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ABSTRACT

The widespread adoption of mobile devices gives rise to new opportunities and

challenges for authentication mechanisms. Many traditional authentication mechanisms

become unsuitable for smart devices. For example, while password is widely used on

computers as user identity authentication, inputting password on small smartphone screen

is error-prone and not convenient. In the meantime, there are emerging demands for new

types of authentication. Proximity authentication is an example, which is not needed for

computers but quite necessary for smart devices. These challenges motivate me to study

and develop novel authentication mechanisms specific for smart devices.

In this dissertation, I am interested in the special authentication demands of smart

devices and about to satisfy the demands. First, I study how the features of smart devices

affect user identity authentications. For identity authentication domain, I aim to design a

continuous, forge-resistant authentication mechanism that does not interrupt user-device

interactions. I propose a mechanism that authenticates user identity based on the user’s

finger movement patterns. Next, I study a smart-device-specific authentication, proximity

authentication, which authenticates whether two devices are in close proximity. For prox-

imity authentication domain, I aim to design a user-friendly authentication mechanism that

can defend against relay attacks. In addition, I restrict the authenticated distance to the scale

of near field, i.e., a few centimeters. My first design utilizes a user’s coherent two-finger

movement on smart device screen to restrict the distance. To achieve a fully-automated

system, I explore acoustic communications and propose a novel near field authentication

system.
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CHAPTER 1

Introduction

Authentication is to verify a claim. Identity authentication verifies the claim that a given

user is the owner of a given identity. Proximity authentication verifies the claim that two

given devices are in close proximity. Authentication is a fundamentally important security

mechanism that provides a security base for many security applications. In other words,

many security applications grant user services or privileges based on the authentication

result. For example, identity authentication helps applications to recognize users so as

to provide personalized services. The authentication is thus the very first step to the ser-

vice. Many other applications even reject to provide services when the authentication fails.

Smartphones are personal devices and unlocking a smartphone requires authenticating a

user’s identity. If the user is not one of the expected users, the smartphone would not

allow the user to get into the system. Therefore, authentication is an important security

mechanism.

The emerging usage of smart devices leads to the demands for new authentication

types. Proximity authentication is a new authentication type that is closely associated with

smart devices. Due to the mobility of the devices, physical proximity becomes a measure

of trust between two smart devices. Proximity authentication is to ensure this trust before

a security application takes place. For example, fast near field file transmission application

1



[3] transmits files between two smart devices only when they are in the near field. Authen-

ticating the physical proximity of the two devices is therefore essential to the success of

such applications.

1.1 Password-Based Authenticated Key Exchange

In many cases, security applications want authentication not only to verify the claim

but also to output an integer number. The integer number is then used as a session key to

protect the follow-up conversations in the application. Therefore, we require the integer

number to be as random as possible, i.e., a random integer of high entropy. Password-

based authenticated key exchange (PAKE) is such an authentication protocol that generates

a high-entropy random integer from the same low-entropy password shared between two

parties involved in the authentication. The phrase “low entropy” means the password is

chosen from a small set of possible values. This small set is called dictionary. We will use

PAKE many times in the following chapters of this dissertation.

In the model of PAKE, two involved parties share a short, low-entropy password and

they want to agree on a high-entropy random integer that can be used as a cryptographic

key. They want to achieve this in the presence of a powerful and malicious attacker, who

fully controls the communication channels and can perform any attack. Since a password

is of low entropy, the brute force method that tries all the possible values in the dictionary

succeeds after a small number of attempts during the authentication. This attack is called

on-line dictionary attack and is inevitable. However, to limit its damage, we can adopt

a policy that a password is invalidated or blocked if a certain number of failed attempts

have occurred. Therefore, one of PAKE’s security goals is to ensure that online-dictionary

attacks can be detected. In another attack, an attacker makes active or passive attacks during

an authentication, and then performs brute-force attacks on the password dictionary in a off-

2



line way, i.e., no communications with the two parties involved in the authentication. This

attack is called off-line attack and should be fully prevented by a PAKE protocol. PAKE

is generally divided into two types, two-party PAKE and group PAKE. We are about to

mainly use and discuss two-party PAKE in this dissertation.

Bellovin and Merrit [15] proposed the first PAKE scheme, the so-called Encrypted

KEy Exchange (EKE). Their scheme is based on an ideal cipher, which is supposed to be a

random permutation over a plaintext block for each given key. An attacker cannot infer any

information about the output by encrypting any other block or the same block under any

other key. The ideal cipher model is a heuristic rather than a plausibly true case in practise.

Many extensions and analyses [5, 14, 20, 21] have been proposed to reduce the needs for

ideal cipher but none of these works eliminated the ideal cipher from the protocol.

Katz, Ostrovsky, and Yung [56] proposed the first practical scheme that does not

need an ideal cipher, i.e., works in standard model. The scheme assumes a common ref-

erence string from which each party can retrieve needed random strings. The common

reference string model is plausible in a practical sense because a implementation can hard

code all the needed strings in the program. The protocol takes place between a client and a

server, and is described below.

• Initialization: provided a security parameter k, the protocol selects three other pa-

rameters: 1) a multiplicative group G of prime order q where q is of k bits, 2) ran-

dom generators g1, g2, h, c, d ∈ Ḡ, where Ḡ def
= G\{1}, and 3) a hash function

H : {0,1}∗→ Zq chosen at random from a collision-resistant hash family.

• The client generates a key pair (V K,SK) for signature, where V K and SK are re-

spectively verification key and signing key. Picking a random integer r1← Zq, the

client calculates A = gr1
1 , B = gr1

2 , and C = hr1 · pwc, where pwc is the client’s pass-

3



word. Next, the client combines all the necessary information together by using

hash function: α = H(PID|V K|A|B|C), where PID is a string that uniquely identi-

fies this execution. The original protocol proposed to use the concatenation of the

client’s name and the server’s name as PID. After obtaining α , the clients calculates

D = (cdα)r1 . Finally, the client sends message Client|V K|A|B|C|D to the sever. This

message is denoted by msg1.

• The server selects five random integers x2, y2, z2, w2, r2 ← Zq. Combining his

version of the client’s information together: α ′ = H(PID|V K|A|B|C), the server cal-

culates E = gx2
1 gy2

2 hz2(cdα ′)w2 , F = gr2
1 , G= gr2

2 , and I = hr2 · pws. The server receives

the aforementioned message, msg1. The server combines the message with his own

information together: β = H(msg1|Server|E|F |G|I), and calculates J = (cdβ )r2 . Fi-

nally, the server sends message Server|E|F |G|I|J to the client and this message is

denoted by msg2.

• The client selects four random integers x1, y1, z1, w1 ← Zq, and calculates β ′ =

H(msg1|Server|E|F |G|I) and K = gx1
1 gy1

2 hz1(cdβ ′)w1 . The client signs all the trans-

mitted messages Sig← SignSK(msg1|msg2|K) and sends K|Sig to the server.

• The server verifies the signature using VrfyV K(msg1|msg2|K,Sig). If it is not true,

the server aborts the protocol. Otherwise, the server calculates C′ = C/pws and

obtains his session key sks = Ax2By2(C′)z2Dw2Kr2 .

• The clients calculates I′= I/pwc and obtains his session key skc =Fx1Gy1(I′)z1Jw1Er1 .

First of all, the two resulting session keys are identical if the client and the server

have the same password, pws = pwc. The correctness can be verified by the following

4



equations

Er1 = (gx2
1 gy2

2 hz2(cdα)w2)r1

= (gr1
1 )

x2(gr1
2 )

y2(hr1)z2((cdα)r1)w2

= Ax2By2(C′)z2Dw2

and

Kr2 = (gx1
1 gy1

2 hz1(cdβ ′)w1)r2

= (gr2
1 )

x1(gr2
2 )

y1(hr2)z1((cdβ )r2)w1

= Fx1Gy1(I′)z1Jw1.

Therefore:

skc = Er1(Fx1Gy1(I′)z1Jw1) = (Ax2By2(C′)z2Dw2)Kr2 = sks.

Here, we assume that α = α ′, β = β ′, and pwc = pws in an if both parties are honest.

The basic idea of protecting passwords from being eavesdropped is not to use

it directly in any communication message. Instead, a ciphertext of the password, i.e.,

A, B, C, D or F, G, I, J, is transmitted over the channel. Even if the attacker is able

to capture the ciphertext, he cannot learn anything about the password. The two parties in-

volved in the protocol do not need to decrypt the ciphertext since they only want to achieve

the same integer. Each member multiplies all the intermediate integers together and cancels

his own password from the multiplication result. Hence, they can obtain the same number

if the two password are identical. The reason why an online-dictionary attack can be pre-

vented is that the result session key skc or sks is generated at random by each execution and

is bounded with the intermediate communication messages. Without replaying the entire

protocol with an honest party, an attacker cannot carry out a brute force attack. After that,

many works [4, 24, 43, 57] have been proposed to achieve security in the UC framework,

to enhance round efficiency, or to depend on new assumptions.
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Many efficient protocols have been proposed. Among these protocols, SPEKE is

an outstanding one that has been standardized [2]. SPEKE was first described by David

Jablon [47]. In its first construction, SPEKE was not secure and Jablon thus proposed a

refined construction in [48]. SPEKE has been proved to be secure in random oracle model

by Philip MacKenzie [70]. SPEKE works as follows.

• The client and the server agree on a randomly selected safe prime p and a cryp-

tographic hash function H. Again, the client and the server hold their individual

password pwc and pws, which are identical if both parties are honest.

• The client and the server respectively construct gc = H(pwc)
2 mod p and gs =

H(pws)
2 mod p. Here, squaring makes the resulting integer a generator of quadratic

residue subgroup of the multiplicative group of integers modulo p.

• The client selects an integer at random a← Z and sends the server ga mod p.

• The server selects an integer at random b← Z and sends the client gb mod p.

• The client and the server each abort if their received values are not in the range

[2, p−2]. This is to prevent small subgroup confinement attack [66].

• The client computes session key skc = (gb mod p)a mod p.

• The server computes session key sks = (ga mod p)b mod p.

It is obvious that the server and the client arrive at the same session key if they have

the same password. The protocol protects the confidentiality of the password by using one-

way hash function which gives a unique digest for a given password. The digest is supposed

to not leak any information about the password. This assumption is true in random oracle

model.
6



1.2 Overiew and Contributions

This dissertation discusses and studies two important authentication problems for

smart devices — user identity authentication and proximity authentication. For identity

authentication, we study the disadvantages of password based user authentications that is

widely used on current smart devices.

We explore the features of smart devices and utilize the features to construct an

identity authentication that overcomes the disadvantages of password based authentica-

tions and is suitable for smart devices. Proximity authentication is a new authentication

technique that emerges with the widespread use of smart devices. Most existing proximity

authentication scheme either requires an extra equipment or cannot restrict the two devices

in a short proximity range. We study this interesting problem and propose two authentica-

tion systems that both overcome the aforementioned disadvantages. We call an authentica-

tion that can restrict the distance within a few centimeters a near field authentication (NFA).

One scheme is to use human finger movement to restrict the physical distance between the

two devices. The other scheme achieves the authentication based on the physical properties

of sound.

1.2.1 User Authentication for Smartphones

For smartphones, the biggest issue of traditional password based authentication is that it

interrupts the user-smartphone interactions. Users have to stop current session to input

the password. The small virtual keyboard on most smartphones makes this process much

more annoying since people often press wrong keys. In this study, we propose a novel user

authentication scheme based on human finger movement patterns. The main contributions

of this study are listed below.
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Contributions:

• We propose and study the unobservable smartphone re-authentication problem. We

design a novel system architecture especially for smartphones to reduce the compu-

tational overhead on smartphones.

• We propose to use the finger movement as a biometric characteristic to authenticate

a user. When users use smartphones, the smartphones sense the users finger move-

ments and interpret the sensed data as different gestures. Since users have to use

gestures to interact with smartphones in most cases, our proposed approach can en-

force re-authentication to every user. In addition, our approach can continuously re-

authenticate the current user without being noticed by the user.

• We propose an efficient biometric-based re-authentication system for smartphones

using the classification method. We design the biometric features for the classifi-

cation algorithm and discuss their performance. We implemented our system on

a Motorola Droid smartphone to demonstrate its efficiency. Extensive experiments

were performed to evaluate the effectiveness of the features and the performance of

our system.

1.2.2 Finger Movement Based NFA

The purpose of this study is to provide the NFA on most off-the-shelf devices. The proposed

NFA system achieves NFA by using human finger movement on the touch screens of two

nearby smart devices. Human input usually contains errors and is of low entropy, which

affects the usability and security of a system. For these issues, we provide efficient solutions

that can execute on the smart devices of limited resources. An outstanding feature of the

proposed system is that it does not need any prior secret information shared between the
8



two devices involved in the authentication. For a successful authentication, the system

generates the same high-entropy cryptographic key for both devices. Finally, we build a

prototype on a Motorola Droid smartphone to demonstrate the efficiency of the system.

Contributions:

• We propose to use zigzag on-screen finger movements to perform near field authen-

tication between two smart devices. Compared with the previous motion patterns,

such as bump, shake, etc., finger movements are easier to carry out and provides

better user experience. Another advantage is that finger movements are small and

hard-to-catch motions. The movements are hard to be observed and emulated by a

nearby attacker, which is a possible attack to the bump system [1].

• We design a robust feature so that two extracted feature data sets are similar to each

other. Zigzag finger movements provide many features, such as curvatures, curvature

distance, moving time, etc. We propose to use the time between the starting point

and a peak point as the feature to be extracted in our system. The reason behind this

choice is that people’s finger usually moves slowly, or even a short-time pause, when

it turns at a curve peak point. Although the time is too short to be noticed by human

eyes, it is long enough to be sensed by touch screens. This makes the elapsed time of

two corresponding peak points very similar to each other.

• We propose an efficient system to remove the differences between two extracted fea-

ture data sets and generate a high-entropy cryptographic key. We design an efficient

approach using a private set intersection protocol to reconciliate the two feature data

sets. As pointed out previously, the feature data is of low entropy. We use the en-

crypted key exchange technique to defend against dictionary attacks and generate a

high-entropy key.

9



• Our system is efficient. The efficiency of our system is twofold: 1) it requires less

human involvement; 2) the computation overhead of our system is not heavy, which

is demonstrated in our evaluation.

1.2.3 Acoustic NFA

The above finger movement based NFA system makes a solid step toward useful NFAs and

is suitable for many scenarios. However, the system suffers from its non-automation and

the human assistance makes the system not suitable for highly frequent authentications.

For example, if a web server adopts smartphone based two-factor authentication (SBTFA),

the browser and the smartphone may want to perform NFA in a high frequency during the

entire web session. In addition, relay attacks pose a serious threat to existing approaches

for proximity authentications. In this study, we present a novel NFA system that restricts

the distance between the two devices to the scale of several centimeters. When the au-

thentication succeeds, the system generate an assertion that can be used as an evidence of

the authentication. Our system explores acoustic communications and can prevent relay

attacks. The generated assertion is a confidential binary sequence known only to the two

devices. Our system is fully automated and light-weight, as demonstrated by extensive

evaluations on a prototype.

Contributions:

• It asserts whether two communicating devices are in the near field (a few centimeters)

of each other. We use the term “near field” instead of “proximity” to emphasize that

the asserted distance can be as small as a few centimeters. A device can prove that it

is in the near field by presenting the assertion to the other party.

• It can prevent relay attacks. Dolphin has an adjustable time window limiting an
10



attacker’s relay time. A prudent implementation leaves an attacker no time to relay

messages.

• It requires no extra equipments and can be easily deployed on off-the-shelf devices.

Dolphin is a fully auto- mated system and needs no human interactions.

• A valid near field assertion generated by Dolphin is a binary sequence and confi-

dential to the two devices that execute Dolphin. This property is important for ap-

plications that generate a cryptographic session key based on the devices’ proximity

relations, such as one-time file sharing between two proximate smartphones [3].

• It is light-weight and battery friendly for smartphones.
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CHAPTER 2

User Identity Authentication for Smart Devices

The past few years have witnessed an exponential growth of smartphones, in both technol-

ogy and market shares. According to a research done by canalys [23], smartphones were

sold about 73 million more than personal computers (PCs) in 2011. Compared with PCs,

smartphones are more privately owned. People may share a desktop, but few are willing to

share their smartphones.

At the same time, smartphones are becoming an important personal entrance to var-

ious networks, such as the Internet or online social networks. Many apps and websites now

allow people to store their accounts, profiles, passwords, etc., in smartphones for automatic

re-access. Besides, people also use smartphones to keep contact with friends and families,

take pictures of special moments, and arrange schedules. No one would like to disclose

such information to an untrusted person. However, due to its small size, a smartphone

could be easily taken away by an attacker. The attacker can acquire a good profit from re-

selling stolen smartphones. It is reported by lookout.com that $2.5 billion worth of devices

were lost or stolen in 2011 [67]. Besides, having a victim’s private information, an attacker

can steal the victim’s identity and launch impersonation attacks in networks. Such attacks

substantially threaten the security of the networks, especially online social networks. Im-

personation attacks also threaten most current trust and reputation systems for networks.
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Therefore, protecting smartphones against unauthorized usage has significant meaning to

safeguarding users’ privacy and network security. A smartphone can alert the owner and

lock itself when unauthorized usage is detected, which will inhibit most smartphone thefts.

To prevent unauthorized usage of smartphones, a re-authentication system is more

suitable than an authentication system. An authentication system authenticates a user for

one time when he logs in, such as inputting a password to unlock a smartphone. The

purpose of a re-authentication system is to continuously authenticate the current user during

the whole system execution. In the absence of re-authentication, it is easy for an attacker to

access a smartphone if the owner forgets to lock it and leaves it in a public place. Even if the

smartphone is locked, an attacker can use operating system (OS) flaws to bypass the lock

screen, which is reported to exist in Android [53] and iOS [49] systems. The continuous

protection provided by re-authentication is necessary for smartphones.

A straightforward re-authentication approach is to periodically invoke an authenti-

cation system, such as asking the user to enter a password [106]. This approach interrupts

user-smartphone interactions and leads to bad user experiences. For smartphones, it is

preferable that the re-authentication takes place in a way that users do not “observe” its

existence.

Current short unlock passwords, such as 6-digit numbers, cannot protect smart-

phones against a powerful attacker. However, long and complicated passwords are difficult

to memorize. Hence, a re-authentication system should rely on certain “password” that

is easy to memorize but difficult to forge. A good candidate for such passwords is the

owner’s biological data. Many works have studied biometric-based authentication, such

as fingerprint recognition [27], face recognition [35], and iris recognition [83]. However,

these methods are not suitable for smartphone re-authentication because they either rely on

special equipments, which are not available for smartphones, or need the users to stop in-
14



teractions to assist the re-authentication. In addition, continuous face recognition requires

keeping the camera on all the time, which dramatically reduces a smartphone’s battery life.

