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ABSTRACT 

 Dexterous manipulation is a representative task that involves sensorimotor 

integration underlying a fine control of movements. Over the past 30 years, research has 

provided significant insight, including the control mechanisms of force coordination 

during manipulation tasks. Successful dexterous manipulation is thought to rely on the 

ability to integrate the sense of digit position with motor commands responsible for 

generating digit forces and placement. However, the mechanisms underlying the 

phenomenon of digit position-force coordination are not well understood. This 

dissertation addresses this question through three experiments that are based on 

psychophysics and object lifting tasks. It was found in psychophysics tasks that sensed 

relative digit position was accurately reproduced when sensorimotor transformations 

occurred with larger vertical fingertip separations, within the same hand, and at the same 

hand posture. The results from a follow-up experiment conducted in the same digit 

position-matching task while generating forces in different directions reveal a biased 

relative digit position toward the direction of force production. Specifically, subjects 

reproduced the thumb CoP higher than the index finger CoP when vertical digit forces 

were directed upward and downward, respectively, and vice versa. It was also found in 

lifting tasks that the ability to discriminate the relative digit position prior to lifting an 

object and modulate digit forces to minimize object roll as a function of digit position are 

robust regardless of whether motor commands for positioning the digits on the object are 

involved. These results indicate that the erroneous sensorimotor transformations of 

relative digit position reported here must be compensated during dexterous manipulation 

by other mechanisms, e.g., visual feedback of fingertip position. Furthermore, predicted 
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sensory consequences derived from the efference copy of voluntary motor commands to 

generate vertical digit forces may override haptic sensory feedback for the estimation of 

relative digit position. Lastly, the sensorimotor transformations from haptic feedback to 

digit force modulation to position appear to be facilitated by motor commands for active 

digit placement in manipulation. 
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CHAPTER 1 

INTRODUCTION 

CONTROL OF DIGIT FORCES AND POSITION FOR OBJECT MANIPULATION 

 Dexterous manipulation requires fine modulation of forces applied by the digits 

onto an object. Digit forces have to be coordinated as to fulfill specific task requirements, 

e.g., moving or holding an object against gravity. Forces normal and tangential to the 

contact surface must be coordinated to prevent the object from slipping. However, such 

modulation of digit forces as a function of the task and/or object properties (e.g., friction, 

mass) may also take into account other constraints, such as preventing muscle fatigue or 

damage to the object. The coordination of digit normal and tangential forces has been 

extensively studied in object lifting and holding, in which the digit placement was 

constrained to fixed small areas (Johansson & Westling, 1984, 1988a). Specifically, as a 

digit tangential force increased, a digit normal force simultaneously increased to prevent 

the digits from slipping as a function of surface friction coefficients (Johansson & 

Westling, 1984). Sensory feedback facilitates not only this digit force coordination during 

the manipulation, but also an anticipatory control of forces before the onset of 

manipulation, i.e., onset of object motion. Specifically, prior experience with 

manipulation of the same or similar objects provides information about its properties as 

well as the forces that are appropriate for manipulation. This allows humans to recall 

sensorimotor memory of previous manipulations and adjust digit forces before feedback 

about object properties can be acquired. For example, subjects scale digit forces to object 

mass before the object is lifted, as indicated by the modulation of peak grip force rate 

(Johansson and Westling, 1984).  
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 Over the past 30 years, research on grasping has mostly focused on a relatively 

simple, yet elegant experimental approach: subjects are asked to grasp, lift, and hold an 

object using the precision grip between the index finger and thumb. This task has 

provided significant insight, including the contribution of afferent signals from the finger 

pads as a function of the coefficient of contact surface friction (Johansson & Westling, 

1984), and the anticipatory control of digit forces when manipulating familiar or 

unfamiliar object with different weights (Gordon et al., 1993). However, this approach is 

characterized by a major limitation: subjects are asked to place their fingertips on pre-

determined locations on the object, often coinciding with the position of force sensors 

(Figure 1). In fact, manipulation performed during activities of daily living often do not 

constrain digit placement. Specifically, contact points are chosen based on intended 

manipulation, object geometry, and the extent to which subjects are familiar with object 

properties (Lukos et al., 2007, 2008; Fu et al., 2010). Without digit placement constraints, 

a given digit placement in the current trial may be different from that used in previous 

trials. This trial-to-trial variability of digit position prevents subjects from using the same 

digit forces that are estimated from previous trials for anticipatory control. Therefore, for 

a given manipulation to be successfully performed despite grasping the objects at 

different locations, digit forces must be modulated as a function of digit position. This 

problem of digit force-to-position modulation has only been recently addressed using an 

experimental approach that removes digit placement constraints, thus allowing subjects to 

choose digit placement (Fu et al., 2010, 2011; Lukos et al., 2013). Specifically, subjects 

were asked to grasp and lift an inverted T-shaped object without digit placement 

constraints using a precision grip. The object has an asymmetrical mass distribution, and 
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Figure 1.1. An example of object used by Johansson and Westling in 1984. 

 a – table; b – holes in table; c – exchangeable weight shielded from the subjects 

view by the table; d – exchangeable discs; e and f – vertical position transducer with an 

ultrasonic receiver (e) and an ultrasonic transmitter (f); g – accelerometer; h – strain 

gauge force transducers for measurement of grip and load force (vertical lifting force); i – 

peg with an hemispherical tip on which the object rests while placed on the table (legend 

and figure reprinted from Johansson and Westling, 1984).  

  

grea te r  by  a r e l a t i ve ly  smal l  sa fe ty  m a r g i n  t h a n  the  
m i n i m a l  force  r e q u i r e d  to p r e v e n t  slip. T h e  a d a p t a -  
t ion  to the  f r i c t iona l  c o n d i t i o n  a p p e a r s  to be  d e p e n -  
d e n t  o n  s ignals  i n  a f f e r e n t  t e r m i n a t i n g  in  the  f ingers ,  
mos t  l ike ly  tac t i l e  a f f e ren t s ,  s ince  it  was  i m p a i r e d  
d u r i n g  b l o c k a g e  of  t h e  a f f e r en t  s ignals  in  the  digi ta l  
ne rves .  

Th i s  o b s e r v a t i o n  as wel l  as the  a f o r e m e n t i o n e d  
diff icul t ies  in  g r i p p i n g  a n d  h o l d i n g  ob j ec t s  o b s e r v e d  
in  p a t i e n t s  wi th  l e s ions  of  s e n s o r y  n e r v e  b r a n c h e s  
supp ly ing  the  f ingers ,  sugges t  tha t  c u t a n e o u s  i n p u t  
s o m e h o w  w o u l d  i n f l u e n c e  t h e  fo rce  b a l a n c e ,  i .e .  t he  
c o o r d i n a t i o n ,  b e t w e e n  t h e  gr ip forces ,  o n  the  o n e  
h a n d ,  a n d  the  l o a d  forces  w i t h i n  the  grip wh i ch  t e n d  
to cause  sl ips,  o n  the  o t h e r  h a n d .  I n  the  p r e s e n t  
s tudy ,  this  i dea  was  t e s t ed  d u r i n g  d y n a m i c  as wel l  as 
stat ic phases  of  m a n i p u l a t i o n  of  smal l  o b j e c t  u s ing  
the  p rec i s ion  gr ip b e t w e e n  t h e  i n d e x  f inge r  a n d  
t h u m b .  

P r e l i m i n a r y  r e p o r t s  of  s o m e  of  the  p r e s e n t  resu l t s  
have  b e e n  g iven  ( W e s t l i n g  a n d  J o h a n s s o n  1980; 
J o h a n s s o n  a n d  W e s t l i n g  1981). 

Material and methods 

Nine healthy, right-handed subjects (4 women and 5 men, 20-39 
years old), who were completely naive with regard to the purpose 
of the experiments, participated in the present study. The subjects 
sat in a chair with their right upper arm parallel to the trunk, and 
with their unsupported forearm extending anteriorly. In this 
position, they were asked to lift a small object from a table. The 
object was grasped between the tips of the index finger and thumb 
of the right hand and the lifting movement took place mainly as a 
flexion of the elbow joint. For timing purposes, a large illuminated 
clock with a second-hand was placed in front of the subject. Prior 
to the experiments (5-10 min) the subjects had washed their hands 
with soap and water. 

Apparatus 

The object used, diagramatically shown in Fig. 1, was a modified 
version of one described earlier (Westling and Johansson 1984). 
The surfaces touched by the subjects were two easily exchangeable 
discs (diameter: 30 ram) mounted in two parallel planes (distance: 
30 mm). Likewise, the weight of the object could be changed 
between trials. The grip force and the vertical lifting force, 
denoted as the load force, could be measured continuously (d.c. 
-120 Hz) using strain gauge transducers attached to the object. As 
to the grip force, two separate transducer systems could be used to 
obtain separate force measurements from the index finger and the 
thumb, respectively. However, it turned out that the two grip force 
signals were virtually identical, except for during the initial contact 
between the object and the two fingers, i.e. the index finger and 
thumb touched the object slightly asynchronously (see below). 
The verticalposition of the object was measured with an ultrasonic 
device (d.c. -560 Hz), including a transmitter mounted at the top 
of the object and a receiver mounted in the ceiling of the 
laboratory. Vibrations in the object were recorded with an 
accelerometer (noise level corresponding to less than + 0.1 m/s 2, 
20-600 Hz). 

551 

Fig. 1. Schematic drawing of the apparatus, a - table; b - holes in 
table; c - exchangeable weight shielded from the subject's view by 
the table; d - exchangeable discs; e and f -  vertical position 
transducer with an ultrasonic receiver (e) and an ultrasonic 
transmitter (f); g -  accelerometer; h -  strain-gauge force transduc- 
ers for measurement of grip force and load force (vertical lifting 
force); i - peg with an hemispherical tip on which the object rests 
while standing on the table 

Experiments 

During the lifting trials the object was lifted to about two cm above 
the table, held in this position for 10 s, and then replaced and 
released (cf. Fig. 2). Each subject carried out a serie~ of 32-48 such 
trials with intertrial intervals of 10-15 s. To reveal possible 
influences on the motor behaviour from the surface structure of 
the object in the current trials as well as from the structure in the 
previous trials (cf. Westling and Johansson 1984), the surface 
structure was pseudorandomly varied between consecutive trials. 
Three structures were used, sandpaper (No. 320), suede and a 
finely textured silk. These materials were chosen on the basis of 
their different frictional properties in relation to the skin (cf. 
Johansson and Westling 1984; Westling and Johansson 1984). The 
light in the room was adequate to find the object but not to visually 
discriminate the structures of the touched surface. As a rule, the 
weight of the object was 400 g. When other weights (200 g and 800 
g) are used, they are specified. Before the experiments the 
subjects received verbal instructions from the experimenter, who 
also carried out a demonstration trial. Thus, the subjects were not 
instructed to pay attention to the grip force but to the timing and to 
the positioning of the object in space. 
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subjects were asked to lift the object while minimizing object roll. These studies found 

that subjects adjusted digit forces as a function of variable digit placement on a trial-to-

trial basis. This behavior allowed subjects to generate a net torque on the object at lift 

onset in a consistent fashion (Fu et al. 2010). The phenomenon of digit position-force 

coordination suggests that the central nervous system (CNS) integrates the sense of digit 

position with motor commands responsible for distributing forces among the digits. 

However, the underlying mechanisms are not well understood.  

ANTICIPATORY AND REACTIVE MECHANISMS FOR GRASP CONTROL 

 Digit forces can be planned before feedback about object properties is available. 

Specifically, it has been shown that grip forces could be scaled with object weight before 

object mass could be sensed, i.e., before object lift onset (Johansson and Westling, 1984). 

In addition, choice of digit position can also be planned according to the object geometry 

and intended manipulation (Friedman and Flash, 2007; Lukos et al., 2008; Craj� et al., 

2011; Sartori et al., 2011; Gilster et al., 2012).  

 Johansson and colleagues have proposed a model that describes how the CNS 

adjust motor commands for digit forces by comparing predicted and actual sensory 

signals, i.e., ‘sensorimotor control points’ (Johansson and Flanagan, 2009). This theory 

can be used to monitor task progression and detect performance errors for each transition 

across specific action phases of the manipulation task, i.e., between end of reach and 

object contact, or between exerting load forces required to lift the object and onset of 

object’s vertical motion. These events can be detected through specific afferent signals. 

When the finger pads make a contact with the object surface, a class of mechanoreceptors 

(see below for details) is activated to provide the CNS with information about the 
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occurrence of contact. Another group of mechanoreceptors is responsible for detecting 

the moment of object lift-off. These sensory events are predicted by generating motor 

commands for manipulation and each action phase so that the CNS can detect the 

achievement of task sub-goals. At the same time, predicted and actual sensory feedback 

are also compared, and corrective actions are triggered if a mismatch occurs. Therefore, 

the sensorimotor control point theory emphasizes the importance of feedback provided by 

tactile afferents through object contact as well as the crucial role of expecting specific 

afferent signals. It could be argued that, in addition to the tactile afferents, visual 

feedback would also play a role in the corrective actions in manipulation tasks. Prior to 

movement initiation and contact, object material, texture, and shape are perceived 

through vision. However, recent studies has shown that removal of visual feedback of 

thumb position or hand before object contact does not significantly affect thumb position 

relative to the index finger (Voudouris et al., 2012) or force production (Lukos et al., 

2013). These findings indicate that visual feedback would be primarily used to plan hand 

shape and fingertip trajectories before making contact with the object. 

 This dissertation focuses on the mechanisms underlying the phenomenon of 

anticipatory digit force-to-position modulation found for dexterous manipulation tasks. 

Specifically, the aim of this dissertation is to provide insight into humans’ ability to sense 

digit position, and integrate it with motor commands for digit force modulation. The new 

knowledge provided by this dissertation is expected to improve our understanding of 

sensorimotor integration mechanisms underlying the control of complex movements.  
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ROLE OF AFFERENT SENSORY FEEDBACK IN POSITION SENSING 

 To address the phenomenon of digit force-position modulation and underlying 

sensorimotor mechanisms, it is important to assess the extent to which humans can sense 

limb position, e.g., elbow flexion versus extension. Such ability has been extensively 

studied by blocking visual feedback of the involved limb, eliminating tactile sensation 

with anesthesia, inducing artificial skin stretch, perturbing the output of muscle receptors 

with mechanical vibration, and blocking the input into muscles with paralysis. These 

approaches have provided significant insight into the contributions of voluntary motor 

commands and sensory feedback to the limb position sensing (for review see Proske and 

Gandevia, 2009, 2012). 

 Skin receptors. Skin deformation, stretch, touch, pressure, and vibration can be 

detected by afferent signals through four cutaneous mechanoreceptors embedded in 

glabrous and hairy skin (Johnson, 2001; Edin, 2004). These receptors can be categorized 

according to whether their response to a stimulus returns to their baseline state quickly 

(i.e., fast adapting, FA) or slowly (slow adapting, SA), and whether they are located 

superficially (type I) or deeply (type II) in the skin. SA-I afferents terminate in Merkel 

cell and are sensitive to static sustained skin deformation at a low frequency (<5 Hz). FA-

I afferents terminate in Meissner’s corpuscles of the superficial skin and are sensitive to 

dynamic skin deformation at a high frequency (5-50 Hz), but insensitive to static force. 

FA-II afferents terminate in Pacinian corpuscles and are most sensitive to high-frequency 

vibrations. SA-II afferents terminate in Ruffini endings of the deep skin and are sensitive 

to skin stretch. Together, these receptors respond to skin deformation of the finger pad 

and dorsal region of the hand as the finger pads make contact with an object and the hand 
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posture changes. Of particular relevance to the questions addressed by this dissertation is 

the role of SA receptors as sensors of skin stretch caused by changes in digit posture. 

Specifically, the discharge rate of cutaneous mechanoreceptors, particularly the SA 

receptors, increases as a function of skin stretch for the receptors located near the 

metacarpo-phalangeal joint of the index finger (Edin and Abbs, 1991). Furthermore, a 

psychophysics study has shown that changes in the skin stretch contributed to an accurate 

estimation of the static proximal inter-phalangeal joint angle (Edin and Johansson, 1995).  

 Joint receptors. In addition to skin receptors, joint receptors contribute to sensing 

limb and digit position. These receptors are relatively less active at the mid-range of 

motion of joint but become significantly active towards the limits of the joint range of 

motion (Ferrell, 1980; Burgess et al., 1982; Burke et al., 1988; Edin, 1990). Thus, joint 

receptors are thought of as “limit detectors”. During object manipulation, as finger span – 

the distance between fingertips – increases to shape the hand for grasping an object 

(Santello and Soechting, 1997), afferent signals from joint receptors might provide 

additional information relative to visual feedback about hand configuration and relative 

position of the fingertips.  

 Muscle receptors. Muscle receptors consist of muscle spindles and Golgi tendon 

organs (GTOs). Muscle spindles located in a muscle belly are sensitive to static and 

dynamic changes in muscle length (Brown and Butler, 1973), whereas GTOs within the 

tendon-muscle junction increase their discharge rate to changes in tension occurring at 

the tendons and muscles (McCloskey et al., 1974; Gregory et al., 2001). Goodwin et al. 

(1972) demonstrated that vibration onto the tendon of the elbow flexor induced illusion 

of the static angle and movement at the elbow. When the muscle tendon or belly was 
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vibrated at 80-100 Hz to increase their activity of particularly primary spindles as well as 

secondary spindles and GTOs (Fallon and Macefield, 2007), the CNS interprets this 

increased afferent activity as muscle stretch. As a result, subjects perceive elbow angle as 

more extended than what it actually is, and an opposite phenomenon occurs when elbow 

extensors are stimulated. There is now general agreement that, muscle receptors, 

particularly muscle spindles, significantly contribute to sensing limb static position and 

dynamic movement (for review see Proske and Gandevia, 2009, 2012).  

SENSORIMOTOR TRANSFORMATIONS UNDERLYING MATCHING VERTICAL DISTANCE 

BETWEEN FINGERTIPS 

 The above psychophysics work examined somatosensory feedback associated 

with mechanoreceptors sensing a joint angle, and it well suited to address questions about 

the role of somatosensory feedback for upper or lower limb sensorimotor control. 

However, and as discussed above, execution of grasping tasks would rely on sensing 

contact of each digit on the object surface, as well as determining the relative location of 

contact points. The ability to sense relative contact point locations has been examined in 

the horizontal plane (Santello and Soechting, 1997). However, this study did not examine 

the role of physical contact with an object, hence afferent signals from the finger pads, as 

a potential contributor to sensing fingertip position as it occurs during grasping. 

Furthermore, it should be noted that digit placement for precision grips often requires 

placement of the fingertips that are vertically separated, e.g., when a torque has to be 

generated (Fu et al., 2010). Therefore, the extent to which the findings from 

psychophysical studies examining only single joints or horizontal relative digit position 
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can apply to sensing vertical relative digit position for force modulation during grasping 

remains to be established. This question was addressed by Study #1.  

ROLE OF CENTRALLY-GENERATED EFFERENT SIGNALS IN POSITION SENSING 

 In addition to afferent sensory feedback described above, centrally-generated 

efferent signals (i.e., motor commands) to muscles are thought to play a significant role 

in movement execution. It has been shown that voluntary motor commands can influence 

central processing of afferent signals conveying information about the joint angle 

(Gandevia, 1987; Gandevia et al., 2006; Smith et al., 2009). Specifically, Smith et al. 

(2009) blocked the voluntary motor commands by paralysis to affect muscles below the 

elbow while afferent signals remained intact. When attempting to flex the wrist under this 

condition, subjects reported their wrist to be in a flexed position. This finding suggests 

that voluntary motor commands for force production at a given limb posture can interfere 

with humans’ the ability to sense joint angle.  

