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ABSTRACT

LTE-Advanced networks employ random access based on preambles transmitted ac-

cording to multi-channel slotted Aloha principles. The random access is controlled

through a limit W on the number of transmission attempts and a timeout period for

uniform backoff after a collision. The LTE-Advanced random access system is mod-

eled by formulating the equilibrium condition for the ratio of the number of requests

successful within the permitted number of transmission attempts to those successful

in one attempt. It is analytically proved that for W ≤ 8 there is only one equilib-

rium operating point, and for W ≥ 9 there are three operating points if the request

load ρ is between load boundaries ρ1 and ρ2. These load boundaries as well as the

corresponding system operating points are analytically identified. Analytical expres-

sions for the throughput and delay of successful requests at the operating points are

found and validated through simulations. Further, the results are generalized using

a steady-state equilibrium based approach and models for single-channel and multi-

channel systems are developed, incorporating the barring probability PB. Ultimately,

the de-correlating effect of parameters O, PB, and Tmax
o is identified and the Pois-

sonization effect due to the backlogged requests in a slot is introduced. The impact of

Poissonization on different traffic is studied. Further research directions are discussed

at the conclusion.
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Chapter 1

INTRODUCTION

Long Term Evolution (LTE) Advanced (LTE-Advanced) Larmo et al. (2009) is a

popular Radio Access Network (RAN) protocol standard for 4G cellular networks,

which has been chosen by many service providers worldwide 4G Americas (2012);

Boudriga et al. (2008). Given the prominence of LTE-Advanced in 4G networks it

is important to thoroughly analyze its protocol features. In this study, we focus on

the slotted Aloha based random access procedure, which distributed user equipment

(UE) nodes must complete to establish a connection to the central enhanced Node

B (eNB). For applications with frequent small data transmissions, such as periodic

monitoring of patient vitals in ubiquitous health care systems Lee and Vasilakos

(2011), the random access procedure must be completed for each data transmission,

thus efficient and low-delay completion of the random access is highly important.

In brief, the LTE-Advanced random access protocol consists of an access barring

check Lien et al. (2012), which may bar (block) a UE from attempting to connect to

the eNB for a prescribed time period, followed by preamble contention. The pream-

ble contention follows essentially the principles of a multi-channel slotted Aloha sys-

tem Rom and Sidi (1989) with a limit on the number of retransmissions. Specifically,

in a given time slot, the UEs with connection requests randomly select a preamble

from among a set of O orthogonal preambles. If two or more UEs select the same

preamble, a collision occurs. A UE with a collided preamble retransmits in a later

slot, provided it has not exhausted the W permitted transmission attempts. In this

study, we focus on the preamble contention and leave the access barring for future

work.
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We model the preamble contention for an infinite UE population generating re-

quests according to a Poisson processes through a system equilibrium condition. We

define a function h(t) to represent the ratio of the expected number of requests suc-

cessfully completed within the W attempts to the number of attempts completed in

one attempt for a given expected number of transmitting UEs t. We analyze the

equilibrium condition by examining the intersections of the function h(t) with the

line t/ρ whose slope is inversely proportional to the load ρ. From this analysis, we

show that for W ≤ 8 there is only a single equilibrium operating point. For W ≥ 9 we

analytically specify load boundaries ρ1 and ρ2 that depend only on W , such that for

loads ρ in the range (ρ1, ρ2), three equilibrium operating points exist, which we ana-

lytically specify. For loads ρ outside the [ρ1, ρ2] range, only one equilibrium exists for

W ≥ 9. While slotted Aloha systems have been analyzed extensively in the literature

(see Section 1.1), to the best of our knowledge, our study is the first to analytically

specify the boundaries of the load range giving rise to multiple equilibria for W ≥ 9

as well as to analytically specify the throughput and delay at these operating points.

The widely expected increase in the number of nodes combined with new services,

such as ubiquitous healthcare applications, machine-type and smartphone communi-

cation (MTSC) Lien et al. (2011a), and other small data applications, will frequently

generate small data sets. Low delay is often a key requirement for these frequent

small data sets, which result in a high random access load. One possible strategy

for ensuring low delays is to limit the traffic load. For instance, for a system with

transmission attempt limit W ≤ 8, which has only a single operating point, our delay

analysis can be used to limit the load ρ so as to keep the mean delay below a tolerable

delay target. For systems with W ≥ 9, the load can be limited to below the lower

load boundary ρ1 to avoid the performance degradations due to multiple operating

points.

2



1.1 Related Works

The throughput-delay performance of slotted Aloha type random access without

a limit on the number of transmission attempts, which corresponds to W → ∞, has

been examined in a number of seminal studies for single-channel systems Carleial

and Hellman (1975); Dai (2012); Ferguson (1975); Jenq (1980a); Kamal and Mamoud

(1979); Kleinrock and Lam (1975a); Murali and Hughes (1998a); Naware et al. (2005a)

and multi-channel systems Pountourakis and Sykas (1992); Shen and Li (2002); Sz-

pankowski (1983); Yue (1991); Zhang and Liu (1993). For the infinite node model,

several of these seminal studies, e.g., Carleial and Hellman (1975); Jenq (1980a); Ka-

mal and Mamoud (1979); Kleinrock and Lam (1975a); Murali and Hughes (1998a);

Szpankowski (1983) found that for (per channel) loads ρ < 1/e, slotted Aloha has

three equilibrium operating points, namely one low-delay high-throughput operating

point, an intermediate point corresponding to moderate delay and throughput, and a

saturation point corresponding to high delay and low throughput; for loads ρ > 1/e

(whereby 1/e corresponds to our load boundary ρ2 for large W), only a single sat-

uration point exists. For a multi-channel slotted Aloha system with fast retry (i.e.,

immediate retransmission in the next slot) or uniform backoff (i.e., retransmission

after a uniformly distributed backoff time), we extend these results as follows: We

show that for a finite limit on the number of transmission attempts W, W ≥ 9, there

is a load boundary ρ1 below which only a single operating point exists; for large W ,

the ρ1 asymptotically behaves as (logW )/W .

Slotted Aloha based random access with a transmission attempt limit W has

been simulated in Lüders and Haferbeck (1994), while the impact of retransmissions

on a general packet (cell) queueing system has been analyzed in Grishechkin et al.

(2003) and a limit of W = 3 has been shown to minimize delays in lightly loaded

3



slotted Aloha in Simon and Votta (1985). Kwak et al. Kwak et al. (2005) analyzed the

effects of limiting the number of transmission attempts on general exponential backoff.

Kim Kim (1992) formulated an equilibrium condition and observed from exhaustive

numerical exploration the existence of either one or three equilibrium operating points

for different limits on the number of transmission attempts. Similarly, Liu Liu (2002)

formulated an equilibrium condition for slotted Aloha with transmission attempt limit

and explored this equilibrium condition numerically. In contrast, we formally analyze

our equilibrium condition to identify the multiple operating points as well as the

corresponding throughputs and delays.

Sakakibara et al. Sakakibara et al. (2000, 2003) and Noguchi et al. Onozato et al.

(1986); Wang et al. (1991) modeled slotted Aloha systems with the formalisms of

catastrophe theory Onozato and Noguchi (1985b,a). Through a cusp theory approx-

imation within the catastrophe theory formalism, Sakakibara et al. proved that for

W ≤ 8 transmissions there exists only a single equilibrium operating point, whereas

for W ≥ 9 there are load boundaries within which multiple operating points exist.

In contrast, we model the underlying slotted Aloha random access dynamics directly

through an elementary equilibrium equation. We not only prove the existence of sin-

gle and multiple operating points, but also analytically identify the load boundaries

that give rise to multiple operating points for W ≥ 9 as well as analytically identify

all operating points. We also analytically derive the throughput-delay performance

corresponding to the operating points.

Sarker et al. Sarker and Halme (2000a); Sarker (2006); Sarker and Mouftah (2008,

2013) investigated the impact of limiting the number W of transmission attempts on

the throughput. Their work is complementary to ours in that their main focus is

on controlling the number of transmission attempts so as to maximize throughput by

operating the system near the classical stability limit of 1/e of the channel bandwidth

4



(which approximately corresponds to our upper load boundary ρ2). In contrast to the

work of Sarker et al., we include the delay in our evaluations and identify the impact

of the single or multiple operating points on throughput and delay.

Recently, the various aspects of LTE random access have attracted significant re-

search interest. Yilmaz et al. Yilmaz et al. (2011) identified optimization problems for

LTE random access. Vukovic and Filipovich Vukovic and Filipovich (2011) examined

the impact of different physical random access configurations, such as possible non-

uniform distribution of random access opportunities over the slot in the LTE time

structure. Kwan and Leung Kwan and Leung (2011) examined the inter-cell interfer-

ence caused by neighboring eNBs. Wei et al. Wei et al. (2012) examined group paging

in an LTE network, where each UE in the group has only one requests. Yun Yun

(2012) comprehensively described the physical (PHY) layer and medium access con-

trol (MAC) layer of 3GPP Universal Terrestrial Radio Access, which is related to

LTE-Advanced, with a Markov chain model. Our study is complementary to Yun

(2012) in that we focus on the medium access control and analyze in detail its im-

plications for the existence of a single or multiple operating points, which are not

explicitly considered in Yun (2012), as well as the resulting throughput and delay.

Seo and Leung Seo and Leung (2011a) studied the uniform backoff in LTE relative to

the exponential backoff in IEEE 802.16 WiMAX. In the context of this backoff study,

Seo and Leung briefly analyzed the implications of these backoff mechanisms on sys-

tem operating points in the limit W → ∞ for saturated (high traffic) conditions.

Similarly, in Seo and Leung (2012), Seo and Leung analyzed the initial random ac-

cess with infinite retransmission limit for LTE semi-persistent scheduling. Our study

focused on the impact of the finite transmission attempt limit W and covers the full

range of load conditions.
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Slotted Aloha based contention with limited number of trials arises also when a

mobile reader scans RFID tags Sarangan et al. (2008). Multiple equilibrium operating

points for the mobile RFID reader have been observed by Alcaraz et al. Alcaraz

et al. (2011) and considered in the setting of RFID system parameters. Our analysis

complements the Alcaraz et al. model in that we analyze the specific underlying

conditions that give rise to the multiple operating points and identify these points.

6



Chapter 2

MODEL OF LTE-ADVANCED RANDOM ACCESS SYSTEM

2.1 Random Access Protocol

We consider a single cell in a cellular system, whereby the cell is comprised of

a central node, referred to as evolved Node B (eNB), and of multiple User Equip-

ment (UE) nodes. Considering a single cell is not a limitation of our model since

the RA procedure in LTE is an interaction between a prescribed UE and its most

relevant cell, which is chosen while staying in RRC IDLE mode or while staying

in RRC CONNECTED mode with time synchronization lost (e.g., when the timing

alignment timer expires).

The user equipment (UE) nodes try to establish a communication flow with the

eNB, which can be thought of as a circuit-switched connection for the purposes of the

present model. (Generally, LTE operates in the packet-switched mode while providing

a circuit-switched mode as a fallback; however these details are not relevant for the

present model.)

As illustrated in Figs. 2.1 and 2.2, the overall Random Access (RA) procedure in

LTE-Advanced (as well as in the LTE standard preceding LTE-Advanced) consists

of an access barring check followed by random access preamble transmission and re-

sponse. The access barring check allows a UE with probability (access barring factor)

Pb to immediately transmit a preamble; while the UE has to wait with probability

1 − Pb for an ac-BarringTime. In the present study we focus on the analysis of the

preamble transmission by setting Pb = 1 and leave the incorporation of the access

barring check into our model for future work.
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Figure 2.1: Illustration of LTE-Advanced Random Access (RA) procedure and the

model for the preamble contention: (a) The UEs that have passed through the access

barring check start transmitting a preamble, and the contention-based transmissions

from multiple UEs generates a request load in the random access system.

UEs use one of the Random Access Channel (RACH) opportunities configured by

the physical (PHY) layer. The RACH is a set of logical resources defined in the 3-

dimensional domain of time-frequency-preamble, whereby the UE randomly chooses

a preamble from among O, O > 1, allowable preambles.