In this study, we propose a re-authentication system for smartphones using users’

finger movements. The system first learns the owner’s finger movement patterns, keeps

running in the background, continuously monitors the current user’s finger movement, and

compares the current user’s movement patterns against the owner’s patterns. Our system

does not need user assistance in re-authentication and users are not aware of its execution.

The main contributions of our work are as follows:

• We propose and study the unobservable smartphone re-authentication problem. We

design a novel system architecture especially for smartphones to reduce the compu-

tational overhead on smartphones.

• We propose to use the finger movement as a biometric characteristic to authenti-

cate a user. When users use smartphones, the smartphones sense the users’ finger

movements and interpret the sensed data as different gestures. Since users have to

use gestures to interact with smartphones in most cases, our proposed approach can

enforce re-authentication to every user. In addition, our approach can continuously

re-authenticate the current user without being noticed by the user.

• We propose an efficient biometric-based re-authentication system for smartphones

using the classification method. We design the biometric features for the classifi-

cation algorithm and discuss their performance. We implemented our system on

a Motorola Droid smartphone to demonstrate its efficiency. Extensive experiments

were performed to evaluate the effectiveness of the features and the performance of

our system.
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The rest of this chapter is organized as follows. We introduce the background and

related work in Section 2.1. The attack model is introduced in Section 2.2. We discuss

the design goals for a smartphone re-authentication system in Section 2.3. We present our

re-authentication system in Section 2.4. We discuss the feature design and selection in

Section 2.5. We evaluate our re-authentication system in Section 2.6, and conclude our

work in Section 2.7.

2.1 Background and Related Work

Compared with traditional authentications, biometric-based authentications are easy

to carry out, natural to use, and invulnerable to forgery. Traditional approaches are based

on possessions of secret information, such as passwords. Biometric based approaches make

use of distinct personal features, such as fingerprint or iris.

A biometric-based re-authentication system involves an enrollment phase and a re-

authentication phase. A user is enrolled by providing his biological data. The system learns

patterns from the provided data and stores the learned patterns for future reference. During

the re-authentication phase, the system compares the observed biological data against the

stored data to re-authenticate a user.

Previous studies on biometric-based re-authentication concentrated on either physi-

ological or behavioral features [103]. Physiological biometrics study static physical fea-

tures of humans. Currently, there are many different physiological biometrics for re-

authentication, such as fingerprint [27], face patterns [35], and iris [83]. However, phys-

iological biometric-based re-authentication approaches usually rely on specific devices,

which are unavailable on most smartphones. In addition, most approaches need human as-

sistance in the re-authentication. For example, most face recognition systems need the users

to stay still at a specific angle to the camera during re-authentication. Hence, these physio-
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logical biometric-based approaches cannot achieve continuous unobservable re-authentication.

Behavioral biometrics assume that people have distinct stable patterns on a certain

behavior, such as keystrokes on a keyboard. Behavioral biometric-based re-authentication

uses the behavior patterns to authenticate a user’s identity. For personal computers, most

previous studies concentrated on two operations: keystrokes [16, 74, 75] and mouse move-

ments [54, 107]. Typing actions happen much less frequently on smartphones than on

personal computers, because people hardly use smartphones to do heavy text input. There-

fore, it is difficult to collect a sufficient number of keystrokes on smartphones for re-

authentication.

Although smartphones do not have mouse input devices, previous studies [7, 76]

on mouse movements help us to understand finger movements on smartphones. Hence, we

give more detailed review of prior works on mouse movements.

2.1.1 Mouse Movements

When a mouse moves, the hardware captures the movement and sends the mouse events

to the OS, including raw movement coordinates, button up, and button down events. The

OS interprets these mouse events to a series of point data, which form a mouse movement.

In the approach proposed by Ahmed and Traore, point data are aggregated as point-and-

click or drag-and-drop actions [6, 7]. A point-and-click action contains a click event and

a mouse movement following the click. A drag-and-drop action is a mouse movement

with one button pressed down. The reason to study the two actions is that they are both

performed intentionally by users. Ahmed and Traore characterized each action using action

type, moving distance, duration, and direction [7]. They computed 39 dynamics related

features and used a neural network to classify new observed actions.
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Recently, Zheng et al. [107] proposed to use only the point-and-click action and

three features: direction, angle of curvature, and curvature distance, to authenticate a user.

The classifier they used is SVM. They aggregated the features of 20 point-and-click actions

as a feature vector. Their work required 20 mouse movements, compared with 2000 mouse

movements required in Ahmed and Traore’s work [7]. This reduction decreases the data

collection time and hence increases the re-authentication frequency. In their work, they

collected 81218 point-and-click actions from 30 users in a controllable environment and

one hour raw mouse events from 1074 anonymous users from an online forum. The average

false rejection rate and the average false acceptance rate were both 1.3% in their tests.

In another approach, Pusara and Brodley utilized the connections between each pair

of points within a window of a configurable size [82]. The features, such as angle, distance,

and speed, were extracted from the points rather than the actions. They used C5.0 decision

tree as the classifier in their system, which achieved an average false acceptance rate of

0.43% and an average false rejection rate of 1.75% in the experiments on an eleven-user

data set. Gamboa and Fred [39] aggregated the points between two clicks. Each click is

represented by 63 features. For each user, they proposed a greedy approach to reduce the

feature set to a best fit subset.

2.1.2 Smartphone Features

One of the biggest differences between personal computers and smartphones is that smart-

phones are equipped with many sensors, such as multi-touch screen, accelerometer, and gy-

roscope. Although different smartphones may have different sensors, multi-touch screen,

accelerometer, and compass are provided by most smartphones.

Multi-touch screen is a basic equipment on a smartphone. A multi-touch screen is able to
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respond to more than one finger touch. The number of supported touch points varies

from device to device. Some basic screens can only support two touch points while

some advanced ones are able to support up to ten touch points. The multi-touch

screen records the touch position, touch area, and touch pressure, packs them as a

single touch event, and sends it to the OS. A series of touch events are connected

together and recognized as different gestures, such as sliding, tap, double tap, or

spread.

Accelerometer measures the phone’s acceleration on three axis, x, y, and z [42]. This

captures a smartphone position in a three-dimensional space.

Orientation indicates whether a smartphone is held in portrait mode or landscape mode.

Compass measures the position of magnetic north in relation to the X, Y, and Z axies of

the phone.

Various sensors in smartphones provide a lot of biological data of a user, which can be used

in biometric-based authentication. Some previous works have studied using smartphone

sensors for security purpose. Some works used accelerometer to sense a person’s shake

motion data to securely pair two devices [25, 72]. Mäntyjärvi et al. first considered using

sensors to record users’ behavioral patterns and to continuously re-authenticate a user [71].

They suggested to use accelerometer and orientation sensors to monitor a user’s walking

patterns. Their approach can successfully recognize a user at rates between 60% and 85%.

Okumura et al. proposed to authenticate a user using the accelerometer data sensed when

the user is swinging his arm [79]. Instead of using the false acceptance rate or the false

rejection rate, they claimed their system’s equal error rate – the error rate when the false

acceptance rate is equal to the false rejection rate – was able to achieve as low as 5%.

Recently, Conti et al. proposed to re-authenticate a user using the arm movement patterns,
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sensed by the accelerometer and orientation sensors, while the user is making a phone call

[30]. They achieved a false acceptance rate of 4.44% and a false rejection rate of 9.33% in

their tests.

Recently, Biometric Signature ID company has proposed to use gesture based sig-

nature to re-authenticate a user in the log-in phase [17]. This approach records a user’s

signature during the enrollment phase and compares an input signature against the recorded

one during re-authentication. Luca et al. [33] proposed to use gesture information, such as

touching area or duration, as an additional re-authentication approach on top of the current

password pattern approach. The two methods are both one time re-authentication and will

interrupt user-smartphone interactions if they want to achieve continuous re-authentication.

Different from these works, our system aims to provide a continuous unobservable re-

authentication.

Existing continuous re-authentication approaches have paid extensive attention to

the accelerometer and orientation sensors and used behaviors that may not happen during

an attack in our scenario. For example, an impostor may not swing arms when he uses a

victim’s smartphone. Therefore, we need an approach that can continuously re-authenticate

a user as long as he is using the smartphone. We propose to use and monitor the gesture

on smartphone touch screen, which is the most important and necessary interface between

users and the smartphone OS.

2.1.3 Smartphone Gesture Patterns

Here we first give several observations on smartphone gestures, which differentiate the

finger movement on smartphones from the mouse movement on computers.

Usage Intermittence: people may not always use smartphones for a long time.
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Typical usages are to wake up a smartphone, click an email app, check if there is any

new email, and then turn off the screen. The collected gestures are thus not temporarily

continuous.

Spacial Disconnection: In the study on mouse movement patterns, each movement

can be captured by hardwares and used to formulate patterns, such as the point-and-click

patterns. On smartphones, not every finger movement can be captured by a touch screen.

For example, a user lifts up his finger, moves in the air, and clicks a link on a webpage. In

these cases, the screen cannot capture the finger movement in the air, which corresponds to

the point action in mouse movements.

Orientation Dependent: Users may use smartphones in either portrait or landscape

orientations. Users’ gestures have different patterns in different orientations. For example,

a sliding up distance becomes shorter in the landscape mode.

2.2 Attack Model

We consider an attacker who has physical access to the smartphone and wants to

use the resources in it, such as applications or music. For example, an attacker may steal

a victim’s smartphone and enjoy the music in it without paying any money. The attacker

may also steal the network account information and the personal information stored in the

smartphone. For example, the attacker can post a fake message in a social network using

the victim’s account. The purpose of our work is to design a continuous re-authentication

system running in the background. The system keeps authenticating the current user in an

unobservable way, i.e., it does not interrupt the user’s interactions with the smartphone.

In this paper, we only consider the authentication of a user against the smartphone owner,

because a smartphone is usually privately owned and not shared by multiple users. If the

user is found to be a stranger, the re-authentication system alerts the OS.
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2.3 Design Goals

We summarize the goals that a smartphone re-authentication system should achieve

in the following.

• Continuity: A smartphone re-authentication system should keep authenticating the

current user as long as the smartphone is being used.

• Unobservability: A smartphone re-authentication system should neither interrupt

user-smartphone interactions nor need human assistance during re-authentication.

• Light-weight: A smartphone re-authentication system should not need intensive

computations on smartphones.

2.4 Approach

We are ready to present our smartphone re-authentication system, which achieves

the design goals discussed in the above section.

Our idea stems from the observation that users’ finger movements on smartphone

screens are different from person to person when they use smartphones. For example, some

people like to use the index finger to slide up the content displayed on the screen while some

people prefer to use the thumb. Following customs in smartphone development, we call a

continuous finger movement on the screen a gesture. We assume that a user’s gestures

contain his distinct behavioral characteristics.

Our work uses such characteristics to re-authenticate users. We illustrate our system

architecture in Figure 2.1. Considering the limited computational and storage resources in

a smartphone, our system is divided into two modules, the re-authentication module and the

training module. The re-authentication module is deployed in a smartphone and the training
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Figure 2.1: System Architecture

module is executed on a PC. To provide a better security and performance guarantee, we

suggest to implement the re-authentication module as part of the smartphone OS services

in practice.

The re-authentication module keeps running in the background of smartphones. It

monitors a user’s raw touch event data and sends it to the preprocessing component, which

assembles every single raw data into different gestures and then sends them to the feature

extraction component. The latter component extracts features from the gesture data, forms

a feature vector, and feeds it into the predictor component. Finally, the predictor component

makes a prediction. If the feature vector is predicted to be from the smartphone owner, this

re-authentication is passed. Otherwise, an alert message will be sent to the OS. Different

OSs may take different actions in response to the alert. One possible action is to lock the

system and ask the user to input an administrator password. Another possible action is to

send a message, with the current GPS information in it, to the owner’s e-mail box.
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The predictor component consists of a classifier and multiple classification mod-

ules, as shown in Figure 2.2. A classifier is a classification algorithm that uses an object’s

feature vector to identify which class the object belongs to. The classification algorithm

used in our work is the support vector machine (SVM) algorithm. Each classification mod-

ule is in charge of a main gesture type or a combination of a main gesture type and an

auxiliary type. A classification module is a file containing parameters for the classification

algorithm and determines the classifier’s functionality. The basic classification algorithm is

embedded in the classifier. Using different classification modules, the classifier can make

predictions on feature vectors of different gesture types. When a feature vector is fed in,

the classifier chooses a corresponding classification module and makes a prediction.

classifierfeature 
vector prediction

Module 1 Module 2 Module 3 Module n

Figure 2.2: Predictor Component

The training module is executed on the owner’s PC, because it requires significant

computations. When a smartphone owner first enrolls in the system, the system collects

the owner’s gesture features by using the touch monitoring, preprocessing, and feature ex-

traction components of the re-authentication module. Our system deploys a trusted data

server to collect feature data from smartphone owners and downloads them to the train-

ing modules when necessary. To protect an owner’s privacy, the data collection is done

anonymously. This can be achieved by using anonymous group messaging [31, 104]. A

fixed number of a user’s feature data and a time stamp form a ready-to-submit feature mes-

sage. Every user in our system is a group member and the server is the data collector in
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the anonymous group messaging system. The users collaboratively shuffle their messages

before the messages are handed in to the server. Eventually, the server does not know the

connection between a message and its owner. In this way, a user’s training module can use

other users’ feature data but has no way to know the user identities. We note that a user only

wants to download other users’ feature data. Therefore, a user compares every downloaded

feature message against his own submissions and drops the one that is the same with one of

his submissions. The comparison can be based on the hash value of the messages to reduce

the time and storage overhead.

The training module uses the owner’s features and other people’s features in the

training algorithm to obtain classification modules. After training, the classification mod-

ules are downloaded onto the smartphone. The training module anonymously uploads the

owner’s data to the trusted server and obtains anonymous features from it. We note that this

trusted data server does not participate in the re-authentication and is only needed when an

owner wants to re-train his classification modules, which is done offline and on-demand.

Therefore, our system does not pose a high requirement on the communication delay be-

tween smartphones and the server.

An owner’s usage pattern usually stays stable. But sometimes, the owner may

change his usage pattern over weeks or months, which may cause more false alarms. When

this happens, the classification modules need to be re-trained. To keep the modules up

to date, our system also allows an on-demand re-training. When the owner requests a re-

training, the re-authentication module captures the owner’s gestures, calculates and uploads

the owner’s feature vectors to the training module. The training module then downloads

anonymous feature messages from the server, filters out his own submissions, and runs the

classifier training algorithm again to obtain new classification modules.
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We note that the access to the system enrollment and re-training process should

be restricted to the smartphone owner only. This can be achieved, for example, by using

traditional password based protection.

2.5 Characterizing Gestures

Our system monitors five types of gestures: sliding up, sliding down, sliding left,

sliding right, and tap, as shown in Figure 2.3. Usually, slidings are used to move contents

sliding 
right

sliding 
left

sliding 
down

sliding 
up

tap

Figure 2.3: Five Essential Gestures

displayed on the screen and tap is used to click a link or a button within the contents. Al-

though there are some other gestures, such as double tap, spread, and pinch, the five gesture

types are the most often used types when users interact with smartphones. We collected 75

users’ gestures when they used smartphones. We show the proportions of different gesture

types in a pie chart in Figure 2.4. It shows that the above five types of gestures take a

dominant part of all the gestures. In other words, most users inevitably used at least one of

the above gesture types when they used smartphones. As shown in Figure 2.4, slidings and

taps occupy 88.8% of all the gestures. We remark that we do not consider virtual keyboard

strokes here, because they are not suitable for smartphone re-authentications. Keystroke

based authentications usually need a number of continuous keystrokes, but most users do

not continuously input many texts on smartphones. In addition, an attacker can use a vic-
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Figure 2.4: Pie Chart for Collected Gestures

tim’s smartphone without many continuous keystrokes.

Users can hold smartphones in either portrait mode or landscape mode. As pointed

out in Section 2.1.3, the orientation mode affects a user’s gesture patterns. Hence, our

system has two classification modules for every gesture to deal with each orientation mode.

2.5.1 Data Collection

The open-source Android system is selected as our implementation platform. Specifically,

all of our experiments and data collections were carried out on Android 2.2.2. The first

thing we need is a program that can monitor a user’s finger movements in the background.

However, for security reasons, Android requires that only the topmost apps can obtain

touch events, dispatched from the Android system management service. In other words,

we cannot enjoy the convenience that Android API provides to developers and have to

work around this problem. We found that Android relies on Linux kernel for core system

services, including the maintenance of hardware drivers [41]. When some touch event

happens, a screen reads in raw data and sends it to the Linux kernel. The kernel then

packages the raw data and sends it to the upper layer Android library. Since we cannot get
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input data from Android API, our idea is to read input data directly from lower layer Linux

kernel.

Linux kernel uses device files to manage devices, located under the directory /dev/.

Same as other devices, a multi-touch screen also has a corresponding device file, say

/dev/event3. When the multi-touch screen reads inputs, the data are put in the device file

by the kernel. The data orgnization follows the Linux multi-touch event protocol [86]. In

the protocol, touch details, such as position, touch area, pressure, etc., are sent sequentially

as Linux ABS event packets [86]. Each packet contains an ABS event indicating a specific

touch data. Packets are separated by a SYN_MT_REPORT event (type 0002). When all touch

packets in a multi-touch action arrive, a SYN_REPORT event (type 0000) is generated. A

typical multi-touch ABS packet is as follows:

0003 0030 00000005

0003 0032 00000018

0003 0035 000002b6

0003 0036 00000296

0000 0002 00000000

0003 0030 00000003

0003 0032 00000012

0003 0035 0000024d

0003 0036 000001e4

0000 0002 00000000

0000 0000 00000000

The first byte indicates the event type: 0003 is an ABS event and 0000 is an SYN event.

The second byte indicates the data type: 0030 is ABS_MT_TOUCH_MAJOR major axis of
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touch ellipse; 0032 is ABS_MT_WIDTH_MAJOR major axis of approaching ellipse; 0035 and

0036 are ABS_MT_POSITION_X and ABS_MT_POSITION_Y, respectively, giving the cen-

tral position of an ellipse. These four basic data types are supported by all Android

smartphones. Other data types include ABS_MT_TOUCH_MINOR, ABS_MT_WIDTH_MINOR,

ABS_MT_ORIENTATION, ABS_MT_TOOL_TYPE, ABS_MT_BLOB_ID, and ABS_MT_TRACKING_ID.

The multi-touch protocol recognizes a finger touch area as an ellipse and describes it using

its major and minor axises. Some low-end devices, such as the Motorola Droid smartphone

we used, recognize a touch area as a circle and omit the minor axis value. TOUCH type data

describes the area that a finger directly contacts the screen and WIDTH type data describes

the shape of a finger itself. The ration of ABS_MT_TOUCH_MAJOR/ABS_MT_WIDTH_MAJOR

gives the touch pressure. The last two bytes in each line represent the data value. The

above packet contains two finger data details, separated by 0000 0002 00000000.

