during the lifetime of an application. For example, a navigation application goes

through a number of phases as illustrated in Figure 1.2(b). After the user launches the appli-

cation, the core running the OS fetches the host code from the memory and starts execution.

Next, it triggers the accelerator (the GPS module), which loads the data from the memory,

performs the assigned task, and writes the results back. Hence, the run-time and power con-

3

sumption of different application phases depend on the particular resource employed, while

the synchronization overhead is determined by the communication network and I/O speed.

Furthermore, the latency to reach the memory through the inteconnection network and

memory controller, as well as the memory access time are additive to the total time. Hence,

the response time for the GPS example can be obtained as trsp = tCPU+tcomm+tmem+tGPS

where the terms represent the time contributed by the CPU, communication, memory and

GPS module. Likewise, power consumption is determined by the active resources during

the lifetime of the application and their particular power states. Hence, the ability of the

dynamic power management algorithms to put different PEs to sleep or other low power

states has a significant impact on the total power consumption. In this work, we employ this

resource centric view in two dual energy optimization formulations. The first one aims at

minimizing the total energy drawn from the battery with a constraint on the response time

of the user. This relies on the fact that as long as the response time is in the order of milisec-

onds, the users cannot distinguish the responsiveness. The other formulation minimizes the

energy consumption with a constraint on the power consumption. This formulation aims at

making best use of a fixed power budget which is given by thermal constraints.

1.2 Do Not Overlook the Background Power

While most of the inactive resources are put to sleep states when not in use, there are

shared resources such as the display and PMIC which do not directly contribute to the

application performance but remain powered on during the application lifetime. If these

shared resources can be put in lower power states right after executing an application, it

may make sense to speed up the execution to save overall energy. On the other hand, if

there are other active applications which will keep the shared resources active anyway,

speeding up will not necessarily reduce the platform energy. Hence, the optimality results

depend critically on other platform resources and power management decisions.

4

0 5 10 15 20 25 30 35 40 45

1

2

3

4

5

6

Display - Off

Display - Dim

Time (s)

Display - On

Figure 1.3: An Example of Total Power Consumed in a Qualcomm Snapdragon 800 MDP Tablet

for Full Brightness, Dimmed and Off Display.

Significance of the background power can be understood better with the help of Fig-

ure 1.3, which shows the total power consumption of a mobile development platform when

LCD display is on, dimmed and off. This plot clearly shows that the difference in total

platform power when the display is on and off is about 4 W, which is significant given

that the total power is less than 6W. We note that this measurement is performed at full

brightness for a tablet LCD display. However, even when we dim the LCD brightness,

which would mean a significant degradation in user experience, or use a mobile smart-

phone with a smaller display, the display power is still as large as the power of the rest of

the components in the whole phone combined. When we add the power consumption of

other common resources such as power management IC, voltage regulators, background

power clearly becomes even more significant. Therefore, it is imperative to consider the

background power during the optimization process.

5

1.3 Key Contributions

This thesis presents an energy optimization framework for heterogeneous mobile plat-

forms. This framework enables reasoning about optimization both at the MpSoC and plat-

form level by exposing the impact of each resource on power, performance and energy.

It can be used for platform exploration to determine the type and characteristics of re-

sources that should be employed and for finding the optimal operating conditions of a given

hardware configuration. More precisely, the proposed framework can be used to optimize

power/performance trade-off for each resource independently or co-optimize a subset of

resources together. Furthermore, it can be used to quantify the energy savings that can be

obtained by adding new resources or replacing existing ones with more energy efficient

resources.

Our results not only confirm that voltage and frequency scaling alone offers limited im-

provements in energy efficiency due to the inverse relationship between power consumption

and performance, but also provide precise numeric evaluations. Furthermore, we enable

co-optimization of the platform resources at once and demonstrate that co-optimization is

superior to optimizing the resources one-by-one. The proposed framework can also be used

to evaluate the benefits of adding new CPU cores and an application-specific accelerators.

We demonstrate the benefits of adding new CPU cores or an accelerator to an existing

system using two mobile applications.

The second major contribution of this thesis is the development of an experimental

setup, a methodology for collecting reliable experimental data and extensive set of experi-

ments using a state-of-art mobile development board and real-life applications. Given the

complexity of the state-of-art platforms and applications processors, it is extremely hard

to follow a simulation methodology for accurate power and performance modeling. On

one hand, existing simulation frameworks model only CPU cores, GPU, caches and mem-

6

ory [7, 36, 8]. Developing simulation models with accurate timing and power information

for the rest of the models such as image signal processors, video/audio engines, touch panel

is a daunting task. On the hand, even if we assume the availability of these models, running

real mobile apps for a representative amount of time would require enormous amount of

time and effort. This would require a complete virtual platform that can run the applica-

tions for minutes and capture the thermal throttling behaviour, which is critical for mobile

platforms [5, 12]. The conflicting requirements on the accuracy and run-time make this task

extremely difficult. As a result, it is crucial to be able to utilize the hardware development

boards and existing commercial systems to validate the analytical models and optimization

frameworks such as presented in this thesis. There is a wide spectrum of work done in

these areas, but to the best of our knowledge we are the first to have integrated and experi-

mentally proved the scaling models used for architectural exploration with dynamic power

management [29, 2, 28, 33, 22, 58, 65, 16, 64, 39, 15]. To this end, the detailed experimen-

tal procedure developed in this work does not only enable us to validate our results but also

will benefit research on the design and optimization of mobile platforms.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we discuss the related

research which involves power measurement using sampling and event driven approaches,

modelling of power and performance, architecture exploration, and dynamic power man-

agement. In Chapter 3, we start by introducing the performance model, then we show that

it is a generalization of Amdahl’s law. We then formulate the power and energy models,

respectively. After this, we formulate the energy optimization problem and present the so-

lution to two dual formulations. Chapter 3 also presents an illustrative example to explain

the importance of background power theoretically and discusses how to use our framework

at design and runtime. Chapter 4 describes the host platform used to obtain the experimen-

7

tal data. We also provide detailed descriptions of benchmarks employed in this work and

explain how power, time and energy are calculated using our experimental setup. Chapter 5

starts with the evaluation of our models using Matlab with the input data from [50]. Then,

we present our own experiments using Qualcomm’s Snapdragon 800 MDP and validate

the power and performance models as well as the energy optimization framework. Finally,

Chapter 6 presents the future work and conclusion of this work. This thesis also includes

Appendix A to provide detailed step-by-step instructions of the measurement methodology

developed in this work.

8

Chapter 2

RELATED WORK

Power consumption has been one of the major design consideration for many years [40].

This has led to the study of energy efficient techniques to harness the processing power

within the power and thermal budgets [14, 19, 62]. For example, Vallina-Rodriguez and

Crowcroft studied energy efficiency in mobile space by surveying software solutions to

achieve energy efficiency from the year 1999 to May, 2011 [62]. They classified the

research in six different levels: energy-aware operating systems, efficient resource man-

agement, the impact of users’ interaction patterns with mobile devices and applications,

wireless interfaces, sensors management, and integrating mobile devices with cloud com-

puting services. They concluded that mobile resources need to be managed from an energy-

efficient perspective without diminishing the user experience. This is an important design

constraint for hardware and software engineers alike.

With the explosive growth in number of smart-phone users [20] and limited battery life,

energy efficiency is an extremely critical metric. There are several challenges for minimiz-

ing energy consumption of smart-phones, a) increasing computational power along with

sensing, storage and communication capabilities have open up many power hungry appli-

cation domains, b) the usage pattern in smart-phones vary extensively, c) mobile devices

are fanless, and are subject to tight surface, skin, temperature constraints which limit the

peak power consumption, as the skin temperature affects the user experience. [61, 45].

Furthermore, one may have to make energy management decisions at different granularity

levels (platform or MpSoC). For example, Youm Huh discusses the importance of power

management at two different hierarchial levels (processor design level and PMIC power

analog circuit level), which signifies the future direction of power management in mobile

9

devices [31]. This motivated us to create a framework which takes into account all the

components of a mobile platform.

To address energy in computing systems, multiple problems like, modelling, design,

management and run-time task scheduling need to be solved. Modelling deals with de-

veloping techniques for predicting key metrics such as power and performance. Impor-

tant contributions in measurement and profiling of energy have been made by Carroll and

Heiser [10], Pathak et al. [51, 50], Yoon et al. [68] and recently by Kim et al. [35]. Carroll

and Heiser measured the energy and power for different resources on a mobile system for

several common mobile applications. They measured power by directly inserting sense re-

sistors on power supply rails of the relevant resources and measured voltage and current to

get power. The most important contribution of their work was to show that many resources

like display, GSM and Graphics can dominate the power consumption in the smart-phone.

The energy consumed in resources other than CPU is extremely important and can not be

ignored. Pathak et al. [50, 51] developed an energy profiling tool called Eprof and provided

important insight into use of wakelocks in applications. Their approach was mainly from

a software perspective on how a typical mobile application consumes power and discussed

some key design points for application designers keeping hardware in perspective. They

also provided insight on asynchronous power behaviour and affirms that power consumed

by each I/O component is often comparable to or higher than that of CPU. Other tech-

niques on fine grained power measurement were developed by Yoon et al. [68] and Kim et

al. [35]. Out of all the measurement approaches mentioned above, Kim et al. [35] claim to

have the least data measurement overhead by implementing their technique at the lowest

kernel level. Furthermore, they state that the sampling based approaches are not good for

power measurement of each resource since the overhead becomes large as the sampling

frequency increases. On the other hand, a pure event driven approach is also not good, as

there is a chance of missing certain events that occur in parallel. In our work, we are using a

10

proprietary energy profiling tool provided by Qualcomm Incorporated. Since it is an indus-

trial tool developed specifically for the platform we are using, the measurement accuracy

is expected to have industrial quality. For the experimental evaluation of our generalized

power model we use a polynomial function of order 3, such a model has been widely used

in literature, in particular we find a similar fitting approach in [34, 55].

Design-time techniques for optimization using power, performance and temperature

have been an active research area. For example, a comprehensive design methodology

for multiprocessor SoC using a component based approach has been presented in Cesario

et al. [13]. An overview of design challenges faced by MpSoC designers, emphasizing

the need for re-configurable programming models on application layer, which can run on

different architectures is provided in Martin [37]. A static temperature aware processor

frequency assignment for MpSoCs using convex optimization is presented in Murali et

al. [41].

Dynamic approaches, on the other hand, deal with changes in voltage, frequency (DVFS)

and sleep state of the resources. The work in [46] minimizes the energy consumption sub-

ject to performance constraint using DVFS with island partitioning on Network-on-Chip.

Work by Ayoub et al. [4] focusses on performance constrained power minimization at OS-

level in general purpose systems with a new DVFS algorithm. An optimal control approach

to power management for multi-voltage and frequency island multiprocessor platforms un-

der highly variable workloads is presented in Bogdan et al. [9]. In relation to these, the

proposed framework in this thesis, provides optimal operating point for each applications.

Hence, it can be used as a target point in dynamic algorithm.

Besides DVFS, one can also control scheduling of the tasks to the processing elements.

Latency and resource constrained low-power task scheduling is discussed in Shiue and

Chakrabarti [59] for resources operating at multiple voltages. A system wide dynamic

task scheduling algorithm for energy efficiency is presented by Zhuo and Chakrabarti [69],

11

this work focusses on finding optimal scaling factor by which a task should be scaled

while minimizing energy without any deadline constraints. In particular, we theoretically

give the reasoning about the observations made by them on the relative values of CPU

power and device power effects on energy efficiency. Nithi and Lind [43] implement a

power-aware task monitor and scheduler to increase battery life by preserving it for more

energy intensive tasks. Battery life extender tool developed by Metri et. al. [38] enables the

reconguration of mobile devices in order to utilize only the resources required for specific

tasks. It also provides an estimate of the impact of applications on the overall battery

life. Other techniques such as scheduling the tasks in applications to maximize idle time of

resources such that they can sleep and offloading computational intensive tasks to the cloud

have been suggested in [60, 56, 18]. Energy management using hybrid techniques like DVS

and DPM are discussed in Zhuo et al. [70]. High-level power management of embedded

systems based on energy cost functions which are task specific have been proposed by Cho

et al. [17].

There are also new approaches that are extending Amdahls Law to multicore comput-

ers [29, 2, 28, 33, 22, 58, 65] and energy consumption modeling [16, 64, 39, 15]. These

approaches enable making prediction about the performance and power as architectures

scale, e.g., Cho and Melhem [16] using Amdahls law determine the optimal processor fre-

quencies in the serial and parallel regions with the goal of minimizing the total energy

consumption. The power and performance models proposed in this thesis can be employed

by these approaches and make them stronger. We refer the reader to a recent survey [1]

which has an exhaustive list of studies on architecture exploration of multicore systems.

The performance model in our optimization framework resembles Amdahl’s law for multi-

core architectures. In particular, it is similar to the studies presented in Cassidy and An-

dreou [11] and Zidenberg et al. [71] in generalizing serial and parallel instruction sections

to an arbitrary number of resource types. Unlike these studies, we develop a general power

12

model that captures different power states of PEs and takes Dynamic Power Management

(DPM) decisions into account. Furthermore, we focus on heterogeneous mobile platforms

and minimize the total energy consumption to maximize the battery lifetime with a con-

straint on maximum response time (or minimum throughput), since improving performance

beyond user perception is not necessary.

13

Chapter 3

ENERGY OPTIMIZATION FRAMEWORK FORMULATION

In this chapter, we first present the performance, power and energy models for mobile

platforms and validation of these models. Then, we formulate the constrained energy opti-

mization framework constructed using these models outline the solution to the optimization

problem. Finally, the chapter concludes by describing how the proposed framework can be

utilized by dynamic management algorithms.

