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ABSTRACT 

Protein-surface interactions, no matter structured or unstructured, are 

important in both biological and man-made systems. Unstructured interactions are 

more difficult to study with conventional techniques due to the lack of a specific 

binding structure. In this dissertation, a novel approach is employed to study the 

unstructured interactions between proteins and heterogonous surfaces, by looking 

at a large number of different binding partners at surfaces and using the binding 

information to understand the chemistry of binding. In this regard, surface-bound 

peptide arrays are used as a model for the study. Specifically, in Chapter 2, the 

effects of charge, hydrophobicity and length of surface-bound peptides on binding 

affinity for specific globular proteins (β-galactosidase and α1-antitrypsin) and 

relative binding of different proteins were examined with LC Sciences peptide 

array platform. While the general charge and hydrophobicity of the peptides are 

certainly important, more surprising is that β-galactosidase affinity for the surface 

does not simply increase with the length of the peptide. Another interesting 

observation that leads to the next part of the study is that even very short surface-

bound peptides can have both strong and selective interactions with proteins. 

Hence, in Chapter 3, selected tetrapeptide sequences with known binding 

characteristics to β-galactosidase are used as building blocks to create longer 

sequences to see if the binding function can be added together. The conclusion is 

that while adding two component sequences together can either greatly increase 

or decrease overall binding and specificity, the contribution to the binding affinity 

and specificity of the individual binding components is strongly dependent on 
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their position in the peptide. Finally, in Chapter 4, another array platform is 

utilized to overcome the limitations associated with LC Sciences. It is found that 

effects of peptide sequence properties on IgG binding with HealthTell array are 

quiet similar to what was observed with β-galactosidase on LC Science array 

surface. In summary, the approach presented in this dissertation can provide 

binding information for both structured and unstructured interactions taking place 

at complex surfaces and has the potential to help develop surfaces covered with 

specific short peptide sequences with relatively specific protein interaction 

profiles. 
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CHAPTER 1: GENERAL INTRODUCTION AND BACKGROUND 

INFORMATION 

Protein-Surface Interactions 

Protein-surface interactions are important in both biological and artificial 

systems[1]. Biological systems are organized by complex networks of molecular 

interactions with dynamic behavior, and proteins are one of the key components in such 

networks[2, 3]. The cell surface is one of the most common interfaces in biological 

systems. Some examples of biological processes involving proteins interacting with 

molecular components on cell surfaces include cell adhesion[4], cell-cell interactions[5], 

hormone cellular signaling pathways[6] and information/nutrient exchange. Artificial 

systems are usually designed and synthesized to mimic the functional properties of 

biological systems to achieve similar or even better results with manufacturing 

advantages. Interactions between proteins and synthetic material surfaces are important in 

developing and manipulating artificial systems[7]. For example, medical implants and 

artificial tissues developed to help patients regain body function are exposed to proteins 

and interact with them to trigger defined biological reactions[8]; biomolecular functional 

units such as enzymes, receptors and antibodies are utilized in various types of biosensor 

and bioelectronics to increase device performance[9]; DNA, peptide and protein based 

diagnostic and sensor arrays that incorporate protein functions are used clinically and/or 

at the research level in biomedical industries and academia[10, 11].   

Specific versus Nonspecific Interactions 

The interactions governing biological processes can be sorted into two general 

categories: specific interactions and nonspecific interactions. Specific interactions are 
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normally associated with well-defined recognition/binding structures and high free 

energy changes upon binding[12]. Some examples of specific interactions in nature 

include DNA-protein bindings, antigen-antibody interactions, protein-ligand bindings and 

enzyme-substrates complexes. Specific interactions are usually well-studied and more 

thoroughly researched in comparison to nonspecific interactions. In contrast, nonspecific 

interactions generally lack a unique structure for the final complex formed, and for this 

reason, they may also be referred to as unstructured interactions. Although the term 

“nonspecific” may refer to a weak interaction that is universal to all interacting 

molecules, in some cases, the situation is not that simple. Some nonspecific interactions 

can greatly favor some protein interactions over others and they can contribute 

significantly to the overall binding affinity.  In fact in many cases, many kinds of 

interactions can take place at the complex binding surfaces of proteins and the strength of 

an interaction largely comes from nonspecific interactions such as general charge-charge 

interactions. The nonspecific interactions result in a set of shallow potential wells on the 

potential energy surface with multiple possible unstable interacting complexes. What 

makes a reaction specific is that a certain metastable structure could be formed by aid of 

specific short-range forces, which can make one potential well deep enough so that it is 

the one predominantly occupied.  Hence, the concepts of specific and nonspecific 

interactions are better thought of as two ends of a more continuous spectrum.  

Importance of Nonspecific Interactions 

Nonspecific interactions, or unstructured interactions, are driven by some 

combination of general weak interactions including electrostatic interactions, 

hydrophobic interactions (entropic effects) and hydrogen bonding interactions (dipolar 
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interactions). They are themselves the sum of a variety interactions that do not stabilize 

one particular structure. In the crowded cellular environment, the majority of interactions 

proteins may have with each other or with the surfaces of cells are nonspecific. If one 

only considers protein-protein interactions, roughly, for a cell with N proteins, there are 

on the order of N specific protein-protein interactions, but almost N2 nonspecific protein-

protein interactions[13]. Although these nonspecific interactions are ubiquitous in 

biology, they are generally poorly studied in terms of their role in biology and thus there 

is a lack of fundamental understanding of their chemical and structural nature. Many 

biological processes cannot function properly without the participation of nonspecific 

interactions.  In fact, in many cases, the distinction between “specific” and “nonspecific” 

interactions is not clear cut. For example, the interaction between a DNA-binding protein 

(i.e. RNA polymerase, endonuclease and methyltransferase) and its target DNA is 

initially a nonspecific (or sequence-independent) interaction at a random DNA site. This 

interaction helps the DNA-binding protein find its specific binding site rapidly and 

efficiently by “facilitated diffusion”.  It can then initiate sequence-dependent interactions 

at the correct binding location. The initial interaction is considered as a nonspecific 

interaction because it is not associated with a particular DNA sequence; however, it is 

quiet specific to double stranded, B-form DNA in general and is an important 

intermediate step in the process of sequence-dependent DNA recognition and binding[14, 

15].  

In an extraordinary crowded cellular environment, it is very important that a 

protein not only specifically bind to its target molecules, but also selectively not adsorb to 

other non-target molecules. The failure of protein to maintain a strong specificity to its 
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functional partners can result in protein misfolding and aggregation, which may lead to a 

variety of diseases including neurodegenerative diseases such as Parkinson’s disease[16] 

and Alzheimer's disease[13, 17].  In this regard, a better understanding of how proteins 

interact with non-target molecules is the key to understanding how proteins remain stable 

and avoid aggregation in complex environment. 

Nonspecific or unstructured interactions between proteins and complex surfaces 

are of particular significance to our understanding of fundamental biology and 

development of related applications. A protein interacting with surface bound molecules 

differs from its interaction with its binding partner in solution, where one protein only 

interacts with one binding partner. Due to the high local concentration, a protein may 

interact with multiple molecules or parts of a molecule on a surface. Thus, the interaction 

between a protein and surface bound molecules can be considered as one surface 

interacting with another. Nature uses selective, unstructured interactions between protein 

surfaces and complex surfaces in their surroundings to its advantage and mimicking that 

kind of selectivity is important in developing biomaterials or biosensors with surfaces 

that avoid background binding and interference, but facilitate selected interactions[18, 

19]. Another application of utilizing unstructured interactions between proteins and 

complex surfaces is the immunosignature technology developed in the Center for 

Innovation in Medicine in the Biodesign Institute at Arizona State University. In that 

case, a surface covered with relatively short peptides is used to discriminate between the 

binding profile of antibodies in the serum of healthy individuals and people with specific 

diseases. The general characteristics of a surface can result in very large discrimination 

between binding partners, even without forming specific binding structures[20].  
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Analytical Difficulties in Characterizing Nonspecific Interactions  

A large number of methods have been developed to study interactions between 

proteins and their binding partners, either in solution or at surface [21-25]. Table 1.1 

shows selected examples of different genetic, biochemical and biophysical methods for 

analyzing protein interactions. However, most methods focus on identifying and/or 

characterizing specific interactions rather than nonspecific interactions. In fact, most 

nonspecific interactions are generally considered as noise in experiments. The reason 

they are a problem in terms of noise is that they are not that low in total.  The issue is that 

particular structures are formed with low affinity, but there are many possible structures.  

Most techniques listed below in Table 1.1, including crystallography, 

immunoprecipitation, phage display and affinity chromatography, force the system to 

search for the most favored single structure, which is defined by specific interactions. 

Techniques like NMR only show the specific interactions because the rest average out to 

zero given the highly specific signals. For either technique used, a very nonlinear process 

that strongly favors one specific interaction is imposed during the study.  

Table 1.1. Selected Examples of Different Methods Studying Protein Interactions [21-25] 

Method Description 

Living Cell 

Assay 

Co-immunoprecipitation 

Identify protein-protein interactions with a 

specific antibody 

In-vitro 
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Affinity purification–MS 

Isolate interacting protein targets with 

affinity chromatography and identify with 

MS analysis subsequently 

In-vitro 

Yeast two hybrid system 

Screen interactions between fusion 

proteins inside the nucleus of yeast and 

identify binding partners of a protein 

In-vivo 

DNA/protein/peptide     

microarrays 

Screen and identify interactions between 

molecules 

In-vitro 

Phage display, RNA 

display 

High-throughput screening of protein 

interactions 

In-vitro 

Synthetic lethality 

Genetic method for verify protein 

interactions 

In-vivo 

X-ray crystallography, 

NMR spectroscopy 

Structural study for interactions with 

specific binding structure 

In-vitro 

Fluorescence resonance 

energy transfer (FRET) 

Biological characterization for interactions 

between single molecules 

In-vivo 

Surface plasmon 

resonance (SPR) 

Characterize kinetic constant for binding 

processes 

In-vitro 

Electron microscopy Structural and biological characterization In-vitro 

Moreover, there are many techniques intentionally designed to eliminate 

nonspecific interactions. Examples include affinity purification methods such as tandem 

affinity purification (TAP) and “large library” selection approaches such as phage 
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display. Affinity purification methods are generally biased toward proteins with high 

affinity and slow kinetics of dissociation[22]. TAP method is a type of affinity 

purification using a TAP tag and two purification steps (Figure 1.1)[26, 27]. In 

combination with mass-spectroscopy, it can identify interacting partners with high 

affinity[27]. Weakly interacting partners without a stable binding structure are easily lost 

during the series of purification steps[22, 28] and thus it is not suitable for identifying 

nonspecific/unstructured binding partners.  

“Large library” selection approaches are widely used for the selection of affinity 

reagents.  Figure 1.2 shows the general scheme for in vitro biological selection 

approaches. Just like the natural selection process, a selection pressure is applied to the 

large library of random molecules. Molecules that successfully pass the selection process 

will be amplified for further analysis or served as the library for the next selection cycle 

and molecules failed to pass will be left out. Many approaches can be used to generate 

the desired libraries with capability of selection and amplification. For example, a 

random double stranded DNA pool can be directly synthesized with a DNA synthesizer 

and amplified through PCR; a single stranded DNA/RNA pool can be separated and 

transcribed from a double stranded DNA pool and amplified through reverse transcription 

and PCR[29]; peptide and proteins can be linked to their coding sequences and amplified 

through these sequences by molecular display techniques such as phage display, mRNA 

display and ribosome display[30-34]. These types of approaches may be great for 

identifying affinity reagents but they cannot serve as a tool to systematically study 

nonspecific interactions because the identity of the molecules in the library remain 

unknown until the end of the selection cycles and information about moderate or weak 
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interactions, which is critical for understanding general rules governing nonspecific 

interactions, is permanently lost. The use of chemical selection systems is another way to 

create large libraries for selection of desired molecules, especially for peptides[33]. The 

difference between chemical selection and in vitro biological selection is that the 

component cannot be easily amplified and reselected after the selection. Although 

chemical selection systems are very effective in creating large libraries that contain large 

number of nonspecific/unstructured binding candidates, only a few candidates survive the 

screening protocol and reach the final characterization step, which is required to obtain 

the candidate identity.   
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Figure 1.1. Schematic representation of TAP tags and the TAP purification 

strategy[27].   
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Figure 1.2. General scheme for in vitro selection approaches 

Another difficulty in characterizing nonspecific interactions results from their 

lack of particular stable structures. For interactions that result in formation of a specific 

structure, conventional biophysical approaches such as X-ray crystallography, NMR 

spectroscopy and electron microscopy can be employed to characterize the structure of 

the complex and then that structural information can be used to understand the 

mechanism of these interactions. These approaches cannot be applied to the study of 
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nonspecific interactions because the binding complexes resulting in nonspecific 

interactions do not form a single final structure.   

Approaches for Studying Nonspecific Interactions 

A limited number of approaches have been developed to study nonspecific 

interactions. One chemical way to identify nonspecific protein interactions is using cross-

linking reagents such as formaldehyde to crosslink molecules in close vicinity to the 

target protein[35, 36].  Although chemical crosslinking can help identify interactions that 

do not form stable binding structures, it can also result in complexes with molecules that 

are not in direct contact with the target protein, as long as they are in close proximity[23]. 

Bioinformatics methods have been used by Jiang’s group at University of Washington to 

separate nonspecific effects from the many specific functions of proteins and further 

study the nonspecific interactions in molecular chaperones[18, 19]. There they define 

nonspecific interactions as interactions that lack specific protein functions. DNA and 

peptide microarrays allow high-throughput screening of compounds for affinity reagents 

and exploration of the diversity of interactions between proteins and surface bound 

molecules. Ordered array-based molecular interaction measurements have the advantage 

that one measures all strengths of interactions, rather than just seeing the strongest binder. 

Both DNA and peptide microarrays present a set of sequences with great chemical 

complexity that can be precisely controlled. Peptide microarrays, in particular, have great 

potential because the broad chemical diversity that can be represented in relatively 

modest length peptide sequences[37].  
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Different Peptide Microarray Platforms 

Surface-bound peptide arrays can serve as a great model to explore the range of 

protein-surface interactions and to better understand the kinds of unstructured interactions 

that take place at chemically complex surfaces. Peptide arrays consist of immobilized 

peptides spatially addressed on substrates such as glass or silicon surfaces. They possess 

several advantages in protein-surface interactions research: (1) peptides are short 

fragments of protein molecules, which are key surface components of biological 

interfaces; (2) short peptides are relatively easy to make by chemical synthesis; (3) 

synthesis is not limited to using only the 20 naturally occurring amino acids; (4) modest 

size peptide libraries can present high chemical complexity and can be arranged in an 

addressable format; (5) Interactions can be studied systematically as interacting events 

between all binding partners, weak or strong, will be revealed.  Currently, there are two 

major ways to prepare peptides on surfaces. One is pre-synthesizing functionalized 

peptides and then covalently immobilizing them to the surface via linker molecules; and 

the other one is in situ synthesis of peptide microarrays[38, 39].  

There are several peptide immobilization approaches available to attach pre-

synthesized peptides to surface. For example, peptides can be synthesized with a C-

terminal linker containing a cysteine and covalently attached to a sulfo-SMCC treated 

surface via disulfide bond[40, 41]. This immobilization strategy has been employed by 

researchers at Center of Innovation in Medicine in Biodesign Institute at ASU to 

synthesize CIM10K peptide arrays, which has been used in several different applications 

including immunosignaturing and ligand discovery.  
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Some commercially available peptide arrays are synthesized by a variety of in-

situ peptide synthesis approaches including SPOT synthesis, light-directed synthesis and 

particle-based synthesis. The SPOT synthesis technology delivers C-terminally activated 

amino acid derivatives and reactions reagents within liquid droplets onto defined areas at 

surface. Usually, a standard Fmoc solid phase peptide synthesis reaction is followed to 

couple these amino acid building blocks to surface[42]. SPOT technology based synthesis 

can be performed either manually or automatically and it is by far the most common and 

frequently used method for in situ synthesis of peptide arrays[39]. Particle-based 

synthesis is commercialized and utilized by PEPperPRINT to fabricate their 

PEPperCHIP. In this method, Fmoc-amino acids with C-terminal OPfp-ester activation 

group are embedded within a solid microparticle and printed onto the surface with a 

custom 24-color laser printer. This is followed by simultaneous particle melting, which 

releases the amino acids and enables the coupling reactions. As in conventional Fmoc 

solid phase synthesis, a cycle of synthesis is finished after washing off excessive 

materials and Fmoc deprotection[42]. The idea of light-directed peptide array synthesis, 

which utilizes photolabile protected amino acids and lithographic masks, was brought up 

by Fodor et al. in 1991[43]. The original technology requires the use of photolabile 

protecting groups, which did not perform well in term of repetitive coupling yield when 

compare to the conventional t-boc or Fmoc protecting groups, for a long time[42].  A 

couple of variant photolithographic synthesis methods were developed to overcome this 

problem by using photo acids to deprotect conventional t-boc protected amino acids at 

the designated positions that are exposed to light. However, these techniques are still 

associated with large numbers of peptide-specific coupling cycles as only one single kind 
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of amino acid can be coupled at a time. Two commercially available peptide array 

platforms are used in the work presented in subsequent chapters and the platforms will be 

discussed below.  