Our monitoring program needs the root privilege to hack into the lower layer of an

Android system. Such a re-authentication system is usually integrated into the OS and can

be granted the root privilege by the OS.

We carried out our data collection and all the experiments on two Motorola Droid

phones, with 550MHz A8 processor, 256MB memory, 16GB sdcard, and Android 2.2.2

OS. In order to collect gesture data, 75 users were invited to take away our smartphones

for days and use them freely. We did not specify any requirement on the usage and let

the users use the smartphone in any way they feel comfortable. The users can browse web

pages, including news, online forums, social network websites, etc., or use the installed

apps, such as twitter, facebook, google reader, etc. Users were not required to continuously

use the smartphone. They could lock the smartphone and resume using it later. In summary,

we want the participants to use smartphones in the same way that they use their personal

smartphones in their daily life.
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2.5.2 Metric Design

Good features are critical to a supervised machine learning approach, which is used in our

system. In this section, we design the metrics to characterize the five types of gestures. In

Section 2.5.3, we test whether a metric is good and drop the bad ones. A feature is the

average metric value over a block of gesture data.

2.5.2.1 Metrics of Sliding

First, we inspect what happens during a sliding gesture. Figure 2.5 shows the sensed data

of a sliding gesture, a sliding up, recorded by our touch monitoring component. We note
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Figure 2.5: A Sliding Up Gesture

that the coordinate on the smartphone platform puts the origin at the top left corner of a

screen. Each circle represents a finger touch, because Motorola Droid phone views a finger

touch as a circle. The size of a circle shows the size of the touch area and the brightness

of a circle shows the strength of the touch pressure. The movement starts at point F and

ends at point C. The time between every pair of circles is the same. Apparently, the finger

moves slowly at first, then faster, because the circles become sparser as the finger moves.

Our first interesting observation – which is different from our intuition – is that the
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maximum touch area may not happen at the first touch and the minimum pressure may

not happen at the last touch. As can be seen from the figure, the touch point P has the

largest touch area and point Q has the smallest touch pressure, both of which are neither

the first touch nor the last touch. Another observation is that strong pressures happen at the

beginning of a sliding. Despite the first 5 points, the variations of touch pressures are not

as big as that of touch areas.

We propose the following metrics for a sliding gesture:

• First touch position: the coordinates, x and y, of the starting point in a sliding.

• First touch pressure: the pressure of the first touch.

• First touch area: the touch area of the first touch.

• First moving direction: the moving direction of a touch point is the angle between

the horizontal line and the line crossing the point and its succeeding point. The angle

α in Figure 2.5 is the moving direction of point A. First moving direction is the

moving direction of the starting point.

• Moving distance: the total distance of the sliding gesture. Particularly, it is the

summation of the distances between every two continuous touch points.

• Duration: the time duration of the whole sliding gesture.

• Average moving direction: the average value of all the point’s moving directions.

We note that the last point is not counted, because it does not have a moving direction.

• Average moving curvature: given any three temporally continuous touch points,

such as A, B, and C in Figure 2.5, the corresponding moving curvature is angle ∠ABC.
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The average value of the moving curvatures in the sliding gesture is selected as a

metric.

• Average curvature distance: given any three consecutive points, such as A, B, and

C in Figure 2.5, the corresponding curvature distance is the distance from point B to

line AC. We take the average of all the curvature distances as a metric.

• Average Pressure: the average of all the touch pressures in the sliding gesture.

• Average touch area: average of all the touch areas.

• Max-area portion: we index all the points according to the time order, starting from

1. The max-area proportion of the sliding gesture is the index of the max area touch

point divided by the total number of the points in the sliding. This metric reflects

which portion of the sliding contains the maximum touch point.

• Min-pressure portion: Similar to max-area portion, the min-pressure portion is the

index of the minimum pressure touch point divided by the total number of the points.

The final feature vector is calculated over a block of sliding gestures. The block size is

denoted by ns. Each feature value in the feature vector corresponds to an average metric

value over the block of sliding gestures.

2.5.2.2 Metrics of Tap

Tap is a simple gesture and does not provide much information about a user’s finger move-

ment patterns. In contrast to our intuition, many tap gestures contain more than one touch

points. It is due to the screen’s high sample frequency and the slight tremble of a user’s

fingertip when he is touching above the screen. The metrics for a given tap gesture are as

follows:
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• Average touch area: the average of all the touch areas.

• Duration: time duration of the tap gesture.

• Average pressure: the average of all the touch pressures.

Similar to the calculation of a sliding feature vector, a tap feature vector is also the average

metric values over a block of tap gestures. The block size is denoted by nt .

2.5.3 Metric Selection

According to our observations about users’ behaviors of using smartphones, we proposed

different metrics in Section 2.5.2, trying to characterize a user’s gestures. Selecting good

metrics is essential for a supervised machine learning method, such as SVM used in this

work. In this section, we test the performance of each metric and drop the bad metrics. If

a metric can be used to easily distinguish two users, we say the metric is a good metric.

We view a metric value calculated from a person’s gesture as a data sampled from an

underlying distribution of the metric. For a metric to distinguish two different persons,

it is necessary to require the two underlying distributions to be different. Therefore, for

a metric, we construct a metric data set for each invited user in the data collection by

calculating the metric value from each of his sliding gestures. Then, we tested whether two

metric data sets are from the same distribution. If most pairs of the data sets are from the

same distribution, the metric is bad in distinguishing two persons and we need to drop it.

We use two-sample Kolmogorov-Smirnov test (K-S test) to test if two metric data

sets are significantly different. Two-sample K-S test is a nonparametric statistical hypoth-

esis testing based on maximum distance between the empirical cumulative distribution
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functions of the two data sets. The two hypotheses of K-S test are:

H0 : the two data sets are from the same distribution;

H1 : the two data sets are from different distributions.

A K-S test reports a p-value, i.e. the probability that obtaining the maximum distance is at

least as large as the observed one when H0 is assumed to be true. If this p-value is smaller

than a significant level α , usually set to 0.05, we will reject H0 hypothesis because events

with small probabilities happen rarely. For each metric, we calculated the p-value for each

pair of the metric data sets and drop the metric if most of its p-values are greater than α .

2.5.3.1 Sliding Gesture

Figure 2.5 shows the testing results for the metrics of the four sliding gestures in both

portrait and landscape modes. Due to space limitation, we abbreviate some metric names

in the figures. firstPress is “first touch pressure”, firstArea “first touch area”, firstDirect

“first moving direction”, distance “moving distance”, avgCurv “average moving curva-

ture”, avrgCurvDist “average curvature distance”, avrgDirect “average moving direction”,

avrgPress “average pressure”, pressMin “min-pressure portion”, avrgArea “average touch

area”, and areaMax “max-area portion”.

For each metric, the resulting p-values are drawn in a box plot. The bottom and

the top of the box denote the lower quartile Q1 and the upper quartile Q2, defined as

the 25th and the 75th percentiles of the p-values. The middle bar denotes the median of

the p-values. The lowest and the highest bars outside the box denote the lower and the

upper outer fences, defined as 4Q1− 3Q2 and 4Q2− 3Q1, respectively. The results from

portrait orientation are represented by yellow boxes and those from landscape orientation

are represented by green boxes. The y-axes in Figure 2.5 are drawn in logarithmic scale.

The red dashed line in each subfigure represents the significance level α . Hence, the better
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(c) Sliding left gestures

a metric is, the more portion of its box plot is below the red line. It denotes that more pairs

are significantly different.

We initially thought touch pressures should be a good metric to distinguish differ-

ent people. However, from Figure 2.5, we can see that none of the three pressure related
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(d) Sliding right gestures

Figure 2.5: K-S Test on Sliding Metrics

metrics, first touch pressure, average pressure, and min pressure portion, is a good metric

because at least half of their p-values are above the red line in all of the four subfigures.

This means that the pressure data is bad in distinguishing two different persons. Besides,

Figure 2.5 also shows that average curvature distance is a bad metric. The remaining met-

rics have most of their p-values below the red line, indicating that most data sets are sig-

nificantly different to one another in the statistical sense. Therefore, we finally select first

touch position, first touch area, first moving direction, moving distance, duration, average

moving direction, average moving curvature, average touch area, and max-area portion as

the metrics for sliding features.

Next, we tested the correlation between each pair of metrics. A strong correlation

between a pair of metrics indicates that they are similar in describing a person’s gesture

pattern. In other words, a weak correlation implies that the selected metrics reflect the

different characters of the desired gestures. For each user’s gesture data set in one orienta-

tion, we calculated Pearson’s correlation coefficient between each two metrics. Then, for

each two metrics, we took the average of all resulting correlation coefficients between the

two metrics. The average is taken over different users and different orientations. Figure

2.6 shows the resulting average coefficients. Each subfigure can be viewed as a 10 by 10
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Figure 2.6: Correlations Between Each Pair of Metrics of Sliding Gestures

matrix and shows two sliding types using an upper triangle and a lower triangle, respec-

tively. A pie chart in a triangle denotes the average correlation coefficient between the two

metrics. The names of the metrics are listed on the top and the left sides. For a pie chart,

blue represents a positive correlation and red represents a negative correlation. A larger

shaded area in a pie chart indicates a stronger correlation. From the figure, we can see that

most correlations are weak correlations and there are more positive correlations than nega-

tive correlations. We note that the correlation between the average touch area and the first

touch area is remarkably positive in sliding up and sliding right. This is because people’s

first touch usually affects the remaining touches in a sliding gesture. If a person touches

hard at first, it is quite possible that he will continue touching hard the rest of the sliding.

However, we are not going to delete any of the two metrics because the correlation is not

strong enough in sliding down and sliding left.

37



2.5.3.2 Tap Gesture

Tap gesture is a simple gesture. Hence, we do not design many metrics for it. Figure 2.7a

shows the K-S test results on each tap metric. It is obvious that the average touch area
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Figure 2.7: K-S Test on Tap Metrics and the Correlations Between the Metrics

metric and the average touch pressure metric are not good in distinguishing users, because

their medians are above the significance level. The median of p-values of the duration

metric is just a little below the significance level. In summary, the tap metrics are not as

good as the sliding metrics. The reason is that a tap gesture is usually so quick and simple

that it provides few distinct features. The average correlation coefficients between every

two metrics are shown in Figure 2.7b. We can see that the correlations between each pair

of metrics are not strong, i.e. every coefficient is smaller than 0.5. Therefore, using tap

gesture as a single gesture to re-authenticate a user is not reliable and may cause high error

rates. Therefore, we propose to use tap as an auxiliary gesture. If the desired number of
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taps are captured, our system combines the tap feature vector together with a sliding feature

vector to enhance the authentication accuracy.

2.5.4 Designing Modules

As illustrated in Figure 2.2, the predictor component contains several classification mod-

ules, each of which can independently re-authenticate a user. In Table 2.1, we list the

gesture or gestures used in each module. In total, we have 16 classification modules in the

Table 2.1: Classification Modules and the Corresponding Gesture Types

PORTRAIT LANDSCAPE

No. gestures No. gestures
1. sliding up 2. sliding up
3. sliding down 4. sliding down
5. sliding left 6. sliding left
7. sliding right 8. sliding right
9. sliding up + tap 10. sliding up + tap
11. sliding down + tap 12. sliding down + tap
13. sliding left + tap 14. sliding left + tap
15. sliding right + tap 16. sliding right + tap

predictor component – 8 modules for portrait mode and 8 modules for landscape mode. In

each orientation mode, we use 4 modules to classify 4 sliding types. Another 4 modules

are used to classify the combination of a sliding gesture and a tap gesture. Each module

sends an alert to the OS if it finds the feature vector to be abnormal.

As pointed out in Section 2.5.2, a feature vector consists of the average metric

values taken over a block of gestures. The block sizes are different for slidings and taps,

denoted by ns and nt , respectively. For example, when a sliding up gesture is captured in

portrait mode by the gesture monitor component, 10 metric values will be extracted and

stored as a group. If there are already ns such groups, average values are calculated by

metric and fed into the classifier as a feature vector. The classifier uses module 1 to classify
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the feature vector. If it is an abnormal vector, an alert message will be sent out to the OS.

If there is a new portrait tap feature vector ready as well, it will be combined with the

sliding feature vector and the classifier will use module 9 instead. We emphasize that our

system does not require the block of gestures to be temporally close to each other. In other

words, any ns sliding up gestures can be used to calculate a feature vector. This property

of our system is important to smartphone usage because most people use smartphones

intermittently. For example, a user may turn on his smartphone, check emails, and turn it

off. There may be only a few sliding gestures in this operation cycle. Therefore, gestures

are usually collected group by group and there may be a long time interval between two

groups.

2.6 Evaluations

In this section, we are about to evaluate the performance of the proposed identity

authentication scheme on a prototype. We first introduce the necessary details to set up the

evaluations and show the evaluation results in the follow-up section.

2.6.1 Setup

We used the SVM algorithm as the classification algorithm in the system and selected

LIBSVM [26] as our implementation. For two-class classification tasks, the SVM finds a

hyperplane in training inputs to separate two different data point sets such that the margins

are maximized. A margin is the distance from the hyperplane to a boundary data point.

The boundary point is called a support vector and there may be many support vectors.

Sometimes, we need to map the original data points to a higher dimensional space by using

a kernel function so as to make training inputs easier to separate. The kernel function used

in our SVM is the Gaussian radial basis function K(xa, xb) = e−γ||xa−xb||2 , where γ is equal
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to the reciprocal of the feature number. In our classification modules, we label the owner’s

data as a positive class and all other users’ data as a negative class. SVM has been used in

security area [105].

As described in Section 2.5.1, 75 people participated in our data collection. The

participants are either students in or visitors to our lab building. We recorded the demor-

graphics — education, gender, and age range — of the participants and show them in Figure

2.8. All our participants are older than 20 years old. Here, education is the highest degree

that a participant has or is pursuing. The numbers in the pie chart are the numbers of the

participants in the corresponding category.
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Figure 2.8: Demographics of the 75 participants

Among them, 28 people are target users who were asked to use the smartphones till

at least 150 sliding up gestures, 150 sliding down gestures, 150 sliding right gestures, 150

sliding left gestures, and 300 tap gestures were collected. Other people, called non-target

users, were asked to use the phone till the total using time hit 15 minutes. The target users

are CSE graduate students at Arizona State University. The demographics of the target

users are listed in Table. 2.2.
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Table 2.2: Demorgraphics of the Target Users

Category # of users

Education
Master students 2
Ph. D. students 26

Gender
Female 9
Male 19

Age
20-25 10
25-30 15
30-35 3

In our experiments, we generated training and testing data sets for each target user.

For a specific gesture type and a target user, the user’s corresponding gesture data set was

divided into two halves. In each half, we randomly selected a block of gesture data of

necessary size, such as ns for sliding up gestures, and calculated the feature vector. The

vector was labeled as a positive feature vector. We generated training positive feature

vectors using the first half gesture data set and testing positive feature vectors using the

other half gesture data set. In order to generate negative feature vectors, we divided the

remaining target users and the non-target users into two halves, respectively. The first

half of the target users and the first half of the non-target users consisted of the training

user pool. The remaining users consisted of the testing user pool. To generate a training

(testing) negative class feature vector, we first randomly chose a user from the training

(testing) user pool, then randomly selected a block of gestures from the user’s gesture set,

and finally calculated a feature vector, labeled as negative. We dropped a feature vector if

the selected gesture block was previously used. Training feature vectors, including positive

and negative ones, were put together in a training data set and testing feature vectors were

in a testing data set. We remark that positive training and testing feature vectors were

generated from two disjoint sets of gestures. For negative feature vectors, the users used to

generate testing vectors are totally different from those used to generate training vectors.
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Hence, in our experiments, the feature vectors used to test a classification module are never

met by the module in its training phase.

2.6.2 Experiment Results

In this section, we test the classification performance of our system under different sys-

tem parameters. We also implemented the re-authentication module on a Motorola Droid

smartphone to test its computation overhead.

During data collection, we did not put any usage restrictions on the participants.

Users were free to walk, sit, travel by vehicle, or perform other common activities, while

they were using our smartphones.

2.6.2.1 Usage Environments

A smartphone may be used in different environments, such as in a moving vehicle. We are

interested in whether a metric stays same in different usage environments, i.e., whether two

metric data sets, which are obtained in two environments, are from the same distribution.

We carried out the experiments in three normal usage environments, sitting, walking, and

in a moving vehicle. We did not test some extreme usage environments, such as running,

because users usually do not use their smartphones in such environments. We asked a

volunteer to use the smartphone in each of the three environments, respectively, till the

enough gestures were captured. For sitting and walking, the volunteer used the smartphone

while he was sitting still or walking around. For the moving vehicle environment, the

volunteer used the smartphone while he was sitting in the back seat of a moving city bus.

Given a necessary metric, a gesture type, and a holing mode (portrait or landscape), we

obtained a metric data set for each usage environment. We compared each pair of data

sets by using K-S test, as introduced in Section 2.5.3, which results in a p-value for each
43



p: w-s p: d-s p: w-d l: w-s l: d-s l: w-d
p-
va
lu
e

x y

firs
tA
rea

firs
tD
ire
ct

dis
tan
ce

du
ra
tio
n

av
rgC
urv

av
rgD
ire
ct

av
rgA
rea

ar
ea
Ma
x

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Sliding up gestures

p: w-s p: d-s p: w-d l: w-s l: d-s l: w-d

p-
va
lu
e

x y

firs
tA
rea

firs
tD
ire
ct

dis
tan
ce

du
ra
tio
n

av
rgC
urv

av
rgD
ire
ct

av
rgA
rea

ar
ea
Ma
x

0.
0

0.
2

0.
4

0.
8

1.
0

(b) Sliding down gestures
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(c) Sliding left gestures
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(d) Sliding right gestures

Figure 2.8: K-S Test on Sliding Metrics in Different Environments. p: portrait; l: land-
scape; w: walking; d: driving; s: sitting; w-s: w vs. s; d-s: d vs. s; w-d: w vs. d.
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Figure 2.9: K-S Test on Tap Features in Different Usage Environments.

comparison. A higher p-value indicates the two data sets are more likely to be from the

same distribution. When the p-value is smaller than a significant level α = 0.05, the two

data sets are thought to be from different distributions. The results for sliding gestures and

tap gestures are shown in Figure 2.8 and Figure 2.9, respectively.

The red dotted line in each figure denotes the significant level α = 0.05. From
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the figures, it can be seen that most p-values are greater than 0.05, indicating that the two

metric data sets in those comparisons are from the same distribution. In other words, most

metrics stay the same in different usage environments. This is because that users usually

walk slowly while they are looking at smartphones and hold the smartphones more firmly

while in a moving vehicle. Among four sliding gestures, the sliding right gesture is more

vulnerable to the environment change, because it has 15 p-vales under the significant level.

Tap gesture has only 4 p-values under the significant level.

