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ABSTRACT 

The existing deregulated market structure for electricity necessitates that utilities 

make the generation, transmission and distribution of electricity cost-effective. This 

encourages investment in technological upgrades to utilize the equipment optimally, thus 

reducing the operation and maintenance costs, while ensuring an extended operational 

life. This goal can be achieved for a transformer with the help of dynamic loading. 

Dynamic loading of a transformer implies optimally loading it given available load, 

cooling and ambient conditions. This can be of significance in maintaining the reliability 

of the electric supply. 

Dynamic loading allows the utility to load a transformer above its nameplate rating 

for a specified duration of time, such that its service life is not unduly reduced. Over-

heating is more often than not the cause behind premature insulation breakdowns and 

insulation breakdowns often lead to overhaul or replacement of transformers. Hottest-

spot temperature (HST) and top-oil temperature (TOT) are reliable indicators of the 

insulation temperature. The objective of this project is to use thermal models to estimate 

the transformer's maximum dynamic loading capacity without violating the HST and 

TOT thermal limits set by the operator. In order to ensure the optimal loading, the 

temperature predictions of the thermal models need to be accurate. A number of 

transformer thermal models are available in the literature. In present practice, the IEEE 

Clause 7 model is used by the industry to make these predictions. However, a linear 

regression based thermal model has been observed to be more accurate than the IEEE 

model. These two models have been studied in this work. 



  ii 

This document presents the research conducted to discriminate between reliable and 

unreliable models with the help of certain metrics. This was done by first eyeballing the 

prediction performance and then evaluating a number of mathematical metrics. Efforts 

were made to recognize the cause behind an unreliable model. Also research was 

conducted to improve the accuracy of the performance of the existing models. 

A new application, described in this document, has been developed to automate the 

process of building thermal models for multiple transformers. These thermal models can 

then be used for transformer dynamic loading. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The deregulated market structure requires the utilities to submit their bids in the 

energy market and the lowest bids are selected to meet the demand. This makes it 

important for a utility to reduce the total cost of supplying electricity in order to ensure 

that its bid is low enough to be selected while still supplying electricity to the consumers 

profitably. Thus utilities desire to use their equipment optimally without unduly reducing 

their shelf lives. In most utilities, the transformers are rarely loaded to their optimum 

capabilities. For example, at SRP, transformers are typically loaded only up to 80% of 

their rated capacities for 90% of the time. Hence the utilities desire to optimally load the 

transformers, where optimal loading takes into account dynamic loading calculations.  

Millions of dollars can be saved by even a moderate size utility if their transformers can 

be loaded even 2% to 3% higher than the limits established using traditional methods. 

However a tradeoff exists between loading a transformer more heavily to defer capital 

cost versus prolonging its service life through lighter loads. Dynamic loading of 

transformers is the term used when the optimum loading capacity is calculated with the 

help of an appropriate thermal model and taking into account the load magnitude, load 

shape, thermal limits and external cooling conditions.  In order to optimally utilize their 

substation distribution transformers and, consequently, minimize cost, Salt River Project 

(SRP) has provided financial support for the development of a software application which 

can be used by system operators and load specialists to perform dynamic loading of 

substation distribution transformers for load planning and scheduling. This dynamic 



2 

loading application is called the operator's tool or the (Dynamic Loading of Transformers 

Application) DLTA. It ensures that the transformers are optimally loaded without 

degrading the insulation beyond acceptable limits since insulation breakdown in 

transformers is often the reason behind transformer failures. In order to delay the 

overhaul or replacement of a transformer, one needs to ensure that the thermal limits of 

the insulation are not violated when loading a transformer.   

The deterioration of insulation with time and the hottest spot temperature are related 

by the Arrhenius reaction rate theory and the equation for per unit life is given by [1]. 













273H

B

eAlifeunitPer


 
(1.1) 

where A, B are constants and θH is the hottest-spot temperature. 

The primary reason behind the heating of the insulation is no-load and load losses. 

Thermal models can predict the top-oil temperature (TOT) which is a proxy measure of 

the insulation temperature and the hottest spot temperature (HST). Both TOT and HST 

are used as the limiting criteria at SRP to decide the maximum loading capability of their 

transformers. 

Hence the dynamic loading application allows the transformer to be over-loaded until 

either of the TOT or HST predictions reach their limits. The TOT and HST are dependent 

on many factors such as the load shape, load magnitude, ambient temperature, thermal 

limits and external cooling conditions. The external cooling conditions typically refer to 

the cooling mode in which the transformer is operating, however wind and rain also 

affect transformer cooling. The transformers considered in this project typically have 

three cooling modes which are as follows: 
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o FAFA cooling mode: All fans are on. 

o FA cooling mode: Half of the fans are on. 

o OA cooling mode: All fans are off. 

The transformers considered in this project do not have pumps. 

Dynamic loading involves loading a transformer until the TOT or HST limits are 

reached. The dynamic loading application aids the operator in optimum dynamic loading 

by predicting the maximum loading that the transformer can sustain without exceeding 

the TOT and HST limits determined to be acceptable by the operator. Thus it predicts the 

TOT and HST and calculates the maximum loading that the transformer can sustain 

before the TOT or HST reach their limits. When a transformer is operating close to its 

thermal limits, it is expected to be operating in FAFA cooling mode. Thus it is important 

to have accurate temperature prediction in the FAFA cooling mode. Although typically 

HST is the limiting criterion, TOT reaches its limit earlier if the load shape is flat. Also it 

has been observed that sometimes in the OA and FA cooling modes, the TOT is greater 

than the HST. The cause behind this is the reduced viscosity of oil at lower temperatures 

which prevents the oil from circulated well and hence the TOT may be higher than the 

HST at times. 

A number of transformer thermal models have been developed and tested in the past. 

The traditional IEEE Clause 7 model [1] is usually preferred in the industry to predict the 

TOT and HST, since it only requires parameters which can be easily obtained from the 

available transformer heat-run test reports. However, it does not accurately account for 

the dynamic behavior of ambient temperature [2], [3]. The linear regression based 

thermal model developed at ASU uses measured TOT and HST data to build the models. 
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TOT measurements are easily available and the HST can also be measured with the help 

of fiber-optic sensors and fluoro-optic thermometers available today.  Thus the linear-

regression model can also be implemented easily. In order to have accurate dynamic 

loading results, it is important to have accurate and reliable thermal model predictions. It 

has been observed that the linear regression models are more accurate than the IEEE 

models [3]. 

1.2 Summary 

The dynamic loading application called DLTA requires the detailed thermal models 

for each transformer to which it is to be applied. These models which include the IEEE 

Clause 7 model and the linear model constructed using linear regression, are constructed 

using a separate (as yet unnamed) model building application. The model building 

application developed as a planning tool in an earlier project, is capable of reading in 

measured data for a desired transformer, building a thermal model with historical data 

and giving comments about the quality of the model to the user. The dynamic loading 

application, DLTA, also known as the operator tool, uses these models to estimate the 

maximum dynamic load the transformer can sustain without violating its thermal limits. 

However the model building application previously developed was not automatic and 

required the models to be built one by one by the user by selecting the suitable options. 

Consequently, a major task of the project reported upon here is the development of an 

automatic model building tool. 

This research is primarily focused on improving the accuracy of model predictions, 

identifying the unreliable models and possible causes behind their poor predictions.  
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1.3   Thesis Outline 

The organization of the chapters in this document is as follows. Chapter 2 gives a 

literature review on the subject. Chapter 3 describes the difficulties involved in 

determining the cooling mode in which the transformer is operating and methods to 

detect a V-shaped residual plot. Chapter 4 contains a detailed analysis of the metrics 

obtained to screen unreliable thermal models. Chapter 5 describes the efforts to improve 

the performance of the existing models and to make the predictions more accurate. An 

experiment to test the performance of the linear model in OA and FA cooling modes is 

described. Possible improvements in accuracy of predictions by using least absolute value 

based regression instead of least squares method is discussed. Also slight improvements 

in accuracy of predictions by using incremental and decremental models are discussed. In 

Chapter 6, the conclusions and scope for future work is provided. The appendix contains 

a detailed description of the model building application. 
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CHAPTER 2 

LITERATURE REVIEW 

The substation distribution transformer dynamic loading application being developed 

in this project requires the TOT and HST predictions to be accurate in order to ensure that 

the amount of permissible load that the transformer is subjected to does not cause the 

insulation temperature to exceed its prescribed thermal limit. A number of thermal 

models have been studied in the past. The two models analyzed in detail in this document 

are the IEEE model and the linear model. 