LC Sciences PepArray™ 

A type of photolithographic technique utilizing photogenerated acids (PGA), 

digital photolithographic masks and conventional t-boc solid phase synthesis has been 

commercialized by LC Sciences to produce PepArray™, which is used in chapter 2 and 

chapter 3 to explore the nature of unstructured interactions between proteins and surface 

bound peptides. The technique was developed based on proprietary µParaflo® 

microfluidics technology, which allows direct synthesis of peptides on a high density 

microfluidic chip as features in specific locations on the chip using a PGA to deprotect 

the t-boc protected amines of nascent peptides[44, 45]. Peptide libraries synthesized on 

the chips are made to order and can be completely customized. Figure 1.3 shows the 

ordering process of LC Science PepArray chips. Two formats of chips are available 

through LC Sciences, 4000 or 30,000 features on arrays with ~1.5cm2 surface area.  The 

chip is actually an enclosed microfluidic system, which contains fluid distribution 

channels and picoliter scale reaction chambers with physical isolation from each other 

(Figure 1.4)[44]. Each chamber contains one specific peptide sequence. The in-situ 

peptide synthesis consists of the following steps (Figure 1.5): (1) derivatizing the surface 

with a protected NH2-linker, with a density on the surface of less than 1pmol per 1mm2 

area; (2) applying a solution of the PGA precursor (PGA-P) in dichloromethane; (3) 

deprotecting the protected amine in the desired reaction chamber with digital 

photolithographic masks, (4) coupling the amino acid, capping any unreacted linkers and 
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deprotecting the side chain using standard peptide synthesis procedure, (5) repeat step 2, 

3 and 4 until all amino acids to be incorporated is added for coupling[45-48].   

 

Figure 1.3. Flowchart of LC Science PepArray process. The red square indicates which 

steps were performed by LC Sciences. 
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Figure 1.4. LC Science PepArray™ microfluidic system with fluid channels and reaction 

chambers[44].  

 

Figure 1.5. In situ peptide synthesis on the PepArray surface[44, 49]. 
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HealthTell 330K Peptide Array 

Another photolithographic mask-based patterned synthesis for peptide array 

production was developed and commercialized by HealthTell to fabricate very high 

density peptide arrays. Thus far, there are two types of peptide libraries available for the 

HealthTell arrays, one with ~330,000 peptide features on the array surface and the other 

with ~350,000. The work present in Chapter 4 utilizes the format of 330K peptide array 

to study the fundamental questions about unstructured interactions between 

immunoglobulins and complex, peptide covered surfaces. These 330K HealthTell peptide 

arrays consist of ~330,000 peptide sequences with an average length of ~12 amino acids 

(plus a three amino acid linker, GSG) and a length range from 3 to 17 amino acids. 

Sixteen of the twenty natural amino acids were used in the synthesis (cysteine, 

methionine, isoleucine and threonine were excluded).  The ~330,000 feature array covers 

an area of ~0.5 cm2 and each feature is 8 microns in diameter and contains a different 

peptide sequence.  The peptide sequences were generated using a pseudo-random 

algorithm designed to minimize the number of synthesis steps while sampling 

combinatorial sequence space fairly evenly. The procedure for synthesis of the HealthTell 

peptide arrays is described below. First, Boc-glycine is uniformly attached to the thermal 

oxide-coated silicon wafer surface derivitized with monolayer of amnio silane; second, a 

photoresist with photoacid generator is spun onto the wafer surface and exposed through 

a mask to 365nm light; third, Boc-protected amines are deprotected at desired feature 

locations according to the pattern of the mask used; and last, a coupling solution with an 

amino acid is spun onto the wafer surface and the coupling reaction takes place at the 
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deprotected features. The process is repeated to create the desired peptide sequences at 

each feature (adapted from a procedure from Legutki et al., in press).  

Proteins Used in the Experiments 

A few individual proteins, including β-galactosidase, α-1 antitrypsin and 

immunoglobulins, as well as mixtures of protein and serum have been used in the next 

three chapters of this thesis to profile the interactions between proteins and surface bound 

peptides. An overview of these proteins and their known binding partners is presented 

below.   

β-Galactosidase: Function, Structure and Modulation 

-galactosidase is a well-studied enzyme that catalyzes hydrolysis of lactose and 

other -galactosides into monosaccharides[50]. It is encoded by the LacZ gene, which is 

one of the three adjacent genes in the lac operon model developed by Jacob and 

Monod[51]. E.coli -galactosidase is a tetramer with four identical polypeptide chains, 

each of 1023 amino acids[52]. Each monomer is composed of five domains and domain 3 

has an α/β or ‘TIM’ barrel structure with the active site located at the C-terminal end of 

the barrel (Figure 1.6)[50, 53, 54]. Furthermore, it has been found that certain residues 

near amino-terminal contribute significantly to the function of the active site by 

stabilizing each of the dimers in the overall tetrameric structure[55, 56]. This 

phenomenon, known as α-complementation, is critical to maintain the enzyme activity 

and served as the basis for the common blue/white screening (with X-gal) used in 

cloning[57].  
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Figure 1.6. The backbone structure of the β-galactosidase tetramer[50, 54]. Coloring is 

by domain: complementation peptide, orange; Domain 1, blue; Domain 2, green; Domain 

3, yellow; Domain 4, cyan; Domain 5, red. Lighter and darker shades of a given color are 

used to distinguish the same domain in different subunits. The metal cations in each of 

the four active sites are shown as spheres: Na+, green; Mg2+, blue[50]. 

It has been long known that the enzymatic activity of β-galactosidase can be 

either activated or inhibited through interactions with antibodies[58, 59]. A more recent 

study conducted by Fu et.al showed that the enzymatic activity can also be regulated by 

relatively short peptides[60, 61].  Proteolytic mapping of peptide binding to tetrameric β-

galactosidase showed that the binding region is located at the activating interface[61].  

α1-Antitrypsin: A Serine Protease Inhibitor (Serpin)  

α1- antitrypsin is a plasma glycoprotein that belongs to serpin (serine protease 

inhibitor) superfamily. It is the major physiologic inhibitor of human neutrophil elastase, 



20 

which can break down elastin, a major contributor to the elasticity of the lungs[62]. α1-

antitrypsin deficiency, which causes chronic obstructive pulmonary disease (COPD) and 

chronic liver disease,  is a genetic disorder that is caused by a variety of mutations (i.e. S 

mutant (Glu264Val), Z mutant (Glu342Lys))  in the gene encoding the protein[63]. The 

mature α1-antitripsin protein in human plasma is a 394 amino acids monomer with 

carbohydrate side chains linked to the protein via asparagine[62, 64].  It consists of nine 

α-helices (A–I), three β-pleated sheets (A, B and C), and a mobile reactive center loop, 

which can be cleaved and inserted into the β-pleated sheet A when it interacts with the 

target proteases[65-67] (Figure 1.7). The reactive center loop in the Z mutant of one α1- 

antitrypsin can interact with β-sheet A in a second due to the aberrant opening of the β-

sheet A resulting from the Glu342Lys mutation at the end of the reactive loop and the top 

of the strand 5 of β-sheet A[68, 69]. This can cause an abnormal loop-sheet 

polymerization in α1-antitrypsin and a polymer of α1-antitrypsin will form and 

accumulate in the hepatocyte and lead to a plasma deficiency[70, 71].    
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Figure 1.7. Formation of the α1-antitrypsin-trypsin complex[65]. Red, α1-antitrypsin β-

sheet A; yellow, mobile reactive center loop.  

 A number of synthetic peptides have been found to bind to the mutant form of α1-

antitrypsin to stop the polymerization[69]. This involves the binding of the reactive 

center loop analogue peptides to the loop insertion site in β-sheet A. Polymerization may 

be blocked because the space for insertion is filled with the synthetic peptide. A 6-mer 

reactive loop peptide (FLGAIG) has demonstrated high specificity and affinity to Z α1-

antitrypsin and other similar peptides (i.e. FLAAIG, FLEAAG, FLAA, TTAI etc) were 

later confirmed possessing similar binding propensity[71-73]. Another way to prevent 

polymerization is to fill the cavity, a surface hydrophobic pocket which is present in the 

native α1-antitrypsin but filled when the β-sheet A accepts a reactive loop peptide during 
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polymerization[67, 69]. While the space-filling mutation has demonstrated the possibility 

of blocking polymerization, there is no effective synthetic peptide that mimics this 

effect[66].  

Antibodies: Monoclonal Antibody and Serum 

Antibodies are “Y”shaped protein molecules produced by plasma B-cells to 

identify and bind foreign objects. They are produced when anything recognized as 

foreign is found by the immune system. There are five classes of antibodies: 

Immunoglobulin G (IgG), IgM, IgA, IgD, and IgE. These immunoglobulins, or 

antibodies, all have the basic four-chain antibody structure, which is composed of two 

identical heavy chains and two identical light chains[74]. The antibody structure contains 

two antigen-binding (Fab) regions, which help the binding of antibody to antigen, and 

one Fc region, which mediates interaction with effector molecules[74]. The class of 

antibody is determined by its heavy chain while all classes have the same light chains. 

Light chains are composed of one constant domain and one variable domain, whereas 

heavy chains have either three or four constant domains and one variable domain. The 

variable domains of heavy and light chains form the antigen-binding site, which is 

located at the tip of the Fab regions[75].  

Monoclonal antibodies are commercially available monospecific antibodies that 

are produced by a clonal cell line and that bind to a specific epitope. They are good 

affinity reagents, which are useful in developing tools in therapy, diagnostics and 

purification. It is well known that monoclonal antibodies bind their cognate sequences 

with high affinity and specificity; however, some recent studies have shown that they can 

also have strong and unique interactions with noncognate peptide sequences[20, 76, 77].    
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Serum from blood contains a heterogeneous mixture of many biomolecules 

including a large diversity of different antibodies. The major type of antibody in the 

serum is IgG. Serum is used in many diagnostic tests to detect different type of diseases 

including infectious diseases and cancer. A novel approach, an immunosignature, utilizes 

peptide microarrays to profile the humoral immune response by monitoring the 

interaction between serum and a large array of surface bound peptides[41]. It is clear that 

serum from people with certain diseases present different binding patterns in comparison 

with the binding patterns observed in healthy individuals.  

Project Overview 

In this dissertation, surface-bound peptide microarrays are used as a model to 

explore the range of protein-peptide interactions that take place at chemically complex 

surfaces. A new approach for studying interactions between protein and surface bound 

peptides is described and utilized in the subsequent chapters. The approach is statistical, 

simply looking at a large number of different potential binding partners on surfaces and 

using that to understand the chemistry of binding between proteins and chemically 

complex surfaces. Chapter 2 addresses how proteins behave on the arrays and to what 

extent proteins bind to the short random-sequence peptides made using a subset of 7 

amino acids out of 20 natural amino acids at surfaces. The effect of charge, 

hydrophobicity and length of surface-bound peptides on surface affinity of β-

galactosidase and α1-antitrypsin and the degree of differential binding will be discussed 

in detail. Chapter 3 tests a set of hypotheses of practical importance in the development 

of complex surfaces that interact with individual proteins (β-galactosidase as an example) 

and protein mixtures. These hypotheses center around fundamental questions of to what 
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extent the properties of short peptide sequences can be added together to create longer 

sequences with composite binding function and how one might build such surfaces from 

smaller components of known binding characteristics. Chapter 4 addresses how 

monoclonal antibodies and serum interact with diverse-sequence peptides on the surface 

of high density peptide arrays. How the affinity of monoclonal antibodies and serum to 

surface-bound peptides correlate with the physical properties of such peptides will be 

discussed in detail.  
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CHAPTER 2: SELECTIVE PROTEIN-PEPTIDE INTERACTIONS AT 

SURFACES 

ABSTRACT 

Protein-surface interactions are of critical significance in both biological and man-

made systems. While the term “specific binding” is normally reserved for the description 

of well-structured interactions, it is often the case in biology that there are unstructured 

interactions that greatly favor some protein interactions over others, a necessity in the 

highly crowded environment of the cell. In this study, surface-bound peptide-arrays were 

used as a model to explore the range of protein-surface interactions and to better 

understand the kinds of “nonspecific” or unstructured interactions that take place at 

chemically complex surfaces.  Three samples, β-galactosidase, α1-antitrypsin and a 

mixture of 9 different proteins, were bound to arrays of nearly 5000 different peptides 

with a wide range of hydrophobicity, charge and peptide length. All three protein samples 

show higher binding affinity to positively charged peptides.  While β-galactosidase binds 

poorly to very hydrophobic peptides, either in terms of absolute binding or relative to the 

mixture of proteins, α1-antitrypsin binds with higher affinity to more hydrophobic 

peptides. More surprising is the observation that β-galactosidase affinity for the surface 

does not simply increase with the length of the peptide, as one might expect, even when 

only the best binders are considered.  Instead, its affinity (both absolute and relative to 

the protein mixture) peaks in the 4-9 amino acid residue range and then decreases 

substantially by 12 amino acids. In contrast, α1-antitrypsin increases nearly 

monotonically with peptide length, both in terms of apparent affinity and binding relative 

to other proteins. Of particular significance in a practical sense, it was possible to obtain 
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quite specific binding; the identity of the 100 peptides that showed the best apparent 

affinity for each of the three protein samples overlapped very little.  Thus, using this 

approach it would be straightforward to develop surfaces covered with specific short 

peptide sequences with relatively specific protein interaction profiles. This work has been 

published on Acta Biomaterialia. Wang W, Woodbury NW. Selective protein-peptide 

interactions at surfaces. Acta Biomater 2014;10:761-8.  

INTRODUCTION 

The interaction between proteins and chemically heterogeneous surfaces is 

important in both biological and man-made systems[1]. Cell surfaces are involved in 

myriad activities in which proteins in solution interact with cellular components 

including cell-cell interactions, cell-surface adhesion, protein hormone sensing and 

exchange of nutrients or other small molecules that are carried by proteins.  The need to 

avoid nonspecific binding of proteins to surfaces and other proteins in this environment 

likely limits the total number and surface properties of proteins in the cell[2].  

Interactions between proteins and man-made material surfaces have become increasingly 

important in the development of implants, artificial tissues, and diagnostic assays, as well 

as in the incorporation of protein functions (e.g. enzymes, antibodies) in a variety of 

commercial products and devices[1, 3].  In this regard, some fundamental questions 

remain unanswered about the relationship between the structural nature and complexity 

of molecules on surfaces and their interactions with proteins.  The concept of avidity, 

interactions between multiple closely spaced ligands on a surface and a protein, is not 

well understood in terms of the various kinds of interactions that take place and the 
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interplay between general chemical properties such as charge and hydrophobicity vs. 

structurally dependent interactions. 

Affinity between a surface and a complex biological sample is often thought of in 

terms of specific and nonspecific interactions.  The specific interactions are normally 

described in terms of well-defined, uniform contacts that result in a particular structure 

for the final complex formed.  Non-specific interactions generally do not result in a 

unique structure for the complex, but instead are driven some combination of general 

interactions (e.g., charge, hydrophobicity) and a multiplicity of structurally dependent 

weak interactions between particular groups. However, non-specific interactions are not 

always non-selective or necessarily weak, and they can contribute significantly to the 

overall binding affinity, particularly where complex chemical surfaces are involved. For 

example, the non-specific adhesion of cells even to a relatively homogeneous surface 

such as a self-assembled monolayer can vary significantly with the details of the surface 

and the cells and its magnitude can dominate any specific interactions[4].  In fact in many 

cases the nonspecific interactions make up the bulk of the binding affinity with the 

specific interactions serving largely to limit the orientational entropy of the system.  In 

such cases, the concepts of specific and nonspecific binding are probably better thought 

of as two ends of a more continuous spectrum.  For example, in the interaction between 

an endonuclease and DNA is initially a charge-charge interaction and indeed this is a 

large fraction of the binding force[5].  This interaction allows the endonuclease to stay in 

the correct general orientation relative to the DNA but to diffuse along it without forming 

a specific structure until the site of action is reached [5-7].  The initial interaction is, in 

fact, quite specific for DNA.  It is just not associated with a particular DNA structure 
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(sequence).  Likewise, the general characteristics of a surface can result in very large 

discrimination between binding partners, even though no specific structures are formed.  

A number of different methods have been used to characterize and to alter the 

interaction of biological macromolecules with surfaces.  Metal or nanoparticle patterning 

has been used to create surfaces that differentially bind components of complex 

mixtures[8]. For example, Gilles et al. developed an approach to control cell adhesion 

and guide neurite outgrowth by patterned deposition of gold nanoparticles[9].  Yu et al. 

chemically modified hydrogels with nitrilotriacetic acid to enable protein immobilization 

at selected sites[10]. DNA and peptide microarrays are useful for exploring the diversity 

of interaction with proteins and other macromolecules because they present a set of 

sequences with great chemical complexity that can be precisely controlled. Surface-

bound peptides, in particular, have considerable potential because of the broad chemical 

diversity that can be represented in relatively modest length sequences[8].  Another 

application that utilizes a library of relatively short peptides for discrimination of 

complex mixtures is immunosignaturing[11].  In that case, surface bound peptides are 

exposed to blood, binding to circulating antibodies and providing a profile of the 

antibody repertoire.  This antibody profile is strongly correlated with disease state or 

immunological response to a vaccine [11, 12].  

Here, the nature of nonspecific binding between proteins and surfaces covered 

with particular peptide sequences will be explored.  This will be accomplished by 

systematically studying the binding of a number of different proteins to modest sized 

libraries of short (2-12 amino acid residue) peptides in ordered arrays on surfaces. 

