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ABSTRACT  

   

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse 

gas emissions, and one potentially promising technology for this route is adsorption using 

chemically and physically based sorbents. A number of exceptional CO2 sorbents 

materials have been prepared including metal organic frameworks, zeolites, and carbon 

based materials. One particular group of capable materials are amine based solid sorbents 

that has shown to possess high adsorption capacities and favorable adsorption kinetics. A 

key variable in the synthesis of an amine based sorbent is the support which acts as the 

platform for the amine modification. Aerogels, due to their high porosities and surface 

areas, appear to be a promising support for an amine modified CO2 sorbent. Therefore, in 

order to develop a commercially viable CO2 sorbent, particulate aerogels manufactured 

by Cabot Corporation through an economical and proprietary ambient drying process 

were modified with amines using a variety of functionalization methods. Two methods of 

physical impregnation of the amino polymer TEPA were performed in order to observe 

the performance as well as understand the effects of how the TEPA distribution is 

affected by the method of introduction. Both samples showed excellent adsorption 

capacities but poor cyclic stability for lack of any covalent attachment. Furthermore the 

method of TEPA impregnation seems to be independent on how the polymer will be 

distributed in the pore space of aerogel. The last two methods utilized involved 

covalently attaching amino silanes to the surface silanols of the aerogel. One method was 

performed in the liquid phase under anhydrous and hydrous conditions. The materials 

developed through the hydrous method have much greater adsorption capacities relative 

to the anhydrous sample as a result of the greater amine content present in the hydrous 
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sample. Water is another source of silylation where additional silanes can attach and 

polymerize. These samples also possessed stable cyclic stability after 100 

adsorption/regeneration cycles. The other method of grafting was performed in the gas 

phase through ALD. These samples possessed exceptionally high amine efficiencies and 

levels of N content without damaging the microstructure of the aerogel in contrast to the 

liquid phase grafted sorbents. 

  



  iii 

The following chapters are modified versions of papers published or accepted for 

publication: 

Chapter 2 

Linneen N., Lin Y. S., Pfeffer R., (2013). CO2 Capture using Particulate Silica Aerogel 

Immobilization with Tetraethylenepentamine. Microporous and Mesoporous Materials, 

176, 123-131. 

Chapter 3 

Linneen N., Lin Y. S., Pfeffer R., (2013). Amine Distribution and Carbon Dioxide 

Sorption Performance of Amine Coated Silica Aerogel Sorbents: Effect of Synthesis 

Methods. Industrial & Engineering Chemistry, 52, 14671-14679. 

Chapter 4 

Linneen N., Lin Y. S., Pfeffer R., (2014) Influence of Synthesis Conditions on CO2 

Adsorption Performance of Amine Grafted Particulate Silica Aerogels. Chemical 

Engineering Journal (Accepted for Publication) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  iv 

ACKNOWLEDGMENTS  

   

I would like to take this opportunity to thank my family for their love and support 

while I pursued my degree, particularly my mother who gave me the drive and 

encouragement to keep persevering toward my goal.  

I would like to thank my advisors Dr. Jerry Lin and Dr. Robert Pfeffer for allowing 

me to become a part of their group and for introducing me to the research world. Dr. Lin 

and Dr. Pfeffer gave me the opportunity to do leading research in important and 

influential topics. With the understanding and skills on how to conduct research and think 

like a scientist gained from collaborating with them, I know it will nothing but facilitate 

my future endeavors.  

I would like to thank Dr. Nielsen, Dr. Rege, Dr. Lind, and Dr. Anderson for their 

willingness to serve on my committee and lend their expertise. I would also like to thank 

greatly Fred Pena for his constant hard work and support in the research, safety, and 

maintenance of Dr. Lin’s laboratory. 

Finally, I would like to thank all the current and former group members in Dr. Lin’s 

group that I have had the pleasure to work with: Dr. Matthew Anderson, Dr. Shriya 

Seshadri, Dr. Carrie Eggen, Dr. Haibing Wang, Dr. Jose Ortiz-Landeros, Dr. Ding Wang, 

Teresa Rosa, Dr. Bo Lu, Xiaoli Ma, Alex Kasik, Defei Liu, Yang Liu, Dr. Xueliang 

Dong, Joshua James, Huifeng Zhang, and Stewart Mann.  

I also highly appreciate the National Science Foundation for the financial support of 

this work. 



  v 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ................................................................................................................... ix  

LIST OF FIGURES .................................................................................................................. x  

CHAPTER 

1     GENERAL INTRODUCTION  .........................................................................  1  

1.1 Carbon Dioxide Capture Background ................................................. 1  

1.2 Amine Impregnated Solid Sorbents .................................................... 6 

1.3 Amine Grafted Solid Sorbents ........................................................... 15  

1.4 Research Objectives and Significance .............................................. 26  

1.5 Structure of Dissertation .................................................................... 27   

 2     SYNTHESIS AND CARBON DIOXIDE SORPTION PROPERTIES OF 

AMINE IMPREGNATED PARTICULATE SILICA AEROGEL 

SORBENTS   ...................................................................................................  29 

2.1 Introduction ........................................................................................ 29  

2.2 Experimental Methods ....................................................................... 31  

2.2.1 Synthesis of Amine Modified Aerogel .............................. 31  

2.2.2 Sorbent Characterization .................................................... 32  

2.2.3 Carbon Dioxide Adsorption Analysis ................................ 33  

2.3 Results and Discussion ...................................................................... 34  

2.3.1 Sorbent Characteristics ....................................................... 34  

2.3.2 CO2 Adsorption Performance ............................................ 44  

2.4 Conclusions ........................................................................................ 54  



  vi 

CHAPTER                     Page 

 

3      RELATIONSHIP OF SYNTHESIS METHOD, AMINE DISTRIBUTION 

AND CARBON DIOXIDE SORPTION PERFORMANCE OF AMINE 

IMPREGNATED SILICA AEROGEL SORBENTS  ...................................  55 

3.1 Introduction ........................................................................................ 55  

3.2 Experimental Methods ....................................................................... 57  

3.2.1 Solvent Evaporative Precipitation Method ........................ 57  

3.2.2 Wet Impregnation Method ................................................. 58  

3.2.3 Ruthenium Tetroxide Stain ................................................ 59  

3.2.4 Sorbent Characterization .................................................... 59  

3.2.5 Carbon Dioxide Adsorption Analysis ................................ 60  

3.3 Results and Discussion ...................................................................... 60  

3.3.1 Sorbent Characteristics ....................................................... 60  

3.3.2 CO2 Adsorption Performance ............................................ 70  

3.3.3 Distribution of Amine on Aerogel Support ....................... 75  

3.4 Conclusions ........................................................................................ 77  

4      SYNTHESIS AND CARBON DIOXIDE SORPTION PROPERTIES OF 

AMINE GRAFTED SILICA AEROGEL SORBENTS  ...............................  78 

4.1 Introduction ........................................................................................ 78  

4.2 Experimental Methods ....................................................................... 80  

4.2.1 Synthesis of Amine Grafted Aerogel ................................. 80  

4.2.2 Sorbent Characterization .................................................... 81  

4.2.3 Carbon Dioxide Adsorption Analysis ................................ 82  



  vii 

CHAPTER                     Page 

 

4.3 Results and Discussion ...................................................................... 82  

4.3.1 Effect of Amino Silane ....................................................... 82  

4.3.2 Effect of Anhydrous Grafting Conditions ......................... 86 

4.3.3 Effect of Hydrous Grafting Conditions ............................. 89  

4.4 Conclusions ...................................................................................... 100  

5      SYNTHESIS OF AMINE MODIFIED PARTICULATE SILICA 

AEROGELS BY ATOMIC LAYER DEPOSITION  ..................................  102  

5.1 Introduction ...................................................................................... 102  

5.2 Experimental Methods ..................................................................... 105 

5.2.1 Atomic Layer Deposition ................................................. 105  

5.2.2 Sorbent Characterization .................................................. 106  

5.2.3 Carbon Dioxide Adsorption Analysis .............................. 107 

5.3 Results and Discussion .................................................................... 107  

5.3.1 Sorbent Characteristics ..................................................... 107  

5.3.2 CO2 Adsorption Performance .......................................... 109  

5.4 Conclusions ...................................................................................... 113   

6     SUMMARY AND RECOMMENDATIONS  ..............................................  114 

6.1 Summary .......................................................................................... 114  

6.2 Recommendations ............................................................................ 117  

6.2.1 Increasing ALD Cycles and other Amino Silanes........... 117  

6.2.2 Aziridine in situ Polymerization Method ........................ 118  

REFERENCES.......  ............................................................................................................  119 



  viii 

APPENDIX                         Page 

      

A      SYNTHESIS OF TETRAETHYLENEPENTAMINE WET 

IMPREGNATED PARTICUALTE AEROGELS .......................................  136 

B      SYNTHESIS OF TETRAETHYLENEPENTAMINE MODIFIED 

AEROGEL USING THE CONTROLLED EVAPORATIVE 

PRECIPITATION METHOD .......................................................................  138  

C      SYNTHESIS OF AMINE GRAFTED AEROGEL BY ANHYDROUS 

LIQUID PHASE SILANE METHOD ..........................................................  141  

D      SYNTHESIS OF AMINE GRAFTED AEROGEL BY HYDROUS LIQUID 

PHASE SILANE METHOD .........................................................................  143  

E      SYNTHESIS OF AMINE GRAFTED AREOGELS BY ATOMIC LAYER 

DEPOSITION OF AMINO SILANE PRECURSORS ................................  145  

F       CARBON DIOXIDE ADSORPTION MEASUREMENT BY 

GRAVAMETRIC MICROBALANCE ........................................................  148  



  ix 

LIST OF TABLES 

Table Page 

2.1 Summary of Nitrogen Adsorption-Desorption Analysis .......................................  37 

2.2  Summary of CO2 Adsorption Performance using Aerogel as Compared to other 

TEPA Impregnated Sorbent Materials ...................................................................  52 

3.1 Summary of Nitrogen Porosimetry Analysis of P-x and W-x Samples ................  67 

3.2 Summary of CO2 Adsorption Performance of W-x and P-x Sorbents ..................  75 

4.1 Summary of Textural and Amine Properties of the Unmodified and Mono, Di, and 

Tri-amine Grafted Silica Aerogels…………………………………...……. ........ 86  

4.2 Summary  of  Results  Compared to  other  Reported  Amine  Grafted  Siliceous  

Supports ..................................................................................................................  97 

5.1 Summary of Data of the Mono Amine ALD Aerogels .......................................  112 

 

 

 

 

 

 

 

 

 

 

 



  x 

LIST OF FIGURES 

Figure Page 

1.1 Adsorption Capacities of Various CO2 Adsorbents Materials Tested under 

Simulated Flue Gas Conditions with Respect to Temperature  .............................  4 

1.2 Summary of the Influences of Pore Volume and Pore Diameter on CO2 

Adsorption Capacity of a Number of PEI Impregnated Silica Supports  ..............  9 

1.3 Summary Illustration of Common  Organic  Amines  Utilized  for  Wet  

Impregnation .........................................................................................................  13 

1.4 Cyclic Stability of Common Amino Polymers. These Sorbents were Regenerated 

under Different Conditions ...................................................................................  15 

1.5 Common Amino Compounds used in Covalent Grafting Methods  .....................  17 

1.6 Comparison of Post-modification and Co-condensation Using a Mono Amine ..  18 

1.7 The Correlation between Surface Area and Adsorption Capacity ........................  20 

1.8   Trend of the Amine Density to CO2 Adsorption per unit Area of Multiple 

Grafted Sorbents ...................................................................................................  22 

1.9  Adsorption Capacity of Mono, Di, and Tri-amine Grafted Silica Supports  .......  23 

2.1   Schematic of  Experimental  Apparatus  for Investigating  CO2  Adsorption 

Performance  .........................................................................................................  34 

2.2   FT-IR Spectra of Hydrophobic (top) and Hydrophilic (bottom) before Amine 

Impregnation  ........................................................................................................  35 

2.3   FT-IR Spectra of Hydrophobic (top) and Hydrophilic (bottom) after Amine 

Modification  .........................................................................................................  36 

 



  xi 

Figure Page 

2.4   Nitrogen Adsorption-Desorption Isotherms of Unmodified SA-I (top) and SA-O 

(bottom) Aerogels .................................................................................................  38 

2.5   Nitrogen  Adsorption - Desorption  Isotherms  of  TEPA  Impregnated  SA-I-x  

Sorbents  ................................................................................................................  40 

2.6   Nitrogen  Adsorption - Desorption Isotherms of  TEPA  Impregnated SA-O-x 

Sorbents  ................................................................................................................  41 

2.7   TGA Results of SA-I-x (top) and SA-O-x (bottom) Samples  ............................  44 

2.8   Adsorption  Performance  of  Hydrophilic  (top) and  Hydrophobic  (bottom)  

Sorbents  ................................................................................................................  47 

2.9   CO2 Adsorption Capacity of SA-I-x and SA-O-x Samples in Relation to Amount 

of TEPA Immobilized within the Support ...........................................................  49 

2.10 Amine Efficiencies of SA-I-x and SA-O-x Samples in Relation to Amount of 

TEPA  Immobilized within Adsorbent .................................................................  50 

2.11 Cyclic Stability of SA-I-80 Sorbent  ....................................................................  53 

3.1   Sorbent Mass Loss by TGA Prepared by the Evaporative Precipitation Method 

(a), and the Wet Impregnation Method (b)  .........................................................  62 

3.2   Rate of Sorbent Mass Loss Prepared by the Evaporative Precipitation Method 

(a), and the Wet Impregnation Method (b)   ........................................................  63 

3.3   Nitrogen Adsorption/Desorption Isotherms of the Samples Prepared by the Wet 

Impregnation Method (a), and the Evaporative Precipitation Method (b). .........  64 

 

 



  xii 

Figure Page 

3.4   Textural Properties of the Sorbents Prepared by the Wet Impregnation Method 

and the Evaporative Precipitation Method as a Function of TEPA loading: (a) 

Pore Volume, and (b) Surface Area  ....................................................................  66 

3.5   TEM Images of (a) Pure Hydrophilic Silica Aerogel, (b) Unstained P-50 

Sorbent, (c) RuO4 Stained P-50 Sorbent, and (d) a Higher Magnification of the 

Stained P-50 Sorbent  ............................................................................................  68 

3.6   TEM Images of (a) RuO4 Stained W-50 Sorbent, (b) a Higher Magnification of 

the Stained Sample, and (c) a W-50 Sorbent Particle with little Stained but 

Clotted TEPA Content  .........................................................................................  69 

3.7   Dynamic Adsorption Uptake Curves of Sorbent prepared by Vaporative 

Precipitation (a), and Wet Impgrenation (b)   ......................................................  71 

3.8   Adsorption Kinetics of the W-x and P-x Sorbents. Adsorption Time Represents 

the Time Required to Reach 90% Adsorption Capacity  .....................................  72 

3.9   Adsorption Capacities of the P-x and W-x Samples Relative to TEPA Content 

after 1 hr exposure to 100%CO2 at 75 
o
C  ............................................................  73 

3.10 Amine Efficiency (mole of CO2 Adsorbed per mole of N) of the P-x and W-x 

Sorbents as a Function of TEPA Content  ............................................................  74 

3.11 Hypothesized Mechanism of the Evaporative Precipitation Method. Aerogel 

Pore Surfaces are shown in Black, TEPA shown in Gray  ..................................  76 

4.1   Adsorption Capacity of the Mono, Di, and Tri-amine Grafted Aerogel as a 

Function of Adsorption Temperature ...................................................................  84 

 



  xiii 

Figure Page 

4.2   Measured Nitrogen Content and Amine Efficiencies of the Mono, Di, and Tri-

Amine Grafted Aerogel from the Adsorption Capacity Obtained at 25 
o
C  .......  84 

4.3   Nitrogen Adsorption Isotherms and Pore Size Distributions of the Mono, Di, and 

Tri-amine Grafted Aerogels  .................................................................................  85 

4.4   Adsorption Capacity and Nitrogen Content of Tri-amine Grafted Aerogel as a 

Function of Synthesis Temperature  .....................................................................  87 

4.5   Adsorption Capacity and Nitrogen Content of Tri-amine Grafted Aerogel as a 

Function of Silane:Silica Ratio  ............................................................................  88 

4.6   Adsorption Capacity and Nitrogen Content of Tri-amine Grafted Aerogel as a 

Function of Silane Concentration  ........................................................................  89 

4.7   Adsorption Capacity of Sorbents Synthesized at different Temperatures and 

Various Amount of Water  ...................................................................................  90 

4.8   The Pore Volume and Surface Area Relative to Amount of Water Added for Tri-

amine Grafted Samples Synthesized at 95 
o
C  .....................................................  92 

4.9   The Nitrogen Content of Tri-amine Grafted Samples Synthesized under Hydrous 

Conditions as a Function of the Amount of Water Addition  ..............................  92 

4.10 The Amine Efficiency of Tri-amine Grafted Samples Synthesized under 

Hydrous Conditions as a Function of the Amount of Water Addition  ...............  94 

4.11 CO2 Adsorption Isotherms of the 300/95 Tri-amine Grafted Aerogel at 30, 40, 

and 50 
o
C  ..............................................................................................................  94 

4.12 Cyclic Working Capacity and Absolute Regenerated Weight of the 300/95 Tri-

amine Grafted Aerogel  .........................................................................................  99 



  xiv 

Figure Page 

4.13 Cyclic Working Capacity and Absolute Regenerated Weight of a 70 wt% TEPA 

Impregnated Aerogel  ...........................................................................................  99 

5.1   Illustration of the Cyclic ALD Process with Silane and Water Introductions  .  104 

5.2   Schematic of ALD Apparatus for Silanes Gas Phase Grafting .........................  106 

5.3   Nitrogen Adsorption Isotherms of the ALD Modified Aerogels after One (G1), 

Two (G2), and Three (G3) ALD Cycles of Mono amine Silane  ......................  108 

5.4   Surface Area and Pore Volume of ALD Modified Gels of One (G1), Two (G2), 

and Three (G3) ALD Cycles of Mono amine Silane  ........................................  109 

5.5   Adsorption Uptake Curves of the ALD Samples  .............................................  111 

5.6   Amine Efficiencies of the Amino Silane ALD Samples  ..................................  111 



  1 

CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Carbon Dioxide Capture Background 

As is well known in the academic and scientific community, global emissions of 

carbon dioxide from anthropogenic point sources has resulted with convincing evidence 

in significant climate changes around the world. Atmospheric and oceanic average 

temperatures are rising, Arctic sea ice as well as mountain glaciers and snow coverage in 

both hemispheres are diminishing, consequently leading to increasing sea levels and 

ocean acidification (Bosch et al., 2007; Hofmann, Butler, & Tans, 2009). Such climate 

alterations are compromising major coral reef as well as terrestrial ecosystems which 

have serious influences on global biodiversity and the socioeconomic status of nations 

across the globe (Diffenbaugh & Field, 2013; Hoegh-Guldberg et al., 2007; Hughes et al., 

2003). Therefore it is imperative that these major carbon dioxide anthropogenic 

emissions be reduced to prevent any further climate and ecological damage. 

The point sources of interest are the fossil fueled power and industrial sectors 

releasing 13,375 MtCO2 per year, approximately 60% of the total global CO2 emissions 

(Bradshaw et al., 2005). Methods of CO2 emission reduction are 1) more efficient uses of 

energy, 2) alternative fuels and energy resources, and 3) CO2 capture and sequestration 

(CCS) technologies. Presently, the most practical methods to be implemented on large 

scales are CCS technologies. Main technologies of interest are cryogenic distillation 

(Hart & Gnanendran, 2009), membranes (Du, Park, Dal-Cin, & Guiver, 2012; Favre, 

2011), adsorption (Choi, Drese, & Jones, 2009; Q. Wang, Luo, Zhong, & Borgna, 2011), 

and absorption (Puxty et al., 2009; M. Wang, Lawal, Stephenson, Sidders, & Ramshaw, 
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2011) which can be integrated in a pre-combustion, post-combustion, or oxy-fuel 

combustion setting (Kanniche et al., 2010). CO2 capture in a post combustion setting is 

currently the most feasible due to its ease of plant modification and current experience of 

such systems. Pre-combustion capture requires an extensive reconstruction of the existing 

plant and are very complex where as oxy-fuel systems are more costly to retrofit relative 

to post-combustion and may need additional purification steps for transport (Notz, 

Tönnies, McCann, Scheffknecht, & Hasse, 2011).   

Among the CSS technologies for post combustion, adsorption and absorption 

appear to be the most competitive. Cryogenic distillation to separate CO2 from a post 

combustion flue gas is difficult and expensive. Membrane purification of CO2 in gas 

mixtures such as natural gas has made significant advances (Adewole, Ahmad, Ismail, & 

Leo, 2013) but for conditions present in flue gas where CO2 partial pressures are low 

(approximately 0.05 – 0.15 bar) membrane separation would be difficult and require very 

large, high surface area modules. Therefore the two promising candidates are adsorption 

using physical or chemical solid sorbents, or absorption using amine based aqueous 

alkaline solutions.  