In the data collection, we did not put any usage restrictions on the participants. A

participant may carry out the collection in multiple usage environments. Therefore, the

collected data is mixed with respect to the usage environments.

2.6.2.2 Gesture Block Size

A feature vector is calculated over a block of gestures. The block size is thus an important

system parameter, which determines the number of gestures that our system needs to collect

to perform a re-authentication. Hence, the size determines our system’s re-authentication

frequency. For each gesture type, we changed the necessary block size from 2 to 20. Given

a block size and a gesture, for each target user, we generated 400 positive feature vectors

and 400 negative ones in the training data set and the testing data set, respectively. We

trained the classifier using a training data set, obtained a classification module, tested it

using the testing set, and recorded false acceptance rates and false rejection rates. A false

acceptance rate is the fraction of the testing data that is negative but classified as positive.

A false rejection rate is the fraction of the testing data that is positive but classified as

negative. In the sense of protecting smartphones, a false acceptance is more harmful than

a false rejection. For each gesture type, we take the average false acceptance rates and

the average false rejection rates over all target users’ results. The results are shown in
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Figure 2.10, which contains the two smartphones orientation modes, portrait mode and

landscape mode. We note that, in this experiment, we took tap gesture as a single re-

authentication gesture type and used its feature vectors to obtain a classification module

in order to show its classifying accuracy. For each mode, we show the change of the

average false acceptance rates and the average false rejection rates of each gesture type

with increment of the block size. From the figure, we can see that, for a sliding gesture,
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(b) Landscape mode

Figure 2.10: False Acceptance Rate/ False Rejection Rate vs. Gesture Block Size
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its false acceptance and false rejection rates get stable when the block size is greater than

14. In both modes, the two rates of tap gesture are approaching stable when block size is

getting close to 20 although they are not as stable as sliding gestures. Among the five types,

tap has the worst performance, having the highest false acceptance rates and false rejection

rates in both modes. This also confirms our previous analysis of the tap metrics in Section

2.5.3.2.

2.6.2.3 Training Size

The size of a training data set affects a module’s classification accuracy, because a larger

training data set gives the classification algorithm more information. We tested the per-

formance of each classification module under different training set sizes, from 100 to 700

at intervals of 100. In the feature generation, we selected block size ns = 14 and nt = 20

to generate feature vectors. Our system monitors both portrait mode and landscape mode

in the background, using 8 classification modules for each mode (Section 2.5.4). Given

a training set size and a classification module, for each target user, we used the approach

introduced in Section 2.6.1 to generate a training data set and a testing data set. Each test-

ing data set was of the same size as its corresponding training data set. For each training

set size, we obtained 16 classification modules for each user. We tested each classification

module and recorded the classification accuracy. Then for each module and each training

set size, we took the average of all user’s classification accuracies. The results are shown

in Figure 2.11. From Figure 2.11a, we can see that when the training set size increases,

the accuracy of a classification module first increases, approaches to a maximum point,

and then decreases. We observe that the maximum point is around 500 for single gesture

type modules and around 300 for combinatory gesture type modules. The same trend is

observed on the results under landscape mode in Figure 2.11b. The observations indicate
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Figure 2.11: Training Set Size vs. Classification Accuracy

that tap gestures provided extra useful information to a combinatory gesture type module

and the module thus did not need more training data to learn a user’s patterns. The accuracy

decreases after the training set size passes the maximum point because a large training data

set makes the module specific to the training data so that it makes more errors in prediction.

Besides, we list the average classification accuracy for each classification module

in Table 2.3 when the training size is 500 for single gesture type modules and 300 for
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combinational gesture type modules.

Table 2.3: Classification accuracy

PORTRAIT LANDSCAPE

gestures Accuracy gestures Accuracy
sliding up 95.78% sliding up 83.60%
sliding down 95.30% sliding down 94.20%
sliding left 93.06% sliding left 93.97%
sliding right 92.56% sliding right 91.27%
up + tap 93.02% up + tap 92.05%
down + tap 89.25% down + tap 86.25%
left + tap 88.28% left + tap 79.74%
right + tap 89.66% right + tap 91.50%

2.6.2.4 Using Tap

In the study of classification, the receiver operating characteristic (ROC) curve is a good

way to graphically reflect the performance of a binary classifier. It is a plot of true positive

rate T P/(T P+FN) versus false positive rate FP/(FP+T N). Here, T P,FN,FP, and T N

are the number of true positive predictions, false negative predictions, false positive pre-

dictions, and true negative predictions, respectively. A true positive prediction is a correct

prediction on a positive class. False positive, true negative, and false negative predictions

are defined in the similar fashion. Generally, if a ROC curve is close to the top-left corner,

it indicates the corresponding classifier can obtain a high true positive rate with a low false

positive rate. Therefore, such a classifier is considered to be a good classifier.

We fixed a target person and drew 16 ROC curves for his 16 classification modules.

We set ns = 14 and nt = 20. The training data set size and the testing data set size were

both 400 for all the 16 modules. The results are shown in Figure 2.12. The purpose is

to test the improvement of using tap gesture as an auxiliary as well as the performance

of each classification module. In all the plots, we can see that most modules having tap
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Figure 2.12: ROC Curves for 16 Classification Modules

as an auxiliary gesture perform better than the ones having only sliding gesture types.

For example, in Figure 2.12a, two modules having tap gestures (red and yellow lines) are

closer to the top-left corner than the other two lines. At the same time, we notice that

sliding left performs better than “left+tap” combination in the portrait mode. Our single

sliding gesture type modules also perform well in the two modes, since most of them are

close to the top-left corner. Among the 16 modules, the classification modules for portrait
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and landscape sliding down gestures have the worst performance while the modules for

sliding left gestures have the best performance. A possible explanation to this result is

that people usually slide left for more contents while they are reading and they usually

hold the contents, sliding slowly. In most cases, people slide down to get back to the

top without reading. So they slide quick and slight. For a slow and “holding” sliding, the

screen can sense more personally specific information, which leads to a better classification

performance.

2.6.2.5 System Overhead

As shown previously, our system needs as less as 14 same type slidings to construct a fea-

ture vector. The following table (Tab. 2.4) shows the average time interval for each gesture

type according to our collected user data. For example, on average, a sliding up gesture

happens every 8.24 seconds in portrait mode. Therefore, our system can collect 14 portrait

sliding up gestures in 115.6 seconds, which means the system can usually re-authenticate

a user in 2 minutes using sliding up gestures. Learning an owner’s patterns is deployed on

Table 2.4: Average Time Interval for Gesture Types (Second)

up down left right tap
portrait 8.24 14.25 37.13 22.47 14.12

landscape 12.14 19.23 50.74 34.27 18.73

a PC in our architecture and performed offline. Feature extraction and classification is per-

formed online by a smartphone, which directly affects the user experience of our system.

Given a feature vector, the classification can be done in a short time because our feature

vector is of small dimension. Particularly, given a combinatory feature with 13 feature

values in it, our implementation only needed 17 milliseconds to give a prediction. The

implementation used LIBSVM [26] on a Motorola Droid phone.

Feature extraction contains filtering necessary gestures and calculating each feature
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values, and thus takes more time. We tested our feature extraction scheme on a Motorola

Droid smartphone with a single 550MHz A8 CPU, 256MB memory, 16GB sdcard, and

Android 2.2 OS. We fed 386, 701, 902, 1207, 1377, 1427, 1454, 1701, 2313, 3716, and

3943 gestures to the preprocessing and the feature extraction modules on the smartphone.

The running time and the number of filtered features are shown in Figure 2.13.

500 1000 1500 2000 2500 3000 3500 4000

0
40
00

80
00

12
00
0

number of gestures

R
un

ni
ng

 T
im

e 
(m

s)

(a) Running time vs. total gesture number

500 1000 1500 2000 2500 3000 3500 4000

50
0

15
00

25
00

number of gestures

# 
of

 n
ee

de
d 

ge
st

ur
es

(b) Filtered gesture number vs. total gesture number

Figure 2.13: Running Time of Feature Extraction

In practice, gestures will be fed to our monitoring component immediately after

they are captured by the screen. In some cases, the OS may buffer the gestures and suspend

our system for a while to run another high priority process. Since security is important in

many cases, we assume that our system is not suspended for a long time so that the number

of gestures it deals with at one time is within several hundreds. Looking at the second point
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in Figure 2.13, we can see that filtering 427 needed gestures from 701 gestures and extract-

ing features from them takes only 648 milliseconds. We note that this process was carried

out on a low-end smartphone and we can expect a dramatic performance enhancement on

current main-stream smartphones.

2.6.2.6 Discussion

We carried out all our data collections and experiments on Motorola Droid phones, which

are equipped with low-end touch screens. Therefore, some metrics may be dropped due

to the smartphone’s hardware limitations. For example, we left out the pressure related

metrics because the touch screen did not provide accurate pressure measurements. The

metrics may need to be carefully tested or even re-designed before deploying our system on

another smartphone platform. For example, pressure may become useful and provide more

user information on some smartphone platforms. However, our work provides a guideline

for the metric design on other platforms and our methodology can still be adopted. Our

work shows that using gestures to construct an unobservable continuous re-authentication

on smartphones is practical and promising.

2.7 Conclusions

In order to prevent unauthorized usage, we have proposed a re-authentication sys-

tem using user finger movement. The system performs continuous re-authentication and

does not need human assistance during re-authentication. We have discussed biometric

feature design and selection for finger movement. We have demonstrated the effectiveness

and efficiency of our system in extensive experiments. This work has been published in

[65].
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Part II

NEAR FIELD AUTHENTICATION
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CHAPTER 3

Finger Movement Based Near Field Authentication

This work is motivated by a common scenario of using smart devices, such as smartphones

or tablets. Two people, say Alice and Bob, carry their smart devices and meet each other in

a cafeteria. Alice is going to transfer some of their photos to Bob via the free cafeteria wifi.

However, they want to do the transmission confidentially because the photos are private

to them. Over the insecure public cafeteria wifi, Alice and Bob need to set up a one-time

cryptographic session key to protect their communications, i.e. the photo transmission. In

order to agree on a one-time session key, they should first invoke some key exchange (KE)

protocol, such as Diffie-Hellman KE protocol. Without proper authentication, such a KE

protocol is usually vulnerable to man-in-the-middle (MITM) attacks. Since Alice and Bob

are meeting in person, they can carry out the KE protocol using a near field communication

(NFC) system to defend against MITM attacks. An NFC system can only work within a

distance less than a few centimeters. An MITM attacker is difficult to attack the communi-

cation carried out by an NFC system. However, current NFC systems rely on NFC chips,

which are not available on many smart devices. In fact, only 20% of the smartphones on

the market are expected to be equipped with a NFC chip by the end of 2014 [60].

The goal of this work is to design a system that is not dependent on NFC chips but

able to authenticate whether two devices are in the near field via a insecure public network.
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We call this kind of authentication near field authentication (NFA). The purpose of a near

field authentication system is different from that of a traditional authentication system. Tra-

ditional authentication systems usually authenticate either the authenticatee’s identity [62]

or his ownership of certain secret information, such as passwords or cryptographic keys.

NFA systems aim to verify whether the authenticatee, i.e. a smart device, appears in the

near field. Traditional authentication systems usually leverage the information that exists

or has been distributed prior to the authentication process. In contrast, an NFA process

usually takes place impromptu, which requires an NFA system to bootstrap authentication

from scratch.

With the widespread usage of smart devices, we will see a large number of near

field applications. One example is pay-with-smartphones, which is currently one of the

hottest applications on smartphone platforms. People store their credit card information in

smartphones and make purchases by putting their smartphones close to a reader. Since the

process is done in the near field, it is believed that the purchase is made by the smartphone

owner himself. This idea has been realized by Google Inc. as Google Wallet on Android

2.3.3 or later using NFC chips. Another example is that users can store their flight tickets in

their smart devices. When they check in at an airport, they just put the smart devices close

to a machine that reads the ticket information and processes check-in automatically. Again,

this application is only supported by devices having NFC chips. NFA plays a significant

and fundamental role in these applications, because it provides authenticated and confi-

dential communications between two devices. Therefore, in order to promote near field

applications and let more smart devices benefit from this new technique, it is necessary to

have a system that performs NFA on smart devices which do not have NFC chips.

The basic idea of a near field authentication is to compel two smart devices to

appear together and stay close when the authentication is carried out. Many previous works
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[1, 72, 96] have given initial solutions to this problem. BUMP™[1] is a representative

system among these works. The purpose of BUMP is to provide a fast way to match

two smartphones and then set up a secure data transmission channel. Their construction,

according to [96], is first to bump two smartphones, then use the accelerometer in each

smartphone to sense the force of the bump, and send the sensed results to a trusted server.

The server compares every incoming data, matches the two smartphones, produces and

sends the same session key to both if a match is found. However, using a centralized trusted

center may not be suitable for our scenario, due to the single point of failure and the fact that

Internet access may not always be available. For example, some tablets do not have cellular

data services and cannot have access to the Internet in places that do not provide public

Internet connections. Therefore, it is preferable to perform NFA over local networks, such

as bluetooth or wireless LAN. Mayrhofer and Gellersen [72] proposed two authentication

protocols with the purpose of pairing two devices. They used the accelerometer data that

is sensed during the shake motion to create a session key for smart devices. In order to

shake the devices for a few seconds, the device user needs to hold the two devices tightly

in one hand. This limits their protocol application to the small size devices. Large or fixed

devices, such as tablets and self-service check-in machines, cannot use their construction.

The idea of our near field authentication system is inspired by the observation that

touch screens now are widely equipped by smart devices. Therefore, we propose to use

people’s on-screen finger movements to construct a near field authentication system. In

order to force two smart devices to stay close to each other, we let a person move two

fingers of one hand — usually the index finger and the middle finger — simultaneously on

the two smart device screens, as illustrated in Fig. 3.1. The reason we use this motion is

that it is easy and natural for people to perform and it produces many variations in terms of

the sensed data. The more variations the data has, the more difficult it is for an attacker to
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Figure 3.1: Zigzagging Finger Movements on Two Smart Device Screens

carry out a dictionary attack. Since the two finger movements are done by one hand, they

are highly coherent to each other. We leverage this coherence to generate the session key

for the two smart devices.

It is natural to assume that the zigzag on-screen finger movements cannot produce

enough variations to fully defend against dictionary attacks. In other words, we believe

that a particular person’s finger movements may follow some pattern that can be used by

an attacker to construct a dictionary to enhance the probability of successfully guessing the

final session key. When data does not contain many variations, we say it is of low entropy.

The low entropy of finger movement data gives rise to the first challenge for our system

design. The second challenge is to find out which feature is suitable for finger movements

so that the extracted data is robust to the small differences between two finger movements.

Finally, even when the feature is robust, it is usually impossible to get two extracted data

exactly the same. Therefore, a reconciliation approach between two smart devices is needed

to make them agree on the same data. We make the following contributions in this study.

• We propose to use zigzag on-screen finger movements to perform near field authen-
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tication between two smart devices. Compared with the previous motion patterns,

such as bump, shake, etc., finger movements are easier to carry out and provides

better user experience. Another advantage is that finger movements are small and

hard-to-catch motions. The movements are hard to be observed and emulated by a

nearby attacker, which is a possible attack to the bump system [96].

• We design a robust feature so that two extracted feature data sets are similar to each

other. Zigzagging finger movements provide many features, such as curvature, cur-

vature distance, moving time, etc. We propose to use the time between the starting

point and a peak point as the feature to be extracted in our system. The reason behind

this choice is that people’s finger usually moves slowly, or makes a short-time pause,

when it turns at a curve peak point. Although the time is too short to be noticed by

human eyes, it is long enough to be sensed by the touch screens. This makes the

elapsed time of two corresponding peak points very similar to each other.

• We propose an efficient system to remove the differences between two extracted fea-

ture data sets and generate a high-entropy cryptographic key. We design an efficient

approach using a private set intersection protocol to reconciliate the two feature data

sets. As pointed out previously, the feature data is of low entropy. We use the en-

crypted key exchange technique to defend against dictionary attacks and generate a

high-entropy key.

• Our system is efficient. The efficiency of our system is twofold: 1) it is easy and

intuitive for people to use. 2) the computation overhead of our system is not heavy,

which is demonstrated in our evaluation.

The rest of this chapter is organized as follows. We introduce related works in

Section 3.1. We formulate the NFA problem and discuss the design goals in Section 3.2.
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We present the design and constructions in Sections 3.3 and 3.4, respectively. We analyze

the system in Section 3.5 and present the experiment results in Section 3.6. We conclude

our work in Section 3.7.

3.1 Related Work

An NFA system is a kind of location limited system, but it puts more strict require-

ments on distance. In other words, when an NFA is passed, the two devices should be less

than a few centimeters apart, i.e. they are in near field.

The importance of location enforcement in authentication was first realized by Sta-

jano and Anderson in [94], in which users need to use a wired connection to complete

the authentication process between two devices. Motivated by this work, Balfanz et al.

[9] proposed the concept of location-limited channel, over which users carry out the au-

thentication process. The transmission range of the channel in their work could be from

centimeters to meters. However, the purpose of our work is to authenticate a device appear-

ing in a distance less than a few centimeters. In addition, the authors of [9] used infrared as

their location-limited channel, which is not available on most smart devices. The work of

McCune et al. [73] and the follow up work of Saxena and Watt [88] used the smartphone’s

camera to scan the barcode displayed on the other screen or film a blinking light toward

the other. Their protocols are directional, so a user has to execute the protocols twice to

achieve mutual authentication, which can be done by our system in one execution. Clay-

comb and Shin [29] proposed to use audio transmission as a location limited channel and

provide the key verification information through the audio channel to establish a secure

channel between two smartphones.

Many other prior works used various sensors on smartphones to achieve location

enforcement. The commercial app BUMP [1] uses the accelerometer to quickly match two
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smartphones for data transmission. As we introduced previously, BUMP system compares

the data measured during a bump between two intended devices to match the two devices

and provide confidential communications. The app is intuitive to use and needs less human

involvement. Their system security and efficiency rely on the BUMP server, modeled as a

trusted center. However, the server itself may suffer from single-point-of-failure problem

[68]. For our scenario, the trusted center scheme is not a suitable choice either, because the

Internet accessibility is not always available when people want to perform authentication

on smart devices. Some works [25, 46, 52, 72, 96] proposed to use a different motion

pattern — shake by a person — so as to achieve location enforcement. The accelerometer

sensor was used to sense the motion once again. Mayrhofer and Gellersen [72] used a

signal processing approach to remove the differences between sensed data sets and a key

exchange protocol to generate a session key. The protocols in [72] do not need a trusted

center. Although shake may provide the sensed data with more variations, it is difficult to

hold and shake a big smart device, such as a tablet. Some other works proposed to use

vibrations to transmit secret [45, 88]. The authors used the vibration that is produced by

one device to encode the secret and the accelerometer of the other to sense and decode the

secret. Recently, Studer et al. [96] proposed an MITM attack against those motion based

approaches. They assumed that there is a powerful adversary who can observe the user’s

motion, such as shake or bump, so that he can emulate a similar motion pattern to carry out

an MITM attack. While the success rate of their attack was sensitive to the delay induced

by the attacker, their work did suggest that a smaller motion pattern is preferred than shake

and bump when a third person is standing nearby.