Specifically, the affinity of specific proteins and the relative binding of different proteins 
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(the degree of differential binding) will be monitored as a function of the hydrophobicity, 

charge and length of peptides in the ordered arrays.  While the general role of charge and 

hydrophobicity are relatively intuitive, it is less obvious how changing the length of the 

peptide bound to the surface will affect binding.  First, increased length corresponds to 

increased chemical complexity; the more residues in each peptide, the greater the number 

of possible peptides that can be made.  In the work described below, the choice of 

sequences is purely random and the libraries are too small to expect to create highly 

specific contacts.  Second, longer peptides of random sequence tend to be more nonpolar 

on average.  Third, as length is increased, the total number of possible interactions 

between a specific peptide and a protein increases; in principle, a greater number of 

interaction points between the peptide and protein should result in greater affinity, though 

there are both steric issues and entropy penalties involved.  Finally, the possible number 

of peptide structures increases as the length is increased; this could result in partially 

specific structural pairing between peptide and protein, though again, conformational 

entropy comes into play. 

MATERIALS AND METHODS 

Peptide Microarrays 

The peptide microarrays used were ordered as custom arrays from LC Sciences 

(Houston, TX)[13]. This company fabricates peptide arrays comprised of 30,000 

peptides, up to 12 amino acids in length (below referred to as the ‘variable’ region). The 

array was divided in 6 identical sub-arrays (5000 features on each sub-array) and each 

was bound under same conditions, but with different protein samples. A sub-set of 7 of 
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the 20 natural amino acids {E, L, S, R, Q, W, Y} was used for peptide synthesis.  Using 

such a sub-set of amino acids allows the study of a larger percentage or full sequence 

space for short peptides. These particular residues were chosen because they span the 

hydropathic index[14, 15] and produce a net neutral charge between them, while reducing 

the complexity of the peptide array synthesis by not using the entire set of 20 amino 

acids.  

Each sub-array contains 4876 custom peptides (the rest are control peptides 

provided by the company).  The peptide length was varied from 2 to 12 residues.  All 

possible dipeptides (49), tripeptides (343) and an equal distribution of randomly selected 

tetrapeptides (896), pentapeptides (897), heptapeptides (897), nonapeptides (897) and 

dodecapeptides (896) were included in the library. A GSG tri-peptide linker was added to 

the C terminus of each sequence to maintain a uniform distance between the peptides and 

the array surfaces in addition to the proprietary surface linker[16] used by LC Sciences. 

 

Protein Binding 

 Alexa Fluor®-555 (AF555, Invitrogen) and Alexa Fluor®-647 (AF647, 

Invitrogen) labeled proteins were used for the protein-peptide binding assay. The labeling 

was done using a kit (Invitrogen) and the manufacture’s protocol was followed in the 

protein labeling process. β-galactosidase, α1-antitrypsin and a protein mixture included 

Fetuin, Horseradish peroxidase, Bovine serum albumin, Carbonic anhydrase 

Haptoglobin, Transferrin, Amylase, Pyruvate Kinase and Glucose Oxidase were used in 

the binding assays. Table 2.1 lists the size, pI, accessible solvent surface area, source, 

company and the estimated surface area relative to β-galactosidase for each protein. The 
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concentration of protein used in each case was adjusted to give a constant total surface 

area calculated according to footnote [e] of Table 2.1. Dye/ α1-antitrypsin labeling ratios 

were kept near 1 due to the small size of this protein and the increased possibility of 

dominant dye interactions. β-galactosidase, being a much larger protein is somewhat less 

sensitive to covalent addition of labeled dyes and thus for this protein labeling ratios were 

allowed to go as high as 3. The proteins in the mixture were labeled separately and then 

mixed together. The labeling ratios for each protein in the mixture were kept below 1. 

The final dye/protein ratio in the mixture was 0.5 (unlabeled proteins were added to the 

corresponding labeled proteins whose ratios were over 0.5 before the mixing to control 

the overall fluorescence intensity).  

Table 2.1: Summary of proteins used in the binding assays 

Protein Size 

(KDa) 

pI[a] Accessibl

e surface 

(Å2)[c] 

Accessible 

hydrophobi

c  

(Å2) [d] 

Sourc

e 

Compan

y  

Rel. 

surfac

e 

area[e]  

β-

galactosidase[

17, 18] 

464 4.61 3.00×105 3.49×104 Esche

richia 

coli 

Sigma 

G6008 

1.000 

α1-

antitrypsin[19] 

50-56 5.37[b] 2.34×104 3.20×103 Huma

n 

plasm

a 

Sigma 

A9024 

0.226 

Fetuin (Type 

III)[20] 

48.4 3.3 N/A[c] N/A[c] Fetal 

calf 

serum 

Sigma  

F2379 

0.222 

Horseradish 

peroxidase 

(Type VI)[21, 

22] 

44 7.20 2.76×104 3.07×103 Horse

radish 

Sigma 

P8375 

0.208 

Bovine serum 

albumin[23, 

24] 

66.4 5.3 6.70×104 1.25×104 Bovin

e 

serum 

Sigma 

A7906 

0.274 

Carbonic 

anhydrase(Iso

31 5.9 4.66×104 3.98×103 Bovin

e 

Sigma 

C2522 

0.165 
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zyme II)[25] erythr

ocytes 

Haptoglobin 

(Mixture type) 

~86 6.13[b] 8.60×104 1.31×104 Huma

n 

plasm

a 

EMD4B

ioscienc

es 

372022 

0.325 

Transferrin[26

] 

77 6.90 3.20×104 5.78×103 Huma

n 

blood 

Sigma 

T3309 

0.302 

α-Amylase 

(Type II-

A)[27] 

50 7.00 2.00×104 2.54×103 Bacill

us sp. 

Sigma 

A6380 

0.226 

Pyruvate 

Kinase (Type 

III) 

237  7.60 7.25×104 1.69×104 Rabbi

t 

Muscl

e 

Sigma 

P9136 

0.639 

Glucose 

Oxidase[28, 

29] 

160 

 

4.20 8.10×104 1.07×104 Asper

gillus 

niger 

Sigma 

G7141 

0.492 

[a] pI is the abbreviation for the isoelectric point, which is the pH at which the particular 

protein carries no net electrical charge 

[b] These values were theoretical values calculated based on the peptide sequences 
[c]These values were calculated in PyMol using the corresponding protein crystal 

structure information from PDB database 
[d] Crystal structure information for bovine fetuin is not available in major databases 
[e] The relative surface area was calculated assuming that each protein could be 

considered as a perfect sphere using the equation [(molecular weight of sample 

protein)/(molecular weight of β-galactosidase)]2/3  

 

In order to test directly for effects of the dye on binding, proteins were labeled 

with two different dyes and all experiments were done with both protein samples. AF555 

and AF647 labeled proteins were applied on identical sub-arrays respectively under the 

same experimental conditions. Peptides exhibiting significantly different binding 

behaviors between the two dyes were excluded from further data analysis, except as 

indicated.  

 The actual protein binding assays were performed by LC Sciences (LC Sciences 

both synthesized the arrays and performed the binding experiments). The following 
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procedures and conditions for binding were used.  First, the chips were treated with 

blocking buffer (super block, a proprietary blocking solution, with 0.05% Tween-20 and 

0.05% Triton X-100, pH7.4) overnight to minimize non-specific binding and then washed 

in washing buffer (1×PBS, pH 7.0). Second, the six different protein samples (AF555-β-

galactosidase, AF647-β-galactosidase, AF555-α1-antitrypsin, AF647-α1-antitrypsin, 

AF555-protein mixture and AF647-protein mixture) were applied to 6 sub-arrays 

respectively and incubated for 1 hour in binding buffer (1×PBS, pH7.4) at 25°C. Third, 

the array was washed with washing buffer and imaged using either 635 nm excitation and 

655-695 nm emission filter or 532 nm excitation and 550-600 nm emission filter, 

depending on which dye was used.  Note that blank features on the array, left as a control, 

showed binding levels that were essentially the same as the lowest levels of protein 

binding. 

 Additionally, to verify that the relationships between binding and peptide 

sequence on the LC science arrays were not simply unique to that platform, 14 peptides 

that had been tested on the array were resynthesized by Sigma-Aldrich PepScreen® 

service and bound to the surface of microwell plates.  These peptides covered the full 

range of binding strengths to β-galactosidase.  Binding with AF555 and AF647 labeled β-

galactosidase was repeated and the binding results compared (in terms of the binding 

rank) between the two platforms (Table S2.1).  The order was very similar, implying that 

both the sequences from the two sources were, indeed, the same and the exact nature of 

the surface and attachment is not critical. 
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Data Analysis 

Binding signals were normalized to the median intensity for each respective sub-

array[30]. All subsequent analysis utilized the median-normalized data. For β-

galactosidase and α1-antitrypsin, data from arrays bound with same protein but using 

different dye labels was compared, and peptides with binding values that were more than 

2-fold different between the samples were excluded in further analyses (see Results). 

There were 4876 total peptides in the array, for β-galactosidase 897 were excluded and 

for α1-antitrypsin 1490 were excluded. For the protein mixture, binding signals from 

arrays bound with same mixture but using different dye labels were averaged and the 

mean of the binding signals was used in further analyses. Locally written scripts in either 

Matlab or Bash Shell environment were used to sort the peptides with different lengths 

and to perform most of the statistical studies. An online bioinformatics tool was used to 

generate the Venn Diagram[31].   

RESULTS 

 Two proteins, β-galactosidase and α-1 antitrypsin were incubated with the LC-

sciences peptide arrays, as described in Methods.  The binding of these particular proteins 

was then compared to that of a mixture of 9 other proteins of various sizes and pI values 

(Table 1).  These proteins were chosen to cover a broad range of sizes and isoelectric 

points.  For both β-galactosidase and α-1 antitrypsin, the binding intensities for proteins 

labeled with two different fluorescent dyes (AF555 and AF647, see Methods) were 

compared and peptides that were suspected of binding dye primarily, rather than the 

protein, were removed from further analysis.  The peptide arrays used for this analysis 

consisted of peptides ranging from 2 to 12 amino acids in length of random sequence (the 



41 

sequence of each peptide feature is homogeneous but selected with a random number 

generator) (see Methods for more details).  This array composition makes it possible to 

explore various dimensions of protein interactions with complex surfaces.  Even with 

very modest sized peptide libraries such as this, the dynamic range of the protein 

association with the surface is very high.  For example, using β-galactosidase, the highest 

signals are roughly 60-fold higher than the lowest signals (Table 2.2).  With small 

libraries, it is unlikely that the binding is strongly dependent on rigid structural 

interactions.  Instead, long range interactions (charge) and small numbers of specific 

contacts enabled by the flexibility of the peptide chains are more likely.  In order to 

explore this in more detail, the peptide set and associated binding was parsed in a number 

of ways: total charge, hydrophobicity and length. 

Table 2.2: Peptides-protein binding dynamic range for each protein sample 

Sample 
Average Binding of 

the top 10 peptides 

Average Binding of 

the bottom 10 

peptides 

Fold change[a] 

β-galactosidase 18.54 0.29 63.9 

α1-antitrypsin 2.97 0.50 5.92 

Mixture with 9 

proteins 
4.78 0.45 10.6 

[a] These values represent the fold change between binding of strongest binding peptides 

and weakest binding peptides. The equation used for calculating these values is: (Average 

binding of the top 10 peptides) / (Average binding of the bottom 10 peptides) 

 

Effect of charge and hydrophobicity on surface affinity  

The charge of both a protein and the surface it interacts with will play a major role 

in differential protein binding.  β-galactosidase has a pI of 4.61 and α1-antitrypsin  has a 



42 

pI of 5.37 (Table 2.1), thus both are negatively charged at neutral pH.  In fact most of the 

proteins used in the protein mixture are negatively charged under the binding conditions 

used here.  This is reflected in Figure 2.1 which shows how each of the protein samples 

tested interacts with peptides on the surface as a function of net peptide charge at neutral 

pH.  All of the protein samples show higher affinity to surface features consisting of 

peptides that have more positive charges.  The affect is particularly pronounced for β-

galactosidase where the average binding intensity for positively charged peptides is 6.8 

fold higher than that of negatively charged peptides and 2.9 fold higher than neutral 

peptides.  α1-antitrypsin and the mixture of nine proteins show a considerably less 

pronounced increase (1.5 fold for α1-antitrypsin and 2.5 fold for the protein mixture 

relative to negatively charged peptides, Figure 2.1).  
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Figure 2.1. Average binding intensity as a function of net charge per peptide .  The 

net charge of the peptides at neutral pH varies from -5 to +6. Intensity values shown are 

normalized to the median for each sample.  The error bars shown represent the standard 

error in the mean for peptides with that net charge. 

Charge is not the only physical parameter of the peptides that can strongly 

correlate with binding.  As seen in Figure 2.2, the overall hydrophobicity of the peptide 

on each feature in the array also substantially affects the affinity of proteins for that 
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feature.  In this case, however, the effects are different for the three protein samples. The 

hydrophobicity of each peptide was estimated from the sum of the hydrophobicity values 

for each amino acid [32].  Based on this, the peptides were sorted into four groups (very 

hydrophobic, hydrophobic, neutral and hydrophilic) according to their hydrophobicity 

value.  At the highest hydrophobicity, β-galactosidase binding dropped by 2/3rds of its 

binding value for more polar peptides (Figure 2.2).   In contrast, α1-antitrypsin binding 

increases by nearly 1/3rd as hydrophobicity increases. The mixture of nine proteins gives 

intermediate results, with a small increase in average binding for peptides with higher 

hydrophobicity values (about 15%).  
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Figure 2.2. Binding intensity as a function of peptide hydrophobicity. The binding 

intensities from peptides of each hydrophobicity group were averaged together.  There 

were four hydrophobicity groups. Group 1 ( hydrophilic): hydrophobicity < -10; group 2 
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(neutral): hydrophobicity 20 to -10; group 3 (hydrophobic): hydrophobicity 20 to 70; 

group 4 (very hydrophobic ) hydrophobicity > 70. Intensity values shown are normalized 

to the global median.  The error bars shown represent the standard error in the mean for 

that peptide hydrophobicity group. 

Effect of peptide length on surface affinity  

Features in the array with longer peptides have potentially more complex 

chemical properties, by virtue of the fact that more chemically different amino acids are 

present and the number of possible sequences becomes exponentially larger with peptide 

length.  One might think that binding would simple become stronger with length due to 

the larger number of possible interactions, however, previous work from the authors’ 

laboratory suggested that the dependence of binding on peptide length was more complex 

than this[14], at least in some cases, prompting a more detailed study.  The average 

binding intensity as a function of length for the three protein samples is shown in 

Figure2.3.  For β-galactosidase, there appear to be two observable maxima, though the 

statistical validity is borderline.  In any case, there is a ~2-fold increase in average 

binding observed as the peptide length is increased from 2 to 4 amino acids, but then the 

average binding signal seems to peak ~4 amino acids.   As the length is increased beyond 

~7 amino acids, the binding drops so that by 12 amino acids the average binding is 

similar to the binding to amino acid dipeptides.  The situation for α1-antitrypsin is 

different.  In contrast to β-galactosidase, the average binding affinity of α1-antitrypsin to 

the peptide array increases monotonically, or nearly so, with peptide length. The protein 

mixture shows essentially no significant length dependence of binding besides a small 

apparent decrease in binding signal at a peptide length of 7 amino acids. 
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Figure 2.3. Average binding affinity versus length for each protein sample. The 

binding intensities from peptides of each length were averaged together.  All values are 

normalized to the average binding intensity of the corresponding dimer peptide for that 

sample.  The error bars shown represent the standard error of the mean for that peptide 

length. 

More can be learned from looking at the distributions of peptide binding as a 

function of length.  This is shown in Figure 2.4 for β-galactosidase.  The binding 

distributions reflect the population of peptides that are bound to the labeled proteins at 

each length (each length is normalized so that the intensities shown for each length of 

peptide are given as a fraction of the total fluorescence).  As might be expected, most 
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peptides of all lengths show relatively weak binding to β-galactosidase, and the number 

of peptides that bind at successively higher intensities falls off rapidly.  There are a small 

number of peptides however that bind with quite high intensity.  Similar distributions are 

seen for both α1-antitrypsin and the protein mixture (see supplementary material).   

 

Figure 2.4: Histogram of β-galactosidase binding distribution as a function of 

peptide length. Fluorescence intensities shown are normalized to the total fluorescence 

intensity for the peptides of a particular length. 
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This brings up the question of whether the high binding signals have the same 

length dependence as does the average binding shown in Figure 2.3.  One might think 

that the best binders would always be the longest ones, as these would simply have more 

to offer in terms of possible interactions.  When the average signal from only the top 30 

binding peptides at each length is plotted, the length dependence is generally similar to 

that seen for the average of all peptides in Figure 2.3 (Figure S2.3).  However, when just 

the top binders are considered, binding for β-galactosidase does not drop as dramatically 

for longer peptides as it does when all peptide features are averaged.  In addition, the 

peak of the binding shifts to longer peptide lengths, from of 7 to 9 amino acids.  Finally, 

in the case of the protein mixture, the best binders are clearly the longer peptides, 

whereas the average of all peptides showed little length dependence.  Thus, in general, it 

appears that the best binders are biased towards the longer peptides. 

The relationship between length, charge and hydrophobicity 

Peptide length is not entirely independent of charge and hydrophobicity; for 

randomly chosen sequences, longer peptides tend to be more hydrophobic and are 

statistically more likely to have more balanced charge characteristics.  The relationship 

between binding, charge and length is shown for β-galactosidase in Figure 2.5.  Here the 

length dependence of binding is plotted for positive, negative and neutral peptides.  