Liquid absorption (a.k.a. amine scrubbing) is a very well understood and practiced 

method of CO2 capture in dilute systems. The fundamental process was first patented in 

1930 and since the 1980’s amine scrubbing has been used to separate CO2 from small 

scale power plants in which there are currently four coal based plants of which have 

power outputs up to 30MW and more than 20 other CO2 emitting plants that use amine 

scrubbing systems that use a 20-30% monoethanol amine aqueous solutions (Rochelle, 

2009). The technology, though possibly the first generation of CCS to be integrated, has a 
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number of economic and human health threatening issues. Current systems have low CO2 

absorption capacities (kg CO2 absorbed per kg absorbent), have a high propensity to 

corrode equipment, degrade due to thermal and chemical instabilities, require large 

amounts of energy for regeneration, need very large equipment units, and generate toxic 

by-products (Yeh, Pennline, & Resnik, 2004; Yu, 2012). It is these significant 

disadvantages that have led many academics and industrial scientists into investigating 

the use of solid adsorbents for post combustion capture. 

Ideally, in order to be competitive with amine scrubbing systems the sorbent 

should lead to a 30-50% energy reduction required for operation, achieve a delta loading 

(i.e., the adsorption capacity achieved after a regeneration cycle) of at least 3.0 mmol of 

CO2/g under flue gas conditions, be able to adsorb and desorb within a narrow 

temperature range (40-110 
o
C), have the stability to be regenerated and reach full 

capacity for a large number of cycles, and be durable in the presence of water vapor and 

other acid flue gas species (e.g., SOx, NOx) (Drage et al., 2012). Solid sorbents that have 

the potential to meet these criteria, both physical and chemical, include carbon based, 

zeolites, metal organic frameworks (MOF), and amine based. Carbon sorbents have 

extremely high surface areas, low cost, thermally stable, and can be easily customized to 

meet textural specifications. However, due to weak physical interactions with CO2, 

carbon based materials do not perform well in flue gas temperatures (40-80 
o
C) and 

partial pressure (0.05-0.15 bar) (Q. Wang et al., 2011). Zeolites (i.e., porous crystalline 

aluminosilicates) have been extensively studied for CO2 separations and perform quite 

well due to the stronger interaction with CO2 through ion-dipole interactions (Montanari 

& Busca, 2008), but due to the presence of water vapor (0.1-0.15 bar) and other gases in 
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flue gas, their selectivities over CO2 are low (X Xu, Song, Andresen, Miller, & Scaroni, 

2003). MOF’s are fairly new developed crystalline materials that are primarily composed 

of metal clusters connected through organic linkers that are extremely tailorable. These 

materials can posses open metal ion sites which can strongly adsorb CO2, some having 

heats of adsorption up to 90 kJ/mol, and look to be a very promising material 

(Demessence, D’Alessandro, Foo, & Long, 2009).   

Another very promising candidate and the main focus of this study is amine based 

solid sorbents. Similar to liquid amine scrubbing systems, these sorbents utilize reactive 

amine based compounds to covalently bind to CO2 reversibly. Figure 1.1 reveals the 

potential of these sorbents within the flue gas operating range.  

 

Figure 1.1: Adsorption Capacities of Various CO2 Adsorbents Materials Tested under 

Simulated Flue Gas Conditions with Respect to Temperature (5-15 vol% CO2, 5-10 vol% 

H2O, 75-90 vol% N2; 1 bar, 40 – 80 
o
C).Red Region is the Ideal Adsorption Temperature 

Operating Range (Drage et al., 2012). 
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Much of what the scientific community knows about the reaction mechanism and 

kinetics of amine-CO2 chemistry has been understood by investigating aqueous amine 

scrubbing systems. The general consensus is that CO2 binds to amines via two pathways 

to form carbamates and bicarbonates. Equation (1.1) & (1.2) shows the pathway of 

carbamate formation which has been reported and reviewed by several groups (Caplow, 

1968; Danckwerts, 1979; Mahajani & Joshi, 1988; Versteeg, Van Dijck, & Van Swaaij, 

1996b). The amine first binds to CO2 through the unpaired electrons on nitrogen to form 

a zwitterionic intermediate followed by deprotonation of another free amine to form 

carbamate and ammonium species. This pathway leads to a stoichiometric amine:CO2 

ratio of 2:1 meaning the highest theoretical amine efficiency possible to attain in an 

adsorption process is 50% (i.e., moles of CO2 adsorbed per mol of N). Unlike primary 

and secondary amines, tertiary amines due to thermodynamic instabilities and high steric 

hinderance cannot directly react with CO2 as described by Eq. (1.1) & (1.2) unless under 

extremely high pH conditions (Donaldson & Nguyen, 1980; Jorgensen & Faurholt, 

1954).  

RNH2 + CO2  RNH2
+
 COO

- 
     (1.1) 

RNH2
+
 COO

- 
+  RNH2  RNHCOO

-
 + RNH3

+
     (1.2) 

RNH2 + CO2 + H2O  HCO3
-
 + RNH3

+
     (1.3) 

The second pathway, Eq. (1.3) forms bicarbonate where primary, secondary, and 

also tertiary amines are utilized as a proton acceptor, or even a catalyst, for the hydration 

of CO2 (Donaldson & Nguyen, 1980; Savage, Sartori, & Astarita, 1984). Specifically for 

tertiary or sterically hindered amines, the hydration of CO2 occurs through a base-

catalyzed hydration mechanism due to chemical instability (Donaldson & Nguyen, 1980; 
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Vaidya & Kenig, 2007). The formation of bicarbonate leads to an amine:CO2 

stoichiometric ratio of 1:1 and therefore it would be much more advantageous practically 

and economically for pathway two to be followed. However, between the two pathways 

carbamate formation is much more favorable because of its faster reaction kinetics and 

greater thermal stability leading to greater energy requirements for amine regeneration 

and reduced amine efficiencies (D.-H. Lee et al., 2008; Sartori & Savage, 1983; Versteeg, 

Van Dijck, & Van Swaaij, 1996a). This has led to increased research in absorption 

applications  toward standard molar enthalpies and standard molar entropies of 

carbamates formed from amines with different geometries and stereochemical properties 

(Conway et al., 2012, 2013; Fernandes et al., 2012). However, in regards to amine based 

solid adsorption research, the major focus has been on methods of modification of a 

variety of amines on a wide range of porous supports. 

The majority of research has had its primary focus on two methods of amine 

modification; wet impregnation and covalent grafting. The wet impregnation method is 

generally performed by mixing an amino polymer, commonly polyethyleneimine (PEI), 

with a volatile organic solvent (e.g., methanol, ethanol, acetone). The solid support of 

choice, which is commonly some porous siliceous material, is then added into this 

solution, mixed until fully saturated, and placed under heat and/or vacuum to remove the 

organic solvent leaving the polymer held within the pore space by weak intermolecular 

forces.  

1.2 Amine Impregnated Solid Sorbents  

The first to utilize this method was Xiaochun Xu, Song, Andresen, Miller, & 

Scaroni, (2002) who prepared a PEI impregnated MCM-41 ordered mesoporous silica 
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sorbent. Deeming the concept of the prepared sorbent a “molecular basket”, a key 

characteristic of this “molecular basket” is that there exists an optimum temperature for 

adsorption. Contradictory to classical sorbents, this form of sorbent carries with it a 

temperature dependent diffusional limitation along with the classical thermodynamic 

constraint. Consequently, this leads to an optimum in which at a certain temperature the 

combined rates of adsorption/desorption from the binding sites and the CO2 diffusion rate 

through the liquid polymer are maximized. Since this work, many groups have explored a 

wide range of siliceous supports discovering several ways in which the nature of the 

support, solvent used for impregnation, additives, and amine type influences the 

performance of the adsorbent.  

A significant variable above others is the textural properties of the support in 

which the polymer is impregnated (Barbosa et al., 2011; Chen, Son, You, Ahn, & Ahn, 

2010; Chen, Yang, Ahn, & Ryoo, 2009; Heydari-gorji, Belmabkhout, & Sayari, 2011; 

Heydari-gorji, Yang, & Sayari, 2011; Kuwahara, Kang, Copeland, Bollini, et al., 2012; 

Kuwahara, Kang, Copeland, Brunelli, et al., 2012; S.-H. Liu, Wu, Lee, & Liu, 2009; Qi et 

al., 2011; Qi, Fu, Choi, & Giannelis, 2012; Son, Choi, & Ahn, 2008; Subagyono, Liang, 

Knowles, Webley, & Chaffee, 2011; Xingrui Wang, Li, Liu, & Hou, 2011; W. Yan, 

Tang, Bian, Hu, & Liu, 2012; X. Yan, Zhang, Zhang, Yang, & Yan, 2011; X. Yan, 

Zhang, Zhang, Qiao, et al., 2011; M. B. Yue, Chun, Cao, Dong, & Zhu, 2006; Ming Bo 

Yue et al., 2008). Son et al., (2008) prepared a number of ordered mesoporous silica 

(OMS) supports with a range of pore volumes, pore diameters, and surface areas where 

then a 600 Mw PEI was impregnated by wet impregnation. They observed that for equal 

PEI loading of 50 wt%, the adsorption capacity and amine efficiency increased with 
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increasing average pore diameter. Furthermore, each one of these materials achieved a 

higher adsorption capacity and faster adsorption kinetics relative to pure PEI, and the 

supports possessing a 3D pore structure rather to a 2D ordered network had faster 

adsorption kinetics. Chen et al., (2010) went further to explore PEI impregnated 

hexagonal mesoporous silicas (HMS) with varying textural properties and found very 

similar results with adsorption capacity increasing with increasing pore diameter. The 

HMS with higher pore volumes achieved higher adsorption capacities with equivalent 

loadings (45 wt%). The higher pore volume supports were capable of being impregnated 

with larger amounts of PEI (up to 60 wt%) and achieved a 4.2 mmol/g adsorption 

capacity at 75 
o
C with pure CO2 without affecting the amine efficiency.  The higher pore 

volume supports have the potential of retaining more polymer, and coupled with the 

larger pore diameter, it allows for higher nitrogen content to be loaded with a more 

efficient distribution. However, beyond a certain loading the amine completely fills the 

pores and begins to consolidate on the exterior of the particle leading to poor efficiencies 

and adsorption capacities.  
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Figure 1.2: Summary of the Influences of Pore Volume and Pore Diameter on CO2 

Adsorption Capacity of a Number of PEI Impregnated Silica Supports. 

These results led toward developing higher porosity supports with favorable pore 

diameters and structures including hierarchical silica monoliths (Chen et al., 2009), 

nanocomposite mesoporous capsules (Qi et al., 2011), and a number of pore-expanded 

(Franchi, Harlick, & Sayari, 2005; Heydari-gorji, Belmabkhout, et al., 2011; X. Yan, 

Zhang, Zhang, Yang, et al., 2011) and mesocelluar foams (Qi et al., 2012; Subagyono, 

Liang, Knowles, Webley, et al., 2011; W. Yan et al., 2012; X. Yan, Zhang, Zhang, Qiao, 

et al., 2011) leading to larger CO2 adsorption capacities. Figure 1.2 summarizes the pore 

diameter and pore volume trends of a number of silica supports.  

The pore length of the porous silica is also a key variable in attaining a high 

performing CO2 adsorbent. Heydari-gorji, Yang, et al., (2011) prepared four different 

OMS supports with similar pore sizes but with various pore lengths ranging from 40 to 

0.2 μm in diameter. With all of them loaded with near equivalent amounts of PEI (~50 
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wt%), the supports with the smaller pores attained the highest adsorption capacities, 

greatest amine efficiencies and fastest adsorption kinetics. Furthermore, the smaller pore 

led to a lowering of the optimum adsorption temperature for highest capacity. Such 

results further verify the subsequent CO2 mass transport limitations through the liquid 

polymer present in impregnated supports. The short pore length as well as a larger pore 

diameter results in thinner polymer layers and greater amine distributions leading to more 

efficient adsorption site availability that causes the rise in kinetics, capacity and a fall in 

the optimum adsorption temperature.   

For that reason, it’s evident that for wet impregnated sorbents, an efficient 

distribution of the polymeric amine is vital toward obtaining fast adsorption kinetics and 

large adsorption capacities. Alternative methods of obtaining these favorable distributions 

other than using the appropriate support have been explored using as-prepared OMS 

materials(Heydari-gorji, Belmabkhout, et al., 2011; Heydari-Gorji & Sayari, 2011; 

Xingrui Wang et al., 2011; M. B. Yue et al., 2006; Ming Bo Yue et al., 2008) and organic 

additives (Meth, Goeppert, Prakash, & Olah, 2012; Tanthana & Chuang, 2010; J. Wang 

et al., 2012; X Xu et al., 2003; Xue, Wu, Zhou, & Zhou, 2012). An as-prepared OMS is 

an OMS with no post-treatment such as calcination or ethanol washes to remove the 

surfactant layer attached to the pore walls used during synthesis. These remaining 

hydrophobic scaffolds within the pore space are found to enhance the adsorption 

performance of the amine impregnated sorbent relative to an equivalently loaded calcined 

analogue. One of the first to discover this phenomena was Yue et al., (2006) who 

prepared a as-prepared SBA-15 impregnated with tetraethylenepentamine (TEPA). They 

found that the as-prepared TEPA impregnated sample achieved a higher adsorption 
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capacity as the calcined sample with an equivalent loading suggesting that the presences 

of this scaffold is interacting with the distribution of TEPA and/or aiding the adsorption 

process between the CO2 and amino groups.  Later Yue et al., (2008) again further 

investigates this phenomena with a as-prepared MCM-41 that was synthesized with 

different surfactants in order to understand the scaffold role in the CO2 adsorption 

mechanism. They discovered that the surfactant leading to a larger micelle creating a 

larger pore yielded the highest adsorption capacity. Furthermore, when the surfactant was 

impregnated along with the TEPA inside a template free support rather to impregnating 

pure TEPA inside an as-prepared support, the sample impregnated with a 

TEPA/surfactant mixture gave a poorer result. This discovery implied that the “spoke” 

like arrangement of the surfactant inside the as-prepared support would allow the TEPA 

to be dispersed efficiently within these palisades structures allowing amine binding sites 

to be readily available for CO2 capture. The amine efficiencies jump from approximately 

0.25 mol CO2/mol N to around 0.35 mol CO2/mol N. Similar results were found when 

working with pore expanded (PE) MCM-41 and MSU-1 which also agree that the micelle 

structure creates a much more efficient distribution of the amino polymer that allows a 

higher degree of availability for CO2 to find and adhere (Heydari-gorji, Belmabkhout, et 

al., 2011; Heydari-Gorji & Sayari, 2011; Xingrui Wang et al., 2011).  

 Others have also obtained higher performance with the use of surfactants but 

utilized as an additive to form an amine/surfactant blend to impregnate. These commonly 

yield adsorbents that enhance CO2 adsorption performance not because of their ability to 

distribute amines more efficiently within the support pore, but because they reduce the 

viscosity, chemically stabilize the amine, and/or play a facilitating role in the CO2 amine 
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adsorption mechanism. Tanthana & Chuang, (2010) prepared a polyethyleneglycol 

(PEG)/ TEPA impregnated fumed silica and found that the –OH moieties on PEG acted 

as a stabilizing agent for the amine during cyclic tests. Wang et al., (2012) mixed PEI 

with common surfactants such as Span80, CTAB, and STAB used for synthesizing OMS 

supports and impregnated them in hierarchical porous silica (HPS). They discovered that 

the surfactants incorporated reduced the viscosity of the PEI leading to an increased 

diffusion capability in CO2 transport. This led the sorbents possessing enhanced 

adsorption capacities and even worked well at near room temperatures. Furthermore, 

these surfactants showed to increase the thermal cyclic stability of the sorbents due to 

their electrostatic interactions with the PEI.  

Another influential variable to the performance of wet impregnated sorbents is the 

nature of the amino polymer. There has been a wide range of amines utilized for wet 

impregnation but the most common polymer is PEI. Traditionally, the best amino 

polymers are those which carry the largest number of amine groups per unit weight of 

polymer. Figure 1.3 shows some of the most commonly used amines for impregnation. 

However, this is not always the case because of other factors such has CO2-amine 

chemistry and adsorption kinetics. M. Gray, Champagne, Fauth, Baltrus, & Pennline, 

(2008) impregnated polymethylmethacrylate beads with 1,8-diazabicyclo-[5.4.0]-undec-

7-ene (DBU) and found that, under humid conditions, led to a much greater amine 

efficiency relative to common PEI compounds due to its inherent amidine. Though the 

amine to weight ratio of DBU is much lower than PEI, the nature of the conjugated 

amidine of DBU leads to the quick formation of bicarbonate rather than the slower route 
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taken by secondary and primary amines as mentioned earlier and therefore can potentially 

have a higher adsorption capacity under humid conditions relative to PEI.  

 

Figure 1.3: Summary Illustration of Common Organic Amines Utilized for Wet 

Impregnation (PEI = Polyethyleneimine; TEPA = Tetraethylenepentamine; TEA = 

Triethanolamine; DBU = 1,8-diazabicyclooundec-7-ene; EDA = Ethylenediamine; 

DETA = Diethylenetriamine; DEA = Diethanolamine; DIPA = Diisopropanolamine; 

MEA = Monoethanolamine). 

S. Lee, Filburn, Gray, Park, & Song, (2008) screened a number of amines 

including monoethanolamine (MEA), TEPA, ethylenediamine (EDA) and acrylnitrile 

treated TEPA and EDA which essentially binds multiple TEPA or EDA molecules 

together to form a large multiple branched amino polymer. Of these amines, TEPA and 

EDA attained the highest overall adsorption capacities. However, in terms of cyclic 

stability and working capacity (i.e., the adsorption capacity after a regeneration cycle), 

the acrylnitrile treated TEPA and EDA performed the best. Plaza et al., (2008) 

impregnated diethylenetriamine (DETA), diisopropanolamine (DIPA), triethanolamine 
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(TEA), pentaethylenehexamine (PEHA), and PEI into an alumina support. Of the amine 

tested the best performing in terms of adsorption capacity was DETA. Furthermore, 

Goeppert, Meth, Prakash, & Olah, (2010) tested PEI, TEPA, PEHA, MEA, and 

diethanolamine (DEA) and found similar results as Ruberia and Filburn, where TEPA 

achieved the greatest adsorption capacity under similar conditions tested. These results 

and others (Chen et al., 2009; Subagyono, Liang, Knowles, & Chaffee, 2011; J. Zhao, 

Simeon, Wang, Luo, & Hatton, 2012), show that the amino polymers with lower 

molecular weights (near ~200 Da) achieve the best CO2 adsorption capacities. This trend 

is a result of the balance between the molecular weight and number of amine groups per 

molecule. As mentioned before, these amino polymers tend to impede CO2 diffusion due 

to their high viscosities, and the higher the molecular weight of these polymers, even 

though the N to molecular weight ratio increases with molecular weight, the greater the 

viscosity which leads to slower adsorption kinetics. TEPA and the like achieve the best 

performance in terms of capacity because they possess a high N ratio as well as a lower 

viscosity. However, there is also an inherent problem with lower viscosity amino 

polymers as discussed below.  

Cyclic stability is a key feature of an ideal sorbent that needs to be addressed if it 

is to be implemented in a practical industrial application. The impregnated sorbents, due 

to their lack of any covalent or strong attachment, are unstable during cyclic 

adsorption/regeneration tests because of the evaporation of the polymer from the support 

(Heydari-gorji, Belmabkhout, et al., 2011; Y. Liu et al., 2010; Olea, Sanz-Pérez, 

Arencibia, Sanz, & Calleja, 2013; Qi et al., 2011, 2012; Sie, 2012). This effect is more 

pronounced for low molecular weight amino polymers due to their higher vapor 
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pressures. TEPA for instance, though it may be the best amine in terms of kinetics and 

adsorption capacity, is thermally unstable and evaporates during regeneration cycles very 

easily leading to a rapid drop in the working adsorption capacity. Figure 1.4 illustrates 

this showing the cyclic stability of a variety of amino polymers. Though these sorbents 

have been tested with varying adsorption and regeneration conditions, the higher 

molecular weight polymers have much lower vapor pressures causing them to be more 

stable, but they have greater viscosities and therefore result in slower kinetics and smaller 

adsorption capacities.  

 

Figure 1.4: Cyclic Stability of Common Amino Polymers. These Sorbents were 

Regenerated under Different Conditions. 

1.3 Amine Grafted Solid Sorbents   

Unlike wet impregnated amine based sorbents, covalently amine grafted materials 

possess a greater cyclic stability. Such stability is a result of the amine’s strong anchorage 

to the surface of the support. The most common method of grafting is through silane 

hydrolysis and/or condensation to the surface of some metal oxide support, typically 
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silica. Methods of introducing covalently bounded amine compounds to the surface vary 

but can be placed into two main categories; co-condensation and post-modification.  

Co-condensation methods involve the simultaneous hydrolysis and condensation 

of the amine and the metal alkoxy precursor resulting in a rigid metal oxide structure with 

the amine embedded within the microstructure. The most common precursors involve 

amino-silane compounds such as those in Figure 1.5 and orthosilicates (e.g., 

tetraethylorthosilicate, TEOS). Generally, the amine and silica precursors are mixed with 

or without a surfactant of some sort, depending on whether an amorphous silica or an 

OMS is desired, together with a solution of an organic solvent (e.g., ethanol) and water. 

These solutions are heated to moderate temperatures to age, developing into sols and then 

soon precipitate to form OMS particles or an amorphous gel. These solidified materials 

are then filtered and/or dried (gels are commonly supercritically dried, S.C.). Acids/bases 

aren’t often utilized as a catalyst as is common in sol-gel processing due to the inherent 

basicity of the amine precursors which themselves catalyze the polymerization(Brinker & 

Scherer, 1990).  