The eNodeB receives RA requests from UEs during a time slot of duration Ts. If

multiple UEs transmitted their requests using the same preamble in the same slot,

then those RA requests are considered to have collided. We note that physical layer

considerations, such as different levels of transmission power among the UEs, can
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Yes
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Figure 2.2: Illustration of LTE-Advanced Random Access (RA) procedure and the

model for the preamble contention: (b) Requests for new preamble transmissions ar-

riving at rate λ [requests/slot] and collided transmissions that have not yet exhausted

their W permitted attempts contribute to the total number Xn of UEs transmitting a

preamble in a slot n. Each transmitting UE randomly selects one of the O preambles.

influence the success or collision of RA requests. The focus of this present study is on

capturing the MAC layer behavior and thus detailed physical layer considerations are

beyond the scope of this study. When a collision occurs, contention (for RA) is not

considered to be resolved, i.e., contention resolution failed. UEs are able to identify

the contention resolution result at the fourth step of the RA of LTE 36.321 (2011).

If contention is resolved, the UE enters the RRC CONNECTED mode.

When contention is not resolved, the UE may repeat the preamble transmis-

sion. Specifically, if the UE has had less than W transmission attempts so far, it

re-transmits. On the other hand, if the W th preamble transmission has failed, then

the UE drops the request. Before its re-transmission, the UE waits according to a

prescribed backoff interval Tmax
o ranging from 0 ms to 960 ms, which is signaled by

the eNB. For simplicity, we initially set the backoff interval to Tmax
o = 0 ms, that is,
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UEs whose preamble transmissions collide in a given slot may re-transmit in the next

slot (non-zero backoff intervals are examined in Appendix D). The setting Tmax
o = 0

corresponds to fast retry in Choi et al. (2006). Each re-transmitting UE uniformly

randomly selects a new preamble from among O preambles, independently of the

preceding preamble selection.

2.2 Performance Metrics

The two key performance metrics directly related to the random access procedure

are the mean (steady-state) delay D and the mean (steady-state) throughput T of

the random access system in equilibrium. We define the delay D of random access as

the time period from the instant a UE generates a preamble to the instant the UE

is notified about the accepted connection; whereby only requests that are successful

within theW transmission attempts are considered in the delay evaluation. We define

the throughput T as the long-run average rate at which connection acceptances are

granted.
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Chapter 3

SYSTEM ANALYSIS

3.1 Definition of System Characteristics

Table 3.1: Summary of Stability Analysis Model Notations

Slotted Aloha based preamble contention

O Number of preambles (equivalent to number of channels in

multi-channel slotted Aloha)

Ts Slot duration for slotted Aloha contention [in seconds]

Tmax
o Maximum backoff time [in slots] of uniform backoff

W Maximum number of transmission attempts

Request traffic model

λ Request generation rate [in requests/slot]

ρ = λ
O

Request load [in requests/slot] per preamble

Random access system model

Xn Total number of UEs transmitting a preamble in slot n

ξn Number of UEs transmitting a preamble for a newly

generated request in slot n

Zn Total number of unsuccessful UEs

(with collided preambles) in slot n

f Probability of successful preamble transmission

(without collision) by an UE in a given slot

Continued on the next page
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Table 3.1: Continued

δ = (1− f)W Probability that a UE request collides in all W attempts

x Expected number of UEs transmitting a preamble

(from both new and previously collided requests)

in a given slot in steady state

t = x
O

Expected number of transmitting UEs per preamble

y = e−t Substitution to simplify notation in system balance

equation

h(t) = 1−δ
f

= 1−(1−y)W

y
Ratio of probability of success within W attempts

to probability of success in one attempt

Load boundaries

ρ1, ρ2 For W ≥ 9, there is one operating point for loads ρ

outside [ρ1, ρ2]; there are three equilibrium

operating points if ρ1 < ρ < ρ2; ρ1, ρ2 depend only on

W as per Eqns. (4.4) and (4.5)

Performance metrics

D Mean delay from request generation to successful

contention completion [in slots]

T Mean throughput of successful contention

completions [in request/slot per preamble]

We model the initial request generation with a Poisson process with a prescribed

rate λ [requests/slot]. This model corresponds to an infinite population of “virtual”

UEs in the cell, whereby each UE can request a circuit with the eNB.

We define Xn to be a random variable denoting the number of UEs that are

sending a preamble in a given slot n. We note that both newly generated requests
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and the re-transmissions of old requests contribute to Xn as analyzed in detail in

Section 3.2.

We let ξn be a random variable denoting the number of UEs that transmit a

preamble for a newly generated request in slot n. For the considered Poisson request

arrival process with rate λ, the number of newly generated requests per slot has

expected value E[ξn] = λ.

We define f to denote the (steady-state) probability that a UE successfully sends a

preamble, i.e., sends a preamble without collision, in a given slot, i.e., any slot in which

the UE participates in preamble contention. Note that we model f to be indifferent

to the UE’s age in retransmission. The probability f is derived in Section 3.3 and

simulations verifying the model accuracy are presented in Section 5.2.

We define δ to denote the (steady-state) probability that a UE request is unsuc-

cessful in all its W transmission attempts, and as a result drops its request. A UE’s

attempt in a given slot is unsuccessful with probability 1 − f , thus the probability

that the UE is unsuccessful in all its W attempts can be modeled as

δ = (1− f)W . (3.1)

Note that 1− δ is the probability that the UE is successful in one of its (at most W )

transmission attempts. The model notation is summarized in Table 3.1.

3.2 System Balance (Equilibrium) Formulation

We develop a recursion for Xn by noting that the UEs sending a preamble in slot

n are either (A) UEs that have generated a new request during the preceding slot

and are now sending their preamble for the first time in slot n, or (B) UEs that

experienced a preamble collision in one (or several) preceding slot(s) and have not

yet exhausted the maximum number of preamble transmissions W .
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No. of UEs collided in slot n− 1
=(1− f)E[ξn−1]

No. of successful UEs in
cycle n− 1 = fE[ξn−1]

No. of UEs w/o success
=δE[ξn−W ]
=(1− f)WE[ξn−W ]

No. of UEs successful at one of W attempts
=(1− δ)E[ξn−W ]

E[ξn−W+1]

E[ξn−W ]

E[ξn−1]

E[ξn]

(1− f)W−1E[ξn−W ]

No. of UEs with new requests = E[ξn]

Figure 3.1: Illustration of dynamics leading to recursion (3.3) for the expected number

of UEs E[Xn] transmitting a preamble in slot n. UEs that have been unsuccessful in

slots n− 1 through n−W +1 (represented by the left solid-line portions) retransmit

a preamble in slot n. Additionally considering that E[ξn] UEs with newly generated

requests transmit a preamble in slot n and that δE[ξn−W ] UEs drop after having had

no success in W attempts leads to the recursion (3.2).

Note that Xn−1 UEs sent a preamble in slot n− 1; whereby, these UEs either had

generated a new request for preamble transmission (during slot n − 2) and this new

request is transmitted for the first time in slot n−1, or had a preamble collision in one

(or several) preceding slot(s). In steady state, an expected number of fE[Xn−1] UEs

successfully transmitted a preamble in slot n−1. The remaining (1−f)E[Xn−1] UEs

had a preamble collision and will re-try in slot n, provided they have not exhausted

the maximum number of preamble transmissions W . In particular, those UEs that

transmitted a preamble for the first time in slot n−W and experienced collisions in

all slots n − W, n − W + 1, . . . , n − 2, and n − 1 have exhausted their maximum

number of preamble transmissions and drop out. Noting that an expected number of
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E[ξn−W ] UEs had transmitted a preamble for a first time in slot n − W , δE[ξn−W ]

UEs drop out after the preamble contention in slot n−1. Thus, there are an expected

number of

E[Xn] = E[ξn] + (1− f)E[Xn−1]− δE[ξn−W ] (3.2)

UEs transmitting a preamble in slot n. In the illustration in Fig. 3.1, E[Xn] cor-

responds to the sum of the left (solid line) portions of E[ξn−1], . . . , E[ξn−W+1], plus

all of E[ξn]. Note that these left portions correspond to (1 − f)E[ξn−1], . . . , (1 −

f)W−1E[ξn−W+1] UEs. Thus, alternatively, we obtain the expected number of UEs

transmitting a preamble in slot n as

E[Xn] =
W−1
∑

t=0

(1− f)tE[ξn−t]. (3.3)

Proceeding from (3.2), we define x to denote the long-run (steady-state) expected

value of Xn, noting that in steady state x = E[Xn] = E[Xn−1]. Thus,

x = λ+ (1− f)x− δλ. (3.4)

Recalling from (3.1) that δ = (1− f)W and rearranging terms gives the steady-state

system balance equation

x

λ
=

1− δ

f
(3.5)

=
1− (1− f)W

f
. (3.6)

Intuitively, Eqn. (3.5) expresses that the ratio of the expected total number x of

transmitting UEs to the expected number λ of UEs transmitting a newly generated

request equals the ratio of probability 1 − δ of eventual success after at most W at-

tempts to the probability f of success in one attempt. For very low loads, this ratio

is one since transmissions are successful in the first attempt (f → 1) and thus all
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transmission are new requests (x → λ). As the load increases, some transmissions

fail on the first attempt and lead to an increase in the proportion of retransmissions

relative to new transmissions and a commensurate increase in the probability of suc-

cess after W attempts relative to the success probability in the first attempt. For

very high loads, the success probability in a given slot becomes small (f → 0) and

the probability of success after W attempts approaches fW [as (1− f)W ≈ 1− fW

in (3.6) for small f ]. Correspondingly, the expected number of transmitting UEs x

approaches the expected number of requests generated in W slots, i.e., λW . Thus,

both sides of (3.5) approach the number of transmission attempts W .

In the following section, we evaluate the probability f of a successful transmission

in a slot for the specific preamble transmission procedure in LTE-Advanced. Then,

we examine the resulting system balance equation and its implications for system

stability.

3.3 Probability of Successful Preamble Transmission f

Let Zn be a random variable denoting the total number of unsuccessful UEs in

slot n. Note that

E[Zn] = (1− f)x. (3.7)

We denote αi, i = 1, . . . , Xn, for the preamble randomly selected by UE i. Note that

the preambles αi are independent random variables that are uniformly distributed in

{1, 2, . . . , O}. A collision occurs if two distinct UEs i and j, j 6= i, select the same

preamble, i.e.,

Zn =
Xn
∑

i=1

1{∃j∈{1,...,Xn},j 6=i: αi=αj}. (3.8)

We evaluate the expectation of the number of unsuccessful UEs Zn in Appendix A as

E[Zn] ≈ x
[

1− e−x/O
]

. (3.9)
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Thus, from (3.7) and (3.9),

f = e−x/O. (3.10)

3.4 Summary

We proceed by inserting (3.10) in (3.5). For improved readability we define the

preamble load (request generation rate normalized by number of preambles) ρ :=

λ/O, ρ ≥ 0, and the normalized expected number of UEs transmitting in a slot as

t := x/O, t ≥ 0. The resulting form of the balance equation is

t

ρ
=

1− (1− e−t)W

e−t
. (3.11)

While this non-linear equation has no closed-form analytical solutions, it can be solved

with standard numerical methods. We show in Section 4 that depending on the

values of ρ and W , (3.11) has one, two, or three solutions for t. From the numerically

obtained solutions for t, we obtain the expected numbers of UEs transmitting in a

slot as x = tO and the probabilities of successful UE transmission through (3.10).

In order to facilitate the analysis of the balance equation (3.11), we define for its

right-hand side

h(t) := g(e−t) :=
1− (1− e−t)W

e−t
. (3.12)

3.5 Numerical Results

In Figs. 4.1 and 4.2 we compare the ratio of the probability of contention success

after at most W attempts to the probability of success in one attempt as given

by the function h(t) in Eqn. (3.12), denoted by Eq, with simulations, denoted by

Sim. (The lines related to t0, t/ρ1, and t/ρ2 in Figs. 4.1 and 4.2 are examined in

Section 4 and should be ignored for now.) The simulation model was implemented

using OMNeT++ Varga (2001) libraries in C++. Statistics collection and execution
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management was done using Akaroa2 Erwing et al. (1999). In these simulations, we

held the number of transmitting UEs t at a prescribed value and observed the mean

and 90 % confidence interval of the ratio h. We observe from Figs. 4.1 and 4.2 that the

analytical model for the ratio h given by Eqn. (3.12) closely matches the simulation

results and thus accurately models the preamble contention.
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Chapter 4

ANALYSIS OF EQUILIBRIUM OPERATING POINTS

4.1 Preliminaries

The left-hand side of (3.11) is a line through the origin with slope 1/ρ. Intersec-

tions of the line t/ρ and the function h(t) defined in (3.12) specify the operating points

(equilibrium points) of the system where the balance equation (3.11) is satisfied.