3.1 Performance Model

We use the response time and application throughput under a set of target applications

as the primary performance metrics. Suppose that M out of N resources in the platform

contribute to the total response time, and computation consists of one consolidated serial

and C different concurrent phases. The duration of the serial phase can be written as

tR =
∑R−1

i=0 ti, where ti is the time spent by ith resource and R is the number of resources

which contribute to the serial phase. On the other hand, the duration of each parallel phase

is given by the longest task in that phase rather than a linear sum, i.e., the duration of the

kth parallel phase can be written as tk = max0≤j≤Nk
tj , where Nk is the number of tasks

in the kth parallel phase. Then, the response time of the baseline hardware configuration

can be expressed as tbase =
∑R−1

i=0 ti +
∑C−1

k=0 tk. One can vary the base performance by

making design or run-time changes to any of the resources. For example, by doubling the

speed of the ith resource in the serial phase using a scaling factor of si = 2, its contribution

to the response time can be halved. Hence, the response time can be expressed as,

t(s) =
R−1∑
i=0

ti
si

+
C−1∑
k=0

max
0≤j≤Nk

tk,j
sk,j

, ∀si > 0, ∀sk,j > 0 (3.1)

14

Note that si > 1 implies that the ith resource is running faster with respect to its baseline

performance. This speed-up could be simply due to running at a higher frequency or any

performance optimization. Likewise, si < 1 means that the ith resource is running slower

than baseline configuration.

3.1.1 Speed-up: Amdahl’s Law Generalization

This subsection describes how the speed-up (tbase/t(s)) generalized Amdahl’s Law.

Corollary 3.1.1 In analogy to Amdahl’s Law, which divides the execution time into sequen-

tial and parallel parts, our formulation reveals the contribution from multiple resources.

It can be shown that tbase/t(s) is a generalization of Amdahl’s Law [2, 66, 11]. Hence,

Equation 3.1 enables us to identify the resources with highest performance impact.

Definition: We define the fraction, fi, as the portion of time spent by computation or

communication in ith resource to the total response time before scaling.

fi =
ti
tbase

(3.2)

Example: Consider a simple scenario where only the host CPU, H has to be scaled. Re-

sponse time before and after scaling will be

tbeforeTotal = tH + tOthers (3.3)

tafterTotal =
tH
s

+ tOthers (3.4)

The fraction of time spent in host CPU w.r.t. other resources is

fH =
tH

(tH + tOthers)
(3.5)

15

The speed-up is given by fraction of total time without scaling and new or improved total

time with scaling.

Speed− up = Total time without scaling

Scaled total time

=
tbeforeTotal

tafterTotal

=
tbeforeH + tOthers
tbeforeH

s
+ tOthers

(3.6)

Dividing the numerator and denominator by TH + TOthers gives,

Speed− up = 1
TH

s×(TH+TOthers)
+ TOthers

TH+TOthers

(3.7)

Substituting for fH we get,

Speed− up = 1
fH
s
+ (1− fH)

(3.8)

Equation 3.8 looks exactly like Amdahl’s law but with important distinctions. First,

the speed-up can be obtained by an arbitrary method such as improved micro-architecture,

a superior technology node, or by dynamic voltage-frequency scaling. Second, we have

defined the fraction, fi as the time fraction instead of normalized application dependent

parallelizable code fraction.

Suppose there are more than one resources being scaled, e.g., host CPU, H and some

accelerator, A. The accelerator can be a GPU, vector unit, memory, other CPUs, etc. Let

sH be the scaling factor for host CPU and sA be the scaling factor for an accelerator.

tTotal = tH + tA + tOthers (3.9)

16

The fraction of total time and time spent by computation in host and accelerator be fH and

fA respectively. The speed-up using Equation 3.6 is, given as,

Speed− up = tH + tA + tOthers
tH
sH

+ tA
sA

+ tOthers
(3.10)

Dividing the numerator and denominator by tH + tA + tOthers we get,

Speed− up = 1
tH

sH×(tH+tA+tOthers)
+ tA

sA×(tH+tA+tOthers)
+ tOthers

(tH+tA+tOthers)

(3.11)

Speed− up = 1
fH
sH

+ fA
sA

+ (1− fH − fA)
(3.12)

In general, for R− 1 resource speed-up we can write,

Speed− up = 1∑R−1
i=0 (

fi
si
) + (1−

∑R−1
i=0 fi)

(3.13)

Application Throughput: Throughput is a more suitable metric for applications with pe-

riodic tasks. For example, throughput in frames/sec is commonly used for video encod-

ing/decoding applications. The critical period for the application, e.g., the time to en-

code/decode a single frame can be expressed in a way similar to Equation 3.1. Then, num-

ber of frames or bits divided by the period can be used to express the application throughput

as follows.

B(s) =
1 Frame

t(s)
=

1 Frame∑R−1
i=0

ti
si
+
∑C−1

k=0 max0≤j≤Nk

tk,j
sk,j

, ∀si > 0, ∀sk,j > 0 (3.14)

3.2 Validation of Performance Model

We used a mobile platform development board [52] and a set of benchmarks [25, 49, 26]

to make response time measurements. While the details of the experimental platform are

described later in Chapter 4, here we show how they are used to validate our performance

model.

17

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

15
20
25
30
35
40
45
50

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Actual Predicted

Figure 3.1: Result for Response Time Fitting with the Proposed Performance Model for JPEG

Benchmark Running on 4 CPU Cores. A Good Fit with Adjusted-R2 Value of 0.997 is Obtained.

We first set the frequency of the cores in the platform to a fixed value and ran the

benchmark. During this run, we profiled the CPU time and the real time taken by the

benchmark. In other words, we measured tH and tOthers in Equation 3.3.

Then, we used Origin software [47] to fit the measured data to our performance model

given in Equation 3.4. Note that, the scaling factor, s = fnew

fbase
. The measured and predicted

values for the JPEG benchmark when all four cores and only one core were active are

shown in Figures 3.1 and 3.2, respectively. As Figures 3.1 and 3.2 clearly demonstrate, our

model provides an accurate fit to the measured response time. More precisely, the Adjusted

R-Square after fitting for four cores case is found as 0.997, while the mean squared error

in tH and tOthers is 0.41 and 0.46 respectively. The Adjusted R-Square after fitting for one

core case is found as 0.992, while the mean squared error in tH and tOthers is 2.21 and 2.48

respectively.

We also observe that the one core case in Figure 3.2, exhibit bigger mismatch between

theory and measurement. The bigger different stems from the fact that the operating system

running in the same core as the benchmark. In this case, the OS threads have a bigger

18

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

40

60

80

100

120

R
es

po
sn

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Actual Predicted

Figure 3.2: Result for Response Time Fitting with the Proposed Performance Model for JPEG

Benchmark Running on 1 CPU Core. A Good Fit with Adjusted-R2 Value of 0.992 is Obtained.

impact on the response time. This observation reinforces the importance of experiments

with real platforms and applications. Capturing the impact of the OS (in this case Android

OS) is extremely hard in simulation frameworks.

Our models are validated using many other benchmarks. The graph for other bench-

marks are presented in Chapter 5 together with the validation of the overall framework.

3.3 Power and Energy Models

Each resource can be in a variety of power states ranging from simple off and on states

to a complex set of sleep and active states. Let πi,j show the fraction of time that ith resource

is in jth power state and the corresponding distribution be πi = [πi,0, ..., πi,S], where S is

the number of power states. Likewise, Pi,j is the power consumption of resource i in state

j, and is affected by the performance scaling factors, s used in Equation 3.1. Some portion

of the power consumption stays constant regardless of si (e.g., leakage power of untouched

resources), some portion will change linearly (e.g., leakage power due to area scaling),

and some portion will be proportional to sαi (e.g., dynamic power due to voltage/frequency

19

scaling, α ≥ 2, we use α = 2.5 [67]). If we denote these components as H(0)i, H(1)i and

H(2)i, the scaled power consumption of the ith resource in jth power state can be written

as,

Pi,j(si) = H(0)i,j + siH(1)i,j + sαi H(2)i,j (3.15)

Also there might be cases when we want to vary variable(s) which causes cubic change

in some portion of power as well as quadratic change in some portion. E.g., If we take

frequency as the scaling variable then for some processors like Snapdragon the voltage

varies linearly with frequency, e.g., V = m× f + n and hence we can write power as,

P = s3.H(3) + s2.H(2) + s1.H(1) +H(0) (3.16)

Since we observe that we have two higher order terms in Equation 3.16, to make our

power model capture any such general scaling trends we propose the following model if

there are a total of nP power components,

Pi,j(si) = s
α(0)
i H(0)i,j + s

α(1)
i H(1)i,j + s

α(2)
i H(2)i,j + · · ·+ s

α(nP)
i H(nP)i,j (3.17)

Pi,j(si) =
nP−1∑
k=0

s
α(k)
i H(k)i,j (3.18)

Please note that in Equation 3.17 α(0) = 0, α(1) = 1, and other higher order α(k)

terms are ≥ 2 and not limited to integers.

Then, the average power consumption of the ith resource can be expressed as Pi(si) =

[Pi,0(si), ..., Pi,S(si)] × πTi . On the other hand, the total power consumption of the back-

ground resources that do not contribute to the response time is denoted by PBG. Then, the

overall power consumption can be obtained as P (s) =
∑M−1

i=0 Pi(si) + PBG. Finally, the

total energy consumption is:

E(s) =

(
R−1∑
i=0

ti
si

+
C−1∑
k=0

max
0≤j≤Nk

tk,j
sk,j

)
.

(
M−1∑
i=0

Pi(si) + u.PBG

)
(3.19)

20

Note that, we multiply the background power with a decision variable u = {0, 1}

to enable including or excluding PBG in the objective function. When u = 1, the longer

the response time, the higher the total platform energy will be. Likewise, power consump-

tion of the scaled resources are multiplied by the response time to obtain the total energy

consumption, while the effect of entering low power states is captured by the power state

distribution πi.

3.4 Validation of Power Model

Similar to the performance validation, we used the same mobile platform development

board [52] and benchmarks [25, 49, 26] to make power measurements. In what follows we

provide the validation results obtained using the JPEG application, while complete results

are left to Chapter 4, as in the performance validation.

We first set the frequency of the cores in the platform to a fixed value and ran the

JPEG benchmark. During this run, we profiled the CPU power and the total power taken

by the benchmark. The leakage power was also estimated to be about 40% of the total

CPU power. In other words, we measured the coefficients H[3 : 0] in Equation 3.16.

Then, we used Origin software [47] to fit the measured data to our power model given in

Equation 3.16. Note that, the scaling factor, s = fnew

fbase
. Since, the voltage is also a linear

function of frequency, we can either add it into the model or give it separately as a variable.

We find that using the voltage values directly is better as the solution takes less time to

fit due to lower complexity (cubic vs. quadratic). Also, this means that we had to supply

two input variables (voltage and frequency) and not just one variable (frequency) like in

response time fitting, shown in Section 3.2.

The measured and predicted values for the JPEG benchmark when all four cores and

only one core were active are shown in Figures 3.3 and 3.4, respectively. These figures

clearly demonstrate, our models provides an accurate fit. More precisely, the Adjusted R-

21

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1.0

1.5

2.0

2.5

3.0

C
P

U
 P

ow
er

 (W
)

Frequency (GHz)

 Actual Predicted

Figure 3.3: Result for Power Fitting (Excluding Background Power) with the Proposed Power

Model for JPEG Benchmark Running on 4 CPU Cores. A Good Fit with Adjusted-R2 Value of

0.991 is Obtained.

Square after fitting for four cores case is found as 0.990, while the mean squared error is

3.581 × 10−2. The Adjusted R-Square after fitting for one core case is found as 0.933,

while the mean squared error is 05.094 × 10−2. We also observe that the one core case in

Figure 3.4, exhibit bigger mismatch between theory and measurement. This is because of

the operating system running in the same core as the benchmark, as well as, measurement

error.

Our models are validated using many other benchmarks. The graph for other bench-

marks are presented in Chapter 5 together with the validation of the overall framework.

CPU Voltage Fitting: As mentioned in Section 3.3, Snapdragon has linear relationship

between voltage and frequency. The actual voltage values are proprietary and not made

available. However, we found voltage values for the chip used in our board from operating

system files, as shown in Table 3.1.

We obtain a fit for the voltage values as a function of frequency, V = m×f+n and get

a nearly perfect linear relationship as shown in Figure 3.5. We find the Adjusted R-Square

22

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
P

U
 P

ow
er

 (W
)

Frequency (GHz)

 Actual Predicted

Figure 3.4: Result for Power Fitting (Excluding Background Power) with the Proposed Power

Model for JPEG Benchmark Running on 1 CPU Core. A Fairly Good Fit with Adjusted-R2 Value

of 0.933 is Obtained.

after fitting to be 0.997 and mean squared error inm and n to be 2.44×10−9 and 3.7×10−3,

respectively. Researchers, who do not have this information can benefit from these fitted

values, e.g., the approach presented in [34] uses a linear model for voltage and directly

taken our predicted voltage values, instead of conducting the regression again. Note that

the linear relationship is almost perfect for frequency range, 0.9 GHz to 2 GHz. Beyond

this range, the linear model may not fit. For example, the lower frequencies (< 0.7 GHz)

are usually at constant voltage to keep leakage current low, and thus do not scale linearly.

23

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.78

0.81

0.84

0.87

0.90

0.93

0.96

V
ol

ta
ge

 (V
)

Frequency (GHz)

 Actual Predicted

Figure 3.5: Result for Voltage Fitting With a Linear Model. A Good Fit with Adjusted-R2 Value of

0.997 is Obtained.