 This mechanism has been proposed to operate within internal forward models 

whose role is to predict sensory consequences of motor actions based on a copy of motor 

commands and an estimate of the current state of the body (Wolpert et al., 1995; Kawato, 

1999). The internally-predicted sensory consequences are then compared with incoming 

actual sensory afferent signals to estimate sensory state in the immediate future. A 

mismatch between the predicted and actual sensory signals, if any, would trigger to adjust 

motor commands and predicted sensory states for a more accurate estimation.  

Furthermore, it has been recently documented that sensitivity to stimuli that are generated 

by external environment was attenuated during voluntary finger tapping and grasping 

movements, but not at rest (Bays et al., 2006; Voss et al., 2006; Seki and Fetz, 2012). 
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This finding suggests that voluntary motor commands for tapping and grasping influence 

sensitivity to externally-generated stimuli possibly because of the comparison of 

predicted and actual sensory feedback within the forward models.  

 Another effect of digit force production derived from voluntary motor commands 

in grasping and manipulation is skin deformation of the finger pads in multiple directions 

following object contact. A force normal to the contact surface induces a compression of 

the finger pad, whereas a forces tangential to the contact surface necessary for lifting an 

object lead to a lateral skin deformation of the finger pad, and subsequent shift of the 

center of pressure of the finger pad on the object surface (Birznieks et al., 2001; Jenmalm 

et al., 2003). Thus, skin deformation of the finger pad is normally coupled with digit 

force production and induced by both normal and tangential digit forces in manipulation 

task. However, previous studies have examined subjects’ ability to match the sensed joint 

angle by exerting a force only normal, rather than tangential, to the contact surface 

(Gandevia, 1987; Gandevia et al., 2006; Smith et al., 2009).  

 The extent to which voluntary motor commands responsible for digit force 

production during grasping and prior to the onset of manipulation (e.g., without lifting an 

object) may influence subjects’ perception of the digit position and ability to reproduce 

the sensed relative digit position remains to be established. It is important to understand 

voluntary motor commands without visual feedback of the hand because the contact 

points at which the digits apply forces on an object could be inferred through tactile 

feedback from the finger pad when vision of the contacts is blocked. This question was 

addressed by Study #2.  
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PERCEPTION-ACTION COUPLING: INTEGRATION OF SENSED DIGIT POSITION WITH 

FORCE MODULATION FOR DEXTEROUS MANIPULATION 

 Psychophysics studies 1 and 2 discussed in previous sections have examined how 

accurately subjects could reproduce the sensed and remembered relative digit position 

using tactile and proprioceptive feedback. As noted above, however, this matching task 

protocol has not been used to study actions normally involved with dexterous 

manipulation, i.e., static force production followed by object movement. Moreover, 

previously studied matching tasks were designed to have discrete sensing and matching 

phases with an interspersed 10 s resting phase. These tasks required retaining memory of 

digit position during the sensing phase, and retrieving remembered digit placement to 

reproduce it during the matching phase. However, object manipulation involves 

transitioning from initial object contact to vertical force production for object lifting with 

a time delay of few hundred milliseconds required to stabilize the object between digits 

(for review see Johansson and Flanagan, 2009). As noted above, this sequence of actions 

– contact, static force production, estimation of relative digit position to modulate forces 

– would require integrating sensed relative digit position for digit force production 

without having to recall remembered digit position. Object manipulation with 

unconstrained digit placement would result in variable relative digit position, which may 

need to be sensed accurately for appropriate force modulation. Thus, to further 

understand the sensorimotor integration mechanisms underlying digit force-position 

coordination, it is important to examine how accurately subjects can sense the relative 

digit position within a single object lift without memory recall, and how well subjects can 

perform a grasp-lift task for a given digit position.  
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 Another gap between psychophysics work and the study of object manipulation 

tasks is whether a limb is moved voluntarily or involuntarily to a target point. Some 

studies required subjects to indicate the sensed limb position after their limb was 

passively placed to a given position by an experimenter or an apparatus. In object 

manipulations, subjects actively place their digits on the object for its manipulation. It has 

been shown that an estimation of limb endpoint after active reaching movements was 

more precise than after passive reaching movements (Adamovich et al., 1998; Gritsenko 

et al., 2007; Bhanpuri et al., 2013). Furthermore, predictable sensory consequence of 

active movement appears to benefit position sensing. Specifically, a recent study has 

shown that a predictable physical contact of the hand after an active arm movement 

results in an accurate estimation of hand endpoint (Bhanpuri et al., 2013). Conversely, 

endpoint estimation was less accurate when contact could not be predicted due to passive 

arm movement or a perturbation during the active movement. Hence, not only the active 

arm movement but also the corresponding sensory consequences (i.e., the predictable 

physical contact in the cited study; see also above discussion on feedforward models) 

may facilitate subjects’ ability to estimate the limb endpoint. In an object manipulation, 

an active digit positioning and sensory consequence of the digit contact with the object 

surface can be predicted. This phenomenon may facilitate sensing a relative digit position 

and subsequent action in object manipulation. However, the extent to which voluntary 

motor commands for active digit placement influences perception-action coupling 

(sensing relative digit position-digit forces) remains to be investigated. This question was 

addressed by Study #3. 
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CHAPTER 2 

HAPTIC-MOTOR TRANSFORMATIONS FOR THE CONTROL OF FINGER 

POSITION 

INTRODUCTION 

 Dexterous manipulation relies on the ability to coordinate digit forces (Johansson 

and Westling, 1988b; Johansson and Flanagan, 2009) and positions (Lukos et al., 2007, 

2008; Fu et al., 2010, 2011; Zhang et al., 2010; Craj� et al., 2011). Choice of digit 

placement plays an important role in manipulation, as indicated by its sensitivity to task, 

object geometry, and intended manipulation (Friedman and Flash, 2007; Lukos et al., 

2007; Fu et al., 2010; Craj� et al., 2011; Sartori et al., 2011; Gilster et al., 2012). It has 

recently been shown that when subjects are asked to manipulate objects that do not 

constrain digit placement at specific locations, trial-to-trial variability in digit placement 

is compensated by concurrent modulation of digit forces such that manipulation can be 

performed in a consistent fashion (Fu et al., 2010). These findings indicate that the 

central nervous system integrates the sense of digit position with motor commands 

responsible for distributing forces among the digits (Johansson and Cole, 1992; 

Johansson and Edin, 1993; Johansson and Flanagan, 2009).  

 Although it could be argued that vision of hand placement on the object would 

play a key role in the modulation of digit forces as a function of position, the position of 

one or more digits is often occluded by the object as it happens when grasping a bottle or 

holding a cup. However, a recent study has shown that removal of visual feedback of 

thumb position before object contact does not significantly affect thumb placement 

relative to the index finger (Voudouris et al., 2012). Furthermore, psychophysical 
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evidence from matching finger span to visually or haptically perceived object size 

indicates that the horizontal distance between the finger pads can be accurately sensed 

without visual feedback of the hand in the absence of contact forces (Santello and 

Soechting, 1997). Similarly, the horizontal distance between the thumb and two fingers 

was accurately matched even when the matching task was performed with the 

contralateral hand while holding an object so as to prevent it from slipping without visual 

feedback of both hands and the object (Van Doren, 1998). These observations suggest 

that visuomotor transformations mapping object graspable surfaces to relative fingertip 

position or grip axis orientation can be accurately implemented using only somatosensory 

feedback.  

 The above studies, however, constrained grasp aperture to change only on one 

axis (horizontal) (Santello and Soechting, 1997; Van Doren, 1998) or focused on the 

orientation of contacts on the horizontal plane (Voudouris et al., 2012). Therefore, the 

extent to which the above findings apply to tasks involving non-collinear contacts, 

eliciting different patterns of mechanoreceptor activity than collinear contacts, remains to 

be established. Non-collinear contacts occur when normal forces exerted by opposing 

digits are used to generate a torque while grasping an object. This is achieved by an offset 

between the contact points in the plane of the contact surfaces. This is an important 

question because object manipulation often does not constrain the finger pads to be 

positioned collinearly relative to each other (Fu et al., 2010; Zhang et al., 2010). Another 

gap in previous literature is that digit force was not measured, hence not controlled for, 

by studies that allowed contact forces (Van Doren, 1998; Drewing and Ernst, 2006; 

Voudouris et al., 2012). Therefore, it is not known whether subjects’ ability to accurately 
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reproduce digit contact orientation without visual feedback might have been associated 

with exerting specific force magnitudes.  

 Another open question is whether the ability to reproduce digit position depends 

on whether sensing occurs through the same versus the opposite hand. Lastly, although 

the effects of non-congruent arm position on perception of hand shape using the opposite 

hand were previously addressed (Pesyna et al., 2011), it is not known whether 

congruence of relative position of the digits affects subjects’ ability to match finger pad 

distance haptically perceived with the opposite hand. It should be emphasized that the 

haptic-motor transformations associated with reproducing finger pad distance rely on 

different abilities depending on whether the posture of the hand used for sensing finger 

pad distance is the same or different from the posture of the hand used for matching. 

Specifically, when the posture of the ‘sensing’ and ‘matching’ hand are the same, 

subjects can use the memory of somatosensory feedback acquired at a given posture to 

reproduce the same posture of the ‘matching’ hand, hence finger pad distance. In 

contrast, when the postures of the ‘sensing’ and ‘matching’ hands differ, somatosensory 

feedback arising from muscles, tendons, and skin afferents needs to be processed to 

create an appropriate internal representation of the relative position of the finger pads 

independent from postural sensory cues.  

 The present study was designed to address the above gaps by determining the 

factors that affect subjects’ ability to sense and reproduce the vertical distance between 

finger pads. Specifically, we asked subjects to sense the vertical distance between the 

center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand 

(“reference” hand) and, after a brief delay, match it using the same or opposite hand 
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(“test” hand). In addition, we asked subjects to perform the matching task using an 

inverse test hand posture relative to the reference hand to prevent them from merely 

matching hand postures (Fig. 1C and 2A). An inverse hand posture is generated by 

changing the relative vertical position of the two digits without involving wrist supination 

or pronation.  

 We hypothesized that the matching error (difference between reference and test 

hand dy) would be greater (1) in the collinear (dy = 0 mm) than non-collinear (dy ≠ 0 mm) 

digit position (Fig. 2.1C), (2) when the postures of the reference and test hand were 

inversed (Asymmetric, middle column, Fig. 2.2A), and (3) when subjects reproduced 

finger pad distance using the opposite hand (top row, Fig. 2.2A) as opposed to using the 

same hand (bottom row, Fig. 2.2A). The rationale for the first hypothesis is that 

somatosensory afferent responses from skin, joints, muscles, and tendons would provide 

signals with higher signal-to-noise ratio about finger pad distance when finger pads are 

further apart than when they are collinear (Burke et al., 1988; Edin and Abbs, 1991; Edin, 

1992; Edin and Johansson, 1995). The second hypothesis is based on the expectation that 

matching finger pad distance would be facilitated by matching (remembered) sensory 

feedback from reference hand to sensory feedback from test hand when hand postures are 

congruent. Therefore, this hypothesis also implies that subjects’ ability to match finger 

pad distance would be challenged by perceiving and reproducing finger pad distance 

dissociated from hand postural cues, i.e., reproducing a posture-independent internal 

representation of finger pad distance, for incongruent hand postures (Symmetric vs. 

Asymmetric, Fig. 2.2A). The rationale for the third hypothesis is that transferring sensory 

information across cerebral hemispheres to generate motor commands with the opposite 
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hand would add sensorimotor transformation errors relative to those associated to 

perceiving and reproducing finger pad distance with the same hand (Adamo and Martin, 

2009; Adamo et al., 2012). 

MATERIALS AND METHODS 

Subjects 

Fifteen right-handed volunteers (10 males and 5 females, mean age and standard 

deviation: 23.5 ± 4.5 yrs) participated in this study. Hand dominance was assessed using 

the 10-item Edinburgh Handedness Inventory (Oldfield, 1971). All subjects were 

classified as right-handed (mean Laterality Quotient and standard deviation: 83.3 ± 22.3). 

Subjects were naïve to the purpose of the study and had no previous history of 

orthopedic, neurological trauma, or pathology of the upper limbs. Subjects gave their 

written informed consent according to the declaration of Helsinki and the protocols were 

approved by the Office of Research Integrity and Assurance at Arizona State University. 

Apparatus 

Subjects sat on an adjustable chair with both forearms resting on a table. A 

tabletop, in which a computer monitor was placed at subjects’ eye level, was used to 

prevent vision of the forearms, hands, and the two identical handles used to measure digit 

forces and torques exerted by thumb and index finger (Fig. 2.1A; see below for details). 

After matching the position and orientation of the arms and hands, the forearms and 

wrists were constrained with straps and rigid dowels anchored to the platform to 

minimize movements across trials and throughout the experiment (Fig. 2.1A). The 

relation between the hand posture and the handle position was also maintained constant 

by anchoring the handles to the table. The positioning of the object and platform was 
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adjusted for each subject and fixed after we confirmed that subjects’ digits were placed 

on the handle in a comfortable posture. The CoP of the thumb pad and index finger pad 

of each hand was computed as described in Fu et al. (2010) using two six-component 

force/torque sensors mounted on each side of both handles (ATI Nano-25 SI-125-3, ATI 

Industrial Automation, Garner, NC; force range: 125, 125, and 500 N for x-, y- and z-

axes, respectively; force resolution: 0.06 N; torque range: 3000 N•mm; torque resolution: 

0.378 N•mm; “a”, Fig. 2.1B). The CoP was defined as the vertical coordinates of the 

center of pressure of the contact between the finger pad and the graspable surface (Fig. 

1B) relative to the center of the sensor. Calibration of each sensor with its contact surface 

revealed that the vertical (y) coordinate of each digit CoP could be computed with a 

maximum error across all measurements and sensors of ±1.1 mm (maximum average 

error ± standard deviation: 0.2 ± 0.5 mm) when three forces (0.6, 1.0, and 1.4 N) were 

applied perpendicular to the contact surface mounted on the sensor. The actual normal 

force that subjects exerted with a digit during the experimental tasks fell within the 0.6-

1.4 N in 95% of all trials. Error in CoP reconstruction was similar across the four sensors.  

The contact surfaces of the handles were covered with 100-grit sandpaper (static friction 

coefficient range: 1.4-1.5) to allow subjects to maintain a relaxed posture of the digits 

without having to exert significant forces on the handles to prevent the digits from 

slipping. As a result, tangential forces were very small and ranged between 0.1 and 0.2 N. 

Force and torque data were acquired, recorded, and stored in a computer with a 12-bit 

A/D converter board (PCI-6225, National Instruments, Austin, TX; sampling frequency: 

1 kHz) through a custom data acquisition interface (LabVIEW version 8.0, National 

Instruments).  
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Figure 2.1. Experimental setup. 

 Panel A shows a top view of the experimental setup. In this figure, the subject is 

shown performing the matching task using the left hand (“Test” hand) to reproduce the 

vertical distance (dy) between the thumb and index finger pad of the right hand 

(“Reference” hand) (see text for more details). Note that the table top (gray) prevented 

the subjects from seeing their forearms and hands but is shown as transparent for 

graphical purposes only. Forearms and wrists were strapped to the table to prevent 

movements within and across trials while the handles were anchored to the table. Panel B 

shows a frontal view of one of the two handles used for the study (“a” denotes 

force/torque sensors). Panel C shows the frontal view of the handle with the three dys of 

the reference hand used for the study. Note that dy is defined as positive or negative when 

the thumb pad is higher or lower than the index finger pad, respectively.  
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Experimental Procedures 

We asked subjects to match the vertical distance (dy) between thumb and index 

CoP of the right (dominant) hand (“reference” hand) using the same hand or the opposite 

hand (both are defined as “test” hand). At the beginning of the experiment, subjects 

performed several practice trials to familiarize themselves with the task. Note that 

feedback about matching performance was not provided during the practice or 

experimental trials.  

Reference hand. We tested three dys at the reference hand: +30, 0, and −30 mm, 

defined as higher, same, or lower thumb CoP relative to index finger CoP (Fig. 1C). 

During the practice trials, we confirmed that all subjects could comfortably achieve these 

non-collinear dys (+30 and −30 mm) within their range of motion regardless of variability 

of hand size. We measured three parameters of reference hand: (1) length, defined as the 

distance from the wrist crease to the tip of middle finger (average length ± standard 

deviation: 184.2 ± 10.6 mm); (2) width, defined as the distance between the radial aspect 

of the second metacarpo-phalangeal (mcp) joint and the ulnar aspect of the fifth mcp joint 

(average width ± standard deviation: 83.1 ± 4.8 mm); and (3) thumb-index distance, 

defined as the distance between outstretched thumb and index fingertips (average length 

± standard deviation: 163 ± 13.1 mm). No outliers were found for any of these three 

parameters across subjects.   

The experimenter asked subjects to relax the digits of the reference hand while 

passively moving them to one of the three dys (“passive dy adjustment”, Fig. 2.2B). 

During this procedure and while matching dy (see Fig. 2.1C), subjects were required to 

keep the middle, ring, and little fingers extended. One of the experimenters monitored the  
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Figure 2.2. Experimental conditions and trial timeline.  

 Panel A shows all experimental conditions. The thumb and index finger of the 
reference hand were positioned at one of the three target vertical distances (dy; see Figure 
1) and subjects were asked to reproduce dy after a 10-second delay using either the 
opposite hand (test hand) (“Opposite” condition) or the same hand (reference hand) 
(“Same” condition). For both Opposite and conditions, subjects were asked to either 
reproduce dy using the congruent reference hand posture (“Symmetric” condition) or an 
inverse posture (“Asymmetric” condition) (see text for more details). Note that the 
collinear dy requires subjects to use the same posture with both hands. Panel B shows the 
trial timeline. In the phase of “passive dy adjustment”, the digits were passively placed to 
one of three digit positions. Once the desired dy was reached and digit force was 
controlled, recoding of reference hand dy started while subjects tried to perceive and 
memorize the reference hand dy for 5 seconds. During the “relax” phase, subjects were 
asked to retain the remembered dy while relaxing their hands for 10 seconds, followed by 
the “match” phase in which they had to reproduce that dy with test hand within 10 
seconds. The test hand dy was then recorded for 5 seconds while subjects kept the digit 
position and digit force level (“hold” phase).  
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CoP for each digit and the resultant dy of the reference hand on a second computer 

monitor that was not visible to the subject. Another experimenter visually verified that 

subjects maintained the desired hand posture (thumb and index fingertips in contact with 

the device while keeping the other fingers extended) until the desired dy was reached. 

While keeping a given dy, we asked subjects to generate very small normal forces with 

the thumb and index finger of reference hand. This criterion was enforced by providing 

visual feedback of digit normal forces to the subject on a computer monitor placed on the 

tabletop (Fig. 2.1A). The normal force range was between 0.4 and 1 N, the lower bound 

being the minimum force required for accurate computation of digit CoP (Fu et al., 

2010). Once this force criterion was met, we asked subjects to maintain reference hand dy 

for 5 seconds within a tolerance window of ±5 mm from the desired dy in order to start 

recording reference hand dy (“perceive and memorize”, Fig. 2.2B). Throughout the 

experiment, subjects were able to maintain each of the three prescribed dys within the ±5 

mm tolerance window. After the 5-seconds period, we gave subjects a verbal signal to 

release the digits of reference hand from the handle and place the hand flat (all digits 

straight, adducted, and with the palm in a horizontal orientation) on the table. Note that 

neither hand was in contact with the handle for 10 seconds (“relax”, Fig. 2.2B). After the 

10 seconds delay, we gave another verbal signal to match the remembered reference hand 

dy using test hand within 10 seconds (see below for details). Note also that, when one 

hand was in contact with the handle, the other hand was placed flat on the table.  