2.1 IEEE Models 

The thermal models widely used in the industry are the top-oil rise and hottest-spot 

temperature models given in the IEEE Guide for Loading Mineral-Oil-Immersed 

Transformers [1], which are commonly referred to as IEEE Clause 7 models in the 

literature. They are referred to as the “IEEE” models in this document. The IEEE models 

require certain parameters which are easily obtained from the transformer heat-run test 

reports. In this section, both the top-oil-rise and hottest-spot temperature models are 

discussed.  

2.1.1  IEEE TOT Model 

The IEEE Top-Oil-Rise (TOR) model is defined by the equation 

uo
o

oil
dt

d



    

(2.1) 

The equation (2.1), can be solved to yield, 

i
t

iuo
oile  




)1)((
)/(  

(2.2) 

where oil  is the top-oil-temperature time constant given by  
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fl

fl

oil
P

C
   (2.3) 

Thus the transformer TOT is given by, 

ambi
t

iuambotop
oile  




)1)((
)/(  

(2.4)  

where, 

n

flu
R

RK




















1

1*2

  (2.5) 

ratedratedrated IV

VI

S

S
K 

 
(2.6) 

C is the thermal capacity given by 

C = 0.0272 (weight of core and coil assembly in kilograms) 

+ 0.01814 (weight of tank and fittings in kilograms) 

+ 5.034 (liters of oil) 

(2.7) 

If the voltage V is assumed to be constant at rated value, (2.6) can be written as,  

pu

rated

I
I

I
K 

 
(2.8) 

Discretization can then be used to convert the differential equations to difference 

equations which are then used to obtain the model parameters through linear regression. 

Equation (2.1) can be discretized using the Backward Euler approximation given by, 

t

kk

dt

d ooo






]1[][ 
 (2.9)  

On substituting (2.5), (2.8) and (2.9) into (2.1), we can obtain 
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n

rated

oil

fl

o

oil

oil
o

R

R
I

kI

t

t
k

t
k










































1

1
][

]1[][

2









  

(2.10) 

 

It was observed that for the 28 MVA substation distribution transformers considered 

in this project, the top-oil-temperature time constant is on the order of 2.5 hours. 

If 1R and 12 RI pu , (2.10) can be approximated as:  

n

ratedoil

fl

o

oil

oil
o

I

kI

t

t
k

t
k

2

][
]1[][ 



























  

 

(2.11) 

 

Equation (2.11) can be rewritten as follows 

   n

oo kIKkKk
2

12 ][]1[)1(][    (2.12) 

where 

    n

ratedoil

fl

It

t
K

21







    (2.13) 

 
t

t
K

oil 





2  (2.14) 

However, the IEEE top-oil-rise model considers only the load as a varying factor in 

determining the top-oil rise over ambient temperature [2], [3]. Consequently, the ambient 

temperature is simply added to the top-oil rise to get the top-oil temperature. Thus it fails 

to accurately model the time-domain response of the oil temperature to the time-domain 

variations in ambient temperature. In addition to this failing, the oil exponent in the 
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model is inappropriately placed [5], [6], [9], [10] and [11]. Thus a number of more 

accurate thermal models have recently been reported in the literature. 

Lesieutre et al. developed an improved version of the IEEE model that better 

accounted for the dynamics of the ambient temperature, oil viscosity and various types of 

thermal losses [3]. Swift, Molinski and Lehn developed a TOT model based on heat-

transfer theory using an analogy between an electric circuit and a thermal system [5], [6]. 

It used a current source analogy to represent the heat generated due to load losses and 

nonlinear resistor analogy to represent the cooling mechanism. Ambient temperature is 

modeled as an ideal voltage source in this model. 

The authors of the papers [10] and [11] used various metrics to compare the thermal 

models given by [1], [2], [5] and [9]. The metrics used were the eigenvalues, parameter 

sensitivities, R
2 

values, the Variance Inflation Factor (VIF), the maximum steady state 

load predicted by the model known as SSLMax and residual plots. Some of these quantities 

are standard metrics used in regression analysis to test the reliability of a linear regression 

model which will be explained in Chapter 4. The authors came to the conclusion that the 

linearized top-oil model is the most accurate thermal model of all the models which were 

compared. 

2.1.2 IEEE HST Model 

The IEEE HST model is defined by, 

huh
h

h
dt

d
T 


  (2.15) 

The above equation can be solved to yield, 
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   hi
Tt

hihuh
he  

 /
1  

(2.16) 

where, 

m
hrhu K 2   

(2.17) 

The suggested values of the exponents used in the IEEE model equations are given in 

Table 1. 

Table 1 Suggested Values of Exponents for IEEE Model 

Type of cooling m  n 

OA 0.8 0.8 

FA 0.8 0.9 

Non-directed FOA 0.8 0.9 

Directed FOA 1.0 1.0 

 

where FOA stands for forced oil and forced air cooling mode. 

However the transformers considered in this project do not have pumps. They are 

only air-cooled transformers. 

Using the Backward Euler approximation given by (2.9), (2.15) can be modified to 

obtain, 

][][
]1[][

kk
t

kk
T hhu

hh

h 













  (2.18) 

Substituting (2.8) and (2.17) into (2.18) and rearranging gives, 

  m

puhr

h

h

h

h
h kI

Tt

t
k

Tt

T
k

2
][]1[][  























  (2.19) 
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The winding time constant Th , can be projected with the help of the resistance 

cooling curve which is obtained in heat run test reports [1]. The 28 MVA substation 

distribution transformers studied in this project have winding time constants on the order 

of five minutes. 

The IEEE HST model assumes that, under overloaded conditions, the temperature of 

oil in the cooling ducts is the same as the temperature of the oil at the top of the tank. 

However Pierce showed that, during overloads, the temperature of the oil in the winding 

cooling ducts rises rapidly and exceeds the top oil temperature in the tank [7]. This 

temperature difference causes the IEEE HST predictions to be lower than the actual 

winding HST. Pierce then developed an HST model using bottom-oil temperature 

measurements, a model which accounts for the type of fluid, cooling mode, winding-

duct-oil-temperature rise, resistance, and viscosity changes [8]. The challenge of using 

Pierce’s model is that it requires parameters and measurements that are usually not 

available to most utilities. 

The Susa et al. thermal models [9], accounted for the nonlinear thermal resistance of 

the transformer oil. They used an empirically derived exponent for each cooling mode to 

account for the variation in oil viscosity and winding resistance with changes in 

temperature and load.  The changes in the time constants due to changes in oil viscosity 

and variation of loss with temperature are also accounted for. 

It has been found that of all these models, the linear models (introduced below) 

trained on measured field data are the most acceptable thermal models in terms of 

accuracy and reliability [10], [11]. The advantage of using linear regression based models 

for both TOT and HST is that they are based on actual field data. Due to this, a lot of 
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factors which vary and cannot be captured in other models, such as inoperative 

fans/pumps/heat exchangers are captured in these models.  

2.2 The Linear Regression Model 

A thermal model constructed using linear regression and measured data can be found 

which accounts for the ambient temperature variations along with the dynamics of the 

transformer load [10], [11]. This model may be derived using linear regression analysis 

described in section 2.3. The linear-regression model-building procedure uses measured 

data to obtain the model coefficients. Provided the measured data quality is good, the 

linear models account for the thermodynamics of a transformer more accurately than the 

IEEE model. When the data is not of high quality, the accuracy of model predictions can 

be improved by using data quality control as shown in [12], thus increasing the model 

reliability. 

2.2.1 Linear TOT Model 

The linear TOT model is more accurate than the IEEE TOT model since it models the 

variations in load and ambient temperature more accurately than the IEEE TOT model. 