Table 3.1: Voltage and Frequency Table for Snapdragon 800 Processor. Each Row Corresponds to

the Possible Frequency Value for the Processor and its Voltage.

Frequency (MHz) Voltage (V)

960.00 0.800

1036.80 0.810

1190.40 0.830

1267.20 0.840

1497.60 0.870

1574.40 0.880

1728.00 0.900

1958.40 0.930

2150.40 0.965

24

3.5 Solution of the Optimization Problem

The optimization goal is minimizing the total energy consumption under a response

time and/or power constraint. The reason for a response time constraint is clear, there is

no need to increase the performance of an application beyond user perception. Similarly,

many mobile applications do not require sustained performance, they involve short bursts

of computation with occasional user activity [54], this makes power to be a major constraint

in mobile systems. This optimization goal can be expressed using a nonlinear optimization

problem with inequality constraints:

minimize E(s)

subject to C1 : gt(s) = t(s)− tmax ≤ 0,

C2 : gp(s) = P (s)− Pmax ≤ 0,

C3 : gT (s) = G−1
t × P (s) + Tamb − Tmax ≤ 0

(3.20)

The first inequality ensures that the new response time does not exceed a maximum time

constraint. Setting tmax = tbase implies that the optimized system should have same or

better performance as the baseline configuration. Furthermore, one can enforce a higher

(lower) performance target by choosing tmax < tbase (tmax > tbase). In a similar fashion the

second inequality, which is the power constraint can be enforced. C3 in Equation 3.20 spec-

ifies that the ambient temperature (Tamb) plus temperature increase due to scaled average

power multiplied by the thermal conductivity matrix (Gt) [57] does not exceed maximum

temperature (Tmax) constraints at points of interest. We note that this constraint serves as

a design aid, and it does not provide strict run-time guarantees since instantaneous power

can exceed the average power. Therefore, dynamic thermal management techniques that

would watch the actual temperature and throttle the system if necessary are still needed.

Furthermore, the thermal constraints could be relaxed since it is acceptable to violate them

at run-time for short time durations [54]. Details of thermal modeling are skipped since it

25

is not the focus of this work.

We can also add equality constraints to this optimization problem when focusing on a

subset of the platform. For example, setting si = 1 implies that the ith resource remains

unchanged. In general, we can add the following equality constraints:

hi(s) = si − 1 = 0, for 0 ≤ i ≤ m− 1 (3.21)

where m is the number of resources that are not touched.

The solution to the optimization problem can be found by using Langrange multiplier

method with inequality constraints [6]. In summary, we define the Lagrangian function

L(s,λ,µ) = E(s) + λTh(s) + µT g(s) (3.22)

where h(s) and g(s) are the combined equality and inequality constraints, respectively,

while λ and µ are the Lagrange multipliers. The optimum solution s∗ can be found by

solving the systems of equations described by:

∇L(s,λ,µ) = ∇E(s∗) + λT∇h(s∗) + µT∇g(s∗) = 0

µT g(s∗) = 0

µi ≥ 0 ∀i

(3.23)

3.6 Illustrative Example

The solution to Equation 3.20 can be either at the boundary defined by the inequality

constraints (g(s∗) = 0) or in the interior region. For illustration purposes, we consider a

simple example with two resources and only the timing constraint (g(s)). We set the scal-

ing parameter of one of the resources to s0 = 1 and optimize the other one to minimize

the energy consumption without increasing the original response time, tbase = 10. Fig-

ure 3.6(a) shows that the energy savings could be maximized by slowing down the scaled

resource (left ordinate). However, the response time plot (right ordinate) clearly shows that

26

0.2 0.4 0.6 0.8 1.0 1.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4

s > 1

 Eoptimized/Ebase Response Time

s (Scaling Factor)

E op
tim

iz
ed

/E
ba

se

Optimum point
at the boundary

Optimum point
in the interior

Feasible
Region

Feasible
Region

s > 1

0
10
20
30
40
50
60
70

 R
es

po
ns

e
Ti

m
e

(s
ec

)

0.5 1.0 1.5 2.0 2.5 3.0
0.8

1.0

1.2

1.4

1.6

(b) Optimization including background power

Response time < 10 sec

s (Scaling Factor)

E
op

tim
iz

ed
/E

ba
se

Response
time < 10 sec

(a) Optimization excluding background power

4

6

8

10

12

14

 R
es

po
ns

e
Ti

m
e

(s
ec

)

Figure 3.6: Illustrative example of the Optimization Problem Presented in Section 3.5 with Two

Resources (N=2). By Including Background Power in Optimization, Significant Energy Savings

can be Obtained by Speedup.

the reduction in energy comes at the expense of the response time. When we consider the

response time constraint tbase ≤ 10, then the optimum point moves to the boundary. Note

that in this case the energy consumption can be reduced compared to the baseline only if

the timing constraint is relaxed. On the other hand, the example in Figure 3.6(b) illustrates

a case where there is a substantial platform power due to display and PMIC. Their power

consumption is relatively steady during the execution, and they can be powered down upon

completing the execution. Under this scenario, running the application faster improves the

platform energy as depicted in Figure 3.6(b). More precisely, accelerating the scaled re-

source by 1.5× improves both the response time and the overall energy. In summary, it is

very important to note that the optimality depends on overall platform power and the DPM

algorithm which determines when the resources can go to low power states.

27

Introducing New Cores and Accelerators: Restricting optimization only to scaling the

existing resources limits the energy savings due to the inverse relationship between power

consumption and performance. Energy efficiency can be improved further by adding more

resources or replacing the existing resources with more efficient ones. For example, a

parallel task can be divided into multiple PEs to reduce the run time with a only linear

increase in the power consumption, as opposed to the relation in Equation 3.15. Similarly,

application specific accelerators, like image processors, can execute a certain task both

faster and with lower power consumption compared to general purpose processors. We

can analyze both of these cases using the proposed framework due to the generality of our

approach and models introduced in sections 3.1 to 3.5.

3.7 Dynamic Implementation of Framework

To solve the optimization problem mentioned in Equation 3.20, we currently use Mat-

lab’s fmincon solver on a desktop x86 machine. However, we can not use an optimiza-

tion solver like fmincon for each application on a mobile device at run time, this is to

keep the decision overhead less. In turn, this requires us to explore other techniques, e.g.,

saving information at design time, from different usage scenarios called Key Performance

Indicators (KPIs). In this section, we demonstrate how to use KPIs at design time and

obtain energy efficiency at run time. In particular, one can run many KPIs on the mobile

platform and then obtain optimized scaling factors from the proposed framework for each.

Then, we can use the optimal scaling factors at run time. Note, we may not be able to use

the scaling factors directly as each resource needs to satisfy the maximum and minimum

scaling parameters for which they are configured. Here, we present an illustrative example

to clarify the implementation.

Illustration: Consider a system with three resources R1, R2, and R3, and three KPIs,

A1, A2, and A3. We can determine optimal scaling parameters for each KPI at design

28

time. In this example, let us also take frequency as the scaling variable, and suppose, we

obtain optimal frequencies for co-optimizing all resources together for each of the three

KPIs as shown in Table 3.2. It is clearly possible, that there exists no set which has all

absolute maximum or minimum scaling frequencies. Therefore, we use the maximum and

minimum range for all KPIs per resource. In this particular example, the range for each

resource will be R1 ε [0.35, 0.80], R2 ε [1.20, 2.20] and R3 ε [1.10, 1.30], respectively.

There can be a case, when a resource can not satisfy the optimal scaling frequency obtained.

Assuming R2 can only run at maximum frequency of 2 GHz, then, in this case its scaling

range will get reduced to, R2 ε [1.20, 2.00]. Once, these parameters have been determined

at design time, one can map them to the performance counters in the platform. After this,

the governor [48] or scheduler will watch the performance counter for each new application

that runs on the platform and make decisions to scale the resource parameters.

Table 3.2: Illustrative Example Showing Optimal Sets of Frequencies in GHz for Three KPIs. Each

Row Represents Optimal Frequency Set for a Particular KPI.

R1 R2 R3

A1 0.40 1.90 1.10

A2 0.80 1.20 1.20

A3 0.35 2.20 1.30

Now, we describe the KPI method from a mathematical perspective, suppose, we runM

KPIs on a system with N components (e.g., number of rows and columns in Table 3.2 will

be M and N , respectively), we can have three cases, 1) either run each KPI separately or

2) run a KPI together with another KPI(s) or 3) run all KPIs together. Number of possible

29

combinations of these M KPIs are,

Total optimal scaling sets = C(M, 1) + C(M, 2) + C(M, 3) + · · ·+ C(M,M)

= 2M − 1

(3.24)

Out of all the optimal scaling sets, S∗
i , where i is the index of KPI (e.g., each row in Ta-

ble 3.2), each scaling set has N scaling parameters in it. We find S∗
i,max and S∗

i,min for each

resource. After comparing with the actual parametrization possible, these scaling parame-

ters will be mapped to performance counters. Subsequently, the governor can dynamically

vary the parameters during runtime for new applications.

S∗
i =

(
s0 s1 s2 · · · sN

)
(3.25)

30

Chapter 4

EXPERIMENTAL SETUP AND METHODOLOGY

We used a two-step approach to validate the proposed energy optimization framework.

To achieve our objective, we developed a Matlab model that can take the response time

contributions and the power consumption of various platform resources in off, idle and

active states as input. Then, the model solved the optimization problem described in Sec-

tion 3.5 and gave the optimal scaling value. In other words, the model took the response

time and power parameters detailed in Sections 3.1 and 3.3 and solved constrained opti-

mization problem given in Equation 3.20. Then, as the first step, we predicted the inputs

using published results in [50] and used them to validate our models and investigate the

scaling behavior. The summary of the first step is explained in Section 5.1. It is impor-

tant to emphasize that obtaining power consumption and response time decomposition per

resource is quite challenging unless there is a proper experimental setup. Therefore, af-

ter validating the Matlab models, we constructed an experimental setup using Snapdragon

based development platform and performed detailed measurements ourselves. The details

of the experimental setup are below while the results are presented in Section 5.2.

4.1 Data Measurement Setup

4.1.1 Host Platform

We performed data collection using a mobile platform based on the Qualcomm Snap-

dragon 800 processor [52] running Android Jelly Bean 4.2.2 [24] based on the Linux kernel

version 3.4.0. The processor has four ARM cores which can be hot-plugged. Furthermore,

each CPU core has four power sleep states – C0, C1, C2 and C3. The C3 state is the

deepest sleep mode and has longest wake up time. While, C0 state is the shallowest sleep

31

Figure 4.1: A State of the Art Mobile Development Platform/Tablet Based on Qualcomm Snap-

dragon 800 [52], Used in Experimental Evaluation.

mode with instant wake up. There are fourteen discrete frequencies to scale the operating

frequency of each CPU core as shown in Table 4.1. Furthermore, the voltage in Snapdragon

processor varies as a linear function of frequency, as shown in Section 3.4. We took fre-

quency as the scaling variable and obtained the power and time values for major resources

like CPU and display in the tablet.

4.1.2 Benchmarks

We used a representative set of benchmarks for mobile platforms, one set comprised of

Basic math large, JPEG, Patricia from Mi-bench [25] and the other set, Realistic-generalized

web browsing (R-GWB), Audio and Video benchmarks from [49, 26]. However, we can

not measure the response time of each resource for the second set of benchmarks, because,

we can not run their main processes directly from terminal, in isolation. For example,

the web benchmark contains a static HTML start page and JavaScript based dynamic con-

tent emulation of a given set of popular websites. Loading the static page and starting

the dynamic content, are two separate processes. One can invoke the first process through

32

terminal, but not the second process, without making changes to the benchmark itself. In

this work, we present the first set of benchmarks to explain experimental verification of our

framework.

Table 4.1: Frequency Table for Snapdragon 800 Processor. There are 14 Different Frequency Values

Available to the User.

Frequency (MHz)

300.00

422.40

652.80

729.60

883.20

960.00

1036.80

1190.40

1267.20

1497.60

1574.40

1728.00

1958.40

2150.40

A brief summary of all the benchmarks is as follows:

Basic math large: Basic math is used as a test for automotive and industrial control ap-

plications. It performs mathematical calculations which do not have dedicated hardware

support in an embedded processor. The input data is a fixed set of constants.

JPEG encode/decode: JPEG is a consumer devices test benchmark. It is a standard com-

pression image format used in cases when some data loss is acceptable. We took three

images totaling a size of about 14 MB and first decoded, then encoded them sequentially

33

one after the other.

Patricia: Patricia is used to test the network capabilities of embedded processors, e.g.,

switch and router applications. Patricia is a radix tree, which is used instead of full trees

with very sparse leaf nodes. The input data used in this benchmark is a list of disguised IP

traffic from a highly active web server for a 2 hour period.

Web Browser, Audio/Video: The web browser benchmark is used to emulate user be-

haviour like iterations, scroll, page change, zoom-in/out on a real web browser. The appli-

cation is based on HTML [63] and JavaScript [42]. All the dynamic content like, counting

of iterations, scroll, etc. are implemented in JavaScript, while the results and index pages

are for showing static results are implemented in HTML. We used native Android web

browser for this task. For video and audio we have used Android’s native media player.

4.1.3 Power and Response Time Measurement

Qualcomm’s Trepn [53] profiler on the mobile device under test enabled us to measure

power or electrical current across the entire platform as well as for each resource separately.