Test hand. Subjects were asked to actively place test hand to the remembered dy 

on its respective handle after the verbal signal was given within 10 seconds (“match”, 

Fig. 2.2B). During the “match” period, subjects were required to exert normal forces 
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between 0.4 and 1 N (see above). The trial was repeated if subjects were unable to exert 

digit forces within the required target during the “match” period. When the force criterion 

was met within the 10-second period, subjects were given a verbal signal to hold dy for 5 

seconds to record the test hand thumb and index finger CoP (“hold”, Fig. 2.2B). Finally, 

subjects were asked to release the test hand from the handle after another verbal signal 

was given.  

We tested four matching conditions that differed depending on whether test hand 

and reference hand were required to assume a congruent or inverse posture (“Symmetric” 

and “Asymmetric” conditions, respectively) and whether matching tasks were to be 

performed with the same hand used as the reference hand or the opposite hand (“Same” 

and “Opposite” conditions, respectively). For each of these four conditions, we tested the 

above-described three dys (Fig. 2.1C).  

In the Symmetric condition (Fig. 2.2A, left column), subjects matched the 

reference hand dy with the test hand by keeping the relative digit position congruent 

across the two hands. Specifically, when subjects detected the thumb CoP to be higher or 

lower than the index finger CoP of the reference hand, they were asked to position the 

thumb CoP higher or lower than the index finger CoP of the test hand, respectively, while 

matching the reference hand dy. For the Asymmetric condition (Fig. 2.2A, middle 

column), subjects were asked to match reference hand dy by using an inverse relative 

digit position with the test hand. Specifically, when subjects detected the thumb CoP to 

be higher or lower than the index CoP of the reference hand, they were asked to position 

the thumb CoP lower or higher than the index CoP of the test hand, respectively. Note 

that for the collinear digit position (dy = 0), the test hand dy (Fig. 2.2A, right column) 
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reflects the perceived reference hand dy. Therefore, even though the actual reference hand 

dy is ~ 0, they might have perceived dy to be non-zero. If so, subjects would reproduce dy 

with test hand by positioning thumb and index finger CoP in a non-collinear 

configuration that might be symmetrical or asymmetrical depending on the perceived 

relative position of reference hand dy. 

Subjects were notified whether the postures of test hand and reference hand were 

required to be congruent or inverse and whether the test hand was the opposite or same 

hand before starting the block of consecutive trials. Each block of the four experimental 

conditions consisted of 15 consecutive trials (5 trials per dy; Fig. 2.1C) for a total of 60 

trials. For each experimental condition, the order of presentation of reference hand dy was 

randomized across trials and subjects. The presentation of experimental conditions was 

counterbalanced across subjects. 

Data processing 

Force data were filtered using a moving average filter every 50 samples over the 

duration of data recording and used for computing and displaying online normal force 

magnitude and digit CoPs and dy for both reference and test hand using LabVIEW. The 

CoP of each digit was defined as the vertical coordinate of the CoP of the contact 

between the finger pad (thumb or index finger) and the surface of the handle relative to 

the center of the force/torque sensor (Fig. 1B). After data collection, CoP data for each 

digit were analyzed off-line with custom-written software (Matlab, The MathWorks, 

Natick, MA). The vertical coordinate of digit CoP was averaged within each trial for each 

digit and was used to compute dy for statistical analysis. 
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Error in matching performance was defined as dy of test hand during the “hold” 

phase minus reference hand dy during the “perceive and memorize” phase (Fig. 2.2B) and 

was computed as either absolute or relative error. The relative error takes into 

consideration the sign of dy of the reference and test hand, and therefore can take a 

positive or negative value. The sign of the relative error denotes whether subject made 

over- or under-estimation of the reference hand dy in the non-collinear conditions. In 

contrast, absolute error was computed by taking the absolute value of positive and 

negative relative errors. Over- and under-estimation of reference hand dy were defined as 

longer and shorter distances, respectively, between the thumb and index finger CoP of 

test hand relative to that of the reference hand. The sign of the relative error for non-

collinear dy depends on the sign convention used for reference hand dy. Specifically, 

when reference hand thumb was passively placed non-collinearly and higher than the 

index finger (dy ≈ 30 mm), negative and positive relative error indicate under- and over-

estimation of reference hand dy, respectively. In contrast, when reference hand thumb was 

placed lower than the index finger (dy ≈ –30 mm), negative and positive relative error 

indicate over- and under-estimation of reference hand dy, respectively. Analysis of 

relative error in the collinear reference hand dys was excluded from analysis because, 

unlike the non-collinear reference hand dys (above), reference hand dy could fluctuate 

between positive and negative values across trials. 

Statistical analysis 

After data processing for the computation of absolute and relative error, we 

determined whether there were outliers within each subject and experimental condition. 

Outliers were defined as data above or below three standard deviations of the mean. We 
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found only one outlier datum and excluded it from statistical analysis. Statistical analysis 

with and without the outlier datum did not change the statistical main effects and 

interactions. 

To determine the extent to which actual reference hand dy could be grouped 

within each of the three desired dys for statistical analyses, we performed linear 

regression analysis on reference hand dy versus test hand dy on separate group of trials (n 

= 5) from each desired dy, experimental condition, and subject. This analysis was 

performed to determine the extent to which trial-to-trial deviations from the desired 

reference hand dy within the ± 5 mm tolerance window were large enough to be perceived 

by the subject as detectable by systematic changes in test hand dy. Furthermore, to 

determine whether trial-to-trial fluctuation of reference hand force induced systematic 

changes in the test hand force and matching error, linear regression analyses were also 

performed on the reference hand force versus the test hand force across subjects (n = 15) 

and matching error within subjects (n = 60). We also performed linear regression analysis 

on the absolute error over 60 trials within subjects to determine whether subjects' ability 

to match the digit positions varied systematically throughout the duration of the 

experiment.  

Eabs was analyzed using 3-way analysis of variance (ANOVA) with repeated 

measures within dy (3 levels: +30, 0, −30 mm), test hand posture (2 levels: Symmetric, 

Asymmetric), and Hand (2 levels: Opposite, Same). These within-subject factors were 

used to test the effect of each experimental condition on dy matching accuracy. This 3-

way ANOVA was performed at the p ≤ 0.05 significance level to test the hypotheses that 

the matching error would be greater (1) for collinear than non-collinear digit positions, 
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(2) when the postures (relative positions of thumb and index finger) of the reference and 

test hand were inversed, and (3) when subjects reproduced finger pad distance using the 

opposite hand as opposed to using the same hand. A post hoc test was used to test the 

hypothesis that the matching error would be greater in the collinear (dy = 0 mm) than 

non-collinear (dy ≠ 0 mm) digit position. Post hoc tests were run using paired sample t-

tests with Bonferroni corrections when appropriate. Relative error from non-collinear dys 

was analyzed by two-tailed t-tests for each experimental condition and non-collinear 

reference hand dys to determine whether the mean relative error was significantly 

different from zero.  

Sphericity assumptions were tested for all analyses of absolute and relative error 

(Greenhouse-Geisser analysis). Violations of normality equality assumptions were tested 

using Shapiro-Wilk test and Levene’s test, respectively (p > 0.05). Values in the text are 

reported as means ± standard error.  

RESULTS 

Validation of experimental protocol 

Effect of small trial-to-trial fluctuations in reference hand dy. Linear regression 

analysis on reference hand dy versus test hand dy revealed that virtually all linear fits 

(>95%) were not statistically significant (p > 0.05). Therefore, as the small trial-to-trial 

fluctuations in reference hand dy did not elicit systematic changes in test hand dy, for 

statistical purposes we allocated measured reference hand dy values to its corresponding 

category (0, + 30 mm, or −30 mm).  

Effect of small trial-to-trial fluctuations in reference hand force. The average 

normal forces of the thumb and index finger exerted by reference and test hand were 
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virtually identical (0.78 ± 0.05 N and 0.80 ± 0.05 N, respectively). The linear regression 

analysis revealed that the reference and test hand normal forces were highly correlated (r2 

= 0.92, p < 0.01). Linear regression analysis on the reference hand normal force versus 

matching error within subjects revealed that linear fits from 14 out of 15 subjects were 

not statistically significant (p > 0.05). For the only subject for whom the linear fit was 

statistically significant (p < 0.05) the r2 value was only 0.11. Thus, these two linear 

regression analyses indicate that there was no systematic change in the test hand force or 

matching error as a function of the small trial-to-trial fluctuations of reference hand 

normal force.  

Effect of experiment duration. The linear regression analysis on the matching 

error over 60 trials within subjects revealed that 10 out of 15 (66.6%) linear fits were not 

statistically significant (p > 0.05). The remaining 5 out 15(33.4%) linear fits that were 

statistically significant (p < 0.05) were characterized by an inconsistent sign of the 

regression coefficients. Most importantly, 13 out of 15 (86.7%) of the r2 of the significant 

linear fits was very small (< 0.1), whereas the maximum r2 of the remaining 2 out of 15 

(13.3%) significant fits was only 0.13. Therefore, matching error did not systematically 

vary as a function of trial. Thus, we could rule out effects of the duration of experiment, 

such as fatigue or familiarization with task, on matching error. 

Absolute error 

 Figure 2.3 shows the averages of absolute matching error of 5 trials from all 

subjects as a function of the vertical distance between thumb and index finger CoP (dy) 

for each experimental condition. The matching errors per vertical distance were 

connected using different colors for each subject, and the thick black line denotes the  
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Figure 2.3. Absolute error: individual subjects.  

 Averages of absolute error of 5 trials from all subjects are shown as a function of 

reference hand dy (+30, 0, and −30mm) for the four matching conditions, and connected 

with different colors for each subject. The thick black line denotes the mean absolute 

error averaged across 15 subjects with standard error of the mean. Top panels show the 

opposite condition, in which subjects were asked to reproduce dy using the opposite hand 

after a brief delay. Bottom panels show the same condition, in which subjects used the 

same hand to reproduce dy after a brief delay. These two conditions are shown separately 

for the symmetric (left) and asymmetric (right) condition, in which postures of the 

reference and test hand were congruent and inverse, respectively.  
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mean absolute error averaged across 15 subjects. Overall, subjects tended to make greater 

absolute error when asked to match collinear dy (dy = 0 mm) than when the thumb CoP 

was placed higher (dy = 30 mm) or lower (dy = −30 mm) than the index finger CoP. 

Furthermore, greater absolute error were produced when the postures of the test and 

reference hand were inversed (Asymmetric condition) and when the matching task was 

performed with the opposite hand (Opposite condition). The performance of two subjects  

(#7 and #4) was characterized by large errors for collinear dy in Opposite-Symmetric and 

Same-Asymmetric conditions (dark green and yellow lines, respectively, in Fig. 2.3). 

Thus, we performed the statistical analyses both with and without these two subjects. The 

statistical main effects were not altered by removing these two subjects, thus all statistical 

analyses reported below were performed on all subjects.  

Greater absolute error in the collinear than non-collinear dy was observed in both 

symmetric and asymmetric matching conditions (black and gray bars, Fig. 2.4A). Three-

way ANOVA confirmed that absolute error was significantly greater in the collinear than 

non-collinear conditions (12.6 ± 0.9 mm for dy = 0 mm; 9.0 ± 0.9 mm for dy = −30 mm; 

8.8 ± 0.7 for dy = 30 mm; main effect of Distance: F[2,28] = 10.8; p < 0.01; Fig. 2.4A), and 

in the asymmetric than symmetric condition (12.0  ± 0.9 mm and 8.3 ± 0.5 mm, 

respectively; main effect of Posture: F[1,14] = 26.5; p < 0.01; Fig. 2.4B, left). We also 

found a significant interaction Posture × Distance (7.1 ± 0.8 mm for Symmetric at dy = 

−30 mm; 9.6 ± 1.0 mm for Symmetric at dy = 0 mm; 8.1 ± 0.7 mm for Symmetric at dy = 

30 mm; 10.8 ± 1.1 mm for Asymmetric at dy = −30 mm; 15.5 ± 1.4 mm for Asymmetric 

at dy = 0 mm; 9.6 ± 1.0 mm for Asymmetric at dy = 30 mm; F[2,28] = 4.02; p < 0.05; Fig. 

2.4A).  
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Figure 2.4. Absolute error: averaged data.  

 Absolute errors were compared across reference hand dys, postures, hands, and 

matching conditions. Panel A shows average absolute error for symmetric and 

asymmetric conditions (black and gray bars, respectively) across reference hand dys. 

Panel B, left, shows average absolute error for symmetric and asymmetric conditions 

(black and gray bars, respectively) as a function of hand posture (Sym, Asym: Symmetric 

and Asymmetric conditions, respectively). Panel B, right, shows average absolute error 

when reference and test hand differed or were the same (Oppo, Same: Opposite and Same 

conditions, respectively). Panel C shows absolute error averaged for each condition. For 

all panels, absolute errors were averaged across all subjects within the given comparisons 

groups (± SE). The asterisks denote significant difference (p < 0.05) between the 

symmetric and asymmetric conditions.  
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Absolute error was significantly greater in the Asymmetric than Symmetric 

condition for dy = 0 and −30 mm (post hoc t-test: Symmetric at dy = 0 mm vs. 

Asymmetric at dy = 0 mm; t[14] = −3.54, p < 0.003; Symmetric at dy = −30 mm vs. 

Asymmetric at dy = −30 mm; t[14] = −6.17; p < 0.001; adjusted α = 0.003; Fig. 2.4A). This 

indicates that the main effect of Posture (Fig. 4B, left) arose from the difference in the 

absolute error between the symmetric and asymmetric conditions during the dy = 0 and 

−30 mm, but not 30 mm. Moreover, greater absolute error were found when matching 

was performed by the opposite hand than by the same hand (11.0 ± 0.8 mm and 9.2 ± 0.7 

mm respectively; main effect of Hand: F[1,14] = 7.907; p < 0.05; Fig. 2.4B, right).  

We also found a significant interaction Hand × Posture (10.0 ± 0.7 mm for 

Opposite-Symmetric; 12.1 ± 1.6 mm for Opposite-Asymmetric; 6.6 ± 1.4 mm for Same-

Symmetric; and 11.8 ± 1.6 mm for Same-Asymmetric; F[1,14] = 5.411; p < 0.05; Fig. 

2.4C). Post hoc paired t-tests with Bonferroni corrections found that subjects made 

significantly smaller Eabs when matching was performed by the same hand in the 

symmetric condition (Same-Symmetric) than the Opposite-Symmetric, Opposite-

Asymmetric and Same-Asymmetric conditions (t[14] = −4.808, −5.724, and −5.878, 

respectively; p < 0.001 for all conditions; adjusted α = 0.008; Fig. 2.4C). Note that no 

significant difference was found for pairwise comparisons across the other three 

experimental conditions. This indicates that subjects’ ability to match reference hand dy 

was greatest when sensing and matching was performed with the same hand and using 

the same hand posture.  
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Relative error 

 Figure 2.5 shows the averages of relative matching error of 5 trials from all 

subjects as a function of dy without the collinear digit position for each experimental 

condition. Similar to Figure 2.3, each line denotes one subject, and the thick black line 

denotes the mean relative error averaged across 15 subjects. Overall, under-estimation 

relative error occurred when reference hand thumb was placed higher or lower than the 

index finger (dy = 30 or −30 mm), respectively, in all four conditions. Note that the 

relative error in the collinear condition was excluded from the analysis of directional bias 

(see Methods). For all but the Same-Symmetric condition, two-tailed t-tests revealed 

under-estimation relative error that was significantly different from zero (dy = −30 mm: 

3.1 ± 1.0 mm; t[14] = −3.081; p < 0.01; dy = 30 mm: −2.8 ± 1.1 mm; t[14] = −2.457, p < 

0.05; Fig. 2.6A) and in the three matching conditions (Opposite-Symmetric: t[14] = 

−2.146; p < 0.05, Opposite-Asymmetric: t[14] = -3.098; p < 0.01, Same-Asymmetric: t[14] 

= −4.234; p < 0.01; Fig 2.6B). Thus, these findings indicate that subjects tended to 

underestimate reference hand dy in all conditions with the exception of Same-Symmetric 

condition.  

DISCUSSION 

The main findings of this study, summarized in Table 2.1, are that errors in 

haptic-motor transformations of finger pad distance are sensitive to (1) the congruence 

between the posture of the hand used for sensing and that used for reproducing finger pad 

distance (greater error for inverse than congruent postures), (2) whether finger pad 

distance is reproduced with the same hand used for sensing (greater error for matching 

performed with the opposite than same hand), and (3) the relative position of contacts  
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Figure 2.5. Relative error: individual subjects.  

 Averages of relative errors of 5 trials from each subject are shown as a function of 

reference hand dy (−30 and +30mm) for each of the four matching conditions. The thick 

black line denotes the mean relative error averaged across 15 subjects with standard error 

of the mean. Data from the collinear condition were excluded (see text for more details). 

The left- and right-hand y-axes for each plot refer to relative errors obtained for reference 

hand dy of −30 and 30 mm, respectively, in which positive or negative relative error are 

defined as under-estimation errors, respectively.   
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Figure 2.6. Relative error: averaged data.  

 Relative errors were compared across reference hand dys and matching conditions 

(panels A and B, respectively). For Panel A, the relative errors with respect to the under- 

and over-estimation are shown in the same format as Figure 2.5. For Panel B, relative 

error values were pooled across non-collinear dy. For both panels, data are averages of all 

subjects within a given group (± SE). Note that relative error from the collinear condition 

was excluded from statistical analysis across matching conditions (see text for more 

details). Single and double asterisks denote a statistically significant difference from zero 

(p < 0.05 and 0.01, respectively). Note that, since the opposite signs of relative error were 

defined as under- and over-estimation, the sign of relative error when reference hand 

thumb was placed lower (dy = −30 mm) is inverted for the relative error pooled across the 

four conditions (Panel B) for graphical purpose only such that the negative relative error 

always denotes underestimation. 
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Table 2.1. Task differences across experimental conditions and rank of matching error 

 Experimental conditions 

 Same-Sym Oppo-Sym Same-Asym Oppo-Asym 

Incongruent postures between 

Rhand and Thand?  

NO NO YES YES 

Transfer across hemispheres? NO YES NO YES 

Rank of matching error 

(smallest to largest) 

1 2 3 4 

Sym: Symmetric; Asym: Asymmetric: Oppo: Opposite; Rhand: Reference hand; Thand: 

Test hand 
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(greater errors for collinear than non-collinear finger pad positions). We discuss these 

results in the context of the role of digit placement sensing for force modulation required 

for dexterous manipulation. 

Effect of hand posture: congruent vs. inverse hand configurations (Table 2.1, top row) 

 The greater absolute error in the asymmetric condition indicates that congruent 

sensory feedback arising from similar hand postures facilitates the reproduction of sensed 

dy. Specifically, when reference and test hand postures were congruent, subjects might 

have merely tried to duplicate reference hand configuration by matching the remembered 

feedback rather than perceived dy, thus bypassing higher-order processing of CoP 

distance based on sensing CoP of each digit. Therefore, the Asymmetric condition is a 

more reliable measure of subjects’ ability to integrate sensory feedback to estimate dy 

regardless of postural sensory cues. It follows that higher-level processing of sensory 

inputs to estimate finger pad distance leads to greater haptic-motor transformation errors. 

This conclusion predicts that tasks that require transferring sensory information about 

digit placement from one hand to another would be performed with greater accuracy 

when hand postures are mirror symmetric. Examples of such tasks are unimanual tasks 

where an object is transferred across hands, or bimanual tasks that involve symmetrical 

application of forces/torques with both hands through similar contact distributions. 