The linear TOT model is governed by the differential equation, 

uambtop

top

oil
dt

d



   (2.20) 

Equation (2.20) can be solved to obtain  

   topi
t

topiambutop
oile  




1  (2.21) 

where topi  is the initial value of TOT.  
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Using the Backward Euler approximation given by (2.9), and substituting (2.5) into 

(2.20), we can obtain, 

n

pu

fl

oil

amb

oil

top

oil

top
R

RkI

t

t
k

t

t
k

t

t
k
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




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
















1

1][
][]1[1][

2












 

(2.22)  

Equation (2.22) can be simplified to obtain a linear equation as follows: 

322
2

1 ][]1[)1(][][ KkKkKkIKk ambtopputop    (2.23)  

The model coefficients K1, K2 and K3 are obtained using linear regression analysis. 

Since measured data is used to obtain these coefficients, this model is more accurate than 

the IEEE TOT model if the measure data is accurate. 

2.2.2 Linear HST Model 

The linear HST model is governed by the differential equation, 

huh

hst

h
dt

d
T 




 

(2.24) 

where 

)()()( ttt tophsth    (2.25) 

Substituting (2.25) in (2.24), we obtain 

)(t
dt

d
T tophuhst

hst
h 




 

 

(2.26) 

 

The solution to (2.26) is 

   hsti
Tt

hitophuhst
het  


1)(  (2.27)  
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Equation (2.26) can be discretized using the Backward Euler approximation given by 

(2.9) to obtain 

][][][
]1[][

kkk
t

kk
T hsttophu

hsthst
h 















 

(2.28) 

This can be further simplified to 

    m

puhsttopmhsthst kILkkLkk
2

21 ][]1[][]1[][    (2.29) 

where, 











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
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
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






h

hr

h

m
Tt

t
L

Tt

t
L
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21 ,

 

2.3 Linear Regression 

Regression analysis is a statistical technique which is used to establish a mathematical 

relation between a dependent and one or more independent variables. If this relation is 

linear, the regression thus performed is called linear regression. 

A multiple linear regression model that best fits the measured data is given by 

  kk xxxy 22110  
(2.30) 

where βj,  j=0,1,..n are the regression coefficients and xj are the model variables. The 

variable   represents the normally distributed error term which has a mean 0 and a 

constant variance of σ
2
. 

The regression coefficients are obtained by fitting the model to the measured data. 

Normally the number of measurements is greater than the number of variables i.e. kn  . 

Let iy denote the 
thi observed value of the dependent variable y and ijx denote the 

thi

observation of the independent variable jx . The errors are assumed to be mutually 
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uncorrelated. The least-squares method can be used to estimate the regression coefficients 

of equation (2.30) which is rewritten as, 

       (2.31) 

where   is an 1n vector of the observed values of the response variable y,   is an 

kn  matrix of the independent variables,   is a 1k  vector of the regression 

coefficients to be calculated and   is an 1n vector of uncorrelated errors. 

Thus, the least-squares estimator of   can be found by minimizing the function: 

        
                           

 

 

   

 (2.32)  

which can be further simplified to 

                       (2.33) 

To find the least square, the derivative of (2.33) is equated to 0. 

     

  
                (2.34) 

Thus  , is obtained as 

              (2.35) 

The least-squares method is used to obtain the model coefficients. To use this method, 

(2.23) is rewritten as, 

32211 ][][][ KkXKkXKkY 

 

(2.36) 

where the k (= 1,2,…N) index in the above equation represents an independent 

measured value associated with time step k,  
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]1[][][  kkkY toptop   (2.37) 

2
1 ][][ pukIkX   (2.38) 

]1[][][2  kkkX topamb   (2.39) 

The constant 1K  is representative of the heat generated by the load in time t , 2K  is 

representative of the heat lost to the atmosphere in time t , and 3K  is representative of 

heat generated by no-load losses.  

Thus the objective function needed to find the coefficients that minimize )(S is: 

    
2

23

2

1
2 1]1[][][]1[][minˆ
















K

K

K

kkkIkkK topambputoptop
k

  (2.40) 

The transformer coefficients 321 ,, KKK can be estimated using equation (2.40).  

Similarly the model coefficients for the ASU HST model, mL1  and 2L  can be obtained 

by using the equation given below. 

      
2

22

12
][]1[][]1[][minˆ









L

L
kIkkkkL mm

puhsttophsthst
k

  (2.41) 

2.4 Model Screening Metrics Used In the Existing Application 

An application designed for dispatchers and load specialists has been developed over 

the years at ASU under the guidance provided by Dr. Tylavsky and the engineers at SRP, 

called TTeMP. It is also referred to as the “planning tool.” This application performed 

several functions. It built the thermal models for the desired transformer. It also screened 

the models based on a number of metrics to determine if the linear regression model 

produced was reliable and it presented the results to the user. Some of these metrics used 
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by this application are standard metrics used in regression analysis to determine the 

reliability of a linear regression based model. The metrics used in the application are 

described below. 

2.4.1 Maximum Steady-State Load ( MaxSSL ) 

Maximum steady-state load is the maximum load to which a transformer can be 

subjected, without violating the defined TOT or HST limits under steady state conditions 

i.e., constant load and temperature conditions. Under steady-state conditions, the top-oil 

temperature remains constant, implying that ][]1[ kk toptop   . Assuming that TOT is the 

load-limiting criterion, this constraint can be used in equation (2.23) and, after some 

simplification, to obtain the maximum steady-state load limited by TOT: 

 

1

32

K

KTTOTK
SSL ambMax

Max


  (2.42) 

Similarly if HST is the limiting criterion, the maximum steady-state load is obtained 

as: 

 
m

MaxMaxm
Max

L

TOTHSTL
SSL 2

2

1 
  (2.43) 

As per recommendations by SRP, MaxTOT is assumed to be 95°C, MaxHST is assumed 

to be 110°C. The ambient temperature, ambT , is assumed to be the worst case condition of 

117°F, to get a conservative value of maximum steady state load, SSLMax. 

At present, if the SSLMax obtained is greater than 1.3 p.u., the model is rejected since 

values of steady state load greater than this are unrealistic. It was also observed that if the 
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SSLMax is below 1 p.u., the model is unreliable. Thus only those models whose SSLMax are 

within this range are considered as potentially acceptable. 

2.4.2 Variance Inflation Factors (VIF) 

It is important for linear regression models that the predictor variables be completely 

independent of each other. If the predictor variables are correlated with each other, this 

condition is known as multicollinearity. If the multicollinearity is severe, the model 

coefficients change erratically in response to minor changes in the data. Thus the model 

built will be highly sensitive to noisy data. A high degree of multicollinearity will also 

cause the X
T
X matrix to have a large condition number, leading to possible inaccuracy in 

numerical evaluation of the pseudo-inverse, which is necessary in the calculation of 

model coefficients. The Variance Inflation Factor (VIF) quantifies the severity of 

multicollinearity. 

If X is the matrix of the predictor variables, the VIF for the j
th

 parameter is defined as  

jjj CVIF   (2.44) 

where Cjj is the diagonal element of the matrix (X
T
X)

-1
.  

The application developed at ASU rejects a model by considering it unreliable if the 

VIF of a variable is greater than 10. This is because it implies that the corresponding 

model coefficient is poorly estimated since the predictor variable is highly dependent on 

one or more other predictor variables. 

2.4.3 Coefficient of Determination R
2
  

The coefficient of determination R
2
 determines how well the data points will fit a 
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linear regression model. The coefficient of determination R
2 
is defined as, 

Tot

s

SS

SS
R Re2 1  (2.45) 

where SSTot is the sample variance given by, 
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 
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
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


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iTot yySS  (2.46) 

and sSSRe is the sum of squares of residuals given by  

 
2

Re
ˆ 

i

iis yySS  
(2.47) 

The closer the value of R
2 

to 1.0, the more reliable the model is. In this application, 

models with 2R <0.95 are discarded as being unreliable. 