The profiler initially established a baseline during the first 5 seconds. It then profiled the

power(s) every 100 milliseconds. Using this setup, we measured the power consumption

of CPU, display and memory. As a result, we obtained a fairly accurate power consump-

tion decomposition as a function of time. Next, the logged data was saved in form of

tables as .CSV format with time stamps. Along with the power measurements we also

used time command in android shell to get the real , user and system time of an

application [23]. We used the real time as the primary performance metric (response time).

CPU time is the sum of user and system time. A detailed procedure to measure power and

time are given in Appendix A.

34

4.1.4 Energy Measurement

We defined, the energy with background power as the product of battery power and

real time, and energy without background power is the product of total CPU power (sum

of average CPU delta power, average CPU absolute power and Graphics, WLAN/BT/FM,

SD-Card if applicable) and real time.

4.2 Data Analysis

The .CSV file had information of all the selected data points (resources) along with

the delta values at each instant of time from start of the profiler to end of the profiler. We

calculated three powers based on this data; 1) Average Battery power, 2) Average CPU

Delta Power, 3) Average CPU Absolute Power. Current version of Trepn profiler does not

give rail to rail absolute power for any of the resources except total battery power.

4.2.1 Average Battery Power

The average battery power is the power consumed while the application was running

with display on. We calculated it by taking average of the battery power (raw) values for

the time range during which the benchmark ran.

4.2.2 Average CPU Delta Power

When Trepn starts profiling, it establishes a baseline power value during the “Baselining

interval” time. The CPU delta power is the difference between the current power and

the initial baseline power. This notified us whether running the application results in an

increase in the power consumption or not. We found the average CPU delta power by

taking average of all the values of CPU delta power when the benchmark was finished

running.

35

4.2.3 Average CPU Absolute Power

Since, Trepn profiler does not give absolute power consumed by the CPU, we took

average CPU absolute power equal to the average battery power when Display, Wi-Fi and

all non-essential background processes are off. That is, no application was running in

the background/foreground except Trepn profiler. We show in Section 5.2 that this method

yields good results when more than one CPU cores are online, but sometimes does not work

well with only one core online case. The results obtained in raw form can have variations

because of many processes running in the operating system, hence, we normalized the

values to obtain the average value for CPU absolute power.

36

Chapter 5

EVALUATION AND VALIDATION OF FRAMEWORK

The framework is implemented with the power, performance and energy models pre-

sented in Chapter 3. After implementing these models in Matlab, we optimize energy

using fmincon function with response time and power constraints. The proposed frame-

work can predict power, time and energy values at any frequency by using only one base

frequency (scaling value) and the corresponding power and time values as its inputs. Given,

a set of constraints and the background power, we can also find the optimum point of oper-

ation for a given setup/benchmark. In this chapter, we first provide analytically evaluated

results of our framework in which input data is taken from Pathak et al. [51]. Then we

experimentally evaluate the framework with data obtained from our setup as explained in

Chapter 4.

5.1 Analytical Evaluation

In this section, we first explain our methodology for evaluation and then discuss results

for optimization using only scaling and adding new resources. We also show a comparison

of optimization of resources one after the other and co-optimization of all the resources

together.

5.1.1 Methodology

We start with a baseline system, i.e., all the scaling factors in Equation 3.1 and Equa-

tion 3.15 are equal to one, and optimize it by finding the optimal scaling coefficients as

explained in Section 3.5. We use the document converter (docconv) and photo uploader

(puploader) applications presented in [51] as the driver applications and adopt the power

37

and performance values reported therein. Hence, the baseline systems are already viable

design points rather than ad-hoc choices. The total power of the shared platform resources

is set to PBG = 1W considering that about 0.5 W is dissipated in the display [10] itself. All

the energy savings reported hereafter in Section 5.1, are with respect to the total platform

energy. Finally, we set the response time constraint as tmax = tbase + tslack, where tslack is

10% of the total run time for both applications to provide extra timing headroom when the

optimum solution is at a boundary point like in Figure 3.6(a).

5.1.2 Optimization Using Scaling Only

This section, illustrates the proposed framework by optimizing the baseline system

without increasing the number of resources. We use four approaches and summarize the

results in Table 5.1. First, we scale only the dominant resource, i.e., the one with the largest

impact on energy before optimization, while setting the scaling factors of other resources

to one (row 1). The second approach scales all resources incrementally one by one (row 2).

That is, the dominant resource is optimized first. Then, its scaling factor is kept constant

while the next resource is optimized, and this is repeated until all resources are scaled. In

contrast to this, the third one co-optimizes all resources at once (row 3), while the fourth

approach replaces the dominant resource with a more energy efficient resource (row 4).

We apply these four approaches under two scenarios. The first scenario assumes that the

DPM algorithm turns shared resources like display off as soon as the execution is com-

plete. Hence, the background power is taken into account during optimization (PBG = 1W

in Table 5.1). In the second scenario, we assume that multiple applications are running at

the same time. Hence, we set PBG = 0 since the shared resources remain on even after the

execution of the target application.

Scaling only the dominant resource does not provide any significant energy savings,

since the baseline system is already a good starting point and the inverse relationship be-

38

tween power and performance does not leave much room for improvement. Likewise,

incremental optimization provides little improvement except for docconv with PBG = 1,

where accelerating both CPU and memory helps in reducing the total energy. We observe

that co-optimization consistently outperforms incremental optimization. The most notable

savings are obtained for the puploader application with PBG = 1, where co-optimization

reduces the energy to 0.87×, while incremental optimization decreases to 0.94× of the

baseline energy. Finally, we observe that using an energy efficient processing element is

by far the most effective approach for all scenarios. While this conclusion is intuitive, our

formulation quantifies the savings by providing precise numbers under various scenarios.

5.1.3 Optimization Using Additional Resources

Introducing new cores: In this experiment, we increase the number of resources by adding

new CPU cores to the baseline system. After adding each core, we distribute the workload

of the original CPU core equally among all the cores, and solve the optimization problem

presented in Section 3.5. We neglect the synchronization overhead and assume that the

workload is fully parallelizable since dealing with full details of synchronization is beyond

the scope of this thesis. We note that a communication time term, which is an increasing

function of the number of cores, could be used to approximate this overhead. Figure 5.1

shows that adding new cores results in significant improvement in the energy and in par-

ticular when the number of cores is 8 and below. However, we observe diminishing rate

of returns since the savings in run-time level out. What is more, reported energy savings

are optimistic as the synchronization overhead is neglected, and they come at the expense

of additional core area. Therefore, we analyze next the energy savings obtained using

domain-specific accelerators.

Introducing an accelerator: We add an accelerator, which takes 5× less time and con-

sumes 5× less power compared to a CPU core, to the baseline system. We note that

39

domain-specific accelerators are indeed more energy efficient [30]. Instead of distributing

the workload equally to multiple cores, we increase the percentage of workload offloaded

to the accelerator. Figure 5.2 shows the improvement in energy consumption as the amount

of workload offloaded to the accelerator increases. We show the x-axis in equivalent num-

ber of cores for easier comparison with Figure 5.1. For example, offloading 75% of the

workload, which is equivalent to sharing the workload among 4 cores in this setup, results

in slightly larger savings than increasing the number of cores to 4 under ideal parallelization

assumption. Furthermore, this improvement can be obtained with much smaller area over-

head due to the superior area efficiency of accelerators. This same trend is also confirmed

using the puploader application as shown in Figures 5.3 and 5.4.

1 2 4 8 16 32 64 128 256

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
op

tim
iz

ed
 /

E
ba

se

Number of cores

 Scaling the cores only
 Scaling the cores and memory

Figure 5.1: Normalized Energy Consumption with Increasing Number of Cores for Docconv Ap-

plication, After Including Background Power and Co-optimization.

5.1.4 Assumptions

The dynamic power scaling exponent α = 2.5 in Equation 3.15, collective power of

all resources not being scaled, Platform power, (P0) is 1W. This is a modest assumption

considering about 0.5 W is dissipated in Display [10] itself. Response time can be relaxed

40

1 2 4 8 16 32 64 128 256

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
op

tim
iz

ed
 /

E
ba

se

Equivalent number of cores

 Scaling the core only
 Scaling the core & accelerator & memory

Figure 5.2: Normalized Energy Consumption with Increasing Equivalent Core Workload for Doc-

conv Application, After Including Background Power and Co-optimization.

by 5% in docconv and puploader. Multicore and accelerator architectural change results of

docconv and puploader are similar but we show here docconv results only because CPU

plays a dominant role in it unlike puploader where network takes up more energy. Over-

heads in communication are neglected for illustration purpose.

5.1.5 Observations

Table 5.1 show the contrast in values for six cases with slack for docconv and pu-

ploader applications. When platform power is included during optimization we get less

savings than when we don’t include it. In reality this result can be misleading. E.g., when

platform power is ignored during the optimization with New IP scaling, we observe a re-

ported savings of about 26.73% for CPU in docconv and 36.09% for network in puploader

applications which are significantly higher than the actual savings of 1.35% and 10.39%

respectively. The actual savings can be calculated by adding the energy due to platform

power consumed during the entire time application is active. If the platform is active irre-

spective of the application being considered then the reported savings are also the actual

41

1 2 4 8 16 32 64 128 256
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
op

tim
iz

ed
 /

E
ba

se

Number of Cores

 Scaling the CPU only
 Scaling the NPE & CPU & memory

Figure 5.3: Normalized Energy Consumption with Increasing Number of Cores for Puploader Ap-

plication, After Including Background Power and Co-optimization.

savings.

Figure 5.1 shows plot of normalized energy when more cores are added to the docconv

application system. When no core is added to the system it is same as original with one

CPU corresponding to number of cores equal to 1. Even for a single core we can get some

savings with scaling the core, e.g., using DVFS. The reason for saturation of energy as the

number of cores increase is because although the time decreases linearly with addition of

cores, exponential component of power increases linearly too, which causes bigger change

in power than in time.

Figure 5.2 shows plot when an accelerator with equivalent core area is added to the

original system of docconv. Typical energy efficiency of an accelerator compared to the

core is about 25 [30]. In contrast to Figure 5.1 we can see that if all resources are scaled

then we can get same energy efficiency with much less area. We would be limited in getting

better energy savings with only scaling the CPU because the workload being processed by

it becomes less.

We observe, when system is accelerated sufficiently high, energy savings drop and the

42

1 2 4 8 16 32 64 128 256

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
op

tim
iz

ed
 /

E
ba

se

Equivalent number of cores

 Scaling the CPU only
 Scaling the CPU & acc. & NPE & memory

Figure 5.4: Normalized Energy Consumption with Increasing Equivalent Core Workload for Pu-

ploader Application, After Including Background Power and Co-optimization.

optimized results become same. This is because of the competition between time and

power scaling. After a certain point the optimized results saturate due to response time

deadline. Similar set of plots would come for energy savings with new IPs too, due to

space consideration we have not included the plot when platform power is ignored and new

CPU/Network IP is added replacing the original resource.

43

Table 5.1: Normalized Energy of Docconv and Puploader Apps with Memory (Disk for Puploader),

CPU and Network Processing Element (NPE). Incremental Optimization is Shown Using ‘→’,

While ‘+’ Signs Implies Co-Optimization.

Application PBG

Optimized

Resource(s)

Scaling Vector Eopt

Ebase

Mem CPU NPE

Document

converter

0 W

CPU only 1.00 0.85 – 0.91

CPU→Mem 1.00 0.85 – 0.91

CPU + Mem 0.91 0.91 – 0.89

New CPU + Mem 0.85 0.97 – 0.69

1 W

CPU only 1.00 1.38 – 0.95

CPU→Mem 1.52 1.38 – 0.88

CPU + Mem 1.62 1.61 – 0.86

New CPU + Mem 1.67 1.91 – 0.78

Photo

uploader

0 W

NPE only 1.00 1.00 0.85 0.94

NPE→ CPU→Mem 1.00 1.00 0.85 0.94

NPE + CPU + Mem 0.77 0.95 0.95 0.87

New NPE + CPU + Mem 0.69 0.86 1.05 0.61

1 W

NPE only 1.00 1.00 1.17 0.99

NPE→ CPU→Mem 0.96 1.20 1.17 0.98

NPE + CPU + Mem 0.98 1.21 1.20 0.97

New NPE + CPU + Mem 1.01 1.25 1.53 0.83

44

5.2 Experimental Evaluation

This section presents the results of the experimental evaluation performed using snap-

dragon MDP [52]. The actual and predicted results of response time, power and energy

are obtained by running the Mi-bench [25] benchmarks – Basic math, JPEG and Patricia

on the platform. We repeated this profiling for each frequency. Then, we chose a baseline

frequency of 1.0368 GHz and fit the response time and power to our models presented in

Chapter 3. This gives us the power state and response time distribution in resources. We

then give the corresponding power and time values as input to our framework and obtain the

optimal frequency. We observe this optimal frequency value to be same as the frequency

value of minimum energy obtained with actual experiments. We also observe, how the in-

crease/decrease in background power and constraints affects the optimum frequency. The

results obtained for this are similar to the discussion in illustrative example in Section 3.6.

First, we discuss both 4 core and 2 core online cases of each benchmark and then present

the 1 core online case. We observe that our models can not capture the memory time when

running on 1 core in case of Basic-math and Patricia benchmarks. But they are able to

fit for JPEG benchmark, this is explained in Section 5.2.4. The goodness of fit and error

values are shown in the Tables 5.2 and 5.3.

5.2.1 JPEG Benchmark with Four and Two Cores Online

The JPEG benchmark runs are captured for a range of frequencies as shown in Fig-

ures 5.5, 5.6 and 5.11 for four, two and one core, respectively.