Effect of hand used for sensing and reproducing finger pad distance: opposite versus 

same matching (Table 2.1, middle row)  

 We found that absolute error was greater in the matching condition using the 

opposite than same hand. Furthermore, we found that absolute error was smaller in the 

Symmetric condition using the same hand (Same-Sym) than the other three matching 
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conditions (Fig. 2.4C). These findings indicate that the perceived sensory information is 

less accurately transferred across than within hands. This result is consistent with 

previous studies in which subjects matched wrist (Adamo and Martin, 2009) and elbow 

(Goble and Brown, 2007, 2008; Goble et al., 2009) flexion and extension angles across 

limbs. However, our task can be considered more complex due to the requirement of 

integrating the spatial relation between digits’ CoP to estimate their vertical distance. It 

has been suggested that transferring sensory information across hemispheres may 

increase noise and potential loss of information due to the asymmetry of hemispheric 

activation during hand movement (Gordon et al., 1994; Adamo et al., 2012). This 

asymmetric activation of hemispheres might have contributed to the greater error found 

for the Opposite condition, although further work is needed to identify the underlying 

neural mechanisms. 

Relative error 

 Computation of relative error revealed a tendency for underestimating reference 

hand dy in most of matching conditions except the Symmetric condition performed with 

the same hand (Fig. 2.6). This phenomenon has been observed when the wrist angle of 

the right hand is matched using the left hand (Adamo and Martin, 2009). Despite the task 

differences (see above), it would appear that transfer of sensory information from the left 

to the right cerebral hemisphere leads to under-estimation of joint angle, as well as 

higher-order sensorimotor transformations required when hand postural sensory cues 

cannot be used to match dy across hands (Opposite-Asymmetric condition).  

 Regarding the retrieval of remembered sensory information and matching with the 

same hand used for sensing dy (Same condition), there was no directional bias when the 



 

39 

matching task was performed symmetrically using the same hand, which is also 

consistent with previous findings on wrist angle matching (Adamo and Martin, 2009). 

However, we also found underestimation in reference hand dy when the matching task 

was performed asymmetrically using the same hand, which is a condition that cannot be 

tested in the single joint angle matching task. Thus, we speculate that higher-level 

processing of finger pad distance based on digit CoP sensing is the primary source of 

underestimation error when the matching task was performed asymmetrically using the 

same hand.  

Effect of relative digit position: collinear vs. non-collinear contacts 

 We found that subjects make greater errors in reproducing finger pad distance (dy) 

when sensing collinear than non-collinear contacts. Here we discuss potential neural 

mechanisms that might underlie these results. 

Skin afferents. It is possible that subjects sensed and reproduced non-collinear dy 

with greater accuracy due to the greater extent of skin stretch on the dorsal region of the 

hand. Skin afferent input is likely to play a significant role in sensing digit position in the 

present experiment as we prevented visual feedback of the hand and ensured consistent 

deformation of the finger pads by having subject exert similar contact forces across all 

conditions. Previous studies (Edin and Abbs, 1991; Edin and Johansson, 1995) have 

shown that the discharge rate of cutaneous receptors, particularly the slowly adapting 

receptors, increases as a function of skin stretch for the receptors located near the 

metacarpo-phalangeal (‘mcp’) joint of the index finger. Matching performance in our task 

might have resulted not only from feedback delivered by skin afferents from the dorsal 

region of the hand, but also on tactile input elicited by deformation of the glabrous skin 
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of the finger pad. However, the contribution of the cutaneous receptors within the contact 

area to sense CoP should have been largely comparable across all experimental 

conditions as we controlled contact forces and verified that small trial-to-trial force 

fluctuations had no influence on matching error. Furthermore, Edin and Johansson (1995) 

reported that the changes in the skin stretch contributed to an accurate estimation of the 

static proximal inter-phalangeal joint angle even when tactile feedback provided 

unreliable information due to anesthesia. Therefore, it is likely that the contribution of 

skin stretch afferent responses can account for our results, if we assume that our non-

collinear dy elicited a greater discharge from skin afferents, hence a greater afferent 

signal-to-noise ratio of finger pad position, than collinear dy. 

 Joint receptors. Joint receptors of the mcp joint of index finger and 

carpometacarpal (‘cmc’) joint of thumb might also have contributed to sensing dy as they 

are relatively less active at the mid-range of motion of joint but significantly active 

towards the limits of the joint range of motion (Ferrell, 1980; Burgess et al., 1982; Burke 

et al., 1988; Edin and Abbs, 1991). The joint in the collinear digit position is thought to 

be at a mid-range of motion of the mcp and cmc joints, whereas the non-collinear digit 

positions are closer to the limit of the thumb and index finger mcp and cmc joint range of 

motion.  

 Central commands. In addition to the above-mentioned afferents contribution in 

sensing the digit position, it has been reported that central motor commands contribute to 

position sense (Gandevia, 1987; Winter et al., 2005; Gandevia et al., 2006; Proske, 2006; 

Proske and Gandevia, 2009; Smith et al., 2009; Walsh et al., 2009). Physiological 

evidence indicates that central and peripheral signals are strongly correlated due to alpha-
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gamma co-activation (Vallbo, 1971, 1974; Allen et al., 2008) Furthermore, it has been 

proposed that predicted future sensory states are implemented through the muscle 

spindles to update the motor commands during point-to-point movements (Wolpert et al., 

1995; Flanagan and Wing, 1997; Dimitriou and Edin, 2008, 2010). Since we passively 

positioned the digits and controlled for digit contact forces, the extent to which central 

commands might have been involved in estimating digit position was likely constant 

across experimental conditions. 

In summary, based on the above arguments we speculate that the smaller error 

found for non-collinear digit positions might have resulted primarily from the integration 

of sensory inputs from skin and joint receptors. 

Haptic-motor transformations: sensing and reproducing finger pad distance 

To successfully perform our matching task, subjects had to first accurately sense 

the CoP of each digit of the reference hand, integrate that feedback into an internal 

representation of distance between CoPs, hold the representation in memory, transfer it to 

the contralateral cerebral hemisphere (Opposite condition only), and lastly send motor 

commands to the test hand for controlling the position of each finger pad such as to 

reproduce the sensed dy. The errors we report in this process of transforming digit 

position could have arisen at one or more of these stages, ranging from purely sensing to 

motor, or at the high-level computation of CoP vertical distance. The fact that 

Asymmetric and collinear contacts conditions were characterized by greater matching 

errors suggests sub-optimal transformations at both the high-level computation levels and 

sensing, respectively. Similarly, tasks involving dy sensing and reproduction with the 

same hand might have an advantage as no across-cerebral hemisphere transfer of sensed 
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dy is required, thus suggesting that retrieval of dy internal representations is characterized 

by less noise than retrieving and transferring it to the contralateral hemisphere. However, 

since our matching task did not involve a significant digit force production when subjects 

perceived the digit position such as to prevent an object from slipping, further work is 

needed to address potential contributions of motor commands responsible for digit force 

production.  

Role of digit position sensing for dexterous manipulation 

 The present study revealed maximum absolute errors of up to ~1.6 cm (Fig. 

2.4A), and smaller errors for particular combinations of task conditions, e.g., Same-

Symmetric (~ 0.6 cm). These findings not only provide insight into the capability of the 

central nervous system (CNS) to use somatosensory feedback for haptic-motor 

transformation errors, but also about potential mechanisms that the CNS would have to 

use to ensure successful performance of dexterous manipulation.  

For small position sensing errors, the compliance of finger pads might be 

sufficient to compensate for digit force magnitude and/or direction modulated to the 

perceived, as opposed to actual, digit contact distribution. However, for greater digit 

position errors that might occur when contacts of one or more digits are blocked from 

view by the object (i.e., a scenario similar to our present study), one would expect greater 

and more detrimental manipulation performance errors. This is because, for a desired set 

of net forces and torques on the object, the CNS has to compensate for potential trial-to-

trial variability in digit position by modulating contact forces accordingly (Fu et al., 

2010). Conversely, if the CNS only used sensorimotor memories of previously used 

forces and retrieved them on subsequent manipulations but exerted them at different 
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contacts, object dynamics would differ from that experienced on previous trials. As 

subjects do modulate forces as a function of variable digit placement (Fu et al., 2010, 

2011), the present observations point to the involvement of sensorimotor mechanisms, 

and these might potentially include vision, capable of compensating for haptic-motor 

transformation errors. Besides vision of contacts, which does not seem to play a 

significant role in sensing the orientation of contacts (Voudouris et al., 2012), another 

potential source of feedback that might reduce digit position sensing errors at the onset of 

manipulation is the intensity and/or pattern of tactile feedback elicited by exerting contact 

forces.  

Trial-to-trial variability in digit placement when grasping was followed by object 

lifting was smaller than the matching errors found in the present study (Fu et al., 2010). 

This phenomenon may be task-sensitive since there was no requirement to lift the object 

in the present study. Furthermore, a major difference between previous and present work 

is that the digits were passively moved by the experimenter at given distances and with 

no visual feedback of the hand and object. In contrast, in grasp-to-lift tasks subjects are 

actively changing the vertical distance between the fingertips and are likely to use vision 

to guide digit placement. When actively modulating fingertip distance, subjects might use 

a feedforward control strategy whereby a sense of digit placement might already be 

established before contact with the object (hence, tactile feedback) occurs. We speculate 

that availability of visual feedback and voluntary modulation of fingertip distance are the 

main causes underlying the differences in accuracy of digit placement between grasp-

and-lift tasks and the present matching task.  
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In summary, the present errors associated with haptically-based reproduction of 

finger pad distance indicate that the CNS must implement mechanisms to compensate for 

errors in sensing finger pad distance to ensure that digit forces are distributed according 

to the required manipulation task requirements. The extent to which these mechanisms 

might include vision of the hand and/or tactile feedback is the subject of ongoing 

investigation. 
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CHAPTER 3 

MOTOR COMMANDS DISTORT SENSEORIMOTOR TRANSFORMATIONS 

UNDERLYING CONTROL OF RELATIVE FINGERTIP POSITION 

INTRODUCTION 

 Dexterous object manipulation requires coordination of digit forces (Johansson 

and Westling, 1988b; Johansson and Flanagan, 2009) and positions (Lukos et al., 2007, 

2008; Fu et al., 2010, 2011; Zhang et al., 2010; Crajé et al., 2011). It has been shown that 

when subjects can choose digit placement on an object, they modulate digit forces to 

compensate for trial-to-trial variability in digit position. This behavior is thought to be 

instrumental for ensuring a consistent manipulation performance and might explain 

humans’ ability to perform the same manipulation task despite variability in where or 

how the object is grasped (Fu et al., 2010, 2011). Although the mechanisms underlying 

digit position-force coordination are not well understood, they are likely to involve 

integration of visual and haptic sensing of digit position, i.e., where the digits are relative 

to each other and the object, and motor commands responsible for distributing forces 

among the digits. 

 To understand the sensorimotor transformations responsible for the above 

phenomenon of digit position-force coordination, our previous study examined subjects’ 

ability to match the remembered relative vertical distance between the center of pressure 

of thumb and index finger pads without visual feedback of the hand (Shibata et al., 2013). 

This study revealed that sensorimotor transformations are more accurate for (a) larger 

vertical separations between the digits’ center of pressure, and (b) when fingertips’ 

vertical distance is reproduced with the same hand and at the same posture as those used 
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when sensing the fingertip distance. It was speculated that the more accurate fingertip 

distance matching performance found for larger fingertip distances could have resulted 

from a combination of factors, including afferent responses from joint receptors and 

higher signal-to-noise ratio of afferent signals from skin receptors in the dorsal region of 

the hand, which are thought to provide proprioceptive information about digit position 

(Edin and Abbs, 1991; Edin and Johansson, 1995; Edin, 2001, 2004; Collins et al., 2005). 

Moreover, it was proposed that reproduction of fingertips’ vertical distance with the same 

hand and at the same posture would bypass higher-order processing of fingertip distance 

that would otherwise be involved with transferring remembered sensory feedback to the 

contralateral hand or a different hand posture. 

 It should be noted that in our previous study (Shibata et al. 2013) we passively 

positioned the subjects’ fingertips to given distances and required them to exert negligible 

contact forces. This was done to control for the potential effect that voluntary motor 

commands for positioning the digits or generating forces might have had on fingertip 

distance matching performance. Specifically, it has been shown that when subjects are 

asked to match static joint angle, voluntary motor commands for force production at a 

given limb posture can negatively influence matching performance by biasing the error in 

the direction of the attempted movement (Gandevia, 1987; Gandevia et al., 2006; Smith 

et al., 2009). Additionally, this perceptual bias is greater when only motor commands are 

available following anesthesia and paralysis (Gandevia et al., 2006) than when motor 

commands and afferent signals are available while muscles are paralyzed (Smith et al., 

2009). These findings suggest that voluntary motor commands for force production can 

influence the central processing of afferent signals conveying information about limb 
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posture. This mechanism has been proposed to operate within internal forward models 

whose role is to predict sensory consequences of motor actions based on a copy of motor 

commands and an estimate of the current state of the body (Wolpert et al., 1995; Kawato, 

1999). The internally-predicted sensory consequences are then compared with incoming 

sensory afferent signals to estimate sensory state in the immediate future.  

 Previous matching tasks involving force production (Collins et al., 2005; 

Gandevia et al., 2006; Smith et al., 2009; Proske and Gandevia, 2012) did not require the 

perception of relative contact points or sensorimotor transformations required by the 

retrieval and reproduction of remembered limb postures. Specifically, these studies 

required subjects to indicate which direction the finger, hand, or limb was pointing to 

using the opposite hand while the target body parts remained at the target location. Such a 

matching task could be performed using proprioceptive feedback about the joint angle or 

posture without having to retrieve the sensory feedback of the perceived joint angle 

stored in memory. However, these tasks differ from grasping and manipulation tasks 

where the above-described digit position-force coordination might rely on sensing the 

fingertips’ relative position rather than digit or wrist joint angles per se. Furthermore, 

sensorimotor control of digit forces relies on prior experience with same or similar 

objects (Johansson and Westling, 1984, 1988a; Gordon et al., 1993; Quaney et al., 2003). 

This prior experience in the form of sensorimotor memory persists for at least 24 hours 

(Gordon et al., 1993).  

 Besides the above-described effect that digit force generation might have on 

perception of fingertip distance, digit force production associated with grasping and 

manipulation is accompanied by skin deformation of the finger pads following object 
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contact. The resultant activation of tactile afferents provide information about the 

magnitude and direction of force acting on the finger pads (Birznieks et al., 2001; 

Jenmalm et al., 2003; Barbagli et al., 2006; Johansson and Flanagan, 2009; Panarese and 

Edin, 2011). More importantly, the contact points at which the digits apply forces on an 

object could be inferred through tactile feedback from the finger pad when vision of the 

contacts is not available. The center of pressure on the finger pad is likely to shift as the 

tangential digit force leads to skin deformation of the finger pad. Since our previous 

study involved a negligible tangential digit force (less than 0.2 N; (Shibata et al., 2013)), 

the contribution of lateral skin deformation induced by a shear force on the finger pad on 

the accuracy of matching the relative distance between contact points remains unknown.  

 The gaps in the above-reviewed work raise the following question: To what extent 

motor commands responsible for digit force production affect subjects’ ability to 

transform sensory feedback of relative contact points to motor commands for placing the 

digits to their remembered locations? To address this question, we asked subjects to 

perceive and reproduce fingertip distance after a short delay using the same hand. The 

delay was used to introduce a memory component to the matching task similar to the 

above-mentioned sensorimotor memory component underlying grasping tasks. 

Furthermore, to prevent subjects from merely matching the pressure on the finger pad and 

hand posture, one subject group performed the matching task without significant digit 

force production when matching the remembered contact points. The present study also 

examined subjects’ ability to reproduce the remembered digit contact points when 

tangential forces of the thumb and index finger were produced in the same or opposite 

direction. An object manipulation may require a vertical translation and/or a rotation of a 
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grasped object. To perform a vertical translation, the digit tangential forces are produced 

in the same direction, whereas these forces are exerted in opposite directions to rotate an 

object.  

 We hypothesized that (1) when the tangential forces of the thumb and index 

finger are produced in opposite directions, the reproduction of memorized fingertip 

distance would be biased toward the directions of the tangential forces exerted while 

perceiving and memorizing the digits placement, and (2) the magnitude of the biased 

error would be greater when the remembered relative contact points associated with the 

production of relatively large digit forces are matched while exerting negligible forces. 

The rationale for the first hypothesis is that voluntary motor commands for force 

production would distort the matched joint angle and limb position in the direction of the 

attempted movement (Gandevia et al., 2006; Smith et al., 2009). When the direction of 

digit tangential forces was the same, we expected no directional bias in matching error of 

the relative vertical fingertip distance. The second hypothesis is based on the expectation 

that matching relative contact points would be facilitated by the congruent skin 

deformation of the finger pad used to match the remembered points with that used to 

perceive and remember the relative contact points. Thus, this hypothesis implies that 

fingertip distance matching ability would be challenged by reproducing the remembered 

points while experiencing different digit forces and tactile feedback associated with skin 

deformation on the finger pad. To test the second hypothesis, we asked subjects to match 

the remembered relative distance between contact points while exerting negligible or 

significant force.  
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MATERIAL AND METHODS 

Subjects 

 Two groups of fifteen healthy subjects each participated in this study. Group 1 (11 

females; mean ± SD: 23.2 ± 7.0 yrs.) participated in Experiment 1, and Group 2 (5 

females; mean ± SD: 22.7 ± 4.3 yrs.) participated in Experiment 2. We used the 10-item 

Edinburgh Handedness Inventory (Oldfield, 1971) to assess subjects’ hand dominance. 

All subjects were classified as right-handed based on the mean Laterality Quotient and 

standard deviation (Group 1: 77.8 ± 18.9; Group 2: 78.0 ± 19.2). Subjects were naïve to 

the purpose of the study. Subjects gave their written informed consent according to the 

declaration of Helsinki and the protocols were approved by the Office of Research 

Integrity and Assurance at Arizona State University. 

Apparatus 

 We used a custom-made grip handle to measure digit forces and center of 

pressure (CoP) of the thumb and index finger pad for both Experiments 1 and 2 (Fig. 

3.1A). The sensorized handle has been described in detail elsewhere (Shibata et al., 

2013). Briefly, two six-component force/torques sensors were mounted on each side of 

the handle (ATI Nano-25 SI-125-3, ATI Industrial Automation, Garner, NC; force range: 

125, 125, and 500 N for x-, y- and z-axes, respectively; force resolution: 0.06 N; torque 

range: 3000 N•mm; torque resolution: 0.378 N•mm; Fig. 3.1A). The vertical coordinate 

(y) of the CoP of each digit on the contact surface (red dots, Fig. 3.1B) was computed 

from the force-torque sensor output. We performed calibration of each sensor by 

applying forces (3, 4, 5, and 6 N) perpendicular to the contact surface mounted on the 

sensor. This calibration revealed that the force and torque output of the two sensors could 
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Figure 3.1. Experimental setup.  

 Panel A shows frontal and side views of the handle used for the study (“a” 

denotes force/torque sensors). Panel B shows the frontal view of the handle with thumb 

and index fingertip center of pressure of the reference hand located at the same y-

coordinates (vertical height relative to the base of the object) on the graspable surfaces of 

the handle (collinear dy). The red dots denote the center of pressure of each digit. Panel C 

shows a top view of the experimental setup. The subject is shown contacting the handle 

with thumb and index fingertip, while the left hand was kept flat on the table. When 

relaxing in between trials, both hands were kept flat and relaxed. Note that the table top 

(gray) was opaque and prevented subjects from seeing their forearms and hands but is 

shown as transparent for graphical purposes only. Forearms and wrists were strapped to 

the table to prevent movements within and across trials while the handle was anchored to 

the table.   
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be used to compute the vertical coordinate of each digit CoP with a maximum error 

across all measurements and sensors of  ± 1.2 mm (maximum average error ± SD: 0.3 ± 

0.4 mm). Error in CoP reconstruction was similar between the two sensors and to the 

errors found when applying smaller normal forces (i.e., 0.6, 1.0, and 1.4 N; Shibata et al., 

2013). During the experimental tasks, subjects exerted normal force with a digit within 

the 0.6 – 6.0 N range in 98 % of all trials. To prevent the digits from slipping when 

subjects applied tangential forces up to 3.5 N, the contact surfaces of the handles were 

covered with 100-grit sandpaper (static friction coefficient range: 1.4-1.5). 