Post-modification methods are similar to wet impregnation methods in that the 

amine modification is done after the preparation of the support. Typically for this 

method, the support is mixed with an anhydrous solution of the amino-silane and an 

organic solvent. The mixture is then heated for a certain period of time to allow the 

amino-silane to condense onto the surface of the silica support. It is much simpler relative 

to the co-condensation method and generally yields slightly better results.   
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Figure 1.5: Common Amino Compounds Used in Covalent Grafting Methods. 

 Figure 1.6 shows the comparison between co-condensation and post-modification 

methods in terms of their amine content and adsorption capacity. The general trend is the 

higher the amine content, the greater the adsorption capacity. The post-modification route 

is generally more efficient due to the nature of the method. Because the amino-silane and 

silioxane precursors are mixed at once in the co-condensation route, a portion of the 

amine is trapped in the developing microstructure during condensation and therefore not 

available for adsorption (Klinthong, Chao, & Tan, 2013). Furthermore, it is difficult to 

obtain large amine loadings with co-condensation because of the inherent precursor 

basicity. The large amount of amino precursor results in a larger pH, which catalyzes the 

polymerization unfavorably leading to poor porosities and structure character for 

adsorption. However, S.-N. Kim, Son, Choi, & Ahn, (2008) showed that through the use 
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of anionic surfactants, one can achieve an amine distribution that is more efficient where 

the surfactants are both concurrently developing a OMS while positioning the amino-

silanes normal to the surface of the silica. This route is being explored more and shows to 

have promising potential(Hao, Chang, Xiao, Zhong, & Zhu, 2011; Hao, Zhang, Zhong, & 

Zhu, 2012; Yokoi, Yoshitake, Yamada, Kubota, & Tatsumi, 2006). 

 

Figure 1.6: Comparison of Post-modification and Co-condensation using a Mono Amine. 

(Adsorption Conditions were around 25 
o
C and 100% CO2 at 1bar) 

Post modification is the simplest method of the two with greater tailorability and 

therefore has been more extensively studied for a CO2 sorbent. The amino-silane AMP 

(Figure 1.4), a mono amine, is the most studied amino-silane for grafting silica based 

supports (Aquino et al., 2013; Araki, Doi, Sano, Tanaka, & Miyake, 2009; Aziz, Hedin, 

& Bacsik, 2012; Aziz, Zhao, & Hedin, 2011; Bai, Liu, Gao, Yang, & Li, 2012; A. C. 

Chang, Chuang, Gray, & Soong, 2003; F.-Y. Chang, Chao, Cheng, & Tan, 2009; Gil, 

Tiscornia, de la Iglesia, Mallada, & Santamaría, 2011; M. L. Gray et al., 2005; Gui, Yap, 
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Chai, & Mohamed, 2013; Hao et al., 2011, 2012; He et al., 2012; Hiyoshi, Yogo, & 

Yashima, 2005; C.-H. Huang, Klinthong, & Tan, 2013; H. Y. Huang, Yang, Chinn, & 

Munson, 2003; S. Kim, Ida, Guliants, & Lin, 2005; S.-N. Kim et al., 2008; Klinthong et 

al., 2013; Knowles, Graham, Delaney, & Chaffee, 2005; Ko, Shin, & Choi, 2011; Kumar, 

Labhsetwar, Meshram, & Rayalu, 2011; Leal, 1995; W. Li et al., 2010; Loganathan, 

Tikmani, & Ghoshal, 2013; Mello, Phanon, Silveira, Llewellyn, & Ronconi, 2011; Nik, 

Nohair, & Kaliaguine, 2011; Rezaei et al., 2013; Yang, Kim, Kim, & Ahn, 2012; 

Zelenak, Halamova, Gaberova, Bloch, & Llewellyn, 2008; Zeleňák et al., 2008; G. Zhao, 

Aziz, & Hedin, 2010). The main variables of grafting to achieve high N content are the 

surface area of the support and the surface silanol concentration. Other variables, such as 

the anhydrous grafting conditions (i.e., temperature, time of grafting, silane 

concentration, etc.) does play a role but has little influence relative to the former. 

However, as shall be noted later, when hydrous grafting is performed the temperature of 

grafting does play a significant role. 

The surface area coupled with surface silanol concentration plays a major role for 

this will determine the number of tethers per unit area and the overall number of tethers 

per unit weight of sorbent. Silanol content is critical for it is the active moiety on the 

support silica surface that anchors the amino-silane. Wang & Yang, (2011) revealed this 

using extracted SBA-15 rather than calcined SBA-15 as a support for grafting. Grafting a 

mono amine, the extracted SBA-15 nearly doubled in adsorption capacity relative to the 

calcined support. The extracted support had more silanol content since calcination tends 

to lead to hydroxylation of the surface reducing the –OH surface concentration. 

Furthermore, Wei et al., (2008) took calcined SBA-16 and boiled it in distilled water to 
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further hydrolyze the surface. The boiled support achieved both higher amine content and 

thus a higher CO2 capacity relative to the calcined support.  

Coupled to the surface silanol concentration, higher N content can be achieved 

with higher surface areas. Figure 1.7 shows the significance of the surface area from a 

range of support with roughly the same silanol concentration, surface amine density, and 

similar adsorption conditions (Aquino et al., 2013; Aziz et al., 2012; Gil et al., 2011; H. 

Y. Huang et al., 2003; S. Kim et al., 2005; Knowles et al., 2005; Ko et al., 2011; 

Loganathan et al., 2013; Mello et al., 2011). Clearly the greater the surface area, the 

greater the number of tethers retained, and the higher the adsorption capacity. 

 

Figure 1.7: The Correlation between Surface Area and Adsorption Capacity. 

One very significant variable, closely associated with the silanol density, is the 

amine density; Figure 1.8 illustrates the significance. This quantity, assuming an 

homogenous layer, is commonly calculated by dividing the total amine content per gram 
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by the surface area before modification. As discussed in Section 1.1, CO2 requires two 

amines to form the thermodynamically favored carbamate and ammonium products. 

Therefore it is vital that these two amines be in close proximity in order to effectively 

bind CO2. This is extremely crucial when using mono amine silanes since there is only a 

single amine present per tether distinct from AEAPS (di amine) and DAEAPTS (tri 

amine). Young & Notestein, (2011) grafted silica and TiO2 doped silica with AMP and 

investigated the baseline amine concentration required for the formation of ammonium 

and carbamates species. They found that the minimum required surface density is 0.9 

amine per nm
2
. This is an indication that one must have a support carrying a silanol 

concentration of approximately 1.0 OH per nm
2
 or greater to possess a selective CO2 

sorbent. Later Aziz et al., (2012) revealed that the threshold density was not 1.0 but 

approximately 1.5-2.0 amine per nm
2
. However, they suggest that the variation in the 

results is also due to pore curvature and amine homogeneity. Regardless, for mono-amine 

grafting it is vital that a high silanol content and amine density is achieved to achieve 

selective CO2 adsorptive properties.  
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Figure 1.8: Trend of the Amine Density to CO2 Adsorption Per Unit Area of Multiple 

Grafted Sorbents.  

When grafting with di or tri amines, the tether density becomes less of an issue 

due to the inherent ability of each tether to form ammonium and carbamate. The 

construction of these amino-silanes (Figure 1.5) with the ethylenediamine substructures 

allows them to bend so the zwitterionic species formed can be deprotonated by the inter-

neighboring amine (Zheng et al., 2005). Coupled with this inherent property, using the di 

and tri amino silanes allows one to graft a much higher N content per unit weight of 

support. Figure 1.9 reveals the benefits using the larger N content amino silanes. Tri-

amine, possessing three amine groups per tether, has the greatest performance relative to 

the di and mono in terms of adsorption capacity as a result of being able to graft more 

mmol of N per gram of sorbent. For that reason, and also because of this particular 

chemical’s commercial availability, research groups have endeavored to try to optimize 

the grafting procedure along with exploring more favorable supports (e.g., high silanol 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

C
O

2
 a

to
m

s 
p

er
 n

m
2

 

N atoms per nm2 

Mono 

Di 

Tri 



  23 

surfaces concentrations, high surface areas) in order to achieve higher performing 

sorbents.  

 

Figure 1.9: Adsorption Capacity of Mono, Di, and Tri-amine Grafted Silica Supports. 

(All these Sorbents were Tested and Prepared under Similar Conditions) 

The common procedure for grafting is an anhydrous method using toluene. 

Toluene provides a wet free environment and has little influence in the precursors. Other 

solvents such as ethanol have been used but ethanol has the potential of reversing the 

grafting procedure (Brinker & Scherer, 1990). For a post modification the main tuning 

variables are synthesis temperature, silane concentration, grafting time, and silane:silica 

ratio. The synthesis temperature tends not to play a very significant role as Huang et al., 

(2013) reveal. They used both toluene and s.c. propane as a solvent finding a slight 

improvement in performance for the s.c. propane synthesized materials. But for both 

solvents the temperature affected the adsorption capacity negligibly. Harlick & Sayari, 

(2007) also confirmed the little influence of temperature for SBA-15 grafted materials. 
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As for silane concentration and silane:silica ratio, they play a more significant factor. 

Harlick & Sayari, (2006)  revealed that the N content grows quickly from  0 to 2 mL of 

silane per gram of silica and then tails off with a slow rise after 2 mL/g. Gil et al., (2011) 

revealed a doubling of the adsorption capacity when the concentration rose by 10 fold. 

Furthermore, in both of these studies, they show that the when the time of synthesis rises 

the adsorption capacity as well as N content is further improved. Another variable that 

can be introduced into the grafting procedure is the addition of water before the grafting 

procedure. This hydrous method has shown to be promising in improving amine content 

and adsorption performance (Harlick & Sayari, 2007; Zheng et al., 2005). 

 Lastly, a special class of grafted materials consists of supports that are amine 

functionalized by surface polymerization. Similar to grafted sorbents these materials 

possess amines covalently grafted to the surface but have a much greater potential of 

attaining higher N content due to the nature of polymerizing the amine monomer from the 

surface.  The method of polymerizing amines from the surface is not new since others 

have used this method for developing amino polymers on silica substrates for a variety of 

applications(C. O. Kim, Cho, & Park, 2003; H. Kim, Moon, & Park, 2000; Rosenholm, 

Duchanoy, & Lindén, 2008; Rosenholm & Linde, 2007; Tsubokawa & Takayama, 2000). 

One of the first to report the use of this route for CO2 adsorption applications is Liang, 

Fadhel, Schneider, & Chaffee, (2008) who prepared a series of SBA-15 bound melamine-

based dendrimers. After grafting the SBA-15 with the mono amine AMP, they performed 

a step-wise polymerization by reacting the primary amine of AMP with cyanuric chloride 

(Figure 1.5). Then after multiple washings and filtrations, the substrate was placed in a 

solution of ethylenediamine (EDA, Figure 1.3) to form what they name a generation one 
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(G1) melamine substrate. Multiple cycles of introducing cynanuric chloride and EDA led 

them to develop up to a G4 melamine substrate where the pores of the SBA-15 were 

completely filled with melamine dendrimers. The G3 substrate achieved the best CO2 

adsorption capacity reaching 1.02 mmol/g at 20 
o
C with 90% CO2/Ar. The low capacity 

was suggested to be due to the low availability of amine binding sites. These step-wise 

melamine dendrimers lead to a polymer with a low number of primary amines existing 

mostly at the terminal ends of the polymer. Secondary amines are present at a fair ratio 

but have a high degree of steric hinderance to form the carbamate and ammonium species 

for CO2 capture.  

 Hicks et al., (2008) prepared a much more effective sorbents by performing an in 

situ polymerization technique using aziridine (Figure 1.5). Similar to Liang, Fadhel, 

Schneider, & Chaffee, (2008), they grafted AMP onto a SBA-15 support but then in a 

single step they placed the mono amine grafted SBA-15 into a solution of aziridine where 

this precursor undergoes spontaneous ring opening polymerization from the surface to 

form a hyperbranched aminosilica (HAS).  Using this method they were able to achieve a 

HAS with an N content of nearly 10 mmol N/g which achieved an adsorption capacity of 

5.6 and 4.2 mmol/g at 25 and 75 
o
C (Drese et al., 2009). These sorbents in terms of cyclic 

stability and adsorption capacity and kinetics is among the best for amine modified 

materials. Drese et al., (2012) further explored the use of different supports in order to 

grow larger polymers from the surface for they believed the pore size of SBA-15 

restricted further polymer expansion. However, unexpectedly they found that the polymer 

growth terminated not due to the pore diameter of the support, but due to reasons that 

involve the reactions mechanisms of the polymer development. 
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1.4 Research Objectives and Significance 

Aerogels sometimes referred to as “frozen smoke” have one of the lowest density, 

highest thermal insulating, lowest refractive index, and highest surface area per unit 

volumes of any material. They consist of tangled fractal-like chains of spherical clusters 

of molecules, each about 3-4 nm in diameter. The chains form a highly porous (95% 

porosity or greater) solid structure surrounding air filled pores that average about 20 - 

40nm. Because of these favorable textural properties, according to the current 

understanding of solid amine materials, silica aerogels provided a promising support for a 

CO2 amine-based sorbent.  In the past, aerogels have been investigated as CO2 capture 

and sequestration materials by incorporating certain metal oxides such as wollastonite 

(Santos et al., 2008).  Amine modification of aerogels has also been studied, but for other 

purposes such as drug delivery materials, dissolved metal separations, and for enhancing 

the mechanical integrity of aerogel’s structure (Alnaief & Smirnova, 2010; Capadona et 

al., 2006; Husing et al., 1999; Im et al., 2000; Katti et al., 2006; Meador et al., 2005). The 

majority of aerogels utilized however were prepared in the laboratory by the expensive 

super-critical drying method.  

Hydrophobic silica aerogels (called Nanogel) prepared using a proprietary process 

which circumvents supercritical drying is commercially available in large quantities from 

Cabot Corporation. The aerogel is in particulate form with particles sizes ranging from 5 

μm to 3.5 mm, densities of 40 to 100 kg/m
3
, and surface areas of 600 to 800 m

2
/g.  From 

a practical application view point it is more attractive to prepare amine modified sorbents 

on this commercially available particulate aerogel. Therefore the main objective of this 
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dissertation was to synthesize a novel, high performance CO2 capture material utilizing a 

variety of amines and functionalization methods, using the low density aerogel provided 

by Cabot Corp in order to prepare a potentially viable CO2 sorbent for commercial use.  

In this work, we aimed to synthesize and investigate an amine modified aerogel 

sorbent with high adsorption capacities, fast adsorption kinetics, and robust cyclic 

stability. This was executed by a systematic study investigating CO2 adsorption 

performance of various types of organic amine polymers and amino silanes in the 

presence of pure CO2 and simulated flue gas. Furthermore, different methods for amine 

functionalization were investigated to improve the physical stability and accessibility of 

amines within the aerogel pore space for increased adsorption capacity and kinetics.  The 

work accomplished provided further insight into the performance of aerogel as a support 

for amine modification and the effectiveness of the amine modification methods on 

amorphous silica materials such as aerogel.  

1.5 Structure of the Dissertation  

Each chapter in the dissertation presents a method of amine modification of 

aerogel that was found to yield favorable results compared to other high performing 

amine based sorbents. Chapter 2 and 3 presents two different methods of wet 

impregnation. Chapter 2 reveals the performance of TEPA impregnated aerogels using 

the conventional wet impregnation method and Chapter 3 reveals the performance of a 

novel TEPA controlled precipitation impregnation method. Chapter 4 addresses the CO2 

adsorption performance of a post-modified amine grafted aerogel using a mono, di, and 

tri amino silane. Chapter 5 reports the performance of a novel amine functionalized 

aerogel sorbent using amino silanes in an ALD method. Lastly, Chapter 6 provides a 
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discussion of recommendations for the future advancement of amine modified aerogels 

according to their adsorption capacity, kinetics, and stability potential for post 

combustion CO2 capture. 



  29 

CHAPTER 2 

SYNTHESIS AND CARBON DIOXIDE SORPTION PROPERTIES OF AMINE 

IMPREGNATED PARTICULATE SILICA AEROGEL SORBENTS 

2.1 Introduction  

As described in Chapter 1, there are two primary methods of amine modification 

under the category of CO2 amine based adsorbents materials. Wet impregnated materials 

are those prepared by physically impregnating liquid amines within a porous support. 

These materials generally retain larger amounts of amine and therefore have larger CO2 

adsorption capacities relative to grafting methods, where the amine is covalently tethered 

to the silica support surface. Impregnated materials generally achieve higher amine 

content because the major limiting factor is the amount of pore volume available within 

the support whereas grafted materials are generally limited by surface area, pore size, and 

the concentration of surface silanol sites for covalent grafting (Harlick & Sayari, 2006; 

Knowles et al., 2005; J Wei et al., 2008; Zeleňák et al., 2008).  

 As mentioned previously, the first to develop an amine impregnated material for 

CO2 capture was Xiaochun Xu et al., (2002) utilizing MCM-41 and  PEI. The adsorbent 

achieved a CO2 capacity of 3.0 mmol/g at 75 
o
C under a dry 100% CO2 feed gas. Many 

other studies have been conducted since this point where better performing CO2 

adsorbent materials have been synthesized due to the manipulation of a vital variable, the 

textural properties of support.  

 Most of the research work for impregnated materials has utilized ordered 

mesoporous silica materials (e.g. MCM-41, SBA-15, MCM-48) because of their ordered 

pore structure and tailorable pore properties (Franchi et al., 2005; Heydari-gorji, 
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Belmabkhout, et al., 2011; Y. Liu et al., 2010, 2011; Son et al., 2008; Xingrui Wang et 

al., 2011; Jianwen Wei, Liao, Xiao, Zhang, & Shi, 2010; X. Yan, Zhang, Zhang, Yang, et 

al., 2011; M. B. Yue et al., 2006; Ming Bo Yue et al., 2008). These studies have shown 

that supports having a larger pore volume and pore diameter give the best adsorption 

performance (Figure 1.2).  

Building on these ideas, Chen et al., (2009) developed a silica monolith with 

hierarchical pore structure impregnated with PEI and TEPA. The monolith synthesized 

had a pore volume of 3.2 cm
3
/g and pore diameters of 17 and 120 nm, values much larger 

than conventional molecular sieve supports. The PEI impregnated monolith achieved an 

adsorption capacity of 4.8 and 3.7 mmol/g with a dry 100% and 5% CO2 stream at 75 
o
C. 

The TEPA impregnated monolith achieved an adsorption capacity of 5.9 mmol/g with 

dry 100% CO2 at 75 
o
C but had poor adsorption-desorption cyclic stability due to TEPA’s 

higher volatility. Qi et al., (2011) synthesized a novel nanocomposite TEPA impregnated 

mesoporous silica capsule, achieving adsorption capacities of 6.6 and 5.6 mmol/g with a 

dry 100% and 10% CO2 stream at 75 
o
C respectively, as well as 7.9 mmol/g under a 

humid 10% CO2 stream, the highest reported adsorption capacity reported for an amine 

impregnated material. Due to the large pore space and open structural character of these 

supports, they allowed for high amine loadings and effective amine distributions for CO2 

capture. As a result, the adsorbents were able to achieve significant CO2 adsorption 

capacities with excellent adsorption kinetics.  

Aerogels, due to their favorable porosities and textural properties as described in 

Section 1.4, have the potential to be a high performing amine impregnated sorbent. 

Amine modified aerogels have been prepared by other groups for CO2 capture but no 
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other groups have prepared such supported sorbents by the wet impregnation method to 

our knowledge.   The objective of Chapter 2 is to modify aerogel with TEPA and 

investigate its CO2 adsorptive performance. The aerogel used is both hydrophobic and 

hydrophilic Nanogels manufactured by the afore mentioned Cabot Corporation prepared 

by a proprietary and cost effective ambient drying process.  

2.2 Experimental Methods  

All chemicals were purchased from Aldrich unless otherwise stated. Methanol 

(anhydrous, 99.8%), Tetraethylenepentamine (technical grade). Particulate aerogel (MT-

1100 Nanogel, particle size of 10 μm respectively) was obtained from Cabot Corp. and is 

originally hydrophobic in nature. Hydrophilic aerogel, as will be called from hence forth, 

was prepared by calcining the hydrophobic aerogel in air at 600C
o
 for 8 hours.  

2.2.1 Synthesis of Amine Modified Aerogel 

The TEPA-aerogel sorbents were prepared using the wet impregnation method 

(Xiaochun Xu et al., 2002). 70ml of methanol was mixed with a calculated amount of 

TEPA to obtain a given loading in wt% of amine in the aerogel and mixed vigorously for 

10 min. 2.0 g of aerogel were then added to the solution and stirred for an additional 10 

min. The slurry was then placed under a vacuum at 25 
o
C to dry with stirring until a semi-

solid slurry was formed. Stirring was then discontinued and the slurry left under vacuum 

overnight (24 hour drying period, respectively). Adsorbent samples were then removed 

and placed in storage for testing.  The resulting porosity of the aerogel structure post 

drying is analogous to xerogels, which are porous solids dried from the prepared sol-gel 

by solvent evaporation. They have relatively denser structures due to the capillary force 

induced collapse during the evaporative drying process. Unlike aerogels where the liquid 
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in the sol-gel is generally replaced by gas through a supercritical solvent extraction 

method, avoiding capillary forces and maintaining high porosity. However, to avoid 

confusion of whether aerogels or xerogels were employed, the sample supports will 

remain named aerogels for the original solid utilized before amine modification is 

aerogel. Samples were labeled SA-y-x, y indicating hydrophobic (y = O) or hydrophilic 

(y = I), and x indicating the amount of TEPA immobilized in the aerogel by weight 

percent.  