As shown in Appendix B, h(t) is a strictly increasing function starting at h(0) = 1

and ending at h(∞) = W . Furthermore, h(t) has one inflexion point at t0, whereby

the function has one convex piece in the domain [0, t0] and one concave piece in the

domain [t0,∞).

4.2 Single Equilibrium Point for W ≤ 8

In Appendix B, we show that h(t) has precisely one convex piece (on [0, t0]) and

one concave piece (on [t0,∞)), which implies that the intersection of h(t) and a linear

function (t 7→ t/ρ) can have at most three solutions. On the other hand, since

h(0) = 1 and h(∞) = W , there must be at least one solution.

We now examine the tangent of h(t) at the inflexion point t0. Note that (3.11)

has three solutions for some ρ if and only if this tangent crosses the y-axis below zero,

see Figs. 4.1 and 4.2, that is, if and only if

h(t0)− t0h
′(t0) < 0. (4.1)

This equation can readily be checked numerically for any value of W following the

equations in Appendix B: calculate the unique solution z0 ∈ (0, 1) of p(z) = 0 in (B.7)
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Figure 4.1: Comparison of function h(t) from Eqn. (3.12) denoted by Eq with cor-

responding simulations (Sim) for W = 4. The figure also illustrates the tangent to

function h(t) at inflexion point t0 for W = 4. Generally, for W ≤ 8, this tangent

crosses the y-axis above the origin and the line t/ρ has a single intersection with h(t)

for any load ρ. Thus, only a single equilibrium operating point exists.

and then t0 via (B.8) and check condition (4.1). It turns out that condition (4.1) is

violated for all W ≤ 8 and satisfied for all W ≥ 9. Thus, for W ≤ 8 transmission

attempts, the balance equation (3.11) has a single unique solution, i.e., the system

has a single equilibrium operating point.

4.3 Multiple Equilibrium Points for W ≥ 9.

As noted in Section 4.2, for all W ≥ 9, Eqn. (4.1) is satisfied, i.e., the tangent on

h(t) at the inflexion point t0 crosses the y-axis below zero, as illustrated in Fig 4.2

where the t0 tangent crosses the x-axis near t = 1. Thus, by the piecewise convex
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Figure 4.2: Comparison of function h(t) from Eqn. (3.12) (Eq) with simulations (Sim)

for W = 20. The figure also illustrates the tangent to function h(t) at inflexion point

t0 for W = 20. Generally, for W ≥ 9, this tangent crosses the y-axis below the origin

and the line t/ρ has a single intersection with h(t) for load ρ < ρ1, three intersections

for ρ1 < ρ < ρ2, and one intersection for ρ > ρ2. Thus, a single, or up to three

equilibrium operating points exist and are specified by the intersection(s) of t/ρ with

h(t).

and concave property of h(t) shown in Appendix B, there are two tangents on h(t)

crossing the origin, illustrated by t/ρ1 and t/ρ2 in Figure 4.2. These two tangents

satisfy

h′(t) =
1

ρ
and h(t) =

1

ρ
t, (4.2)

for some ρ and t. Substituting y = e−t these two equations become

g′(y)(−y) =
1

ρ
=

g(y)

t
, (4.3)
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which is

t
[

1− (1− y)W − yW (1− y)W−1
]

= 1− (1− y)W . (4.4)

Solving (4.4) for t gives the solutions t1, t2, which are those t values where the tangents

touch the function h(t). The corresponding slopes ρi, i = 1, 2, of the tangents are

obtained from (4.2) as ρi = ti/h(ti):

ρi =
tie

−ti

1− (1− e−ti)W
. (4.5)

Note that ρ1 and ρ2 specify the boundaries of the domain of loads ρ where multiple

equilibrium operating points exist. In summary, through the analysis in Section 4.2

and this section, based on the properties of the function h(t) shown in Appendix B,

we have proven the following theorem.

Theorem 1. For W ≥ 9 transmission attempts, there are load boundaries ρ1, ρ2, 0 <

ρ1 < ρ2 < ∞, that only depend on W according to Eqns. (4.4) and (4.5) such that

• for ρ < ρ1 the random access system has a single unique equilibrium point;

• for ρ = ρ1 the random access system has exactly two equilibrium points;

• for ρ1 < ρ < ρ2 the random access system has exactly three equilibrium points;

• for ρ = ρ2 the random access system has exactly two equilibrium points;

• for ρ > ρ2 the random access system has a single unique equilibrium point.

The one, two, or three equilibrium operating points for a prescribed load ρ are

given by the solutions for t of the balance equation (3.11). If ρ < ρ1 or ρ > ρ2, then,

by Theorem 1, the balance equation (3.11) gives one solution for t; whereas for other

ρ values, Theorem 1 states that there are two or three solutions for t. For a given

solution t of the balance equation, the corresponding equilibrium operating point in
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terms of the total expected number x of UEs transmitting a preamble in a slot is

given as x = tO.

4.3.1 Asymptotics for Large Number of Transmission Attempts W

We proceed to examine the asymptotics for the load boundaries ρ1 and ρ2 as the

transmission attempt limit W becomes large. For large W one solution of (4.4) is

t2 ∼ 1, giving

ρ2 ∼ e−1, (4.6)

which corresponds to the case Wy → ∞. For the case Wy → 0, we show in Ap-

pendix C that

ρ1 ∼
log W−1

2e−1 + log log W−1
2e−1 − 1

W
(4.7)

∼
logW

W
. (4.8)

4.3.2 Numerical Results

In Fig. 4.3, we plot the load boundaries ρ1 and ρ2 as a function of the transmission

attempt limit W . We observe that the exact upper boundary ρ2 from Eqns. (4.4)

and (4.5) closely approaches the asymptotic boundary ρ2 ∼ 1/e from (4.6) even for

relatively small W values; for W ≥ 15, the exact ρ2 essentially coincides with the

asymptotic boundary 1/e. On the other hand, the exact lower load boundary ρ1 from

Eqns. (4.4) and (4.5) approaches the asymptotics given by (4.7) and (4.8) relatively

slowly, with the detailed asymptotic (4.7) giving a somewhat better approximation

for moderately large W values than the simplified asymptotic (4.8). Thus, for LTE

system evaluations, the upper load boundary ρ2 can be readily approximated by

the asymptotic 1/e for moderately large W . For the lower boundary ρ1, the exact

analytical characterization through Eqns. (4.4) and (4.5) should be used since the

23



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10  15  20  25  30  35  40

L
o

a
d

 ρ

Transmission Attempt Limit W

ρ2, exa
ρ2, asy
ρ1, exa
ρ1, det
ρ1, sim

Figure 4.3: Lower boundary ρ1 and upper boundary ρ2 of load range with multiple

equilibrium operating points as a function of number W of permitted transmission

attempts. Exact results are obtained with Eqns. (4.4) and (4.5), while detailed (det)

and simplified (sim) asymptotics for ρ1 are from Eqns. (4.7) and (4.8), respectively,

and the asymptotic for ρ2 is from (4.6).

asymptotics overestimate the load range with multiple equilibrium points, especially

for small or moderate W values.

We also observe from Fig. 4.3 that for W ≥ 9, the width ρ2− ρ1 of the load range

with multiple equilibrium operating points widens considerably with increasing W ,

e.g., from ρ2 − ρ1 = 0.1 for W = 15 to 0.2 for W = 30. For W = 200, the maximum

transmission attempt limit in LTE-Advanced, which is not included in Fig. 4.3 to

allow a detailed view of the small W values, ρ1 drops to 0.0376. That is, multiple

operating points exist for loads between 0.0376 and 1/e for W = 200.
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Chapter 5

THROUGHPUT-DELAY ANALYSIS

In this section we examine the throughput and delay metrics defined in Section 2.2.

New requests are generated by the UEs with rate λ [requests/slot], which normalized

by the number of preambles O is ρ = λ/O, and a given UE is successful within

the permitted W transmission attempts with probability 1 − δ. Thus, the mean

throughput of successful requests [requests/slot per preamble] is

T = ρ(1− δ). (5.1)
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5.1 Delay Analysis

Recall that a preamble transmission is successful with probability f . Thus, the

probability of exactly n, n = 0, 1, . . . ,W − 1, collisions before a success, can be

modeled as (1−f)nf . Hence, the probability of a UE to experience n collisions, given

that it sends (i.e., experiences any number k, k = 0, 1 . . . ,W − 1 collisions) is

(1− f)nf
∑W−1

k=0 (1− f)kf
. (5.2)

Each collision increases the delay by one slot of duration Ts. Thus, the expected delay

due to collisions is

Dc = Ts ·
W−1
∑

n=0

n ·
(1− f)nf

∑W−1
k=0 (1− f)kf

. (5.3)

We model the delay from the instant of request generation to the next time slot

boundary (backward recurrence time) Heyman and Sobel (2003) with the additive

27



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

 T
h

ro
u

g
h

p
u

t 
(1

-δ
)ρ

Load ρ

W=4, Ana
W=8, Ana
W=8, S(0)

W=10, Ana
W=10, S(0)

Figure 5.5: Throughput as a Function of Load for W = 4, 8, 10, Tmax
o = 0

constant Ts/2. We further employ the summation identity for 0 < y < 1,

W−1
∑

k=0

k · yk = y ·
1 + (W − 1)yW −WyW−1

(1− y)2
. (5.4)

Hence, for the preamble transmission success probability f obtained through Eqns. (3.11)

and (3.10),

D = Ts

(

1

f
− 1

)

1 + (W − 1)(1− f)W −W (1− f)W−1

1− (1− f)W

+
Ts

2
. (5.5)

With uniform backoff with Tmax
o , as outlined in Appendix D, the average delay caused

by a collision increases from Ts to
(

1 + Tmax
o

2

)

Ts, i.e., Ts has to be replaced by
(

1 + Tmax
o

2

)

Ts in the first summand of Eqn. (5.5).
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Figure 5.6: Throughput as a Function of Load for W = 15, Tmax
o = 0
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Figure 5.8: Throughput as a Function of Load for W = 15, Tmax
o = 20

5.2 Evaluation Results

In Figs. 5.1- 5.4, Mean delayD [in slots] of successful requests, as a function of load

ρ [in new requests per slot per preamble] for a range W of transmission attempts. The

load boundaries for multiple operating points are ρ1 = 0.353, ρ2 = 0.373 for W = 10;

while for W = 15 they are ρ1 = 0.279, ρ2 = 0.368. For W ≥ 9 for ρ1 < ρ < ρ2, we

plot the delay values corresponding to the three equilibrium points. S(Tmax
o ) denotes

simulation results for a given Tmax
o value. In Figs. 5.5- 5.8, throughput T = ρ(1− δ)

(in successful requests per slot per preamble) as a function of load ρ [in new requests

per slot per preamble] for a range W of transmission attempts. The load boundaries

for multiple operating points for W = 10 are ρ1 = 0.353, ρ2 = 0.373, while the

boundaries for W = 15 are ρ1 = 0.279, ρ2 = 0.368. Simulation results for Tmax
o = 0

are denoted by S(0), while S(20) denotes simulation results for Tmax
o = 20 slots.
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In Figs. 5.1- 5.4 and 5.5- 5.8, we plot the mean delay [in slots] experienced by a

successful request and the throughput T = ρ(1 − δ) of successful requests per slot

per preamble as a function of the load ρ. For a relatively small transmission attempt

limit W = 4 without backoff, i.e., Tmax
o = 0, we observe that the successful requests

experience a low delay of less than D = 1.17 slots at load ρ = 0.35, see Fig. 5.1,

while Fig. 5.5 indicates that the throughput is T = 0.334. For W = 8, the highest

transmission attempt limit that guarantees a single operating point for all loads ρ,

without backoff, the delays are moderately higher with D = 1.49 slots while the

throughput is very slightly higher T = 0.348 at load ρ = 0.35 compared to W = 4.

At this moderately high load level, having the unsuccessful transmissions attempt

more re-transmissions is beneficial in that it slightly increases the throughput, while

only moderately increasing the delay.