In order to defend against MITM attacks, some prior studies suggested to use human

comparison after the secret exchange, because an attacker cannot change the output on

the device screen. Many works studied the comparison of a string or hexadecimal digits
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[18, 59, 100]. To improve the usability, other works proposed to encode hexadecimal digits

into a sentence [40] or an image [81]. However, string comparisons or picture comparisons

require human intelligence and are error prone for people. Compared with these works, our

system does not need manual comparison and is easy for people to use.

Establishing secure channels for two mobile devices without any pre-shared secret

information has been widely studied in recent years. Usually, such a system needs an out-

of-band (OOB) channel to transmit some secret information. While some applications seek

to migrate or remove such an OOB channel, by using BAN logic, Claycomb and Shin [28]

have shown that device authentication using a single channel is impossible.

3.2 Problem Formulation

In this section, we formulate the near field authentication problem.

3.2.1 System Model

The purpose of a near field authentication system is stated in the following definition.

Definition 1. A near field authentication (NFA) system is a mutual authentication system

between two parties. When the authentication is successfully passed, the system convinces

both parties that they are separated in a distance less than a few centimeters. In addition,

at the end of a successful authentication, an NFA system assigns the same cryptographic

session key to both parties.

The parties considered in this work are smart devices equipped with touch screens,

such as smartphones, tablets, etc. For convenience, we use Alice and Bob (two human

names) to denote these two parties, which are actually two devices.
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An NFA system usually needs an approach to achieve location enforcement, forcing

two devices to stay close. Some systems use the physical limit of special communication

channels, such as NFC channels. Many other systems ask a person, called conductor in this

paper, to achieve the enforcement. The conductor is one of the device owners and assumed

to be trusted in this paper. This is a reasonable assumption because two persons who are

willing to do confidential communications must trust each other in our scenario. BUMP

system [1] lets a conductor use one smartphone to hit the other one to ensure that the two

devices are both in the vision of the conductor. Our construction asks a conductor to slide

two fingers of one hand over the two screens to achieve location enforcement.

3.2.2 Attack Model

The two smart devices involved in the authentication, including their executing applica-

tions, are considered trusted and not compromised. A near field authentication usually

takes place in the presence of device owners. They will not perform the authentication

process if they do not trust each other. Safeguarding a smart device against being compro-

mised by an outside attacker has been well studied in the area of intrusion detection and is

out of the scope of this work.

In this paper, we consider a fully malicious adversary, who controls public commu-

nication channels. The adversary is able to eavesdrop any communication. He is also able

to tamper, delay, replay, inject and block any message. During a protocol execution, the

adversary can carry out an MITM attack, impersonating one party to communicate with the

other honest one. Such a powerful adversary is always able to destroy an ongoing authenti-

cation process by blocking all messages. However, such a rash attack exposes the presence

of the adversary and does not bring back much benefit to the adversary. Observing the

presence of an adversary in NFA, the device owners can stop further communications and
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move to a more secure place. The main purpose of an NFA system is to protect follow

up communications, which are of more interest to the adversary. Therefore, the purpose

of the adversary in this work is to obtain the session key generated by an NFA system

without being captured, so that he can decrypt and obtain the succeeding communication

messages.

3.2.3 Design Goals

In addition to defending against the adversary modeled in Sec. 3.2.2, we expect an NFA

system to achieve the following design goals.

• It needs less human involvement. System users prefer to do simple and intuitive tasks.

An NFA System will not be widely accepted, if it needs people to do more involved

works, such as string comparisons.

• It is intuitive to use. A system should be designed in a way that is intuitive and easy

for people to learn how to use.

• It does not rely on prior knowledge. Near field authentication and follow up commu-

nications usually take place impromptu. Hence, the two involved parties cannot be

assumed to share any prior information.

• It is decentralized. An NFA is expected not to rely on any trusted center, which

suffers from a single-point-of-failure problem.

• It is localized. An NFA system should still work when the Internet is not accessi-

ble. For example, some companies limit the Internet access for safety reasons. In

such cases, an NFA system should make use of local networks, such as bluetooth
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or WLAN. This goal also makes the centralized architecture unsuitable for an NFA

system.

3.3 Design of An NFA System

3.3.1 System Overview

Fig. 3.2 shows the architecture of our NFA system. Our system uses human finger move-
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Figure 3.2: The Architecture of Our NFA System

ment on touch screens to assist authentication, taking advantage of the physical closeness

of two fingers to enforce the spatial closeness in NFA. To the best of our knowledge, we

are the first to use finger movement or touch screen input as a location limited channel.

Compared with other motion patterns, such as bump, shake, etc., finger movement has the

following merits.

• It provides more robust similarities.

• It is easy to carry out, especially on devices that are difficult to hold in one hand.

• It is hard to be observed and copied by a nearby attacker. Current studied motion

patterns, such as bumps and shakes, require a quite noticeable motion, which can be
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easily captured by a nearby attacker. Observing these motion patterns, an attacker

can launch a better dictionary attack, as described in [96].

In our system, when a conductor triggers an authentication process, the two devices

sense finger movements on their individual touch screens and extract the feature data lo-

cally. Using the extracted data, the two devices interact with each other to generate the

same session key. Finally, the two devices verify that the generated session keys are iden-

tical before they use them to protect succeeding communications.

3.3.2 Feature Design

Our system asks a conductor to use two fingers, from the same hand, to do a “zigzag”

movement on two touch screens (see Fig. 3.1). A zigzag movement forms a series of curves,

which provide many features to be extracted. The features of a curve have been studied by

Zheng et al. in [108] for mouse movement. They recommended to use angle of curvature,

curvature distance, and moving direction to characterize a curve movement. However, we

found, by experiments, that these spatial features are sensitive to finger movements. A

small deviation of two finger movements may cause a big difference between the resulting

feature values.

We propose to use a new temporal feature — the time between a peak point and the

starting point, i.e., the peak point’s elapsed time. As shown in Fig. 3.1, the starting point

is the point where a finger first touches the screen and peak points are the points where the

finger moving direction changes. The robustness of this feature is due to the fact that people

usually make a pause when their fingers turn above the screen. Although the pause usually

takes only about 0.04 second, it is long enough to be captured by a touch screen and can be

easily detected during a follow up data processing. Another observation is that two fingers
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may slide at slightly different speeds on two screens but they usually turn at the same time.

This makes peak point’s elapsed time a robust feature for an NFA system. A time value

collected by touch screen is accurate to 10−6 second, but such a high accuracy also causes

high sensitivity and low robustness. Hence, we round a time value to the nearest decimal

fraction with 2-digit fractional part. Finally, we drop off the decimal separator to make the

value an integer. For example, given a time value of 1.426478, we use 143 as a feature

value. Hereafter, we mean the processed time value when we say “time value”.

3.3.2.1 Variations

A feature with more variations is more difficult to be guessed by attackers. The variations

of our feature can be reflected by the distribution of time intervals between each pair of con-

tiguous peak points. Fig. 3.3 shows the histogram of the time intervals in a person’s zigzag

finger movement on one screen. The top-right sub-plot shows a “zoom-in” histogram of
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Figure 3.3: Features From One Person

the time intervals between 0 and 50. We note that the bin width is different in the zoom-in
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histogram. The bin width in the big plot is 5 units and the one in the zoom-in plot is 2 units.

The data collection was carried out on two Motorola Droid smartphones running Android

2.2 OS. From the figure, we can see that the time intervals distribute from less than 0.1 sec-

ond (10×10−2) to around 1.4 seconds. This shows that the variation of a person’s feature

value is large. We can also see that many values congregate into the interval between 10

and 25. The sub-plot shows that the values distribute almost evenly on each bin between 8

and 24. This shows that this person’s finger movement has some pattern: the time that he

uses between two peak points is mostly between 0.08 and 0.24 second.

3.3.2.2 Similarity

Feature values collected from two devices are expected to be very similar to each other,

because it saves the time of removing the differences between two sensed feature data sets

in the feature reconciliation phase. A person was invited to slide fingers zigzag on two

devices, which recorded two sequences of peak points, respectively. We call a peak point

in one sequence and its counterpart in the other a pair. We computed every peak point’s

elapsed time. Finally, we calculated the absolute difference between the two elapsed time

values in each pair. A set of such absolute difference values can be viewed as a measure-

ment of the similarity between the two sensed feature data sets. The distribution of the

absolute differences is shown in Fig. 3.4. The experiments represented by the yellow bars

were carried out on two Motorola Droid smartphones, while the experiments represented

by the green bars were carried out on two different smart devices — a Motorola Droid

smartphone and an HP TouchPad™tablet. For comparison purpose, we also calculated the

difference sets, as done previously, for another two spatial features, curvature angle and

curvature distance, proposed by and defined in [108]. Due to space limitation, we refer

readers to [108] for details. We can see that most differences between two corresponding
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Figure 3.4: Similarity of Our Designed Feature

elapsed time values are less than 3, indicating that the two feature data sets are very similar.

Specifically, 82.97% of all absolute differences obtained from the experiments on the same

device type (yellow bars) are less than 3. This percentage is 74.73% on the different device

types (green bars). At the same time, most absolute differences of another two feature sets

are greater than 3 and many of them are greater than 20.

3.4 System Construction

We are now ready to present the construction of our system in details. Our system

consists of a conductor and two smart devices. In the following description, one device

is denoted by Alice and the other is denoted by Bob. There is no difference between

these two roles, because our authentication is mutual. In our motivating case, the data

sender is Alice and the data receiver is Bob. We assume that Alice and Bob are able to set

up a communication connection through a local network, such as wifi LAN or bluetooth

network. This connection is public and insecure. Our system helps Alice and Bob to

authenticate each other in near field and establishes a secure connection by assigning each
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of them the same session key.

We say the two smart devices are ready, when our NFA system is launched on

both devices and a communication connection has been launched between them. The two

devices then stay monitoring the screen touch and waiting for the conductor’s finger move-

ments.

Our system consists of three phases: system setup and feature reconciliation, key

generation, and key confirmation. Figure 3.5 shows the system setup and feature reconcil-

iation phase. In this phase, we use two hash functions: H1 : {0,1}∗→ G and H2 : G2→

{0,1}l , where l is determined by the security level. Here G is a multiplicative group of

a prime order. Hash function H2 takes two group elements and outputs an output of fixed

length. In practice, H2 can be constructed from any cryptographic hash function H ′, which

takes an input (of arbitrary length) and hashes to a fixed length output. For example, SHA-

1 is such a hash function, if the security level is less than 128 [11]. To construct H2, we

concatenate the two inputs together and pass into H ′. Construction of H1 is special, since

it hashes the input to a group G, not a fixed length output. It is constructed from a cryp-

tographic hash function H ′′ : {0,1}∗→ {0,1}l1 , where l1 = logq and q is the group order.

The idea is to hash the input to an element h in Zq and the output of H1 is gh, where g

is a generator of G. However, an output of H ′′ may exceed the range of Zq. A standard

technique is to re-hash H ′′(x||1) and verify whether the new output is in Zq. Repeat for k

times (H ′′(x||k) for k-th re-hashing) till the output is accepted. Since the probability that

an output exceeds Zq is less than 1/2, the failure probability decreases exponentially with

the repeat times. For example, we get an overall failure probability less than 0.1% if we

choose k = 10.

Feature reconciliation is to remove differences between Alice’s and Bob’s sensed

data sets. First, Alice and Bob choose m pairs of elapsed time values. Since the difference
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When the two devices are ready, a conductor puts the two smart devices side by side,
slides his two fingers of one hand zigzag on the two screens, and then triggers the
authentication process. The two smart devices, Alice and Bob, sense and calculate two
elapsed time sets A = {a1,a2, · · · ,an} and B = {b1,b2, · · · ,bn}, respectively. Here, n
is the number of peak points.
Feature Reconciliation

1. Given a security level κ , Alice generates a cyclic group G of prime order q,
written in a multiplicative notation, and sends it to Bob. Alice randomly selects
m elements at1,at2, · · · ,atm and sends t1, t2, · · · , tm to Bob.

2. For every ti, 1≤ i≤m, Bob selects αi←R Zq, calculates hi =H1(bti),yi = (hi)
αi ,

and finally sends yi’s to Alice.

3. Alice selects a random number k←R Zq. For every yi, 1 ≤ i ≤ m, Alice calcu-
lates zi = (yi)

k. Alice prepares a non-interactive zero knowledge proof π for the
knowledge of k s.t. ∀i=1,··· ,m zi = (yi)

k. Alice sends zi’s to Bob along with proof
π .

4. Bob aborts if π is not verified. Bob calculates xi = H2(hi,(zi)
1/αi) for 1≤ i≤m.

Let X = {x1, · · · ,xm}.

5. Alice extends {at1,at2, · · · ,atm} to set A ′ = {ati+ 3,ati+ 2,ati+ 1,ati,ati−
1,ati− 2,ati− 3}1≤i≤m. For each element a′j in the set, Alice calculates u j =

H2(H1(a′j),(H1(a′j))
k). Alice randomly permutes all u j’s and sends the final set

U to Bob.

6. Bob calculates set Vb = {bti| (1≤ i≤ m)∧ (xi ∈U ∩X )}. If |V |< 4 and it is
their first execution, Bob informs Alice and they re-execute step 1-6. If |V |< 4
and it is their second execution, this authentication fails; Bob informs the con-
ductor the failure reason and asks the conductor to start over the authentication.
Otherwise, Bob sends set Vx = {xi|bti ∈ Vb} to Alice. By comparing Vx against
U , Alice also learns set Vb.

Alice and Bob now have the same data set Vb. Alice (Bob) sorts the elements in the non
decreasing order, represents them in binary strings, and concatenates them together in
a string, which is denoted by w hereafter.

Figure 3.5: System Setup and Feature Reconciliation

between the two values in most pairs is less than 3, we let Alice extend her selected set by

including a±1, a±2,a±3 for every a in the set (step 5). Then, Alice and Bob privately
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find the set intersection. We use a private set intersection protocol proposed by [51] to let

both parties find the same intersection set Vb (step 6). To get enough randomness, we need

at least 4 feature values since each value can provide nearly 6 bits. If the found set size is

too small, we simply let Alice and Bob redo the reconciliation phase. If they still cannot

find enough values, this authentication fails and we let the conductor start over the whole

authentication again.

In step 3 of the first phase, Alice needs to generate a non-interactive zero knowl-

edge proof π of knowledge of k s.t. ∀i=1,··· ,mzi = (yi)
k. Although general zero-knowledge

proof systems are currently thought to be inefficient, the zero knowledge proof system on

discrete logarithm has been well studied and there exists an efficient non-interactive proof

system [8]. Alice randomly chooses t ←R Zq and calculates c = H(z1|| · · · ||zm||y1|| · · ·

||ym||yt
1|| · · · ||yt

m) and s = (t− ck) mod q, where H is a cryptographic hash function. The

proof π is tuple <c,s,z1, · · · ,zm,y1, · · · ,ym>. To verify the proof, Bob checks c=H(z1|| · · ·

||zm||y1|| · · · ||ym||ys
1zc

1|| · · · ||ys
mzc

m).

Key Generation.

1. Alice randomly picks one generator g, two elements M, N from G and sends
them to Bob. Alice randomly picks r←R Zq, calculates R = gr, R′ = R ·Mw, and
sends R′ to Bob.

2. Bob randomly picks s←R Zq, calculates S = gs, S′ = S ·Nw, and sends S′ to
Alice.

3. Alice calculates the session key as skA = H3(R′,S′,KA), where KA = (S′/Nw)r.
Bob calculates the session key as skB = H3(R′,S′,KB), where KB = (R′/Mw)s.

Figure 3.6: Key Generation

When the same intersection set is obtained by both parties, the binary strings of

its elements are concatenated together in a string w. Since w may be of low entropy, we

propose to use encrypted key exchange approach [5] to leave attackers no choice but doing
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online dictionary attacks, which are easily captured by honest parties. It is a variation of

the original Deffie-Hellman key exchange protocol [95]. The improvement is for defending

against MITM attacks, which can break down the original DH protocol. In the protocol,

a session key is the hash of all the previous messages and the secret string KA or KB. In

this way, an MITM attack will be effectively defended because two honest parties obtain

different messages in an MITM attack. Also, an offline dictionary attack becomes hard

because all the intermediate messages are randomized and the final session key is also

randomly selected through the hash function.

Key Confirmation.

1. Alice generates a nonce c and sends CA = EncskA(c) to Bob. Bob generates a
nonce d and sends CB = EncskB(d) to Alice.

2. Upon receiving CA from Alice, Bob decrypts it under key skB, obtains c′, in-
creases it by one, re-encrypts the result C ′A = EncskB(c

′+ 1), and sends the ci-
phertext back to Alice. Similarly, Alice sends a ciphertext C ′B back to Bob.

3. Upon receiving C ′A, Alice decrypts it, obtains c′′, and passes the key confirmation
if c′′ = c+1. Similarly, Bob checks whether d′′ = d +1.

Figure 3.7: Key Confirmation

Fig. 3.7 shows the construction of the key confirmation phase of our NFA system.

Here, we use another hash function H3 : G3→ {0,1}l . The construction of H3 is the same

as that of H2. This phase is to let two parties explicitly confirm that the generated keys are

same. We note that a nonce is a random number, the length of which is determined by the

security level. For example, if the security level is 80 bit, we will choose a 80-bit random

number. In some upper protocols, such as confidential instant message protocols, this phase

is not necessary and the confirmation can be done in a implicit way. Bob sends Alice a hello

message that is encrypted using his session key. If Alice decrypts the ciphertext and finds

the plain text is of no meaning, she will be aware that they must have different session
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keys. However, this phase becomes necessary for those applications whose goal is solely

to perform a near field authentication.

3.5 System Analysis

3.5.1 Performance Analysis

Our NFA system is a probabilistic algorithm because it is based on users’ biologic data and

may encounter some outliers. Although our design can remove some small differences,

our system may still fail when most selected data are very different from its counterpart.

Given a pair of peak points, if their value difference is no more than 3, we call them a valid

pair. We have shown in Sec. 3.3.2.2 that it is with high probability to select a valid pair.

Particularly, more than 70% pairs in our experiments are valid. The failure probability of

our system is also affected by the number of the selected elements, m. Generally speaking,

the more elements we select, the more probably we can find enough elements.

Theorem 1. The feature reconciliation phase finishes successfully with a high probability,

if m≥ 7 and the proportion of valid pairs is more than 70%.