Negative peptides show less dependence on length (though still bind statistically better 

for mid-length than long peptides) while positive, and to a lesser extent neutral, peptides 

show a strong length dependence.  This is particularly evident with regard to the drop in 

binding for longer, positive peptides; in this case, the binding to 12-mers is 2-fold lower 

than that to peptides that are 2-4 amino acids long.  Very similar studies were performed 
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on α1-antitrypsin and the protein mixture (see supplementary material). In those two 

cases, charge had little effect on the length dependence. 

 

Figure 2.5.  β-galactosidase average binding intensity versus peptide length for each 

charge group. The binding intensities from peptides of a particular net charge and length 

were averaged together.  In this study, there were 1387 positively charged peptides (black 

squares), 1286 neutral peptides (red circles) and 1305 negatively charged peptides (green 

triangles). The intensity values shown are normalized to the median for each charge 

group. The error bars shown represent the standard error of the mean for that peptide 

length and net charge. 
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One might think that the observed drop in β-galactosidase binding at longer 

lengths may arise from the tendency of longer peptides to be more nonpolar, given the 

fact that more hydrophobic peptides tend to bind β-galactosidase more weakly (Figure 

2.2).  However, when the peptides were separated into hydrophilic, neutral, hydrophobic 

and very hydrophobic, all four classes showed lower binding at long lengths (Figure 

S2.6).  The only significant difference was the behavior at shorter lengths, where the 

hydrophilic short peptides bound more strongly than the others.  

The average binding intensity for α1-antitrypsin and protein mixture versus 

peptide length for four hydrophobicity groups was also studied but no significant 

difference in the overall binding trends was observed. (Figures not shown). 

Discrimination between proteins 

To what extent does a modest library of different peptides provide differential 

binding of one protein vs. another?  Figure 2.6 shows a Venn diagram of the top 100 

peptides binding to the three samples tested.  There is generally very little overlap in 

which peptides bind best to each sample.  By random chance, one would have expected 

approximately 2 peptides to be common between each sample.  What one sees is that α1-

antitrypsin shows about this expected overlap with the protein mixture, but both α1-

antitrypsin and the protein mixture show a somewhat greater than random overlap with β-

galactosidase.  This is presumably because of the general propensity for positively 

charged peptides, particularly in the case of β-galactosidase, limiting the set of peptides 

from which the top 100 were selected.  Still, even among highly positive peptides, there 

is an ability to distinguish easily between bindings to the three different protein samples. 
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Figure 2.6. Venn diagram[31] of the highest affinity 100 peptides that bind to β-

galactosidase, α1-antitrypsin and the mix of 9 proteins. There were 4876 total peptides 

in the array, but, 377 were excluded due to obvious dye effects on binding to both β-

galactosidase and α1-antitrypsin.  

Another way to consider the level of specificity of binding is to compare the way 

binding depends on charge, hydrophobicity and length in the two specific proteins β-

galactosidase and α1-antitrypsin) relative to the mixture of 9 proteins.  One can see from 

Figure 2.3, that the mixture shows little length dependence on average binding, 

suggesting that the forces that result in changes in affinity as a function of length also 
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discriminate different proteins from each other.  More enlightening are the curves 

depicting the ratio between binding of each of the two individual proteins (β-

galactosidase and α1-antitrypsin) and the mixture as a function of charge and 

hydrophobicity.  As a function of charge (Figure 2.7), the specificity ratio for β-

galactosidase increases in essentially the same way as does the affinity in Fig. 2.1; larger 

positive charge results in more binding of β-galactosidase compared to a mixture of nine 

proteins.  However, for α1-antitrypsin, while binding overall increases somewhat for 

positively charged peptides, it does so less than the aggregate of the other nine proteins.  

Thus positively charged peptides in general are less selective for α1-antitrypsin than are 

negatively charged peptides. 
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Figure 2.7.  Relative binding discrimination as a function of net charge per peptide. 

The relative average binding discrimination (the ratio of average binding of β-

galactosidase or α1-antitrypsin  the average binding of the mixture of 9 proteins) is 

shown for peptides of each net charge group. The values are normalized to the global 

median before the ratio calculation. The error bars shown represent standard errors of the 

mean for each value. 
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Perhaps not surprisingly, given the charge effects described above and the 

hydrophobicity results of Figure 2, β-galactosidase binds most selectively to hydrophillic 

peptides while α1-antitrypsin binds most selectively to hydrophobic peptides (Figure S7).   

DISCUSSION 

The interaction of proteins with surfaces, and particularly with chemically 

complex surfaces such as the ones described here, is of considerable interest both in 

terms of what it potentially tells us about protein-surface interactions in cells and in terms 

of its potential for utility in developing surfaces with selective binding or nonbinding 

properties for practical use.  In this context, there are several important observations 

about the dependence of protein/surface interactions on the properties of peptides 

tethered to a surface.   

One observation is that even short peptides can have both strong and diverse 

interactions with proteins.  Some of the strongest binding peptides are comprised of just a 

few amino acids (Table 2.2, Figure 2.3) and dynamic range among short peptides was 

almost as great as among long ones.  The binding of short peptides is strongly dictated by 

charge, as evidenced by the fact that highly positively charged 2-4 amino acid peptides 

show some of the strongest binding, particularly for β-galactosidase (Figure 2.5).   

More importantly, the peptides that interact with one protein are distinct from 

those that interact with others. The Venn diagram of Figure 6 shows that the overlap 

between the peptide features that bind the best to the three samples is minimal. The 

somewhat larger degree of overlap between β-galactosidase and the protein mixture 

arises because β-galactosidase is a large tetrameric protein with low pI (around 4.7) and 

therefore binds strongly to most positively charged peptides (all of the peptides that are in 
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common between β-galactosidase and the protein mixture are positive charged with two 

or more Arginine residues). Not only are the peptides that bind well different for different 

proteins, but their dependence on peptide charge, hydrophobicity and length is also 

unique. β-galactosidase is selectively favored by highly charged peptides between 4 and 9 

amino acids in length when compared to the binding of a mixture of 9 proteins and 

disfavored by long, hydrophobic peptides; α1-antitrypsin behaves almost in the opposite 

fashion, preferring the longer, more hydrophobic peptides. 

Interestingly, the isolectric point and the fraction of the surface area consisting of 

solvent accessible hydrophobic amino acid side chains (Table 2.1) are not that different 

between β-galactosidase and α1-antitrypsin.  Both are strongly negative proteins at the 

pH tested and both have between 11 and 14% of the surface area composed of 

hydrophobic amino acids.  Yet, in terms of their interactions with the surface, they 

behave very differently.  This may have to do simply with the size difference; because of 

its larger size, there is more opportunity for weak, long-range interactions, like columbic 

interactions, to have an effect, whereas for a smaller protein, the shorter range 

interactions between hydrophobic regions excluding water may be more important. 

With the growing commercial availability of both peptide arrays and the ability to 

create libraries of peptides on a wide variety of surfaces, it has become practical and cost 

effective to empirically tune the chemical properties of a surface by selecting appropriate 

molecules from surface-based molecular libraries of peptides or related heteropolymers.  

The number of companies that will generate peptide libraries on surfaces either via 

synthesis and printing or in situ synthesis is growing.   While selection of peptides from 

small libraries is unlikely to provide antibody-level affinity and specificity, even very 
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simple sequences can provide quite selective chemical properties and interactions among 

multiple components, opening the possibility for using this approach to very simply and 

quickly create surfaces with specific properties relative to their interactions with complex 

mixtures such as blood as well as spatially patterned interactions.  These experiments 

were designed to be interpreted at a high level, without granular dissection of amino acid 

sequences, but rather at the level of general peptide characteristics.  Protein:peptide 

interactions can be mapped and described with a small number of peptides because the 

design of those peptides can be optimized to take advantage of this interaction level, 

rather than attempting to create peptides requiring a highly granular level of detail and 

sequence-specific analyses.  Additionally, because these are entirely synthetic systems, a 

wide variety of non-natural chemical variations can be easily incorporated, providing 

surfaces with both a wider diversity of chemical characteristics as well as resistance to 

biological degradation, adding flexibility to a measurement system that is well-suited for 

generalizing binding interactions. 
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SUPPORTING INFORMATION 

Distribution of peptide binding as a function of length 

The peptide binding distribution as a function of length for α1-antitrpsin and the 

protein mixture are shown in figures S2.1 and figure S2.2. The distributions reflect the 

relative population of peptides that are bound to the labeled proteins at each length. As 

was the case for β-galactosidase, most peptides of all lengths show relatively weak 

binding but there are a small number that bind with high intensity.  

 
Figure S2.1 Three dimensional histogram of α1-antitrpsin binding distribution as a 

function of peptide length.   Details as in Figure 4. 
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Figure S2.2 Three dimensional histogram of protein mixture binding distribution as 

a function of peptide length.  Details as in Figure 2.4. 
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Length dependence for peptide with high binding signals 

Figure S2.3 shows the average signal from only the top 30 binding peptides at 

each length, the length dependence is generally similar to that seen for the average of all 

peptides in Figure 2.3.   

 

Figure S2.3. The average fluorescence intensity from the 30 peptides with the 

greatest affinity for a particular sample as a function of peptide length.  The values 

shown are averages of the median-normalized binding intensity of peptides of a particular 

length.  The error bars shown are calculated as standard error of the mean. 

The relationship between length and charge 

The relationship between peptide length and charge was studied by plotting the 

average binding intensity versus peptide length for each charge group. Figure S2.4 and 

Figure S2.5 show the length dependence of binding for positive, negative and neutral 

peptides for α1-antitrypsin and the protein mixture, respectively. The binding curves for 

both α1-antitrypsin and the protein mixture do not depend strongly on charge.  
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Figure S2.4 α1-antitrypsin average binding intensity versus peptide length for each 

charge group. Details are as in Figure 5 except that there were 1183 positively charged 

peptides (black squares), 1231 neutral peptides (red circles) and 971 negatively charged 

peptides (green triangles).  The error bars shown represent the standard error in the mean 

for that peptide length. 
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Figure S2.5 Protein mixture average binding intensity versus peptide length for each 

charge group. Details as in Figure 5, except that there were 1646 positively charged 

peptides (blue squares), 1539 neutral peptides (cyan circles) and 1690 negatively charged 

peptides (magenta triangles).   The error bars shown represent the standard error in the 

mean for that peptide length. 
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The relationship between length and hydrophobicity 

The average binding intensity for β-galactosidase versus peptide length for four 

hydrophobicity groups is shown in Figure S2.6.  All four groups show lower binding 

intensities at long lengths.  

 
Figure S2.6 β-galactosidase average binding intensity versus peptide length for each 

hydrophobicity group. The binding intensities from peptides of each length were 

averaged together.  There were 3014 peptides in the very hydrophobic group, 476 

peptides in the hydrophobic group, 192 peptides in the neutral group and 296 peptides in 

the hydrophilic group.  Intensity values shown are normalized to the global median for β-
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galactosidase. The error bars shown represent the standard error in the mean for that 

peptide length. 

Relative binding discrimination as a function of peptide hydrophobicity 

Figure S2.7 shows the ratio between the binding of each of the two individual 

proteins (β-galactosidase and α1-antitrypsin) and the mixture as a function of 

hydrophobicity. The results suggest that β-galactosidase binds most selectively to 

hydrophillic peptides while α1-antitrypsin binds most selectively to hydrophobic 

peptides. 
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Figure S2.7. Relative binding discrimination as a function of peptide 

hydrophobicity. The relative average binding discrimination (see Fig. 2.7) between 

peptides of each hydrophobicity group (defined in Fig. 2.2) are shown for β-galactosidase 

and α1-antitrypsin. The error bars represent standard errors of the mean for each value. 

 

Comparing β-galactosidase binding on two different peptide-conjugated surfaces

 Prior to the protein binding experiment on the 30K LC Sciences array, similar 

binding experiments were performed on the same type array to both confirm that the 

sequences on the LC Science arrays were as advertised and that the nature of the binding 

surface itself does not dominate the results. To accomplish this, 14 peptides were selected 
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from an LC Sciences array, synthesized and purified.  These were bound to microwell 

plates, protein was incubated with each peptide and the level of protein bound was 

measured on a SpectraMax M5 96 well plate reader (Molecular Device, Sunnyvale, CA) 

using a slightly modified version of a procedure previously published[33]. First, 30 µL of 

SMCC solution (10mM in 1× PBS buffer, pH 7.4)  was added into each aminated 

microwell and incubated for one hour at room temperature to activate the surface. The 

microwell plate was briefly washed with pure water three times to get rid of extra SMCC. 

Second, 30 µL peptide solution (300 µM in 1× PBS buffer, 1 mM TCEP, pH 7.4) was 

added to the appropriate SMCC-activated microwells. The reaction was incubated for 4 

hours at room temperature, in the dark to allow the peptide to conjugate to the surface. 

After the conjugation reaction was complete, the microwells were washed for 5 minutes 

in 1× TBST, three times, followed by three washes in water to remove free peptides. 

Third, 30 µL of biotin-labeled β-galactosidase (10nM in 10 mM phosphate buffer with 

0.05% Tween 20 (v/v%), pH 7.4) was then added to corresponding wells and incubated 

for two hours at room temperature. The microwells were then washed for 5 minutes in 1× 

TBST, three times, followed by three washes in phosphate. Finally, β-galactosidase 

binding level was measured using an enzyme linked immunosorbant assay (ELISA).  30 

µL of Alkaline phosphatase-conjugated strepavidin solution (0.4 mg/ml diluted at 1 1000 

in 1× PBS, 0.05% (v/v) Tween 20) was added to the biotin-β-galactosidase-bound wells 

and incubated for one hour at room temperature. The streptavidin solution was then 

removed and the plate was washed three times with TBST buffer and three times with 

TBS buffer. Then, 200 µL of 1 mM PNPP was added to each well. The alkaline 

phosphatase activity was subsequently measured by reading the absorbance increase at 
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405 nm on the M5 plate reader. The β-galactosidase binding level was determined from 

the activity of alkaline phosphatase-conjugated strepavidin bound to the wells. 

Table S2.1 shows the rank of protein binding level to each selected peptide 

sequence. Although the rank order varies somewhat, the stronger binders stay strong and 

the weaker binders stay weak on both binding platforms. This confirms that the measured 

binding signals reflect the binding levels between β-galactosidase and the surface-bound 

peptides, rather than the surface itself.  

Table S2.1: The rank of β-galactosidase binding level to each selected peptide 

sequence 

Sequence 
Rank in LC Science 

platform 
Rank in microwell platform 

RYYSSRLRYGSG 1 1 

SRYYGSG 2 4 

YRSRYRQQQGSG 3 5 

QRYYGSG 4 3 

YRYYSGSG 5 2 

WRYYQRSQYGSG 6 7 

QRYQRSRSYGSG 7 8 

RQYSGSG 8 6 

YQWRRGSG 9 9 

RLERSRQERGSG 10 11 

RRQEGSG 11 10 

EQRYREEREGSG 12 12 

QLSEESELLGSG 13 14 

RWESGSG 14 13 
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CHAPTER 3: UNSTRUCTURED INTERACTIONS BETWEEN PEPTIDES AND 

PROTEINS: EXPLORING THE ROLE OF SEQUENCE MOTIFS IN AFFINITY 

AND SPECIFICITY 

ABSTRACT 

Unstructured interactions between proteins and other molecules or surfaces are 

often described as nonspecific, and have received relatively little attention in terms of 

their role in biology. However, despite their lack of a specific binding structure, these 

unstructured interactions can in fact be very selective. The lack of a specific structure for 

these interactions makes them more difficult to study in a chemically meaningful way, 

but one approach is statistical, simply looking at a large number of different ligands and 

using that to understand the chemistry of binding. Surface-bound peptide arrays are 

useful in this regard, and have been used as a model previously for this purpose (Wang et 

al., Acta Biomater. 2014;10:761-8).  In that study, the binding of several proteins, 

including β-galactosidase, to all possible di-peptides, tri-peptides and tetra-peptides 

(using 7 selected amino acids) was performed and analyzed in terms of the charge 

characteristics, hydrophobicity, etc. of the binding interaction. The current work builds 

upon that study by starting with a representative subset of the tetrapeptides characterized 

previously and either extending them by adding all possible combinations of one, two and 

three amino acids, or by concatenating 57 of the previously characterized tetrapeptides to 

each other in all possible combinations (including order).  The extended and concatenated 

libraries were analyzed by binding either labeled β-galactosidase to them or by binding a 

mixture of ten different labeled proteins of various sizes, hydrophobicities and charge 

characteristics to the peptide arrays.  By comparing the binding signals from the 
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tetrapeptides or amino acid extensions alone to the binding signals from the complete 

extended or concatenated sequences, it was possible to evaluate the extent to which 

affinity and specificity of the whole sequence depends on the subsequences that make it 

up.  The conclusion is that while joining two component sequences together can either 

greatly increase or decrease overall binding and specificity (relative to the component 

sequences alone), the contribution to the binding affinity and specificity of the individual 

binding components is strongly dependent on their position in the peptide; component 

sequences that bind strongly at the C-terminus of the peptide do not necessarily add 

substantially to binding and specificity when placed at the N-terminus. This work has 

been submitted to Acta Biomaterialia and is under review.  

INTRODUCTION 

When one thinks about the kinds of interactions proteins have in biological 

systems, generally what comes to mind are specific interactions: antibody-antigen 

binding, receptor-ligand binding, enzyme substrate binding, etc. However, given the 

extraordinarily crowded environment of the cell, the vast majority of the encounters that 

proteins have with each other or with the boundaries of the compartments that surround 

them are nonspecific.  Here nonspecific interactions might also be referred to as 

unstructured interactions, interactions that do not involve the formation of a stable 

complex that has a homogeneous structure. Most biological processes comprise large, 

intricate interaction networks which include both specific and nonspecific interactions[1, 

2] and some of these processes cannot function properly without the participation of 

nonspecific interactions. For example, nonspecific (unstructured) interactions between 

proteins (or enzymes) and the nucleic acids are important determinants of biological 
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function[3] . The initial, unstructured interactions of proteins with DNA or RNA can help 

to facilitate binding to specific sites by reducing the dimensionality of diffusion in DNA 

replication and DNA modification, by forming distorted binding geometries to activate 

transcription processes, or even by more indirect regulation of gene expression [4][5][6].  