Experimental Procedures 

 Subjects grasped the handle with the thumb and index finger of the right hand 

while sitting on an adjustable chair with both forearms resting on adjustable supports 

(Fig. 3.1C). The left hand rested on the table throughout the experiment with all digits 

straight, adducted, and in a pronated position. Vision of forearms, hands, and the handle 

was prevented by an opaque tabletop on which a computer monitor was placed at 

subjects’ eye level (Fig. 3.1C). The positioning of the handle and platforms was adjusted 

for each subject so that subjects’ digits could be placed on the handle in a comfortable 

posture. All subjects had similar postures of the wrist such that the wrist was semi-

pronated and in a neutral posture (~0° flexion/extension and adduction/abduction). 

Motion of forearms and wrists was blocked by straps and rigid dowels anchored to the 

platform to minimize changes in posture across trials and throughout the experiment. The 

handle was anchored to the table to maintain a fixed position and distance relative to the 

hand. The experimental setup was the same across Experiments 1 and 2.  
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 For both experiments, after subjects’ digits were passively moved (“passive dy 

adjustment” phase, Fig. 3.2A), we asked subjects to perceive and memorize the vertical 

distance (dy) between thumb and index CoP of the right hand (“reference” hand) 

(“perceive and memorize” phase, Fig. 3.2A), relax for 10 seconds, and match it using the 

same hand (“test” hand) (“match” phase, Fig. 3.2A). An important difference between 

the present study and our previous work (Shibata et al., 2013) is that subjects were asked 

to exert normal and tangential digit forces with different combinations of magnitude and 

direction during the “perceive and memorize” phase (see below).  

 Reference hand. As done in our previous study (Shibata et al., 2013), we 

measured three parameters of reference hand: (1) length, defined as the distance from the 

wrist crease to the tip of middle finger (mean ± SD: Group 1: 174.9 ± 9.7 mm; Group 2: 

181.4 ± 8.1 mm); (2) width, defined as the distance between the radial prominence of the 

second metacarpo-phalangeal (mcp) joint and the ulnar prominence of the fifth mcp joint 

(mean ± SD: 80.5 ± 5.3 mm; Group 2: 84.2 ± 6.0 mm); and (3) thumb-index distance, 

defined as the distance between outstretched thumb and index fingertips (mean ± SD: 154 

± 12.6 mm; Group 2: 160.7 ± 14.3 mm). No outliers were found for any of these three 

parameters across subjects.  

 Subjects’ thumb and index fingertips of the reference hand were passively moved 

by an experimenter (“passive dy adjustment” phase, Fig. 3.2A) such that the CoPs of both 

digits on the graspable surface were at the same vertical height relative to the base of the 

object. Throughout the manuscript, we will refer to this fingertip position as ‘collinear’ 

(dy = 0 mm; Fig. 3.1B). During this procedure and while matching dy with the test hand 

(see below for details), subjects were instructed to extend the middle, ring, and little  
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Figure 3.2. Experimental protocol and conditions (Experiment 1).  
 Panel A shows the time course of the experimental protocol. In the “passive dy 
adjustment” phase, the subject’s thumb and index finger were passively placed by an 
experimenter to a collinear dy (see Figure 1B). Once the desired dy was reached and digit 
forces matched the desired target forces, recording of reference hand dy started for 5 
seconds while subjects were asked to perceive and memorize the reference hand dy 
(“perceive and memorize” phase). During the “relax” phase, subjects were asked to relax 
their reference hand for 10 seconds, followed by the “match” phase in which they were 
asked to reproduce the remembered reference hand dy using the (same) test hand within 
10 seconds. The test hand dy was then recorded for 5 seconds while subjects maintained 
the digit position and digit forces (“hold” phase). Panel B shows the experimental 
conditions for Experiment 1. The thumb and index finger (filled and open ellipse, 
respectively) of the reference hand exerted tangential forces either in the same or 
opposite directions (“Same” and “Opposite”, left and middle column, respectively). In the 
Same condition, thumb and index finger exerted tangential forces that were both upward 
or downward (TUP-IUP or TDONW-IDOWN, respectively). In the Opposite condition, the 
tangential forces of the thumb and index finger were directed opposite to each other, i.e., 
either upward and downward (TUP-IDOWN) or downward and upward (TDOWN-IUP), 
respectively. In the Control condition (right column), subjects were asked to exert no 
tangential force while exerting large or negligible normal forces (‘Fn only’ or ‘No 
Ftan/Fn’, respectively). The magnitude of tangential and normal forces was the same 
across these conditions (Ftan: 2.5-3.5 N, Fn: 4-5 N) with the exception of the ‘No Ftan/Fn’ 
condition (Ftan: 0 ± 0.25 N, Fn: 0.5-1 N). The test hand in Experiment 1 exerted only 
negligible tangential and normal forces (Ftan: 0 ± 0.25 N, Fn: 0.5-1 N).  
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fingers to prevent them from contacting the handle (Fig. 3.1B). The CoP and forces for 

each digit and the resultant dy of the reference hand was displayed on a second computer 

monitor that was not visible to the subject. Once an experimenter visually confirmed 

compliance of the desired hand posture and dy, a verbal cue was given to generate forces 

in one of six combinations of direction and magnitude (Fig. 3.2B). Specifically, the 

reference hand exerted tangential force of thumb and index finger in either the same or 

opposite directions. When tangential forces were exerted in the same direction, both 

thumb and index finger exerted the tangential force upward (TUP-IUP) or downward 

(TDOWN-IDOWN) (“Same”; Fig. 3.2B and Fig. 3.3, left column). When tangential forces 

were exerted in opposite directions, the thumb and index finger exerted the tangential 

force either upward and downward (TUP-IDOWN) or downward and upward, respectively 

(TDOWN-IUP) (“Opposite”; Fig. 3.2B and Fig. 3.3, middle column). The range of the 

normal and tangential forces exerted by each digit of the reference hand was the same 

across these four experimental conditions (4-5 N and 2.5-3.5 N, respectively).  

 As these conditions always involve normal force of 4-5 N, subjects’ ability to 

match dy may potentially be affected by the combined effect of exerting normal and 

tangential forces. To isolate the effect of tangential force, we asked subjects to exert 

different magnitudes of normal force in two additional conditions that served as controls 

for the above-mentioned four conditions (“Control”; Fig. 3.2B and Fig. 3.3, right 

column). In these control conditions, the tangential force was negligible (0 ± 0.25 N) and 

the normal force of the reference hand was either within the same range as for the above-

mentioned conditions (4-5 N; ‘Fn only’ condition, Fig. 3.2B, right column), or negligible 

(0.5-1 N; ‘No Fn/Ftan' condition, Fig. 3.2B, right column). The lower bound of the  
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Figure 3.3. Experimental conditions (Experiment 2). The experimental conditions of 

Experiment 2 are shown in the same format as those shown in Figure 3.2 for Experiment 

1. The only difference between Experiments 1 and 2 is that for the latter experiment, 

subjects were required to exert the same thumb and index fingertip normal and tangential 

forces across reference and test hands (see text for more details).  
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normal force was required for accurate computation of digit CoP using the force sensor 

(Fu et al., 2010). To facilitate control of digit forces, subjects received visual feedback of 

digit normal and tangential forces on a computer monitor placed on the tabletop 

throughout each trial. Note that subjects were not given visual feedback of digit CoP 

throughout the experiment.  

 Upon confirmation of both of the above-described force and collinear CoP 

criteria, an auditory cue was given to subjects to start perceiving and memorizing the dy 

of the reference hand (“perceive and memorize”, Fig. 3.2A). During this phase, subjects 

were required to maintain a given combination of digit normal and tangential forces as 

well as initial dy for 5 seconds within a tolerance window of ±3 mm from the collinear dy. 

If the digit CoPs shifted over the contact surface during the “perceive and memorize” 

phase and moved from their initial collinear placement (dy ≠ 0 mm), subjects were asked 

to relax the digits while an experimenter adjusted the digit CoPs to their original 

placement and the trial was re-started. If this adjustment had to be performed more than 

three times within a given trial, subjects were asked to completely relax the digits, release 

them from the sensor, and place the hand flat on the table with all digits straight, 

adducted, and with the palm in a pronated position before the trial could be re-started. 

Throughout the experiment, subjects were able to maintain the collinear dy within the ±3 

mm tolerance window in 98.3% of all trials and the target force with the reference hand 

within the prescribed range in 98.0% of all trials. This “perceive and memorize” phase 

was terminated by an auditory cue so that subjects released the digits of reference hand 

from the handle and placed the hand flat on the table (“relax” phase, 10 seconds; Fig. 

3.2A). After this 10-second delay, another auditory cue was given to subjects to match 
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the remembered reference hand dy using the same hand (“test hand”) within 10 seconds 

(see below for details). Note that the experimental setup, conditions, and procedures 

using the reference hand were identical for Experiments 1 and 2.  

 Test hand. Subjects were asked to actively place the thumb and index finger of the 

test hand to match the remembered dy within 10 seconds after making contact with the 

same handle (“match”, Fig. 3.2A). During the “match” phase, subjects gave a verbal cue 

to the experimenter only when they could maintain digit forces within the target force 

range while matching the remembered dy using the test hand. Note that digit forces 

exerted by the test hand differed across Experiments 1 and 2. Specifically, during the 

“match” phase of Experiment 1 subjects were asked to reproduce dy while exerting 

negligible forces (0.5-1 N and 0 ± 0.25 N, respectively; Fig. 3.2B). In contrast, for 

Experiment 2 subjects were asked to reproduce dy while also matching the forces they 

had exerted with the “reference” hand during “perceive and memorize” phase (Fig. 3.3). 

Therefore, in Experiment 2, digit forces of the test hand were required to be the same as 

those exerted by the reference hand. Subjects controlled the digit forces using an online 

force gauge and values were shown separately for the tangential and normal forces of the 

thumb and index finger on a computer monitor. Throughout the experiment, subjects 

were able to maintain the target force with the test hand in 97.6% of all trials. The 

comparison between the Experiments 1 and 2 allowed us to study whether subjects’ 

ability to match the reference hand dy would be sensitive to whether digit forces, contact 

area, and skin deformation of the finger pad differ (Experiment 1) or are identical 

(Experiment 2) across reference and test hands. Note that both Experiments 1 and 2 

included the Same, Opposite, and Control conditions (Fig. 3.3).  
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 After the subject’s verbal cue and when the force criteria were met, the 

experimenter gave a verbal cue to hold the dy and digit forces for 5 seconds during which 

CoPs of the test hand thumb and index finger were recorded (“hold”, Fig. 3.2A). The trial 

was repeated if subjects did not give the verbal cue signaling attainment of the 

remembered dy or did not maintain digit forces within the target range during the “match” 

or “hold” phases. Finally, subjects were asked to release the test hand from the handle 

after another auditory cue was given. 

 Subjects practiced to control the required forces in all conditions for 10-20 

minutes without being asked to match digit CoPs across reference and test hands. After 

the practice trials, at least 2 practice trials per condition (i.e., total of 12 practice trials) 

were given to subjects to familiarize themselves with the matching task. Note that 

subjects were not provided with feedback about matching performance during the 

practice or experimental trials. Subjects performed a total of 30 trials (5 trials × 6 

experimental conditions). The order of presentation of experimental conditions was 

randomized across trials and subjects. Subjects were given rests every 10 trials or as 

appropriate to ensure that no fatigue occurred.  

Data Processing 

 Force and torque data were acquired, recorded, and stored in a computer with a 

12-bit A/D converter board (PCI-6225, National Instruments, Austin, TX; sampling 

frequency: 1 kHz) through a custom data acquisition interface (LabVIEW version 8.0, 

National Instruments). During data collection, force data were filtered online using a 

moving average filter every 50 samples over the 5-second duration of data recording for 

both reference and test hands. The filtered force data were then used for computing and 
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displaying online normal and tangential force magnitudes and digit CoPs and dy using 

LabVIEW.  

 After data collection, CoP data for each digit were averaged within each trial and 

used to compute dy off-line with custom-written software (Matlab, The MathWorks, 

Natick, MA) for statistical analysis. The dy was defined as the vertical coordinate of 

thumb CoP minus the vertical coordinate of index finger CoP. Thus, positive and 

negative dy indicates that the thumb CoP is higher or lower relative to the index finger 

CoP, respectively. Matching error was defined as test hand dy during the “hold” phase 

minus reference hand dy during the “perceive and memorize” phase (Fig. 3.2A). Note that 

in the present study, the reference hand dy was always 0 ± 3 mm. Matching error can be 

positive or negative, and thus takes into consideration whether subjects made an error not 

only in reproducing the distance between fingertip CoPs but also in their relative position. 

Specifically, positive and negative matching errors indicate that the test hand dy is 

positive and negative (i.e., the thumb CoP is higher and lower relative to the index finger 

CoP, respectively) compared to the reference hand dy. 

Statistical Analysis 

 After computing matching errors and before performing statistical analyses, we 

determined whether there were outliers (data above or below three standard deviations of 

the mean) within each experimental condition per subject. As no outliers were found, all 

matching errors were included in statistical analyses.  

We performed linear regression analysis on reference hand dy versus test hand dy on trials 

(n = 5) from each experimental condition per subject. This analysis was performed to 

determine whether trial-to-trial deviations from the desired reference hand dy within ± 3 
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mm tolerance window induced systematic changes in test hand dy. Furthermore, to 

determine whether subjects’ matching performance varied systematically throughout the 

duration of the experiment, we also performed linear regression analysis on the matching 

error over 30 consecutive trials within subjects.  

 A mixed-design analysis of variance (ANOVA) was performed on matching 

errors in the control conditions (right column, Figures 3.2B and 3.3) with within-subject 

factor Digit normal force (2 levels: large, negligible) and Experiment as between-group 

factor (2 levels: Experiment 1, Experiment 2). The within-subject factor was used to 

analyze the effect of digit normal force magnitude on dy matching accuracy. The 

between-subject factor was used to test the effect of congruence of digit normal force 

between the reference and test hands on dy matching accuracy.  

 Matching errors in the Same and Opposite conditions (Fig. 3.2B and Fig. 3.3, left 

and middle column) that were normalized to the errors in the ‘Fn only’ condition were 

analyzed using a mixed-design ANOVA with within-subject factors Congruence of digit 

forces (2 levels: Same, Opposite) and Direction of tangential force (2 levels: Up, Down), 

and Experiment as between-groups factor (Experiment 1, Experiment 2). The first within-

subject factor was used to analyze the effect of all combinations of digit force direction 

on dy matching accuracy (Same: TUP-IUP and TDOWN-IDOWN vs. Opposite: TUP-IDOWN and 

TDOWN-IUP). The second within-subject factor was used to examine the effect of tangential 

force direction on dy matching error. For this analysis, we used thumb tangential force 

direction to pool data in the “Up” and “Down” category (Up: TUP-IUP and TUP-IDOWN vs. 

Down: TDOWN-IDOWN and TDOWN-IUP). For example, subjects might have made matching 

errors when thumb force was directed upward, but not downward. The between-subject 
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factor (Experiment) was used to test the effect of having equivalent versus different digit 

forces exerted by the reference and test hands on dy matching accuracy. This mixed-

design ANOVA was performed to test the hypotheses that (a) the ability to match dy 

would be biased toward the direction of tangential force but only when the direction of 

tangential forces exerted by thumb and index finger was opposite, and (b) dy matching 

error would be greater in the Experiment 1 than Experiment 2 because the digit forces 

and skin deformation of the test hand differed from those of the reference hand. A post 

hoc test was used to test the hypothesis that matching errors would be greater when the 

directions of tangential forces of the thumb and index finger were opposite than when 

they were the same. Post hoc tests were run using paired sample t-tests with Bonferroni 

corrections when appropriate. Additionally, matching error for each experimental 

condition was analyzed by two-tailed one-sample t-tests to determine whether the mean 

matching error was significantly different from zero.  

 Sphericity assumptions were tested for all analyses of matching error (Mauchly’s 

sphericity test). When the sphericity assumptions were violated, we used Greenhouse-

Geisser analysis (p < 0.01). Box’s test was used to test homogeneity of covariance (p > 

0.05). All tests were performed at the p ≤ 0.05 significance level. Values in the text are 

reported as means ± standard error of the mean.  

RESULTS 

Validation of Experimental Protocol 

 Effect of small trial-to-trial fluctuations on reference hand dy. Linear regression 

analysis on reference hand dy versus test hand dy revealed that 93% of linear fits were not 

statistically significant (p > 0.05). The remaining 7% of linear fits that were statistically 
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significant (p < 0.05) were characterized by inconsistent signs of regression coefficients. 

Therefore, the small trial-to-trial fluctuations in reference hand dy did not elicit systematic 

changes in test hand dy.  

 Effect of experiment duration. The linear regression analysis on the matching 

error over 30 trials within subjects revealed that all linear fits were not statistically 

significant (p > 0.05). This indicates that matching error did not systematically vary 

throughout the experiment and was independent of potential effects of experiment 

duration that might have induced fatigue, decrease in attention, or increasing 

familiarization with the task.  

Matching error 

 A mixed-design ANOVA on the matching errors in the two control conditions 

(Figs. 3.2B and 3.3, right column) revealed no significant difference between matching 

performance in Experiments 1 and 2 (no main effect of Experiment: F[1,28] = 0.467; p > 

0.05) and between the ‘Fn only’ and ‘No Fn/Ftan’ (no main effect of Digit normal force: 

F[1,28] = 0.004; p > 0.05), and no significant interactions (Digit normal force × 

Experiment: F[1,28] = 2.516; p > 0.05; Fig. 3.5A). These results indicate that subjects’ 

ability to reproduce the reference dy with the test hand was not sensitive to whether 

reference and test hands exerted the same or different digit normal force. As matching 

error did not differ as a function of digit normal force in either experiment, the mean 

matching error from the ‘Fn only’ condition was used as a within-subject reference to 

normalize errors in the other experimental conditions characterized by the same normal 

force (4-5 N). The normalized matching error was defined as the mean matching error 

averaged within subjects in the Same and Opposite conditions minus the mean matching 
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error from the ‘Fn only’ condition. This resulted in a ‘normalized matching error’ 

denoting the effect of tangential force production only on dy matching error.  

 Figure 3.4 shows the matching error from each subject and the mean matching 

error averaged across all subjects for Experiments 1 and 2 (top and bottom plots, 

respectively). Matching errors made by each subject are connected by color-coded lines 

whereas the mean matching error averaged across all subjects is denoted by the thick 

black line. Matching errors were very small and similar across conditions where both 

digits exerted tangential forces in the same direction, indicating that subjects could 

reproduce fairly accurately a collinear digit fingertip position. The same result was found 

for experimental conditions where subject exerted only normal force or no tangential and 

normal forces (Control, Fig. 3.4). However, matching error increased when digit 

tangential forces were exerted in opposite directions (TUP-IDOWN, TDOWN-IUP, Fig. 3.6). 