Proof. Because the pairs are randomly selected, testing the validity of a selected pair is a

Bernoulli trial with success probability p. Therefore, the probability that 4 out of m pairs

are valid is

P = 1−
3

∑
k=0

(
m
k

)
(1− p)m−k pk

Plug in m = 7 and p = 70%, we obtain P = 87.40%. If the first attempt fails, the phase lets

two parties redo the reconciliation using another set of randomly selected pairs. Therefore,

the overall success probability of the feature reconciliation phase is P+(1−P)P = 98.4%.
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Our system is based on a conductor’s zigzag finger movement and thus does not

need any prior knowledge. The conductor only needs to slide fingers and trigger the au-

thentication process. Therefore, our system is intuitive for people to use and does not need

any involved human assistance, such as comparing two strings. Our system is fully de-

centralized and all computations are done between two devices. It does not need any third

trusted center or server.

The feature reconciliation phase performs O(m logq) group multiplications, where

q is group order. The key generation phase needs O(m logq) group multiplications. It is

spent on computing Mw and Nw because the length of w is O(m). The key confirmation is

done in constant time.

3.5.2 Security Analysis

Most security threats to an NFA system come from MITM attacks and dictionary attacks.

In the first phase, the private set intersection protocol guarantees that only a set provider can

learn the final intersection set and nothing beyond the intersection. In the second phase, if

an MITM adversary changes any intermediate message, Alice and Bob will derive different

session keys. This alerts both parties to the existence of an adversary. Further more, if the

adversary does not have the intersection set, he cannot get the keys derived by Alice and

Bob.

Someone may be concerned with replay attacks. If a conductor uses his finger

movements to generate the session key for a communication between his and an attacker’s

smart devices, the attacker may use the elapsed time set and carries out an MITM attack

when the conductor tries to generate another session key between his smartphone and a

third user’s. The success of such an attack is based on the assumption that the conductor’s
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finger movements in two sessions are very similar. However, this assumption can be easily

broken when the conductor intentionally does not use the same finger movement pattern.

For example, the conductor can randomly pause during the motion to break the pattern.

Or, we can compare the current elapsed time set against the previous ones and ask the

conductor to re-do the authentication and change the pattern if a similarity is found.

Mimicry attack is such an attack in which an attacker observes the conductor’s

finger movement in some way, such as video, and tries to guess the generated session key.

First, this attack has to be taken on the fly, because any off-line dictionary attack will be

defended by the password based authentication key exchange protocol (PAKE). Secondly,

the attacker has only one chance to carry out the attack, since any more attempt will be

noticed by the PAKE protocol. Besides, the elapsed time of the mocked finger movements

have to be as precise as 1 milliseconds. This limitation makes mimicry attacks extremely

difficult.

In the traditional private set intersection protocol, an adversary may impersonate

one party in the protocol and generate a set of all possible values so that he can infer the

honest party’s whole input set. However, the feature reconciliation phase restricts the set

size, m for Bob and 7m for Alice, to make it difficult for an adversary to enumerate all

possible values. Offline dictionary attacks to the key generation phase is also impossible

because r, s, M, and N are randomly selected. For an example, R′ can be viewed as an

encryption of message M using key w. Given R′ = R ·Mw, an adversary iterates every

possible key w to decrypt the ciphertext. However, since the message M itself is chosen

randomly and of no meaning, the adversary cannot verify the validity of the obtained plain

text. An adversary can carry out online dictionary attacks, guessing a w and interacting

with an honest party. But every failure will be captured by an honest party.

Our system uses two built-in blocks, a private set intersection protocol [51] for
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feature reconciliation phase (Fig. 3.5) and an encrypted key exchange protocol [5] for key

generation phase (Fig. 3.6). The two protocols have been proved to be secure against

a malicious adversary in random oracle model by [5] and [51], respectively. The random

oracle model is a security proving framework that assumes the existence of a random oracle

mapping each request value to a random value. This oracle can be accessed by all protocol

participants, including the adversary. The hash function is usually modeled as the random

oracle in the proof. Following the same idea, we will see that the feature reconciliation

phase and key generation phase of our system are secure. One thing we need to point

out is step 6, where we connect the two built-in blocks. Different from the protocol in

[51], we let Bob send back the hash values of the intersection set. If Bob is impersonated

by an adversary, our system gives him chance to maliciously change the returned values

such that Alice will obtain a intersection set different from his own one. We remark that

the adversary cannot arbitrarily manipulate the set intersection in the sense that he can

only remove elements or add new elements that he does not know (chosen from Alice’s

published hash values). While this breaks the fairness in private set intersection protocols,

we argue that it does not harm our system. It is because the intersection set itself is actually

of no interest to the adversary, whose goal is to get the final session key and the follow up

communication contents. If the adversary modifies the intersection set, he will definitely

obtain a session key different from Alice’s. Alice will then abort in the key confirmation

phase. Therefore, an adversary has no incentive to do such a modification.

3.6 Evaluations

In this section, we demonstrate the performance of our system. We made a proof-of-

concept implementation of our NFA system on Motorola Droid smartphones, which have

a 550MHz ARM A8 processor, 256MB memory, a 16GB SD card, and Android 2.2 OS.
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This bland specification makes Droid a good representative of the low-end smart devices

in today’s market.

We first tested whether our feature reconciliation can finish successfully with a high

probability. In other words, out of m randomly selected pairs, is it of high probability that

two devices can find at least 4 valid pairs? To answer this question, we did 100 experiments

on two Droid smartphones and another 100 experiments on a Droid smartphone and a HP

TouchPad tablet. Each experiment collected at least 10 peak points. We tested the success

rate under different m values. Fig. 3.8 shows the proportion of the experiments in which

our system can finish successfully. From the figure, we can see that even if m is only 5, our

system can succeed with probability close to 80%. When m is increased to 7, data collected

from two Droid phones showed a success rate of 97.8% while the rate from two different

devices was 90% . When m is 10, the experiments on two different devices also showed a

very high success probability, 97%.
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Figure 3.8: Success Rate of Feature Reconciliation

In the feature reconciliation phase, we use a hash-into-group hashing function H1,
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which is constructed from a cryptographic hash function as introduced in Sec. 3.4. The

construction is a probabilistic algorithm. We tested the success rate of this hash function.

For test purpose, we hashed 1000 random numbers, from (0,200], into four different order

groups: 128, 160, 512, and 1024 bit groups. The first two group orders are popular selection

for the elliptic curve groups (ECC) and the last two are for the quadratic residue groups over

the Galois field modulo a safe prime, which is called DL groups in this section. 160-bit and

512-bit output were obtained by using SHA-1 and SHA-512. In order to obtain a 128-bit

output, we used SHA-1 and took the 128 least significant bits as output. To obtain 1024-bit

output, we divided the binary string of the input number into two halves, hashed each half

into a 512-bit string, and concatenated the both together. For each number, we recorded

how many attempts needed to hash the number into the desired group. Each experiment

tried 10 re-hashes before it reported “fail”. Fig. 3.9 shows the results. We can see that, in
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our experiments, to hash a number into the 128-bit 512-bit, and 1024-bit groups, we needed

to try no more than 4 times. For the 160-bit group, we needed to re-hash a small portion of

numbers for more than 5 times. We note that, in our experiments, all 1000 random numbers

were successfully hashed into the groups in 10 attempts.

For a smartphone protocol, the execution time is critical in the sense that smart-

phones usually have limited computational and storage resources. As pointed out previ-

ously, all our simulation were carried out on a low-end Motorola Droid smartphone. We

tested the running time of the zero-knowledge proof generating and verifying, the feature

reconciliation phase, and the key generation phase. We did not test the key confirmation

phase since it does not take up much proportion in the system execution time and actually

always costs the same time when the security parameter is determined. Our system was im-

plemented in two types of groups: a 1024-bit quadratic residue subgroup of a Galois field

modulo a safe prime p and a 160-bit elliptic curve group. According to NIST’s guidance

[78], the two groups both have 80-bit security level. The results are shown in Fig 3.10a,

3.10b, and 3.10c. We remark that the time of the feature reconciliation phase contains the

time of generating and verifying zero knowledge proof. We note that the y-axis in the fig-

ures are not continuous and we skipped in the middle because there was a big gap between

the execution time of the two implementations. To show the details of the time changing in

the plots, we stretched the y-axis and cut off the middle blank area. We executed the two

implementations under different m values introduced in step 1.

All the execution time increased linearly with the increase of m, since we have to

process larger sets in generating the proof and performing private set intersection. A larger

set also leads to higher probability of generating a long password w, which causes more

execution time in generating the session key. Another obvious observation is that the ECC

implementation was overwhelmingly faster than the DL implementation in zero knowledge
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proof, feature reconciliation, and key generation. For an example, if we set m = 18, the DL

implementation took almost 100 seconds to privately find a set intersection, while the ECC

implementation needed less than 7 seconds. The same performance difference was also
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observed when we perform zero knowledge proof and key generation. The difference is

due to the different group size used by the two implementations: the DL implementation

used a 1024-bit group and the ECC implementation used a 160-bit group. The reason for

the different order choice is that the security of a DL group is easier to be cracked when its

order is the same as an ECC group. For a larger group size, a basic group operation, such

as multiplication and exponentiation, costs more time. Therefore, it is not surprising to see

such a big gap between the two execution time values. We thus recommend to use ECC

group as the real implementation of our NFA system. In practice, m = 10 is sufficiently

large to select 4 pairs of valid peak points. In this case, the ECC implementation took

3.71 and 0.14 seconds to finish first phase and the second phase. Totally, the system can

terminate in less than 4 seconds for an authentication.

3.7 Conclusions

In this chapter, we have proposed a new concept, named near field authentication,

to help smart devices authenticate each other in a near field. We have designed a near

field authentication system which uses a novel and natural human motion, zigzag finger

movement, to enforce the spatial closeness. We have shown that the finger movement

have high variations and stable similarities. In order to remove the differences between

sensed feature data and generate high-entropy session key, we have proposed to use private

set intersection and encrypted key exchange in our system. Finally, we have simulated our

system on a real Android smartphone with a bland hardware specification and demonstrated

its efficiency. This work has been published in [63, 64].
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CHAPTER 4

Secure Acoustic Near Field Authentication

Many smartphone assisted security applications grant user services or privileges based on

the physical proximity between a smartphone and a terminal, e.g., a computer. Hence

proximity assertion is an important security mechanism. In this paper, we present a novel

near field assertion system that generates valid assertions only when the two devices are

within a few centimeters.

Our work is motivated by smartphone based two factor authentication (SBTFA),

which verifies both a user’s username/password and a pre-loaded secret in the user’s smart-

phone. During authentication, the smartphone’s proximity indicates that the operator is the

user himself. However, this indication is suspicious in the presence of relay attacks [55].

This type of attack utilizes two communicating devices, a leech and a ghost. The leech is

placed physically close to the smartphone and the ghost close to the terminal. The attacker

simply relays challenge and response messages between the terminal and the smartphone

via ghost-leech intercommunications and thus creates the illusion of physical proximity

between the two honest devices even if they are very far apart. Relay attacks void the secu-

rity protection provided by the smartphone. For example, a user is waiting at a coffee shop

counter with his smartphone in his pocket and leaves his laptop unattended on a table. Even

though the operating system on the laptop is protected by SBTFA, an attacker who can per-
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form relay attacks only needs the user’s password to crack into the system. Relay attacks

raise a greater threat against applications that use smartphones as the only authentication

factor [13, 22].

Relay attacks make SBTFA no securer than password only authentication. Even

worse, people may reduce their security vigilance due to the installation of a “securer”

protection. Many SBTFA system designers have realized the threat of relay attacks and

confined the system communications in a short range wireless network. However, recent

works have demonstrated positive feasibility studies for performing relay attacks in the

real world over short range wireless networks, including Bluetooth [61], RFID [36], and

NFC [37]. To prevent relay attacks and enforce proximity communications, researchers

have developed two main techniques. One is distance bounding protocol [19] that crypto-

graphically bounds the inter-device distance by measuring the response time. The other is

contextual co-presence approach [44, 69, 89] that enforces the proximity by comparing the

ambient information (e.g., GPS, temperature, etc.) sensed by the two co-present devices.

However, the distance bounding protocol is difficult to adopt on main-stream devices. The

contextual co-presence approach can only confine the two devices in a large area, such as

a coffee shop. A relay attack is still possible if the attacker also stays in the same area.

Therefore, there is a great demand for a system that can restrict devices in a small

area and fully resist relay attacks. However, relay attacks are due to an essential flaw of

existing communication system — there is an unpredictable wait between a message and

its response. This makes relay attacks very challenging to defend against.

In this paper, we present a surprisingly simple solution to this problem. The main

idea is illustrated in Figure 4.1: if two people communicate by whispering, it is hard for a

third person at a distance to hear the conversation.
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Figure 4.1: Whisper Restricts Communication Distance

While the main idea is easy to understand, building a working system that can pre-

vent relay attacks is challenging. Our main contribution is a design and implementation

of such a system, named Dolphin. Dolphin generates near field assertions via acoustic

communications, manipulates the sound power to restrict the communication distance, and

uses full-duplex communication [50] to prevent relay attacks. In particular, Dolphin has

the following properties.

• It asserts whether two communicating devices are in the near field (a few centimeters)

of each other. We use the term “near field” instead of “proximity” to emphasize that

the asserted distance can be as small as a few centimeters. A device can prove that it

is in the near field by presenting the assertion to the other party.

• It can prevent relay attacks. Dolphin has an adjustable time window limiting an

attacker’s relay time. A prudent implementation leaves an attacker no time to relay

messages.

• It requires no extra equipments and can be easily deployed on off-the-shelf devices.

Dolphin is a fully automated system and needs no human interactions.

• A valid near field assertion generated by Dolphin is a binary sequence and confiden-

tial to the two devices that execute Dolphin. This property is important for appli-

cations that generate a cryptographic session key based on the devices’ proximity

relations, such as one-time file sharing between two proximate smartphones [3].
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• It is light-weight and battery friendly for smartphones.

Although Dolphin is designed to provide relay-resistant near field assertions, it also

has an interesting “by-product” — valid assertions are confidential to the two communicat-

ing devices. This property helps improve the security of applications that base their system

security solely on the physical proximity relations.

The rest of this chapter is organized as follows. In Section 4.1, we review prior

works on proximity assertions. We present our design goals and thereat model in Sec-

tion 4.2. In Section 4.3, we illustrate the key ideas used in Dolphin and present an overview

of the system. In Section 4.4, we present the details of the entire system. We present eval-

uations of Dolphin in Section 4.5, and conclude the paper in Section 4.6.

4.1 Related Works

The problem of restricting the distance between two communicating devices has been stud-

ied in pairing systems [29] and relay resistant systems [98].

One promising approach is to transmit data over an out-of-band (OOB) channel and

use the channel’s physical properties to restrict the distance. Stajano and Anderson [93]

proposed to use a physical cable. Balfanz et al. [10] used infrared light to restrict distance.

Near field communication (NFC) technique can be employed to construct a near field as-

sertion system. However, these approaches require an additional equipment (e.g., a cable

or an NFC chip), which may not be available when an assertion is needed. It is preferable

to have a system that requires no extra equipments and can be executed on most off-the-shelf

devices.

A few works took advantage of visual OOB channel [73, 87]. McCune et al. pro-

posed SiB [73] that displays a barcode on one screen and “reads” it using another device.
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Saxena et al. [87] proposed to let the devices encode and transmit data via blinking LED.

Other works explored user’s motions [1, 25, 72, 96] and used the sensed force during mo-

tion to restrict the communication distance. BUMP [1] uses the bump force during a bump

between two devices. Shaking two devices together has been widely used in many works

[25, 72, 96]. Some works let a user manually compare the information displayed on the two

device screens [59, 81, 100]. However, most of these approaches are not automated and

require extensive user involvement. Such approaches become unsuitable when assertions

are frequently needed.

Recently, Nandakumar et al. [77] achieved confidential data transmission over

acoustic channels in the near field. They used low signal power and signal interference

to protect the data. However, their system is not designed for distance restriction and is

vulnerable to relay attacks.

Distance bounding protocols [19] cryptographically restrict the distance of two

communicating devices: a verifier sends a series of rapid-fire challenges and requires a

prover to respond immediately. The round-trip time of an interaction is measured and used

to estimate the distance. The distance bounding protocol is provably secure but requires a

no-latency communication channel and complicated implementations. The inconveniences

impede this approach’s industry adoption. Therefore, a desired approach should be easily

deployed and adopted.

Alternatively, contextual co-presence is a widely-adopted approach which lets two

devices sense and compare the ambient information to make a proximity assertion. Various

systems have been proposed using different information, including GPS raw data [69],

WiFi signal strength and access point address [58], ambient acoustic finger print [44, 89],

cell broadcast information [38], and user’s sitting posture [13]. Usage of a combination of

multiple environment information has been studied in [90, 98]. Although such approaches
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restrict two devices in the same area, the restricted distance cannot be at the accuracy of

a few centimeters. In addition, keeping sensors awake for a long time drains smartphone

battery. It is necessary to design a system that restricts distance in the near field and is

battery friendly.

4.2 Design Goals and Threat Model

4.2.1 Design Goals

The main objective of Dolphin is to generate valid assertions only when the two devices

are in the near field. We do not include any identity authentication in the system and leave

the usage of generated assertions to application developers. The design goals of a desired

system are outlined below.

• Functionality: the system asserts whether two devices are in the near field and out-

puts an assertion to each device. The two assertions are identical if the devices are in

the near field, but different otherwise.

• Credibility: when the resulting assertions are identical, the two devices are in the

near field. Attackers cannot force two devices to generate the same assertion if they

are not in the near field. The attacks include but are not limited to relay attacks. For

example, if a system is based on sensing ambient sound, a sophisticated attacker can

break credibility by playing the same music loudly and close to the two devices.

• Confidentiality: valid assertions are not known to any other party other than the two

communicating ones. This is useful in security applications that create a session key

based on the devices’ proximity relations. The resulting, confidential assertions can

be used as a shared secret and to derive a session key.
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• Usability: 1) a fully automated or zero-interaction system is preferable; 2) the system

should need no extra equipments and be compatible with most off-the-shelf devices;

3) the system should be easy to develop and adopt.

• Sustainability: the system should not drain smartphone battery fast.

4.2.2 Threat Model

Dolphin consists of a terminal, a smartphone, and a local network connection between

them. A terminal is not necessarily a big-size machine and could be a smartphone or

a tablet. The two devices are both honest. The connection is assumed to be insecure and

controlled by the attackers. We do not consider jamming or DDoS attackers, whose purpose

is to destroy the communications and assertion generation.

Dolphin may be used in two scenarios, assertion only and authentication, and can

cope with different attackers.

Assertion Only is a scenario where the two devices only want to make a near field

assertion. The parties care about the functionality and credibility rather than the confi-

dentiality of the assertions. SBTFA [32] fits this scenario. In this scenario, we assume

the terminal and the smartphone have their own signing-verification key pairs and have

exchanged the verification keys. Also, the two devices have each other’s public key for

encryption purpose. Dolphin allows attackers to eavesdrop the entire local network and to

manipulate any message. Attackers may carry out relay attacks between two devices that

are not in the near field.