In case of 4 cores, the CPU load for the entire run duration of the benchmark was less

than 100%. This information is important because, higher CPU load can cause random

lags in process execution. As seen from Figure 5.5 the response time and CPU power

are very closely captured by our models, the predicted and the actual values are similar.

45

The response time is inversely proportional to the scaling factor. Hence, it decreases as

frequency is increased. Similarly, as power is a function of order greater than 1, we see that

power increases with increase in frequency. These are clear intuitive trends, but quantified

prediction of the result is not intuitive, and is one of the main contributions of our work.

We also find, the energy without background power (PBG) is similar between predicted and

actual values, as seen in Figure 5.5. While, we have an exception here, an outlier point in

energy at about 1.2 GHz. This is caused due to transition from over estimating to under

estimating of power value at this point and is consistent among all measurements. We see

that minima occurs at about 1.6 GHz for both predicted and actual values. A similar trend is

seen in energy with background power included. The minima point for this energy occurs

at about 3.5 GHz according to our framework, unfortunately we can not run the actual

processor at that frequency to verify the result experimentally. It is my thesis that the trend

in frequencies lower than 2.2 GHz should be enough for the reader to get convinced of the

outcome. If not, this scenario at least shows software engineers that they should run their

application at the highest frequency possible for maximum energy efficiency.

We make the same observations for the JPEG benchmark run with 2 cores as seen

in Figure 5.6, this time our predicted minima is close to the actual minima, but not very

accurate. First, we observed that the CPU was running on 100% load. This, together

with operating system processes and profiler overhead causes less accurate response time

calculations. There can be several reasons for this observed inaccuracy but we do not have

a definitive way to verify it as of now. The verification would require very detailed tracing

capability of each process at run time. The current profiling tools available in the industry

are not advanced enough to carry this task seamlessly.

46

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

15

20

25

30

35

40

45

50

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.0

1.5

2.0

2.5

3.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
44

46

48

50

52

54

56

58

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
100

120

140

160

180

200

220

240

260

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.5: Measurement Results Showing Predicted and Actual Values for JPEG Benchmark Run-

ning on 4 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Excluding Background

Power), Next Response Time, Then Energy (Excluding Background Power) Showing Same Opti-

mal Frequency for Predicted and Actual Values, and Next Chart for Energy (Including Background

Power) Showing Speedup Saves Energy.

5.2.2 Basic Math Large Benchmark with Four and Two Cores Online

We observe a similar behaviour to the JPEG benchmark presented in Section 5.2.1.

The minima occurs at the same frequency (about 1.7 GHz) for both predicted and actual

values as seen from Figure 5.7. The energy has been over estimated because we have over

estimated response time for the mid range of frequency values from 1 GHz to 1.8 GHz.

47

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

15

20

25

30

35

40

45

50

55

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
40

42

44

46

48

50

52

54

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

100
120
140
160
180
200
220
240
260

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.6: Measurement Results Showing Predicted and Actual Values for JPEG Benchmark Run-

ning on 2 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Excluding Background

Power), Next Response Time, Then Energy (Excluding Background Power) Showing a Conserva-

tive Prediction for Optimal Frequency, and Next Chart for Energy (Including Background Power)

Showing Speedup Saves Energy.

For the case when basic math large benchmark runs on 2 cores, we observe an outlier

point at about 1.2 GHz. Except for this the minima point is correctly predicted at about

1.9 GHz.

48

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

2

3

4

5

6

7

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1.0

1.5

2.0

2.5

3.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
5.0

5.5

6.0

6.5

7.0

7.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
10

15

20

25

30

35

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Real

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Real

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Real

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Real

Figure 5.7: Measurement Results Showing Predicted and Actual Values for Basic Math Large

Benchmark Running on 4 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Ex-

cluding Background Power), Next Response Time, Then Energy (Excluding Background Power)

Showing Same Optimal Frequency for Predicted and Actual Values, and Next Chart for Energy

(Including Background Power) Showing Speedup Saves Energy.

5.2.3 Patricia Benchmark with Four and Two Cores Online

We observe a similar behaviour to the JPEG benchmark presented in Section 5.2.1.

From Figure 5.9, we see over prediction of the time because of which the energy is over

predicted as well. To solve this problem, we fit the time after excluding the two lowest

frequencies, we observe a good fit for response time and hence energy prediction is also

49

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

2

3

4

5

6

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

4.5

5.0

5.5

6.0

6.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

12
14
16
18
20
22
24
26
28
30
32

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.8: Measurement Results Showing Predicted and Actual Values for Basic Math Large

Benchmark Running on 2 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Ex-

cluding Background Power), Next Response Time, Then Energy (Excluding Background Power)

Showing Same Optimal Frequency for Predicted and Actual Values, and Next Chart for Energy

(Including Background Power) Showing Speedup Saves Energy.

more accurate, as shown in Figure 5.10 for 2 core case. Note, at lower frequencies, the

operating system processes start interfering with the application, so it makes sense to under

predict the response time at these frequencies.

50

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

2.5

3.0

3.5

4.0

4.5

5.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

3.0

3.5

4.0

4.5

5.0

5.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
5

6

7

8

9

10

11

12

13

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.9: Measurement Results Showing Predicted and Actual Values for Patricia Benchmark

Running on 4 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Excluding Back-

ground Power), Next Response Time, Then Energy (Excluding Background Power) Showing Same

Optimal Frequency for Predicted and Actual Values, and Next Chart for Energy (Including Back-

ground Power) Showing Speedup Saves Energy.

5.2.4 Benchmarks with One Core Online

We observe, JPEG benchmark running on one core gives results similar to those ob-

tained with two and four core configuration in Section 5.2.1, i.e., we get approximately

good fits for time, power and energy. But for one core case of Basic math large and Patri-

cia, the response time is highly over predicted, which causes the energy to be over predicted

51

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
4

6

8

10

12

14

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.10: Measurement Results Showing Predicted and Actual Values for Patricia Benchmark

Running on 2 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Excluding Back-

ground Power), Next Response Time, Then Energy (Excluding Background Power) Showing Same

Optimal Frequency for Predicted and Actual Values, and Next Chart for Energy (Including Back-

ground Power) Showing Speedup Saves Energy.

as well. This is because, both Basic math large and Patricia benchmarks are highly CPU

intensive applications. Hence, collective time taken by other resources in series with CPU

(most likely memory), is not constant like in JPEG. In fact, as seen from the Figures 5.13

and 5.12 the memory time scales at a much higher gradient than the model fitting curve,

which is inverse scaling of order one (in all other cases, this time is constant). We also

52

observe that at higher frequencies, both benchmark’s memory response times saturate and

become constant (≥ 1.6 GHz). This shows, the anomaly has been caused by the operating

system and other background processes creating lag at lower frequencies, followed by the

observation, all the benchmarks were running at 100% CPU load on 1 core. The predicted

and actual values are provided in Figures 5.11, 5.14 and 5.15.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

40

60

80

100

120

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.8

1.0

1.2

1.4

1.6

1.8

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

70

80

90

100

110

120

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
200
250
300
350
400
450
500
550
600
650

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.11: Measurement Results Showing Predicted and Actual Values for JPEG Benchmark Run-

ning on 1 CPU Core. Anticlockwise – The Top Right Chart Shows Power (Excluding Background

Power), Next Response Time, Then Energy (Excluding Background Power) Showing a Conserva-

tive Prediction for Optimal Frequency, and Next Chart for Energy (Including Background Power)

Showing Speedup Saves Energy.

53

5.2.5 Increasing the Number of CPU Cores

In this subsection, we present the experimental results of increasing the number of cores

and changing the frequency of CPU cores in each configuration shown in Figures 5.16, 5.17

and 5.18. Each of these figures belong to the three benchmarks, JPEG, Basic math large,

and Patricia, respectively and show the actual and predicted energy including background

power. As seen from Figure 5.16, for frequency 0.73 GHz the actual energy decreases as we

increase the number of cores. For practical purposes, the change in energy from two cores

to four cores is very small and we can see the saturation of energy. While, for frequency

of 1.73 GHz we observe that energy first drastically decreases then slightly increases as

the number of cores are increased. The increase in energy is because of the added core

power dominating the saturated savings in response time. The optimal number of cores

for minimizing energy, would increase, if the application can utilize the parallelism more

effectively.

5.2.6 Increasing Background Power

Here, the impact of background power on the optimal frequency, for minimizing the

energy is provided. The Figure 5.19, we show the optimal frequencies as the background

power increases from 0 − 4 W. After the background power increases substantially, the

change in CPU energy due to frequency scaling becomes a small fraction of total energy.

Therefore, the energy savings by increasing the CPU frequency starts plateauing, which is

in analogy with Amdahl’s law. Other benchmarks also follow the same trend.

54

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1
2
3
4
5
6
7
8
9

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
2
4
6
8

10
12
14

C
P

U
 T

im
e

(s
ec

)

Frequency (GHz)

 CPU Time Model Fitting

M
em

or
y

Ti
m

e
(s

ec
)

Frequency (GHz)

 Memory Time Model Fitting

To
ta

l T
im

e
(s

ec
)

Frequency (GHz)

 Total Time Model Fitting

Figure 5.12: Timing Measurement Results for Basic Math Large Benchmark Running on 1 CPU

Core. tother is Not Constant at Frequencies≤ 1.6 GHz Which Leads to Over Prediction of Total

Response Time. The Fitting Functions are tcpu
s , tothers and tcpu

s + tother Respectively.

55

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.5

1.0

1.5

2.0

2.5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

C
P

U
 T

im
e

(s
ec

)

Frequency (GHz)

 CPU Time Model Fitting

M
em

or
y

Ti
m

e
(s

ec
)

Frequency (GHz)

 Memory Time Model Fitting

To
ta

l T
im

e
(s

ec
)

Frequency (GHz)

 Total Time Model Fitting

Figure 5.13: Timing Measurement Results for Patricia Benchmark Running on 1 CPU core. tother

is Not Constant at Frequencies≤ 1.5 GHz Which Leads to Over Prediction of Total Response Time.

The Fitting Functions are tcpu
s , tothers and tcpu

s + tother Respectively.

56

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
2

4

6

8

10

12

14

16

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.8

1.0

1.2

1.4

1.6

1.8

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
5
6
7
8
9

10
11
12
13
14

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

20

30

40

50

60

70

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)
Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.14: Measurement Results Showing Predicted and Actual Values for Basic Math Large

Benchmark Running on 1 CPU Core. Anticlockwise – The Top Right Chart Shows Power (Exclud-

ing Background Power), Next Response Time, Then Energy (Excluding Background Power), and

Next Chart for Energy (Including Background Power). The Response Time is Not a Good Fit Due

to Non-linearity of Other Resources’ Time in the System

57

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
2.2

2.4

2.6

2.8

3.0

3.2

3.4

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
3
4
5
6
7
8
9

10
11
12

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
5

10

15

20

25

30

R
es

po
ns

e
Ti

m
e

(s
ec

)

Frequency (GHz)

 Predicted Actual

P
ow

er
 (W

)
Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

ou
t P

B
G
 (J

)

Frequency (GHz)

 Predicted Actual

E
ne

rg
y

w
ith

 P
B

G
 (J

)

Frequency (GHz)

 Predicted Actual

Figure 5.15: Measurement Results Showing Predicted and Actual Values for Patricia Benchmark

Running on 1 CPU Cores. Anticlockwise – The Top Right Chart Shows Power (Excluding Back-

ground Power), Next Response Time, Then Energy (Excluding Background Power), and Next Chart

for Energy (Including Background Power). The Response Time is Not a Good Fit Due to Non-

linearity of Other Resources’ Time in the System

58

Table 5.2: Root Mean Square Error, Mean Percentage Error and Maximum Percentage Error for

Predicted Values of Response Time and Power. The Max. Error Freq. is the CPU Frequency

Corresponding to the Maximum Percentage Error Value.

Metric Benchmark

Number

of Online

CPU Cores

RMSE

(unit)

Mean

Percentage

Error (%)

Max.

Error

(%)

Max.

Error Freq.

(GHz)

Response

Time (sec)

JPEG

4 0.39 1.22 3.40 2.15

2 1.03 3.08 7.01 1.27

1 2.09 3.09 5.39 1.27

Basic

Math

Large

4 0.16 4.01 7.23 1.04

2 0.20 4.97 8.56 0.88

1 1.74 30.24 51.6 1.96

Patricia

4 0.07 5.42 10.54 1.04

2 0.12 3.55 16.90 0.73

1 0.65 34.31 54.79 1.73

Power (mW)

JPEG

4 58.72 2.58 4.43 1.27

2 58.59 2.81 8.60 1.27

1 72.23 4.58 8.76 1.27

Basic

Math

Large

4 59.65 2.76 6.86 0.88

2 81.79 3.88 10.75 1.27

1 66.1 4.42 9.29 1.27

Patricia

4 81.39 1.86 4.58 2.15

2 79.45 2.21 5.18 1.50

1 58.05 1.62 4.61 1.27

59

Table 5.3: Root Mean Square Error, Mean Percentage Error and Maximum Percentage Error for

Predicted Values of Energy With and Without Background Power. The Max. Error Freq. is the

CPU Frequency Corresponding to the Maximum Percentage Error Value.

Metric Benchmark

Number

of Online

CPU Cores

RMSE

(unit)

Mean

Percentage

Error (%)

Max.

Error

(%)

Max.

Error Freq.