While most of these interactions do not involve the initial formation of specific 

structures, they can in fact be both quite strong and quite selective in terms of biological 

function.  

Other examples of biological processes that emphasize the nature of unstructured 

interactions include proteins selectively NOT adsorbing to other macromolecules in 

crowded cellular environments[7-9] and Phosphatidylinositol transfer proteins (PITPs) 

localizing to the trans-Golgi network by both specific and nonspecific membrane-binding 

components[10].  Even the transfer of substrates between enzymes can utilize 

unstructured interactions to keep the local concentration of product/substrate high and 

facilitate transfer [11]. Indeed, protein interactions in biology almost certainly represent a 

continuum between structurally defined interactions with long residence times and 

transient unstructured interactions.  

Of particular significance, both to our understanding of fundamental biology and 

to practical application, are nonspecific or unstructured interactions between proteins and 

complex surfaces.  Though ubiquitous, these interactions are difficult to characterize for 

the very reason that they lack specific structures.  Further, the interactions, often involve 

a protein and multiple molecules or parts of molecules on a surface.  This can be quite 

different from a situation where one protein is interacting with one ligand; it is more one 

surface interacting with another. Though poorly defined structurally, these types of 
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interactions are clearly selective. Nature uses selective, unstructured interactions between 

protein surfaces and complex surfaces in their surroundings to its advantage and 

mimicking that kind of selectivity is a key aspect of developing biomaterials or 

biosensors with surfaces that avoid background binding and interference, but facilitate 

selected interactions[7, 8].  

Biological surfaces are very complex and clearly have been tuned to encourage 

certain types of interactions, both structured and unstructured, in particular places.  Thus 

far, the design and fabrication of artificial surfaces that interact with proteins has not 

taken full advantage of this kind of specific chemical tuning of interactions, particularly 

in a position dependent way. Previously, this laboratory has investigated the nature of 

nonspecific or unstructured binding between proteins and surfaces covered with 

particular peptide sequences by exposing in situ synthesized peptide arrays to protein 

solutions. Such arrays provide effective tools for characterizing the interaction of 

biological macromolecules with surfaces because they present a set of sequences with 

great chemical complexity that can be precisely controlled. In that study, two individual 

proteins, β-galactosidase and α1-antitrypsin, as well as a mixture of 9 different proteins, 

were bound to arrays of nearly 5000 different short peptides with a wide range of charge 

characteristics, hydrophobicities and peptide lengths[12].  Interestingly, even very short 

sequences (tripeptides, tetrapeptides) covering surfaces discriminate strongly between 

different proteins or between individual proteins and mixtures of proteins.   While the 

general charge and hydrophobicity of the peptides are certainly important factors, more 

subtle aspects of the sequence are also important in driving the relative ability to bind one 

protein over another. From a practical point of view, the work demonstrated that it was 
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possible to simply and efficiently select short peptide sequences, directly on a surface, 

that dictated whether a particular protein would bind or not.   

The fact that even short surface-bound peptides can have both strong and selective 

interactions with proteins is important from a practical point of view; short peptides are 

relatively easy and inexpensive to use for surface modification.  Indeed, it is not 

unreasonable, given the size of peptide arrays now available, to perform essentially 

complete searches of tri-peptide and tetra-peptide and even penta-peptide sequence 

spaces to find the desired surface binding characteristics for the specific proteins, 

mixtures of proteins and/or conditions of interest.  This brings up the question of to what 

extent the properties of short peptide sequences can be added together, creating longer 

sequences with composite binding function. For example, if one stacks two tetra-peptides 

that both bind a particular protein selectively, does the affinity and selectivity increase 

accordingly? Similarly, if one builds a new peptide library on top of a short peptide 

sequence with known binding characteristics, does one find that the same peptide 

sequences that work well at the surface in enhancing interaction also serves the same 

purpose at the N-terminus of a nascent peptide chain? Here, a series of tetra-peptide 

motifs, identified in the previous work cited above, and known to bind β-galactosidase, 

will be examined as individual motifs, in combination with each other, and after 

extension with a library of additional sequences.   

It is important to note that the goal of the work described here is quite different 

from a study in which one is selecting a strong-binding ligand from a large library of 

possible peptides.  The goal is instead to understand how modifying surfaces with a 
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relatively dense attachment of peptide sequences changes its affinity for proteins and 

protein mixtures, and how this depends on the details of the peptide sequences.   

MATERIALS AND METHODS 

Peptide microarray fabrication 

The peptide microarrays used here were fabricated by LC Sciences (Houston, TX) 

using PepArray™ technology. The technology is developed based on proprietary 

µParaflo® microfluidics technology, which allows direct synthesis of peptides on a high 

density microfluidic chip (4000 features in a ~1.5cm2 area) as features in specific 

locations on the chip using a photogenerated acid (PGA) to deprotect the amines of 

nascent peptides and conventional t-boc solid phase peptide synthesis [13, 14]. The chip 

is actually an enclosed microfluidic system, which contains fluid distribution channels 

and picoliter scale reaction chambers with physical isolation from each other[13]. Each 

chamber contains one specific peptide sequence. The in-situ peptide synthesis consists of 

the following steps: (1) derivatization of the surface with a protected NH2-linker, 

resulting in a surface density of less than 1pmol per 1mm2 area; (2) applying a solution of 

the PGA precursor in dichloromethane; (3) deprotecting the protected amine in the 

desired reaction chamber using digital photolithography, which allows programmable 

light activation of chemical reactions; (4) coupling the amino acid, capping any unreacted 

linkers and deprotecting the side chain using standard peptide synthesis procedures [14-

17].     
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Peptide libraries synthesized on peptide array surfaces 

Two different peptide libraries were designed and synthesized on the arrays to 

study the relationship between sequence position within a peptide and binding affinity for 

β-galactosidase (see Results). The same set of 7 amino acids {E, L, S, R, Q, W, Y} as in 

the previous studies was used to synthesis all peptides [12, 18, 19]. Each peptide library 

contains 3918 custom-made peptides (including test sequences and control sequences), 

up to 8 amino acids in length, and 82 additional control spots (including blank and LC 

Science internal controls) provided by the company. Two identical arrays were made for 

each peptide library and each was bound under the same binding condition, but with 

samples labeled with different dyes (see below). A GSG tri-peptide linker was added to 

the C terminus of each sequence to maintain a uniform linkage between the peptides and 

the array surfaces in addition to the proprietary surface linker (20-30nm in length) used 

by LC Sciences. 

The first set of peptide arrays (“extension arrays”) included peptide sequences 

with the following motifs: “(N’) X abcd GSG (C’)”; “(N’) XX abcd GSG(C’)”; “(N’) 

XXX abcd GSG(C’)”. The C-terminal “abcd GSG” sequence was one of 8 sequences 

selected from a peptide library that included all possible variations of the tetrapeptide 

sequence “abcd” created in a previous study using the same sub-set of 7 amino acids 

specified above[12].  The sequences used are given in Table 3.1.  For both the previous 

array and the arrays described here, the peptide sequences are attached to the surface via 

the C-terminal glycine. These selected tetrapeptides (actually a selected tetrapeptide plus 

the GSG linker) were chosen so that between them they cover a range of affinities to β-

galactosidase.  The N-terminal “X, XX and XXX” segments constitute all possible 
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sequence combinations with one amino acid (7 combinations), two amino acids (49 

combinations) and three amino acids (343 combinations), using the 7 different amino 

acids specified above. All possible combinations of the eight different “abcd” tetrapeptide 

sequences and the “X, XX, XXX” N-terminal sequences were synthesized in the same 

arrays. In addition, all of the one amino acid, two amino acid and three amino acid N 

terminal extensions themselves were synthesized directly on a GSG linker (e.g., “(N’) 

XXX GSG (C’)”) as were the eight base tetrapeptide sequences without further extention 

(“(N’) abcd GSG (C’)”). The base tetrapeptide sequences were synthesized with 10 

replicates. The library also contains 319 peptides randomly selected from previous arrays 

to monitor the chip-to-chip variation.  

The second set of peptide arrays (“concatenation arrays”) included peptide 

sequences with the motif: “(N’) xxxx yyyy GSG (C’)”.  Both of the “xxxx” and “yyyy” 

were sequences chosen from 57 tetrapeptides again selected from the previous study of 

all tetrapeptide sequences.  The 57 sequences used in this study were chosen by 

performing ‘K-mean’ clustering of the binding data from all tetrapeptide sequences into 6 

groups depending on the level of apparent affinity and relative specificity to β-

galactosidase, and then selecting sequences that covered all 6 groups. The sequences of 

the peptides that make up the arrays in the second set consist all possible combinations of 

two of the 57 tetrapeptide peptide sequences, spliced together in the motif described 

above. The individual 57 tetrapeptides used in this study were also included on the array 

as controls in the form “(N’) xxxx GSG (C’)”. In addition, the library contained 669 

peptides randomly selected from previous arrays to monitor the chip-to-chip variation 

and normalization. 
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Protein binding 

 Alexa Fluor®-555 and Alexa Fluor®-647 (AF555 and AF647, Invitrogen/Life 

Technologies) labeled proteins were used for the protein binding assays. The labeling 

process followed the standard protocol provided by the manufacturer for the dye 

(Invitrogen/Life Technologies). Proteins used in the experiments here were the same as 

the proteins used in previous studies with the exception of α1-antitrypsin, which was 

added to the protein mixture instead of being tested as an individual protein [12]. (Note 

that while α1-antitrypsin is known to bind its reactive center loop (FLGAIG) peptide [20-

23], and one might be concerned this specific binding would bias the peptide binding of 

the protein mixture, previous work from this lab [12] has not shown such a peptide bias 

in these arrays and in fact the dependence of binding on charge and hydrophobicity of 

this protein is very similar to the overall protein mixture). Two different binding 

concentrations, 10nM and 100nM, were tested for β-galactosidase (from E.coli). The 

concentration for each protein in the mixture was then determined using the same 

approach as in previous experiments [12]. The dye/protein labeling ratio for each protein 

was also maintained as previously. The fluorescent signal from the bound labeled 

proteins was measured and used as an indicator for peptide protein binding activity 

(referred to as the binding signal below). The concept of dye-swapping (labeling with two 

dyes and testing to see if binding is driven by the specific dye or by the protein) was 

employed as previously [12]. Protein samples separately labeled with AF555 and AF647 

were applied on identical arrays respectively under the same experimental conditions. 

Very similar results were obtained regardless of which dye was used (e.g., Figures S3, 

S4, S5 and S6).  For the extension study, binding signals from the array with AF555 
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labeled β-galactosidase were used, due to a problem with one of the AF647 arrays, while 

for the concatenation studies, binding signals from proteins with the two dye labels were 

averaged.  

The actual protein binding assays were performed by LC sciences using the 

following procedures and conditions (procedures and conditions are from LC Sciences 

final customer reports). First, the chips were blocked in the blocking buffer (super block, 

a proprietary blocking solution, with 0.05% Tween-20 and 0.05% Triton X-100, pH7.0), 

overnight at 4ºC, to minimize non-specific binding and then washed in washing buffer 

(1×PBS, pH 7.0). Second, two different protein samples (AF555-β-galactosidase and 

AF647-β-galactosidase,) were bound to two identical arrays respectively for 1 hour in 

binding buffer (1×PBS, pH7.4) at 25°C, then washed with washing buffer. The array was 

then imaged using either 635 nm excitation and a 655-695 nm emission filter or 532 nm 

excitation and a 550-600 nm emission filter, depending on the dye used. The arrays were 

adapted to fit into standard Molecular Devices GenePix scanner and the PMT voltage 

level was adjusted based on a pre-scan image. After recording the first image, the chip 

surface was stripped with stripping buffer cocktail (pH7.0) at 25°C for 2 hours to remove 

surface-bound proteins, and then washed in washing buffer. The chips were imaged again 

at the same wavelength to confirm the stripping. Fourth, the AF555-protein mixture was 

bound to the stripped array that had AF647-β-galactosidase and the AF647-protein 

mixture was bound to the stripped arrays that had AF555-β-galactosidase for 1 hour in 

binding buffer at 25°C, then washed with washing buffer. The array was then re-imaged 

for AF647 fluorescence. Note that an advantage of using β-galactosidase for these studies 

is its large size.  There should be very little interaction between dyes on different 
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proteins.  As a result, binding signals should be linear with the concentration of β-

galactosidase. 

Data analysis 

The binding between protein and peptides is measured as the fluorescence 

intensities of dye-labeled proteins captured by surface bound peptides. Higher 

fluorescence intensities suggest higher protein binding to a particular peptide feature. The 

term “binding signal” is used in all subsequent descriptions to refer to the measured 

fluorescence intensity. Peptide binding signal values were provided for each feature by 

LC Sciences as the median fluorescence intensity for each peptide feature. The 

background level, which is generally ~5% -10% of the lowest binding signal, depending 

on the sample used, was also provided by the company in the data report. For all of the 

analysis reported here, the binding signal for each peptide was normalized to the median 

intensity of each array [24]. Binding signals from arrays bound with same sample but 

using different dye labels were averaged and the mean of the binding signals was used in 

further analyses. Locally written scripts in Matlab were used to sort the peptides and to 

perform statistics.  

 

RESULTS 

Tetrapeptide extension studies 

A set of arrays (“extension arrays”) was designed to explore how the affinity of a 

tetrapeptide (the “base tetrapeptide) for β-galactosidase changes when it is extended by 

all possible one, two or three amino acid sequences (the “extension sequence).  

Specifically the question is how the binding properties of the base tetrapeptide alone 
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combine with the binding properties of the extension sequence to generate the binding 

properties of the extended peptide sequence (the “extended peptide sequence” is the base 

tetrapeptide plus the extension sequence). The binding signal distribution after incubating 

β-galactosidase with these arrays is shown Figure 3.1. As can be seen, in most cases, 

there is a rather wide distribution of binding signals associated with each family of 

extended peptide sequences (a family being defined by its base tetrapeptide sequence).   

 
Figure 3.1.  Three dimensional histogram of β-galactosidase binding signal 

distribution resulting from the extension of selected 8 tetrapeptides with 1, 2 or 3 

amino acids. For the base tetrapeptdies EYEY, RLLY, RYLY, YRRE and RQYY, the 
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peptides with low binding signal (essentially background) dominate and have fractional 

values exceeding the height of the y-axis (indicated by arrows).  For example, for the 

base tetrapeptide EYEY, all of the extension peptides are in the “0” bin because their 

binding is at background levels (this bin has a vertical value of 1).  The tetrapeptide 

groups were ordered by their inherent binding affinities to β-galactosidase without 

extension (highest on left).  The binding signals for the base tetrapeptide sequences alone 

are shown in Table 3.1, but in each case they are near the median of the distributions 

shown. All binding signal values were normalized to the global median. 

Table 3.1 shows that, roughly speaking, the average binding signal of all extended 

peptide sequences derived from a particular base tetrapeptide has a value similar to the 

binding signal of the base tetrapeptide sequence itself.  Another way to visualize these 

results is shown in Figure 3.2.  Here, the average β-galactosidase binding signal for all 

extended peptide sequences with the same base tetrapeptide sequence is plotted versus 

the binding signal of the base tetrapeptide sequence alone. Apparently, on average, 

addition of an extension sequence to the base tetrapeptide is as likely to reduce as to 

increase the affinity of the base tetrapeptide sequence for β-galactosidase.  
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Figure 3.2. β-galactosidase average binding signal for the extended peptide 

sequences vs the inherent binding signal of the base tetrapeptide sequence alone. 

The fluorescence intensities (AF555- β-galactosidase) of the 399 extended peptide 

sequences for each base tetrapeptide sequence were averaged.  All intensities were 

normalized to the global median. The error bars shown represent the standard error of the 

mean for that base tetrapeptide group. 

Even though the base tetrapeptide appears to dictate the average binding to β-

galactosidase of all the extended tetrapeptides, it is clear from Figure 3.1 that some 

extended tetrapeptides bound much more strongly or weaklly than the corresponding 

non-extended tetrapeptide.  Table 3.1 shows the average binding signal for both the 10 
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elongated peptides with the highest affinity derived from each base tetrapeptide sequence 

and for the 10 elongated peptides with the lowest affinity for each base tetrapeptide 

sequence. In some of the cases in which binding to the base tetrapeptide sequence alone 

was weak, the highest affinity extended tetrapeptide sequences increased binding signal 

by as much as ~18-fold. Weak-binding base tetrapeptide sequences containing negatively 

charged residues (EYEY and YRRE) were not improved as much by extension as neutral 

or positive sequences.  Base tetrapeptides that were strong binders alone also showed less 

apparent improvement.  However, this appears to be an issue of dynamic range of the 

experiment.  For peptides based on these high affinity base tetrapeptide sequences, there 

was relatively little change in binding signal when 100 nM β-galactosidase was used 

instead of 10 nM (i.e., binding was nearly saturated).  Technically, it was difficult to find 

a concentration range in which the top end of the binding signal was not close to 

saturation, but the bottom end was still measurable in the same experiment.  Trying to 

compare values between arrays that used different concentrations of protein added 

enough to the noise in the data so that it was not reliable.  Note that for the tetrapeptide 

sequence EYEY, the binding is always essentially at the level of the background signal.  