Authentication is a scenario where two devices want to derive a session key from

valid assertions. This scenario requires that the resulting assertions are confidential. Pair-

ing [29] and secure near field file sharing [3] are two examples that fit this scenario. In this
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scenario, Dolphin does not require the two devices to exchange any secret in advance. An

attacker controls the local network but stays outside the near field during the system exe-

cution. We assume that the attacker cannot perform man-in-the-middle (MITM) attacks.

Relay attacks are different from MITM attacks in that an MITM attacker actively modi-

fies the relayed messages but a relay attacker does not. We argue that this assumption is

reasonable, because an MITM attack cannot be prevented without any trust base (e.g., a

pre-exchanged secret). In addition, this scenario usually happens with smartphone own-

ers’ attendance. Performing an MITM attack via acoustic communications in the near field

would arouse the owners’ suspicions. The owners can either exam and clear their environ-

ment before executing the system or manually compare the final assertions afterward, in a

human friendly way [34].

4.3 Key Ideas of DOLPHIN

Dolphin explores sound as an OOB channel, because the power of sound fades very fast

with the increase of transmission distance. A real life example is that when someone is

whispering, we can hear it clearly if we stand very close. If we step away from the speaker,

the voice becomes weaker and weaker and is finally buried in the ambient noise. Similarly,

the idea of Dolphin is to transmit acoustic signals with power equal to the ambient noise

power plus a small threshold. Using the threshold, Dolphin ensures that the signal cannot

be decoded beyond a desired distance. Another nice property of sound is that it requires no

special equipment, making Dolphin work on most off-the-shelf devices.

Relay resistance is a necessary but challenging part of Dolphin. Relay attacks are

due to the fact that a communicating party does not know how long it needs to wait for

the response message. Why is the waiting time unknown? The answer is that the com-

munications are half-duplex! After one party sends out its message, the other one does
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not respond until the message has been delivered by the network. The delivery could be

influenced by unpredictable network latency and attackers can take this chance to relay

messages, as illustrated in Figure 4.2a. To fully resist relay attacks, we propose to use full-

duplex communications. The two devices simultaneously transmit outgoing messages and

receive incoming messages. Dolphin has a time window of an adjustable size. Starting at

its message transmission, an honest party only accepts a message arriving within the time

window, as illustrated in Figure 4.2b. Therefore, a small time window makes relay attacks

impossible.
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Figure 4.2: Half-duplex vs. Full-duplex

While signal interference is what communication system designers usually want

to avoid, Dolphin explores signal interference to protect the confidentiality of transmitted

messages and the resulting assertions. Dolphin simultaneously transmits two message sig-

nals in a way that the interference between them makes it extremely difficult for an attacker

to separate and decode them. While it is difficult for an attacker to decode the two (com-

bined) messages, Dolphin uses self-interference cancellation to make the decoding possible

for the two parties involved.

Overview of Dolphin: A user places his smartphone close to a terminal and starts

Dolphin on both. Once started, Dolphin keeps running and generates assertions on demand.

If a device wants to make an assertion, it sends the other device a request message to
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trigger the following process. The two devices each choose a b-bit random binary sequence,

where b is a positive integer. A larger value for b incurs more communication overhead but

provides stronger security. In our implementation, we set b to 16. Both devices measure

the ambient noise, determine the transmission power, modulate the sequence to an acoustic

signal, and transmit their signals simultaneously. After the transmission completes, each

device cancels self signal interference, demodulates and obtains the binary sequence of

the other. Each device obtains a 2b-bit near field assertion by appending the smartphone’s

sequence to the terminal’s. Except the acoustic signal, all messages are transmitted over

the local network.

4.4 Design Details of DOLPHIN

For demonstration purpose, we implemented a prototype of Dolphin on an iPhone 5s and a

13-inch mid 2009 Macbook Pro over WiFi connections. We chose Apple platform for two

reasons: 1) it provides similar APIs for iOS and Mac OSX, accelerating the development;

2) iOS and Mac OSX have reputations in audio programming — providing low latency,

flexible APIs, and powerful native libraries. We emphasize that our framework and design

methodologies can be applied to any platform and need no special hardware support.

We first explain some terms that will be used in the paper. A signal is a sound

transmitting a message. Digitally, a signal is stored in a sequence of discrete samples, that

denote the signal amplitudes at a fixed sampling rate. A symbol is a group of consecutive

samples carrying one message bit. A signal contains a sequence of symbols. A tone is a

sine wave signal of small length.
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4.4.1 The Acoustic Channel

We start our designs by studying Dolphin’s OOB channel — the acoustic channel, which is

significantly interfered by the ambient noise. To characterize the interference, we measured

the ambient noise power at three typical places where Dolphin may work — an apartment

living room, a six-people office with A/C working, and a noisy coffee shop. First, we

measured the noise floors of the Macbook and the iPhone, respectively, in an isolated silent

environment. Next, we measured the ambient noise power spectrum at different places.

These results are shown in Figure 4.3.
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Figure 4.3: Spectrum of Ambient Noise

Most digital electronics today can support an acoustic sampling rate of up to 44.1kHz,

indicating that the largest operating frequency is 22.05kHz, i.e., the Nyquist frequency. As

seen from the figure, the ambient noise at the office and the coffee shop are notably high

— around 40 dB above noise floor for both Macbook and iPhone at low frequencies. The

noise power in the living room reduces to a small value above 5kHz, while the office and

the coffee shop still have a plenty of noise power until 10kHz and 15kHz, respectively.

Human voice is usually below 5kHz. Noise around 10kHz is due to the A/C noise in the
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office and the music in the coffee shop. A key observation is that the noise powers at all

three locations decrease quickly to a small value above 15kHz.

Dolphin uses four speaker-microphone acoustic channels — Mac to Mac, iPhone

to Mac, Mac to iPhone, and iPhone to iPhone. A device’s microphone receives acoustic

signals from the other device’s and its own speakers. Figure 4.4 depicts the frequency

response for the four channels. The frequency responses were measured by sending a
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Figure 4.4: Frequency Responses for “Speaker to Microphone” Pairs

series of tones from a speaker and recording the received signal power at a microphone.

The tones were of frequencies between 1kHz and 22kHz at intervals of 100Hz and at the

same power level. Each plot of Figure 4.4 uses the maximum power of any received tone

as the reference. We point out that during the course of the measurement, the iPhone
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and the Macbook were placed in the way as described in Section 4.4.6. From Figure 4.4,

we observe that a remarkable power attenuation occurs at around 18kHz for Macbook

microphone and 20kHz for iPhone microphone. More information will be lost if signals

are transmitted at frequencies beyond the attenuation point.

We also notice that human hearing sensitivity dramatically drops at frequencies

higher than 10kHz. This is reflected by the absolute threshold of hearing (ATH) graph,

Figure 4.5 (taken from [109]), where the two dotted lines represent age 40 group and age

60 group, respectively. The ATH graph depicts a curve such that given a frequency, we

can hear a tone only if its sound pressure level (SPL)1 is above the curve. The ATH graph

implies that an acoustic system should use high frequency signals to be less annoying.

Figure 4.5: ATH Graph
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Figure 4.6: Filter Response

Given these observations, we decide to use 16kHz acoustic channel in Dolphin. Fix-

ing the channel frequency, Dolphin uses a high-pass Finite Impulse Response (FIR) filter,

depicted in Figure 4.6, to reduce noise power. Figure 4.3 shows that ambient noise is as

high as 45 dB over the noise floor. The filter suppresses the frequencies below 15kHz by
1Sound pressure is the pressure caused by a sound wave, describing the sound loudness [84]. SPL is its

logarithmic measure (in decibels) relative to a reference pressure, 20µPa.
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an average of 55dB while preserving the frequencies above 15.5kHz.

Despite noise interference, a symbol of a signal is also interfered by its predeces-

sor and successor, i.e., Inter-Symbol-Interference (ISI). We transmitted a 256-sample sine

wave tone (at 16kHz) in each of the four channels and plotted the received signals in Fig-

ure 4.7. We observe a notable rise phase in the two channels where Macbook is the sender.
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Figure 4.7: Rise and Reverberation Time in the Four Channels

In audio programming, a speaker sounds according to what a program sets in the audio

buffer. Ideally, the diaphragm of a speaker immediately switches to the desired amplitude

in the buffer. However, speakers are analog devices and need time to “warm up”, which is
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reflected as a rise time. An undistinguished speaker makes more notable rise time than a

nice one does. In the meantime, we observe a reverberation time in all four channels, with

the Mac-to-Mac channel having the longest one. We transmitted tones of different lengths

to see the change of the reverberation time. The results are listed in Table 4.1. The ISI
Table 4.1: Sine Wave and Reverberation Time

Sine Wave 64 128 256 512
Reverberation 122 210 348 617

is caused by the rise and reverberation interferences. To avoid the interferences, Dolphin

selects 700 as the symbol length and the first 256 samples are reserved for the sine wave

tone.

4.4.2 Modulation

In Dolphin, modulation is to transform a binary bit to a high-frequency sine wave tone that

can be transmitted over the acoustic channel. There are many modulation approaches, in-

cluding amplitude-shift keying (ASK), phase-shift keying (PSK), and frequency-shift key-

ing (FSK). Dolphin uses a simple on-off keying (OOK), in which the presence or absence

of a tone denotes bit 1 or 0. OOK is vulnerable to noise interference. Figure 4.8 shows the

theoretical bit error rate (BER) versus signal-to-noise ratio (SNR) for four modulations:

OOK, quadratic PSK (QPSK), binary PSK (BPSK), and binary FSK (BFSK) [12]. The

channel is an additive white Gaussian noise channel. With the decrease of the SNR (to the

left of the figure), OOK quickly gets to a high bit error rate. Particularly, the BER of OOK

gets to 0.32 when SNR is 5dB. This vulnerability harms a communication system but helps

Dolphin to restrict distance. Increasing acoustic signal’s travel distance decreases the SNR

and dramatically hampers the demodulation. In the meantime, OOK is easy to demodulate

and is also used by NFC standard [85].
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Figure 4.9:Measured SPLs and Their Amps

Dolphin transforms a binary sequence to a series of symbols. A symbol carries a bit

“1” if it has a 16kHz sine wave tone in the first 256 samples and a bit “0” otherwise.

4.4.3 Calibration and Safe Distance

Dolphin restricts distance by manipulating the signal amplitude and thus changing the emit-

ted SPL. We need to know how much amplitude can produce a given SPL. We let Macbook

and iPhone play a 16kHz sine wave signal at various amplitudes under full volume and

measured the SPLs at a reference distance d0. We set d0 = 1cm in our implementation.

The results are shown in Figure 4.9 where the markers are the measured data points. We

can see that the logarithm of the amplitudes are linear in the SPLs, which conforms to the

definition of SPL [84]:

Lp = 20 · log10(
Prms

Pre f
) = 20 · log10(

A/
√

2
Pre f

).

Here, Lp is the SPL at point p. Pre f is 20 µPa in air. Prms is the root-mean-square of the

signal’s amplitudes and equals to A/
√

2 because the signal is a sine wave.

The inverse distance law [84] states that sound pressure falls inversely proportional
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to the distance away from a sound source. The sound pressure levels Lp1 and Lp2 at distance

d1 and d2 conform to the following equation.

Lp2−Lp1 =−10 · log10(
d2

d1
)2 =−20 · log10

d2

d1
. (4.1)

Dolphin achieves distance restriction by preventing an honest party’s signals being demod-

ulated beyond a safe distance d. Let La be the SPL of ambient noise. For OOK modulation,

SNR = Ld−La ≤ 5dB is sufficiently low to cause a high bit error rate. According to (4.1),

we can calculate the needed SPL L0 at the reference distance

L0 ≤ La +20 · log10
d
d0

+5.

In our implementation, we choose Ld−La = 0 and d = 15cm, which yields L0 = La+23.52.

Using Figure 4.9 and interpolation, we can calculate the needed amplitude for L0.

4.4.4 Synchronization

For confidentiality purpose, Dolphin requires the two devices to transmit signals simulta-

neously to interfere the two signals. For example, Figure 4.10a shows a received signal,

when iPhone sends “101” and Macbook sends “111”. Although the first time slot and the

third time slot both have symbol interference, they have different combined signal shapes.

Without knowledge of any original message, it is very difficult to separate and recover the

two signals.

Synchronizing two devices’ actions is challenging, because network status and a

device’s internal status are time-varying. We attempted to use an Internet time server,

time.apple.com, but the accuracy turned out to be not acceptable. There were nearly

0.05-second difference, resulting in a start mismatch of 2205 samples. To achieve syn-

chronization, Dolphin estimates the message delivery time and balances start time on the
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Figure 4.10: Signal Interferences and Synchronization

two devices. We remark that considering its easy adoption, we are not giving up the time

server based approach but looking for more precise solutions, e.g., GPS Time server or the

approach in [97]. We leave the improvement to our future work.

A start mismatch is the time difference, measured in number of samples, between

the start points of two signals. The start mismatch of two signals need to be less than one

tone length, i.e., 256 samples in Dolphin, to fully interfere them. Furthermore, we say that

two signals are entangled if their start mismatch is less than half a tone length.

Start mismatch is caused by system latency and audio buffer size. System latency

includes network latency and internal latency caused by a device’s internal procedures, e.g.,

job scheduling. Dolphin measures and estimates system latency as follows. First, Dolphin

enhances its own instance’s priority to the highest possible level, to reduce internal latency.

In iOS and Mac OSX, this is achieved by using p thread library and NSThread API.

The smartphone sends a probe message to the terminal, which sends an acknowledgement

message immediately after the probe arrives. Upon receiving the acknowledgement, the

smartphone calculates the message round trip time rtt. Repeating the process a few times,
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the smartphone obtains an estimated message delivery time rtt/2, where rtt is the average

round trip time. The estimation is performed each time before signal transmission. Once

the smartphone sends a “start transmission” message, it holds for rtt/2 to start transmission

and the terminal starts transmission upon receiving the message.

In audio programming, the speaker does not sound until the entire audio buffer is

fulfilled. Hence, audio buffer size also affects the latency. To test the impact, we used

system default buffer size for iPhone and measured start mismatches by changing Mac-

book’s buffer sizes to 10, 200, 400, 600, 800, and 1000 samples. A measurement is done

by transmitting two messages, “1000” and “0001” and counting samples between the starts

of the two tones. The start mismatch is the absolute difference between the counting result

and the expect number, 2100 (3× symbol length). For each buffer size, we used 4 different

WiFi networks and performed 50 measurements in each network. The networks’ average

ping times are 7.639ms, 3.777ms, 4.770ms, and 25.546ms. The standard deviations are

3.171, 1.275, 5.451, and 10.332. Figure 4.10b shows the start mismatches in box plots. In

a box plot, the box encloses the points from the 25 percentile to the 75 percentile, and the

red line in the box represents the median. The red dashed line in the figure denotes the

entanglement boundary. A point below the line, colored dark green, indicates that the two

measured signals are entangled. The remaining points are colored light grey. Obviously, a

600-sample long buffer performs best since most of its points are below the entanglement

boundary. Specifically, it has 149 mismatches less than 128, and 187 ones less than 256.

Increasing the buffer size, we can see that the 6 medians show a “V” shape in Figure 4.10b.

This is because a small buffer size makes Macbook respond faster than iPhone while a large

one makes Macbook respond slower. By setting buffer size to 600, Dolphin can synchronize

most transmissions and thus protect confidentiality of the final assertions. If a synchro-

nization fails, Dolphin just re-executes the protocol until a synchronized transmission is
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achieved. Synchronization failure causes decoding failure, which is detected by CRC code

in Dolphin, see Section 4.4.6.

4.4.5 Self-Interference Cancellation

The biggest challenge for full-duplex communication is to cancel self signal interference

and extract the other party’s message, which is called self-interference cancellation (SIC)

[50]. Radio wireless communication researchers achieved SIC by accurately placing an

additional antenna [50], recording the oppositely phased version of self signal, and using

it to cancel self signal on flight. This design is for distant transmission where the arriving

signal is much weaker than the self signal. However, Dolphin works in the near field and

both signals are equally strong. In addition, an additional antenna is not available on most

devices.

Dolphin’s SIC approach is to subtract a device’s self signal from its received one so

as to obtain the arriving signal. Different from the aforementioned SIC, our approach is an

off-line process and has a smaller throughput. Note that maximizing throughput is not the

aim of Dolphin. The goal of our SIC approach is to reconstruct the self signal, which has

been distorted by the arriving signal.

Dolphin reconstructs the self signal using a pre-learned reference symbol. Before

signal transmission, each device sends itself a symbol carrying bit 1. This phase is called

beep, and the symbol is called reference symbol. Next, the device arranges the reference

symbol according to its own message’s binary sequence: putting the symbol at where bit 1

appears to cancel the self signal.

Directly using the reference symbol cannot obtain a good SIC result because we

have not considered distortions caused by transmission. Sampling distortion is caused by
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the offset between two digital-to-analog procedures — recording reference symbols and

recording message. This is illustrated in Figure 4.11, where Fs is the sampling frequency.

The offset ∆t is always smaller than 1/Fs. Fixing ∆t, we can use discrete Fourier

transform (DFT) to shift a sample sequence (blue lines) by ∆t. Fourier transform states that

a signal x(n) can be represented by the summation of a series of sinusoids

x[n] =
N/2

∑
k=0

(ReX [k]cos(2πkn/N)+ ImX [k]sin(2πkn/N)),

where N is the number of samples, X [k] is the k-th frequency domain sample, and ReX [k],

ImX [k] are its real and image parts. The signal can be losslessly reconstructed if its fre-

quency is less than Fs/2. Therefore, we use equation

x′[n] =
N/2

∑
k=0

(ReX [k]cos(2πkn/N +2πk∆tFs/N)

+ImX [k]sin(2πkn/N +2πk∆tFs/N))

to obtain the shifted sample sequence x′[1..N]. Technically, the shift operations are done in

the frequency domain. Dolphin first transforms a time domain sequence to the frequency

domain, then applies a fractional offset filter [80] to the sequence, and finally transforms

them back to the time domain.

To perform SIC, we need to locate the start point of a tone in the received signal.

The location process introduces Symbol synchronization distortion. Dolphin locates a tone

by seeking a sharp power jump in the signal. Therefore, the located point may be a few
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samples away from the true start point. This error makes the reference symbol not line up

with a symbol in the received message signal.

Given a reference symbol re f , a self message m, and a received, interfered sample

sequence s, Dolphin performs SIC in the following way. SIC has three parameters w0, wreg,

and β . w0 and wreg denote the position search range for the first tone and the rest tones,

respectively. β is the offset increment. Our implementation used w0 = 128, wreg = 40,

and β = 20. We note that the first message bit m[0] is always set to 1 for synchronization

purpose.

1. Dolphin locates the the start point p of the first tone in s and initializes a message

pointer pm← 0.