2.2.2 Sorbent Characterization 

 Nitrogen adsorption-desorption isotherms were obtained on a Micromeritics 

ASAP 2020 surface area and porosity analyzer at 77K. Before the nitrogen porosimetry 

analysis, impregnated samples were activated in an oven at 100 
o
C in air at 1 atm for 1 

hour.  The Micrometrics automated degas application was not used for activation to 

prevent the vaporization and condensation of TEPA inside the N2 porosimetry system. 

This vaporization occurred when degassing under a heated (~100 
o
C) vacuum. However, 

the impregnated samples that were subjected to the mild vacuum (0.01 mm Hg, or 1.333 

Pa) prior to nitrogen adsorption porosimetry measurements experienced negligible loss of 

TEPA for this is performed at room temperature (~20
 o
C).  This was confirmed by TGA 

analysis of an 80 wt% TEPA/aerogel sample showing less than 3 wt% weight loss after 

the vacuum treatment. TEPA has a very low vapor pressure at room temperature (<0.01 

mmHg @ 20 
o
C).  Therefore the vacuum of 0.01 mm Hg (1.333 Pa) resulted in a 

negligible loss of amino groups. The Brunauer-Emmett-Teller (BET) method and the 

Barret-Joyner-Halenda (BJH) model of the adsorption isotherm were used to calculate the 

surface area, the pore size distribution, and pore volume of unmodified aerogel while the 
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BET surface area, BET pore diameter (4V/A), and the single point pore volume were 

calculated for the SA-I-x and SA-O-x sorbents. FT-IR spectra of aerogel and amine 

modified samples were obtained using a Nicolet 4700 spectrometer with the Smart Orbit 

ATR crystal sampler.  Thermogravimetric analyses were conducted with a TA 

Instruments SDT-Q600 analyzer. Sorbents were equilibrated at 50 
o
C and then heated to 

500 
o
C at a rate of 5 

o
C /min in Argon.  

2.2.3 Carbon Dioxide Adsorption Analysis 

 The CO2 adsorption performance of the sorbents was determined using a Thermo 

Cahn D-101 electro-microbalance (Figure 2.1). For a typical adsorption analysis, about 

10 mg of sample was placed in a stainless steel sample pan and activated at 100 
o
C at 1 

atm for 30 min under high purity Argon (99.99%) at 100 mL/min to remove unwanted 

adsorbed species (e.g., H2O, CO2, methanol). Sorbents were then cooled to 75 
o
C and 

pure CO2 (99.99%) or 10% CO2/Ar was then introduced for 1 hr at 1 atm at a flow rate of 

100 mL/min. The CO2 equilibrium adsorption capacity was determined by the weight 

gained during the 1 hour adsorption period. For the CO2 adsorption-desorption cyclic 

stability test, sorbents were activated by heating to 100 
o
C for 30-min under a 100 

mL/min Ar flow. After cooling to 75 
o
C, 100% CO2 was introduced for 10 min for 

adsorption and then the stream was switched to 100% Ar for 20 min at 100 mL/min for 

desorption.  
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Figure 2.1: Schematic of Experimental Apparatus for Investigating CO2 Adsorption 

Performance. 

2.3 Results and Discussion 

2.3.1 Sorbent Characteristics 

 Figure 2.2 and 2.3 shows the FT-IR spectra of the hydrophilic and hydrophobic 

aerogels before and after amine impregnation. The absorption peaks near 1051 and 

806cm
-1

 are due to the Si-O-Si vibrations (Llusar, Monros, Roux, Pozzo, & Sanchez, 

2003). Regarding the hydrophobic aerogel, peaks located at 2962, 1255, and 842cm
-1

 are 

a result of the terminal –CH3 groups on silica surface(H. Liu, Sha, Cooper, & Fan, 2009). 

After amine impregnation of the two aerogel supports, new absorption peaks were 

observed validating the presence of TEPA inside aerogel supports (Figure 2.2). Bands at 

1596, 3280, and 3355 cm
-1

 are attributed to the stretching vibrations of NH2 and the 
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peaks seen at  1342, 1455, 2807, 2883, and 2933 cm
-1

 are due to the CH2 vibrations of 

TEPA (Qi et al., 2011).  

 

Figure 2.2: FT-IR spectra of Hydrophobic (top) and Hydrophilic (bottom) before Amine 

Impregnation. 
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Figure 2.3: FT-IR Spectra of Hydrophobic (top) and Hydrophilic (bottom) after Amine 

Modification 

The N2 adsorption-desorption isotherms and the pore size distribution of the 

unmodified hydrophilic (SA-I) and hydrophobic (SA-O) aerogels are shown in Figure 2.4 

with Table 2.1 summarizing the textural properties of all samples. The isotherms of the 

unmodified SA-I and SA-O are type IV with H1 type hysteresis corresponding to the 

mesoporosity of the aerogel and are similar to those of supercritically dried aerogels (J. 

H. Lee, Choi, & Kim, 1997; Sing et al., 1985b). The BET surface area of the SA-O 

aerogel was 673 m
2
/g with a BJH pore volume of  3.5 cm

3
/g. The pore distribution curve 

showed a peak at 21 nm. After calcining, the surface area, pore volume, and pore 

diameter increased to 822 m
2
/g, 5.0 cm

3
/g, and 42 nm. Supercritically dried unmodified 

aerogels, when thermally treated at a relatively high temperatures (e.g. greater than 600 

o
C) are known to shrink due to vitrification and sintering (Balkis Ameen, Rajasekar, 
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Rajasekharan, & Rajasekharan, 2007; Kuchta & Fajnor, 1996). However, the aerogel 

utilized in this work was functionalized with trimethylchlorosilane during synthesis, 

giving it its hydrophobicity, and therefore during heat treatment the organic groups 

tethered to the surface oxidize resulting in greater porosity as reported elsewhere (H. Liu 

et al., 2009).  It has been suggested that the expansion of gas during oxidation causes 

compression on the aerogel structure, expanding the silica network and increasing its 

porosity(Kang & Choi, 2000).  

Table 2.1: Summary of Nitrogen Adsorption-Desorption Analysis.  

Sorbent Surface Area (m
2
/g) Vp (cm

3
/g)

a 
Dp (nm)

b 

SA-I 822 5.0
c 

42
c 

SA-I-40 91 0.18 7.9 

SA-I-50 10 0.03 9.9 

SA-I-60 2.6 0.01 12 

SA-I-70 1.3 - 9.5 

SA-I-80 0.74 - 5.7 

SA-I-85 0.43 - 5.0 

SA-I-90 0.08 - - 

SA-O 673 3.5
c 

21
c 

SA-O-50 0.02 - - 

SA-O-60 0.02 - - 

SA-O-70 0.11 - - 

SA-O-80 0.07 - - 

SA-O-85 0.05 - - 
 

a
Single Point Pore Volume  

b
BET Surface Area  

c 
Adsorption Isotherm BJH Method Applied 
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Figure 2.4: Nitrogen Adsorption-Desorption Isotherms of Unmodified SA-I (top) and SA-

O (bottom) Aerogels. 
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After amine impregnation, the surface area and pore volume decrease with 

increasing amounts of TEPA for both supports due to the amine occupying the pore space 

of the aerogel(X Xu et al., 2003). Figure 2.5 shows the nitrogen adsorption-desorption 

isotherms for the SA-I-x sorbents. The SA-I-40 and SA-I-50 samples show some 

remaining mesoporosity, but with greater amine loadings the isotherms move toward type 

II suggesting the filling of the pore space. The SA-I-70 through SA-I-90 samples had 

virtually zero pore volume as a result of the amine filling the pores. As for the SA-O-x 

samples, (Figure 2.6), there appears to be no remaining mesoporosity in any of the 

sorbents and all of the SA-O-x samples appear to have completely filled pores. The 

isotherm for the SA-I-80 sample clearly shows the difference between the hydrophilic 

and hydrophobic aerogel samples and is included in Figure 2.6 for comparison.  
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Figure 2.5: Nitrogen Adsorption-Desorption Isotherms of TEPA Impregnated SA-I-x 

Sorbents. 
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Figure 2.6: Nitrogen Adsorption-Desorption Isotherms of TEPA Impregnated SA-O-x 

Sorbents. 
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TEPA filled aerogel particle, or until the collapsed particle reaches a stable configuration 

with the TEPA/methanol solution beginning to recede within the pores of the densified 

aerogel.    

The SA-O-x samples, however, appear to have a greater degree of pore plugging 

than the SA-I-x samples. Though the pore volume of the unmodified SA-O support is 

smaller resulting in filled pores at lower relative loadings, there is still no observable 

mesoporosity seen even for the lowest TEPA loaded sorbent, SA-O-50. These results are 

most likely due to the hydrophobicity of the surface. The (-CH3) surface groups appear to 

be contributing toward a greater degree of pore plugging during drying by their molecular 

interaction with the amine/methanol solution. It may be that the TEPA precipitates out of 

the solution during the later stages of the drying process and is displaced by the methanol 

within the pore space of the aerogel particle due to the differences in surface free 

energies, resulting in amine plugging the pores near the exterior of the aerogel. 

To confirm the structure shrinkage of the aerogel upon solvent drying, the pore 

structure of the aerogel pre-soaked with a solvent (e.g., ethanol without TEPA) followed 

by the ambient pressure drying was measured. It has a pore volume and surface area 

respectively of about and 2.1 cm
3
/g and 645 m

2
/g.  Compared to the values of 5.0 cm

3
/g 

and 822 m
2
/g for the fresh aerogel (Table 2.1), it is clear that the aerogel structure shrank 

upon soaking and drying of a solvent.  However, the pore volume of the dried aerogel is 

still much larger than silica xerogel prepared by ambient pressure drying of wet-gel by 

the sol-gel process (typically in the range of about 0.6-0.8 cm
3
/g) (Zeng, Zajac, Clapp, & 

Rifkin, 1998). This is because xerogel is prepared by drying a wet-gel with a flexible 

structure not fully condensed.  When aerogel is pre-soaked with a solvent followed by 
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drying in ambient pressure, the aerogel structure is much more rigid than the wet-gel, and 

therefore more resistant against contraction induced by the capillary pressure as 

compared to the wet-gel from which xerogel is obtained. 

For affirmation of the amount of TEPA impregnated in the SA-I-x and SA-O-x 

sorbents, TG analyses were conducted and the results are shown in Figure 2.7. All 

samples show similar mass loss trends within the same temperature ranges. Between the 

temperatures of 50-100 
o
C there was a slight drop in mass (~3%) on all samples which is 

attributed to pre-adsorbed water, carbon dioxide and possibly residual methanol in the 

adsorbent material during synthesis. A second weight loss was observed between 150-

300 
o
C due to the thermal decomposition of TEPA, which has a boiling point of 340 

o
C. 

The decomposition temperature of TEPA is lower than the boiling point in this 

circumstance, a common observation with impregnated materials (Son et al., 2008; X Xu 

et al., 2003), which is  suggested to be due to the increased volatility of TEPA when its 

particulate size decreases (Ebner et al., 2011). The amount of TEPA immobilized in the 

aerogels was calculated from the weight difference from the TGA curve at 100 
o
C and 

450 
o
C shown in Figure 2.7.  The TEPA content (in wt% with respect to aerogel weight) 

is listed in Table 2.1.   The TGA data were within 6% of the theoretical amounts 

calculated, suggesting that little TEPA was lost during synthesis and verifying the 

validity of the wet impregnation method. 
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Figure 2.7: TGA Results of SA-I-x (top) and SA-O-x (bottom) Samples (Heating Rate 5 
o
C 

/min from 50 to 500 
o
C). 
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2.3.2 CO2 Adsorption Performance 

 Figure 2.8 shows the dynamic CO2 adsorption capacities for the SA-I-x and SA-

O-x samples with 100% CO2 at 75 
o
C. A temperature of 75 

o
C was chosen for adsorption 

for these sorbents since 75 
o
C is generally the optimum operating temperature for TEPA 

impregnated materials (Chen et al., 2009; Y. Liu et al., 2011; Son et al., 2008; Xiaoxing 

Wang et al., 2012; Xingrui Wang et al., 2011; Xiaochun Xu et al., 2002). Typically, 

chemisorption is an exothermic process which results in decreased adsorption capacities 

at higher temperatures. However, for impregnated materials, a diffusional limitation 

during the CO2 adsorption process is present that results in the increased adsorption 

capacities with an increase in temperature. At higher temperatures the amine molecules 

become more mobile (i.e., less viscous) and therefore allow for greater CO2 transport 

through the sorbent, reaching a greater number of amine adsorption sites. Above a certain 

maximum temperature, however, the adsorption capacity begins to fall due to the 

thermodynamic limitation becoming the prevalent constraint.  

 The CO2 adsorption behavior seen in Figure 2.8 for both the SA-I-x and SA-O-x 

samples is seen to have a fast first stage adsorption process followed by a slow second 

stage adsorption progression. This behavior is commonly seen for impregnated 

sorbents(Chen et al., 2010; Ming Bo Yue et al., 2008). The SA-I-40 sorbent reached 90% 

of its equilibrium adsorption capacity (considered in this work the adsorption capacity 

after 1 hour of CO2 exposure) within the first 5 min. Sorbents SA-I-50 through SA-I-85 

reached 90% capacity within the first 10 min of adsorption, the time slightly increasing 

with increasing TEPA content. However, for SA-I-90, 90% capacity was reached in 

about 24 min. The longer time to reach 90% capacity with greater amine content is a 
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consequence of the increasing CO2 diffusion length, (i.e. the  radial distance CO2 must 

transport to reach the core of TEPA filled particulate) (Heydari-gorji, Yang, et al., 2011). 

SA-I-40 has the quickest time due to the lowest diffusion length as a result of the lower 

amine loading. SA-I-40 virtually reaches the actual thermodynamic equilibrium within 

the 1 hour period during the first adsorption stage, having a second stage adsorption rate 

of nearly zero. Sorbents SA-I-50 through SA-I-85 have longer diffusion lengths leading 

to longer periods of time to reach the thermodynamic equilibrium.  
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Figure 2.8: Adsorption Performance of Hydrophilic (top) and Hydrophobic (bottom) 

Sorbents at 75 
o
C with 100% CO2 at 1 atm. 
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The second stage adsorption rates ranged from 0.003 to 0.008 mmol/g-min for 

SA-I-50 through SA-I-85, increasing with increasing TEPA content. Subsequently, after 

pore saturation occurs at amine loadings close to the theoretical maximum the amines 

begin to layer on the exterior surface of the particles forming large agglomerates (Son et 

al., 2008; X. Yan, Zhang, Zhang, Qiao, et al., 2011). For SA-I-90, the diffusion length 

increases substantially leading to a much longer time to reach thermodynamic 

equilibrium; and the second stage rate for SA-I-90 was as high as 0.013 mmol/g-min.  

 In regard to the SA-O-x sorbents, the time to reach 90% equilibrium adsorption 

capacity was fairly constant averaging about 30 min, significantly longer relative to the 

SA-I-x sorbents. Thus the SA-I support appears to be distributing the TEPA more 

effectively. As previously discussed in section 2.3.1, the SA-O support seems to 

encourage a greater degree of pore plugging than SA-I which leads to slower adsorption 

kinetics. 

 Figure 2.9 shows the equilibrium adsorption capacities as a function of TEPA 

content for the SA-I-x and SA-O-x sorbents. The SA-I-x samples outperformed the SA-

O-x samples at all TEPA loadings achieving a maximum adsorption capacity of 6.1 

mmol/g at 80wt% TEPA (SA-I-80). Unmodified SA-I and SA-O aerogels without TEPA 

showed less than 0.1 wt% weight gain with the switch of the surrounding gas from pure 

Ar to pure CO2 stream at 1 atm, confirming negligible adsorption of CO2 at 1 atm CO2 

pressure by unmodified silica aerogel.  This result has also been observed for other silica 

supports (Meador et al., 2005; Xiaochun Xu et al., 2002; X. Yan, Zhang, Zhang, Qiao, et 

al., 2011). The highest capacity for the SA-O-x sorbent was 3.5 mmol/g at 80wt% TEPA 

(SA-O-80). The SA-I-80 and SA-O-80 achieved amine efficiencies (i.e. mol of CO2/mol 
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of N) of 0.29 and 0.16 (Figure 2.10), where the theoretical value at the adsorption 

conditions studied is 0.5 as previously discussed(Caplow, 1968).  

 

Figure 2.9: CO2 Adsorption Capacity of SA-I-x and SA-O-x Samples in Relation to 

Amount of TEPA Immobilized within the Support at 75 
o
C with 100% CO2 for 1 hour. 
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Figure 2.10: Amine Efficiencies of SA-I-x and SA-O-x Samples in Relation to Amount of 

TEPA Immobilized within Adsorbent. 

 The optimal adsorption capacity occurs at amine loadings near pore saturation as 

also seen elsewhere(Choi et al., 2009; Franchi et al., 2005; Qi et al., 2011). Amine 

loadings near pore saturation allow for the highest amount of N content without excessive 

agglomeration and CO2 diffusion resistance, thus optimizing capacity. However, the 

maximum adsorption capacity could also be a function of particle size, which inherently 

affects diffusion length (Heydari-gorji, Yang, et al., 2011). 

For the SA-I-x sorbents, the adsorption capacity increases non-linearly with rising 

TEPA content. This is a result of the rising amine efficiency of the sorbent with amine 

loading.  If the amine efficiency remained constant, then theoretically, a linear increase in 

adsorption capacity would be observed. The increasing amine efficiency is suggested to 

be due to the increased intermolecular contact between amine molecules as the TEPA 
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content rises. As previously discussed, two amino groups are required for the 

chemisorption of CO2 under dry conditions. At lower relative loadings, the segregation of 

TEPA along the silica surface is greater and results in less intermolecular interaction 

between TEPA molecules. Consequently, the amount of CO2 adsorbed per amino 

sorption site falls. In regards to the SA-O-x sorbents, the trend exhibits greater linearity 

and nearly constant amine efficiencies (0.10, 0.14, 0.15, 0.16). This result is most likely 

due to the different amine distribution because of the hydrophobic surface as mentioned 

previously. 

 The SA-I-80 sorbent, which showed the highest CO2 adsorption capacity, was 

also tested under low CO2 partial pressure conditions (10% CO2/Ar in 1 atm total 

pressure). Under the low CO2 partial pressure environment the SA-I-80 sorbent achieved 

an adsorption capacity of 3.5 mmol/g with an amine efficiency of 0.17. Table 2.2 

summarizes the CO2 adsorption results along with those obtained in other studies for 

comparison purposes. Note that the CO2 adsorption capacity of the SA-I-80 sorbent is 

close to that of the mesoporous capsule (Qi et al., 2011), the impregnated sorbent which 

reported the highest CO2 adsorption capacity thus far. The SA-I-80 sample, when 

examined under low CO2 partial pressure, also performed competitively when compared 

to the silica monolith (Chen et al., 2009) and KIT-6 (Y. Liu et al., 2010)sorbent. The 

exceptional CO2 adsorption performance of the SA-I-x sorbents compared to other 

sorbents cited using different supports is ascribed to the large pore volume and pore 

diameter of aerogel. The large pore volume allows for a high TEPA loading without 

significant particle agglomeration, mitigating diffusional resistance, while the large pore 
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diameter provides greater CO2 transport through the TEPA filled support (Son et al., 

2008).  

Table 2.2: Summary of CO2 Adsorption Performance using Aerogel as Compared to 

Other TEPA Impregnated Sorbent Materials. 

Sorbent Temp. 

(
o
C ) 

vol% 

CO2 

TEPA 

Loading 

(wt%) 

Adsorption 

Capacity 

(mmol/g) 

amine 

efficiency (mol 

CO2/mol N) 

Ref. 

SA-I-40 75 100 40 2.3 0.22 -- 

SA-I-50 75 100 50 3.2 0.24 -- 

SA-I-60 75 100 60 3.7 0.23 -- 

SA-I-70 75 100 70 4.7 0.25 -- 

SA-I-80 75 100 80 6.1 0.29 -- 

SA-I-80 75 10 80 3.5 0.17 -- 

SA-I-85 75 100 85 5.1 0.23 -- 

SA-I-90 75 100 90 3.6 0.15 -- 

SA-O-50 75 100 50 1.5 0.10 -- 

SA-O-60 75 100 60 2.3 0.14 -- 

SA-O-70 75 100 70 2.8 0.15 -- 

SA-O-80 75 100 80 3.5 0.16 -- 

SA-O-85 75 100 85 2.8 0.13 -- 

silica 

monolith 

75 100 65 5.9 0.34 (Chen et al., 

2009)  
as-prepared 

MSU-1 

75 10 50 3.9 0.29 (Xingrui 

Wang et al., 

2011) 

mesoporous 

capsule 

75 100 83 6.6 0.30 (Qi et al., 

2011) 
as-prepared 

MCM-41  

75 100 60 5.4 0.34 (Ming Bo 

Yue et al., 

2008) 

KIT-6 60 10 50 2.9 0.22 (Y. Liu et al., 

2010) 

 

In order to have practical industrial application, adsorbents must also demonstrate 

economical regenerability, stability, and fast adsorption-desorption kinetics over 

thousands of cycles. Figure 2.11 shows the cyclic performance for the SA-I-80 sorbent. 