Thus while the measured improvement due to extension is small, it is not clear whether 

this is because of lack of improvement or because the binding is so weak to begin with 

that the improvement is not sufficient to raise the signal above the background. 
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Table 3.1.Binding information for base tetrapeptides and extended sequences 

Base 

Tetrapeptid

e 

Net charge 

for base 

tetrapeptid

e  

Base 

tetrapeptide 

binding 

signal to ß-

galactosidas

e 

Average 

binding of 

the 

elongated 

peptides 

with the 

same base 

tetrapeptid

e 

Average 

binding of 

the top 10 

elongated 

peptides 

with the 

same base 

tetrapeptid

e 

Average 

binding of 

the bottom 

10 

elongated 

peptides 

with the 

same base 

tetrapeptid

e 

EYEY -2 0.40±0.01* 0.4 0.64±0.02 0.32±0.01 

RLLY 1 0.55±0.03 1.5±0.1 8.3±0.4 0.34±0.02 

RYLY 1 0.58±0.03 1.9±0.1 10.5±0.3 0.34±0.01 

YRRE 1 0.61±0.04 1.01±0.04 4.2±0.1 0.34±0.02 

RQYY 1 0.65±0.04 2.1±0.1 9.2±0.1 0.36±0.03 

SYRS 1 5.8±0.3 6.4±0.2 12.9±0.2 0.94±0.36 

YSRS 1 6.1±0.5 6.7±0.1 12.1±0.1 1.6±0.5 

YSRR 2 7.9±0.3 7.2±0.1 12.5±0.2 1.4±0.5 

*Errors are represented in text as ± standard error of the mean 

The effect of the length of the extension was also considered. There is very little 

difference in the average binding signal of all base tetrapeptides extended by one, two or 

three amino acids (Figure S3.1).  However, the 10 highest binding signals for the three 

amino acid extensions is ~2 fold higher than for one amino acid extensions and ~1.2 fold 

higher than two amino acid extensions.  Thus while the average binding signal is not very 

sensitive to the length of extension, the absolute value of the extent of change is.  This 

could be an effect of length per se, or it could be simply that there are more three amino 

acid extensions to choose from than two amino acid or one amino acid extensions 

(increased sequence complexity).  

As described above, extension can either reduce or increase the affinity of a 

particular tetrapeptide sequence for β-galactosidase. One question is whether there is a 

discernible sequence dependence of extension on binding.  One might expect that 



87 

extending a base tetrapeptide sequence with an extension sequence of one to three amino 

acids that by itself is a strong binder would lead to an extended peptide sequence with 

increased binding affinity.  Conversely, adding an extension sequence that binds β-

galactosidase only weakly by itself might be expected to lower the binding affinity of the 

extended peptide sequence.  Figure 3.3 shows the result of plotting the average binding 

signal of the extended peptide sequences that used a particular one, two and three amino 

acid extension sequence vs. the inherent binding of the extension sequence alone.  Note 

that each point in the plot is the average of the eight possible extended sequences made 

from a particular extension sequence and one of the eight base tetrapeptide sequences. 

There is a correlation between the binding signal of the extension sequence alone and the 

binding of the average extended peptide sequence, but it is less pronounced than that 

between the binding signal of the base tetrapeptide alone vs. the average signal from the 

extended peptide sequence in Figure 3.2.  This may be due in part simply to the size of 

some of the extensions: when added to a tetrapeptide, a single amino acid is unlikely to 

have as dramatic an effect as a larger sequence, particularly on the low end of the binding 

scale. 
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Figure 3.3. β-galactosidase average binding signal for the extended peptide 

sequences vs the inherent binding signal of the extension sequence alone.. The 

binding signals (AF555- β-galactosidase) from peptides with the same N-terminal 

extension sequence were averaged together. For each N-terminal extension sequence, 

there were 8 peptides. Binding signals shown were normalized to the global median. The 

error bars shown represent the error in the mean for each N-terminal extension sequence 

group.  

To explore this issue further, extended sequences with the highest and lowest 

binding signals for β-galactosidase were compared to the highest and lowest signals seen 
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for the extension sequences by themselves.  Of the extended peptide sequences with the 

top 10% of binding signals, about half of these included extension sequences that ranked 

in the top 10% of the binding signals from extension sequences themselves.  Similarly, of 

the extended peptide sequences with the bottom 10% of binding signals, about a quarter 

of these included extension sequences that ranked in the bottom 10% of the binding 

signals from extension sequences themselves.  Thus there is a statistical bias for the 

extension sequences with the greatest inherent affinity for β-galactosidase to be present in 

the extended peptide sequence with the greatest β-galactosidase affinity. 

Figure 3.4 considers in more detail the amino acid composition of the sequences 

of the extended segments themselves.  The charge characteristics of the amino acids used 

in the N-terminal extension sequences is the most important factor in determining binding 

to β-galactosidase.  This is also true of the extension sequences by themselves.  Figure 

3.4 shows a heatmap of the amino acid composition of the extension sequence added to 

different base tetrapeptides that gave rise to extended peptide sequences with binding 

signals in the top 10%. The amino acid composition values were determined from the 

ratio of the amino acid’s frequency of occurrence in top 10% of binding sequences 

divided by its frequency of occurrence in all extended sequences. A similar heatmap for 

the bottom 10% of the binding sequences is not shown but is essentially the reverse of 

Figure 3.4. As one might expect given the low pI of β-galactosidase (4.61), the positively 

charged amino acid, arginine, occurs in almost all strong binding sequences, while the 

negatively charged amino acid, glutamic acid, occurs in almost all weakly binding 

sequences. Perhaps of more interest, tyrosine has a somewhat elevated frequency of 

occurrence in the top 10% of binding sequences while glutamine and serine have a higher 
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likelihood of being in the bottom 10% of the binding sequences.  The composition of 

amino acids that gave rise to a strong enhancement of binding when added to the N-

terminus of the tetrapeptide “EYEY” was quite different from that of extensions from the 

other base tetrapeptides, however the signal is so low for this base tetrapeptide alone that 

calculation of enhancement factors is subject to substantial noise.   

 

Figure 3.4. A heatmap of the relative frequency of specific amino acids in the 

extension sequences. The y-axis shows the different base tetrapeptides used (“Surface” 

means there was no tetrapeptide; amino acids were added directly to the linker on the 

surface).  Each column represents a different amino acid used in the extension sequence.  

Each row represents a different base tetrapeptide.  The color represents the relative 

frequency of occurrence of a particular amino acid in the highest binding 10% of the 
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extension sequences built on the base tetramers.  A color value of “1.0” represents a 

frequency of occurrence of a particular amino acid equivalent to that expected from a 

randomly defined sequence (1/7 since there are seven different amino acids used). 

Relative specificity, the tendency to bind one protein vs. another, was explored by 

comparing the binding of β-galactosidase protein to the binding of a mixture of 10 

different proteins (these were the same proteins used in a previous study of protein 

binding to ordered peptide libraries plus α1 antitrypsin [12]).  When the relative 

specificity is plotted against the binding signal, a strong correlation between affinity and 

relative specificity for these peptides is observed (data not shown), as was found 

previously in studies of β-galactosidase to peptide libraries[12]. Normalizing the data of 

Figures 3.2 and 3.3 to the intensity of the mixture of 10 proteins did not appreciably 

change the trends, again suggesting that binding and relative specificity track. Table 3.2 

shows the relative specificity values for the base tetrapeptides and the elongated peptide 

sequences.   As one might expect, the most specific base tetrapeptides give rise to most 

specific extended peptide sequences. 
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Table 3.2. Relative specificity for base tetrapeptides and extended sequences 

Tetrapeptide Net charge 

Relative 

specificity to ß-

galactosidase 

Average 

relative 

specificity of all 

elongated 

peptides 

Average 

relative 

specificity of 

the top 10 

elongated 

peptides 

EYEY -2 0.56±0.02* 0.65 0.95±0.03 

RYLY 1 0.67±0.03 0.90±0.03 0.7±0.1 

RLLY 1 0.67±0.04 1.2±0.1 3.9±0.2 

YRRE 1 0.75±0.04 1.24±0.03 3.7±0.1 

RQYY 1 0.76±0.03 1.01±0.03 3.1±0.1 

SYRS 1 2.0±0.2 3.8±0.1 7.3±0.2 

YSRS 1 2.4±0.3 3.9±0.1 6.6±0.1 

YSRR 2 2.8±0.2 4.7±0.1 9.1±0.3 

*Errors are represented in text as ± standard error of the mean 

 Finally, the effect of amino acid order in the extension sequences on binding was 

considered in the case of 3 amino acid extensions.  Extended peptide sequences in which 

a particular amino acid was in the first, second or third position were averaged to try and 

understand if sequence or composition was more important in the effect of the extension 

sequence.  What was found was that the effect of a particular amino acid, on average, was 

largely independent of where it was placed (data not shown).  Thus, composition of the 

extension sequence appears to be more important than the actual order of amino acids.  

Concatenation Arrays 

A set of 57 tetrapeptides (“component tetrapeptides”) were selected as described 

in Materials and Methods and all possible pairs were concatenated to form 3249 different 

sequences (“concatenated sequences”) of the form “(N’) xxxx yyyy GSG (C’)”.  The 

objective of this study was to explore how the affinity of each concatenated sequence 

relates to the known affinities of its component tetrapeptides and to what extent the order 

of those component tetrapeptides matter. Figure 3.5 shows the average binding signal 
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from the concatenated peptides that have a particular C-terminal component tetrapeptide 

sequence (“yyyy” above) versus the inherent binding signal of that individual C-terminal 

component tetrapeptide alone. The correlation between the average binding signal for the 

concatenated sequence and the average binding signal for its C-terminal component 

tetrapeptide is very strong (almost 1 to 1).  

 
Figure 3.5. β-galactosidase average binding signal of the concatenated 

sequences vs. the inherent binding signal of the C-terminal component tetrapeptide 

sequence alone. The average of the binding signals from all 57 peptides containing a 

particular C-terminal component tetrapeptide sequence are shown as a function of the 

binding signal from the C-terminal component tetrapeptide by itself. Intensity values 
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shown are normalized to the global median and signals from both AF555 and AF647 

labeled protein binding measurements were averaged. The correlation is very similar 

when either dye labeled protein measurement is considered separately, implying that 

binding is not very dependent on the dye (Figs S3 and S4).  

Figure 3.6 shows the average binding signal from the 57 concatenated peptides 

with a particular N-terminal component tetrapeptide sequence (“xxxx” in the motif 

defined above) plotted as a function of the inherent binding strength of that N-terminal 

component tetrapeptide sequence alone.  In contrast to Figure 3.5, the dependence is 

weak, suggesting that a sequence that was originally selected to bind well a particular 

distance from the C-terminus of the peptide (which is where the peptide is attached to the 

surface) does not necessarily contribute strongly to binding when displaced from the 

surface.  In addition to the weaker correlation shown in Figure 3.6, the set of 

concatenated peptides that have the same component tetrapeptide sequence at N-terminus 

exhibit a different binding dynamic range than the set of concatenated peptides with that 

same component tetrapeptide sequence at the C-terminus. More specifically, the standard 

deviation of the binding signals of concatenation peptides that have a particular C-

terminal tetrapeptide sequence is 0.63 while the standard deviation in the binding of 

families of sequences with the same N-terminal component tetrapeptide is 1.07; grouping 

sequences by their N-terminus is much more variable that grouping sequences by their C-

terminus. This again implies that the position of the binding sequence relative to the 

surface affects the nature of its contribution to the binding signal. 
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Figure 3.6. β-galactosidase average binding signal of the concatenated 

sequences vs. the inherent binding signal of the N-terminal component tetrapeptide 

sequence alone.  The average binding signals from all peptides that contain a particular 

N-terminal component sequence were plotted as a function of the average binding signal 

of the N-terminal component sequence alone. Intensity values shown are normalized to 

the global median and the binding signals of AF555 and AF647 labeled proteins were 

averaged. Either dye-bound protein gives a very similar binding trend (Figs S5 and S6).  

 The effect of charge on peptide binding was also explored in the concatenation 

studies. β-galactosidase has a pI of 4.61, and thus is negatively charged at neutral pH.  
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Therefore, one would expect that peptides with positive charges have higher binding 

signal in general. Consistent with this expectation, the concatenated peptides with a 

negatively charged component tetrapeptide on either the N-terminus or C-terminus show 

relatively weak binding to β-galactosidase. This trend is a little more pronounced when 

the negatively charged component tetrapeptide sequence is placed near surface at C-

terminal. As was seen for the extension study, concatenation of an N-terminal component 

tetrapeptide to a negatively charged C-terminal component tetrapeptide hardly increases 

binding to β-galactosidase at all, regardless of how strongly the N-terminal component 

tetrapeptide sequence binds by itself.  

The relative specificity of β-galactosidase binding was also studied for the 

concatenation library.   Similar to the extension studies, when the relative specificity is 

plotted against the binding signal, a strong correlation between affinity and relative 

specificity is observed (data not shown). There is no significant change in correlations 

when the data of Figures 3.5 and 3.6 are normalized to the intensity of the mixture of 10 

proteins (data not shown).  

DISCUSSION 

Traditionally, the focus of molecular recognition studies in biology has been on 

so-called specific interactions.  In general, nonspecific interactions are largely ignored or 

considered uninteresting.  However, by definition, any macromolecule in the cell 

undergoes many more nonspecific than specific interactions with molecules and 

particularly molecular surfaces around it.  Indeed, as our understanding of the crowded 

environment of the cell increases, it has become more and more apparent how important 

controlling such interactions in both time and space are.  This is thought to have been a 
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significant constraint in the evolution of protein structure [25, 26].  In this regard, 

“specific” and “nonspecific” are really misnomers.  A more precise nomenclature is 

“structured” and “unstructured” interactions; the difference between them being whether 

a certain metastable structure is formed (a narrow potential well) or whether the affinity 

is driven by longer range forces or by a summation of many interactions that allow for 

multiple relative positions of the binding pair (a broad potential well). 

Classical approaches to understanding what forces and types of chemical 

interactions are involved in structured interactions often do not work well for 

unstructured interactions due to the heterogeneity of the system.  Instead, statistical 

approaches can be used, and the systematic analysis of binding to diverse arrays of 

binding partners is one such approach.   The studies described above were built on earlier 

work in which a comprehensive analysis of tetrapeptides binding to a common protein, β-

galactosidase, was performed, resulting in a catalogue of peptide sequences and relative 

affinities[12].  This made it possible to ask several simple, fundamental questions about 

the nature of unstructured interactions: 

 Is the binding of the component motifs additive? 

 Does the order or context of the binding motifs matter? 

 What kinds of intermolecular forces dominate binding to β-galactosidase? 

 Does additive binding result in additive specificity? 

β-galactosidase is well suited for this study as it is a protein with a large, diverse surface 

area that does not have known natural peptide binding partners.  This increases the 

likelihood of finding unstructured binding interactions with the peptide covered surfaces.   
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Additivity.  In the first set of experiments described above, extending a tetrapeptide motif 

by one, two or three amino acids resulted in both increases and decreases in overall 

binding of β-galactosidase, as shown in Figure 3.1.  In general, the ability of the 

extension sequences to increase or decrease the binding of the base tetrapeptide 

correlated weakly with the binding of the extension sequence alone (Figure 3.3).  The 

shallow correlation is particularly evident if one excludes the very weakest binding 

peptides (<1 on the scale given in Figure 3.3).  The weak additivity is even more apparent 

when two component tetrapeptide sequences that have been tested independently for 

relative affinity are concatenated together.  As shown in Figure 3.6, simply adding a high 

affinity sequence to the N-terminus of another sequence of known relative binding 

affinity does not increase binding affinity substantially on average.  Thus, while adding 

sequences to the N-terminus of a known binder can indeed either enhance or reduce 

binding by a large factor (see Tables 3.1 &3.2 and associated text), that change does not 

correlate well with the affinity of that N-terminal addition when it is attached directly via 

the GSG linker to the surface. 

Order or Context.  Figures 3.2, 3.3, 3.5 and 3.6 address the question of position or order 

of binding sequences.  In Figures 3.2 and 3.5, there is a strong, and nearly one to one, 

correlation between the relative affinity of the C-terminal sequence and the average 

relative affinity of the extended or concatenated sequences.  In Figures 3.3 and 3.6, the 

correlation with the N-terminal sequence is considerably weaker.  In other words, the 

binding contribution of the C-terminal tetrapeptide remains more or less constant, 

regardless of what is added to it, and the relative affinity of the sequence added is not 
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very predictive of overall affinity. Thus the order or context of the binding motif is 

critical in determining its contribution to the binding in these surface attached peptides. 

Forces.  Forces that drive unstructured interactions can be any of a number of non-

covalent forces including charge-charge, hydrophobic or hydrogen bonding interactions. 

Here, charge-charge interactions appear to play the dominant role in determining the 

binding activity for β-galactosidase (a very negatively charged protein). This is reflected 

in Figure 3.4 which shows that β-galactosidase prefers Arg, a positively charged residue, 

to any other amino acid for extending a tetrapeptide motif by one, two or three amino 

acids. The importance of charge-charge interactions has been confirmed in previous 

studies in which β-galactosidase binds strongly and selectively to some of the most 

positively charged peptides[12].  Because of its large size, there is more opportunity for 

long-range interactions, like columbic interactions to take place.  In addition, because of 

its low pI, it is strongly negatively charged at neutral pH; there are approximately 97 

aspartic acid residues and 135 glutamic acid residues exposed to the solvent.  This makes 

it very easy to form charge-charge interactions with positively charged peptides. The fact 

that extension of peptides with tyrosine-containing sequences appear to enhance binding 

could suggest a role for hydrogen bonding, but additional comparison (e.g. to 

phenylalanine that was not included in this study) would be necessary.  