Whether using the IEEE model or a linear model, the accuracy of the data used to 

build the model is critical. Although data quality control algorithms can be used to flag 

certain types of bad data, it is not possible for the well-known traditional procedures to 

eliminate all bad data [4]. Thus metrics are proposed in Chapter 4 which can be used to 

identify unreliable models built from measured data. 

2.5 Conclusions 

The IEEE models are used predominantly in the industry today since the parameters 

required to build the IEEE models are easily obtained in the heat run test reports. 

However, the IEEE model predictions are not very accurate. The ASU linear models 

account for the ambient temperature variations and other undetected phenomena more 

accurately since the linear model parameters are obtained from measured data using 

linear regression. However, sometimes bad data leads to unreliable models. Hence certain 
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metrics such as the SSLMax, VIF and R
2

  are used to distinguish between reliable and an 

unreliable thermal models. In addition to the metrics described above, some metrics have 

been developed that are described in Chapter 4 that can refine the model screening 

process further. 
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CHAPTER 3 

DIFFICULTIES IN COOLING MODE ESTIMATION AND DETECTING “V-

shaped” RESIDUAL PLOTS 

The transformers studied in this project typically have three cooling modes: 

o FAFA cooling mode (Forced Air Forced Air): All fans are on. 

o FA cooling mode (Forced Air): Half the fans are on. 

o OA cooling mode (also known as ONAN - Oil Natural Air Natural): All fans 

are off. 

The transformers considered in this project do not have pumps and thus there is no oil 

circulation. The FAFA cooling mode has all fans on which means that the forced air 

cooled by radiators increases the rate of oil circulation within the transformers, which 

prevents the insulation temperature from increasing rapidly. 

The parameters used to build the IEEE thermal models are different for different 

cooling modes. Similarly, the linear models for each cooling mode use different 

parameters. These parameters are distilled using linear regression techniques operating on 

measured data corresponding to that cooling mode. If the data used to build a model for 

any particular cooling mode is mixed with data for other cooling modes, the model built 

will not accurately represent any of the cooling modes. Thus accurately predicting the 

cooling mode in which a transformer is operating is very important for building reliable 

linear and IEEE thermal models. 

3.1 Method Used to Determine Cooling Mode 

In the transformers studied, the measured HST is compared to a threshold setting and 

fans are turned on/off accordingly by hardware in the field. Thus, in separating measured 
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data according to cooling mode regime, the HST measured values must be used since fan 

contactor information is not monitored. Since some transformers do not have fiber optic 

sensors to measure the hottest-spot temperature, a simulated HST is used to turn on/off 

fans and we use this simulated HST likewise to determine the cooling mode in which the 

transformer is operating. The simulated HST at an observation k is given by equation 

(3.1) for the transformers in our sample. 

TGRkLoadkTOTk pu *][][][SHST 

 

(3.1) 

 

where Loadpu[k] is the per unit load at the kth observation, TOT[k] is the top-oil 

temperature at that observation and TGR is the rated full scale rise of the HST over TOT 

of the transformer at rated load. 

The transformer fans are set to switch on or off as per certain fixed set points. The 

terminology used for these set points is as follows: 

o AllTurnOnTemp: Temperature at which all fans turn on (Typically 75⁰C). 

o HalfTurnOffTemp: Temperature at which half the fans turn off (Typically 

70⁰C). 

o HalfTurnOnTemp: Temperature at which half the fans turn on (Typically 

65⁰C). 

o AllTurnOffTemp: Temperature at which all fans turn off (Typically 60⁰C). 

The algorithm used to decide the cooling modes is described in the flow chart given 

in Figure 3.1. 
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Figure 3.1 Flowchart for Cooling Mode Determination 

1. When the HST is greater than the AllTurnOnTemp, all fans are on and the 

operating cooling mode is FAFA cooling mode. 

2. When the HST is below AllTurnOnTemp, above the HalfTurnOffTemp and all 

fans are on i.e. if the transformer is already in FAFA cooling mode with the temperature 

dropping due to cooling, the operating cooling mode remains FAFA and all fans continue 

to remain on until the HST hits the HalfTurnOffTemp. However, if only half the fans are 

on and the AllTurnOnTemp is not reached yet, the operating cooling mode is FA. 

3. If the HST is between HalfTurnOnTemp and HalfTurnOffTemp, the transformer 

is operating in FA cooling mode. 

4.  If the HST is between the HalfTurnOnTemp and AllTurnOffTemp and half the 

fans are on i.e. the transformer is operating in FA cooling mode, it will continue to be in 
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FA cooling mode. However if all fans are off and temperature has not yet reached the 

HalfTurnOnTemp, the transformer is operating in OA cooling mode. 

5. If the HST is below the AllTurnOffTemp, the transformer is operating in OA 

cooling mode. 

The foregoing discussion represents ideal operation; however, we have come across 

some issues in accurately determining the cooling mode of a transformer for the purposes 

of creating data sets for model building: the fan-switching does not always follow the set-

points described above. For example, ideally, if all fans are on and the temperature drops 

below the AllTurnOnTemp due to cooling, the fans should remain on until the 

temperature hits the HalfTurnOffTemp. However we have found cases where half of the 

fans turn off sooner than the above algorithm would predict. This may occur due to the 

set-points not being followed. Similarly when the transformer is in FA cooling mode, if 

the HST drops below the HalfTurnOnTemp due to cooling, the fans are supposed to 

remain on until the AllTurnOffTemp is reached. In reality however, it is not certain that 

the fans actually remain on until the AllTurnOffTemp is reached. Thus the measured-data 

cooling-mode assignment may be in error. Since the fan status is not monitored, there is 

no way to know if our assumptions about the operating cooling mode are correct which is 

very important for both segregating data according to cooling mode and changing models 

when the dynamic loading calculations range over several cooling modes. If we know the 

fan status accurately, we can get a better idea about how accurate our cooling mode 

transition-point estimations are and how the fans are actually switching on and off. Since 

this irregularity in the fan status is a nonlinearity, we believed that it could be the cause of 

the “V-shaped” residual plots observed for some transformers. For the definition of 
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residual plots and how they are used, refer to [13]. These details are also provided in 

section 4.1.2. 

It was observed that some unreliable transformer thermal models had V-shaped 

residual plots even when those plots are taken from the training data sets as seen from the 

example in Figure 3.2.  

 

Figure 3.2 Residual Plot for an Unreliable Model for Transformer Highline-3 

In order to investigate if inaccurate fan status was the reason behind the V-shaped 

residual plots, the cooling-mode-separation set-points were adjusted to exclude data near 

the cooling mode transition points. The resulting residual plot showed significant 

improvement as seen in Figure 3.3. It can be seen from this plot that the magnitudes of 

the errors have reduced and they now lie in a range of +/- 3⁰ C as compared to the range 

of +/- 7⁰ C observed earlier. Also the V-shape is greatly reduced. Similarly the RMS error 

is reduced from 1.63
o 

C to 0.4
o 

C. In an opposite experiment, the V-shape of some of the 

transformers' residual plots became more prominent when more FA cooling mode data 
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was introduced in the FAFA model by changing our assumptions about the set-points, that 

is, assuming the set-points were lower. 

  

Figure 3.3 Residual Plot on Removing the Suspicious Data Points from the Input 

Thus we strongly believed that the reason behind the nonlinearity indicated by the V-

shaped residual plots was that fan-switching was not following the desired set-points 

which may be identified by detecting the V-shaped residual plots at the model building 

stage. 

3.2 Detecting V-shaped Residual Plots 

A number of methods were investigated to perform automatic identification of V-

shaped residual plots. 

3.2.1 Nonlinear Regression 

It was postulated that if a V-shape was present in the residual plot then the residual 

behavior as a function of temperature would have a good fit to a quadratic curve. 
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Nonlinear regression was used to fit the lower boundary of the residual plots to a 

quadratic equation given by (3.2) and the coefficients of the model were studied. 

cbxaxxf  2)(  (3.2) 

It was observed that models with V-shaped residual plots had coefficients of the 

squared term greater than 0.02, coefficients of the linear term lower than -5 and the 

constant term greater than 100. This can be seen from Figure 3.4, Figure 3.5 and Figure 

3.6 respectively. 