(GHz)

Energy

without BG

Power (J)

JPEG

4 1.75 3.12 7.17 2.15

2 1.50 2.79 8.12 1.19

1 3.88 4.07 10.41 2.15

Basic

Math

Large

4 0.23 3.56 7.50 1.04

2 0.25 4.13 11.48 1.19

1 2.21 28.21 58.84 2.15

Patricia

4 0.19 5.13 8.73 1.57

2 0.27 3.54 14.6 0.73

1 1.74 33.84 54.34 1.73

Energy

with BG

Power (J)

JPEG

4 7.31 4.12 9.18 1.96

2 3.94 2.32 6.70 2.15

1 23.11 5.88 7.78 1.19

Basic

Math

Large

4 0.82 3.77 7.11 2.15

2 0.88 3.21 7.91 0.88

1 8.57 28.89 53.41 1.96

Patricia

4 0.44 4.68 10.59 1.04

2 0.89 6.33 17.40 0.73

1 4.06 32.52 50.29 1.73

60

1 2 4
100

200

300

400

500

600

1 2 4
100

200

300

400

500

600

Frequency (GHz): 0.73 0.88 0.96 1.04
 1.19 1.27 1.50 1.57 1.73 1.96 2.15

A
ct

ua
l E

ne
rg

y
(J

)
P

re
di

ct
ed

 E
ne

rg
y

(J
)

Number of cores

Figure 5.16: Measurement Results Showing Predicted and Actual Values for JPEG Benchmark

Running on 1, 2 and 4 CPU Cores. As Shown in the Figure, DVFS May Not Give Better Savings

than Adding CPU Cores to the System.

61

1 2 4
10

20

30

40

50

60

70

1 2 4
10
20
30
40
50
60
70

A
ct

ua
l E

ne
rg

y
(J

)

Frequency (GHz): 0.73 0.88 0.96 1.04
 1.19 1.27 1.50 1.57 1.73 1.96 2.15

P
re

di
ct

ed
 E

ne
rg

y
(J

)

Number of cores

Figure 5.17: Measurement Results Showing Predicted and Actual Values for Basic Math Large

Benchmark Running on 1, 2 and 4 CPU Cores. As Shown in the Figure, DVFS May Not Give

Better Savings than Adding CPU Cores to the System.

62

1 2 4

5

10

15

20

25

30

1 2 4

5

10

15

20

25

30

Frequency (GHz): 0.73 0.88 0.96 1.04
 1.19 1.27 1.50 1.57 1.73 1.96 2.15

A
ct

ua
l E

ne
rg

y
(J

)
P

re
di

ct
ed

 E
ne

rg
y

(J
)

Number of cores

Figure 5.18: Measurement Results Showing Predicted and Actual Values for Patricia Benchmark

Running on 1, 2 and 4 CPU Cores. As Shown in the Figure, DVFS May Not Give Better Savings

than Adding CPU Cores to the System.

63

1 2 3 4 5 6

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6
0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6
0

10

20

1 2 3 4 5 6
0

5

10

15

20

25

30

1 2 3 4 5 6
0

5

10

15

20

25

30

35

0 1 2 3 4
1.5

2.0

2.5

3.0

3.5

4.0

P
re

di
ct

ed
 V

al
ue

s

Frequency (GHz)

PBG 0W
 Energy
 Power
 Time

P
re

di
ct

ed
 V

al
ue

s

Frequency (GHz)

PBG 1W
 Energy
 Power
 Time

P
re

di
ct

ed
 V

al
ue

s

Frequency (GHz)

PBG 2W
 Energy
 Power
 Time

P
re

di
ct

ed
 V

al
ue

s

Frequency (GHz)

PBG 3W
 Energy
 Power
 Time

P
re

di
ct

ed
 V

al
ue

s

Frequency (GHz)

PBG 4W
 Energy
 Power
 Time

O
pt

im
al

 F
re

qu
en

cy
 (G

H
z)

Background Power (W)

Figure 5.19: Measurement Results Showing Predicted Energy, power, and time values for Basic

Math Large Benchmark Running on 4 CPU Cores with increasing Background Power. The optimal

frequency of operation keeps increasing at a diminishing rate as background power is increased.

64

Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

In this work, we develop a detailed energy optimization framework for heterogeneous

mobile platforms and an experimental methodology to validate our models. The frame-

work can be used for optimizing the total energy of a given hardware configuration. To

the best of our knowledge, we are first to propose a framework that can be used for both,

architectural exploration and dynamic management of resources. For example, on the one

hand, computer architects can find the optimal number of CPU cores that are required to

speedup a particular functionality, like voice recognition. On the other hand, application

developers can find the optimal CPU frequency, they must use, to minimize energy con-

sumption of their application, like gaming. We evaluate, that our framework can be used

to give reasoning about optimization with or without introducing new resources. Also, our

evaluations using mobile applications show that adding new resources, in particular more

energy efficient accelerators, improves the platform energy well beyond what power and

performance scaling can achieve alone. The experimental results verify our framework for

scaling and addition of more CPU cores. Note, it is crucial to use a state-of-art hardware

platform for the experiments to give reliable results with lesser effort. This is because, it

is time consuming to implement models for all resources and make them work together

seamlessly in a simulator. Moreover, the simulations would provide only an approximation

and will not show the outlier behaviour seen in actual experiments. Apart from the main

contributions, we also present a voltage-frequency table that can be used by researchers,

who employ cubic power models for DPM controllers. Furthermore, we provide a theoret-

ical approach to implement our framework at run time using Key Performance Indicators

(KPIs) with the help of an illustrative example.

65

Future work: Here, we present a number of natural extensions to our work,

• We need to perform experimental validation of our framework for the case of adding

an accelerator equivalent to adding CPU cores. For example, it can be shown that

adding an energy efficient resource on a mobile platform will significantly improve

energy savings than scaling existing CPU alone or adding homogeneous CPU core(s).

Note, we could only analytically validated this result at present because, all IPs are

fixed in the current platform [52]. In future, we plan to use an ARM R© big.LITTLETM ar-

chitecture based ODROID-XU+E development board [27] and/or FPGAs in which it

is possible to change IPs. We did not use these boards to start with because, the pro-

filing tools for Odroid board and FPGAs are not as advanced as that of Qualcomm’s

MDP.

• We plan to use a more detailed tracing tool [21]. The anomalies highlighted in Chap-

ter 5, particularly, the case of benchmarks running on one core are due to lack of

good time tracing tool across all the resources. In future, we also plan to develop an

algorithm that can dynamically calculate the response time of application at resource

level.

• A natural extension to the theory discussed in this work on using KPIs is its imple-

mentation on a mobile platform. We plan to implement a dynamic power manage-

ment scheme by modifying the on-demand governor [48].

• Discussion on area cost in this work is performed qualitatively between accelerators

and CPU cores. We will focus on more detailed analysis of area cost and include it

in the objective function.

66

REFERENCES

[1] B. M. Al-Babtain, F. J. Al-Kanderi, M. F. Al-Fahad, and I. Ahmad. A Survey on
Amdahl’s Law Extension in Multicore Architectures. International Journal of New
Comp. Arch. and their App., 3(3):30–46, 2013.

[2] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of ACM spring joint computer conference,
pages 483–485, 1967.

[3] Android. Android debug bridge. http://developer.android.com/
tools/help/adb.html.

[4] R. Z. Ayoub, U. Ogras, E. Gorbatov, Y. Jin, T. Kam, P. Diefenbaugh, and T. Rosing.
Os-level power minimization under tight performance constraints in general purpose
systems. In Proc. of the Intl. Symp. on Low-power Electronics and Design, pages
321–326, 2011.

[5] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries. A virtual platform envi-
ronment for exploring power, thermal and reliability management control strategies in
high-performance multicores. In Proceedings of the 20th symposium on Great lakes
symposium on VLSI, pages 311–316, 2010.

[6] D. Bertsekas. Constrained optimization and Lagrange multiplier methods. Opt. and
neural comp. 1996.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, Aug. 2011.

[8] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt.
The m5 simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.

[9] P. Bogdan, R. Marculescu, S. Jain, and R. T. Gavila. An Optimal Control Approach
to Power Management for Multi-Voltage and Frequency Islands Multiprocessor Plat-
forms under Highly Variable Workloads. In Networks on Chip (NoCS), 2012 Sixth
IEEE/ACM International Symposium on, pages 35–42, 2012.

[10] A. Carroll and G. Heiser. An Analysis of Power Consumption in a Smartphone. In
USENIXATC, pages 21–21, 2010.

[11] A. S. Cassidy and A. G. Andreou. Beyond Amdahl’s Law: An Objective Function
That Links Multiprocessor Performance Gains to Delay and Energy. IEEE Transac-
tions on Computers, 61(8):1110–1126, 2012.

[12] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G. Ascheid, and H. Meyr.
A high-level virtual platform for early mpsoc software development. In Proceedings
of the 7th IEEE/ACM international conference on Hardware/software codesign and
system synthesis, pages 11–20, 2009.

67

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

[13] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya, L. Gau-
thier, and M. Diaz-Nava. Multiprocessor SoC Platforms: a Component-based Design
Approach. IEEE Design & Test of Computers, 19(6):52–63, 2002.

[14] H.-C. Chang, A. Agrawal, and K. Cameron. Energy-aware computing for android
platforms. In Energy Aware Computing (ICEAC), 2011 International Conference on,
pages 1–4, 2011.

[15] S. Cho and R. G. Melhem. Corollaries to amdahl’s law for energy. Computer Archi-
tecture Letters, 7(1):25–28, 2008.

[16] S. Cho and R. G. Melhem. On the interplay of parallelization, program performance,
and energy consumption. IEEE Transactions on Parallel and Distributed Systems,
21(3):342–353, 2010.

[17] Y. Cho, N. Chang, C. Chakrabarti, and S. Vrudhula. High-level power management
of embedded systems with application-specific energy cost functions. In Proceedings
of the 43rd annual Design Automation Conference, pages 568–573. ACM, 2006.

[18] B.-G. Chun and P. Maniatis. Augmented smartphone applications through clone cloud
execution. In HotOS, volume 9, pages 8–11, 2009.

[19] B. Dietrich and S. Chakraborty. Managing power for closed-source android os games
by lightweight graphics instrumentation. In Network and Systems Support for Games
(NetGames), 2012 11th Annual Workshop on, pages 1–3. IEEE, 2012.

[20] Digby. Mobile Industry Stats@ONLINE. http://digby.com/
mobile-statistics/.

[21] eLinux. Ftrace. http://elinux.org/Ftrace.

[22] S. Eyerman and L. Eeckhout. Modeling critical sections in amdahl’s law and its
implications for multicore design. SIGARCH Comput. Archit. News, 38(3):362–370,
June 2010.

[23] GNU. Bash Reference Manual@ONLINE. http://www.gnu.org/
software/bash/manual/bashref.html.

[24] O. Google. Android Jelly Bean @ONLINE. http://www.android.com/
versions/jelly-bean-4-2/.

[25] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. Mibench:
A free, commercially representative embedded benchmark suite. In Workload Char-
acterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14, Dec
2001.

[26] A. Gutierrez, R. G. Dreslinski, T. F. Wenisch, T. Mudge, A. Saidi, C. Emmons, and
N. Paver. Full-system analysis and characterization of interactive smartphone appli-
cations. In Workload Characterization (IISWC), 2011 IEEE International Symposium
on, pages 81–90. IEEE, 2011.

68

http://digby.com/mobile-statistics/
http://digby.com/mobile-statistics/
http://elinux.org/Ftrace
http://www.gnu.org/software/bash/manual/bashref.html
http://www.gnu.org/software/bash/manual/bashref.html
http://www.android.com/versions/jelly-bean-4-2/
http://www.android.com/versions/jelly-bean-4-2/

[27] Hard Kernel. Odroid. http://www.hardkernel.com/.

[28] X. he Sun and L. Ni. Another view on parallel speedup. In Supercomputing ’90.,
Proceedings of, pages 324–333, Nov 1990.

[29] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE Computer,
2008.

[30] A. Hodjat and I. Verbauwhede. Interfacing a high speed crypto accelerator to an
embedded CPU. In Proceedings of IEEE, Asilomar Conference on Signals, Systems
and Computers, 2004.

[31] Y. Huh. Future direction of power management in mobile devices. In Solid State
Circuits Conference (A-SSCC), 2011 IEEE Asian, pages 1–4, Nov 2011.

[32] Intel Corporation. Intel c© AtomTM Processor Z2760. http://ark.intel.com/
products/70105.

[33] B. Juurlink and C. H. Meenderinck. Amdahl’s law for predicting the future of multi-
cores considered harmful. SIGARCH Comput. Archit. News, pages 1–9, May 2012.

[34] D. Kadjo, U. Ogras, R. Ayoub, M. Kishinevsky, and P. Gratz. Towards Platform
Level Power Management in Mobile Systems. To appear in International IEEE SoC
(System-on-Chip) Conference, Sept. 2014.

[35] K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, and N. Chang. Fepma: Fine-grained
event-driven power meter for android smartphones based on device driver layer event
monitoring. In Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, pages 1–6, March 2014.

[36] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
Mcpat: an integrated power, area, and timing modeling framework for multicore
and manycore architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pages 469–480. IEEE, 2009.

[37] G. Martin. Overview of the mpsoc design challenge. In Proceedings of the 43rd
annual Design Automation Conference, pages 274–279, 2006.

[38] G. Metri, W. Shi, M. Brockmeyer, and A. Agrawal. Batteryextender: An adaptive
user-guided tool for power management of mobile devices. 2014.

[39] A. Morad, T. Morad, L. Yavits, R. Ginosar, and U. Weiser. Generalized MultiAmdahl:
optimization of heterogeneous multi-accelerator SoC. IEEE Comp. Arch. Letters,
2012.

[40] T. Mudge. Power: A First-class Architectural Design Constraint. Computer,
34(4):52–58, 2001.