As the load increases beyond 0.37, we observe from Figs. 5.1- 5.4 and 5.5- 5.8 that

the contention with W = 8 leads to rapidly increasing delays while the throughput

drops sharply. In contrast, for W = 4, the system degrades more gracefully, with

the mean delay starting to level out around D = 1.8 slots for load levels of ρ = 0.6

(i.e., outside the plotted range) while the throughput drops to T = 0.1 for a load

of ρ = 0.925. For high loads, the success probability f becomes small (f → 0),

and the mean delay due to collisions Dc given by (5.3) correspondingly approaches

limf→0 Dc = (W−1)Ts/2; adding the mean waiting time Ts/2 from request generation

to next slot boundary gives a maximum expected delay of WTs/2. Intuitively, for

small success probability f , almost all requests undergo W transmission attempts

(and nearly all requests drop after their W th attempt). The few requests that are

successful, experience their success after a number of attempts that is approximately

uniformly distributed over [1, W ] (corresponding to [0,W−1] experienced collisions).
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The sharp throughput drop at very high loads, e.g., load ρ = 0.45, for W = 8

compared to W = 4 observed in Fig. 5.5 is mainly due to the exacerbation of the

overload conditions by the higher number of transmission attempts with W = 8.

Specifically, for load ρ = 0.45, we found from the numerical evaluation of the analysis

in Section 3 that for W = 4, there are on average x = 57.5 preambles transmitted

per slot with a steady-state success probability f = 0.345 resulting in a throughput

of T = 0.367. In contrast, with W = 8 transmission attempts, there are x = 165.4

transmitted preambles with success probability f = 0.047 and throughput T = 0.143.

At this particular high load level, the doubled number of transmission attempts with

W = 8 roughly triples the number of contenting transmissions in each slot, which

reduces the success probability to roughly one seventh of the success probability

for W = 4. The higher number of contending requests with W = 8 somewhat

compensates for this dramatically lower success probability, but the throughput with

W = 8 is still less than half compared to W = 4.

For Tmax
o = 20 slots for W = 4 and 8, we observe a close to ten-fold increase of the

mean delays in Figs. 5.3, and 5.4 compared to Figs. 5.1, and 5.2, while the throughput

remains essentially unchanged in Figs. 5.5- 5.8. The Tmax
o = 20 slot timeout increases

the delay introduced by a collision from one slot to on average (1+Tmax
o /2) = 11 slots

[see discussion immediately following Eqn. (5.5)]. On the other hand, as outlined in

Appendix D, a static timeout Tmax
o does not affect the steady-state drop probability

δ and thus preserves the steady-state throughput.

In the simulations for this section, the Poisson generation rate λ of new requests

was incremented with a step size of 0.1, corresponding to a step size for ρ = λ/O

of 0.00185 for O = 54 preambles, which is a typical operational O value for LTE-

Advanced networks. Each point represents the mean of a simulation run long enough

such hat the 90 % confidence intervals of both performance metrics are less than 10 %
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Table 5.1: Comparison of finite UE simulation model (N UEs, idle UE generates new

request with probability p in a slot) with simulation and analysis infinite UE model

(N → ∞, Poisson request generation rate λ = Np req./slot) for W = 4

ρ = 0.30 ρ = 0.35 ρ = 0.40 ρ = 0.45

N D T D T D T D T

100 (sim) 0.96 0.30 1.05 0.34 1.15 0.38 1.22 0.43

1000 (sim) 1.02 0.29 1.15 0.33 1.30 0.36 1.44 0.38

10000 (sim) 1.02 0.29 1.17 0.33 1.33 0.36 1.47 0.37

∞ (sim) 1.03 0.29 1.16 0.33 1.33 0.36 1.48 0.36

∞ (ana) 1.02 0.29 1.17 0.33 1.33 0.36 1.50 0.37

of their corresponding sample means. We observe from Figs. 5.1- 5.4, and 5.5- 5.8

that the analytical model closely approximates the simulation results for W = 8. The

simulation results for W = 4, which match very closely to the plotted analysis results,

were omitted to avoid clutter.

In Table 5.1, we compare the Poisson request generation model with rate λ, which

represents an infinite UE population, with a corresponding simulation model for a

finite number of N UEs, whereby each of the N UEs generates a new request only

when it is idle with probability p in a slot. We observe that compared to the Poisson

model, the finite UE model gives smaller delays D and higher throughputs T as the

number N of UEs decreases and the load ρ increases. For smaller N and higher

ρ relatively more of the UEs are backlogged with a collided request that is being

retransmitted, thus reducing the effective request generation rate. The Poisson model

represents a worst-case request generation model in that the generation rate of new

requests stays constant, irrespective of the number of backlogged requests.
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Turning to the results for W = 10 and 15, we observe that the analytical model

and simulations closely match for loads outside the (ρ1, ρ2) range. For loads inside

the ρ1 to ρ2 range, a plotted simulation point for a given load gives the mean of

the respective performance metric (delay or throughput) experienced in a very long

simulation run. That is, the simulation point reflects the multiple operating points

and the delays and throughputs experienced at these operating points weighted by

the sojourn times at these operating points.

We turn to the effect of backoff for W = 15. We observe from the simulation

results that the uniform backoff with Tmax
o = 20 slots helps to achieve essentially

zero drop probability and consequently throughput equal to the traffic load for loads

up to approximately 0.361 in Fig. 5.8, whereas without backoff (Tmax
o = 0), drop

probabilities of close to zero occur only for loads up to around 0.320 in Fig. 5.6. (In

Figs. 5.2 and 5.4, these load values correspond to the loads where the delays “jump

up” from the respective lower segments of the S-shaped delay curves.) The backoff

uniformly redistributes the collided UEs from a given slot that have not exhausted

their W attempts over the following Tmax
o + 1 slots. This redistribution effectively

“smoothes” the number of UEs rejoining the contention and lowers the probability of

the system entering the operating points with higher drop probabilities and delays.

Note that this smoothing effect comes at the expense of greatly increased mean delay.

For instance, for a load of ρ = 0.31, the mean delay is 7.77 slots with Tmax
o = 20

slots compared to a mean delay of 1.29 slots with Tmax
o = 0. We note that the

results in Figs. 5.5- 5.8 indicating relatively small benefits of uniform backoff for

contention with a typical number of O = 54 preambles are complementary to the

results displayed in (Seo and Leung, 2011a, Fig. 2), which considers the special

case of O = 1 preamble. The results in (Seo and Leung, 2011a, Fig. 2) indicate

significant throughput increases albeit at the expense of substantially increased delay
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due to uniform backoff. With uniform backoff, the collided UEs from a given slot

are effectively randomly redistributed to the O · (Tmax
o + 1) preambles occurring over

the next Tmax
o + 1 slots. Thus, for a very small number O of preambles, the uniform

backoff can help in reducing future collisions, thus increasing throughput. For the

typical, moderately large numbers on the order of tens of preambles, the effect of

backoff diminishes, as observed in Figs. 5.1, 5.2, 5.3, and 5.4.

Turning to the comparison of the performance for W = 10 and 15 with the W = 4

and 8 values without multiple operating points, we observe from Fig. 5.1 that the

mean delay for W = 10 at its ρ1 = 0.353 load is approximately 1.88 slots compared

to 1.61 slots for W = 8 at the 0.353 load. The mean delays for W = 15 and W = 8

for Tmax
o = 0 at ρ1 = 0.279 (for W = 15) are essentially the same 1.03 slots. Notice

also that for W = 10 and 15, the throughput is close to the request arrival rate for

loads ρ < ρ1. We furthermore observe that for W = 10 and 15 with Tmax
o = 0, the

performance can degrade quite considerably for loads ρ > ρ1, especially toward the

middle and upper end of the ρ1 to ρ2 range.
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Chapter 6

EQUILIBRIUM APPROACH, LTE-A PARAMETERS, AND POISSONIZATION

6.1 Introduction

Machine-to-Machine (M2M) communications or Machine Type Communications

(MTC) is a research area of immense interest Lawton (2004); Wu et al. (2011); Fan

et al. (2014); Kim et al. (2014); Marsch et al. (2012). As an enabler for the futuristic

Internet of Things (IoT), the performance and efficiency of MTC is of high impor-

tance. LTE/LTE-A mobile standards by 3GPP consortium is a viable choice for

MTC infrastructure deployment due to wide deployment of mobile communication

technologies and ongoing roll outs of LTE across the world Lien et al. (2011b); Taleb

and Kunz (2012).

MTC differs from conventional human-to-human (H2H) communication in several

ways. A few important differences being the relatively low amount of data payload and

high frequency of calls. Essentially, a client machine will repeatedly access the server

to inform of the current status or to query the server for updated status. These status

messages are of small sizes. In the context of LTE/LTE-A, the client machines are

known as User Equipments (UEs). UEs gain access to the network through evolved-

NodeB (eNodeB). Due to relatively long idle times between successive transmissions

by devices, it is prudent that they detach themselves from the server and wait until

the data is needed to be sent again. This allows for significant statistical multiplexing,

implying support for a large number of UEs. Various features of MTC, in context of

3GPP, are described in Taleb and Kunz (2012).
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Since most UEs have to access the network for a very short duration. The success

in gaining admission to the channel becomes the bottleneck. In case of LTE/LTE-

A, this bottleneck exists at accessing the eNodeB through random access channel

(RACH). The medium access procedure for LTE/LTE-A RACH access is described

in 36.321 (2011).

Congestion and overload control are some of the challenges posed during random

access by MTC based on LTE/LTE-A networks Taleb and Kunz (2012); Laya et al.

(2014). Some of the specific challenges arise when a large number of UEs try to

transmit in a short duration e.g. after a power outage or when a large set of sensors

responds to a common event Laya et al. (2014). In these cases, number of UEs

that will try to communicate is usually unknown and can cause brief periods of

contention. If the number of UEs supported by the eNodeB is large, which is desirable

to keep infrastructure costs low, then the brief outages can result in longer overloaded

states Tyagi et al. (2013, 2012, 2014) during stable operation, causing the network to

be inaccessible to the UEs for relatively large durations.

In this chapter, keeping the importance of MTC, and availability and suitability of

LTE/LTE-A for the MTC in view, we consider the use of LTE-A as standard used for

providing wireless access to UEs. LTE-A uses a slotted-ALOHA like random access

mechanism for UEs to gain access to eNodeB. Essentially, a UE goes through a self

barring check before attempting a connection request and goes through contention

using a random preamble. The eNodeB listens for RA requests during a slot. If

multiple UEs use the same preamble in the same slot then due to collision, the UEs

have to re-attempt. A UE can re-attempt after a random wait. A UE is allowed to

make a limited number of attempts, before it should stop trying and drop the request.

The eNodeB routinely broadcasts the parameters related to RA via System
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Information Block Type 2 (SIB2) or via Media Access Control (MAC) Protocol Data

Unit (PDU). The RA procedure is describe in detail in Section 6.3.

Back-off procedure used by LTE/LTE-A, seen in the context of MTC, is the main

focus of this paper. Each collision results in a back-off cycle, and introduces a delay.

LTE/LTE-A uses uniform back-off after each collision. We look at the impact of

back-off in generic terms and ascertain how exactly it impacts the RA procedure.

Specifically, we explore how analysis of back-off can provide guidance on number

of UEs that can be supported, under various traffic models. We establish how the

performance of these models converge through particular usage of back-off interval.

A detailed understanding of back-off will help design MTC systems where, a trade-off

of various back-off parameters impacting delay and success probabilities determines

the number of UEs supported by eNodeB.

The RA procedure in LTE/LTE-A can be understood in terms of three stochastic

processes, the arrival process, the departure process and the backlog process. The

backlog process arises as a result of collisions from the arrival process and is thus

positively correlated to the arrival process. We approach the system analysis with

a focus on the backlog. Backlog is an important consideration due to the following

reasons:

• Backlog effectively acts as the buffer of the system in a queueing model and

hence, determines the capacity of the system, in terms of RA traffic supported

by eNodeB.

• The eNodeB can manipulate the Backlog through the periodic broadcast via

SIB2 or MAC PDU.

• Backlog directly impacts the success probabilities of incoming requests.

• Backlog positively correlates with the expected back-off duration.
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We present a model which is based on basic steady state features of a generic

process. In particular, we use a Poisson arrival process for mathematical tractability,

and because, as we shall prove, other models will converge to a Poisson arrival process

model under suitable conditions. This convergence of different arrival models to one

of Poisson arrival process is very helpful in gaining a deterministic understanding of

expected success and drop probabilities for a particular system.

We will discuss the related work in Section 6.2. The RA model for LTE/LTE-A

and the backlog process is discussed in Section 6.3. In Section 6.4, we will use steady

state analysis to establish different system models, and discuss the impact of back-

off. Section 6.5 will detail the numerical work and simulation data to support the

analytical conclusions. We shall conclude the paper in Section 6.6.

6.2 Related Work

M2M service technologies and features of M2M traffic are presented in Kim et al.