For these experimental conditions, the direction of the error depended on whether a given 

digit exerted tangential force in the upward or downward direction. Specifically, for the 

TUP-IDOWN condition, subject placed the thumb higher than the index fingertip, whereas 

for the TDOWN-IUP subjects placed the index fingertip lower than the thumb. Overall, this 

trend of matching errors was similar across subjects and between experiments (top and 

bottom rows, Fig. 3.4).  

 The results of the mixed-design ANOVA revealed a statistically significant 

difference in the normalized matching errors when comparing the conditions where 

thumb force was directed upward (TUP-IUP and TUP-IDOWN) and downward (TDOWN-IDOWN 

and TDOWN-IUP) (main effect: Direction of tangential force: F[1,28] = 143.428; p < 0.001), 

but no significant difference when force direction of the thumb and index finger was the 
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Figure 3.4. Fingertip vertical distance: Matching performance by individual subjects  

 Mean matching errors averaged across 5 trials from each subject are shown as a 

function of experimental condition from Experiments 1 and 2 (top and bottom plots, 

respectively). Each subject data is color coded whereas the thick black line denotes the 

mean matching error averaged across 15 subjects ± standard error of the mean. For both 

experiments, positive and negative matching errors indicate that subjects reproduced 

remembered reference hand dy by placing the thumb CoP higher and lower, respectively, 

than the index finger CoP.  
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Figure 3.5. Fingertip vertical distance: Matching errors.  

 Matching errors were compared across experimental conditions and between 

experiments. Panel A shows average matching error for Experiments 1 and 2 (top and 

bottom plots, respectively) across matching conditions. The mean matching error in the 

‘Fn only’ condition was used as a reference to normalize the matching error in the Same 

and Opposite conditions (left and middle column, respectively; see text for more details). 

Panel B shows average normalized matching error for the Experiments 1 and 2 (top and 

bottom plots, respectively) across matching conditions. For all panels, matching and 

normalized errors were averaged across all subjects (vertical bars denote SE). Asterisks 

denote significant differences (p < 0.05) from zero.  
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Figure 3.6. Fingertip vertical distance: Matching errors in the Opposite conditions.  

 Sensed (i.e., collinear) and reproduced digit position in the Experiment 1 are 

shown (left and right) when the thumb and index finger exerted downward and upward 

tangential forces, respectively (top) and the thumb and index finger exerted upward and 

downward tangential forces, respectively (bottom). Reproduced digit positions shifted 

toward the direction of the force production. This matching error was found in the 

Opposite conditions only.  

 

  

Sensed digit position Reproduced digit position 
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same or opposite (no main effect of Congruence of digit forces: F[1,28] = 1.47; p > 0.05; 

Fig. 3.5B). More importantly, we found a significant interaction between Congruence of 

digit forces and Direction of tangential force (F[1,28] = 99.349; p < 0.001; Fig 3.5B). Post 

hoc paired t-tests with Bonferroni corrections found that subjects made significantly 

greater normalized matching errors when the force direction of the thumb and index 

finger was upward and downward (Opposite condition: TUP-IDOWN), respectively, than 

when it was the same (Same conditions: TUP-IUP and TDOWN-IDOWN; t[29] = −8.290, and  

−9.335, respectively; p < 0.001 for all conditions; adjusted α = 0.008; Fig. 3.5B). 

Furthermore, subjects made greater absolute normalized matching errors when the force 

direction of the thumb and index finger was downward and upward (TDOWN-IUP) than 

when it was the same (TUP-IUP and TDOWN-IDOWN; t[29] = −12.320, and −9.288, 

respectively; p < 0.001 for all conditions; adjusted α = 0.008; Fig. 3.5B). Furthermore, 

the normalized matching error in the TUP-IDOWN condition was significantly different 

from that in the TDOWN-IUP condition (t[29] = −10.978; p < 0.001; adjusted α = 0.008; Fig. 

3.5B). No significant difference was found for pairwise comparison between the TUP-IUP 

and TDOWN-IDOWN conditions. These findings indicate that subjects’ ability to match 

remembered reference hand dy was sensitive to the congruence in the direction of 

tangential forces exerted by the thumb and index finger.  

 We also found a directional bias in dy matching errors. Specifically, subjects 

tended to make positive and negative matching errors in the TUP-IDOWN and TDOWN-IUP 

conditions, respectively (Figs. 3.4, 3.5B, 3.6). The positive matching error denotes that 

subjects positioned the thumb CoP higher than index finger CoP when the tangential 

forces of thumb and index finger were directed upward and downward, respectively (TUP-
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IDOWN; Fig 3.4, 3.5B, 3.6), and vice versa for the TDOWN-IUP condition. Two-tailed one 

sample t-tests revealed that normalized matching errors were significantly different from 

zero when the direction of tangential digit forces in the reference hand was opposite, but 

not when it was the same (p < 0.001; Fig. 3.5B). This indicates that subjects’ ability to 

match dy was biased toward the direction of tangential force, as indicated by the 

congruence in the vertical placement of each fingertip and the direction of the tangential 

force exerted by the same fingertip, but only when the direction of tangential forces was 

opposite.  

 Lastly, a mixed-design ANOVA confirmed that there was no statistically 

significant difference in the normalized matching errors between Experiments 1 and 2 (no 

main effect of Experiment: F[1,28] = 3.77; p > 0.05) and no significant interactions with 

Experiment (Congruence of digit forces × Experiment: F[1,28] = 0.803; Direction of 

tangential force × Experiment: F[1,28] = 1.932; Congruence of digit forces ×Direction of 

tangential force × Experiment: F[1,28] = 3.97; all p > 0.05). This indicates that subjects’ 

ability to match the reference hand dy was not dependent on equivalence in digit forces 

between reference and test hand.  

DISCUSSION 

 We quantified the effects of motor commands responsible for generating digit 

forces on accuracy of sensorimotor transformation of the relative vertical distance 

between digit contact points. The main findings of this study are that accuracy in the 

sensorimotor transformation of vertical fingertip distance (1) is sensitive to whether 

tangential, but not normal, forces of thumb and index finger are produced in the same or 

opposite direction, and (2) is not sensitive to whether the hand used for matching 
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fingertip distance exerts the same or different forces relative to those experienced during 

sensing. These results are discussed in the context of neural mechanisms underlying the 

sensorimotor transformation of digit position required for dexterous manipulation. 

Methodological considerations 

 The extent to which digit normal forces might affect matching horizontal fingertip 

distance between the contacts was not the focus of the present study and therefore was 

not investigated. Nevertheless, our findings indicate that generating digit normal forces 

per se does not affect the reproduction of relative vertical contact points. Similarly, with 

regard to potential effects of tangential digit forces exerted in the same direction (Same 

condition: TUP-IUP, TDOWN-IDOWN), we did not require subjects to match the height at 

which both fingertips had to be positioned relative to the object. Thus, subjects might 

have placed both digits higher or lower relative to the object when the direction of digit 

tangential forces was the same. However, the rationale for these experimental conditions 

was to rule out the possibility that voluntary motor commands for tangential force 

production - even when exerted in the same direction – could affect subjects’ ability to 

reproduce the relative vertical distance between contact points. As subjects could 

reproduce these points very accurately in the Same condition (Fig. 3.5B), we conclude 

that the reproduction of the relative vertical distance between contact points was 

interfered with only when tangential digit forces were exerted in opposite direction, 

rather than by tangential or normal force production per se. 

Effects of motor commands on sensorimotor transformations 

 Biased matching errors found in the Opposite condition but not in the other 

conditions (see above) are accountable by the incongruent direction of digit tangential 
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forces. Specifically, neither the exertion of digit normal forces alone (i.e., ‘Fn only’) nor 

the congruent direction of digit tangential forces (i.e., Same condition: TUP-IUP, TDOWN-

IDOWN) affected the reproduction of the remembered relative vertical distance between 

digit contact points. Consistent with our previous study (Shibata et al., 2013), we found 

that subjects can accurately reproduce relative vertical distance between contact points 

when the magnitude of neither tangential nor normal digit forces is significant (‘No 

Ftan/Fn’, Fig. 3.5A) and when significant normal digit forces only were exerted (‘Fn 

only’, Fig. 3.5A).  

 This result supports our first hypothesis and confirmed such effects of voluntary 

motor commands on the sensorimotor transformations involved in matching fingertip 

distance as indicated by larger errors in the reproduced relative digit contact points when 

the tangential digit forces were exerted in opposite versus same directions (Fig. 3.5B). 

Importantly, the directionality of the matching errors in the present study was biased 

toward the direction of the voluntary motor commands, which is consistent with findings 

from previous studies (Gandevia et al., 2006; Smith et al., 2009; see below). Specifically, 

we found that subjects erroneously placed the thumb higher than the index finger (i.e., 

positive matching error) when the upward and downward tangential forces were exerted 

by the thumb and index finger, respective (TUP-IDOWN), and vice versa for the TDOWN-IUP 

(Figs. 3.4, 3.5, 3.6). We also found that, contrary to our second hypothesis, the magnitude 

of the matching error was the same regardless of whether subjects were asked to exert 

negligible force or match digit force exerted with the Reference hand using the Test hand 

(Experiments 1 and 2, respectively). This result indicates that the mismatch in digit forces 

exerted by Reference and Test hands was not the primary cause of bias in matching error, 



 

72 

and further suggests that this might have been primarily driven by a conflict between 

motor commands and sensory feedback during the “perceive and memorize” phase (see 

below).  

 Note that matching tasks in previous studies (Gandevia, 1987; Gandevia et al., 

2006; Smith et al., 2009) required subjects to indicate a joint angle using the contralateral 

limb relative to the one used as a ‘reference’, whereas our task required subjects to match 

the relative vertical digit contact points using the same hand. Thus, our task might be 

considered more complex due to the requirement of integrating the perceived spatial 

relation between two contact points to estimate their vertical distance. Moreover, subjects 

in the present study were required to perceive and memorize the contact points, retain the 

perceived fingertip distance for a short period of time, and then retrieve and use the 

memorized fingertip distance to place the digits at the remembered relative locations. In 

contrast, the above-cited previous work did not require subjects to memorize a given joint 

angle. Despite differences in matching task between previous work and the present study, 

we found a similar phenomenon: voluntary motor commands associated with force 

production affect the directionality of the matching error when the directions of digit 

forces were opposite (Opposite condition: TUP-IDOWN, TDOWN-IUP).  

 Centrally-generated voluntary motor commands for force production are thought 

to affect processing of somatosensory afferent signals to estimate limb joint angle 

(Gandevia, 1987; Gandevia et al., 2006; Smith et al., 2009; for review see Proske and 

Gandevia, 2012). This proposition is consistent with the framework of internal forward 

models in which a copy of motor commands is used to predict sensory consequences of 

motor commands, which are then compared with incoming sensory feedback to estimate 
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sensory state in the immediate future (Wolpert et al., 1995; Kawato, 1999). In the present 

study, voluntary motor commands responsible for digit tangential force production in 

opposite directions and in absence of friction would have resulted in increasing the 

relative vertical distance between the fingertips. It should also be noted that during digit 

force exertion, afferent discharge from skin, muscle, and tendon receptors should have 

accurately encoded the relative position of the finger pads. Therefore, the fact that 

matching error was highly sensitive to the pattern of digit tangential force direction 

implies that the prediction of sensory consequences of force generation overrode sensory 

feedback from the finger pads. Thus, fingertip distance reproduction was distorted in a 

way that resembled the relative fingertip position resulting from motor commands – had 

the fingertip being allowed to move – rather than the actual distance as encoded by 

somatosensory receptors.  

When did sensorimotor transformation errors occur?  

 Throughout our matching task, errors in sensorimotor transformations might have 

been induced by four non-mutually exclusive factors: (1) inaccurate perception of the 

relative vertical contact points, (2) time-dependent decay of memory of perceived 

fingertip distance, (3) inaccurate memory retrieval, and/or (4) inaccurate motor 

commands for placing the digits to the remembered contact points. We propose that the 

last three factors did not play a significant role in causing the matching error. This 

interpretation is based on the similarity in the bias effect on matching error found by the 

above-cited psychophysical studies (Gandevia et al., 2006; Smith et al., 2009) despite 

major task differences. Specifically, this previous work did not incorporate a memory 

component or motor commands for reproducing joint angle. In contrast, our task required 
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subjects to store, retain, and retrieve memory of relative contact points, and send motor 

commands using the same hand for reproducing the remembered relative contact points. 

Therefore, we conclude that the sensorimotor transformation errors likely occurred when 

subjects perceived and memorized the relative vertical contact points.  

Dexterous manipulation: motor commands for positioning digits and generating forces 

 Behavioral evidence indicates that subjects can accurately modulate digit forces 

as a function of variable digit placement while exerting a torque, thus indicating 

successful sensorimotor transformations (Fu et al. 2010). Importantly, such modulation is 

found following exertion of normal and tangential force up to the instant of object lift-off, 

as well as when digit tangential forces are exerted in opposite direction to generate a 

torque. In contrast, the present study shows that sensorimotor transformations are 

inaccurate when digit tangential forces are exerted in opposite directions. However, 

several factors might enable successful sensorimotor transformations in dexterous 

manipulation tasks while preventing them in our psychophysical task. First, visual 

feedback of contact points prior and following contact might wash out the bias induced 

by voluntary commands of digit forces, whereas visual feedback of the hand was 

prevented in our study. Second, manipulation tasks involve active digit placement on 

objects, whereas in our experiment subjects’ fingertips were passively placed on the 

object.  

 Many studies have shown that an estimation of limb endpoint relative to the body 

after active reaching movements is more precise than after passive reaching movements 

(Adamovich et al., 1998; Gritsenko et al., 2007; Fuentes and Bastian, 2010; Bhanpuri et 

al., 2013). For the active movement case, subjects voluntarily moved their arm to a target, 
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whereas in the passive movement condition their arm was passively moved by a robot. In 

contrast, other studies have shown no difference in the estimation of limb endpoint 

between active and passive reaching movements (Jones et al., 2010; Capaday et al., 

2013). Moreover, haptic sensitivity for discriminating between two curved paths of the 

arm movement was similar between the active and passive reaching movements (Sciutti 

et al., 2010). Furthermore, a difference in accuracy in the perception of the curved path 

(Sciutti et al., 2010) and joint angle during the reaching movement (Gritsenko et al., 

2007) between the active and passive movements was most pronounced as the movement 

amplitude increased. These findings indicate that voluntary motor commands for force 

production and positioning the arm during the active movement might or might not 

facilitate the estimation of the limb endpoint. However, a recent study (Bhanpuri et al., 

2013) has shown that estimation of hand endpoint after an active arm movement was 

more accurate when a physical contact of the hand to stop the arm movement could be 

predicted as a consequence of the movement. Hence, the estimation of the endpoint was 

likely facilitated by not only voluntary motor commands for the arm movement, but also 

by the expected sensory consequences, i.e., the predictable physical contact in the cited 

study. Further investigation, however, is needed to address potential effects of voluntary 

digit movement on sensing relative contact points for execution of dexterous 

manipulation.  

Conclusions 

 The present errors in somatosensory-motor transformations of relative vertical 

contact points indicate that voluntary commands responsible for generating digit forces in 

opposite direction affects the accuracy with which perceived fingertip distance can be 
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reproduced. We speculate that the CNS implements voluntary motor commands for 

position and force production as well as predictable sensory consequences for successful 

sensorimotor transformations required for object manipulation. The extent to which 

predictable sensory consequences from motor commands for digit position and force 

underlie accurate force modulation during a dexterous manipulation is the subject of 

ongoing investigation.  
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CHAPTER 4 

PERCEPTION-ACTION COUPLING UNDERLYING CONTROL OF RELATIVE 

FINGERTIP POSITION 

INTRODUCTION 

 Dexterous object manipulation requires fine coordination of digit forces 

(Johansson and Westling, 1988; Johansson and Flanagan, 2009) and position on an object 

(Lukos et al., 2007, 2008; Fu et al., 2010, 2011; Zhang et al., 2010; Crajé et al., 2011). It 

has been documented that when subjects are asked to grasp and lift objects that allow 

choice of digit placement, they modulate digit forces on trial-to-trial basis to compensate 

for digit placement variability. It should be noted that digit placement in precision grips 

often requires placement of the fingertips that are vertically separated, e.g., when the task 

requires subjects to generate a torque at the onset of manipulation (Fu et al., 2010). This 

behavior is thought to be critically important for performing dexterous manipulation in a 

consistent fashion (Fu et al., 2010, 2011). The phenomenon of digit force-position 

coordination suggests that the central nervous system (CNS) integrates the sense of 

relative location of digit contact points with motor commands responsible for distributing 

forces among the digits. However, the mechanisms underlying digit position-force 

coordination for dexterous manipulation remain unclear.  

 To investigate the sensorimotor transformations of digit position required for 

dexterous manipulation, our previous studies examined how accurately subjects could 

reproduce the sensed and remembered relative vertical distance between the center of 

pressure (CoP) of thumb and index finger pads with a negligible digit force production 

(Shibata et al., 2013). It was found that the reproduced relative digit position was 
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accurate when sensorimotor transformations occurred with larger vertical fingertip 

separations, within the same hand, and at the same hand posture. A follow-up study 

examined the sensorimotor transformations using the same digit position-matching task 

while generating forces in different directions (Shibata et al., in review). This study 

revealed that subjects reproduced the thumb CoP higher than the index finger CoP when 

vertical digit forces were directed upward and downward, respectively, and vice versa. 

Thus, the motor commands responsible for vertical digit forces produced in the opposite 

direction may bias the sensed relative digit position toward the direction of force 

production. Overall, these studies were instrumental in identifying factors that influence 

the accuracy of sensorimotor transformations responsible for digit position control.  

 However, the matching task protocols used in the previous psychophysics studies 

did not involve actions that are normally required in dexterous manipulation, i.e., static 

force application onto an object followed by a dynamic phase, e.g., object translation or 

rotation. Furthermore, there were distinct sensing and matching phases separated by a 10-

second resting phase in our previous matching tasks. Thus, subjects were required to 

sense and retain memory of digit position during the sensing phase, and retrieving 

remembered digit placement to reproduce it during the matching phase. Object 

manipulation, however, involves a transition characterized by a short delay of few 

hundred milliseconds from initial object contact to vertical force production for object 

lifting (for review see Johansson and Flanagan, 2009). Therefore, tasks such as object 

lifting can be performed through concatenated sequential actions, i.e., contact, static force 

production, estimation of relative digit position, and modulation of forces to lift. Thus, 

for the task to be performed successfully, within a single object lift these actions require 
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integrating sensed relative digit position for digit force production without having to 

recall remembered digit position. When digit placement is not constrained by the task or 

experimenter, trial-to-trial variability of digit placement requires accurate sensing of digit 

position for appropriate force modulation (Fu et al., 2010, 2011). Therefore, to further 

understand the sensorimotor integration mechanisms underlying this phenomenon of digit 

force-position coordination, it is important to examine subjects’ ability to sense the 

relative digit position within a single object lift without memory recall, and their ability 

to modulate forces in the context of a grasp-lift task performed at different digit relative 

positions.  

 Another major difference between the previous psychophysics and object 

manipulation studies is whether a limb is moved voluntarily or passively to a target 

location. Psychophysics studies generally require subjects to indicate the sensed limb 

position after their limb was passively placed to a given position by an experimenter or an 

apparatus. However, in object manipulation subjects actively place their digits on the 

object for its manipulation. The effects of execution of voluntary movement to the sense 

of limb position have been studied using reaching movements. It has been shown that 

estimation of limb endpoint after active reaching movements is more accurate than after 

passive reaching movements (Adamovich et al., 1998; Gritsenko et al., 2007; Bhanpuri et 

al., 2013). Furthermore, predictable sensory consequence of active movements appears to 

benefit limb position sensing. Specifically, a recent study has shown that a predictable 

physical contact of the hand after an active arm movement results in an accurate 

estimation of hand endpoint (Bhanpuri et al., 2013). Conversely, the estimation of limb 

endpoint was less accurate when contact could not be predicted due to passive arm 
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movement or a perturbation during the active movement. Hence, not only the active arm 

movement, but also the corresponding sensory consequences (i.e., the predictable 

physical contact in the cited study) may facilitate subjects’ ability to estimate limb 

endpoint.  