Specificity. In both experiments performed here, the relative specificity values for β-

galactosidase are strongly correlated to its binding affinity values. In other words, the 

ratio between β-galactosidase binding and the binding of a diverse set of ten other 

proteins increases and decreases in essentially the same way as does the affinity. Thus, 

extension sequences that result in more affinity usually result in more specificity. Clearly, 
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unstructured interactions between proteins and surface bound peptides can be quiet 

selective in some cases as shown by β-galactosidase, making it possible to create 

complex patterns of relatively short peptides on surfaces that are capable of quite 

selective interactions with different proteins.  
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SUPPORTING INFORMATION 

The effect of the length of the N terminal extension  

The effect of the length  of the N terminal extension was studied by plotting the average 

β-galactosidase binding signal for one, two  and three amino acid extended peptide 

sequences (each point is an average over all extended peptide sequences with a particular 

base tetrapeptide sequence) versus the binding signal for the base tetrapeptide alone 

(Figure S3.1).  The average binding signals are not substantially different as a function of 

extension length, though as described in the main text, the extended peptide sequences 

that show the highest binding signals have three amino acid extensions.  In other words, 

the effect of the extension at any length is more or less equal in either direction 

(increasing or decreasing the binding signal), but the absolute value of the effect is 

greater with longer extensions. 
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Figure S3.1 β-galactosidase average binding signal for the one, two and three amino acid 

extended peptide sequences vs. the binding signal of the base tetrapeptide sequence upon 

which the extended sequences were built. Details as in figure 3.2.  

 

The effect of dye-driven binding  

To moniter the effect of dye-bias on protein binding, a dye-swaping expereiment was 

performed using AF555 labeled β-galactosidase on one array and AF647 labeled β-

galactosidase on another identical array under the same binding conditions at the same 

time. Figure S3.2 shows the results of plotting the binding signal from each feature in the 

array using AF555 labeled protein vs. the same feature in the array using AF647 labeled 
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protein. In general, the distribution of intensities is what one might expect for a protein 

dominated binding interactions; almost all of the peptides that give high binding with one 

dye label also give high binding with the other.  To specifically address the question of 

whether dye binding is affecting the results of this study, Figures S3.3, S3.4, S3.5 and 

S3.6 show the average binding signal from the concatenation peptides that have a 

particular C (or N)-terminal base tetrapeptide sequence versus the inherent binding signal 

of that individual C (or N)-terminal tetrapeptide alone using either binding data from 

AF555 (Figures S3.3 and S3.4) or AF647 (Figures S3.5 and S3.6) labeled β-

galactosidase. The binding trends and conclusions one would draw are very simialr to 

what was observed with the average binding data of AF555 and AF647 labeled β-

galactosidase (Figure 3.5 and Figure 3.6).  This indicates that the dye-bias effect is not 

the driving force in the binding trends observed here.  
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Figure S3.2 AF555 labeled beta-galactosidase binding intensity versus AF647 

labeled beta-galactosidase binding intensity. The fluorescent signals from the bound 

labeled proteins were measured and normalized to the global median on each array. A 

linear regression was performed between two groups and the binding signal ratio between 

two labeled proteins was calculated. Points that have a ratio smaller than 0.5 or larger 

than 2.0 are represented by red circles.  While there is likely some dye-driven binding, 

the vast majority of the signal appears to correlate well between the two arrays, given a 

Pearson correlation coefficient of 0.74. 
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Figure S3.3 The average binding signal from AF555 labeled β-galactosidase incubated 

with concatenated peptides sharing the same C-terminal base tetrapeptide sequence 

versus the inherent binding signal of the C-terminal base tetrapeptide sequence alone. 

This plot is identical to Figure 3.5 except that only AF555 labeled β-galactosidase was 

used. 
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Figure S3.4 The average binding signal from AF647 labeled β-galactosidase incubated 

with concatenated peptides sharing the same C-terminal base tetrapeptide sequence 

versus the inherent binding signal of the C-terminal base tetrapeptide sequence alone. 

This plot is identical to Figure 3.5 except that only AF647 labeled β-galactosidase was 

used. 
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Figure S3.5  The average binding signal from AF555 labeled β-galactosidase incubated 

with concatenated peptides sharing the same N-terminal base tetrapeptide sequence 

versus the inherent binding signal from the N-terminal base tetrapeptide sequence alone. 

This plot is identical to Figure 3.6 except that only AF555 labeled β-galactosidase was 

used. 
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Figure S3.6  The average binding signal from AF647 labeled β-galactosidase incubated 

with concatenated peptides sharing the same N-terminal base tetrapeptide sequence 

versus the inherent binding signal from the N-terminal base tetrapeptide sequence alone. 

This plot is identical to Figure 3.6 except that only AF647 labeled β-galactosidase was 

used. 
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Graphical Abstract 

 

Figure S3.7. Labeled β-galactosidase binding to an “extension array”. This is an 

example of the array images received from LC Sciences.  
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CHAPTER 4: EXPLORING THE NATURE OF PEPTIDE-ANTIBODY 

INTERACTIONS USING DIVERSE-SEQUENCE PEPTIDE ARRAYS 

CONTRIBUTION 

The following chapter describes a study that exploring the general interactions 

between antibodies and surfaces covered with peptides.  The binding of monoclonal 

antibodies and serum to the HealthTell array surface covered with particular peptides is 

systematically studied and the binding information is used to understand the chemistry of 

binding. The array synthesis and binding assays were performed by HealthTell and by the 

CIM peptide array core. For each peptide feature, the raw binding signal from the binding 

assay is the median intensity of each spot on the array. Wei Wang took the raw binding 

data and performed the analysis of the binding data as described below.   

INTRODUCTION 

Antibody-antigen reactions are widely used both clinically and in the laboratory 

to detect the level of biomarkers or pathogens in human serum associated with a variety 

of diseases.  In a number of cases the antibody raised in response to the disease itself 

serves as a key biomarker [1, 2]. The Center for Innovation in Medicine in the Biodesign 

Institute at Arizona State University has developed an approach for profiling the 

repertoire of circulating antibodies in the blood that utilizes high density peptide arrays. 

Specifically, human serum containing  large amount of antibodies is applied to the 

surface of an array of thousands of diverse-sequence peptides and the binding of blood-

borne antibodies to these peptides can be measured in terms of the fluorescence intensity 

of a labeled secondary antibody. The resulting so-called immunosignature, the pattern of 

binding of antibodies to the diverse-sequence peptide features in the array, can both 
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detect and identify a wide variety of specific diseases[2]. There are several published 

studies using immunosignatures to characterize vaccines[3] and it has been successfully 

applied to detection of such diseases as Alzheimer’s disease[4], various brain cancers[5], 

valley fever[6] and breast cancer[7].  The approach has also been used to simultaneously 

detect and discriminate multiple cancers as well as multiple infectious diseases[8, 9]. 

Results from these studies strongly suggest that the unique immunosignatures derived 

from the binding between antibodies and diverse-sequence peptides can reflect disease-

driven changes in the antibody profile and the approach is currently being 

commercialized as a diagnostic tool with HealthTell (www.healthtell.com).    

Although linear antibodies (antibodies that bind a contiguous sequence of amino 

acids) are known bind to specific epitopes, most antibodies also have substantial cross-

reactivity with non-cognate targets [10]. Moreover, using the immunosignature peptide 

arrays mentioned above, Halperin et al. have found that monoclonal antibodies can bind 

non-cognate peptide sequences with high affinity[11]. This suggests that the interactions 

between antibodies and these surface-bound peptides are not entirely driven by 

interactions with one specific sequence. In fact, when a paratope binds to its 

corresponding epitope, the initial interactions are thought to be driven by general long-

range forces, such as ionic and hydrophobic interactions. These attractive forces locally 

overcome the hydration energies and allow the epitope and the paratope to approach each 

other more closely. Once the surfaces of the paratope and epitope are close enough, a 

strong interfacial bond resulting from Van der Waals forces will arise and the strength of 

this bond is usually depends on how closely the two surfaces fit each other and the total 

contact area involved [12, 13]. While the specific interfacial interaction between a 
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paratope and a known epitope can be characterized in detail with crystallography, 

exploring the range and chemical nature of possible mimotope sequences is more 

difficult.  

Here, the interactions between antibodies and dense arrays of peptide features will 

be studied using peptide arrays that have been intentionally designed for measuring 

immunosignatures. The peptide arrays were manufactured using a photolithography-

based, in situ synthesis approach and each array consists of ~330,000 peptide sequences 

with an average length of ~12 amino acids (plus a three amino acid linker, GSG) and a 

length range from 3 to 17 amino acids[8]. Sixteen of the twenty natural amino acids were 

used in the synthesis (cysteine, methionine, isoleucine and threonine were excluded).  

The ~330,000 feature arrays each cover an area of ~0.5 cm2 and each feature in an array 

is 8 microns in diameter and contains a uniquely synthesized peptide sequence.  The 

peptide sequences were generated using a pseudo-random algorithm designed to 

minimize the number of synthesis steps but sample combinatorial sequence space fairly 

evenly[8].  

As described above, these arrays are being developed for health monitoring by 

profiling the pattern of molecular recognition of circulating antibodies in the blood.  In 

the context of that application, there are a number of fundamental questions about general 

interactions between antibodies and peptide affixed to surfaces that need to be answered. 

The antibody samples used here include both single, commercially available monoclonal 

antibodies as well as serum samples from either healthy individuals or individuals known 

to have a specific infectious disease (Malaria). In particular, two well characterized 

monoclonal antibodies (p53Ab1, one of the p53 epitopes and DM1A, an antibody against 
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tubulin), four normal serum samples and four disease serum samples were tested on 

immunosignature peptide arrays from two different manufacturing lots (the arrays are 

made on the surface of silicon wafers and the two sets of arrays used came from two 

different wafers made at different times). While the monoclonal antibody samples each 

contain a single type of immunoglobulin, the serum samples are heterogeneous mixtures 

of many biomolecules including a large diversity of different immunoglobulins. Antibody 

binding to different peptide features on the surface is visualized in each case through the 

use of a labeled secondary antibody to the constant region of the primary antibody (for 

the studies described below, a labeled secondary antibody to IgG was used).  The 

dynamic range of this binding is very high for both monoclonal antibodies and serum. 

The highest binding signals are roughly 150-fold higher than the lowest signals. Because 

the lengths of peptides used in the array are relatively short, the peptides are likely to be 

largely unstructured so that the majority interactions between antibodies and these 

surface bound peptides are not dependent on specific tertiary structures, a concept 

supported by past work comparing the binding of many different monoclonal antibodies 

to arrays of printed peptides[11]. Indeed, the binding of monoclonal antibodies to these 

dense arrays is quite diverse, with some binding observed to cognate and near-cognate 

sequences (in the case of monoclonal antibodies that recognize linear epitopes) as well as 

binding to mimitopes that bear no resemblance to the original cognate sequence.  In order 

to explore the nature of the binding of antibodies to peptide covered surfaces in more 

detail, the binding of antibody samples was monitored as a function of charge, 

hydrophobicity, length, specific amino acid contribution and position within sequence of 

the peptides in the array. 
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METHODS AND MATERIALS 

HealthTell Peptide Microarrays 

The immunosignaturing peptide microarray used in this work has been described 

previously[8]. ~330,000 peptides of near-random sequence were synthesized by light-

directed photolithography. The common linker sequence, GSG, exists on the C-terminus 

of every peptide. 152 control peptides containing the epitope“NH3-RHSVV-COOH” are 

present at random locations throughout the array. This sequence is the complete epitope 

for p53 antibody Ab1, and is a positive control.  Other partial epitopes for Ab1, Ab8 and 

DM1A are embedded into other control peptides. 

Binding Assays 

Microarrays are pre-incubated with blocking buffer (BB = 10nM Phosphate 

Buffered Saline, pH 7.3 and 05% BSA, 0.5% Tween) for 1 hour prior to addition of a 

1:20,000 dilution of serum into sample buffer (SB = BB less 0.5% Tween) for one hour 

at 25ºC.  The primary antibody is washed off with BB and then the peptide-bound 

antibodies are detected by addition of 5nM of AlexaFluor 555-conjugated anti-human 

IgG1 secondary (Rockland Antibodies, Gilbertsville, PA) for 1 hour in SB at 25ºC, then 

washed 3x in SB, then 5x in 18MOhm water followed by centrifugation at 1800g for 5 

seconds to dry.  Arrays are scanned in an Innopsys Innoscan 900 scanner at 647nm and 

555nm using high laser power and 70% PMT at 1µm resolution.  TIFF images are 

aligned with the corresponding gal file that defines which measured intensity is 

associated with which peptide feature[6]. 
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Samples 

Serum samples were received at ASU through IRB#0912004625, “Profiling 

Biological Sera for Unique Antibody Signatures”, renewed March, 2013 by the Western 

Institutional Review Board (Olympia, WA).  Monoclonals were obtained from the 

manufacturer. All disease states were assessed by SeraCare using the FDA approved 

ELISA-based diagnostic.  Monoclonals were quality checked by the manufacturer, and at 

ASU using dot-blot against peptides containing the correct epitope sequence. 

Data Analysis 

Binding signals were normalized to the mean intensity for each respective array. 

All subsequent analysis utilized the mean-normalized data. Locally written scripts in 

Matlab were used to sort the peptide sequences and to perform most of the statistical 

studies.  

RESULTS AND DISCUSSION 

Peptide binding intensity dependence on position or neighboring features 

The nature of interactions between immunoglobulins and surface bound peptides 

was explored using high density peptide arrays intentionally designed for 

immunnosignature purposes. While the peptide arrays used for this analysis have a high 

feature density, the size of each feature (8 microns diameter) is still much larger than the 

size of immunoglobulin molecules.  Thus one would expect that binding at each peptide 

feature would be independent of binding at neighboring features, unless there were issues 

associated uneven binding caused by the assay itself.  To verify binding independence of 

each peptide feature in the array, two different methods were used. The first method 

focused on the intensity of the binding signal to ‘RHSVV’ which is the epitope sequence 
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for the monoclonal antibody p53Ab1. There were 152 ‘RHSVV’ peptide features 

synthesized on the array surface at different locations.  The binding signals for both the 

P53 Ab1 monoclonal antibody and for binding of serum IgG at these peptide features was 

constant (within the noise of the measurement), regardless of the location of the peptide 

feature (data not shown). Furthermore, the binding signals for the RHSVV sequences are 

not correlated to the binding intensities observed for the neighboring peptides or to their 

physical properties (length, charge, hydrophobicity, etc.). The second method of testing 

binding equivalence across the array was more general and was applied to all peptides in 

the array. The binding intensity for each peptide sequence was plotted against the average 

binding intensity of the 6 nearest neighbor peptides surrounding it (data not shown).  This 

plot was then compared to the binding intensity for the same sequences versus the 

average binding intensity of 6 randomly selected peptides in the array. There is 

essentially no difference between two plots and the correlation between the binding for 

any particular peptide and the average binding of its neighboring peptides is very weak.  

Effect of Total Peptide Charge on IgG Binding 

Charge-charge interactions are one of the most important driving forces for 

general binding. Figure 4.1 shows the average binding signal for each sample tested as a 

function of net peptide charge at neutral pH. Typical monoclonal antibodies are slightly 

negatively charged at neutral pH. Thus, it is not surprising that both monoclonal 

antibodies (p53Ab1 and DM1A) show higher binding affinity to surface features with 

more positive charges. The effect is more pronounced for monoclonal antibody p53Ab1, 

where the average binding intensity for positively charged peptides is roughly 3.2-fold 

higher than that of negatively charged peptides. Monoclonal antibody DM1A shows a 
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much less pronounced increase at 1.2-fold. In the case of monoclonal antibodies, the 

nature of the cognate sequence and the tendency of any particular monoclonal antibody to 

bind to off-target sequences will also play a major role in dictating the charge dependence 

of binding. Interestingly, the cognate sequence of p53Ab1 (RHSVV) is itself net positive, 

consistent of what one might expect from the charge dependence of binding, while that of 

DM1A (AALEKDY) is net negative. It is interesting that DM1A on average binds more 

strongly to positively charged peptides. However, the net overall negative charge of the 

IgG molecule could be an issue.  In addition, past work has shown that p53Ab1 tends to 

be more specific for its cognate sequence and near-cognate sequences than does 

DM1A[11]. Thus, it is perhaps not surprising that the less specific monoclonal would 

have a less distinct preference with regard to the overall characteristics of the peptide, 

though it is interesting that the recognition sequence per se is not dominating the charge 

interaction.  

Two types of serum samples were tested, including 8 uninfected individuals and 8 

samples from individuals infected with Malaria.  Most of the serum samples tested show 

a similar dependence on total peptide charge, such that the average binding intensity for 

positively charged peptides is approximated 1.5 to 2-fold higher than that of negatively 

charged or neutral peptides. However, 6 serum samples from the normal group show in 

addition to the overall trend a strong preference for very highly negatively charged 

peptides (peptides with total charge -7 or -6).  This preference appears to be individual 

rather than related to infection with Malaria.  
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Figure 4.1. Average Binding Intensity as a Function of Net Charge of Peptides. The 

net charge of the peptides at neutral pH varies from -7 to +9. Intensity values shown are 

mean normalized fluorescence intensities of dye-labeled secondary antibodies captured 

by antibodies that are bound to surface bound peptides. The data shown is the average of 

all samples tested for each sample group (four sample groups: p53Ab1, DM1A, normal 

serum and malaria serum). The error bars shown represents the standard error of the 

mean for samples in the same sample group.  