(2014); Lien et al. (2011b); Hasan et al. (2013). Various classifications of M2M plat-

forms and the associated requirements and functionalities are discussed. Specific

details on M2M, in context of healthcare and smart grid are presented in Fan et al.

(2014). Impact of retransmission Limits on RA in LTE/LTE-A in context of health-

care is discussed in Tyagi et al. (2013).

ALOHA was introduced by Abramson (1970). It has been widely studied since

then. Several works have examined the capacity and delay performance of these

systems without retransmission limits Carleial and Hellman (1975); Ferguson (1975);

Ghez et al. (1988); Jenq (1980b); Kamal and Mahmoud (1979); Kleinrock and Lam

(1975b); Murali and Hughes (1998b, 1997); Naware et al. (2005b) and infinite number

of users. The throughput for slotted ALOHA is found to be e−1. Typically Markovian

models have been used to analyze the systems in these works. These models do not
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focus on the backlog. Carleial and Hellman (1975) indicated that average based steady

state measures are poor indicators of system performance. Since our model proves

that for large backlogs Poisson arrival process is valid, our model allows to estimate

second order statistical measures, such as variance (which is equal to mean for Poisson

arrival model) and thus hopes to provide better indication of system performance and

greater insight into system dynamics.

Analytical models for slotted ALOHA system, with a limit on the number of

attempts, have been developed in Lüders and Haferbeck (1994); Sarker and Halme

(1997, 1998, 2000b). However, these models examine only the steady state expecta-

tions and do not consider the backlog and its impact. In addition to using a more

basic equilibrium based approach, which derives from the existence of steady state

itself, we prove that backlog fundamentally affects the arrival process and dominates

it as supported user base increases. Additionally, several works have examined the

bistability in slotted ALOHA systems predicted by analytical models Carleial and

Hellman (1975); Ferguson (1975). Recent works have also estimated limits for the

bistability Sakakibara et al. (2000, 2003). Our model is applicable to low rates of ar-

rival and is not impacted by the bistability problem. Specifically, for numerical work

we restrict ourselves to a maximum of 7 retransmissions and thus do not bistable

zones Tyagi et al. (2013).

Some recent studies, such as Seo and Leung (2012, 2011c,b, 2010); Rivero-Angeles

et al. (2006), have examined the second moments of delay in slotted ALOHA system

in LTE, impact of retransmission limits, and compared various back-off strategies,

using Markov models. This is different from our analysis, as we focus on the backlog

as a fundamental influence. Understanding of backlog provides greater insight into the

impact of back-off. Also, the equilibrium based approach depends only on existence

of steady state and gives fundamental insights into the system. Retransmission back-
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off policies are analyzed in Joseph and Raychaudhuri (1988), for slotted ALOHA

channels.

Optimization of back-off interval for random access is studied in Haas and Deng

(2003). However, the proposed scheme is based on channel state information. Our

models do not assume that channel state information is available and hence are ap-

plicable to wider range. A class dependent back-off schemes for LTE/LTE-A MTC

has been presented in Jian et al. (2013). We do not consider multiple classes for our

analysis, and consider that all traffic has equal priority. However, this is not a limita-

tion, since the equilibrium based approach used by us is easily extensible to multiple

traffic categories with summations for different categories replacing individual cases.

Detailed delay analysis for OFDMA-ALOHA is presented in Mutairi et al. (2013).

Impact of different parameters such as access class barring (ac-BarringTime), sep-

aration of resources, back-off only, etc. are presented in Kouzayha et al. (2013); Yang

et al. (2012); Amirijoo et al. (2009). These are very preliminary studies and do not

go into details as in current paper. Automatic configuration of RACH parameters

based on a desired delay performance in LTE is considered in Choi et al. (2011).

Throughput analysis for M2M RA in LTE is done in Lee et al. (2011). RACH

collision probability for MTC has been discussed in Cheng et al. (2012). Two different

interpretations of collision probabilities are presented. In this chapter, we consider

collision probability from the perspective of attempts in a slot. In Gerasimenko

et al. (2012), energy and delay analysis is done for MTC under LTE-A. Overload

conditions are generally considered. Prioritized RA in LTE for MTC is dicussed

in Lin et al. (2014). The focus is on dynamic ac-BarringTime to provide Quality of

Service (QoS). Adaptive Traffic Load Slotted ALOHA (ATL-S-ALOHA) based RA

control is proposed in Li et al. (2013). An information theoretic analysis of RA for

multiple user case is presented in Minero et al. (2012).
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Figure 6.1: Illustration of Random Access (RA) procedure in LTE/LTE-A.

Limits on variance of unimodal distributions have been well established for years.

A proof on maximum variance for unimodal distributions is presented in Muilwijk

(1966). Variance limits on unimodal distributions is also discussed in Jr. et al.

(1985). Based on these limits, we will consider a process in which arrivals in a slot

are Bernoulli distributed. A variable rate Poisson arrival process based simulation

methodology is proposed for MTC for wireless networks in Paiva et al. (2011). We

use a 2-state Markov Modulated Poisson Process in our study.

6.3 RA Procedure

In this section, we will discuss the RA procedure in LTE/LTE-A systems. A

pictorial representation of the RA procedure is given in Figure 6.1 Lee et al. (2011);

Tyagi et al. (2013). Each UE, when it has data to send, starts the RA procedure by
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undergoing a local barring check. The parameter for this check ac-BarringFactor is

broadcast by eNodeB via SIB2 or MAC PDU. The UE generates a uniform random

number and clears local barring if probability of generated number is greater than the

probability specified by ac-BarringFactor. If the generated number is less than that

specified by ac-BarringFactor, then the UE has to wait for a long duration dependent

on ac-BarringTime. ac-BarringTime is also periodically broadcast by eNodeB.

After clearing local barring check, the UE uniformly selects a random preamble

from a set of O preambles available for RA. It then transmits the RA request using

the chosen preamble.

An eNodeB periodically transmits the RA parameters using SIB2 or MAC PDU.

The minimum duration for transmitting updated parameters is 10ms. The minimum

period for which an eNodeB listens for UE requests before sending a response is

0.5ms, which is equivalent to a sub-slot, a slot being of 1ms duration. For the rest

of this paper, we will refer to the sub-slot as a slot, considering this as the standard

listening period for the eNodeB.

During a slot, if more than one UE transmits using the same preamble, then

a collision is considered to have occurred on that preamble. Although, it may be

possible to retrieve some request information in this case due to Capture Effect, we

model a worst case scenario and consider that all requests which used the particular

preamble are irrecoverable. Requests which used a different preamble are not affected

due to collisions on another preamble.

In case of a collision, a UE, on failing to receive a response from eNodeB, initiates a

back-off. The UE uniformly generates a random back-off interval, with the maximum

duration of back-off interval being Tmax
o . When in this stage, a UE is considered to

be backlogged.
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At the end of back-off, the UE will again undergo local barring and on clearing

local barring will re-attempt RA request using another randomly chosen preamble. A

UE may fail up to a maximum of W attempts, after which it must drop the request.

The eNodeB periodically informs UEs of W through SIB2 or MAC PDU along with

other RA parameters.

6.4 System Models

In this section, we will discuss the basic backlog buildup and introduce further

notation. We first model the random access contention in a given time slot n + 1

in section 6.4.1. We will use steady state equilibrium conditions to establish steady

state analytical solutions for the Poisson arrival process. We will consider the sin-

gle preamble case in section 6.4.2, and will then extend to multiple preamble case

in section 6.4.3. In these sections, we will relate three RA control parameters,

ac-BarringTime (Barring Probability), O (Number of preambles to choose from),

and W (Maximum attempts before dropping the request) to the steady state solution

for the system. In section 6.4.4, we will discuss the impact of Tmax
o , on the backlog

and the system dynamics. Table 6.1 summarizes the notation used in this and later

sections.

Table 6.1: Summary of main model notations

Given system parameters (constants) for preamble contention

O Number of available preambles

Tmax
o Maximum backoff time [in slots]: Requests that

collide in a slot n are re-transmitted

in a (uniformly distributed) slot

Continued on the next page
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Table 6.1: Continued

n+ 1, n+ 2, . . . , n+ Tmax
o + 1

W Maximum number of transmission attempts

λ Poisson generation rate of

new requests (in requests/slot)

Numbers of newly generated, backlogged, and dropped requests

an+1 Number (random var.) of newly generated (arrived)

requests for transmission in slot n+ 1

λ = Ean+1 Expected value of number of newly generated requests

for a slot

o
(i)
n Number (random var.) of backlogged (old) requests

at end of slot n for retransmission

in slot n+ i, i = 1, 2, . . . , Tmax
o + 1

X̂n Number of backlogged (old) requests for retransmission in

nth slot

X̂n,i Number of backlogged (old) requests for retransmission in

ith slot, scheduled in nth slot

dn Number (random var.) of dropped requests (that have

failed in W transmission attempts) at end of slot n

Total number of transmitted requests

tn+1 =: θ Total number (random variable) of requests transmitted

in slot n+ 1

ϑ = Eθ Expected (steady-state) value of total number of

transmitted requests in a slot

Continued on the next page
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Figure 6.2: Illustration of model of random access system with backoff. In slot n+1,

o
(1)
n backlogged requests minus dn requests that have exhausted theirW attempts

plus an+1 new requests give a total of tn+1 =: θ transmitted preambles. With

success probability sn+1, there are θsn+1 successful requests and θ(1 − sn+1)

failed requests that are uniformly distributed over the next Tmax
o + 1 slots for

retransmission. These failed requests join the requests that had been previously

scheduled for retransmission in one of the next Tmax
o slots.

Table 6.1: Continued

Contention success/failure model

sn+1 Probability of successful preamble transmission

(without collision) in slot n+ 1

ς = E[sn+1] Steady-state success probability

δn+1 Probability of a request failing in W transmission attempts

based on success probability sn+1

δ = E[δn+1] Steady-state drop probability
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6.4.1 System Dynamics in a Given Slot n+ 1

Figure 6.2 shows the basic back-off process during RA. For a given slot n+1, we let

an+1 be a random variable denoting the number of UEs that transmit a preamble for

a newly generated request in slot n+1. We let o
(1)
n be a random variable denoting the

number of UEs with previously collided (old) preambles that backed off and scheduled

their next preamble transmission attempt for slot n+ 1.

We let dn be a random variable denoting the number of UEs that drop their

requests at the end of slot n due to having exhausted the number of permissible

transmission attempts W . Thus, as illustrated in Fig. 6.2, o
(1)
n − dn UE requests are

actually re-transmitted in slot n+ 1. Hence, there are a total of

tn+1 = an+1 + o(1)n − dn := θ (6.1)

preamble transmissions contending in slot n+1; we denote θ for this random variable

to reduce clutter in the subsequent analysis.

We denote sn+1 for the probability that a UE successfully transmits a preamble,

i.e., that the preamble transmission does not collide, in slot n+1. The success prob-

ability sn+1 depends on number of contending preamble transmissions tn+1 and the

number of available preambles O. Thus, θsn+1 preamble transmissions are successful

in slot n+1. On the other hand, θ(1− sn+1) preamble transmissions are unsuccessful

(collide) and back off according to the backlog model in the following section.

If a UE request was unsuccessful in its W th transmission attempt, we keep it for

now in the backlog model and drop the request from consideration just before the

contention in slot n+ 1. We denote δn+1 for the probability that a given UE request

collides W times and model this probability as

δn+1 = (1− sn+1)
W . (6.2)
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6.4.2 Single Preamble Steady State Model

In this section, we will develop a steady state model for the preamble contention

using equilibrium criteria assuming that only one preamble is in use. We will discuss

and justify the applicability of the model and the Poisson arrivals in Section 6.4.4.

Let us consider that the system is in steady state. For a system in steady state

the equilibrium condition must hold. Since the system is neither a source nor a sink

for UE requests, the arrivals and departures of the request must balance. Thus,

E[No. of Arrivals per slot] = E[No. of Departures per slot], (6.3)

E[No. of Arrivals per slot] = E[No. of Successes per slot] + E[No. of Drops per slot].

(6.4)

Let us consider the expected number of request arrivals per slot to eNodeB be denoted

by E[an+1] = λ. Let us further model these arriving requests by a Poisson arrival

process. Since we have a Poisson arrival process, the distribution of number of arrivals

per slot will be Poisson distributed. λ is the mean of this distribution of counts of

arrivals per slot.