 

Figure 3.4 Coefficient of the Squared Term Obtained from Curve-Fitting 
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Figure 3.5 Coefficient of the Linear Term Obtained from Curve-Fitting 

 

Figure 3.6 Coefficient of the Constant Term Obtained from Curve-Fitting 

3.2.2 Standard Deviation of the Predicted Maximum Steady State Load 

A second method postulated for detecting V-shaped residual plots was the reliability 

with which multiple models built using random sampling of the data, would predict the 
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maximum steady state load, SSLMax. Bootstrapping was used to construct thousands of 

samples from an independent and identically distributed population of the observed 

dataset and then the sampled datasets were used to build HST and TOT models of the 

transformers. Each of these models was used to predict the maximum steady-state load 

sustainable by the transformer and the standard deviations of these predictions were 

compared for the transformers in our data sets. It was observed that the standard 

deviations of the maximum predicted steady state loads for TOT from bootstrapping was 

greater than 1.0 p.u. for the transformers with V-shaped residual plots as seen from 

Figure 3.7.  

 

Figure 3.7 Standard Deviation of the predicted SSLMax 

3.2.3 Maximum Confidence Interval 

The third metric used to identify V-shaped residual plots was the confidence interval, 

at a given confidence level, in the maximum steady-state load prediction calculated 

above. The confidence interval of the maximum steady state load defines a region around 
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the mean value of the p.u. steady state loading predicted by the models built from the 

bootstrapped samples. For our purposes, it is interval centered at the mean predicted 

SSLMax, such that there is a 95% probability that the true steady-state load rating is within 

that interval. It was observed that transformers with V-shaped residual plots had 

maximum confidence intervals (corresponding to the bootstrapped samples built with a 

data-set size of one day) greater than 0.3 p.u. as seen from Figure 3.8. 

 

Figure 3.8 Maximum Confidence Interval Plot 

3.2.4 Summary 

All the three methods were able to successfully identify the models with 

nonlinearities such as improper fan-switching that were not captured by data segregation 

algorithm. The application being developed by the authors uses the nonlinear regression 

method and the standard deviation of the predicted SSLMax since these methods provide a 

larger gap between the two categories of transformers i.e. with and without the V-shaped 

residual plots. 
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In the existing application, if the coefficient of the squared term for a transformer 

TOT model is greater than 0.02 or if the standard deviation of the predicted SSLMax is 

greater than 1.0 p.u., the value assigned to its residual plot quality is 5, else it is 10. This 

residual plot metric is used to evaluate the 'Model Quality' described in Chapter 4. 

3.3 Source of the V-shape 

In this work, it was important not only to identify and classify as erroneous any 

models that had V-shaped residual plots but to also find the cause of the V-shape. Using 

the erroneous fan status as a working hypothesis, we examined the thermal behavior of 

the Highline-3 transformer. Figure 3.9 provides the measured and predicted TOT values 

for Highline-3 for the portions of five days when the transformer was in FAFA cooling 

mode. 

 

Figure 3.9 Plot of TOT versus Time for an Unreliable Model 
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The large errors at the peak and the phase shift of the predicted temperature response 

in this figure, shows that neither the IEEE nor the linear model are reliable. A sudden rise 

and fall was noticed at the troughs of the measured TOT as shown circled in Figure 3.9. 

This sudden rise/fall is inconsistent with the recorded load and weather behavior during 

those time intervals. One cause consistent with this behavior is a cooling mode 

change/error brought on by fan status that is inconsistent with the fan set points and 

simulated HST as calculated using (3.1). One of the days on which such a fall and rise 

was observed at the troughs was analyzed to find the cause of this behavior. The HST and 

load data for Highline-3 for 12/7/2009 are shown in Figure 3.10 and Figure 3.11, 

respectively. To understand the information this data contains, it is necessary to 

understand that Highline-3 does not have an FA cooling mode as per its set points; it has 

only FAFA and OA cooling modes and it uses simulated HST, rather than measured 

HST, as the input to its fan controller circuits. All fans are set to turn on when the HST 

rises above 75⁰ C and turn off when the HST drops below 60⁰ C. 

As seen in Figure 3.10, on 12/7/2009, for the Highline-3 transformer, the simulated 

HST was observed decreasing from midnight for approximately two hours and then 

began increasing for approximately two hours, starting at point B in this figure even 

though the load was continuously decreasing as seen from Figure 3.11. The HST value 

resumed decreasing starting at point C for nearly three hours. Starting at point D, it began 

increasing for approximately the next ten hours. The relatively short duration for which 

the simulated HST was increasing (interval B-C) during a relatively steady or decreasing 

load period, is inconsistent with the transformer remaining in the FAFA cooling mode at 

point B; however, based on the simulated HST values (equation (3.1)) shown in Figure 
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3.10 and cooling mode-transition settings, the cooling mode should have remained in 

FAFA cooling. The most likely explanation of this behavior is that the transformer 

entered OA cooling mode at point B and then all of the cooling fans turned on (returned 

to FAFA cooling) at point C causing the temperature to decrease until, at point D, due to 

increasing load, the HST began increasing again and continued to do so throughout the 

afternoon which is the peak load period. This explanation of behavior is consistent with 

thermodynamic principles.  

 

Figure 3.10 Simulated HST Data for Highline-3 

 

Figure 3.11 Load Data for Highline-3 
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Figure 3.12 Measured FAFA TOT Data for Highline-3 

Recorded pseudo-measurements of the HST (which are PMHST values “calculated” 

by the transformer’s controller) were obtained for Highline-3 for this period of time. A 

difference was observed between the simulated HST obtained using (3.1) and the pseudo-

measured (simulated) HST recorded and shown in Figure 3.13. It can be seen that about 5 

AM, the pseudo-measured HST drops below 60⁰ C which is the fan turn-off set point for 

this transformer. The pseudo-measured HST did not cross the fan turn-on set point of 

75⁰C until nearly 2 PM. Thus if we were to use the pseudo-measured HST, the fans 

would enter OA cooling mode at 5 AM and would not enter FAFA cooling mode until 

about 2 PM. This confirms that the transformer enters OA cooling mode, although the 

time during which it is in the OA cooling mode is not consistent with that deduced in the 

previous paragraph. However, since the fans may not follow the set-points exactly, it is 

quite plausible that the transformer entered OA cooling mode at point B and the rest of 

the thermal behavior is consistent with thermodynamic principles. 
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Figure 3.13  Pseudo-Measured HST Data for Highline-3 

The sudden rise and fall at the troughs in the measured TOT data in Figure 3.12 can 

be seen to occur on a consistent basis for this transformer as shown in Figure 3.9. This 

means that the data contained in Figure 3.2 is a mixture of OA and FAFA cooling mode 

data. As stated previously, the reason that using this mixture of OA and FAFA cooling 

mode data produces an erroneous model is that each different thermodynamic condition 

must be modeled using a different set of model coefficients. By including data belonging 

to two different cooling modes in one thermal model, the linear regression model is being 

forced to fit two different thermodynamic conditions, which appears like a nonlinearity in 

the data. The linear thermal model is not able to capture this non-linearity and hence the 

thermal models are unreliable for either of the cooling modes. This understanding of the 

mixture of data in model building also explains why excluding data near the cooling-

mode transition boundaries significantly reduced the V-shape in the residual plots. The 

linear TOT model was built assuming that the fans turned off when the simulated HST 

dropped below 65⁰ C, thus removing the set of data points from the FAFA model where 
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the transformer entered the OA cooling mode for a few hours. With this data-screening 

mechanism in place, points in the time domain plot associated with the sudden rise and 

drop of measured TOT at the troughs were removed eliminating the effective 

nonlinearity. 

Thus the source of the V-shape was believed to be inaccurate fan status. 