 It has been proposed that a copy of motor commands for active movement is used 

to predict sensory consequences of motor actions through internal forward models, which 

are then compared with incoming sensory afferent signals to estimate sensory state in the 

immediate future (Wolpert et al., 1995; Kawato, 1999). In object manipulation, active 

digit positioning and sensory consequence of digit contact with the object surface can be 

predicted. This phenomenon may facilitate sensing a relative digit position and 

subsequent manipulative actions. However, the extent to which voluntary motor 

commands for active digit placement influences perception-action coupling, i.e., the 

relation between sensing relative digit position and force modulation, remains to be 

investigated.  

 The present study was designed to address the above gaps between 

psychophysical and object manipulation studies by quantifying subjects’ ability to 

estimate index fingertip position relative to the thumb while grasping an object to lift it 

while minimizing its object roll. We designed two experiments to isolate the perceptual 

component from the perception-to-action continuum (Perception and Action tests). 

Furthermore, for each study we addressed the question of whether active digit placement 

improves accuracy of perception of digit placement as well as force modulation as a 

function of digit placement. This question was addressed by having subjects’ digits 

placed on the object either actively or passively by an experimenter. We hypothesized 
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that 1) subjects would discriminate the relative digit position more accurately after active 

than passive digit placement, and 2) digit forces would be more accurately modulated as 

a function of the digit position in the active than passive condition. The hypotheses are 

based on the above studies of reaching movements that showed more precise estimation 

of arm endpoint after active than passive arm movement (Adamovich et al., 1998; 

Gritsenko et al., 2007; Bhanpuri et al., 2013).  

MATERIAL AND METHODS 

Subjects 

 Fifteen right-handed healthy volunteers (10 males and 5 females, mean ± SD: 

23.4 ± 5.8 yrs.) participated in this study. All subjects were classified as right-handed 

based on the mean Laterality Quotient and standard deviation (80.8 ± 14.1) based on the 

10-item Edinburgh Handedness Inventory (Oldfield, 1971). All subjects were naïve to the 

purpose of the study. Subjects gave their written informed consent according to the 

declaration of Helsinki and the protocols were approved by the Office of Research 

Integrity and Assurance at Arizona State University. 

Apparatus 

 A custom-made grip object was used to measure digit forces and center of 

pressure (CoP) of the thumb and index finger pad (Fig. 4.1B). The sensorized object has 

been described in detail elsewhere (Fu et al., 2010; Shibata et al., 2013). Briefly, two six-

component force/torques sensors were mounted on each side of the object (ATI Nano-25 

SI-125-3, ATI Industrial Automation, Garner, NC; force range: 125, 125, and 500 N for 

x-, y- and z-axes, respectively; force resolution: 0.06 N; torque range: 3000 N•mm; torque 

resolution: 0.378 N•mm; Fig. 4.1B). The vertical coordinate (y) of the CoP of each digit 
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on the contact surface was computed from the force-torque sensor output. To prevent the 

digits from slipping when subjects applied tangential forces, the contact surfaces of the 

handles were covered with 100-grit sandpaper (static friction coefficient range: 1.4-1.5). 

The location of center of mass of the object was adjusted by adding a mass (400 g) in the 

slot at the base of the object on the index finger side (Fig. 4.1B). The total mass of the 

object was 915 g. This additional mass created an asymmetrical mass distribution and 

introduced a torque on the frontal plane of 230 N·mm towards the index finger. This 

sensorized object was used for all experiments described in the present study. Object 

position was recorded using an active marker 3D motion capture system (PhaseSpace: 

frame rate 480 Hz; spatial accuracy: ~1mm; spatial resolution: 0.1 mm) with eight 

cameras. Two markers were placed on the lateral extremities of the object (green dots, 

Fig. 4.1B).  

Experimental Procedures 

 Perception test. Subjects grasped the object with the thumb and index fingertip of 

the right hand while sitting an adjustable chair with both forearms resting on a table or 

foam cushion (Fig. 4.1A). The left hand rested on the table throughout the experiment 

with all digits straight, adducted, and in a pronated position. Vision of the right forearm, 

hand, and object was prevented by a board placed between the right arm and a computer 

monitor (Fig. 4.1A). The positioning of the object, monitor, and board was adjusted for 

each subject so that subjects’ digits could be placed on the object in a comfortable 

posture. 

 We used a two-alternative force-choice paradigm. Subjects had to report whether 

the index finger CoP was higher or lower than the thumb CoP. Four relative vertical 
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Figure 4.1. Experimental setup.  

 A: Top view of the experimental setup. The subject is shown contacting the 
handle with the right thumb and index fingertip, while the left hand is kept flat on the 
table. When relaxing in between trials, both hands were kept flat and relaxed. Note that 
the board was placed such as to prevent subjects from seeing their right forearm and 
hand. Foam cushions were placed underneath the forearms and wrist for subjects’ 
comfort. B: Frontal and side views of the grip device;“a” and “b” denote force/torque 
sensors and active markers for motion tracking, respectively. A mass (400 g) was added 
to the slot at the bottom of the device on the index finger side. C: Frontal views of the 
object. The top and bottom figures show thumb and index fingertip center of pressure 
(CoP; red circles) of the reference hand located at the same or different y-coordinates 
(collinear and non-collinear contacts), respectively. The vertical distance between thumb 
and index fingertip CoP is denoted by dy. The top figure also shows normal and 
tangential forces generated by the digits (Fn and Ftan) and the torque generated by the 
digits (Tcom) to compensate the torque caused by the object’s asymmetrical mass 
distribution. 
  



 

84 

distances between the digits were used (blue box, Fig. 4.2A). When subjects actively 

placed their digits on the object, feedback of the relative fingertip position (vertical 

distance between fingertips, dy) was shown as a dot on the computer monitor. Subjects 

were required to move the dot to the target area by adjusting digit position (“active dy 

adjustment” phase; Fig. 4.2B). Specifically, we adjusted the gain used to display the 

cursor movement for each target dy such that the excursion of the cursor was always the 

same regardless of the actual dy. Thus, subjects could not extract information about the 

relative digit position from visual feedback of the cursor. This visual feedback of digit 

position was removed when subjects’ digits were passively placed on the grasped object 

by an experimenter at the designated target digit positions (“passive dy adjustment” 

phase, Fig. 4.2B). After the active or passive digit placement, we asked subjects to sense 

the dy while making a slight contact with the vertical surfaces of the grip device (“contact 

and sense” phase; Fig. 4.2B). The same monitor that provided feedback of the digit 

position was used to provide feedback of digit forces. Once an experimenter visually 

confirmed compliance of the desired hand posture and dy, subjects were given a verbal 

cue to generate digit forces. Specifically, subjects were asked to exert negligible normal 

and tangential forces with each digit (0.5-1 N and 0 ± 0.25 N, respectively; Fig. 4.2A). 

After sensing the dy for 2 seconds, subjects were asked to verbally report whether the 

index finger CoP was higher or lower than the thumb CoP (“verbal response” phase; Fig. 

4.2B). Subjects released their digits after providing an answer, and then rested and 

prepared for the following trial.  

 Action test. For this test we asked subjects to grasp and lift the same sensorized 

object used for the Perception test with the thumb and index finger. Similar to the 
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Figure 4.2. Experimental conditions and protocol.  

 A: Relative digit positions and force requirements for Perception and Action tests. 

We tested four relative digit positions (dy = −20, −10, 10, and 20 mm) for the Perception 

test (blue box), and three positions (dy = 0, −10, −20 mm) for the Action test (red box). 

Subjects were asked to exert negligible tangential and normal digit forces. B: Time 

course of the experimental protocols. In the “passive dy adjustment” phase of the 

Perception and Action tests, the subject’s thumb and index fingertip were passively 

placed by an experimenter to a given digit position. In contrast, subjects actively placed 

their digits to a given digit position in the “active dy adjustment” phase of the Perception 

and Action tests. Once the desired dy and target digit forces were reached, subjects were 

asked to sense dy while maintaining the digit contacts and forces for about 2 seconds 

(“contact and sense” phase). In the Perception test, subjects were cued too verbally report 

whether the index finger CoP was higher or lower than thumb CoP (“verbal response” 

phase). In the Action test, a “GO” signal was given to subjects to lift the object while 

preventing it from tilting (“lift” phase).   
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Perception test, vision of the right forearm, hand, and object was prevented by a board 

placed between the right arm and a computer monitor (Fig. 4.1A). Each trial started with 

active or passive dy adjustment (“active dy adjustment” or “passive dy adjustment” phase, 

Fig. 4.2B; three dys, red box Fig. 4.2A). We then asked subjects to sense the dy while 

maintaining the given dy with negligible forces (Fig. 4.2A) for about 2 seconds (“contact 

and sense” phase, Fig. 4.2B). The same feedback of digit forces and position as described 

for the Perception test was provided on the computer monitor for the Action test. Once 

the experimenter visually confirmed compliance of the desired hand posture and dy, a 

visual ‘GO’ signal was displayed on the monitor to cue subjects to lift the grasped object. 

We instructed subjects to lift the object vertically to a comfortable height at a natural 

speed while trying to maintain its vertical alignment, hold it for ~1 s, and replace it on the 

table.  

 Prior to the Perception and Action tests, all subjects practiced controlling the 

required digit forces and position, sequence of the Perception and Action tests, and lifting 

the object while minimizing the object roll at all dy. Only in this familiarization phase, 

visual feedback of object tilt minimization (task performance) in the Action test was 

given to subjects in order to facilitate learning of the torque to generate at object lift onset 

necessary to compensate the external torque. After this familiarization phase, the board 

(Fig. 4.1A) was placed to block vision of hand and object so that subjects needed to 

perform the lifting task using the haptic feedback only. Feedback of task performance in 

the Perception test was never given to subjects throughout the experiment including this 

familiarization phase. This familiarization phase lasted about 30 minutes.  For each 

experimental condition, the order of presentation of dy (Perception test: −20, −10, 10, 20 
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mm; Action test: −20, −10, 0 mm) was randomized across trials and subjects. Each 

experimental condition (Active, Passive) in the Perception and Action tests consisted of 

24 and 18 trials (6 trials per dy), respectively. The entire experimental session consisted 

of 84 trials (48 + 36 trials per test) and lasted about 1.5 hr. The presentation of the two 

tests was counterbalanced across subjects. Within each test, the presentation of 

experimental conditions was counterbalanced across subjects.  

Data Processing 

 Force and torque data were acquired with a 12-bit A/D converter board (PCI-

6225, National Instruments, Austin, TX; sampling frequency: 1 kHz) through a custom 

data acquisition interface (LabVIEW version 8.0, National Instruments) and stored in a 

computer for offline analysis. During data collection, force data were filtered online using 

a moving average filter every 50 samples over the 5-second duration of data recording. 

The filtered force data were then used for computing and displaying online normal and 

tangential digit forces and dy using LabVIEW.  

 After data collection, force and position data were temporally aligned off-line 

with custom-written software (Matlab, The MathWorks, Natick, MA). Analyses focused 

on the following variables: (1) digit center of pressure (CoP), the vertical coordinates of 

the CoP of the contact between each finger pad and the graspable surface relative to the 

center of the sensor (Fig. 4.1C); (2) digit force normal (grip force, GF) and tangential 

(load force, LF) to the grip surface (Fig. 4.1C); (3) object lift onset, defined as the time at 

which the vertical position of one of the active marker on the object exceeded the 

threshold of 2 mm for 5 ms (red dashed line, Fig. 4.3); and (4) object roll, defined as the 

angle between the gravitational vector and the vertical axis of the grip device, and peak  
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Figure 4.3. Experimental variables and grasp phases.  

 The time course of the experimental variables and grasp phases are shown for one 

representative trial. From top to bottom: the blue and green traces denote the grip force 

averaged across thumb and index fingers and the sum of load forces exerted by the thumb 

and index finger, respectively; the red trace denotes the vertical height of the object; the 

black trace denotes the compensatory torque, whereas the dashed horizontal line denotes 

the target torque subjects had to exert to counter the external torque caused by the added 

mass at the bottom of the object. The “GO” signal (black dash line) was given to subjects 

2 s after the “contact and sense” phase (see Fig. 2B) to cue the subject to initiate object 

lift. The blue, green, and red vertical dashed lines denote the onset of grip and load force, 

and object lift, respectively (see text for details).   
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object roll, defined as the peak of object roll occurring shortly (~500 ms) after object lift 

onset.  

 Digit forces and CoP were used to compute the following variables: (1) dy, 

defined as the vertical coordinate of thumb CoP minus the vertical coordinate of index 

finger CoP (Fig. 4.1C); (2) the average of the normal forces of the thumb and index 

finger (FGF) (Fig. 4.1C); and (3) the difference between the tangential forces of the thumb 

and index finger (dLF) (Fig. 4.1C). The combination of these three variables result in 

compensatory torque (Tcom) generated at object lift onset to counter the external torque 

caused by the added mass to maintain the object’s vertical alignment during the lift 

(bottom trace, Fig. 4.3; for details see Fu et al., 2010).  

 GF, LF, and lift onset were used to determine grasp phases (Fig. 4.3). The time at 

which the GF and LF exceeded the threshold of 0.4 N for 50 ms was defined as GF and 

LF onset, respectively (blue and green dashed lines, Fig. 4.3). The time between GF onset 

and LF onset was defined as ‘preloading phase’, and the phase between the LF onset and 

lift onset was defined as ‘loading phase’.  

Statistical analysis 

 For the Perception test, mean percentages of correct response across subjects per 

dy were analyzed using analysis of variance (ANOVA) with repeated measures within 

Condition (2 levels: Active, Passive) and Digit position (4 levels: −20, −10, 10, 20). For 

the Action test, we performed repeated-measures ANOVA to assess the effects of 

Condition (2 levels: Active, Passive) and Digit position (3 levels: −20, −10, 0) on load 

phase duration across subjects per dy. Linear regression analyses were performed to 

quantify the relation between load force difference  (dLF) and dy, and the average normal 
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force of the thumb and index finger and dy at lift onset over all trials from all subjects. To 

compute the coefficient of determination (R2), each data point was normalized for each 

subject by removing the mean of all trials from the value of each trial and dividing the 

result by the standard deviation of the mean. Post hoc tests were run using paired sample 

t-tests with Bonferroni corrections when appropriate. Sphericity assumptions were tested 

for all analyses (Mauchly’s sphericity test). When the sphericity assumptions were 

violated, we used Greenhouse-Geisser analysis (p < 0.01). All tests were performed at the 

p ≤ 0.05 significance level. Values in the text are reported as means ± standard error of 

the mean.  

RESULTS 

 Perception test. A repeated-measures ANOVA on the mean percentages of 

correct responses across subjects per dy revealed no significant difference between the 

Active and Passive digit placement conditions (no main effect of Condition: F[1,14] = 

52.910, p > 0.05; Fig. 4.4). The ability to discriminate relative digit position was high 

(range: 91-99%, across all the digit position and experimental conditions). Therefore, 

neither voluntary digit placement nor vertical fingertip distance drastically affected the 

accuracy with which subjects could perceive relative digit position.  

 Action test. We first examined whether subjects could appropriately modulate 

digit forces as a function of position at object lift onset as found for self-paced dexterous 

manipulation tasks (e.g., Fu et al., 2010). There was no difference in variables at lift onset 

including LF, GF, Tcom, and peak roll between the active and passive conditions (Table 

1). Moreover, digit load force difference (dLF) and relative digit position (dy) negatively 

covaried in a similar fashion for the Active and Passive conditions, as indicated by  
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Figure 4.4. Perception test: accuracy of correct responses. 

 Mean percentages of correct verbal response across all subjects in the Perception 

test are plotted per vertical center of pressure (CoP) distance (dy). Data are mean values 

averaged across all subjects (vertical lines denote S.E.).  
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Table 4.1. Summary of lifting performance variable in the Action test across all subjects 

 FGF (N) dLF (N) Tcom (N•mm) Peak roll (deg) 

dy = 0     

Active 12.2 (± 1.2)  –5.0 (± 0.2) –227.7 (± 4.5) 2.0 (± 0.3) 

Passive 13.3 (± 1.4) –5.0 (± 0.3) –225.8 (± 3.0) 1.5 (± 0.3) 

dy = –10     

Active 11.3 (± 1.2) –2.6 (± 0.3) –222.7 (± 4.1) 1.6 (± 0.2) 

Passive 12.2 (± 1.3) –2.1 (± 0.3) –223.2 (± 3.2) 1.3 (± 0.2) 

dy = –20     

Active 10.4 (± 1.1) –0.1 (± 0.5) –219.9 (± 5.7) 1.8 (± 0.2) 

Passive 11.1 (± 1.2) 0.4 (± 0.5) –225.0 (± 4.0) 1.3 (± 0.3) 

 

 Data are mean values (± S.E.) of average grip force (FGF), load force difference 

(dLF), compensatory torque (Tcom), and peak roll of object in degree per vertical distance 

between digit center of pressure (dy) averaged across all subjects for the Active and 

Passive conditions.  
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similar coefficients of determination (R2 = 0.89, p < 0.001; and 0.88, p < 0.001, Active 

and Passive, respectively, Fig. 4.5A-B). A similar positive correlation between the 

average grip force (FGF) and dy was also found for both conditions (R2 = 0.27, p < 0.001; 

and 0.37, p < 0.001, Active and Passive, respectively; Fig. 4.5C-D). These findings 

indicate that the accuracy of sensorimotor transformations responsible for modulating 

digit forces as a function of position was not affected by whether digit placement 

occurred in an active or passive fashion. 

 However, the time from the GO signal to object lift onset was longer in the 

Passive than Active condition. To determine the task phase underlying this result, we 

examined the duration of preloading phase (from GF onset to LF onset) and loading 

phase (from LF onset to object lift onset) (Fig. 4.3). We found no significant difference in 

the preloading phase duration (9 ms on average across subjects; t[14] = −0.792; p > 0.05). 

In contrast, the loading phase duration was consistently longer in the Passive condition by 

136 ms and across all digit positions (Fig. 4.6A). A repeated-measures ANOVA on 

average load phase duration across subjects per dy revealed significant difference between 

the active and passive digit placement (main effect of Condition: F[1,14] = 12.005, p < 

0.01; Fig. 6A), but no significant difference across dys (no main effect of Digit position: 

F[2,28] = 0.991, p > 0.05; Fig. 4.6A). A repeated-measures ANOVA on peak grip force 

rate revealed a significant difference across dys (main effect of Digit position: F[2,28] = 

11.910, p < 0.01), but not between Active and Passive digit placement (no significant 

effect of Condition: F[1,14] = 40.723, p > 0.05; Fig. 4.6B). Therefore, the longer load 

phase duration could not be accounted for by difference in grip force rates. However, we 

found that subjects develop load force faster in the Active than Passive condition (main  
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Figure 4.5. Action test: relations between digit forces and center of pressure.  

 A and B: Correlations between the difference in digit load force (dLF) and 

relative digit positions (dy) for Active and Passive conditions, respectively. C and D: 

Correlations between average grip force (FGF) and dy for Active and Passive conditions, 

respectively. Data from all trials and subjects are plotted for each condition (18 trials × 15 

subjects = 270) and expressed in normalized form (see text for details). Coefficient of 

determination (R2) and corresponding p value are shown in each plot.  
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Figure 4.6. Load phase duration, load and grip force rate, and shift in digit center of 

pressure during load phase.  