Let us denote the number of UEs that can transmit in a particular slot by X,

E[X] = x, and the barring probability by PB. Then, tn+1 denote the number of UEs

which clear barring and actually transmit in a slot. Then, the expected number of

UEs actually attempting in a slot is E[tn+1] = (1 − PB)E[X] = ϑ. For analytical

tractability, we model X as a Poisson arrival process, x being the mean of resulting

Poisson distributed counts. Hence, expected number of UEs transmitting in a slot is

(1 − PB)x = ϑ. Then, the steady state expectation of successful UEs correspond to
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the case when attempting population is exactly one i.e.,

E[Number of Successes per slot] = k · P[k]|k=1 (6.5)

= k ·
e(−ϑx) (ϑ)k

k!

∣

∣

∣

∣

∣

k=1

(6.6)

= k ·
e(−(1−PB)x) ((1− PB)x

)k

k!

∣

∣

∣

∣

∣

k=1

(6.7)

= (1− PB)x · e−(1−PB)x. (6.8)

Using Eq. (6.8), we can say that the steady state probability of success for a UE

which attempts to transmit after clearing barring is,

ς =
E[Number of Successes per slot]

E[Number of Attempting UEs per slot]
(6.9)

=
ϑ · e−ϑ

ϑ
(6.10)

= e−ϑ = e−(1−PB)x. (6.11)

We further consider that the subsequent attempts have little or no correlation and

hence, can be considered independent. We will discuss the correlation among succes-

sive attempts in greater detail in section 6.4.4. Taking the considered independence

in account, we can then say that the steady state drop probability is probability of

failure in W attempts i.e. δ = (1 − ς)W , where W is the number of attempts after

which a UE must drop the request. Thus,

δ = (1− ς)W (6.12)

=
(

1−
(

1− e−ϑ
)W
)

=

(

1−
(

1− e−(1−PB)x
)W
)

. (6.13)
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Observing that the expected number of drops per slot E[dn] is a fraction of ex-

pected arrivals, we have,

E[dn] = λ · δ (6.14)

= λ ·
(

1−
(

1− e−ϑ
)W
)

= λ ·

(

1−
(

1− e−(1−PB)x
)W
)

. (6.15)

While the relation of successes to the total population is understandable, to better

clarify the dependence of drops on arrivals, let us consider the case where after each

failure the UE attempts in next immediate slot. In this case if there are an+1 arrivals in

a slot then after W slots only an+1 requests can be in the system and exhaust exactly

W attempts. Thus, following the example, the average drops should be considered

as a fraction of expected arrivals per slot.

Substituting the results in Eq. (6.4), we have,

λ = ϑ · ς + λ · δ =
(

1− PB
)

x · ς + λ · δ (6.16)

Rearranging,

λ(1− δ) =
(

1− PB
)

x · ς (6.17)

or,

(

1− PB
)

x

λ
=

1− δ

ς
(6.18)

or,

(

1− PB
)

x

λ
=

1−
(

1− e−(1−PB)x
)W

e−(1−PB)x
. (6.19)

Eq. (6.19) can be solved numerically for x as,

(

1− PB
)

x · e−(1−PB)x − λ

(

1−
(

1− e−(1−PB)x
)W
)

= 0 (6.20)

To simplify, let us look at the Eq. (6.19) in terms of ϑ , we then have,

ϑ

λ
=

1−
(

1− e−ϑ
)W

e−ϑ
(6.21)
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6.4.3 Multi-Preamble Steady State Model

In this section, we will extend the model for single preamble contention to the

multi-preamble case.

In addition to the notation used in Section 6.4.2, let us denote the number of

preambles by O. For the case of multi-preamble systems, the expected number of

UEs actually attempting in a slot per preamble will be,

E[tn+1] =
(1− PB)E[X]

O
(6.22)

Using a Poisson arrival process model for X as in Section 6.4.2, expectation of suc-

cesses per preamble is,

E[Successes] = k · P[k]|k=1

= k ·
e(−(1−PB)x/O) ((1− PB

)

x/O
)k

k!

∣

∣

∣

∣

∣

k=1

(6.23)

=

(

1− PB
)

x

O
· e(−(1−PB)x/O). (6.24)

The success probability per preamble is then,

ς =

(

1− PB
)

x/O · e−(1−PB)x/O

(1− PB) x/O
(6.25)

= e−(1−PB)x/O. (6.26)

And, the drop probability per preamble is,

δ = (1− ς)W = (1− (1− e−(1−PB)x/O)W ). (6.27)

Using the equilibrium condition in Eq. (6.4) and considering that the expected arrivals

per preamble is now λ/O, we have,

λ

O
=

(

1− PB
)

x

O
· ς +

λ

O
· δ
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Rearranging and substituting,

(

1− PB
)

x/O

λ/O
=

1−
(

1− e−(1−PB)x/O
)W

e−(1−PB)x/O
(6.28)

(

1− PB
)

x

λ
=

1−
(

1− e−(1−PB)x/O
)W

e−(1−PB)x/O
(6.29)

In terms of ϑ = (1− PB)x/O,

ϑ

λ/O
=

1−
(

1− e−ϑ
)W

e−ϑ
. (6.30)

6.4.4 Impact of Tmax
o and the Poisson Arrival Process Assumption for X

In this section, we will introduce the parameter Tmax
o and associate it to the

Poisson arrival process model for X. We will prove that an increasing Tmax
o causes to

modify the underlying process ofX to a Poisson process, irrespective of the underlying

process, if λ ≪ X. We will consider the impact of other factors such as PB, and O

in section 6.5 during the discussion of simulations.

Let us introduce the maximum back-off delay parameter Tmax
o from the LTE stan-

dard. After suffering a collision, a UE waits for a duration uniformly distributed

between 0 and Tmax
o . We can divide this distribution in slots and consider Tmax

o as

an integer which represents the number of slots over which failed transmissions in a

slot are uniformly rescheduled. Henceforth, we will assume Tmax
o to mean this inte-

ger number, unless otherwise stated. A non-zero Tmax
o acts to reduce the correlation

among the number of re-transmitting UEs in subsequent slots.

To mathematically model the impact of Tmax
o , let us consider the underlying pro-

cess for X, if we have an arrivals in nth slot i.e. new transmissions, and X̂n = o
(1)
n −dn

retransmissions then,

Xn = an + X̂n (6.31)
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If E[an] ≪ E[X̂], then the process of X̂ can be considered to dominate the arrival

process. By dominating the arrival process, we imply that X̂ can be considered a

reasonable approximation for X and an is insignificant in comparison, and that this

holds in general, over time.

X̂ constitutes retransmissions accumulated during previous Tmax
o slots. Let us

consider that after contention in nth slot, X̂n,n+i : i ∈ [0, Tmax
o ] retransmissions are

scheduled for transmission in the (n + i)th slot. Since, i is uniformly distributed

between 0 and Tmax
o , the probability p of choosing any slot is,

p =
1

1 + Tmax
o

(6.32)

Thus, we have X̂n requests, and the probability of each request choosing (n + i)th

slot is p. We model Tmax
o so that it is not changing and thus p is constant as the slot

from which request is being rescheduled n, increases. Total number of requests which

can be scheduled for transmission in slot i are,

X̂i = X̂i−(1+Tmax
o ),i + X̂i−Tmax

o ,i + . . .+ X̂i−1,i (6.33)

≈ (1 + Tmax
o ) · E[X̂] (6.34)

Since, ai ≪ X̂, E[X̂] ≈ E[X],

X̂i ≈ (1 + Tmax
o ) · E[X] = x(1 + Tmax

o ) (6.35)

Each of the x(1 + Tmax
o ) requests essentially undergoes a Bernoulli trial to select ith

slot with probability p of choosing the slot. Total number of successes in xTmax
o

Bernoulli trials is Binomial distributed with parameters x(1 + Tmax
o ) and p. Thus,

E[X̂] = x(1 + Tmax
o ) · p = x(1 + Tmax

o ) ·
1

1 + Tmax
o

= x. (6.36)

As Tmax
o and x increases, the Binomial distribution tends towards Poisson distribution,

implying that counts in a slot for retransmissions become Poisson distributed. This

53



indicates that the underlying process for X tends to become a Poisson arrival process,

as Tmax
o and x increases. The variance for X̂ thus tends to x.

6.5 Numerical Analysis

In this section we will describe the simulation setup and discuss various results.

We use simulation models developed in C++ using C++ standard library, OM-

NeT++ Varga (2001) based libraries, and simulation tools Akaroa2 Erwing et al.

(1999) and GNU parallel Tange (2011). Akaroa2 is used for Multiple Replications in

Parallel to achieve 95% confidence intervals with 5% relative error for Poisson dis-

tributed and Bernoulli distributed arrival counts. GNU parallel is used for managing

multiple simulations on multi-core computing systems. While we use the back-off pe-

riod limits acceptable to the current LTE/LTE-A standard, for the ac-BarringTime

duration we use the same permissible delays as those for back-off. For the under-

standing of the system dynamics, the smaller values are sufficient.

In the simulation results, we use success probabilities (ς) and drop probabilities

(δ) as representative of accuracy of the models. Subscripts ‘ana’ and ‘sim’ are used

to denote analytical and simulated results, respectively. ρ, on horizontal axis denotes

the normalized count of arrivals per slot i.e. λ/O.

6.5.1 Poisson Arrivals

Let us consider the Poisson arrivals. Figs. 6.3 and 6.4 show a comparison of

solution of Eq. 6.20 and simulations for the case when only one preamble is available

for RA. As it can be seen, the model is close but not very good for these parameters.
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Figure 6.3: Steady Success State Probabilities for Poisson Arrivals. O = 1, W = 4,

PB = 0.1, and Tmax
o = 0.
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Figure 6.4: Steady Drop State Probabilities for Poisson Arrivals. O = 1, W = 4,

PB = 0.1, and Tmax
o = 0.
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Figure 6.5: Steady Success State Probabilities for Poisson Arrivals. O = 1, W = 4,

PB = 0.5, and Tmax
o = 0.
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Figure 6.6: Steady Drop State Probabilities for Poisson Arrivals. O = 1, W = 4,

PB = 0.5, and Tmax
o = 0.
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Figure 6.7: Steady State Success Probabilities for Poisson Arrivals. O = 1, W = 4,

PB = 0.9, and Tmax
o = 0.

Impact of PB

However, increasing PB to 0.5, we see that the results have greater agreement in

Figs. 6.5 and 6.6. Further, in Figs. 6.7 and 6.8 the results match very well.

In essence, PB has a de-correlating effect on the subsequent contention periods.

Impact of O

Figs. 6.9 and 6.10 shows the comparison for O = 10. Considering that in Eq. 6.28

ϑ = (1− PB)x/O, we can say that O has a similar de-correlating effect as PB and a

value of O = 10 should reduce the impact of a low PB = 0.1 from 0.9x to 0.09x ≈ 0.1x,

which is similar to PB = 0.9, ϑ = 0.1x. Thus, the small values of both PB and O

can be combined together for greater de-correlation. This is reflected well in Figs. 6.9

and 6.10 which matches closely with simulation results, similar to the case for O = 1,

and PB = 0.9.
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Figure 6.8: Steady State Drop Probabilities for Poisson Arrivals. O = 1, W = 4,

PB = 0.9, and Tmax
o = 0.
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Figure 6.9: Steady State Success Probabilities for Poisson Arrivals. O = 10, W = 4,

PB = 0.1, and Tmax
o = 0.
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Figure 6.10: Steady State Drop Probabilities for Poisson Arrivals. O = 10, W = 4,

PB = 0.1, and Tmax
o = 0.

Impact of W

In Figs. 6.11 and 6.12, it can be seen that the disparity between the model probabilities

(ςana, δana) and the simulated probabilities (ςsim, δsim) increases with increase in W .

We attribute this increase in disparity to increased impact of correlation on higher

values of W . However, the impact of de-correlation remains strong and for PB = 0.9,

the model matches well with the simulations in Fig. 6.13 and 6.14.

6.5.2 Bernoulli Distributed Arrival Counts

We simulate using Bernoulli counts as well. Note that for X̂ minimum value is

0 and that this is a discrete parameter, let us consider the maximum variance the

distribution of X̂ may have. It is well established that the maximum variance for a

discrete distribution with minimum value a and maximum value b is (b − a)2/4 Jr.

et al. (1985); Muilwijk (1966). This is the case for a Bernoulli variable with equally
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Figure 6.11: Steady State Probabilities for Poisson Arrivals. O = 1,W = 7, PB = 0.1,

and Tmax
o = 0.
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Figure 6.12: Steady State Probabilities for Poisson Arrivals. O = 1,W = 7, PB = 0.1,

and Tmax
o = 0.
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Figure 6.13: Steady State Probabilities for Poisson Arrivals. O = 1,W = 7, PB = 0.9,

and Tmax
o = 0.
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Figure 6.14: Steady State Probabilities for Poisson Arrivals. O = 1,W = 7, PB = 0.9,

and Tmax
o = 0.
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Figure 6.15: Steady State Success Probabilities for Bernoulli Distributed Arrival

Counts. O = 10, W = 4, PB = 0.1, and Tmax
o = 0.

likely b and a. For X̂, a = 0 and the mean x = (a + b)/2 = b/2 i.e. b = 2x. The

maximum variance for the original X̂ with mean x can be (2x− 0)2/4 = x2. We thus

consider an arrival process based on Bernoulli counts in this study as one of the worst

case situations.