3.4 Summary 

It was observed that inaccuracy in determining the fan status during the cooling-

mode-assignment of measured data points can lead to the thermal models whose 

predictions are inaccurate. The identification of the V-shaped residual plot is used as one 

of the measures to determine the level of reliability of the model. Possible methods to 

detect the linear TOT models with V-shaped residual plots were identified. Also the 

source of the V-shaped residual plot was analyzed. Inaccurate fan status was believed to 

be the cause of the V-shape. 
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CHAPTER 4 

METRICS FOR MODEL SCREENING 

The transformer thermal model building application (named TTeMP) developed as a 

planning tool at ASU in an earlier project, builds two kinds of models for TOT and HST 

for all transformers: the IEEE models and the ASU linear models. It analyzes the 

reliability of the models based on the metrics described in Chapter 2 and provides the 

linear model coefficients, parameters for the IEEE model, error duration curves, load 

duration curves, probability density plots and comments about model reliability for both 

models to the user for TOT as well as HST. However, the metrics discussed in Chapter 2 

are insufficient to successfully discard all unreliable models. Some additional metrics for 

the linear TOT model have been evaluated that will be described in this chapter. These 

metrics have been developed in order to obtain an efficient model screening process and 

discard the linear TOT models with poor prediction accuracies. 

4.1 Possible Metrics for Model Screening 

In order to develop the metrics for the linear TOT models, the model quality was 

qualitatively and quantitatively assessed with the help of visual inspection and the 

quantitative metrics described in this section. Although a lot of the candidate screening 

metrics were good at discriminating between reliable and unreliable models, some were 

more efficient than others. A systematic method to detect unreliable models is described 

in section 4.2. The results discussed in this section, have been obtained for 28 MVA 

substation distribution transformer TOT models only. 
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4.1.1 Visual Inspection 

Visual inspection was the first step to judge whether a model predicts the TOT 

accurately. Quantitative metrics were developed based on these observations. Visual 

inspection involved plotting the measured TOT, the linear model TOT prediction and the 

IEEE model TOT prediction on the same axes for the period during which the 

transformer was operating in FAFA cooling mode and then judging the accuracy of the 

predictions. 

Figure 4.1 shows the TOT plots for five high-temperature days during which the 

transformer was in FAFA cooling-mode. In this figure, TOTm represents the measured 

TOT, TOT_Linear represents the linear model prediction and TOT_IEEE represents the 

IEEE model prediction. The predictions shown in this figure correspond to a thermal 

model we believe to be reliable, for the Queencreek-3 transformer. As seen from the plot, 

the linear model predictions track the measured TOT very accurately. The IEEE model 

predictions are not as accurate as the linear model but still considered acceptably 

accurate. 
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Figure 4.1 Plot of TOT versus Time for a Reliable Model 

Figure 4.2 shows the measured and the linear model and IEEE model TOT 

predictions for five high-temperature days during which the transformer was in FAFA 

cooling-mode for the transformer Highline-3. The thermal models for this transformer are 

considered to be unreliable. It is observed that at higher temperatures, the linear model 

predictions are nearly 5⁰ C lower than the measured TOT. Additionally, there exists a 

significant phase shift between the measured and predicted TOT from both models. 

Neither the linear model nor the IEEE model is considered reliable. The IEEE model is 

less accurate as compared to the linear model and this has been observed in general for all 

transformers. The sudden rise and fall in the measured TOT at the troughs as shown 

circled in Figure 4.2 is worth noting. Its significance and possible cause has been 

explained in Chapter 3 where the difficulties in cooling mode determination are 

discussed. 
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Figure 4.2 Plot of TOT versus Time for an Unreliable Model 

Visual inspection was not used as a metric to discard unreliable models. Instead, it 

was used as a sanity check to validate the classification rules involving the metrics 

described below. The metrics have been developed only for linear models so far and 

similar research on IEEE models is anticipated as future work. 

4.1.2 Residual Plots for Linear Model Acceptability Determination 

An important metric for determining the acceptability of a model is a residual plot. A 

residual plot is a graph of the residual, ei, versus the corresponding fitted (predicted) 

values iŷ . The residual, ei, is given by (4.1) 

niyye iii ,,2,1,ˆ   (4.1) 

where iy  represents measured values. 
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For a model to be considered reliable, the points in a residual plot should be confined 

to a horizontal band. Figure 4.3 shows the residual plot for the transformer Queencreek-3. 

Queencreek-3 has a reliable thermal model which can also be verified from the accurate 

predictions in the time domain plots given in Figure 4.1. However if the residual plot is 

V-shaped, this indicates that there is some non-linearity in the process which the model is 

unable to capture leading to inaccurate predictions. The residual plot for Highline-3, 

shown in Figure 4.4, has a V shape. It can be verified from the time domain plot for this 

transformer given in Figure 4.2 that the model predictions are not accurate. 

The residual plot for Queencreek-3 shows that the errors remain in a bounded range 

of +/- 2⁰ C for all temperatures. Whereas the residual plot for Highline-3 shows that the 

linear model underpredicts the TOT at lower and higher temperatures whereas it 

overpredicts the TOT in the middle ranges of temperature. Thus the errors do not have a 

consistent behavior for this thermal model. Also the error magnitudes are very high and 

lie in the range of +/- 7⁰ C. 
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Figure 4.3  Residual Plot for a Reliable Model for Transformer Queencreek-3

 

Figure 4.4 Residual Plot for an Unreliable Model for Transformer Highline-3 

4.1.3 RMS Error 

Root-mean-squared error, another important indicator whether a model is reliable or 

not, is defined as given by the equation (4.2) 
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nyyRMSerror ii /))ˆ(( 2  (4.2) 

where n is the number of observations. 

A high RMS error indicates that the model is unable to predict the TOT accurately. 

The RMS errors for the transformer thermal models trained on 2010 data are given in 

Figure 4.5 where the transformers with reliable thermal models are shown in boxes in the 

legend. 

 

Figure 4.5 RMS Errors for Models Trained on 2010 Data 

4.1.4 Time Constant 

Another important metric is the model’s predicted time constant. From equations 

(2.22) and (2.23), the time constant for the linear TOT model, in terms of model 

coefficients can be obtained as, 






t

t
K 2  

(4. 3) 
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tKt  )/( 2  (4.4) 

where the sampling period t  is 15 minutes or 0.25 hours. 

Typically, the time constant of the linear TOT model for 28 MVA transformers is in 

the neighborhood of 2.5 hours. Figure 4.6 gives the time constants for thermal models 

trained on 2010 data with the names of reliable models shown in boxes in the legend. It 

was observed that unreliable models had higher time constants. 

 

Figure 4.6 Time Constants for Models Trained on 2010 Data 

4.1.5 Correlation Coefficient 

Correlation coefficient also known as Pearson's product-moment correlation 

coefficient, is a measure of linear correlation between two variables. It can take values 

between -1.0 and +1.0. A value of zero implies no correlation, -1.0 implies a perfect 

negative correlation and +1.0 implies a perfect positive correlation. Therefore using the 

correlation coefficient we can estimate the level of correlation between measured TOT 



45 

and predicted TOT. The correlation coefficient is given by the formula (4.5) where 

covariance is a measure of how two random variables change together. 

     
        

    
 

               

    
 (4.5) 

 

Figure 4.7 gives the correlation coefficients between measured TOT and predicted 

TOT for thermal models trained on 2010 data with the reliable models shown in boxes in 

the legend. It was observed that TOT models that had accurate predictions had correlation 

coefficients greater than 0.95. 

 

Figure 4.7 Correlation Coefficients for Models Trained on 2010 Data 

4.1.6 Negative Model Coefficients 

A model is considered unreliable if any of the model coefficients are negative. Since 

K1 is the load coefficient, it cannot be negative as this would imply that the predicted 

TOT decreases with an increase in load. The coefficient K2 is the coefficient of heat 

dissipated to the atmosphere and K4 is the no-load top oil temperature. Based on these 
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physical interpretations of the model coefficients, any model with negative coefficients is 

nonphysical. 

4.1.7 Percentage Standard Deviation of the Model Coefficient K2 

Bootstrapping was used to construct thousands of samples from an independent and 

identically distributed population of the observed dataset and then the sampled datasets 

were used to build thermal HST and TOT models of the transformers. The standard 

deviations of the model coefficients were observed. It was observed that transformers 

whose models were unreliable were those whose set of bootstrapped models had large 

standard deviations (measured in percent) of the model coefficient K2. Percentage 

standard deviation is defined as the ratio of standard deviation of K2 and the model 

coefficient K2 expressed in percent. Figure 4.8 shows a plot of the percentage standard 

deviations of K2 for all transformers contained in the 2010 dataset used for this research. 