 A: Average load phase duration as a function of initial vertical distance between 

digits center of pressure (dy). C: Load force rate from a representative trial. The 

horizontal dashed lines denote peak load force rates. B, D: Average peak load and grip 

force rate, respectively, as a function of dy. E: Shift of dy during the load phase as a 

function of dy. Data are mean values averaged across all subjects (vertical lines denote 

S.E.). Asterisks denote a statistically significant difference (* and **: p < 0.05 and 0.01, 

respectively). 
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effect of Condition: F[1,14] = 6.568, p < 0.05), but no significant difference across dys (no 

main effect of Digit position: F[2,28] = 0.833, p > 0.05; Fig. 4.6C,D).  

 Lastly, we examined the magnitude of dy changes during the load phase to 

quantify a possible contribution of different amount of skin deformation of the finger 

pads to the longer load phase duration in the Passive condition. A repeated-measures 

ANOVA on shift of dy during the load phase revealed a significant difference as a 

function of dy (main effect of Digit position: F[2,28] = 16.587, p < 0.01), but not between 

the Active and Passive condition (main effect of Condition: F[1,14] = 1.470, p > 0.05; Fig. 

4.6E). Thus, the longer loading phase duration in the Passive condition can be accounted 

for a lower rate of load force development relative to the Active condition.  

DISCUSSION 

 The present study was designed to quantify the effects of voluntary motor 

commands responsible for digit placement on sensing relative digit position and 

subsequent modulation of digit forces. We found that subjects could accurately 

discriminate the index fingertip position relative to thumb and modulate fingertip forces 

to variable digit position regardless of whether they actively positioned their fingertips or 

had their fingertips passively moved by an experimenter. However, in the passive 

condition subjects took longer in developing manipulative digit forces as a function of 

digit placement during the loading phase. Therefore, voluntary digit placement in 

grasping only affected one component of the perception-action coupling, i.e., the duration 

of force development, but not the perception of digit position or the subsequent fingertip 

force scaling. We discuss these results in the context of the role of voluntary motor 
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commands for digit placement and perception-action coupling required in dexterous 

manipulation and underlying neural mechanisms.  

Role of active digit movement on estimation of digit relative position and digit force-

position coordination 

 Active digit placement did not improve accuracy of digit position estimation 

relative to passive digit placement (Fig. 4.4). This finding does not support our first 

hypothesis and is not consistent with previous observations that limb endpoint estimation 

is more accurate after active than passive reaching movements (Adamovich et al., 1998; 

Gritsenko et al., 2007; Bhanpuri et al., 2013). This finding might suggest task- or 

effector-specific differences in the extent to which the CNS can estimate the position of 

the fingertip through voluntary motor commands. Specifically, a major difference 

between reaching movements and our task is that the proximal component (shoulder and 

elbow joint rotation) are negligible in our task, thus motor commands are mostly limited 

to small digit movements at a static hand position (Fig. 4.1A). Therefore, one may 

speculate that the discrepancy between our result and previous findings from reaching 

movements may be due to a higher ‘signal-to-noise’ ratio in motor commands involved 

for large upper limb joint excursion and trajectory control for reaching than small digit 

movements. However, further work is needed to test this interpretation. 

We also found that, contrary to our second hypothesis, the accuracy of digit force 

modulation to position was the same regardless of whether subjects actively positioned 

their fingertips or had them passively moved by the experimenter. However, the 

development of digit forces between contact and object onset occurred over a longer 

period for the active digit placement condition (Fig. 4.6). Thus, whether digit placement 



 

98 

is actively or passively implemented appears to affect only the time it takes to transform 

sensory feedback of digit placement into motor commands for scaling fingertip forces to 

position, but not the accuracy with which digit force is modulated to position. The longer 

duration of the loading phase in the passive condition could be interpreted as resulting 

from slower processing of somatosensory feedback in the absence of the contribution of 

the efference copy of motor commands for digit placement. 

 A previous study also found that subjects took longer to modulate digit force to 

position after object contact by ~150 ms when vision of object width was eliminated (Fu 

and Santello, 2014). In that study, subjects had to exert a torque in response to spatial and 

temporal accuracy constraints, and visual feedback of object width allowed subjects to 

anticipate the digit forces necessary to manipulate the object. Similarly to the present 

study, subjects were able to accurately modulate digit force to position also when object 

width had to be perceived through somatosensory feedback alone than with visual 

feedback. The findings from this previous work and the current study point to the CNS’ 

ability to compensate for lack of visually-based control of digit forces through haptic 

feedback, but also indicate that the former mechanisms allows for the implementation of 

faster sensorimotor transformations.  

Role of active vs. passive movement for motor control: neural mechanisms 

 Whereas the Perception test found no effect of active vs. passive digit placement 

on fingertip position estimation, the Action test revealed faster sensorimotor 

transformations for the active digit placement. It has been suggested that sensory 

processing for perception and action is functionally and anatomically separate. Milner 

and Goodale (1995) originally proposed two broad streams of projections from the visual 
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cortex: a ventral stream projecting to the infero-temporal cortex and a dorsal stream 

projecting to the posterior parietal cortex. Visual information processed through the 

ventral stream would be used to recognize and discriminate a stimulus as well as 

preparing an appropriate action, thus called ‘vision for perception’. However, the 

subsequent implementation of that action would be processed in the dorsal stream, thus 

called ‘vision for action’. The dorsal stream would therefore play a significant role in 

programing and controlling skilled movements needed to carry out the action based on 

visual information. Dijkerman and de Haan (2007) proposed this scenario of separate 

visual processing streams for somatosensory processing. A neuroimaging study using 

functional magnetic resonance imaging has shown that cortical regions of somatosensory 

processing associated with perception per se are different from those associated with 

action (Reed et al., 2005). Specifically, when subjects were asked to localize the stimulus 

by moving the hand, bilateral superior parietal areas were activated. In contrast, when 

subjects were asked to recognize a stimulus presented on their hand without a movement, 

frontal and inferior parietal areas were activated. Furthermore, it has been suggested that 

the latter processing for perception per se may involve in the insula, an area involved 

with tactile object recognition (Olausson et al., 2002; Craig, 2003; Reed et al., 2005; 

Dijkerman and de Haan, 2007). Therefore, the differential effects of active versus passive 

digit placement on perception and action may be accounted for by a parallel processing of 

haptic feedback: one mostly involved with perception, e.g., estimation of relative digit 

position, and another for action, e.g., integration of haptic feedback for force modulation 

to sensed digit position. 
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 When proprioception is selectively engaged in estimating finger position, active 

finger movements were associated with greater activation of contralateral primary 

sensorimotor cortex (SI), premotor cortex, bilateral secondary somatosensory cortex 

(SII), basal ganglia, and ipsilateral cerebellum compared with passive finger movements 

(Mima et al., 1999). Thus, proprioceptive feedback together with voluntary motor 

commands appears engage cortical and subcortical activity to a greater extent than 

proprioceptive feedback alone. Note that our experimental task involved active or passive 

touch with the object. It has been proposed that tactile feedback elicited by touch is 

integrated with proprioceptive feedback for accurate estimation of fingertip position 

relative to the body during a reaching task (Rincon-Gonzalez et al., 2011). Although our 

task did not require estimation of fingertip position in a body-frame of reference, it is 

conceivable that grasp-to-lift task might have benefited from the integration of 

proprioceptive and tactile feedback. A brain mapping study (Simões-Franklin et al., 

2011) reported that when subjects were asked to discriminate the roughness of a surface 

through active touch, this exploratory movement elicited greater activity in SI, basal 

ganglia, and cerebellum than when the finger was passively moved across the surface. 

Therefore, in our study active digit placement prior to lifting an object might have 

engaged these brain areas to a greater extent than during passive digit placement.  

 It has been suggested that the cerebellum is involved in an active movement to 

predict sensory consequences using an efferent copy of motor commands for the 

movement (Wolpert et al., 1998). Recent behavioral evidence from Bhanpuri and 

colleagues (2013) is consistent with this theoretical framework. Specifically, subjects 

could accurately estimate the end point of active limb movement when a physical contact 
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with the limb was predictable, whereas cerebellar patients did not benefit from active 

movement to the same extent as healthy controls (Bhanpuri et al., 2013). Moreover, the 

accuracy of limb endpoint estimation for unpredictable movement outcomes was similar 

across the two groups. These findings suggest that the cerebellum uses predictive sensory 

feedback through internal forward models by comparing the proprioceptive feedback 

during voluntary movement. A major difference with this study is that proprioceptive and 

tactile feedbacks are present in our active and passive conditions. Furthermore, both 

conditions resulted in similar digit positions and fingerpad deformation, thus eliciting 

similar proprioceptive and tactile inputs, respectively, as suggested by similar estimation 

errors in the active and passive condition (Figs. 4.4, 4.6E). Therefore, we speculate that 

subjects could predict the relative digit position through internal forward models in the 

cerebellum following active but not passive digit placement. This predicted digit position 

might be readily available to be integrated for appropriate digit force production as a 

function of the digit position in order to lift an object. As noted above, removal of this 

predictive component would be detrimental only to the time it takes to process 

somatosensory feedback of digit placement, but not fingertip force scaling to position. 

Conclusions  

 The present study revealed that, regardless of whether digit placement on an 

object is actively or passively implemented, subjects can successfully discriminate 

relative fingertip position and modulate manipulative forces accordingly using 

somatosensory feedback only. However, force development from contact to the onset of 

manipulation took longer in the absence of voluntary motor commands for digit 

placement. We speculate that passive and active digit placement engage different neural 
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mechanisms and brain areas. Prediction of sensory consequences associated with active 

digit placement might account for faster sensorimotor transformations of haptic feedback 

into fingertip force modulation to position.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

GENERAL FINDINGS 

 Humans are able to modulate digit forces as a function of position for object 

manipulation despite digit placement variability that might occur from trial to trial or 

when changing grip type. Although this phenomenon suggests that the CNS relies on the 

integrations of sensing relative digit position with motor commands responsible for active 

digit placement and force production, we have a limited understanding of the underlying 

mechanisms. The purposes of this dissertation were to provide behavioral data for 

understanding humans’ ability to sense digit position and integrate it with motor 

commands for digit force modulation for dexterous manipulation.  

Haptic-motor transformations for the control of vertical fingertips distance  

 To understand the extent to which humans can sense the distance between 

fingertips in contact with an object, we quantified subjects’ ability to match perceived 

vertical distance between the thumb and index finger pads (dy) of the right hand 

(‘‘reference’’ hand) using the same or opposite hand (‘‘test’’ hand) after a 10-second 

delay without vision of the hands in Study #1 (Chapter 2). The reference hand digits were 

passively placed non-collinearly so that the thumb was higher or lower than the index 

finger (dy = 30 or –30 mm, respectively) or collinearly (dy = 0 mm). Subjects reproduced 

the reference hand dy by using a congruent or inverse test hand posture while exerting 

negligible digit forces onto an object. We found that matching error (reference hand dy 

minus test hand dy) would be greater (a) for collinear than non-collinear dys (Fig. 2.4A), 

(b) when reference and test hand postures were not congruent (Fig. 2.4B), and (c) when 
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subjects reproduced dy using the opposite hand (Fig. 2.4B). The dys were underestimated 

when the postures of reference and test hand were not congruent, and when the opposite 

hand was used as test hand (Fig. 2.6A, 2.6B). These findings indicate that sensed finger 

pad distance is reproduced less accurately (1) when sensorimotor transformations involve 

transferring memorized feedback of fingertip distance to the contralateral cerebral 

hemisphere, and (2) when higher-level processing of the somatosensory feedback might 

be required to transform sensory feedback obtained at a given posture into motor 

commands to the hand in a different posture. We propose that erroneous sensing of finger 

pad distance, if not compensated for during contact and onset of manipulation, might lead 

to manipulation performance errors as digit forces have to be modulated to sensed digit 

placement. 

Biased sensorimotor transformations for the control of fingertip position 

 To further understand the extent to which voluntary motor commands responsible 

for digit force production influence sensorimotor transformations for the control of 

relative digit position, for Study #2 (Chapter #3) we used a similar protocol used for 

Study #1. Briefly, we asked subjects to match sensed dy of the right hand (“reference” 

hand) using the same hand (“test” hand) after the digits were passively placed collinearly. 

Subjects were then asked to exert different combinations of normal and tangential digit 

forces (Fn and Ftan, respectively) using the reference hand and then match the 

memorized dy using the test hand. Thumb and index finger of the reference hand exerted 

Ftan in the same or opposite directions. For the test hand, digit forces were either 

negligible (0.5-1 N, 0 ± 0.25 N) or the same as those exerted by the reference hand. We 

found that matching error was biased towards the direction of digit tangential forces: 
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thumb CoP was placed higher than the index finger CoP when thumb and index finger 

Ftan were directed upward and downward, respectively, and vice versa (Fig. 3.5). 

However, matching error was not dependent on whether the reference and test hand 

exerted similar or different forces. We propose that the expected sensory consequences 

derived from a copy of voluntary motor commands for tangential digit forces in opposite 

directions overrides estimation of fingertip position through haptic sensory feedback. 

Differential effects of voluntary digit placement on perception vs. action 

 In Study #2 and #3, subjects’ digits were passively placed to control for possible 

contributions of voluntary movement to the digit position sensing. Moreover, the 

remembered digit position was reproduced after a 10-s resting phase between sensing and 

matching phases. This delay between sensing and using memorized feedback of digit 

placement requires subjects to store and later retrieve sensed digit position. However, 

dexterous manipulation normally involves a very short delay (a few hundred 

milliseconds) from initial object contact to vertical force production for object lifting. 

Therefore, in Study #3 (Chapter 4) we investigated the extent to which motor commands 

responsible for active digit placement may affect estimation of relative digit placement 

and sensorimotor transformations underlying digit force-position coordination. In two 

different experiments, we asked subjects to estimate the index fingertip position relative 

to the thumb (Perception test) or grasp and lift an object with an asymmetrical mass 

distribution while preventing object roll (Action test) without visual feedback of the hand 

and object. Both Perception and Action tests were performed after subjects’ digits were 

placed actively at different relative distances by the subjects (Active condition) or 

passively by an experimenter (Passive condition). We found that subjects could 
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discriminate the relative digit position equally well in the Active and Passive conditions 

(correct response: > 90%; Fig. 4.4). Furthermore, subjects could minimize object roll by 

modulating digit forces as a function of digit position in both Active and Passive 

conditions (r2 = 0.89 and 0.88, respectively; Fig. 4.5). However, the time between load 

force onset and object lift-off was longer in the Passive than Active condition (Fig. 4.6A). 

We conclude that estimation of fingertip relative position and force-position coordination 

can still be accomplished in the absence of voluntary commands for positioning the digits 

on the object. Therefore, we speculate that sensory feedback and voluntary commands 

associated with force production from contact to onset of manipulation might play a 

greater role in enabling force-position coordination.  

FUTURE WORK 

 The findings of Study #2, where the matched digit position was biased toward the 

direction of tangential digit forces when exerted in opposite directions, revealed a strong 

contribution of motor commands associated with force production to the accuracy of 

sensorimotor transformations. However, it is unclear yet to what extent skin deformation 

of the finger pads may contribute to biasing sensorimotor transformations since digit 

force production and skin deformation were coupled. Specifically, when tangential digit 

forces were exerted in the opposite direction, the finger pads were also deformed in 

opposite directions, thus tactile afferent signals might have contributed to bias the 

perception of fingertip distance. Thus, we could not rule out potential contributions of the 

skin deformations to the biased digit position.  

 It has been documented that the combination of tactile and proprioceptive 

feedback provides an accurate estimation of the fingertip relative to the body during a 
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reaching task (Rincon-Gonzalez et al., 2011). Furthermore, perceptual bias of a joint 

angle is greater when only motor commands are available following anesthesia and 

paralysis (Gandevia et al., 2006) than when motor commands and afferent signals are 

available while muscles are paralyzed (Smith et al., 2009). These findings suggest that 

voluntary motor commands and tactile feedback may interact each other to estimate 

relative digit position.  

 This possible contribution of tactile feedback through skin deformation may be 

tested using a haptic device that generates compressive and shear forces onto the finger 

pad. With this device, skin deformation of the finger pad only could be induced without 

digit force application onto an object surface. Thus, skin deformation can be decoupled 

from voluntary motor commands. As shown in the previous studies, tactile feedback 

through skin deformation may affect subjects’ ability to sense and match relative digit 

position. By using such a haptic device, one would verify the contributions of motor 

commands to the biased digit position found in Study #2.  

 This dissertation focused on and provided human behavioral data for 

understanding humans’ ability to sense digit position and integrate it with motor 

commands for digit force modulation. However, neural circuits underlying the 

sensorimotor transformations for dexterous manipulation remain unclear. Functional 

magnetic resonance imaging (fMRI) could be used to provide anatomical evidence what 

brain regions are involved in our matching (Chapter 2 and 3) and lifting tasks (Chapter 

4). One advantage of using fMRI over other techniques such as transcranial magnetic 

stimulations is the ability to access structures such as basal ganglia and cerebellum. In 

Study #3 (Chapter 4), we speculate that the active digit placement may elicit distinct 
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activation of these subcortical regions to process somatosensory feedback for digit force 

modulation as a function of digit position, resulting in a quicker force development 

compared to the passive digit placement. This speculation could be verified using fMRI 

to provide physiological data for further understanding the mechanisms underlying digit 

position-force coordination.  

 Lastly, it may be possible to extend findings of the sensorimotor integration of 

two contacts of the digits on an object to that of two contacts of two feet on the ground 

for maintaining balance. To maintain balance, the center of gravity of the body needs to 

be located over the base of support, both of which should be accurately sensed through 

multi sensory feedback. Somatosensory feedback through the lower extremities is crucial 

to sense mass distribution over the base of support and integrate it with visual and 

vestibular feedbacks to maintain balance. Without an accurate estimation of the relative 

location of the center of pressure of the feet, the projection of the center of gravity of the 

body on the base of support may not be appropriately adjusted to a given task e.g., 

postural adjustments during standing or gait. Further experiments are needed to address 

the extent to which the findings from our findings about the ability to integrate the sensed 

relative digit position for the force modulation in object manipulation may generalize to 

other sensorimotor effectors.  

CONCLUSIONS 

 This dissertation extends previous knowledge about humans’ ability to sense joint 

and limb position by provides new insights about sensorimotor transformations 

underlying sensing and reproducing relative digit position for grasping and manipulation.  
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 Skin stretch of the dorsal area of the hand induced by vertical digit separation in 

the non-collinear digit position might produce higher signal-to-noise ratio of afferent 

signals compared to a collinear digit position. However, high-level processing of digit 

position feedback appears to affect sensorimotor transformations’ accuracy, e.g., when 

sensory feedback has to be transferred across cerebral hemispheres and using a hand 

posture that differs from that used to sense fingertip distance.  

 After making contact with an object, digit forces must be produced to manipulate 

it. Voluntary motor commands responsible for digit force production appears to play a 

critical role in biasing sensorimotor transformations in a directional manner. The data 

presented here suggest that a copy of voluntary motor commands might be used for 

predicting sensory consequences associated with digit forces that would increase fingertip 

vertical distance and override the estimation of digit position based on haptic feedback.  

 Furthermore, voluntary motor commands responsible for placing the digits on an 

object seem to facilitate sensory transformations of haptic feedback through object 

contact into digit force modulation for dexterous manipulation. Conversely, in absence of 

voluntary motor commands for positioning the digits, subjects exert digit forces 

accurately but such forces develop over a longer time period. Therefore, active digit 

placement appears to facilitate the time required by sensorimotor transformations 

responsible for modulating digit forces to position in reach, grasp, and lift tasks.  
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