For simulations we consider a maximum variance case based on mean arrivals λ,

with the two possible count values being either 0 or 2λ. In simulations, we do not

find good match between the model Eq. 6.28 and simulated values for small values

of O. In this case, the impact of O is greater on de-correlating values compared

to PB. We find that the results in reasonable agreement for O = 10, as shown in

Figs. 6.15 and 6.16. However, for generally used value of O = 54 and a high barring

probability PB = 0.9, the results match closely. Figs. 6.17 and 6.18 shows the match

for these values.
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Figure 6.16: Steady State Drop Probabilities for Bernoulli Distributed Arrival Counts.

O = 10, W = 4, PB = 0.1, and Tmax
o = 0.

6.5.3 MMPP Process Based Arrivals and Impact of Tmax
o

As another extreme case, we simulate a 2 state Markov Modulated Poisson Process

(MMPP). The MMPP we use has, for a mean arrival rate of λ, a Poisson arrival

process with mean λ/5 as low rate process and another Poisson arrival process with

mean 5λ as high rate process. The transition probability from high rate process to

low rate process is 0.05 and the transition probability from low rate process to high

rate process is 0.01.

A 2-state MMPP model is not unimodal and likely to be more difficult to de-

correlate. We now use the Tmax
o parameter as well. As can be seen from Figs. 6.19

and 6.20, a large value of Tmax
o = 500 has sufficiently de-correlated the 2-state MMPP

arrival process to result in great accuracy with Poisson arrivals based model.

63



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ς

ρ

Ana

T
o

max
=0

Figure 6.17: Steady State Success Probabilities for Bernoulli Distributed Arrival

Counts. O = 54, W = 4, PB = 0.9, and Tmax
o = 0.

The impact of an increasing Tmax
o is thus, to reduce the variance, maximum x2

for unimodal distributions, of the original X̂ process forcing it to result in a Poisson-

ized X̂ process with mean and variance x. The value x2 − x = x(x − 1) can thus

be considered a measure of maximum reduction needed to ensure that X̂ acts as a

Poisson arrival process, for unimodal arrival processes.

Particular value of Tmax
o which achieves the de-correlation, is the maximum value

of Tmax
o which impacts the process. Any further increase in Tmax

o does not affect the

system other than increasing delays. For the case, when λ ≪ x, X ≈ X̂ and can be

considered as a Poisson arrival process.
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Figure 6.18: Steady State Drop Probabilities for Bernoulli Distributed Arrival Counts.

O = 54, W = 4, PB = 0.9, and Tmax
o = 0.
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Figure 6.19: Steady State Success Probabilities for 2 State MMPP Distributed Arrival

Counts. O = 54, W = 7, PB = 0.9, and Tmax
o = 500.
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Figure 6.20: Steady State Drop Probabilities for 2 State MMPP Distributed Arrival

Counts. O = 54, W = 7, PB = 0.9, and Tmax
o = 500.

6.6 Conclusion

In this chapter, we have derived steady state models for LTE/LTE-A RA proce-

dure. The performance of RA procedure is of critical importance in upcoming M2M

technologies. We have used an equilibrium based approach to derive the steady state,

which is more fundamental and dependent only on existence of a steady state. Our

analysis is applicable to both single and multiple preamble case.

Further, we have explored the impact of various parameters associated with the

RA procedure. Through simulations and analytical understanding, we have found

that suitable sets of these parameters can be found to ensure that a steady state

exists. We have also established that such a resulting steady state will closely resemble

a Poisson arrivals based system.
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With the understanding of various RA parameters, further algorithms can be

explored for quick descent to steady state or for various objectives. We have not

explored these optimizations in current study and are for future work.
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Chapter 7

CONCLUSION

We have analyzed the impact of the number W of transmission attempts on the

throughput and delay of the slotted Aloha based preamble contention in the LTE-

Advanced random access system. Our study provides analytical characterizations for

the combinations of transmission attempt limit W and request load ρ that results

in one, two, or three equilibrium operating points. Specifically, for W ≥ 9 trans-

mission attempts, which are a necessary condition for multiple operating points, we

analyze the load region (ρ1, ρ2) that results in three operating points. We analytically

characterize the throughputs and delays at these operating points.

The numerical investigations with our analysis results and verifying simulations

indicate that for the examined scenario with O = 54 preambles, a small to mod-

erately large transmission attempt limit W around ten without backoff gives good

throughput-delay performance. Uniform backoff achieves only relatively small through-

put improvements at the expense of substantially increased delays. For reliable low-

delay service, a network with W ≥ 9 should be operated with a load below the

boundary ρ1, which ensures that the network does not experience high-delay oper-

ating points. For W ≤ 8, our delay analysis can be used to identify load limits for

low-delay service.

We have extended these results to single channel case. A variance based model

has been developed to estimate the variance, which can be used to design backoff

schemes based on statistical characteristics of user observed contention.

We have also established a Poissonization effect, due to which UE requests dis-

tribute according to a Poisson distribution whose mean equals λ, when uniform backoff
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is employed. When the introduced latency is not a problem, this technique can be

used to shape the distribution of incoming requests.

There are many important directions for future research. One example direction

is to examine service differentiation Cheng et al. (2011); Hu et al. (2012) whereby

different service classes employ different transmission attempt limits W . Another

direction is to study the internetworking of LTE-Advanced networks with local net-

works, such as body area networks, attached to the UE and backhaul networks, such

as Ethernet Passive Optical Networks (EPONs) Aurzada et al. (2014); Coimbra et al.

(2013); Lim et al. (2013); Maier et al. (2009); Milosavljevic et al. (2012); Aurzada et al.

(2011). An integration with LTE-Advanced networks on one end of the EPON and

a sensor network on the other end Hossen and Hanawa (2011); Seema and Reisslein

(2011), is an interesting area of exploration as well. Use of long reach EPONs will

make the area more challenging Kantarci and Mouftah (2012); Mercian et al. (2013).

Another exciting research direction is the integration with metropolitan area opti-

cal networks Bianco et al. (2013); Maier and Reisslein (2004); Maier et al. (2003);

Scheutzow et al. (2003); Yang et al. (2003), attached to the eNB.

69



REFERENCES

36.321, G. T., Evolved Universal Terrestrial Radio Access (E-UTRA): Medium Access
Control (MAC) Protocol Specification, v.10.4.0 (2011).

4G Americas, “4G Mobile Broadband Evolution: 3GPP Release 10 and Beyond,
HSPA+, SAE/LET and LTE-Advanced”, (2012).

Abramson, N., “THE ALOHA SYSTEM: Another Alternative For Computer Com-
munications”, in “Proc. of The Joint Computer Conference”, AFIPS ’70 (Fall), pp.
281–285 (ACM, New York, NY, USA, 1970).

Alcaraz, J. J., E. Egea-Lopez, J. Vales-Alonso and J. Garcia-Haro, “Dynamic system
model for optimal configuration of mobile RFID systems”, Computer Networks 55,
1, 74–83 (2011).

Amirijoo, M., P. Frenger, F. Gunnarsson, J. Moe and K. Zetterberg, “On
self-optimization of the random access procedure in 3G Long Term Evolu-
tion”, in “Proc. of IFIP/IEEE International Symposium on Integrated Network
Management-Workshops”, pp. 177–184 (2009).

Aurzada, F., M. Levesque, M. Maier and M. Reisslein, “FiWi access networks based
on next-generation PON and gigabit-class WLAN technologies: A capacity and
delay analysis”, IEEE/ACM Trans. Netw., in print (2014).

Aurzada, F., M. Scheutzow, M. Reisslein, N. Ghazisaidi and M. Maier, “Capacity and
Delay Analysis of Next-Generation Passive Optical Networks (NG-PONs)”, IEEE
Trans. Comm. 59, 5, 1378–1388 (2011).

Bianco, A., T. Bonald, D. Cuda and R.-M. Indre, “Cost, power consumption and
performance evaluation of metro networks”, IEEE/OSA J. Opt. Comm. Netw. 5,
1, 81–91 (2013).

Boudriga, N., M. Obaidat and F. Zarai, “Intelligent network functionalities in wireless
4G networks: Integration scheme and simulation analysis”, Comp. Commun. 31,
16, 3752–3759 (2008).

Carleial, A. and M. Hellman, “Bistable Behavior of ALOHA-Type Systems”, IEEE
T. Commun. 23, 4, 401–410 (1975).

Cheng, J.-P., C.-H. Lee and T.-M. Lin, “Prioritized random access with dynamic
access barring for RAN overload in 3GPP LTE-A networks”, in “Proc. of IEEE
Globecom Workshops”, pp. 368–372 (2011).

Cheng, R.-G., C.-H. Wei, S.-L. Tsao and F.-C. Ren, “RACH Collision Probability for
Machine-Type Communications”, in “Proc. of IEEE Vehicular Technology Confer-
ence”, pp. 1–5 (2012).

70



Choi, S., W. Lee, D. Kim, K.-J. Park, S. Choi and K.-Y. Han, “Automatic Configu-
ration of Random Access Channel Parameters in LTE Systems”, in “Proc. of IFIP
Wireless Days (WD)”, pp. 1–6 (2011).

Choi, Y.-J., S. Park and S. Bahk, “Multichannel random access in OFDMA wireless
networks”, IEEE Journal on Selected Areas in Communications 24, 603–613 (2006).

Coimbra, J., G. Schultz and N. Correia, “A game-based algorithm for fair bandwidth
allocation in Fibre-Wireless access networks”, Optical Switching and Networking
10, 2, 149 – 162 (2013).

Corless, R., G. Gonnet, D. Hare, D. Jeffrey and D. Knuth, “On the Lambert W
function”, Adv. Comp. Math. 5, 329–359 (1996).

Dai, L., “Stability and delay analysis of buffered Aloha networks”, IEEE Trans. Wire-
less Commun. 11, 8, 2707–2719 (2012).

Erwing, G., K. Pawlikowski and D. McNickle, “Akaroa2: Exploiting Network Com-
puting by Distributing Stochastic Simulation”, in “Proc. of European Simulation
Multiconference (ESM)”, pp. 175–181 (1999).

Fan, Z., R. Haines and P. Kulkarni, “M2M Communications for E-Health and Smart
Grid: An Industry and Standard Perspective”, IEEE Wirel. Commun. 21, 1, 62–69
(2014).

Ferguson, M., “On the Control, Stability, and Waiting Time in a Slotted ALOHA
Random-Access System”, IEEE T. Commun. 23, 11, 1306–1311 (1975).

Gerasimenko, M., V. Petrov, O. Galinina, S. Andreev and Y. Koucheryavy, “Energy
and Delay Analysis of LTE-Advanced RACH Performance under MTC Overload”,
in “Proc. of IEEE GLOBECOM Workshops (GC Wkshps)”, pp. 1632–1637 (2012).

Ghez, S., S. Verdu and S. C. Schwartz, “Stability Properties of Slotted Aloha with
Multipacket Reception Capability”, IEEE T. Automat. Contr. 33, 7, 640–649
(1988).

Grishechkin, S., M. Devetsikiotis, I. Lambadaris and C. Hobbs, “Multistabil-
ity in Queues with Retransmission and Its Relationship with Large Devia-
tions in Branching Processes”, Theor. Probab. Appl+ 47, 1, 139–150, URL
http://epubs.siam.org/doi/abs/10.1137/S0040585X97979585 (2003).

Haas, Z. and J. Deng, “On Optimizing the Backoff Interval for Random Access
Schemes”, IEEE T. Commun. 51, 12, 2081–2090 (2003).

Hasan, M., E. Hossain and D. Niyato, “Random Access for Machine-to-Machine Com-
munication in LTE-Advanced Networks: Issues and Approaches”, IEEE Commun.
Mag. 51, 6, 86–93 (2013).