Effect of peptide hydrophobicity on IgG binding 

Hydrophobic interactions are also important in driving binding interactions. 

Figure 4.2 shows the average binding signal for the monoclonal antibody and serum 

samples as a function of peptide hydrophobicity. The hydrophobicity value of each 
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peptide was estimated from the average of the hydrophobicity index values[14] for each 

amino acid in the peptide sequence. The peptides were then ranked and evenly sorted into 

12 groups, from the least hydrophobic (hydrophilic) to the most hydrophobic, according 

to their average hydrophobicity values. The effects of hydrophobicity are very similar for 

all samples. The average binding signal peaks at an average hydrophobicity value 

between -10 to 0. At the highest and lowest hydrophobicity, the binding for all samples 

decreases by more than 50% relative to the peak.  

Figure 4.2. Average Binding Intensity as a Function of Peptide Hydrophobicity. The 

binding intensities from peptides of each hydrophobicity group were averaged together. 

There were twelve hydrophobicity groups as describe in the text. Intensity values shown 
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are normalized to the mean for each sample. The data shown is the average of all samples 

tested for each sample group. The error bars shown represents the standard error of the 

mean for samples in the same sample group.  

Peptide Length Dependence 

Normally, increasing the length of a peptide would increase its chemical 

complexity. Longer peptides have a larger potential number of amino acid combinations. 

However, the way these sequences were generated, the complexity is, by one measure, 

less dependent on length.  The reason for this is that there is simply a fixed probability 

that an amino acid will be added at each particular step in the synthesis.  Thus short 

sequences end up being relatively random while longer and longer sequences have more 

in common with the sequence in which the amino acids were added.  Thus if one asks in 

a 5-mer how often an ‘A’ follows a ‘G’ or the other way around, it will be closer to 

50/50% than if one measures this for a 15-mer.  Though imperfect, this is more a measure 

of the dependence on length per se than on the order complexity of the sequences that can 

be made.  In previous studies on the binding of β-galactosidase using unbiased sequences 

of different lengths, the intensity of binding decreased as the length increasing beyond 

approximately 7 amino acids[15]. This suggested a more complex dependence of binding 

on peptide length than simply more sites to bind to, and it was suggested that this might 

have involved entropy restriction effects. Moreover, peptide length is not entirely 

independent of the net charge. For the chosen peptide sequences on the peptide arrays 

described here, longer peptides tend to be more positively charged on average. Since 

average binding intensity for positively charged peptides is higher than that of negatively 

charged or neutral peptides, one might expect that longer peptides would have higher 
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binding intensities if charge-charge interactions are dominant.  However, the situation is 

much more complex than that. Although antibodies may prefer charged motifs, the way 

these peptides were synthesized, it becomes more difficult to have any particular charged 

motif or fragment within a longer peptide sequence (again because in this approach, 

longer peptides are more biased towards the sequence in which amino acids were added). 

Thus, even though the longer peptides are more positively charged than shorter peptides, 

they may be less likely to contain certain binding sites. As seen in Figure 4.3, for serum 

samples (uninfected and malaria), the average binding signal peaked at 7 amino acids 

length and slowly dropped so that by a length of 17 amino acids the average binding is 

similar to the average binding for peptides of length 3. For monoclonal antibodies, length 

dependence is more complicated as the specific interactions with the epitope sequence are 

involved and the length of the corresponding epitope would then have large effect on the 

average binding. For p53Ab1, the length of the epitope is 5 and the average binding 

signal for p53Ab1 peaked at 5 and 6 amino acids in length. For DM1A, the small binding 

peak at length of 7 can be explained by the length of its epitope, which is 7, but the 

increase in binding at longer lengths may be because DM1A is able to take advantage of 

a wider variety of interaction sites or that binding is greater when the site is farther from 

the surface.  
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Figure 4.3. Average Binding Intensity as a Function of Length for Each Sample. The 

binding signals from peptide features of each length were averaged together. Intensity 

values shown are normalized to the mean for each sample. The data shown is the average 

of all samples tested for each sample group. The error bars shown represents the standard 

error of the mean for samples in the same sample group. 

Contribution of Specific Amino Acid Residues to Serum Binding 

Figure 4.4 shows the contribution of each amino acid to serum binding. The 

average binding intensities were calculated for peptide sequences containing the same 

amino acid. More specifically, the binding intensities from all peptides with each 

particular amino acid residue were averaged together (e.g. All peptide sequences 

possessing Alanine were averaged together to give the average binding intensity value for 
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Alanine in Figure 4.4). As seen in Figure 4.4, the average binding intensities for peptide 

sequences containing Arginine, Lysine, Proline or Glycine are ~20% higher than the 

global average binding intensity. This suggests that these amino acids may contribute to 

high binding for serum samples from both the normal and malaria groups. In contrast, the 

average binding intensities for peptide sequences containing Phenylalanine or Leucine 

are noticeably lower (more than 20% lower) than the global mean. 

 

Figure 4.4. Average Binding Intensities as a Function of Amino Acid per Peptide. 

The binding intensities from peptides with each specific amino acid residue were 

averaged together. Intensity values shown are normalized to the mean for each sample. 

The data shown is the average of all samples tested for each sample group. The error bars 

shown represents the standard error of the mean for samples in the same sample group. 
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Another way to look at the contribution of specific amino acids to binding would 

be by calculating the amino acid’s frequency of occurrence in the top percentage and 

bottom percentage of the binding sequences. The results show that Arginine, Lysine, 

Proline and Glycine are the most frequently occurring amino acids in the top 1% of 

binding sequences (Figure 4.5) while Phenylalanine and Leucine are the most frequently 

occurring amino acids in the bottom 1% binding sequences(Figure 4.6), consistent with 

what was shown in Figure 4.4. 

The fact that serum samples prefer amino acids with positively charged side 

chains such as Arginine and Lysine suggests the importance of charge-charge interactions 

in serum-peptide binding on the surface. Although serum contains a large number of 

different biomolecules, the measured binding signals are specifically from IgG molecules 

and peptides, in part because at the high dilution used only antibodies have small enough 

dissociation constants to remain bound, and also because the binding is detected with 

fluorescently labeled anti-human-IgG. Because the pI of IgG molecules is slightly lower 

than neutral pH, this may promote electrostatic forces and long-range interactions with 

positively charge amino acid side chains. In addition, the amino acids contributing to 

high binding intensities here are significantly different from amino acids preferred by the 

general antibody-epitope interfaces[16, 17]. This suggests that the interactions between 

serum IgG and surface-bound peptides here may not be driven entirely by specific 

antibody-antigen interactions; instead, interactions driven by general forces may also play 

a key role.  
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Figure 4.5. A heatmap of the frequency of occurrence of specific amino acids in the 

top 1% serum binding sequences. Each column represents a different amino acid used.  

Each row represents a different sample tested (ND represents normal sample and MA 

represents malaria sample). The color represents the frequency of occurrence of a 

particular amino acid in the highest 1% binding sequences.  A color value of 0.06 

represents a frequency of occurrence of a particular amino acid equivalent of that 

expected from a randomly defined sequence (1/16 since there are 16 different amino 

acids used). 
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Figure 4.6. A heatmap of the frequency of occurrence of specific amino acids in the 

bottom 1% serum binding sequences. Each column represents a different amino acid 

used.  Each row represents a different sample tested (ND represents normal sample and 

MA represents malaria sample). The color represents the frequency of occurrence of a 

particular amino acid in the lowest 1% binding sequences.  A color value of 0.06 

represents a frequency of occurrence of a particular amino acid equivalent of that 

expected from a randomly defined sequence (1/16 since there are 16 different amino 

acids used). 

Effect of Amino Acid Position within a Peptide Sequence 

Amino acid position within a peptide sequence was also considered. A 16 (amino 

acid name) by 17 (amino acid position number, position 1 is N-terminus and position 17 

is C-terminus for a peptide with 17 amino acid residues) matrix was created to examine 

the effect of amino acid position on binding. For each amino acid, the binding intensities 

for all peptides with the amino acid at the same position were averaged together and 
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plotted against the amino acid position relative to the N-terminus (Figure 4.7). Generally, 

the effect on binding of the specific amino acid used is not very dependent on where the 

amino acid is placed within a peptide. But the position of some amino acids has bigger 

effect on binding than that of others. For example, the contribution of glycine and proline 

to the strong binding signals was ~50% higher when they are near the N-terminus 

compared to the C-terminus, whereas the contribution of lysine remains the roughly 

same. In general, the effect of an amino acid identity is less significant toward C-

terminus. Note however that the position number is defined as the position of an amino 

acid relative to N-terminus. Because the length of peptides are range from 3 to 17 amino 

acids, there are fewer and fewer peptides at any given position as one progresses from the 

N to C terminus.  
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Figure 4.7. Average Binding Intensity as a function of amino acid position within a 

peptide sequence for each amino acid. The sample used for creating this figure is ND-

151, other samples give very similar binding trends (Figures not shown). For each amino 

acid, the binding intensities for peptides with such amino acid at the same position were 

averaged together. Intensity values shown are normalized to the mean value.  
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CHAPTER 5: CONCLUSIONS AND FUTURE CONSIDERATIONS 

The interaction of proteins with chemically complex surfaces is of critical 

significance in both biological and man-made systems. A complete understanding of the 

protein-surface interactions is useful because it will potentially tell us how proteins 

function in many biological processes involving cellular interfaces and contribute to 

developing surfaces with selective binding or nonbinding properties for practical use. Up 

to this time, the majority of the studies on molecular interactions have mainly focused on 

specific interactions with well-defined final complexes. In contrast, interactions that do 

not result in a unique structure for the final complex are usually considered nonspecific 

and treated as a nuisance to experiments. However, as described in chapter 1, 

unstructured interactions are more ubiquitous in the cellular environments and participate 

in many biological processes. Therefore, there is a need to characterize and further study 

these interactions. In fact, the strength of either type of interactions largely comes from 

long-range forces such as general charge-charge interactions (examples include DNA 

binding proteins, antigen-antibody interactions). While for a specific interaction, the final 

structure is defined by interactions like specific hydrogen bonds or short-range van der 

Waals forces and the affinity depends on the goodness of fit between the interacting 

surfaces; for an unstructured interaction or so called nonspecific interaction, the affinity 

is driven by longer range forces only or by a summation of many interactions that allow a 

set of heterogeneous binding structures instead of stabilizing one particular binding 

structure. 

It is difficult to detect and characterize unstructured interactions with 

conventional techniques.  As mentioned in Chapter 1, most existing approaches to study 
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molecular interactions are trying to search and characterize the most favored single 

structure among all the complexes formed. This makes these approaches not suitable for 

studying the unstructured interactions because an unstructured interaction does not have a 

predominant binding structure, instead, a variety of low affinity structures that are equally 

important are often formed in one interaction. The research projects in this dissertation 

demonstrated a statistical approach to study molecular interactions, including both 

structured and unstructured interactions, between proteins and heterogonous surfaces 

covered with peptides. Unlike most classical approaches for studying molecular 

interactions, this approach does not force the system to converge on a single binding 

structure; instead, it allows systematic analysis of binding to diverse arrays with a large 

number of potential binding partners and uses the binding information to understand the 

chemistry of molecular interactions at surfaces.  

Chapter 2 described the binding of β-galactosidase, α1-antitrypsin and a protein 

mixture with a set of 9 different soluble proteins to the LC Sciences array surface-

attached peptides from a library, covering lengths from 2 to 12 amino acids and sequence 

permutations of 7 amino acids {E, L, S, R, Q, W, Y}, representing a broad span of 

overall charge and hydrophobicity. In spite of apparently unstructured interactions of the 

immobilized peptides with the proteins of interest, the interactions can be quiet strong 

and diverse. In addition, considerable selectivity of protein binding to the peptide-coated 

surface can be obtained. The work presented in Chapter 2 supports the concept that 

specific and nonspecific binding are better thought of as two ends of amore continuous 

spectrum and suggests the possibility of creating surfaces covered with short peptide 

sequences with relative specific protein interaction profiles. However, due to the 
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limitations associated with LC Sciences PepArray platform (e.g. cost, lack of controls on 

binding experiments, etc), although the work was able to demonstrate the possibility of 

using peptide arrays in exploring the interaction space of proteins with complex surfaces, 

additional experiments are required to fully understand the concepts. For example, a 

larger number of additional individual proteins with different physicochemical properties 

and of different origin could be tested with the same surface and compare to the binding 

profiles of β-galactosidase and α1-antitrypsin. This would allow a more extensive study 

on the correlation between the binding profile and the protein physicochemical 

properties. For instance, the correlation between the binding profile and the protein 

isoelectric point could be examined. Similarly, the hydrophobicity of the proteins can be 

taken into account by using the accessible area of hydrophobic amino acid residues. This 

can further verify the driving forces for unstructured surface interactions and how they 

contribute to discriminating proteins. In addition, the binding experiments could be 

performed at variable pH and ionic strength, to estimate relative contributions of 

electrostatic forces and hydrophobic interactions into the surface peptide-protein binding 

capacity. Another interesting question is whether using a larger subset of amino acids as 

building blocks would change the correlation between surface binding and peptide 

sequence properties. Creating a peptide library using an increased amino acid alphabet 

size would increase the chemical complexity represented by the library, though a smaller 

percentage of the full sequence space would be covered and used for the statistical study.   

Since short surface-bound peptides can have both strong and selective interactions 

with proteins, one interesting fundamental question to ask is how addition or combination 

of short peptide sequences change the properties of a surface covered with a particular 
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short peptide. The answers to these questions are very important for developing the 

principles needed to engineer new surfaces with specific properties using relatively short 

peptides. The strategy employed in Chapter 3 for preparing peptide arrays, which 

involved the use of selected tetrapeptides with known binding characteristics to β-

galactosidase as C-terminal bases tethered to the surface, and either an N-terminal 

extension by one, two or three amino acids, or a concatenation with another tetrapeptide, 

were designed to answer these questions. One of the most important observations is that 

while both additions and combinations of short peptide sequences can either greatly 

increase or decrease the binding and relative specificity of a particular tetrapeptide on the 

surface, the contribution to the binding affinity and relative specificity of the individual 

binding components is strongly dependent on their position within the peptide sequence. 

Moreover, component sequences that bind strongly at the C-terminus of the peptide do 

not necessarily add substantially to binding and specificity when placed at the N-

terminus. It is important to note that although a surface covered with random-sequence 

peptides with longer lengths may possess similar or even higher chemical complexity and 

degree of differential binding, short peptides are easier and cheaper to use for surface 

modification.   

 Due to the limitations associated with LC Sciences arrays, it would be useful to 

perform similar studies with a different array system. As described in Chapter 1, the 

HealthTell array system is another array platform that is completely different from the 

LC Sciences array system. HealthTell Arrays are in a different format and are built on a 

different substrate. These arrays are developed for the purpose of performing 

immunosignature diagnostics, which attempts to identify a unique binding pattern of 
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circulating antibodies in serum that differentiates healthy individuals from those with a 

particular disease. In chapter 4, fundamental questions about general interactions between 

antibodies and peptide attached to surfaces are answered by systematically studying the 

binding of monoclonal antibodies and serum to the HealthTell array surface covered with 

particular peptides, from a library consisting of ~330,000 peptide sequences with a length 

range from 3 to 17 amino acids and amino acid alphabet size of 16 (cysteine, methionine, 

isoleucine and threonine were excluded). The peptide sequences include certain epitope 

sequences and random sequences that are not derived from any natural binding sequence 

space. While it is confirmed that the linear epitopes can be recognized and specifically 

targeted upon binding to the antibodies, the random sequences may or may not behave 

the same. The interactions driven by general forces may play an important role in 

peptide-surface binding with HealthTell array system. Consistent with what was seen 

before, the interactions can be strong and diverse. Effects of charge, hydrophobicity, 

length and amino acid position on IgG binding on HealthTell array surface are quiet 

similar to what was observed with β-galactosidase on LC Science array surface. This 

suggests that general interactions play a role in addition to any cognate-type binding. In 

addition, positively charged amino acids are preferred by serum samples further 

confirming the importance of general electrostatic interactions in serum binding on 

surfaces.  

 To further study the general interactions between antibodies and the HealthTell 

array surface, a number of other sequence properties of surface-bound peptides can be 

examined and correlated to the binding of antibodies to the surfaces. For example, 

sequence complexity, flexibility and accessibility can be considered. These studies may 
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provide information on the entropic cost upon binding. Also, the binding assays could be 

performed at a variable pH and instead of looking at the total charge for each peptide at 

neutral pH, the isoelectric point could be considered. It may also worthwhile to look at 

the correlation between binding and the position of certain tetrapeptides within a 

sequence. Although it has been shown that the binding is not strongly dependent on the 

position of any single amino acid within the sequence, position of tetrapeptides or longer 

binding units within a sequence might still be important (As in Chapter 3, single amino 

acid position is not important but the tetrapeptide position is important in term of the 

contribution to binding).    

In summary, unstructured affinity driven by multiple weak interactions plays an 

important role in many biological processes. As our understanding of the crowded 

environment of the cell increases, it has become more and more apparent how important 

controlling such interactions is.  Although still in early stages, this dissertation work 

demonstrates the possibility of using peptide arrays in exploring the interaction space of 

proteins with surfaces. With the technology advancing and expanding rapidly, there is 

tremendous space to explore many more studies with this approach, and we could expect 

a brand new way to create complex surfaces for our use.   
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