[41] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. De Micheli.
Temperature-aware processor frequency assignment for mpsocs using convex opti-
mization. In Hardware/Software Codesign and System Synthesis (CODES+ ISSS),
2007 5th IEEE/ACM/IFIP International Conference on, pages 111–116. IEEE, 2007.

69

http://www.hardkernel.com/
http://ark.intel.com/products/70105
http://ark.intel.com/products/70105

[42] Netscape Communications Corporation, Mozilla Foundation. JavaScript @ONLINE.
https://developer.mozilla.org/en-US/docs/Web/JavaScript.

[43] N. K. Nithi and A. J. de Lind van Wijngaarden. Smart Power Management For Mobile
Handsets. Bell Labs Technical Journal, 15(4):149–168, 2011.

[44] Nomura and Gartner. Smarphone Guide @ONLINE. http://images.
businessweek.com/bloomberg/pdfs/nomura_smartphone_
poster_2012.pdf.

[45] U. Y. Ogras, R. Z. Ayoub, M. Kishinevsky, and D. Kadjo. Managing mobile platform
power. In Proceedings of the International Conference on Computer-Aided Design,
pages 161–162. IEEE Press, 2013.

[46] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung. Design and Manage-
ment of Voltage-Frequency Island Partitioned Networks-on-Chip. Very Large Scale
Integration (VLSI) Systems, IEEE Trans. on, 17(3):330–341, 2009.

[47] OriginLab, Northampton, MA. Origin. http://www.originlab.com/.

[48] V. Pallipadi and A. Starikovskiy. The Ondemand Governor. In Proceedings of the
Linux Symposium, volume 2, pages 215–230, 2006.

[49] D. Pandiyan, S.-Y. Lee, and C.-J. Wu. Performance, energy characterizations and
architectural implications of an emerging mobile platform benchmark suite - mo-
bilebench. In Workload Characterization (IISWC), 2013 IEEE International Sym-
posium on, pages 133–142, Sept 2013.

[50] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with eprof. In Proceedings of ACM EU
conf. on Computer Systems, pages 29–42, 2012.

[51] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained power mod-
eling for smartphones using system call tracing. In Proceedings of ACM conf. on
Computer systems, 2011.

[52] Qualcomm Inc. Qualcomm Snapdragon 805 MD-
P/T device. https://developer.qualcomm.
com/mobile-development/development-devices/
snapdragon-mobile-development-platform-mdp/
snapdragon-805-mdp-tablet.

[53] Qualcomm Inc. Qualcomm Trepn profiler. https://developer.qualcomm.
com/mobile-development/increase-app-performance/
trepn-profiler.

[54] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch,
and M. M. Martin. Computational sprinting. In IEEE, High Performance Computer
Architecture (HPCA), 2012.

70

https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://images.businessweek.com/bloomberg/pdfs/nomura_smartphone_poster_2012.pdf
http://images.businessweek.com/bloomberg/pdfs/nomura_smartphone_poster_2012.pdf
http://images.businessweek.com/bloomberg/pdfs/nomura_smartphone_poster_2012.pdf
http://www.originlab.com/
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp/snapdragon-805-mdp-tablet
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp/snapdragon-805-mdp-tablet
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp/snapdragon-805-mdp-tablet
https://developer.qualcomm.com/mobile-development/development-devices/snapdragon-mobile-development-platform-mdp/snapdragon-805-mdp-tablet
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler

[55] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang. An optimal analytical solution
for processor speed control with thermal constraints. In Proceedings of the 2006 in-
ternational symposium on Low power electronics and design, pages 292–297. ACM,
2006.

[56] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich. Energy
management in mobile devices with the cinder operating system. In Proceedings of
the sixth conference on Computer systems, pages 139–152. ACM, 2011.

[57] S. Sharifi, D. Krishnaswamy, and T. S. Rosing. PROMETHEUS: A Proactive Method
for Thermal Management of Heterogeneous MPSoCs. IEEE Transactions on CAD of
IC and Systems, 2013.

[58] H. Shen and F. Pétrot. Using amdahl’s law for performance analysis of many-core
soc architectures based on functionally asymmetric processors. In Proceedings of
the 24th International Conference on Architecture of Computing Systems, ARCS’11,
pages 38–49, Berlin, Heidelberg, 2011. Springer-Verlag.

[59] W.-T. Shine and C. Chakrabarti. Low-power scheduling with resources operating at
multiple voltages. Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, 47(6):536–543, 2000.

[60] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user activity
patterns to guide power optimizations for mobile architectures. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
168–178. ACM, 2009.

[61] A. Shye, B. Scholbrock, G. Memik, and P. A. Dinda. Characterizing and modeling
user activity on smartphones. 2010.

[62] N. Vallina-Rodriguez and J. Crowcroft. Energy management techniques in modern
mobile handsets. IEEE Communications Surveys & Tutorials, (99):1–20, 2012.

[63] W3C and WHATWG. HyperText Markup Language @ONLINE. http://www.
w3.org/html/.

[64] D. H. Woo and H.-H. Lee. Extending Amdahl’s Law for Energy-Efficient Computing
in the Many-core Era. IEEE Computer, 2008.

[65] E. Yao, Y. Bao, G. Tan, and M. Chen. Extending amdahl’s law in the multicore era.
SIGMETRICS Perform. Eval. Rev., 37(2):24–26, Oct. 2009.

[66] E. Yao, Y. Bao, G. Tan, and M. Chen. Extending Amdahl’s law in the multicore era.
ACM SIGMETRICS Perf. Eval. Review, 2009.

[67] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In
Proceedings of IEEE, Comp. Science, 1995.

[68] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope: Application energy
metering framework for android smartphone using kernel activity monitoring. In
USENIX Annual Technical Conference, pages 387–400, 2012.

71

http://www.w3.org/html/
http://www.w3.org/html/

[69] J. Zhuo and C. Chakrabarti. Energy-efficient dynamic task scheduling algorithms for
dvs systems. ACM Transactions on Embedded Computing Systems (TECS), 7(2):17,
2008.

[70] J. Zhuo, C. Chakrabarti, and N. Chang. Energy management of dvs-dpm enabled
embedded systems powered by fuel cell-battery hybrid source. In Proceedings of the
2007 international symposium on Low power electronics and design, pages 322–327.
ACM, 2007.

[71] T. Zidenberg, I. Keslassy, and U. Weiser. MultiAmdahl: How Should I Divide My
Heterogenous Chip? IEEE, Computer Architecture Letters, 2012.

72

APPENDIX A

DATA MEASUREMENT METHOD

73

One can follow this step-by-step procedure to obtain the data from the tablet:

1. Switch on/ reboot the tablet.

2. Check that no other applications are running in background, this is to ensure that we
have less overhead while measuring power.

3. Connect the tablet to the PC over Wi-Fi using ADB [3].

4. Through ADB shell, hot-plug the device, change governors and frequency of the
CPU cores. For setting to a particular frequency write to max_scaling_freq
variable while performance governor is in effect.

5. In Trepn profiler enable “Show Deltas” and “Aquire Wakelock while Profiling” op-
tions and select the appropriate data points such as CPU cores, Graphics, WLAN/BT/FM,
SD-Card, Codec/Wireless/GPS, GPU to be logged-in.

6. Ensure that no more than six data points are selected to keep overhead of Trepn
profiler low.

7. Remove the charger/ USB cable before power profiling because it may result in in-
accurate power data.

8. Now switch OFF the Wi-Fi, ADB connection will break as a result of this.

9. Start the Trepn profiler through GUI on tablet and wait for about 10 seconds (ran-
domly selected number).

10. Turn OFF the display by pressing the power button and wait for 10 seconds.

11. Turn ON the display by again pressing the power button and wait for 10 seconds.

12. Connect to Wi-Fi and connect the tablet to PC using ADB.

13. Run the benchmark and note the start and stop time using Trepn profiler or we can
use time command in shell to get more detailed information.

14. Now wait for the benchmark to stop and then turn OFF the display and wait for 10
more seconds.

15. Turn ON the display and wait for 10 seconds.

16. Stop profiling and save the collected data in .CSV file.

74

APPENDIX B

RAW DATA

75

Table B.1: Raw Data Table for Basic Math Large Benchmark Running with 4 CPU Cores Online.
The Table Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 5.73 5.16 0.41 5.56 5076.16 29.07 1063.78 193.88 1257.66 7.20
883.20 4.91 4.42 0.38 4.80 5373.88 26.39 1139.96 131.86 1271.82 6.24
960.00 4.13 3.78 0.31 4.08 5612.98 23.18 1239.51 239.21 1478.72 6.11

1036.80 3.77 3.50 0.26 3.77 5412.78 20.41 1278.35 215.00 1493.36 5.63
1190.40 3.38 3.11 0.26 3.37 5439.03 18.38 1349.09 269.71 1618.80 5.47
1267.20 3.12 2.87 0.23 3.10 5750.17 17.94 1519.47 240.44 1759.92 5.49
1497.60 2.64 2.38 0.24 2.62 6074.84 16.04 1669.36 385.26 2054.61 5.42
1574.40 2.53 2.29 0.19 2.49 6012.69 15.21 1715.26 431.65 2146.91 5.43
1728.00 2.32 2.12 0.18 2.30 6181.49 14.34 1810.67 428.25 2238.92 5.19
1958.40 2.11 1.89 0.18 2.08 6786.21 14.34 1934.20 714.63 2648.83 5.60
2150.40 1.95 1.78 0.14 1.91 7256.14 14.12 2221.74 764.15 2985.89 5.81

Table B.2: Raw Data Table for Basic Math Large Benchmark Running with 2 CPU Cores Online.
The Table Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 5.98 5.15 0.38 5.53 4978.72 29.77 902.47 151.90 1054.37 6.31
883.20 5.3 4.43 0.35 4.78 5013.32 26.57 958.88 217.50 1176.39 6.23
960.00 4.27 3.81 0.27 4.08 5060.48 21.61 1052.63 219.10 1271.74 5.43

1036.80 4.08 3.47 0.30 3.77 5184.56 21.15 1089.93 209.35 1299.29 5.30
1190.40 3.40 3.09 0.25 3.34 5244.19 17.83 1114.66 239.43 1354.09 4.60
1267.20 3.14 2.85 0.27 3.12 5527.63 17.36 1304.81 363.72 1668.53 5.24
1497.60 2.70 2.38 0.23 2.61 5843.25 15.78 1393.49 377.93 1771.42 4.78
1574.40 2.57 2.29 0.20 2.49 5969.50 15.34 1488.72 383.75 1872.48 4.81
1728.00 2.33 2.10 0.18 2.28 6000.51 13.98 1499.30 449.71 1949.01 4.54
1958.40 2.06 1.87 0.19 2.06 6110.59 12.59 1610.34 583.92 2194.26 4.52
2150.40 2.00 1.74 0.18 1.92 6258.99 12.52 1757.55 522.32 2279.87 4.56

Table B.3: Raw Data Table for Basic Math Large Benchmark Running with 1 CPU Core Online.
The Table Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 13.52 5.19 0.38 5.57 4800.61 64.90 845.51 34.81 880.32 11.90
883.20 12.86 4.45 0.34 4.79 4805.11 61.79 860.00 54.70 914.71 11.76
960.00 9.83 3.76 0.37 4.13 4919.26 48.36 940.54 56.30 996.84 9.80
1036.80 8.96 3.55 0.23 3.78 4942.36 44.28 996.59 99.90 1096.49 9.82
1190.40 7.47 3.03 0.29 3.32 5215.86 38.96 1013.31 138.26 1151.58 8.60
1267.20 5.88 2.79 0.31 3.10 5223.34 30.71 1171.79 127.20 1298.99 7.64
1497.60 5.5 2.44 0.23 2.67 5294.54 29.12 1256.45 137.39 1393.85 7.67
1574.40 4.69 2.3 0.2 2.50 5241.98 24.58 1290.46 135.08 1425.54 6.69
1728.00 4.36 2.07 0.22 2.29 5256.37 22.92 1345.56 177.37 1522.93 6.64
1958.40 3.64 1.9 0.14 2.04 5427.29 19.76 1405.85 213.82 1619.66 5.90
2150.40 3.38 1.76 0.13 1.89 5658.65 19.13 1496.70 186.44 1683.13 5.69

76

Table B.4: Raw Data Table for JPEG Benchmark Running with 4 CPU Cores Online. The Table
Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 46.71 40.58 5.96 46.54 5154.74 240.78 993.85 168.82 1162.66 54.31
883.20 39.84 33.69 5.73 39.42 5365.12 213.75 1141.74 206.01 1347.74 53.69
960.00 35.86 30.59 4.72 35.31 5376.06 192.79 1253.88 171.37 1425.24 51.11
1036.80 32.83 28.07 4.46 32.53 5554.66 182.36 1281.28 194.61 1475.90 48.45
1190.40 28.95 24.90 3.82 28.72 5682.91 164.52 1353.48 228.25 1581.73 45.79
1267.20 26.55 23.49 3.45 26.94 5925.09 157.31 1531.74 269.30 1801.04 47.82
1497.60 23.06 19.93 2.72 22.65 6266.53 144.51 1675.62 400.69 2076.31 47.88
1574.40 22.15 19.06 2.83 21.89 6462.37 143.14 1725.97 400.48 2126.45 47.10
1728.00 19.93 17.09 2.75 19.84 6686.54 133.26 1814.32 552.06 2366.38 47.16
1958.40 18.54 15.35 2.73 18.08 6920.20 128.30 1939.96 631.17 2571.13 47.67
2150.40 17.01 14.30 2.56 16.86 6632.21 112.81 2307.53 705.69 3013.22 51.25