Heyman, D. P. and M. J. Sobel, Stochastic Models in Operations Research: Volume
1: Stochastic Processes and Operating Characteristics (Courier Dover, 2003).

71



Hossen, M. and M. Hanawa, “Network architecture and performance analysis of
MULTI-OLT PON for FTTH and wireless sensor networks”, Int. J. Wireless &
Mobile Networks 3, 6, 1–15 (2011).

Hu, N., X.-L. Li and Q.-N. Ren, “Random access preamble assignment algorithm of
TD-LTE”, Advances in Computer, Communication, Control and Automation, Lec.
Notes in Electr. Eng. 121, 701–708 (2012).

Jenq, Y.-C., “On the stability of slotted ALOHA systems”, IEEE Trans. on Commun.
COM-28, 11, 1936–1939 (1980a).

Jenq, Y.-C., “On the Stability of Slotted ALOHA Systems”, IEEE T. Commun. 28,
11, 1936–1939 (1980b).

Jian, X., Y. Jia, X. Zeng and J. Yang, “A Novel Class-Dependent Back-off Scheme for
Machine Type Communication in LTE Systems”, in “Proc. of Wireless and Optical
Communication Conference (WOCC)”, pp. 135–140 (2013).

Joseph, K. and D. Raychaudhuri, “Analysis of Generalized Retransmission Backoff
Policies for Slotted-ALOHA Multiaccess Channels”, in “Proc. of IEEE Interna-
tional Conference on Communications (ICC)”, vol. 1, pp. 430–436 (1988).

Jr., J. W. S., P. S. Odell and D. M. Young, “Maximum Variance Unimodal Distribu-
tions ”, Stat. Probabil. Lett. 3, 5, 255–260 (1985).

Kamal, S. and S. Mahmoud, “A Study of Users’ Buffer Variations in Random Access
Satellite Channels”, IEEE T. Commun. 27, 6, 857–868 (1979).

Kamal, S. and S. Mamoud, “A study of users’ buffer variations in random access
satellite channels”, IEEE Transactions on Communications 27, 6, 857–868 (1979).

Kantarci, B. and H. Mouftah, “Bandwidth distribution solutions for performance
enhancement in long-reach passive optical networks”, IEEE Commun. Surv. Tut.
14, 3, 714–733 (2012).

Kim, J., J. Lee, J. Kim and J. Yun, “M2M Service Platforms: Survey, Issues, and
Enabling Technologies”, IEEE Commun. Surveys Tuts. 16, 1, 61–76 (2014).

Kim, S. W., “Frequency-hopped spread-spectrum random access with retransmission
cutoff and code rate adjustment”, IEEE J. on Selected Areas in Commun. 10, 2,
344–349 (1992).

Kleinrock, L. and S. Lam, “Packet switching in a multiaccess broadcast channel:
Performance evaluation”, IEEE Transactions on Communications 23, 4, 410–423
(1975a).

Kleinrock, L. and S. Lam, “Packet Switching in a Multiaccess Broadcast Channel:
Performance Evaluation”, IEEE T. Commun. 23, 4, 410–423 (1975b).

72



Kouzayha, N., N. C. Taher and Y. Ghamri-Doudane, “Towards a better support
of Machine Type Communication in LTE-networks: Analysis of random access
mechanisms”, in “Proc. of International Conference on Advances in Biomedical
Engineering (ICABME)”, pp. 57–60 (2013).

Kwak, B.-J., N.-O. Song and L. Miller, “Performance analysis of exponential backoff”,
IEEE/ACM Transactions on Networking 13, 2, 343–355 (2005).

Kwan, R. and C. Leung, “On Collision Probabilities in Frequency-Domain Scheduling
for LTE Cellular Networks”, IEEE Commun. Lett. 15, 9, 965–967 (2011).

Larmo, A., M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner and H. Wiemann, “The
LTE link-layer design”, IEEE Communications Magazine 47, 4, 52–59 (2009).

Lawton, G., “Machine-to-machine technology gears up for growth”, Computer 37, 9,
12–15 (2004).

Laya, A., L. Alonso and J. Alonso-Zarate, “Is the Random Access Channel of LTE
and LTE-A Suitable for M2M Communications? A Survey of Alternatives”, IEEE
Commun. Surveys Tuts. 16, 1, 4–16 (2014).

Lee, K.-D., S. Kim and B. Yi, “Throughput Comparison of Random Access Methods
for M2M Service over LTE Networks”, in “Proc. of IEEE GLOBECOM Workshops
(GC Wkshps)”, pp. 373–377 (2011).

Lee, K.-D. and A. Vasilakos, “Access stratum resource management for reliable u-
healthcare service in LTE networks”, Wireless Networks 17, 7, 1667–1678 (2011).

Li, J., H. Tian, L. Xu and Y. Huang, “An Optimized Random Access Algorithm
for MTC Users over Wireless Networks”, in “Proc. of IEEE Vehicular Technology
Conference”, pp. 1–5 (2013).

Lien, S., K. Chen and Y. Lin, “Toward ubiquitous massive accesses in 3GPP
machine-to-machine communications”, IEEE Communications Magazine 49, 4, 66–
74 (2011a).

Lien, S.-Y., K.-C. Chen and Y. Lin, “Toward Ubiquitous Massive Accesses in
3GPP Machine-to-Machine Communications”, IEEE Commun. Mag. 49, 4, 66–
74 (2011b).

Lien, S.-Y., T.-H. Liau, C.-Y. Kao and K.-C. Chen, “Cooperative access class barring
for machine-to-machine communications”, IEEE Trans. on Wireless Commun. 11,
1, 27–32 (2012).

Lim, W., K. Kanonakis, P. Kourtessis, M. Milosavljevic, I. Tomkos and J. M. Senior,
“Flexible QoS differentiation in converged OFDMA-PON and LTE networks”, in
“Proc. OFC”, (2013).

Lin, T.-M., C.-H. Lee, J.-P. Cheng and W.-T. Chen, “PRADA: Prioritized Random
Access with Dynamic Access Barring for MTC in 3GPP LTE-A Networks”, IEEE
T. Veh. Technol. PP, 99, 1–1 (2014).

73



Liu, Y.-S., “Performance analysis of frequency-hop packet radio networks with gen-
eralized retransmission backoff”, IEEE Transactions on Wireless Communications
1, 4, 703–711 (2002).
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APPENDIX A

EXPECTED NUMBER OF UNSUCCESSFUL UES E[Zn]
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Proceeding from (3.8), we evaluate the conditional expectation of the number of
unsuccessful UEs Zn given the number of UEs Xn sending a preamble in slot n, as

E[Zn|Xn] =
Xn
∑

i=1

E
[

1{∃j∈{1,...,Xn},j 6=i: αi=αj}

]

(A.1)

=
Xn
∑

i=1

[1− P (∀j ∈ {1, . . . , Xn},

j 6= i : αi 6= αj)] (A.2)

=
Xn
∑

i=1

[

1−
Xn
∏

j=1,j 6=i

P (αi 6= αj)

]

(A.3)

= Xn

(

1−

(

O − 1

O

)Xn−1
)

, (A.4)

whereby in the last step we substituted P (αi 6= αj) = (O − 1)/O as there are O − 1
preambles (out of the total of O preambles) that are not equal to a given (fixed)
preamble and the UEs select the preambles independently. We note that Xn follows
approximately a Poisson distribution (with mean x). To see this, observe from (3.3)
and the illustration in Fig. 3.1 thatXn is a sum of random fractions of Poisson random
variables. From (A.4), we evaluate E[Zn] = E[E[Zn|Xn]] as follows:

E[Zn] = E

[

Xn

(

1−

(

O − 1

O

)Xn−1
)]

(A.5)

≈

∞
∑

k=1

xk

k!
e−x · k

(

1−

(

O − 1

O

)k−1
)

(A.6)

= x

[

1− e−x exp

(

x
O − 1

O

) ∞
∑

k=0

1

k!

(

x
O − 1

O

)k

exp

(

−x
O − 1

O

)]

(A.7)

= x
[

1− e−x/O
]

, (A.8)

whereby the summation in (A.7) is over the probability mass function of a Poisson
random variable with mean x(O − 1)/O, i.e., gives one.
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APPENDIX B

PROPERTIES OF h(t)
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In this appendix, we analyze the right-hand side of the balance equation (3.11),
i.e.,

h(t) := g(e−t) :=
1− (1− e−t)W

e−t
, (B.1)

which represents the ratio of steady-state success probability after W transmission
attempts to success probability in the first attempt. We readily verify that h′(t) = 0
has no solutions: Indeed, abbreviating y = e−t ∈ (0, 1] we have

h′(t) = g′(e−t)(−e−t) (B.2)

Clearly,

g′(y) =
d

dy

1− (1− y)W

y
(B.3)

=
W (1− y)W−1y − [1− (1− y)W ]

y2
. (B.4)

The numerator of (B.4) has no zeros for y ∈ (0, 1). In fact, this numerator is negative
for all y ∈ (0, 1). Thus h′ is positive for all t > 0, showing that h is a strictly increasing
function starting at h(0) = 1 and ending at h(∞) = W .

We next show that h(t) has precisely one convex and one concave piece. Specifi-
cally, we show that the equation h′′(t) = 0 has exactly one solution for t > 0, which
we will call inflexion point t0. This shows that h has exactly one convex piece (for
arguments in [0, t0]) and one concave piece (for the arguments in [t0,∞)).

In order to analyze the equation h′′(t) = 0, note that

h′(t) = g′(y)(−y), h′′(t) = g′′(y)(−y)2 + g′(y)y. (B.5)

So that h′′(t) = 0 has a solution for t > 0 if and only if

g′′(y)y + g′(y) = 0 (B.6)

has a solution for y ∈ (0, 1). After some simplifications, and setting z := 1 − y, this
is equivalent to

0 = p(z) := 1−W (W − 1)zW−2 +W (2W − 3)zW−1 − (W − 1)2zW . (B.7)

This is now a polynomial in z of degree W . It can be seen easily that p(0) = 1,
p(1) = 0, p′(0) = 0, p′(1) = 0, p′((W−2)/(W−1)) = 0, and p′′(1) = −W (W−1) < 0.
Thus, p(z) = 0 has exactly one solution in (0, 1) (which we denote by z0) and, going
back, so has h′′(t) = 0, at

t0 := log
1

1− z0
. (B.8)
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APPENDIX C

ASYMPTOTICS OF ρ1 FOR LARGE W
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In this appendix, we derive the asymptotics of the load boundary ρ1 for large
transmission attempt limits W (with Wy → 0) given in (4.7). We first approximate
(4.5) with the Taylor expansion

(1− y)W = 1−Wy +
W (W − 1)

2
y2 +O((Wy)3) (C.1)

to obtain

ρ1 =
t1e

−t1

1− [1−W e−t1 +O((W e−t1)2)]
(C.2)

∼
t1
W

. (C.3)

We proceed to express t1 asymptotically in terms of W , whereby we omit in the
following the subscript 1 to avoid clutter. We approximate (4.4) with the Taylor
expansions (C.1) and

Wy(1− y)W−1 = Wy[1− (W − 1)y] +O((Wy)3), (C.4)

to obtain after algebraic simplifications and recalling that y = e−t,

−(t+ 1)e−(t+1) = −
2e−1

W − 1
. (C.5)

The solution t = t(W ) of (C.5) is a Product-log function, also referred to as Lambert
W function Corless et al. (1996), whereby the W in the Lambert W function is not
to be confused with our notation W for the transmission attempt limit. For the
asymptotic behavior of this function, specifically its branch −1, it can be shown that

t(W ) = log
W − 1

2e−1
+ log log

W − 1

2e−1
− 1 + o(1), (C.6)

where o(1) denotes a term that tends to zero as W → ∞. Inserting (C.6) in (C.3)
gives (4.7).

An alternative approach to employing the Lambert W function is to express t =
t(W ) by defining ω = (W − 1)/(2e−1) and

t+ 1 = log [ω s] (C.7)

with s to be determined. Then, inserting (C.7) in the dominating exponential term
e−(t+1), (C.5) becomes

(t+ 1)
1

ω s
=

1

ω
(C.8)

i.e., t+ 1 = s and thus

s = t+ 1 = log [ω s] (C.9)

= log [ω] + log [s] (C.10)

= log [ω] + log [t+ 1] . (C.11)

= logω + log log[ωs] (C.12)

= logω + log logω + o(1). (C.13)
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This leads to

t = s− 1 = logω + log logω − 1 + o(1), (C.14)

which is equivalent to (C.6).
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