The names shown in boxes in the legend are the transformers with reliable thermal 

models. 
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Figure 4.8 Percentage Standard Deviations of K2 for Models Trained on 2010  Data 

4.1.8 Intercept 'a' For Steady-State Load Confidence Interval vs. Sample Size Plot 

The model building application TTeMP also provides the user with an analytical 

representation for the maximum steady-state-load confidence interval vs. sample size 

used for bootstrapping. The plot looks as shown in Figure 4.9. 
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Figure 4.9 Plot of Maximum Steady-State Load Confidence Interval Plotted Against the 

Data Size 

The equation for this plot is given by the following equation. 

log CI  alpha  a  b  log  N  (4. 6) 

where CI represents the confidence interval of the maximum steady-state load, alpha 

represents the minimum confidence interval attainable (which is a function of data noise 

level) and N represents the sample size. 

The models which were not reliable had small magnitudes (less negative values) of 

the 'a' intercept which is a negative number. Since more reliable models would have 

smaller confidence intervals for any sample size, the intercept of the log(CI-alpha) curve 

with the log(N)=0 axis, i.e., a, for reliable models will be smaller, that is, more negative. 

Figure 4.10 shows the plot of the intercept 'a' for all thermal models built from 2010 data 
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and demonstrates that the models with the more negative intercepts are the more reliable 

models. 

 

Figure 4.10 Intercept 'a' of CI Plot for All Models Trained on 2010 Data 

4.1.9 The Load Coefficient K1 

Another important metric is the load coefficient, K1. The variable K1 is the load 

coefficient in the linear model given by (2.23). It is expected that the load should be a 

predominant factor in determining the temperature rise. If the K1 is too low, it indicates 

that load is not a dominating factor in the thermal model which implies a nonphysical 

model. A very high value of K1 will also indicate an unreliable model. It is desired that 

the K1 be between certain upper and lower limits. From numerical experimentation and 

observation, it was determined that for a reliable model K1 should be within a range of 

3.0 to 4.5 for a 28 MVA substation distribution transformers. Figure 4.11 gives a plot of 

the load coefficients for thermal models built from 2010 data. The names shown in boxes 

in the legend indicate transformers with reliable thermal models. 
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Figure 4.11 Load Coefficient K1 for Models Trained on 2010 Data 

4.1.10 Summary 

After much data analysis, we have determined several metrics which are individually 

somewhat reliable in identifying bad models. Regardless of the rule-base procedure used 

to identify unreliable models, if any one of the aforementioned metrics taken alone is 

used, the rules result in rejecting some reliable models and accepting some unreliable 

models. By collectively using several of these metrics in a rule-based procedure, a highly 

reliable way of identifying unreliable models can be has been identified. It was found 

experimentally that not all of the metrics studied were needed for model screening and, in 

order to keep the model-screening process as simple as possible, all of the metrics 

described above were not used. Only the metrics that falsely rejected the fewest reliable 

models and falsely accepted the fewest unreliable were used as a part of the model 

screening process. The model screening process is described in the next section. 
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4.2 Identifying Bad Models for 28 MVA Transformers 

The following metric values and the results of applying thresholds for model 

screening are based on the observations made for 19 transformers using data for the 

calendar years 2006, 2009 and 2010. Depending on the amount of data available for each 

year, independent thermal models were developed for each transformer for most of these 

years, giving 39 thermal models upon which the following observations were based. 

4.2.1 Time Constant and RMS Error 

Through visual inspection of the errors between measured and predicted TOT, and 

visual inspection of the residual plots, it was observed that all linear models with a time 

constant greater than 2.5 were unreliable. Also all models with an RMS error greater than 

1.1 were unreliable. 

Figure 4.12 shows the time constants of the models trained on 2010 data and         

Figure 4.13 shows the RMS errors for models trained on 2010 data, with the models 

considered as reliable using both visual inspection and residual plots shown in boxes in 

the legends of both figures. The horizontal lines in these figures indicate the approximate 

boundary where models transition from being acceptable to unacceptable.  

However it was found that using these metrics alone had two drawbacks: sometimes 

reliable models were erroneously rejected and sometimes unreliable models were 

classified as good. To discriminate between reliable and unreliable models, the following 

rule was found to yield reliable results: a model was considered reliable if and only if its 

time constant was less than 2.5 and the RMS error was less than 1.1. Otherwise it was 

considered unreliable. Using this rule, all of the unreliable models were successfully 
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discarded and only the reliable models were accepted. This method was successfully 

tested on all the models corresponding to different years and was found to work reliably.  

 

Figure 4.12 Time Constants for Models Trained on 2010 Data 

 

Figure 4.13 RMS Errors for Models Trained on 2010 Data 
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It is possible to identify unreliable transformer thermal models based on the following 

metrics: RMS error and time constant. Using the thresholds established for these metrics, 

the bad-model identification process was found to be 100% reliable for the 39 cases 

tested. The metrics also show some promise in being able to diagnose operational issues 

that lead to unreliable models.  

The metrics presented in this section and corresponding threshold values were 

calculated only for 28 MVA substation distribution transformers. Acceptable ranges of 

these metrics, such as the time constant, vary for transformers of different ratings; and are 

therefore design specific. Determining appropriate ranges for transformers of different 

ratings is a matter for future work. 

4.3 Model Reliability of Thermal Models 

Using thermal models built from measured historical data, we found that transformers 

fell into certain arbitrary classes. 

 High Quality Models: For these models, the TOT prediction performance, 

subjectively viewed, was good. These models were built using moderate 

transformer loads, which represented the highest recorded historical loads for 

these transformers. 

 Poor Quality Models: After looking at model performance using several metrics 

and using visual inspection, we found that there are likely to be various causes 

that result in poor-quality models. We believe that some root causes of poor-

quality models are: 
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o Fans do not turn on/off according to the set-point or the set-point in the 

field is different from the set-point value contained in the PTLoad files. 

Since these points are used to separate measure data into various cooling 

modes, erroneous data will be incorporated into our models if the fan turn 

on/off times are incorrect. 

o Transformers have unbalanced loading. The unbalance is expected to 

affect the hot-spot models since hot-spot temperatures are recorded for 

each phase. 

4.4 Model Quality 

It was desired to go beyond the classifying of models into two bins, 

reliable/unreliable, and rank models according to their degree of reliability. In order to 

provide the user with an easily comprehensible model quality index, an attempt is made 

to classify thermal models in different categories such as 'Excellent', 'Good', 'Fair', 'Poor' 

and 'Unacceptable'. This is done using the correlation coefficient, time constant predicted 

by the model and the quality of the residual plot. A metric is determined for the model 

quality comprised of a weighted correlation metric, time constant metric and a metric 

assigned to the quality of the residual plot. This summative metric is used to determine 

the category of the models as described below. 

4.4.1 Discussion of Model Quality 

The correlation metric used was obtained using the following equation 

Correlation Metric       log 1  1  Correlation Coefficient   (4.7) 
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Since the correlation coefficient is higher for reliable models, the reciprocal of        

(1-correlation coefficient) is higher for reliable models. The logarithmic scale provides a 

better distinction between reliable and unreliable models and the scaling constant 3.5 is 

used in order to make the correlation metric of the most accurate model close to 10. Thus 

the transformers' correlation metric were evaluated on a scale of zero to 10 where reliable 

models had higher correlation metric values. 

Visual inspection of the time-domain plots was performed to judge the reliability of 

the models and then the time constants were observed. It was observed that the time 

constants of reliable models are in the range of 1.5 to 2.5. Thus the metric was assigned 

on the basis of Table 2. 