Table B.5: Raw Data Table for JPEG Benchmark Running with 2 CPU Cores Online. The Table
Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 51.4 40.36 6.4 46.76 4922.54 253.02 899.25 119.97 1019.22 52.39
883.20 42.91 33.62 5.8 39.42 5047.18 216.57 968.50 141.68 1110.18 47.64
960.00 37.93 30.80 4.67 35.47 5150.41 195.36 1051.27 170.14 1221.40 46.33
1036.80 34.90 28.64 4.27 32.91 5172.39 180.52 1083.23 170.47 1253.71 43.75
1190.40 30.41 24.87 4.05 28.92 5310.33 161.49 1162.91 186.39 1349.30 41.03
1267.20 27.76 23.24 3.68 26.92 5655.45 157.00 1315.75 296.97 1612.72 44.77
1497.60 24.16 19.42 3.67 23.09 5867.14 141.75 1439.80 317.57 1757.37 42.46
1574.40 22.93 18.90 3.30 22.20 5942.62 136.26 1471.26 400.40 1871.66 42.92
1728.00 20.90 17.40 2.93 20.33 5878.69 122.86 1520.54 463.23 1983.77 41.46
1958.40 19.03 15.32 2.88 18.20 6357.86 120.99 1632.30 556.24 2188.54 41.65
2150.40 17.66 14.04 2.66 16.70 6719.51 118.67 1754.13 748.15 2502.27 44.19

Table B.6: Raw Data Table for JPEG Benchmark Running with 1 CPU Core Online. The Table
Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 122.59 41.13 5.76 46.89 4551.00 557.91 832.36 51.68 884.04 108.37
883.20 102.11 34.04 5.43 39.47 4710.84 481.02 856.75 66.45 923.20 94.27
960.00 91.52 30.68 4.48 35.16 4711.93 431.24 941.93 74.54 1016.47 93.03
1036.80 84.55 28.43 4.04 32.47 4787.96 404.82 984.28 108.37 1092.65 92.38
1190.40 73.32 24.93 3.72 28.65 4852.31 355.77 1000.47 119.31 1119.77 82.10
1267.20 67.24 23.31 3.31 26.62 5128.28 344.83 1169.00 133.41 1302.42 87.57
1497.60 57.41 19.55 3.07 22.62 5226.52 300.05 1246.90 177.93 1424.83 81.80
1574.40 54.52 18.82 2.76 21.58 5295.19 288.69 1279.75 208.70 1488.45 81.15
1728.00 49.77 17.16 2.61 19.77 5382.43 267.88 1334.97 203.35 1538.32 76.56
1958.40 44.24 15.36 2.25 17.61 5535.85 244.91 1415.44 219.26 1634.70 72.32
2150.40 40.51 13.75 2.35 16.10 5654.94 229.08 1442.95 262.47 1705.42 69.09

77

Table B.7: Raw Data Table for Patricia Benchmark Running with 4 CPU Cores Online. The Table
Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 1.93 1.8 0.07 1.87 6545.81 12.63 2508.34 58.82 2567.16 4.95
883.20 1.67 1.54 0.11 1.65 6706.25 11.20 2596.52 105.38 2701.89 4.51
960.00 1.36 1.27 0.09 1.36 6990.37 9.51 2746.78 158.31 2905.09 3.95

1036.80 1.24 1.17 0.07 1.24 6857.73 8.50 2779.67 198.53 2978.20 3.69
1190.40 1.14 1.07 0.05 1.12 7027.53 8.01 2858.76 177.77 3036.53 3.46
1267.20 1.04 0.95 0.06 1.01 7401.30 7.70 3052.33 174.16 3226.50 3.36
1497.60 0.88 0.78 0.08 0.86 7505.16 6.60 3195.44 314.96 3510.40 3.09
1574.40 0.84 0.78 0.06 0.84 7448.64 6.26 3157.93 366.71 3524.63 2.96
1728.00 0.79 0.72 0.04 0.76 7907.95 6.25 3346.68 431.67 3778.35 2.98
1958.40 0.72 0.64 0.06 0.70 8549.40 6.16 3560.47 513.74 4074.22 2.93
2150.40 0.66 0.60 0.06 0.66 8449.11 5.58 3711.02 943.46 4654.47 3.07

Table B.8: Raw Data Table for Patricia Benchmark Running with 2 CPU Cores Online. The Table
Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 2.07 1.8 0.07 1.87 6461.09 13.37 2388.87 91.54 2480.41 5.13
883.20 1.66 1.54 0.1 1.64 6618.46 10.99 2450.61 123.77 2574.38 4.27
960.00 1.33 1.26 0.05 1.31 6598.54 8.78 2531.62 148.15 2679.78 3.56

1036.80 1.24 1.15 0.07 1.22 6725.63 8.34 2579.82 208.01 2787.83 3.46
1190.40 1.14 1.02 0.08 1.10 6771.68 7.72 2606.92 138.42 2745.33 3.13
1267.20 1.05 0.92 0.07 0.99 7230.14 7.59 2787.06 207.98 2995.03 3.14
1497.60 0.90 0.78 0.08 0.86 7280.90 6.55 2868.13 347.89 3216.02 2.89
1574.40 0.87 0.80 0.01 0.81 7361.39 6.40 2916.32 225.22 3141.55 2.73
1728.00 0.79 0.69 0.07 0.76 7671.56 6.06 3004.80 288.96 3293.76 2.60
1958.40 0.72 0.65 0.04 0.69 7708.44 5.55 3111.52 350.24 3461.76 2.49
2150.40 0.68 0.61 0.03 0.64 7932.89 5.39 3183.17 386.16 3569.33 2.43

Table B.9: Raw Data Table for Patricia Benchmark Running with 1 CPU Core Online. The Table
Lists the Frequency, Response Time, Power and Energy Consumed in the System.

Frequency
(MHz)

Time
(sec) Battery Power

(mW)
Energy

with PBG
(J)

Average CPU
Absolute Power

(mW)

Average CPU
Delta Power

(mW)

Total CPU
power
(mW)

Energy
without PBG

(J)Real User System CPU

729.60 4.22 1.75 0.09 1.84 6201.25 26.17 2331.98 36.36 2368.34 9.99
883.20 3.58 1.54 0.09 1.63 6195.70 22.18 2331.02 26.56 2357.58 8.44
960.00 2.84 1.25 0.06 1.31 6222.88 17.67 2425.56 52.31 2477.87 7.04

1036.80 2.63 1.17 0.03 1.20 6390.50 16.81 2462.02 43.46 2505.49 6.59
1190.40 2.43 1.04 0.06 1.10 6381.05 15.51 2490.94 32.11 2523.06 6.13
1267.20 2.09 0.95 0.03 0.98 6631.83 13.86 2654.76 103.05 2757.81 5.76
1497.60 1.55 0.79 0.05 0.84 6777.26 10.50 2735.48 102.91 2838.39 4.40
1574.40 1.49 0.78 0.03 0.81 6768.42 10.08 2751.96 104.50 2856.46 4.26
1728.00 1.31 0.70 0.04 0.74 6920.73 9.07 2807.03 122.94 2929.96 3.84
1958.40 1.25 0.63 0.04 0.67 6908.97 8.64 2906.17 216.21 3122.37 3.90
2150.40 1.12 0.60 0.03 0.63 7141.95 8.00 2971.94 217.14 3189.07 3.57

78

APPENDIX C

SCRIPT FOR HOT-PLUGGING AND CHANGING CPU FREQUENCY

79

1 # ! / b i n / bash
D e s c r i p t i o n :

3 #
Th i s s c r i p t can be used f o r :

5 # 1) CPU Hot−p l u g g i n g − t u r n i n g o f f CPUs
2) Changing g o v e r n o r s

7 #
RUN THIS SCRIPT WITH ROOT PERMISSION

9 # d o s 2 un i x i s u s u a l l y r e q u i r e d i n c a s e t h e f i l e i s e d i t e d i n MS Windows .
#

11 # Number o f a rgumen t s i n t h e command l i n e
i f [” $# ” −g t 0]

13 t h e n
echo ” Your command l i n e c o n t a i n s $# a rgumen t s ”

15 e l s e
echo ” Your command l i n e c o n t a i n s no a rgumen t s ”

17 f i
D i s p l a y i n g t h e p a r a m e t e r s

19 echo ” P o s i t i o n a l P a r a m e t e r s ”
echo ’ $0 = ’ $0

21 echo ’ $1 = ’ $1
echo ’ $2 = ’ $2

23 echo ’ $3 = ’ $3
echo ’ $4 = ’ $4

25 echo ’ $5 = ’ $5
echo ’ $6 = ’ $6

27 # The a rgumen t s t o t h i s s c r i p t w i l l be :
+ CPU0 s t a t u s − 1 i s ON, 0 i s OFF

29 # + CPU1 s t a t u s − 1 i s ON, 0 i s OFF
+ CPU2 s t a t u s − 1 i s ON, 0 i s OFF

31 # + CPU3 s t a t u s − 1 i s ON, 0 i s OFF
+ Governor

33 # + CPU0 custom f r e q u e n c y i n KHz
c p u 0 s t a t u s =$1

35 c p u 1 s t a t u s =$2
c p u 2 s t a t u s =$3

37 c p u 3 s t a t u s =$4
new gove rne r =$5

39 c p u 0 f r e q =$6
#CPU STATUS PATH

41 C PATH=/ s y s / d e v i c e s / sys tem / cpu
#

43 # Swi tch ON or OFF t h e CPU c o r e s depend ing on c p u N s t a t u s
#

45 # To t r a n s f e r t h e c o n t r o l o f t h e c o r e s t o use r , s t o p m p d e c i s i o n
Th i s d i s a b l e s o v e r w r i t i n g o f t h e g o v e r n o r s a t each d i s p l a y o f f s t a t e .

47 s t o p m p d e c i s i o n
echo ” m p d e c i s i o n s t o p p e d . Now YOU have t h e power t o govern ! ”

49 # W r i t i n g t h e c p u N s t a t u s
echo $ c p u 0 s t a t u s > $C PATH / cpu0 / o n l i n e

51 echo $ c p u 1 s t a t u s > $C PATH / cpu1 / o n l i n e
echo $ c p u 2 s t a t u s > $C PATH / cpu2 / o n l i n e

53 echo $ c p u 3 s t a t u s > $C PATH / cpu3 / o n l i n e
Checking t h e c p u N s t a t u s

55 echo ” S t a t u s o f t h e CPUs i n r e s p e c t i v e o r d e r a r e : ”
c a t $C PATH / cpu0 / o n l i n e

80

57 c a t $C PATH / cpu1 / o n l i n e
c a t $C PATH / cpu2 / o n l i n e

59 c a t $C PATH / cpu3 / o n l i n e
#

61 # Swi tch ON or OFF t h e CPU c o r e s depend ing on c p u N s t a t u s
#

63 echo $ c p u 0 f r e q > $C PATH / cpu0 / c p u f r e q / s c a l i n g m a x f r e q
Check t h e v a l u e o f CPU 0 f r e q u e n c y

65 echo ” C u r r e n t CPU0 f r e q u e n c y i s ”
c a t $C PATH / cpu0 / c p u f r e q / s c a l i n g m a x f r e q

67 # Change t h e g o v e r n o r t o ” p e r f o r m a n c e ” such t h a t t h e CPU always works a t
MAX f r e q u e n c y

echo $new gove rne r > $C PATH / cpu0 / c p u f r e q / s c a l i n g g o v e r n o r
69 # Check f o r t h e g o v e r n o r

echo ” C u r r e n t g o v e r n o r i s ”
71 c a t $C PATH / cpu0 / c p u f r e q / s c a l i n g g o v e r n o r

Check a g a i n
73 echo ” Checking f o r f r e q u e n c y and g o v e r n o r a g a i n ”

s l e e p 3
75 echo ” C u r r e n t CPU0 f r e q u e n c y i s ”

c a t $C PATH / cpu0 / c p u f r e q / s c a l i n g m a x f r e q
77 echo ” C u r r e n t g o v e r n o r i s ”

c a t $C PATH / cpu0 / c p u f r e q / s c a l i n g g o v e r n o r

81

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Resource-Centric View of Mobile Devices
	Do Not Overlook the Background Power
	Key Contributions
	Thesis Organization

	RELATED WORK
	ENERGY OPTIMIZATION FRAMEWORK FORMULATION
	Performance Model
	Speed-up: Amdahl's Law Generalization

	Validation of Performance Model
	Power and Energy Models
	Validation of Power Model
	Solution of the Optimization Problem
	Illustrative Example
	Dynamic Implementation of Framework

	EXPERIMENTAL SETUP AND METHODOLOGY
	Data Measurement Setup
	Host Platform
	Benchmarks
	Power and Response Time Measurement
	Energy Measurement

	Data Analysis
	Average Battery Power
	Average CPU Delta Power
	Average CPU Absolute Power

	EVALUATION AND VALIDATION OF FRAMEWORK
	Analytical Evaluation
	Methodology
	Optimization Using Scaling Only
	Optimization Using Additional Resources
	Assumptions
	Observations

	Experimental Evaluation
	JPEG Benchmark with Four and Two Cores Online
	Basic Math Large Benchmark with Four and Two Cores Online
	Patricia Benchmark with Four and Two Cores Online
	Benchmarks with One Core Online
	Increasing the Number of CPU Cores
	Increasing Background Power

	CONCLUSION AND FUTURE DIRECTIONS
	REFERENCES
	DATA MEASUREMENT METHOD
	RAW DATA
	SCRIPT FOR HOT-PLUGGING AND CHANGING CPU FREQUENCY