Cyclic tests were performed using a concentration sweep by switching from 100% CO2 
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for 10 min of adsorption to 100% Ar for 20 min of desorption. After ten cycles using 

100% CO2, with each adsorption cycle run for 10 minutes, the SA-I-80 adsorption 

capacity remained nearly constant with a capacity of  5.1 mmol/g. This indicated a decent 

cyclic stability over 10 cycles though the sorbent loss approximately 5% of its initial 

mass due to TEPA evaporation. For an industrial setting, a concentration sweep such as 

steam stripping is suggested to be employed for this sorbent. Other possibilities are 

temperature swing or pressure swing desorption. However, the sorbents prepared do not 

look to have the potential to be stable over the large number of cycles required for 

commercial applications.  

 

Figure 11: Cyclic Stability of SA-I-80 Sorbent (Adsorption at75 C
o
 with 100% CO2 for 10 

min; Desorption at75 
o
C with 100% Ar for 20 min).  
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2.4 Conclusions 

Novel wet impregnated amine-based CO2 sorbent materials were developed by 

the wet impregnation method using hydrophilic and hydrophobic aerogels (Nanogel 

obtained from Cabot Corp.) as the support for TEPA. The hydrophilic aerogel sorbents, 

SA-I-x, outperformed the hydrophobic aerogel sorbents, SA-O-x, presumably due to the 

difference in TEPA distribution as a result of the difference in hydrophilicity of the 

support. The surface chemistry of the aerogel appears to influence how TEPA is filling 

the pores. However, more research is required for a better understanding of the surface 

chemistry effects on the drying and amine distribution mechanism during synthesis. The 

SA-I-80 sample achieved an excellent equilibrium CO2 adsorption capacity of 6.1 and 3.5 

mmol/g under a dry 100% and 10% CO2 stream at 75 
o
C. However, the SA-I-80 sample 

achieved moderate cyclic stability over 10 cycles having an average capacity after 10 

minutes of adsorption of 5.1 mmol/g under dry 100% CO2, making it not an ideal sorbent 

for industrial use.  
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CHAPTER 3 

RELATIONSHIP OF SYNTHESIS METHOD, AMINE DISTRIBUTION AND 

CARBON DIOXIDE SORPTION PERFORMANCE OF AMINE IMPREGNATED 

SILICA AEROGEL SORBENTS 

3.1 Introduction 

As discussed in Chapter 1, a factor that plays a major role on the adsorption 

performance of amine impregnated sorbents is the amine distribution within the porous 

support. The significance of this factor is due to the poor diffusion kinetics of CO2 

through the amine film within the adsorbent. The organic amines predominately used 

(e.g. PEI) are liquids at room temperature and drastically increase in viscosity upon 

reacting with CO2 due to strong carbamate-ammonium hydrogen bonding, resulting in 

obstructed CO2 transport (Goodrich et al., 2011; Gutowski & Maginn, 2008; Zhang et al., 

2009). The diffusion limitation is readily recognized by the requirement for higher 

operating temperatures (typically around 75 
o
C) during adsorption to reach optimum 

performance 

As explained in Section 1.2, innovations have emerged to improve the amine 

distribution in impregnated sorbents through the use of template occluded ordered 

mesoporous silica supports, (Heydari-gorji, Belmabkhout, et al., 2011; B. Li et al., 2011; 

Xingrui Wang et al., 2011; Jianwen Wei et al., 2010; M. B. Yue et al., 2006; Ming Bo 

Yue et al., 2008) surfactant-aminopolymer blends,(J. Wang et al., 2012) and short pore 

length supports(Heydari-gorji, Yang, et al., 2011; Qi et al., 2011). All of these have been 

shown to improve the CO2 adsorption performance relative to simply impregnating a pure 

amino-polymer into the porous support matrix. However, it is still not clearly understood 
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how the amines are distributed within the pore space of the support upon impregnation, 

and how synthesis conditions affect their coverage in the support framework. This is a 

critical insight that needs to be explored in order to design higher performing amine 

based adsorbents.  

Presently, limited work has been done in investigating amino polymer 

distributions within porous networks for certain methods of amine immobilization. Sanz, 

Calleja, Arencibia, & Sanz-Pérez, (2012) & (2013) explored the amino polymer 

distribution of PEI and TEPA impregnated SBA-15 by transmission electron microscopy. 

The PEI impregnated SBA-15 samples showed heterogeneous distributions of PEI within 

individual particles, and even some particles containing no PEI. The TEPA impregnated 

SBA-15 showed relatively homogenous amine coverage within the SBA-15 support. 

However, the SBA-15 used in this case was grafted with a tri amino silane (Figure 1.5) 

prior to TEPA impregnation which may influence the amino polymer distribution. This 

reveals that the surface chemistry and/or molecular weight of the amino polymer could 

influence polymer distribution. Neimark, Hanson, & Ungert, (1993) investigated the 

distribution of polybutadiene impregnated in porous silica using fractal analysis. Similar 

to typical impregnation synthesis, the oligomer was immobilized in the silica by the wet 

impregnation method but further modified with a cross-linking agent to fixate the 

polymer position in the pores. They found that the majority of the amine was retained 

inside the porous silica and was distributed in inclusions randomly throughout the porous 

network.  

In this Chapter, an investigation was performed on the affects of the synthesis 

route of amine impregnation on the polymer distribution within a porous support. TEPA 
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impregnated silica aerogel sorbents were prepared by two different methods: a solvent 

evaporative precipitation method, and the previously reported wet-impregnation method 

discussed in Chapter 2 (Section 2.2.1). The objective of Chapter 3 is to examine the 

relationship of synthesis-structure-CO2 adsorption properties of impregnated sorbents on 

the silica aerogel supports. 

3.2 Experimental Methods 

All chemical were purchased from Aldrich unless otherwise stated. These 

chemicals include methanol (anhydrous, 99.8%), Tetraethylenepentamine (TEPA, 

technical grade), n-hexane (anhydrous, 95%), sodium periodate (NaIO4, ACS reagent, 

>99.8%), Ruthenium(IV) oxide hydrate (RuO2•2H2O, powder). Particulate aerogel (MT-

1100 Nanogel, particle size of 10 μm) was obtained from Cabot Corp. and is originally 

hydrophobic in nature. Hydrophilic aerogel was prepared by calcining the hydrophobic 

aerogel as described in Section 2.2. 

3.2.1 Solvent Evaporative Precipitation Method 

A saturated TEPA/n-hexane solution was prepared as follows. TEPA (9 mL) was 

added to 100 mL of n-hexane in a 150 mL Erlenmeyer flask at room temperature. TEPA 

was chosen as the amino polymer because of its semi-soluble properties in non-polar 

hexane and high adsorption capacity potential (Y. Liu et al., 2010; Qi et al., 2011; 

Xingrui Wang et al., 2011; Ming Bo Yue et al., 2008). The mixture was then heated with 

stirring to a light boil. (~68 
o
C, hexane’s boiling temperature). TEPA has a solubility of 

approximately 7 and 40 mg/mL at 23 
o
C and 68 

o
C, respectively. In a 50 mL Erlenmeyer 

flask, 1 g of hydrophilic aerogel (MT-1100 Nanogel, previously calcined at 600 
o
C for 8 

hrs in atmosphere air) and 20 mL of n-hexane were mixed and heated. The 
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aerogel/hexane slurry was reduced due to evaporation of n-hexane until a paste 

developed. The mass ratio of the aerogel/hexane paste reached approximately 1:3. At this 

point, 5 mL of the TEPA/n-hexane solution at 68 
o
C was removed by a glass pipette and 

added into a 25 mL beaker heated by a second hot plate. This step is required due to the 

precipitation of the TEPA from the hexane solution inside the pipette. The pipette is at 

room temperature when withdrawing the 5mL of TEPA/n-hexane solution causing the 

TEPA to precipitate. Reheating the solution in the heated beaker dissolves the TEPA 

again into the hexane solution. The beaker with 5 mL of TEPA/n-hexane solution is then 

added to the aerogel/hexane paste and the contents are then thoroughly mixed and the 

slurry is reduced (due to n-hexane evaporation) until a paste consistency is reached again. 

The 5 mL additions of TEPA/n-hexane solution are repeated until a desired total amount 

of TEPA has been added. Each 5 mL addition contains approximately 200 mg of TEPA. 

Therefore, as an example, for a 50 wt% TEPA/aerogel sample, 5 additions of 5 mL of 

TEPA/n-hexane (25 mL total, equivalent to 1 g of TEPA) are required. Once the required 

amount for a desired loading is added, the slurry is cooled to room temperature and then 

vacuumed dried at 25 
o
C. Samples were labeled P-x, x representing the desired wt.% of 

TEPA in the prepared sample.  

3.2.2 Wet Impregnation Method 

TEPA/aerogel sorbents were prepared by the wet impregnation method according 

to Section 2.2.1. 70 ml of methanol was mixed with a calculated amount of TEPA to 

obtain a given loading in wt% of amine in the aerogel and mixed vigorously for 10 min. 2 

g of hydrophilic aerogel were then added to the solution and stirred for an additional 10 

min. The slurry was then placed under a vacuum at 25 
o
C to dry with stirring until a semi-
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solid slurry was formed. Stirring was then discontinued and the slurry left under vacuum 

overnight (24 hour drying period). Adsorbent samples were then removed and placed in 

storage for testing. Samples were labeled W-x, with x representing the desired wt.% of 

TEPA in the sorbent prepared. 

3.2.3 Ruthenium Tetroxide Stain 

Some samples prepared by the wet impregnation method and the evaporative 

precipitation method were stained with ruthenium tetroxide to facilitate transmission 

electron micrograph contrast for better imaging (Sanz et al., 2012). Ruthenium tetroxide 

is considered a specific staining compound for amino groups and therefore was chosen to 

oxidize amine groups on TEPA; the large atomic mass metal facilitated amine detection 

by TEM (Sawyer, Grubb, & Meyers, 1996). The staining solution was prepared as 

described by Trent, (1984), i.e., 1 g of NaIO4 was dissolved in 25 mL of deionized water 

at 25 
o
C and chilled in refrigerator to approximately 0 

o
C and RuO2•2H2O (150 mg) was 

added to the chilled NaIO4 solution. The solution turned dark yellow and consisted of 0.5 

wt% RuO4. 10 mg samples were stained by RuO4 vapor by suspending the sample over 

RuO4 solution in a closed container for 10 min.  

3.2.4 Sorbent Characterization 

Nitrogen adsorption-desorption isotherms were obtained on a Micromeritics 

ASAP 2020 surface area and porosity analyzer at 77 K. Before the nitrogen porosimetry 

analysis, samples were activated at 100 
o
C in a 25 inHg vacuum for 1 hour.  The 

Micrometrics automated de-gas application was not used for activation to prevent the 

vaporization and condensation of TEPA inside the N2 porosimetry system. The Brunauer-

Emmett-Teller (BET) method and the Barret-Joyner-Halenda (BJH) model of the 
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adsorption isotherm were used to calculate the surface area, the pore size distribution, and 

pore volume. Transmission electron micrographs were obtained by a JEOL JEM-

ARM200F instrument set at 80 kV. Thermogravimetric analyses were conducted with a 

TA Instruments SDT-Q600 analyzer. Sorbents were equilibrated at 50 
o
C and then heated 

to 500 
o
C at a rate of 5 

o
C/min in Argon. 

3.2.5 Carbon Dioxide Adsorption Analysis 

The CO2 adsorption performance of the sorbents was determined using a Thermo 

Cahn D-101 electro-microbalance as described in Section 2.2.3. For a typical adsorption 

analysis, about 10 mg of sample was placed in a stainless steel sample pan and activated 

at 100 
o
C at 1 atm for 30 min under high purity Argon (99.99%) at 100 mL/min to 

remove unwanted adsorbed species (e.g., H2O, CO2, remaining solvent). Sorbents were 

then cooled to 75 
o
C and pure CO2 (99.99%) was then introduced for 1 hr at 1 atm at a 

flow rate of 100 mL/min. The CO2 equilibrium adsorption capacity was determined by 

the weight gained during the 1 hour adsorption period.  

3.3 Results and Discussion 

3.3.1 Sorbent Characteristics 

Thermogravimetric and rate of mass loss data of the sorbents of different TEPA 

loadings prepared by the two methods are shown in Figures 3.1 and 3.2. Both the P-x and 

W-x sorbents showed similar mass loss trends. From 50 to 100 
o
C there was an average 

loss of 4% attributed to the loss of adsorbed H2O, CO2, and remaining organic solvent 

such as methanol or hexane. The weight loss between 150-400 
o
C is due to the 

evaporation of TEPA. The W-x sorbents had a TEPA content close to that desired during 

the wet impregnation procedure. However, the P-x samples had a TEPA content 5 to 10 
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wt% less than that desired. During the evaporative precipitation method, specifically the 

5 mL transfer step when the TEPA/n-hexane solution precipitates inside pipette, some 

TEPA is lost due to adsorption of TEPA onto the inside of pipette resulting in lower 

amounts of TEPA added to the aerogel than desired. Due to differences between the 

desired and measured TEPA content, figures presenting P-x data and calculations 

involving TEPA content for the P-x sorbents were evaluated based on the absolute 

measured weight calculated from TGA data but the value of ‘x’ remains the desired 

amount for the P-x samples.  
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Figure 3.1: Sorbent Mass Loss by TGA prepared by the Evaporative Precipitation 

Method (a), and the Wet Impregnation Method (b).  



  63 

 
Figure 3.2: Rate of Sorbent Mass Loss prepared by the Evaporative Precipitation 

Method (a), and the Wet impregnation Method (b). 

In Figure 3.2, the peak mass loss rates for the P-x and W-x samples were fairly 

similar. There are some fluctuations in the temperature where peak loss occurs for the P-x 

and W-x samples, revealing a rough trend of increasing temperature with decreasing 

TEPA content. This could possibly be the result of TEPA possessing a slight affinity for 
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the hydrophilic aerogel surface (Franchi et al., 2005). Also, if the P-x samples actually 

possessed a nanoscale film layer, the expected temperature for the peak mass loss rate 

should be depressed relative to the W-x (Lopeandía & Rodríguez-Viejo, 2007; Sun & 

Simon, 2007). However, there is only a slight temperature depression, roughly 20 
o
C, 

indicating similar amino polymer film scales in both the P-x and W-x samples. 

  
Figure 3.3: Nitrogen Adsorption/Desorption Isotherms of the Samples prepared by the 

Wet Impregnation Method (a), and the Evaporative Precipitation Method (b). 



  65 

Figure 3.3 shows the nitrogen adsorption/desorption isotherms for the W-x and P-

x sorbents. The isotherms of both P-x and W-x samples show a type IV isotherm with 

type H2 hysterisis (Sing et al., 1985a). Between the two methods, the P-x samples, Figure 

3.3(b), appear to have a slightly higher porosity than the W-x samples, Figure 3.3(a). The 

increased porosity is likely the result of the evaporative precipitation synthesis route of 

amine immobilization that leads to a somewhat better distribution of amine and less pore 

plugging relative to wet impregnation. Figure 3.4(a) and (b) show the trends of the pore 

volume and surface area changes relative to the TEPA content. The surface areas and the 

pore volumes of the P-x and W-x sorbents begin to merge toward zero with increasing 

TEPA content.  

The maximum amount of TEPA able to be retained in the hydrophilic MT-1100 

aerogel is ~83 wt% due to its pore volume of 5.0 cm
3
/g (Linneen, Pfeffer, & Lin, 2013). 

Therefore as the amount of TEPA is increased toward this value regardless of the method 

of impregnation, the remaining porosity will approach zero. However, the P-x samples 

for TEPA loadings less than 83% show slightly higher surface areas and pore volumes 

relative to the W-x sorbents which is again attributed to an improved polymer 

distribution. It is unlikely that TEPA is simply covering the external surface of the 

particles and the obtained porosity values are a result of interparticle voids. The 

impregnated aerogels below 80wt% TEPA showed fast adsorption kinetics (Figure 3.7) 

and are free-flowing powders. If external TEPA film was present, much slower kinetics 

and agglomerated powders would be observed. Table 3.1 summarizes the nitrogen 

porosimetry results. 
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Figure 3.4: Textural Properties of the Sorbents prepared by the Wet Impregnation 

Method and the Evaporative Precipitation Method as a function of TEPA Loading: (a) 

Pore Volume, and (b) Surface Area.  
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Table 3.1. Summary of Nitrogen Porosimetry Analysis of P-x and W-x Samples 

 

Sorbent TEPA (wt%) SA (m
2
/g)

a
 Vp (cm

3
/g)

b
 

Aerogel 0 822 5.0 

W-30 30 322 0.9 

W-40 40 91 0.18 

W-50 50 10 0.03 

W-60 60 2.6 0.01 

W-70 70 1.3 - 

W-80 80 0.43 - 

W-85 85 0.08 - 

P-30 23 459 2.05 

P-40 31 337 1.48 

P-50 45 125 0.41 

P-60 55 11 0.06 

P-70 65 4.4 0.02 

P-80 79 1.9 - 

 

 (-) represents samples with negligible pore volumes due to pore plugging/pore filling. 

a
surface area was calculated using BET method. 

b
 Pore volumes were calculated based 

on BJH method 

TEM images of unmodified hydrophilic aerogel and unstained P-50 sorbent are 

shown in Figure 3.5(a)-(b). The unmodified aerogel and the unstained P-50 sorbent had 

similar contrasts and morphology revealing the spherical silica chain-like network 

characteristic of aerogel.(Wu, Lin, & Chen, 2012) TEPA in the P-50 sample cannot be 

clearly seen by the TEM due to the low atomic weight N, C, and H elements in the TEPA 

molecule. Figure 3.5(c)-(d) and Figure 6 show RuO4 stained P-50 and W-50 sorbents. 

The P-50 and W-50 images show fairly similar variations in their TEPA distributions. 

The P-50 sample shows a more uniform freckle-like coverage in contrast to the W-50 

samples showing similar freckle-like coverage but more heterogeneous within the 

particle. Also some particles in the W-50 sample appear to have no TEPA content present 

while others showed a clotting of TEPA within the particle framework (Figure 3.6(c)). 
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These results are similar to the other works mentioned earlier containing heterogeneous 

distributions and random inclusions (Neimark et al., 1993; Sanz et al., 2012). 

 
 

Figure 3.5: TEM Images of (a) Pure Hydrophilic Silica Aerogel, (b) Unstained P-50 

Sorbent, (c) RuO4 Stained P-50 Sorbent, and (d) a Higher Magnification of the Stained 

P-50 Sorbent. 
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Figure 3.6. TEM Images of (a) RuO4 Stained W-50 Sorbent, (b) a Higher Magnification 

of the Stained Sample, and (c) a W-50 Sorbent Particle with little Stained but Clotted 

TEPA Content. 
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3.3.2 CO2 Adsorption Performance 

Figure 3.7 shows the CO2 adsorption uptake curves of the P-x and W-x sorbents. 

The curves show the typical two stage adsorption kinetics characteristic of impregnated 

adsorbents (Qi et al., 2011). The first stage, represented by quick initial uptake of CO2, is 

due to the reaction of CO2 with amine binding sites readily available at and near the 

polymer interface. Following the initial uptake is a slow second stage adsorption rate due 

to slower mass transport kinetics into deeper areas of the amine film. These effects are 

more pronounced at higher TEPA loadings as a result of the thicker films present.  

Comparing the adsorption kinetics between the two differently prepared sorbents, 

the P-x samples show somewhat faster adsorption kinetics than W-x sorbents (Figure 

3.8). Kinetic rates were measured as the time to reach 90% of the maximum adsorption 

capacity obtained after 1hr of CO2 exposure. The small increase in adsorption rate of P-x 

is the indication of a slight enhancement in amine distribution within the aerogel 

framework. However, the degree of enhancement is small, near the margin of error, and 

therefore the P-x and W-x sorbents can be suggested again to have similar amine 

distribution morphology. In addition, both P-x and W-x samples reveal an increasing 

adsorption time with increasing TEPA loading, a result of the increased time required for 

CO2 to diffuse into thicker amine films to reach the majority of adsorption sites. 
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Figure 3.7: Dynamic Adsorption Uptake Curves of Sorbent Prepared by Evaporative 

Precipitation (a), and Wet Impgrenation (b). Adsorption Conditions: 100%CO2, 75 
o
C, 1 

bar, 100 mL/min. 
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Figure 3.8:  Adsorption Kinetics of the W-x and P-x sorbents. Adsorption Time 

Represents the Time Required to Reach 90% Adsorption Capacity. 

Figure 3.9 shows the final adsorption capacities of the P-x and W-x sorbents after 

1 hr of CO2 adsorption. Pure hydrophilic MT-1100 TEPA showed less than 0.1 wt% 

weight gain in a pure CO2 stream at 1 atm and therefore adsorption contribution from the 

silica substrate is negligible (data not shown).  The overall trend with higher TEPA 

content shows increasing CO2 capacities similar to other studies (S.-H. Liu et al., 2009; 

Son et al., 2008; Xiaochun Xu et al., 2002; Xiaochun Xu, Song, Miller, & Scaroni, 2005). 