2. If m[pm] = 0, go to 6.

3. If pm = 0, set r← w0; otherwise, set r← wreg.

4. For all p′ ∈ [p− r .. p+ r] and all ∆t = α

β ·Fs , where α ∈ [0..β ], Dolphin computes

pmin and ∆tmin such that

(pmin,∆tmin) = argmin
p′,∆t

L

∑
k=1

(s[p′+ k]− re f ∆t [k])2,

where L is the symbol length and re f ∆t denotes shifting reference symbol by ∆t.

5. Perform SIC: s[pmin + k] = s[pmin + k]− re f ∆tmin [k], for 1≤ k ≤ L.

6. If pm is less than the message length, p← p+L, pm← pm+1 and go to 2. Otherwise,

SIC terminates.

We remark that, in 4, Dolphin searches 2r neighbors around point p to find a best matched

position. We search a larger range w0 at the first tone position than the rest to cancel the

impact of the start mismatch.
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4.4.6 Putting The Pieces Together

Dolphin places the two device speakers as close as possible. From a distant attacker’s point

of view, the two acoustic signals seem to come from the same point and are difficult to

separate. The inseparability protects the confidentiality of the resulting assertions. Fig-

ure 4.12 shows microphone and speaker positions on iPhone (left) and Macbook (middle).

The rightmost picture shows the placement of the two devices in Dolphin. iPhone and

Macbook touch each other at the speakers. iPhone microphone is 1cm away from the touch

point while Macbook microphone is 6cm away.

speakermic

iPhone

Macbook

Figure 4.12: Placing Two Device Speakers Closely. Rightmost Is How We Place a Smart-
phone in Dolphin

First, Dolphin selects a safe distance d. When a smartphone and a terminal are

properly placed, Dolphin works as follows. We note that when we say “sending message”

we mean sending over the local network.

• The terminal sends a start request to the smartphone. Upon receiving the request, the

smartphone measures and estimates the message delivery time rtt/2 (Section 4.4.4).

• The smartphone sends a “start measurement” message to the terminal. The terminal

starts to measure ambient SPL when the message arrives, while the smartphone holds

for rtt/2 seconds to start measurement. Both devices determine the needed signal
106



amplitude as discussed in Section 4.4.3. In the meantime, the devices respectively

choose a 16-bit random number with the first bit fixed to 1. Appending a 4-bit CRC

code, each device obtains a 20-bit message to be sent out. Using OOK modulation

(Section 4.4.2), each device converts the binary sequence to a 16kHz signal.

• After the above preparation, the smartphone sends a “start transmission” message to

the terminal. The terminal emits its signal as soon as it receives the message. The

smartphone holds for rtt/2 to transmit its signal.

• Each device performs SIC over the received signal, i.e., a sequence of samples (Sec-

tion 4.4.5). The resulting sample sequence is fed to the OOK demodulator to obtain

the message from the other party. CRC check is performed over the message. If the

check fails, the device reports the failure and requests for another round of protocol.

Otherwise, the first 16-bit binary sequence is extracted. Both devices append smart-

phone’s binary sequence to the terminal’s. The 32-bit number is the final near field

assertion.

• For the “Assertion Only” scenario, each device signs the assertion, encrypts the sig-

nature using the other party’s public key, and sends it to the other party for validation.

For the “Authentication” scenario, the two devices execute a password based authen-

ticated key exchange protocol (PAKE) [15, 24] to derive a shared session key. The

32-bit number serves as the shared password in PAKE.

4.4.7 Security Discussion

Distance restriction is guaranteed by the physical properties of sound. The inverse distance

law of acoustics and BER-SNR relation of OOK modulation theoretically guarantee that
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beyond the safe distance the emitted acoustic signal’s power drops to such a low value that

it is impossible to correctly demodulate the message.

Confidentiality is achieved by the interference of the two signals. An attacker can-

not separate or recover the two signals if he is oblivious to both. Ideally, two symbols

interfere in three cases “1-1”, “1-0”, and “0-0”. The “0-0” case is easy to detect. For the

“1-0” case, an attacker has to determine which party emits bit 1. Addressing this problem

requires the knowledge of at least one message. For the “1-1” case, it is difficult for an

attacker to determine whether it is a single 1-bit contaminated by noise or the combination

of two 1-bits. The real cases are more complicated. For example, determining whether it is

a “1-1” case is not easy because signals may cancel each other (see Appendix 4.7).

In Section 4.4.5, we mentioned that during SIC, range w0 is set to be sufficiently

large to tolerate start mismatch. Particularly, choice of w0 depends on the security level

of the implementation. A larger w0 tolerates a larger mismatch but makes the two signals

more vulnerable to separation and puts the confidentiality of the assertions at higher risk. If

an implementation does not require confidentiality, it can use a large w0 to make the system

more robust. More attacks are discussed below.

Relay Attacks. An honest party only accepts an arriving signal that starts the first

tone at most w0 samples later than itself does, leaving an extremely small time window

for relaying messages. Our implementation uses a time window of 128/44.1 = 2.9ms.

The time window can be squeezed or relaxed by changing w0. This means that our relay

resistance is adjustable and thus flexible to be adopted by different applications.

Source Separation Attacks. An attacker may try to separate the two signals by

using blind audio source separation (BASS) that has been studied in acoustics [102]. How-

ever, BASS algorithms separate audio sources based on the the sound’s acoustic pattern,
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such as frequency, sound pressure level, etc. An example is to separate human speech from

background music. However, given a combined message signal in Dolphin, it is difficult to

distinguish between a symbol sent by the smartphone and a symbol sent by the terminal.

This makes BASS impossible to separate the two signals. We will verify this property in

Section 4.5.2.

Multi-reception Attacks. Attackers place multiple microphones near the two com-

municating devices trying to separate the two signals as in a multi-input multi-output

(MIMO) system. However, MIMO needs senders and receivers collaborate to frequently

measure the channel information between them because the channels are time-varying. Our

threat models assume that an attacker does not control any device and thus cannot carry out

such attacks.

Delaying Attacks. Since an attacker controls the local network connections, he can

delay the smartphone’s probe messages to increase its measured message delivery time but

delivers the “start transmission” message as normal. In this way, the smartphone’s signal

transmission is delayed and the two signals are easy to separate. However, any delay larger

than the time window bounded by w0 causes demodulation failure and voids the resulting

assertions.

Placement Attacks. Attackers try to find a vantage position where the arriving time

gap between the two signals is stretched to a sufficiently large value to separate them. By

triangle inequality, we know that the arriving time gap is no more than de/vs, where de is

the distance between the two speakers and vs is the speed of sound, i.e., 340m/s. Dolphin

requires the two speakers to stay close and de is smaller than 0.1m, resulting in a mismatch

of 13 (0.1×44100/340) samples.

Shouting Attacks. During the course of measuring ambient SPL, an attacker cre-
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ates a loud sound to make the devices transmit acoustic signals with a higher power than

needed. In this way, the attacker attempts to force two distant devices to generate a valid

assertion. First, we note that a device speaker cannot sound arbitrarily large and such an

attack fails when the two devices are far away from each other. In out implementation,

Macbook and iPhone both sound less than 100dBSPL at 1cm which means that the SNR

drops to 0 beyond 3.16 meters (10
50
20 cm) in a 50dBSPL environment. In addition, to achieve

a wanted distance d′, an attacker has to lift the ambient noise SPL by 20log10
d′
d . For ex-

ample, d = 15cm in Dolphin, an attacker has to increase the noise by 16dBSPL so as to

attack two devices that are 1 meter apart. This 16dBSPL increment is so loud (> 2× loud

[99]) to arouse a device owner’s suspicion. Since Dolphin is designed as an automated and

long-running service, it can measure the ambient SPL at random time points and reject any

suspiciously sharp increment.

Distance Fraud. In this attack, one of the two communicating devices is malicious

and tries to get valid assertions when it is beyond the safe distance. We remark that this

attack is not the main attack Dolphin aims to defend against because our threat model

assumes that both devices are honest. We argue that such attacks are difficult to succeed.

First, an attacker has to find some way to increase the SNR that drops to a useless level

beyond the safe distance. He can either use a directional microphone to increase the arriving

signal power or execute an active noise control system to reduce the noise power. However,

using a directional microphone in close proximity is very suspicious and an active noise

control system is not practical in an enclosed space as large as a room [92].

4.5 Performance Evaluation

We have designed a series of tests to evaluate the performance of Dolphin, including suc-

cess rate under various conditions, security performance, execution time, and energy usage
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Figure 4.13: Success Rate Testings

on smartphones.

4.5.1 Success Rate

Before presenting the results, we remark that Dolphin uses 4-bit CRC code to detect bit

errors and repeats the protocol if an error occurs. Hence, in practice, Dolphin guarantees to

successfully achieve a valid assertion. Comparing with contextual co-presence approaches,

111



Dolphin enables a communicating party to locally check the validity of an assertion via

CRC check. We suppressed the redo part of Dolphin in the evaluation of success rate.

In the following experiments, each device performs one signal transmission per execution

of Dolphin. We say the communication is successful if the two resulting assertions are

identical.

First, we tested our system at three locations, a living room, an office with A/C

working, and a coffee shop during busy hours. Table 4.2 lists the average ambient noise

SPL and statistics of network ping time at the three locations.
Table 4.2: Statistics of Locations

Office Coffee Shop Room
Noise avg (dBSPL) 59.4 67.3 42.8
RTT avg (ms) 3.801 9.468 6.055
RTT stddev (ms) 1.922 10.666 2.407

At each location, we let iPhone and Macbook conduct the protocol and do 150

signal transmissions. After each transmission, we record whether the CRC check succeeds

on both devices and whether the communication succeeds. The success rates are shown in

Figure 4.13a. The communication success rate is the highest in the living room (82.9%)

and the lowest in the noisy coffee shop (70%). The success rate in the office is also high,

although the ambient noise SPL is not low. The reason is that the noise in the office is

mostly caused by A/C (which is stable), while the coffee shop often has a noise burst, e.g.,

running an espresso machine or blending coffee beans. We also notice that the iPhone has

a very high CRC success rate, because its microphone is very close to the two speakers and

captures the signal much more clearly than the Macbook does. Inspired by this observation,

we ran Dolphin on two iPhones, an iPhone 5 and an iPhone 5s. We put the two iPhones face

up, bottom to bottom, and 1cm apart. Finally, we obtained a high communication success

rate — 96.3%, 98.2%, and 95.7% at the office, living room, and coffee shop, respectively.
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Next, we tested our implementation under a high latency WiFi environment and

three human usage environments: web browsing, heavy typing on the build-in keyboard,

and heavy typing on an external USB keyboard. Each testing performed 150 signal trans-

missions. During the testings, we kept a non-stop web browsing or keyboard typing while

the system was running. To make a loud noise, we use an old fashioned mechanical key-

board when using an external keyboard in testing. The resulting success rates are shown

in Figure 4.13b. Bad WiFi connection suppresses the communication success rate to 21%.

The network RTT has a mean of 939.67ms and a standard deviation of 243.488. The low

success rate is caused by the high latency variance which makes Dolphin’s latency esti-

mation inaccurate. In bad network testing, iPhone has a high CRC success rate because

the mismatch is so large that the iPhone only heard its own signal. Typing on the build-in

keyboard results in a lower success rate than typing on the external one, because the keys

around CAPS key on the build-in keyboard are close to the speakers and typing on these

keys affects the signals very much. Web browsing does not affect the success rate since it

uses less touch to the CAPS key area.

The first search range w0 determines Dolphin’s tolerance to the signal mismatch

and affects the success rate. We executed Dolphin using different w0, which was set to 16,

32, 64, 128, and 256 respectively. The resulting success rates are depicted by Figure 4.13d.

We observe that the growth of w0 dramatically increases the success rate.

Dolphin synchronizes two signals by estimating system latency. Multiple tasks

contending resources may make the estimation inaccurate and fail the communication. We

tested the success rate of Dolphin while letting one or two CPU-intensive processes occupy

CPU resources. We ran an infinite AES encryption process to occupy one of the two cores

in the CPU and Geekbench 3 to occupy both. The testing is performed on Macbook side

because 1) working on computer and putting smartphone aside is a common scenario in
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smartphone assisted system; 2) the testing is already sufficient to show the success rate

change. The resulting success rates are shown in Figure 4.13c. The success rate is reduced

to 62% when one core is occupied and 50% when both are occupied. Mac OSX scheduler

tries to assign equal resources to long-running jobs [91]. Contention between jobs makes

the latency estimation not accurate and thus fails the synchronization and the corresponding

SIC phase.

4.5.2 Security Performance

Dolphin utilizes fast decaying acoustic signal to restrict the distance between two devices.

We placed iPhone (resp. Macbook) speaker at different distances to Macbook(resp. iPhone)

microphone and let the speaker transmit signals. The received SNRs are shown in Fig-

ure 4.14a. We can see that doubling distance reduces SNR by nearly 6dB, which verifies

the inverse distance law, see Equation (4.1). This makes obtaining valid assertions beyond

the safe distance impossible.
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Figure 4.14: (a): SNR vs. Distance (b): Distance of two tones
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One may worry about whether the two signals can be separated by their individ-

ual patterns by using, for example, machine learning approaches. We argue that the two

sine wave tones produced by Macbook and iPhone are almost identical by showing the

normalized Euclidean distance between them. The Macbook emits a tone first and the

iPhone sounds later. We use a third iPhone to record the two tones, obtaining two sample

sequences. The distance is calculated as follows: 1) use cross correlation to find a start

point in each sequence such that beginning from the point, the two sequences are optimally

matched; 2)obtain two sequences, x and y, truncated from the start points; 3) normalize x,y

using min-max normalization and calculate the normalized Euclidean distance between

them. We calculated the distance for 100 pairs of tones, and plotted the results in Fig-

ure 4.14b. As can be seen from the figure, most distances are less than 0.015, indicating

that the two tones in most cases are almost identical.

As discussed previously, an attacker cannot separate two signals by placing a de-

vice at a vantage position with respect to the touch point of Macbook and iPhone. This

ensures the confidentiality feature of Dolphin. We placed a smartphone (“attacker”) to col-

lect two signals at various positions around the touch point. Particularly, the smartphone

is placed at 10cm to the touch point but at different angles. In our device placement (Fig-

ure 4.12), let the positive direction be the direction from the touch point to the rightmost.

If we draw a circle centred at the touch point, a line connecting the centre and a point on

the circle forms an angle with the positive direction. An angle is positive if the positive

direction turns clockwise to the line. We placed the smartphone at the position of angles

of 0◦, 45◦, 90◦, 135◦,180◦, and − 135◦. For each position, the two devices transmitted

100 pairs of signals. The attacker captured a pair and calculated the start mismatch as in

Section 4.4.4. Figure 4.15a shows the results in boxplots and the x-axis lists the position

angles. We can see that for all testing positions most of the signal pairs are entangled, i.e.,
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Figure 4.15: Mismatch of Two Signals Obtained by an Attacker on Various Positions

start mismatch (green points) is smaller than 128. An attacker’s advantage is the difference

between the start mismatch obtained by the attacker and the one obtained by an honest

party. In Figure 4.15b, we show the attacker’s advantages for all testing pairs. We observe

that most (>80%) of the attacker’s advantages are below 15, which conforms to our previ-

ous analysis, and all of them are smaller than 25. Therefore, it is of small probability that

an attacker obtains two separated signals while the two honest parties do not notice it. From

the figure, we also notice that an attacker maximizes his advantage by placing devices on

positions of 0◦ and 180◦, whose median (red line) is obviously higher than the rest. This

also verifies our analysis and suggests that these two positions should be especially cleared

during the system execution.

4.5.3 Energy Usage

Dolphin is designed to be running on smartphones, where energy saving is vital. By using

iPhone’s logging for developers, we tracked the energy consumptions of Dolphin as well

as Safari and Youtube for comparison purpose. The test device is an iPhone 5s running
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iOS 7. The log file is transferred to and visualized in XCode Instrument Tool which uses

unit Energy Usage Level on a scale of 0-20 to indicate the current energy usage. The

track lasted for 30 minutes and energy usage is logged per second. Figure 4.16a shows a

snapshot of the logged results. It is clear that watching online video consumed the least
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Figure 4.16: (a)Dolphin’s Energy Usage Level; (b)Signal Processing Time on iPhone and
MacBook

energy and Dolphin consumed nearly the same energy as Safari did. Specifically, the ratio

of Dolphin’s total energy consumption to Safari’s is 1.03. Such an energy consumption

achieves our goal of sustainability, since web browsing is not a battery killer task and can

last for nearly 10 hours [101].

The execution time of Dolphin consists of two main parts — signal transmission

and the following signal processing, including FFT, SIC, etc. The signal transmission

costs 700× 20/44100 = 0.317 seconds. To get signal processing time, we ran Dolphin

for 100 times and calculated the average time for signal processing. The result is shown
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in Figure 4.16b. The time values of iPhone squeeze around the mean of 5.83 seconds

while the time values of Macbook have a large standard deviation but a smaller mean, 2.68

seconds.

4.6 Conclusions

We have designed and implemented Dolphin — an acoustic near field assertion system.

Dolphin utilizes the fast decay property of acoustic signals to restrict distance, and full-

duplex communication to defend against relay attacks. It has an adjustable safe distance

(for restricting distance) and an adjustable time window (for defending against relay at-

tacks), generates confidential assertions, needs zero user interactions, and is battery friendly.

Extensive experiments are carried out to evaluate the performance of Dolphin.
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4.7 Illustrating SIC and Demodulation Process by An Example

We use an example to illustrate the SIC and demodulation process of Dolphin. All the plots

here use sample index as x-axis and signal amplitude as y-axis.

Macbook and iPhone simultaneously send binary sequences 11100010110111001101

and 10100101100001111100, respectively. Figure 4.17a shows the signal that was cap-

tured by the iPhone and filtered by the HPF (Section 4.4.1).

(a) Signal at iPhone: after HPF, before SIC

(b) Signal at iPhone: after SIC, before Squaring

An interesting observation is that the two symbols in some “1-1” symbol pairs can-

cel each other, highlighted by red boxes. The rest of the “1-1” pairs have the two symbols

add to each other. This observation shows that detecting the “1-1” case in a real signal trans-

mission is difficult for attackers. The signal obtained after applying SIC is shown in 4.17b.
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(c) Signal at iPhone: after Squaring and LPF, before digitalization

1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1

(d) Signal at iPhone: decoded message

Figure 4.17: Digital Signal Processing on iPhone

SIC has filled part of the cancellation in the two special “1-1” symbol pairs, which makes

the correct decoding possible for the communicating party. Next, the signal is squared and

filtered by a low pass filter (LPF), shown in Figure 4.16c. Finally, we digitalize the signal

by comparing each sample value against the mean value of the first symbol (Figure 4.16d).

We observe that the iPhone successfully extracted the sequence 11100010110111001101

transmitted by the Macbook.
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