More amino content within the substrate allows a greater number of amine sites for CO2 

adsorption. However, when aerogel particles are completely filled with amine around 

80wt%, the capacity falls because of transport kinetics (Linneen et al., 2013). Comparing 

the difference in performance between P-x and W-x (Fig. 3.9), P-x shows a small 

enhancement in adsorption capacities at TEPA loadings less than 80 wt%. In theory they 

should be the same if an infinite amount time is allotted, but due to the slight improved 
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distribution of TEPA within the P-x sorbents, somewhat higher capacities are reached in 

shorter periods of time.  

 
Figure 3.9:  Adsorption Capacities of the P-x and W-x Samples Relative to TEPA Content 

after 1 hr Exposure to 100%CO2 at 75 
o
C.  

When the TEPA content reaches 80 wt%, the capacities and amine efficiencies 

(Figure 3.10) are nearly equal. At this point the particles are completely filled regardless 

of the method of amine modification. Furthermore, as a result of the small increase in 

adsorption capacity of the P-x sorbents, the amine efficiencies of the P-x sorbents are 

greater than the corresponding W-x samples at loadings less than 80 wt%. However, 

these improvements are minimal and therefore again it appears that the polymer 

distributions are nearly equivalent between the two sorbents prepared by different 

methods. The slight increase in amine efficiency up toward 80 wt% with increasing 

TEPA content for both the P-x and W-x samples is suggested to be due to the TEPA 

interaction with the aerogel. The amino polymer at the surface is most likely deactivated 
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by its affinity with the surface of the support which agrees with the data shown in Figure 

3.2. The amine efficiency is maximized at 80 wt% and then begins to fall because once 

the aerogel pore space is completely filled with TEPA, which is around 80wt%, the 

TEPA begins to agglomerate outside the aerogel particles resulting in thick amine films 

making the majority of amine binding sites difficult to reach by CO2 within the 1 hr 

adsorption period. Table 3.2 summarizes the CO2 performance results.  

 
Figure 3.10: Amine Efficiency (mole of CO2 adsorbed per mole of N) of the P-x and W-x 

Sorbents as a Function of TEPA Content.  
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Table 3.2  Summary of CO2 Adsorption Performance of W-x and P-x Sorbents. 

 

Sorbent TEPA 

(wt%) 

Kinetics (time 

to reach 90% 

capacity, 

min) 

Capacity 

(mmol/g) 

Amine Efficiency  

(mol CO2/mol N) 

Theo. Max. 

Adsorp. Capacity
a
 

(mmol/g) 

W-30 30 5.4 1.6 0.20 4.0 

W-40 40 3.3 2.3 0.22 5.3 

W-50 50 7.1 3.2 0.24 6.6 

W-60 60 6.2 3.7 0.23 7.9 

W-70 70 8.3 4.7 0.25 9.2 

W-80 80 6.3 6.1 0.29 10 

W-85 85 8.3 5.1 0.23 11 

P-30 23 4.8 0.9 0.15 3.0 

P-40 31 3.0 1.6 0.19 4.1 

P-50 45 3.1 3.3 0.28 5.9 

P-60 55 5.3 3.9 0.26 7.3 

P-70 65 4.3 4.7 0.27 8.6 

P-80 79 6.6 5.8 0.28 10 
 

a 
Theoretical Maximum Adsorption Capacity [mmol/g] = (TEPA wt%)/189.3 [TEPA 

MW]*5 [mol N per mol TEPA]*10*0.5 [stoichiometric ratio possible under dry 

conditions, 1 mol CO2 per 2 mol N].  

3.3.3 Distribution of Amine on Aerogel Support 

Prior to the data collection and analysis of the P-x and W-x sorbents, it was 

hypothesized that the evaporative precipitation method would modify aerogel with TEPA 

as shown by the cartoon in Figure 3.11. The aerogel is first exposed to the saturated 

TEPA/n-hexane solution, Figure 3.11(a). As n-hexane is evaporated from the 

aerogel/hexane/TEPA slurry, TEPA will precipitate due to the limited solubility (~40 

mg/mL) of TEPA in n-hexane as shown in Figure 3.11(b). The precipitated TEPA will 

then adsorb onto the hydrophilic aerogel surface (Figure 3.11(c)). With continued cycles 

of saturated TEPA/n-hexane solution addition and evaporation of n-hexane, the expected 
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outcome was a TEPA film covering the surface of the chain-like network of aerogel 

pores. Hydrophilic MT-1100 aerogel has a surface area of approximately 822 m
2
/g. If a 

hypothetical uniform covering existed for a 60 wt% TEPA sorbent, the layer of this 

thickness would be roughly 2 nm. Such a thin film TEPA coating on the aerogel surface 

should result in much faster kinetics, higher capacities, and greater amine efficiencies 

(Heydari-gorji, Yang, et al., 2011; Qi et al., 2011). However, the data showed a near 

negligible degree of improvement in performance of the samples prepared by the 

evaporative precipitation compared to the wet impregnation method. 

 
Figure 3.11: Hypothesized Mechanism of the Evaporative Precipitation Method. Aerogel 

Pore Surfaces are shown in Black, TEPA shown in Gray. 

Based on these finding, it appears that the evaporative precipitation method is not 

effectively distributing the TEPA onto the silica aerogel surface as expected, but rather 

forming a distribution similar to that prepared by the wet impregnation method. This 
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suggests that the distribution of TEPA within aerogel is nearly independent of the route 

of synthesis. A reason for such a result is possibly a free energy thermodynamic 

limitation. Once the TEPA immerses and adsorbs onto the silica aerogel surface, the 

TEPA could be consolidating within the aerogel pores to relieve the surface tension, 

resulting in freckle-like random inclusions and larger film thicknesses as seen in the TEM 

images. Furthermore, the wettability of TEPA on the silica aerogel surface may be too 

poor to result in such a thin uniform film coating regardless of the method. Therefore the 

final morphology of the amine layer is not governed by the method of deposition into the 

pore space but rather by the thermodynamic stability of the two phase system, i.e., 

substrate surface chemistry, aminopolymer surface tension, amino polymer structure & 

chemistry, etc. 

3.4 Conclusions 

Impregnated TEPA/aerogel-silica sorbents were synthesized by two different 

methods.  Both methods give essentially same amino polymer distributions on the 

support.  These results show that the method of amine modification has little influence on 

how TEPA is dispersed within the aerogel framework. This suggests that a 

thermodynamic limitation exists for the liquid/solid two component system. TEPA 

consolidates within the structure and disperses with an amine distribution that results in 

the lowest free energy state, independent of how the TEPA was deposited. However, the 

thermodynamics of this system could change if one were to change the surface chemistry 

of the support, surface tension of the liquid amino polymer, and/or the morphology of the 

pore network which could lead to more efficient distributions and therefore enhanced 

CO2 adsorption performance.   
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CHAPTER 4 

SYNTHESIS AND CARBON DIOXIDE SORPTION PROPERTIES OF AMINE 

GRAFTED SILICA AEROGEL SORBENTS 

4.1 Introduction  

 Afore mentioned in Section 1.3, two methods of amine modification are either 

grafting the amine to the support through a covalent attachment to the surface, or are 

impregnation within the pore volume and reside by weak physical molecular forces. As 

seen in Chapter 3 and 4, the latter method of modification possesses competitive 

adsorption performances with high CO2 adsorption capacities and fast kinetics (Heydari-

gorji, Yang, et al., 2011; Y. Liu et al., 2010; Qi et al., 2011; Xingrui Wang et al., 2011; 

Ming Bo Yue et al., 2008). Impregnated sorbents however have pore cyclic stability as 

seen in Figure 1.4 because of amine evaporation due to the absence of any surface  

anchoring (Heydari-gorji, Belmabkhout, et al., 2011; Qi et al., 2011, 2012; J. Wang et al., 

2012; Xingrui Wang et al., 2011).  

 In regards to grafted (i.e., covalently bonded) amine based sorbents, these 

materials show considerably greater thermal stability during adsorption and regeneration 

cycles (Begag et al., 2013; Sayari & Belmabkhout, 2010; Serna-Guerrero, Belmabkhout, 

& Sayari, 2010a; Serna-guerrero, Belmabkhout, & Sayari, 2011).  However, these amine 

grafted materials generally do not achieve the high adsorption capacities reached by 

impregnated samples primarily due to the low amount of nitrogen content grafted per unit 

weight of sorbent (Figure 1.6 & 1.8). The most common and simplistic method of 

grafting amines to silica surfaces is using alkylamine substituted trialkoxysilanes where 

the bond is formed by the condensation of the alkoxy groups to surface silanols of the 
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silica support (Brinker & Scherer, 1990). The alkylamine trialkoxysilanes generally do 

not carry a large number of amine units (typically 1 to 3 amine units per silane), and 

therefore making it difficult to achieve a large nitrogen content. In order to counter this 

dilemma, a number of research groups have attempted to use high surface area silica 

supports to attain higher nitrogen containing materials for greater CO2 adsorption 

capacities (Figure 1.7). Of the plethora of silica supports from ordered mesoporous silica 

(OMS) to fumed silica being investigated, particulate aerogels show some promising 

results using both co-condensation and post-gel grafting methods.  

Wörmeyer, Alnaief, & Smirnova, (2012) investigated both supercritical fluid 

dried co-condensed and post-modified aerogels using tetramethylorthosilicate as the main 

silica precursor and a mono-amine silane. At 0 
o
C with pure CO2, the co-condensation 

gels obtained a CO2 adsorption capacity of roughly 1.1 mmol/g and the post-

functionalized gels about 1.8 mmol/g. Begag et al., (2013) using a co-condensation 

method utilizing methyltrimethoxysilane (MTMS) and a aminoalkyltrialkoxysilane as 

precursors prepared a supercritical fluid dried amine functionalized aerogel and obtained 

a capacity of approximately 2.4 mmol/g under a humid 15% CO2/6% O2/N2 gas feed at 

40 
o
C. The sample also showed excellent cyclic stability for over 2000 cycles. Cui, 

Cheng, Shen, Fan, & Russell, (2011) prepared a supercritical fluid dried mono-amine 

functionalized aerogel using a post-modification method and reported an adsorption 

capacity of 1.95 and 6.97 mmol/g with a humidified 15% CO2 gas feed at 25 
o
C. 

However, the increase in capacity observed for the amine functionalized aerogel under 

humid conditions seemed overly large, as was the reported capacity of 2.21 mmol/g 

observed for aerogel without any amine modification.  
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The above co-condensed or post-modified amine-aerogel sorbents were prepared 

by a supercritical drying step.  However, in this chapter the favorable textural properties 

of silica aerogels are utilized using the Cabot commercial silica aerogels prepared 

through ambient drying methods. Therefore, the primary objective of Chapter 4 is to 

create an amine grafted aerogel based on commercially available dried Cabot aerogels 

and investigate the CO2 adsorption properties under a variety of synthesis conditions to 

reveal their potential as a promising sorbent for CO2 capture.   

4.2 Experimental Methods 

All chemicals were purchased from Aldrich unless otherwise stated. Hexane 

(anhydrous, 99.8%), and toluene (anhydrous, 99.8%). The mono, di, and tri-amine silanes 

used for grafting are (3-aminopropyl)trimethoxysilane (mono), N-[3-

(trimethoxysilyl)propyl]ethylenediamine (di), and N
1
-(3-trimethoxysilylpropyl) 

diethylenetriamine (tri) (see Figure 1.5). Particulate aerogel (MT-1100 Nanogel, particle 

size of 10 μm respectively) was obtained from Cabot Corp.  

4.2.1 Synthesis of Amine Grafted Aerogel 

 Prior to aerogel modification with amines, the hydrophobic MT-1100 aerogels 

were heat treated in air in a furnace at 400 
o
C for 8 hrs to oxidize the organic moieties to 

form surface hydroxyl groups for silane grafting. These aerogels are re-named MT400. 

The amine anhydrous (dry) grafting was performed by a common functionalization 

technique but executed in a systematic method for optimization. For dry grafting, a 

specific amount of MT400 was activated by placing in an oven at 150 
o
C for 2 hrs to 

remove any adsorbed species, and then placed in a teflon flask with a specified volume of 

toluene. After mixing for 10 min, a solution of toluene and aminosilane (e.g. tri, di, or 
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mono-amine silane) was prepared and added to the teflon flask containing the 

MT400/toluene mixture. The flask was then capped and placed in an oil bath at a 

designated temperature for 18 hrs. The contents were then filtered and washed with 100 

mL of toluene twice and 100 mL of n-hexane once. Filtered samples were then dried in 

flowing argon at 150 
o
C for 2 hrs.  

 With regard to hydrous (wet) grafting, the method is similar to the approach of 

Liu et al., (1998). 1.0 g of activated MT400 was placed in a teflon flask with 75 mL of 

toluene and mixed for 10 min. Then a specific amount of water was added drop-wise to 

the aerogel/toluene mixture and vigorously stirred for 3 hrs at 80 
o
C.  A solution 

composed of 2.0 g of tri-amine and 50 mL of toluene was added into the flask and then 

placed in an oil bath at a selected temperature for 18 hrs. Only tri-amine was used for the 

wet grafting experiments since this was the best performing amine under dry conditions. 

The contents were then filtered, washed, and dried as previously. Samples prepared 

through the hydrous method are labeled as X/Y where “X” represents the amount of 

water added in mg/g of silica and “Y” represents the synthesis temperature during 

grafting in 
o
C.  

4.2.2 Sorbent Characterization 

 Nitrogen adsorption-desorption isotherms were obtained on a Micromeritics 

ASAP 2020 surface area and porosity analyzer at 77K for textural characteristics. The 

Brunauer-Emmett-Teller (BET) method and the Barret-Joyner-Halenda (BJH) model of 

the adsorption isotherm were used to calculate the surface area, the pore size distribution, 

and pore volume. CHN elemental analysis was performed on a Perkin Elmer 2400 

Elemental Analyzer to obtain the amount of nitrogen mass percentage. Samples were 
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loaded into capsules in 3-4 mg increments. The combustion temperature set-point was 

924 
o
C and the reduction temperature was 624 

o
C. 

4.2.3 Carbon Dioxide Adsorption Analysis 

 The CO2 adsorption performance of the sorbents was determined using a Thermo 

Cahn D-101 electro-microbalance as described in Section 2.2.3. For a typical adsorption 

analysis, about 10 mg of sample was placed in a stainless steel sample pan and activated 

at 100 
o
C at 1 atm for 30 min under high purity Argon (99.99%) at 100 mL/min to 

remove unwanted adsorbed species (e.g., H2O, CO2, remaining solvent). Sorbents were 

then cooled to 25 
o
C and pure CO2 (99.99%) was then introduced for 1 hr at 1 atm at a 

flow rate of 100 mL/min. The CO2 equilibrium adsorption capacity was determined by 

the weight gained during the 1 hour adsorption period. Isotherms were obtained using the 

microbalance with equivalent samples sizes (10 mg) and performed by changing the 

partial pressure of the CO2 feed stream in Argon gas. Partial pressures ranged from 0.05 

to 1 bar with the total pressure never exceeding 1 bar. The samples were given 1 hour to 

reach equilibrium at each partial pressure. Cyclic stability tests were performed on a TA 

Instruments SDT-Q600 analyzer. Sorbents were first activated by heating to 100 
o
C at 

100mL Argon/min for 30 min and then cooled to 30 
o
C. Then the feed gas was switched 

to a 100% CO2 gas at 100 mL/min for 15 min for adsorption. Thereafter, the system was 

heated to 80 
o
C for 30 min with 100% Argon. This process was continued for 100 cycles.  

4.3 Results and Discussion 

4.3.1 Effect of Amino Silane 

Initial experiments consisted of a comparative test among the mono, di, and tri-

amine silanes. Figure 4.1 shows the CO2 adsorption capacities of the mono, di, and tri-
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amine silane grafted silica aerogels at three adsorption temperatures. The mono, di, and 

tri-amine aerogel were prepared at 80 
o
C, a 2:1 silane to silica weight ratio, and a silane 

concentration of 16 mg/mL. The highest adsorption capacity was achieved by the tri-

amine when the adsorption temperature was 25 
o
C. The lowest adsorption capacity was 

reached with the mono-amino silane at 65 
o
C. The increasing capacity trend with 

decreasing temperature for all the aminosilanes is typical behavior for an exothermic 

chemisorption process such as the present one (Aziz et al., 2011; Begag et al., 2013). The 

rising capacity with increasing amount of amine units per silane (i.e. tri>di>mono) is 

simply due to the increasing amount of nitrogen content grafted as a result of the higher 

number of amine units, as shown in  Figure 4.2.  The tri-amine achieves a nitrogen 

loading of 4.13 mmol N/g whereas the mono-amine reached 1.59 mmol N/g. Since the 

amine efficiency (mol CO2/mol N) decreases only slightly for increasing amine units, the 

tri-amine achieves the highest capacity. The slight decrease in amine efficiency is 

suggested to be due to steric hindrance of the larger chain molecular structure as the 

aminosilane is changed from mono to di to tri. The long chain length of the tri-amine 

silane can possibly block the secondary amine locations on its tether and therefore inhibit 

access for capture (Hiyoshi et al., 2005).  
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Figure 4.1: Adsorption Capacity of the Mono, Di, and Tri-amine Grafted Aerogel as a 

Function of Adsorption Temperature (Adsorption Conditions: 25 
o
C, 100% CO2, 1 bar). 

 
Figure 4.2: The Measured Nitrogen Content and Calculated Amine Efficiencies of Mono, 

Di, and Tri-amine Grafted Aerogel from the Adsorption Capacity Obtained at 25 
o
C.  
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Figure 4.3: Nitrogen Adsorption Isotherms and Pore Size Distributions of the Mono, Di, 

and Tri-amine Grafted Aerogels. 

Figure 4.3 shows the effects of anhydrous (dry) amine grafting on the textural 

properties of the functionalized aerogel structure. The MT400, after the heat treatment at 

400 
o
C

 
prior to grafting, has a pore volume of 4.2 cm

3
/g, surface area of 767 m

2
/g, and a 

pore diameter of approximately 42.7 nm. After grafting, the mono, di, and tri-amine 
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of the silane also appears to decrease the porosity of the final gel as was reported 

elsewhere (Hiyoshi et al., 2005).  

Table 4.1: Summary of Textural and Amine Properties of the Unmodified and Mono, Di, 

and Tri-amine Grafted Silica Aerogels 

Sample Vp (cm3/g) SA (m2/g) Dp (nm) Grafting Density 

(tether/nm
2
) 

MT400 4.2 767 42.7 - 

mono 1.62 610 14.3 1.19 

di 1.42 471 14.0 1.25 

tri 1.10 417 10.5 1.03 

 

4.3.2 Effect of Anhydrous Grafting Conditions 

Because the tri-amine performed the best in terms of adsorption capacity, a 

systematic set of experiments was then carried out using the tri-amine to optimize the 

adsorption capacity by modifying synthesis variables. Figure 4.4 shows the effect of 

synthesis temperature ranging from 70 to 110 
o
C. The silane concentration and silica to 

silane mass ratio were held at 16 mg/mL and 2:1. The optimum temperature for dry 

grafting was found to be 95 
o
C with an adsorption capacity of 1.76 mmol of CO2/g. 

Though an optimum was reached, the data did not change by a significant amount from 

the lowest capacity reached at 70 
o
C (1.47 mmol/g). The deviation that was observed 

appears to be primarily due to the amount of nitrogen content grafted which, like the 

adsorption capacity, follows a similar trend reaching a maximum at 95 
o
C as seen in 

Figure 4.4. This suggests that the temperature of the grafting primarily affects the degree 

of silylation but to a low degree since the deviation in adsorption capacity was small 

between temperatures. If, however, the nitrogen loading remained constant under varied 

temperature conditions while the adsorption capacity continued to show an optimum, it 
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would suggest that temperature influences the amine orientation and distribution of the 

silane throughout the silica surface and therefore influences the CO2 adsorption 

mechanism. But that was not observed here. 

 
 

Figure 4.4: Adsorption Capacity and Nitrogen Content of Tri-amine Grafted Aerogel as 

a Function of Synthesis Temperature. (Adsorption Conditions: 25 
o
C, 100% CO2, 1 bar) 

At the optimum grafting temperature of 95 
o
C, the silica to silane mass ratio for 

grafting was varied from 0.5:1 to 4:1, while the concentration of aminosilane solution 

utilized was held at 16 mg/mL as before. As seen from Figure 4.5, the data reaches a 

plateau at a ratio of 2:1. Beyond this point it appears the excess amount of silane has little 

influence on silylation and adsorption capacity. The rise in capacity up to a silica:silane 

ratio of 2:1 is the result of an excess amount of the silane reagent that stoichiometrically 

favors a higher grafted product yield. The similar trends in both grafting degree and 

adsorption capacity again suggest that the enhanced adsorption performance is primarily 

an effect of the amount of nitrogen content grafted. However, within the ranges tested for 

70 80 90 100 110
0.0

0.5

1.0

1.5

2.0

2.5

 Adsorption Capacity

A
d

so
rp

ti
o

n
 C

ap
ac

it
y

 (
m

m
o

l 
C

O
2

/g
)

Synthesis Temperature (C)

0.0

2.0

4.0

6.0

8.0

 Nitrogen Content

N
it

ro
g

en
 C

o
n

te
n

t 
(m

m
o

l 
N

/g
)



  88 

both temperature and mass ratio, the latter appears to affect the degree of grafting more 

significantly than the synthesis temperature.  

 
 

Figure 4.5: Adsorption Capacity and Nitrogen Content of Tri-amine Grafted Aerogel as 

a Function of Silane:Silica Ratio. (Adsorption Conditions: 25 
o
C, 100% CO2, 1 bar) 
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transport of the silane throughout the entire particle so the grafting process is not 

diffusionally limited. 

 
 

Figure 4.6: Adsorption Capacity and Nitrogen Content of Tri-amine Grafted Aerogel as 

a Function of Silane Concentration. (Adsorption Conditions: 25 
o
C, 100% CO2, 1 bar). 
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notably higher extent of silylation is suggested to be due to the polymerization of the 

silane in the presence of water adsorbed on the silica surface due to hydrolysis and 

condensation reactions of the alkoxy groups occurring concurrently with silane grafting 

to surface silanol groups.  

 Figure 4.7 shows the effects of water addition and synthesis temperature on the 

CO2 adsorption capacity at 25 
o
C and 100% CO2. The trends in the data obtained relative 

to amount of water added are similar to those obtained by Harlick & Sayari, (2007) who 

prepared a tri-amine functionalized pore-expanded MCM-41 under hydrous conditions. 

For both cases the synthesis temperature has a much greater effect on adsorption 

performance for hydrous grafting relative to anhydrous grafting. The presence and 

amount of water during changes in temperature has a greater influence on hydrolysis and 

condensation reaction rates relative to conditions where water is absent and therefore can 

lead to larger fluctuations in functionalization degree (Brinker & Scherer, 1990).  

 
Figure 4.7: Adsorption Capacity of Sorbents Synthesized at Different Temperatures and 

Various Amount of Water. (Adsorption Conditions: 25 C
o
, 100% CO2, 1 bar). 
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The 300/95 sample (i.e. prepared with 300 mg water/g of silica and at 95 
o
C)

 

achieved the best adsorption capacity of 2.61 mmol/g. Since all other samples (using 

different amounts of water) synthesized at 95 
o
C had higher capacities relative to those 

prepared at 70, 80, and 110 
o
C,  it appears that for hydrous grafting the best temperature 

is 95 
o
C, the same as with dry grafting. The reason that the optimum hydrous synthesis 

temperature is around 95 
o
C is most likely due to the silane/water chemistry reaction 

rates. In the presence of water, a change in temperature is extremely influential on the 

relative hydrolysis and condensation rates of the silanes(Brinker & Scherer, 1990). It is 

believed that at a temperature of 95 
o
C, the rates of condensation and hydrolysis are such 

that a polymerized layer inside the aerogel pore space is formed that is the most favorable 

for CO2 capture. 

There also appears to be an optimum amount of water for each synthesis 

temperature. Figure 4.8 and 4.9 illustrate a possible cause for such an optimum to exist. 

As more water is added, the nitrogen content (Figure 4.9) increases and then plateaus to 

~7.5 mmol N/g. This behavior is a result of the higher degree of polymerization due to 

greater amounts water present for hydrolysis and condensation. However, by looking at 

the changes in surface area and pore volume (Figure 4.8) of the 30/95, 60/95, 100/95, 

300/95, and 700/95 samples, increasing water addition dramatically reduces the surface 

area and pore volume to near negligible values. This suggests that increased addition of 

water causes a pore plugging effect due to polymerization occurring within the pore 

space. These pockets or large layers of adsorbed water at the silica surface become 

localized polymerization points once the silane is introduced, causing an obstruction in 

the pores and therefore reducing the availability of amine adsorption sites, which reduces 
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the adsorption capacity. This type of behavior is similar to what has been observed for 

amine impregnated materials (Linneen et al., 2013; Son et al., 2008; Xiaochun Xu et al., 

2002).  

 
Figure 4.8: The Pore Volume and Surface Area Relative to Amount of Water Added for 

Tri-amine Grafted Samples Synthesized at 95 
o
C  

 
Figure 4.9: The Nitrogen Content of Tri-amine Grafted Samples Synthesized under 

Hydrous Conditions as a Function of the Amount of Water Addition.  
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 The highest adsorption capacity sample, 300/95, possessed a very low surface 

area and pore volume of these gels synthesized at 95 
o
C. Figure 4.10, illustrating the 

amine efficiencies as a function of water addition, reveals that the 300/95 sample did not 

have the highest amine efficiency, but the 60/95 sample reached the highest with a near 

maximum theoretical stoichiometric amine efficiency of 0.50 mol CO2/ mol N. 

Specifically for the 300/95, this indicates the presence of a diffusional limitation possibly 

due to plugging that is present with amine impregnated samples as mentioned before. 

However, the reason the 300/95 sample achieved a higher capacity was because it 

possessed a higher amine content (7.5 mmol N/g) when compared to the 60/95 sample 

(4.5 mmol N/g). Therefore the 300/95 sample achieved the best balance between N 

content and a favorable polymerized silane microstructure that facilitates CO2 transport 

allowing the majority of amine adsorption sites to be available for binding. Anything 

above or below this balance between water content and synthesis temperature either 

results in a low N content or a microstructure that reduces amine availability. The 

calculated tether densities from the 30/95 to 700/95 increased from 1.15 to 1.88 

tethers/nm
2
. However this calculation assumes a grafting homogenous layer across the 

surface of the aerogel whereas, in all probability, polymerization points are occurring 

creating a large degree of heterogeneity. 
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Figure 4.10: The Amine Efficiency of Tri-amine Grafted Samples Synthesized under 

Hydrous Conditions as a Function of the Amount of Water Addition.  

 
Figure 4.11: CO2 Adsorption Isotherms of the 300/95 Tri-amine Grafted Aerogel at 30, 

40, and 50 
o
C, (Isotherms Done by Binary Mixture of CO2 and Argon) 
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increase in adsorption amount with increasing temperature occurs which is not typical for 

grafted amine materials as seen in Figure 4.1 and by other works (Aziz et al., 2011), but 

is typical of impregnated materials. Amine impregnated materials commonly possess an 

optimum operating temperature, about ~75 
o
C, which is a result of the balance between 

the thermodynamic adsorption equilibrium and the diffusion of CO2 through the 

impregnated amine polymer. Higher temperatures lead to higher rates of CO2 transport 

through the viscous polymer and therefore reaching more amine binding sites, but then 

adsorption falls due to the thermodynamic equilibrium shift as the temperature is raised. 

In this case, it further validates the hypothesis that an amine siliceous polymer is 

developed within the pore space of the aerogel because of water agglomerates within the 

pore volume causing the observed impregnated-like behavior. Note that if a prolonged 

amount of time were allowed for true equilibrium to be reached, the 30 
o
C isotherm 

would have shown greater adsorption than the 40 and 50 
o
C isotherms since during the 30 

o
C experiment the sample still showed a slow rate of adsorption after a few hours (data 

not shown). But due to the apparent plugging, the 50 
o
C sample achieved the highest 

adsorption within the 1 hour set equilibration period because of the increased diffusion 

thereby reaching more adsorption sites. Table 4.2 summarizes the best results obtained in 

this study and compares their performance to other similar grafted silica supports 

sorbents.  

Amine impregnated samples also, due to the absence of any covalent bond to the 

support, have poor cyclic stability as mentioned earlier. Amine functionalized materials 

however are much more thermally stable due to the covalent bond present (Sayari & 

Belmabkhout, 2010; Serna-guerrero et al., 2011). Figure 4.12 and 4.13 show the cyclic 
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stability of the 300/95 sample and a tetraethylenepentamine (TEPA) impregnated aerogel 

on an equivalent MT-1100 aerogel support calcined at 400 
o
C (Linneen et al., 2013). The 

loading of TEPA was 70 wt%. The cyclic test for the 300/95 sample was performed by 

adsorbing 100% CO2 at 30 
o
C for 15 min and regenerating at 80 

o
C for 30 min with 100% 

Argon. The same cyclic procedure was performed for the TEPA impregnated aerogel 

except that the adsorption temperature was 75 
o
C since this was the optimum temperature 

tested (Linneen et al., 2013). For both samples the working capacity (i.e., the adsorption 

capacity reached after regeneration) was lower than the capacities given above (see 

Figure 4.7) due to the shorter time period of adsorption (15 min versus 1 hr) between the 

two tests. Table 4.2 summarizes the results and other grafted materials prepared by 

similar liquid phases methods.  
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Figure 4.12: Cyclic Working Capacity and Absolute Regenerated Weight of the 300/95 

Tri-amine Grafted Aerogel. 

 
 

Figure 4.13: Cyclic Working Capacity and Absolute Regenerated Weight of a 70 wt% 

TEPA Impregnated Aerogel.  
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performance and loss in weight of the sample is primarily due to evaporative reasons 

rather than to any degradation route involving CO2 because temperatures were kept well 

below 100 
o
C where CO2 is known to degrade primary amines(Heydari-gorji & Sayari, 

2012). The measured weight after each regeneration falls because of loss of amine 

leading to a decreasing adsorption capacity. The 300/95 sample, on the other hand, 

remains stable with negligible loss in mass after each regeneration showing a steady 

adsorption capacity of approximately 2.30 mmol/g. Therefore, though the 300/95 sample 

appears to show large polymerized aminosilane agglomerates in the structure, these 

groups appear to be possess enough silane grafted to the surface to be stable under 

multiple regenerative cycles.  

4.4 Conclusions 

Mono, di, and tri-amine trialkoxysilanes were grafted to ambient dried particulate 

aerogels calcined at 400 
o
C. The tri-amine silane performed the best in terms of 

adsorption capacity due to the greater amount of nitrogen content grafted; the tri-amine 

was further investigated by changing synthesis variables for both hydrous and anhydrous 

grafting conditions. For dry conditions the optimum temperature and silane/silica ratio 

was 95 
o
C and 2:1. The concentration of the silane appeared to have little effect on the 

grafting degree and adsorption performance. For hydrous grafting, the optimum 

conditions appeared to be a synthesis temperature again of 95 
o
C and a water addition of 

300 mg/g of silica (the 300/95 sample) achieving an adsorption capacity of 2.61 mmol/g 

with 100% CO2 at 1 bar and 25 
o
C. Unlike the dry grafting, the adsorption performance 

as well as the degree of silylation was greatly affected by the grafting temperature. 

Increasing amounts of water additions were found to have a pore plugging effect similar 
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to amine impregnated sorbents. It is suggested that with more water added the relative 

size of adsorbed layers within the aerogel pore space grew and caused localized 

polymerization points for the silane, leading to decreases in pore volume, surface area, 

and amine availability for CO2 adsorption. However, unlike amine impregnated sorbents, 

the hydrous grafted 300/95 sample showed excellent cyclic stability of 100 regenerative 

cycles revealing that the siliceous polymer did posses covalent attachment to the surface. 

Therefore this sorbent looks to have a greater potential for an industrial setting relative to 

the impregnated sorbents though the adsorption capacities are not competitive relative to 

other amine grafted materials. 
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CHAPTER 5 

SYNTHESIS OF AMINE MODIFIED PARTICULATE SILICA AEROGELS BY 

ATOMIC LAYER DEPOSITION 

5.1 Introduction 

Mentioned in Chapter 1 was a special class of grafted materials prepared by surface 

polymerization of an amino precursor by a step-wise or in situ method. These techniques 

led to sorbents possessing larger amounts of N content while also possessing greater 

stability due to anchorage of the amino precursor on the surface where polymerization 

initiated. Another technique for modifying silica surfaces toward attaining a homogenous 

layer of organic materials is atomic layer deposition (ALD) of silanes. The deposition of 

silanes in the vapor phase on silica surfaces has been performed for many years dating 

back to the 1980’s (Buzek & Rathousky, 1981; Jonsson, Olofsson, Malmqvist, & 

Ronnberg, 1985; Mittal & O’kane, 1976). In regards to ALD of amino silanes on metal 

oxide substrates, a number of groups have prepared a variety of amino functionalized 

materials for a number of applications including gas and liquid chromatography, 

electrochemistry, and biochemical transport (Basiuk & Chuiko, 1990; Haukka, Lakomaa, 

& Suntola, 1993; Jonsson et al., 1985; Mittal & O’kane, 1976). 

Motivations to functionalize substrates by ALD as an alternative to liquid phase 

grafting are due to the inherent difficulties that are involved when solvents are introduced 

as a deposition medium. Difficulties include corrosion/structural damage to the substrate 

surface, non-uniformity of the silane deposited layer, and the poor control of the 

deposition rate which can be slow in liquid solvents (Mittal & O’kane, 1976). Drying 

procedures also can become quite laborious to preserve the substrate as can be seen for 
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the aerogels in Chapter 4 (Wikstrom, Mandenius, & Larsson, 1988). Atomic layer 

deposition therefore appears to be an efficient method to facilitate grafting for forming a 

uniform amino silane layer without detrimental effects to the aerogel substrate. 

One of the first to graft amino silanes to oxide surfaces using ALD methods is 

Wikstrom, Mandenius, & Larsson, (1988) who successfully grafted AMP to a porous 

silica substrate for HPLC applications. They reached a N content of 0.58 mmol N/g at a 

deposition temperature of 150 
o
C  leading to a surface tether concentration of 1.7 

tethers/nm
2
. Juvaste, Iiskola, & Pakkanen, (1999) grafted AMP to silica supports in 

preparation of catalyst carriers and achieved an N density of 2.0 N/nm
2
.  A nitrogen 

content of 1.0 mmol N/g, a density that is found in liquid phase grafting methods (Figure 

1.8) but with improved homogeneity was reported in Ek, Iiskola, & Niinisto, (2003).  

Ek, Iiskola, & Niinisto, (2003) conducted a thorough study of AMP grafting using 

trifunctional, bifunctional, and monofunctional AMP (i.e., they varied the number of 

alkoxy ligands available for surface grafting) on silica pretreated from 200 to 800 
o
C to 

reveal the effects on silanol density to grafting degree. They found that the lower heat 

treatment (i.e., 200 
o
C) led to the greatest N density for all types of AMP as a result of 

there being a greater presence of silanol functional groups for silane anchoring. However 

this relationship was not linear and suggested that the degree of grafting is not dependent 

on the total silanol content but more on the isolated silanol concentration, i.e., silanol’s 

with no other neighboring silanols susceptible to hydrogen bonding. Furthermore, the 

functionality of the silane (e.g., mono, bi, tri) had a small impact on the grafting degree 

where the N density difference between the tri and mono-functional was only 0.2 N/nm
2
 

confirming the dependency of exclusively isolated silanols.  
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Figure 5.1: Illustration of the Cyclic ALD Process with Silane and Water Introductions. 

 Ek, Iiskola, & Niinisto, (2004), in order to increase amine density on a porous 

substrate surface, applied a step-wise growth method similar to those mentioned in 

Chapter 1 by sequentially reacting AMP and water after initial ALD of silane to the 

surface (Figure 5.1). During this procedure the alkoxy functional groups of AMP that did 

not anchor to the surface silanols deposited onto the surface during the first ALD are 

hydrolyzed during the water introduction. Then another ALD step of amino silanes is 

performed that condenses onto the previously hydrolyzed silanes. This process is 

continued until the step-wise reactions are terminated. They were able to achieve five 
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cycles of ALD reaching a N density of 3.0 N/nm
2
. Ek et al., (2004) went further and 

repeated this procedure suing AEAPS, a di amino silane (Figure 1.5), and achieved an 

amine density of 5.5 N/nm
2
, values significant enough to be a potentially good CO2 

adsorbent. 

 Therefore in Chapter 5, the objective is to apply the step-wise ALD method on 

hydrophilic particulate silica aerogels from Cabot Corp. The surface of the aerogel will 

undergo a series of sequential reactions with amino silanes and water to form a high 

amine density surface in order to be utilized as a CO2 adsorbent, which to our knowledge 

would be the first amino silane ALD modified aerogel for CO2 capture applications found 

in literature.  

5.2 Experimental Methods 

All chemicals were purchased from Aldrich unless otherwise stated. The mono-amine 

silane used for grafting are (3-aminopropyl)trimethoxysilane) (see Figure5.1). Particulate 

aerogel (MT-1100 Nanogel, particle size of 10 μm) was obtained from Cabot Corp.  

5.2.1 Atomic Layer Deposition 

The schematic of the ALD apparatus is shown in Figure 5.2. The aerogel was 

thermally pretreated at 400 
o
C for 8 hrs in air designated MT-400. Approximately 30 mg 

of MT-400 was placed in the sample pan and activated in two sequential steps. First the 

reactor chamber was heated to 150 
o
C with a purge flow of Argon at 100 mL/min for 30 

min. Then holding this temperature the reactor chamber was vacuumed to less than 5 

mbar and held for 30 min.  

First silylation of the mono silane occurred right after activation. Before 

introduction of the silane reagent the vessel was completely purged with Argon and then 
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vacuumed to less than 5 mbar. This procedure was repeated for the water containing 

vessel. The temperature of the silane vessel was held at 130 
o
C and the heating tape (see 

(9) in Figure 5.2) was held at 150 
o
C to prevent condensation. With the reactor chamber 

at 5 mbar and 150 
o
C, the silane vessel valve was opened and allowed to react for 24 hrs. 

Once complete and the vessel valve shut the reactor chamber was purged with Ar for 30 

min and then vacuumed for 30 min to rid the system of silane vapor. Water was then 

introduced by opening the valve of the water vessel. The vessel temperature was 25 
o
C 

and the time for reaction was maintained at 3 hrs. After water introduction the reactor 

chamber was purged and vacuumed as explained previously after silylation. The repeated 

introduction of silane and then water was repeated for a number of cycles. Samples were 

named G1, G2, and G3 where G1 is the first silylation step of the surface, and G2 and G3 

are the second and third introduction of silane after water treatment.  

 

Figure 5.2: Schematic of ALD Apparatus for Silane Gas Phase Grafting. 

5.2.2 Sorbent Characterization 

Nitrogen adsorption-desorption isotherms were obtained on a Micromeritics ASAP 

2020 surface area and porosity analyzer at 77K for textural characteristics. The Brunauer-
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Emmett-Teller (BET) method and the Barret-Joyner-Halenda (BJH) model of the 

adsorption isotherm were used to calculate the surface area, the pore size distribution, and 

pore volume. CHN elemental analysis was performed on a Perkin Elmer 2400 Elemental 

Analyzer to obtain the amount of nitrogen mass percentage. Samples were loaded into 

capsules in 3-4 mg increments. The combustion temperature set-point was 924 
o
C and the 

reduction temperature was 624 
o
C. 

5.2.3 Carbon Dioxide Adsorption Analysis 

The CO2 adsorption performance of the sorbents was determined using a Thermo 

Cahn D-101 electro-microbalance as described in Section 2.2.3. For a typical adsorption 

analysis, about 10 mg of sample was placed in a stainless steel sample pan and activated 

at 100 
o
C at 1 atm for 30 min under high purity Argon (99.99%) at 100 mL/min to 

remove unwanted adsorbed species (e.g., H2O, CO2, remaining solvent). Sorbents were 

then cooled to 25 
o
C and pure CO2 (99.99%) was then introduced for 1 hr at 1 atm at a 

flow rate of 100 mL/min. The CO2 equilibrium adsorption capacity was determined by 

the weight gained during the 1 hour adsorption period. 

5.3 Results and Discussion 

5.3.1 Sorbent Characteristics 

After calcining the Cabot aerogel at 400 
o
C, the surface area, pore volume, and 

pore diameter was 767 m
2
/g, 4.2 cm

3
/g, and 42 nm (Section 4.3). After the first, second, 

and third ALD cycles, the textural properties progressively drop as shown in Figure 5.3 

and 5.4. The nitrogen adsorption isotherms in Figure 5.3 show a type IV isotherm with 

type II hysteresis very close to that of the unmodified calcined aerogel in Chapter 1. This 

indicates very little change to the mesostructure of the aerogel during the grafting 
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procedure. Figure 5.4 shows the progressive drop in surface area and pore volume with 

each sequential cycle as a resulting of the building layer of amino silane on the silica 

surface. However, even after the third cycle G3 maintains a very high porosity of 3.9 

cm
3
/g, indicating the possibility of successfully growing a greater number of layers with 

more cycles of ALD. Figure 5.1 illustrates the process of the silane/water ALD cycles 

and pictorially reveals how the layers are building. The amino silane first condenses on 

the surface to available silanol groups forming a Si-O-Si bond with an alcohol byproduct. 

Then during water vapor introduction the alkoxy groups of the previously attached 

silanes are hydrolyzed. Once again during the next wave of silane introduction the amino 

silanes will condense to the recently hydrolyzed silanes. Continuation of this process will 

create layers of silanes onto the silica surface until the majority of alkoxy groups have 

been terminated and therefore making further hydrolization steps trivial. 

 

Figure 5.3: Nitrogen Adsorption Isotherms of the ALD Modified Aerogels After One 

(G1), Two (G2), and Three (G3) ALD Cycles of Mono Amino Silane. 
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Figure 5.4: Surface Area and Pore Volume of ALD Modified Gels of One (G1), Two 

(G2), and Three (G3) ALD Cycles of Mono Amine Silane. 

5.3.2 CO2 Adsorption Performance 

 Figure 5.5 shows the dynamic adsorption performance of the ALD samples under 
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o
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transport mechanisms to the amine binding locations. Figure 5.6 shows the amount of 
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this method is quite efficient for grafting silanes.  The amine efficiencies of the ALD 

samples are also comparable to those liquid phase grafted samples reaching an amine 

efficiency of 0.44, which is also very close to the theoretical stoichiometric maximum for 

this CO2-amine chemistry (Chapter 1). Note also that the amine efficiency is increasing 

with increasing number of cycles. The greater number of cycles is believed to yield a 

layer of silanes where the amino groups are in much closer proximity to other amines and 

thus creating a higher amine density adsorption environment More mono amines 

therefore have more neighboring available nitrogens to form the carbamate and 

ammonium species for CO2 capture.  Table 5.1 summarizes the data of the ALD samples. 

As a comparison, the results of Ek, Iiskola, Niinisto, et al., (2003) are included in Table 

5.1. They were able to achieve a higher amine density due to the higher isolated silanol 

content for silica gel (2.1 OH/nm
2
) relative to calcined aerogels (1.7 OH/nm

2
) but aerogel 

achieved a higher amine content due to its higher surface area. 
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Figure 5.5: Adsorption Uptake Curves of the ALD Samples (Adsorption: 100% CO2, 25 

o
C, 1bar). 

 

Figure 5.6: Amine Efficiencies of the Amino Silane ALD Samples. 
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5.4 Conclusions 

 Amine modified aerogels were synthesized by a atomic layer deposition (ALD) 

method using mono amine silane precursors. Aerogel was exposed to the amine silane 

vapor and then sequentially introduced to water vapor to hydrolyze the non condensed 

alkoxy groups to provide more grafting sites (silanols) in successive cycles. One, two, 

and three cycles were performed and the CO2 adsorption performance was tested. The 

aerogels subjected to ALD showed adequate adsorption capacities and kinetics and were 

comparable to liquid phase amine grafted aerogels and were still able to retain the 

mesoporosity of the aerogel unlike the shrinkage occurring as shown in Chapter 4. The 

amine efficiency of the material increased with increasing cyclic ALD runs. The more 

cycles of ALD led to a higher N content as well as a greater amine density so the amines 

can more effectively bind CO2.  
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS 

6.1 Summary 

The research presented in this dissertation focused on the use of commercially 

available particulate silica aerogel as a support for amine modification that could be 

utilized as a post-combustion CO2 adsorbent. Of the amine modification techniques 

discussed in Chapter 1, the wet impregnation method, amine grafting through liquid 

phase silane chemistry, and ALD of silanes were investigated in order to prepare a high 

performing and stable CO2 sorbent.  

Chapter 2 discussed the performance of the hydrophobic and hydrophilic TEPA 

impregnated aerogels. The hydrophilic aerogels were prepared by calcining the 

hydrophobic Cabot Nanogel to oxidize the surface organic groups. A number of TEPA 

loadings were prepared and the CO2 adsorption performance was studied. The 

hydrophilic aerogel performed much better than the hydrophobic aerogel in both 

adsorption capacity and adsorption kinetics reaching an adsorption capacity of 6.1 

mmol/g at 75 
o
C with 100% CO2. It was suggested that the hydrophilicity of the surface 

created a more efficient distribution of the TEPA during the impregnation process. The 

poor distribution of the TEPA was further supported by the nitrogen porosimetry results 

where the TEPA impregnated hydrophilic samples possessed a greater porosity and 

surface area than the hydrophobic analogues. The cyclic stability of the hydrophilic 

samples over many cycles however was not adequate for a commercial user. Over the 

first 10 cycles the sorbent had a fairly steady capacity of 5.1  mmol/g with some loss in 

mass due to TEPA evaporation. 
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In Chapter 3, a new method of amine modification, a controlled evaporative 

precipitation route, was performed. This new technique was expected to improve the 

TEPA distribution relative to the common wet impregnation method discussed in Chapter 

2 and therefore enhance the CO2 adsorption performance of the sorbent. This technique 

involved precipitating TEPA from n-hexane while immersed in an aerogel/n-hexane 

slurry in order deposit the TEPA onto the silica to develop a uniform thin film of amine 

on the surface. The performance of these newly modified sorbents were only slightly 

improved from their wet impregnated counterparts. Their porosities, surface areas, 

adsorption kinetics, and CO2 capacities were similar. TEM images of the samples were 

also similar with both showing a high degree of heterogeneity. These results revealed that 

for physical modification methods, the way in which the amine polymer is imbued into 

mesoporous supports makes little difference in the way in which the amines will be 

distributed. Therefore the method of introducing the polymer inside the pore space is not 

significant; but rather the distribution of amines is governed by the thermodynamic free 

energy of this two phase system. The polymer surface tension and the surface energy of 

the support, i.e., the surface chemistry of the surface, will determine the morphology of 

the liquid polymer, from thin films to large consolidated inclusions.  

In Chapter 4 the performance of a grafted amine aerogel sorbent was investigated. 

The amine grafting was done by reacting amino silanes (Figure 1.5) to the surface of the 

hydrophilic aerogel supports. The silanol groups on the surface of the silica bond to the 

alkoxy ligands of the silanes to form a strong Si-O-Si bond. Of the amino silanes tested, 

the tri-amine silane performed the best simply due to the greater number of amines 

present per silane, resulting in a higher amine content. Unlike impregnation methods, 
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there are considerably more variables involved in silane grafting techniques, and 

therefore in order to achieve the best possible amine grafted aerogel the variables that 

were optimized were the synthesis temperature, silane concentration, and silica:silane 

ratio. Of these variables it appeared that the synthesis temperature had the greatest impact 

due to the sensitivity of condensation rates of the alkoxy moieties of the silane 

precursors. Furthermore hydrous grafting was conducted due to its capability to increase 

the degree of amine modification. Since in the anhydrous grafting procedures, the 

synthesis temperature had the biggest influence, only the synthesis temperature was 

varied for the hydrous grafting. The performance of the hydrous grafted sorbents was 

much superior to the anhydrous analogues due to water acting as another hydroxyl source 

rather than just the silanols on the surface. These results led to much greater nitrogen 

contents and increased CO2 adsorption capacities. Moreover, the cyclic stability was 

much superior to the wet impregnated TEPA sorbents due to the strong covalent bonds 

attached to the surface. However these materials do not possess adequate CO2 adsorption 

capacities required for an industrial application. 

The final objective of this study was the synthesis and CO2 adsorption performance of 

amine modified materials through ALD methods. Liquid phase grafting presented in 

Chapter 4 requires the addition of water to reach adequate adsorption capacities. The 

addition of water however creates a large degree of heterogeneity and obstruction of CO2 

transport. A more homogenous layer of amines distributed across the surface would allow 

for a much more efficient sorbent. In Chapter 5 a mono amine silane was vaporized and 

deposited onto the silica surface of the calcined Cabot aerogels using an ALD reactor 

apparatus. Furthermore, in order to build multiple layers and create a greater amine 
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density and N content, a cyclic sequential treatment between the amino silane and water 

was executed. The highest performing ALD sorbent was that prepared after three ALD 

cycles achieving an adsorption capacity of 1.2 mmol/g. These materials showed very 

little microstructural changes, large amine efficiencies and very favorable kinetics 

indicating a greater degree of homogeneity and good amine densities.  

6.2 Recommendations 

Based on the experimental and theoretical studies presented in this dissertation, the 

following recommendations are suggested for future work.  

6.2.1 Increasing ALD Cycles and Other Silanes 

 The ALD method presented in Chapter 5 showed some of the best potential for a 

post combustion capture CO2 sorbent. However, an increase in the CO2 adsorption 

capacity is necessary. Three ALD cycles were insufficient in obtaining an amine 

modified aerogel with a large N content and therefore resulted in a relatively low 

adsorption capacity. As discussed in Chapter 1 the working capacity for a viable CO2 

sorbent is approximately 3 mmol/g in order to be competitive with absorption 

technologies. Therefore I would suggest that future work would be aimed toward 

synthesizing aerogels with a larger number of ALD cycles. As seen in the work of Ek, 

Iiskola, Niinisto, et al., (2003) using a porous silica support similar to fumed silica, the 

largest number of water/silane ALD cycles was about 5. The amount of N content began 

to plateau after 5 cycles and any more ALD steps would be trivial. However the unique 

microstructure and porosity of aerogel could lead to a greater ability for more layers to be 

deposited. Cabot also provides a larger particle size aerogel that can be easily fluidized. 

Therefore a more effective method for production of amine modified aerogels can be 
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achieved by using a fluidized ALD reactor using the larger particle size particulate 

aerogels. 

 Furthermore, in order to increase the amine content, di and tri amino silanes could 

be implemented. Mono amine is commonly utilized due its lower boiling point relative to 

the di and tri and therefore with the mono amine silane, a higher vapor pressure of silane 

can be obtained in order to achieve sufficient grafting. Di and tri amino silanes can be 

deposited onto silica surfaces but with higher temperatures needed to obtain larger partial 

pressure of silane in the reactor. It is possible that the amino silane can self polymerize if 

temperatures are too high (~200 
o
C), therefore in order to counter the lower vapor 

pressure it is suggested that longer times of grafting or even catalysts such as 

triethylamine be implemented to achieve the desired degree of grafting.  

6.2.2 Aziridine in situ Polymerization 

 As discussed in Chapter 1, another way to obtain a sufficient amount of 

covalently bounded amine on a silica support such as the silica aerogel presented in this 

study is to apply an in situ polymerization technique. As performed by Drese et al., 

(2009) on SBA-15, the precursor aziridine (Figure 1.5) can be polymerized from the 

surface of silica either through pre-grafted amines or by the pre-existing silanol groups. 

The result is a highly branched amino polymer anchored to the surface. With aerogel’s 

high porosity and surface area, it is an excellent candidate for this method of 

modification. However, careful precautions need to be implemented since aziridine 

(a.k.a. ethyleneimine) is an extremely toxic compound that is unstable, highly flammable, 

and a known carcinogen. 
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APPENDIX A  

SYNTHESIS OF TETRAETHYLENEPENTAMINE WET IMPREGNATED 

PARTICUALTE AEROGELS 
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1. Place Cabot MT-1100 Nanogel into an oven and heat treat for 8 hrs at 400 
o
C with a 

heating rate of 5 
o
C/min. Labeled as MT400 

2. To prepare the impregnation solution, add the appropriate amount of TEPA to 70 mL 

of methanol in a 250 mL filtering flask and mix for 10 min using a magnetic stirring rod. 

Refer to Table A.1 for the appropriate amount of TEPA for desired wt% of TEPA in the 

aerogel support.  

Table A.1: Amount of TEPA to add to Methanol for desired weight percentage of sorbent 

Amount of TEPA (g) Weight % of TEPA in Aerogel 

1.33 40 

2.00 50 

3.00 60 

4.67 70 

8.00 80 

11.3 85 

3. Add 2.0 g of the MT400 to the impregnation solution in flask and stir for 10 min. 

4. Place a rubber stopper in mouth of the flask and attach vacuum source to the vacuum 

spout of the flask. Apply a slow stir while vacuuming until the slurry becomes a thick 

paste then discontinue stirring and vacuum for 24 hrs. 

5. After vacuuming period is finished remove aerogel sorbent from the flask into a air-

tight container. 

6. For hydrophobic aerogel, repeat steps 2-5 with the original Cabot Nanogel
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APPENDIX B  

SYNTHESIS OF TETRAETHYLENEPENTAMINE MODIFIED AEROGEL USING 

THE CONTROLLED EVAPORATIVE PRECIPITATION METHOD 
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1. First a saturated TEPA/n-hexane solution was prepared by adding TEPA (9 mL) to 100 

mL of n-hexane in a 150 mL Erlenmeyer flask at room temperature.  

2. The mixture was then heated with stirring to a light boil (~68 
o
C, hexane’s boiling 

temperature). TEPA has a solubility of approximately 7 and 40 mg/mL at 23 
o
C and 68 

o
C, respectively. 

3. In a 50 mL Erlenmeyer flask, 1 g of hydrophilic aerogel MT400 (Appendix A) and 20 

mL of n-hexane were mixed and heated to approximately 60 
o
C.  This aerogel/hexane 

slurry was reduced due to evaporation of n-hexane until a paste developed weighing 

approximately 4.0 g (1.0 g of MT400 and 3.0 g of n-hexane) 

4. At this point, 5 mL of the TEPA/n-hexane solution at 68 
o
C was removed by a glass 

pipette and added into a 25 mL beaker heated by a second hot plate. Perform this step as 

fast as possible to prevent too much precipitation and loss of TEPA in pipet. 

5. Once the TEPA is re-dissolved, add the 5 mL of TEPA/n-hexane solution in the 25 mL 

beaker to the aerogel/hexane paste and then mix by hand swinging the flask in a circular 

fashion until the solution and paste is well mixed.  

6. Keep contents heating until the weight of the sample reaching approximately 4.0 g and 

has the same paste consistency as before.  

7. Continue steps 4-6 according to Table B.1 to reached the desired TEPA content 

immobilized in the aerogel support. Each 5 mL addition contains approximately 200 mg 

of TEPA. For a 50 wt% TEPA/aerogel sample, 5 additions of 5 mL of TEPA/n-hexane 

(25 mL total, equivalent to 1 g of TEPA) are required. Note some TEPA precipitates in 

pipette and therefore the desired wt % of TEPA will be slightly lower than that desired. 
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Table B.1: Amount of 5 mL additions for a desired TEPA content in Aerogel 

Number of 

Additions 

Wt % of TEPA in 

Aerogel 

2.0 30 

3.5 40 

5.0 50 

8.0 60 

11.5 70 

20.0 80 

45.0 90 

8. The final paste is then cooled to room temperature and then vacuumed dried at 25 
o
C 

for 24 hrs. 
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APPENDIX C 

SYNTHESIS OF AMINE GRAFTED AEROGEL BY ANHYDROUS LIQUID PHASE 

SILANE METHOD 
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1. For anhydrous grafting, a calculated amount of MT400 (Appendix A) was activated by 

placing in an oven at 150 
o
C for 2 hrs to remove any adsorbed species, and then placed in 

a 250 mL teflon flask with a PTFE cap. 

2. Anhydrous toluene was then added to the aerogel. The amount of toluene should be in 

a ratio equal to 1.0 g to 75 mL of toluene. For example if the desired amount of aerogel 

added in 0.5 g, the amount of toluene should be approximately 37 mL. Mix for 10 min. 

3.  A solution of toluene and aminosilane (e.g. tri, di, or mono-amine silane) is then 

prepared by adding a calculated amount of silane to 50 mL of toluene. The amount of 

silane added is up to ones decision. I recommend a 2:1 silane to aerogel ratio for adequate 

grafting. Also the amount of toluene in this solution should be in a ratio of 1.0 g to 50 

mL. Therefore the total ratio of aerogel to toluene is approximately 1.0 g to 125 mL. 

4. Added the silane/toluene solution to the aerogel/toluene mixture in the teflon flask and 

mix for 1-2 min.  

5. With the PTFE cap on the flask tightly, place in an oil bath at a designated temperature 

for 18 hrs. Make sure a stir bar is present in both the oil bath and Teflon flask for 

homogenous mixing and temperature distributions.  

6. After 18 hr period, the contents are then filtered and washed with 100 mL of toluene 

twice and 100 mL of n-hexane once. Use Grade 5 filter paper.  

7. Filtered samples were then dried in flowing argon in an oven at 150 
o
C for 2 hrs. 
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APPENDIX D 

SYNTHESIS OF AMINE GRAFTED AEROGEL BY HYDROUS LIQUID PHASE 

SILANE METHOD 
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1. For hydrous grafting, a calculated amount of MT400 (Appendix A) was activated by 

placing in an oven at 150 
o
C for 2 hrs to remove any adsorbed species, and then placed in 

a 250 mL teflon flask with a PTFE cap. 

2. Anhydrous toluene was then added to the aerogel. The amount of toluene should be in 

a ratio equal to 1.0 g to 75 mL of toluene. For example if the desired amount of aerogel 

added in 0.5 g, the amount of toluene should be approximately 37 mL. Mix for 10 min. 

3. Then a calculated amount of water was added to the toluene/MT400 mixture in Teflon 

flask by drop wise under vigorous mixing. I recommend a ratio of 300 mg of water to 1.0 

g of aerogel. The Teflon flask was then tightly capped and then placed in a oil bath at 80 

o
C for 3 hrs with vigorous mixing to homogenous the water/toluene/MT400 mixture.  

4.  A solution of toluene and aminosilane (e.g. tri, di, or mono-amine silane) is then 

prepared by adding a calculated amount of silane to 50 mL of toluene. The amount of 

silane added is up to ones decision. I recommend a 2:1 silane to aerogel ratio for adequate 

grafting. Also the amount of toluene in this solution should be in a ratio of 1 g to 50 mL. 

Therefore the total ratio of aerogel to toluene is approximately 1 g to 125 mL. 

5. Added the silane/toluene solution to the aerogel/water/toluene mixture in the teflon 

flask and place immediately in an oil bath at the desired temperature of grafting for 18 

hrs. Make sure a stir bar is present in both the oil bath and Teflon flask for homogenous 

mixing and temperature distributions. 

6. After 18 hr period, the contents are then filtered and washed with 100 mL of toluene 

twice and 100 mL of n-hexane once. Use Grade 5 filter paper.  

7. Filtered samples were then dried in flowing argon in an oven at 150 
o
C for 2 hrs. 
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APPEDNIX E 

SYNTHESIS OF AMINE GRAFTED AREOGELS BY ATOMIC LAYER 

DEPOSITION OF AMINO SILANE PRECURSORS 
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1. First place approximately 15 mL of the desired silane into the reagent vessel in the 

ALD setup (Figure 5.1) 

2. The silane reagent vessel needs to be activated (i.e. all air and water vapor removed 

from vessel. Therefore place vessel on ALD apparatus and purge the entire system with 

Argon for 30 min with the vessel valve open.  

3. Then vacuum the entire system with the vessel valve remaining open. Make sure the 

apparatus is at room temperature. Repeat this process two times ending with the vacuum 

so the pressure inside the vessel is approximately 5 mbar. Then close the vessel valve. 

4. Repeat this process for the water reagent vessel. 

5. Then place approximately 30 mg of MT400 (Appendix A) in the sample pan and 

activate in two sequential steps. First the reactor chamber was heated to 150 
o
C with a 

purge flow of Argon at 100 mL/min for 30 min. Then holding this temperature the reactor 

chamber was vacuumed to less than 5 mbar and held here for 30 min.  

6. At this time heat the silane reagent vessel to 130 
o
C.  

7. With the reactor chamber at 5 mbar and 150 
o
C, close needle valve between silane and 

water reagent vessels and also valve at end of reactor on opposite side. Then open the 

silane reagent vessel and allowed to react for 24 hrs.  

8. Once complete, close the vessel valve and purge the reactor chamber with Argon for 

30 min while heat remains at 150 
o
C. To perform this purge and prevent any 

condensation to occur in the areas where no heating tape exists, first open valve to gas to 

pressurize the water vessel section of the reactor (note: keep pressure below 2 bar).  Then 

open needle valve between the two vessel slightly to allow some argon to flow through 

for 1-2 min. Don’t allow pressure on the water vessel portion to be below 1 bar. Then 
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turn on vacuum and open valve at other end of reactor. Make sure flow is going through 

the cold trap. Continue this vacuum with Argon flow purge for 30 min. 

9. Close valve to Argon gas and allow the system to reach 5 mbar again. 

10. Then close valve at the end of reactor and open the water reagent vessel. The 

temperature of the water vessel should be 25 
o
C. Allow to react for 3 hrs. 

11. After water introduction the reactor chamber was purged and vacuumed as explained 

previously after silylation.  

12. The repeated introduction of silane and then water is repeated until the desired 

number of cycles is reached.  
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APPENDIX F 

CARBON DIOXIDE ADSORPTION MEASUREMENT BY GRAVAMETRIC 

MICROBALANCE  
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1. Remove the glass sample chamber from the microbalance. Be sure to only touch the 

end of the sample chamber for static can developed where touched and therefore can 

produce fluctuations in weight during testing. 

2. Run the microbalance software package and establish a connection with the balance. 

With the sample pan still attached make sure the reading of the weight is 0.00000. A 

fluctuation of +/-0.00050 is fine. If weight does not read near zero, tare the weight. Make 

sure the sample pan is steady during the tare to obtained an accurate base weight. 

3. Place approximately 10 mg of the desired sorbent in the sample pan of the 

microbalance chamber. Read the weight to obtained approximately 10 mg.  

4. Carefully reattached the glass sample chamber to microbalance and close the tube 

furnace around the chamber. Be sure the sample pan is not touching the inside wall of the 

glass chamber. 

5. First activate the sample by heating the furnace to the desired chamber and purging the 

chamber with Argon. Argon must be used for the densities of Argon and CO2 are close 

and therefore buoyancy effects negligible. For amine based sorbents, activation was 

performed by heating the sorbent to 100 
o
C at a rate of 10 

o
C/min with Argon flowing at 

100 mL/min for 30 min. 

6. After activation, reduce temperature of the chamber to the desired adsorption 

temperature. 

7. Once adsorption temperature is reached and stable, start the data acquisition in the 

software to being weight recording. The time of recording and rate of data acquisition 

was 3 hrs and 5 sec intervals. 

8.  Introduce CO2. The flow rate was commonly set at 100 mL/min. 
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9. After 1 hr of adsorption or until the weight has stabilized and equilibrium has been 

reached, end the data acquisition and remove the sample.  

10. The data is recorded in absolute weight of sample. Therefore in order to know how 

many ‘mmol/g’ was adsorbed use the equation below.  

   
    

 
   

                           

              
            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