Table 2 Time Constant Metric 

Time Constant Range Time Constant Metric 

Time Constant>=3 4 

2.5<=Time Constant<3 6 

2<=Time Constant<2.5 8 

1.5<=Time Constant<2 10 

Time Constant<1.5 6 

 

The metric for the residual plot is determined using non-linear regression to fit a 

curve to the lower boundary of the residual plot. The coefficients obtained by nonlinear 

regression indicate whether the residual plot has a V-shaped curve. Based on the 

thresholds for these coefficients, it is judged whether a residual plot has a V-shape or not. 
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Residual plot quality is assigned a value of five or ten based on the coefficient obtained 

from non-linear regression and the standard deviation of the predicted SSLMax. This 

procedure is described in detail in Chapter 3. 

All the above three metrics i.e. correlation metric, time-constant metric and residual-

plot metric are averaged to obtain the summative metric. This cumulative metric is used 

to classify the model quality based on the classification given in Table 3. 

Table 3 Model Quality Based On Cumulative Metric 

Cumulative Metric Model Quality 

Metric>=9 Excellent 

8<=Metric<9 Good 

7<=Metric<8 Fair 

6<=Metric<7 Poor 

Metric<6 Unacceptable 

 

Table 4 gives a list of transformers, which have been classified based on the accuracy 

of the thermal-model top-oil temperature (TOT) predictions using the summative metric. 

The transformers are in decreasing order of the model quality with the most reliable 

model being the first transformer in the table. 
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Table 4 Model Quality Assigned to Transformer TOT Models Based on a Weighted 

Metric 

Transformer Correlation 

Coefficient 

Time 

Constant 

Residual Plot 

Metric 

Model Quality 

Queencreek-3, 2010 0.995 1.82 10 Excellent 

Moody-1, 2010 0.992 1.83 10 Excellent 

Burton-3, 2006 0.991 1.86 10 Excellent 

Webber-3, 2012 0.991 1.99 10 Excellent 

Cheatham-2, 2009 0.989 1.52 10 Good 

Citrusheights-0, 2009 0.990 1.55 10 Good 

Wellborn3, 2010 0.989 1.60 10 Good 

Cooley3, 2010 0.988 1.69 10 Good 

Egan-2, 2009 0.983 1.76 10 Good 

Webber-3, 2011 0.980 1.71 10 Good 

CitrusHeights-0, 2010 0.976 1.54 10 Good 

Clarck-2, 2009 0.975 1.87 10 Good 

Cheatham-2, 2010 0.973 1.74 10 Good 

Queencreek-4, 2009 0.944 1.89 10 Good 

Clarck-2, 2010 0.954 2.21 10 Fair 

Tryon-2, 2010 0.914 2.35 10 Fair 

Webber-3, 2010 0.957 2.87 10 Fair 

Kirk-2, 2010 0.952 1.96 5 Poor 

Cooper-2, 2010 0.909 1.67 5 Poor 

Highline-3, 2010 0.937 2.01 5 Unacceptable 

University-2, 2010 0.926 2.99 5 Unacceptable 

Highline-3, 2009 0.881 2.53 5 Unacceptable 

Broadway-4, 2009  0.847 4.19 5 Unacceptable 

Broadway-4, 2010 0.751 4.61 5 Unacceptable 

Sage-4, 2010 0.626 3.08 5 Unacceptable 
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This 'Model Quality' index has been incorporated into DLTA application and is made 

available to the user on the interface of the 'Model Results' window which is a part of the 

model building application. It is believed that this classification gives a good estimate of 

the reliability of the TOT model. For instance, it is possible that a highly reliable model 

will be classified as 'Good' or 'Fair' or vice-versa. However the probability of accepting 

unreliable models is low.  

4.5 Testing Model Reliability under Heavily-Loaded Conditions 

In order to test/validate how well the IEEE and linear models predicted performance 

under high loads, it was desirable to observe the transformer’s TOT performance under 

heavily-loaded conditions and then compare the measured values to those predicted by 

the models built using moderate loads. From the historical data available, we provided 

the engineers at SRP with a list of transformers with thermal models we considered 

reliable and requested them to overload as many of those transformers as possible. The 

engineers at SRP agreed to overload two transformers 'Cooley-3' and 'Freestone-3' for 

two days upto 35 MVA and provided us the data to test our metrics. We obtained 

measured load, TOT and HST and ambient temperature data of these two heavily 

overloaded transformers for the summer of 2013 and were able to verify these results. In 

order to build a thermal model, the heavy load data was removed and then just enough 

data to build a model was used. i.e. it contained data equivalent to 120 hours of FAFA 

cooling mode data. This model was then tested to observe its predictions on the over-

loaded days which were compared with the measured TOT on those days. It was 

observed that the linear model predictions were very accurate and this corresponded well 

with the conclusions we reached on the basis of the performance in interpolation. 
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4.6 Possible Causes Behind Unreliable Models 

Once an unreliable model is detected, our goal is to identify potential causes for the 

poor predictions. Ultimately the cause of all bad models is either bad data or an 

inadequate model structure. We assumed that our linear model’s structure was acceptable 

and identified some causes of bad models. The sophisticated input-data screening process 

we are using has been reported in [12]; however it is difficult to predict all of the ways in 

which data can be bad. For instance, it was observed that models trained for a certain set 

of transformers using 2006 data were unreliable whereas models trained on 2009 and 

2010 data for the same transformers were considered reliable. For certain transformers 

the models trained on the 2006 data, the SSLMax values were below 0.7 p.u. whereas, for 

the 2009 and 2010 models of these transformers, the SSLMax values were between 1 p.u. 

and 1.3 p.u. Having inspected the 2006 data carefully, it was observed that the 

transformers with a low SSLMax value had bad ambient temperature data. The ambient 

temperature for these transformers remained constant at 8⁰ C throughout many summer 

days in Phoenix which is improbable. While eliminating temperatures out of range for the 

year (above 122
o
 F or below 17

o
 F) was part of the original screening algorithm, 

screening for temperatures out of range for summer conditions alone had not been 

implemented. The conclusion for this study was that a low SSLMax could be caused by 

faulty ambient temperature data. The outcome of this study was to pass this information 

on to SRP so they could investigate the cause of the faulty data. 

In order to identify whether there were any systematic factors that affected both TOT 

and HST models, we tried to observe if there was any correlation between unreliable 

TOT and unreliable HST models. The RMS errors for HST models were plotted against 
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the RMS errors for the TOT models for all transformers as shown in Figure 4.14. It was 

observed that the accuracy of the predictions of the TOT models had no correlation with 

the accuracy of the predictions of the HST models. The R squared value for this plot was 

as low as 0.0751.  Thus there is no correlation between unreliable TOT and unreliable 

HST models and no such factors exist that affect both TOT and HST models. 

 

Figure 4.14 Plot of RMS Error for HST v/s RMS Error for TOT 

4.7 Summary 

Thus metrics have been identified to distinguish between reliable and unreliable 

thermal models. A method to obtain an easily comprehensible model quality index has 

been developed. Similar research needs to be conducted for IEEE models and the HST 

models in the future. It is very important to successfully discard an unreliable thermal 

model. If this is not done, the results provided by the dynamic loading application 

(DLTA) may be either non-conservative which may lead to over-heating of the 

insulation, thus reducing the transformer life. Or the predicted loading may be too 
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conservative, which will lead to under-utilization of the available resources. Possible 

causes behind unreliable thermal models were identified and it was concluded that no 

such factors exist that affect both TOT and HST models. 
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CHAPTER 5 

METHODS TO IMPROVE THE ACCURACY OF THE LINEAR MODEL 

PREDICTIONS 

It can be seen from the discussion in the previous chapters that some transformers 

have unreliable thermal models. The possible causes behind the poor predictions by these 

models have also been explored. This chapter describes some methods to improve the 

accuracy of the temperature predictions of the linear models. 

5.1 Linear Model for OA and FA Cooling Modes 

From our experience with building thermal models from measured data, it has been 

observed that without significant forced cooling, such as in the OA and the FA cooling 

modes, factors such as minor changes in external conditions, (i.e. wind, solar radiation) 

and quantization of the measurements, lead to unreliable models. Thus, the IEEE models 

have been exclusively used for temperature predictions in the OA and FA cooling modes 

in the DLTA application and the linear models have been used for the FAFA cooling 

mode, provided the linear models are reliable. It is important to have accurate predictions 

in the OA and FA cooling modes because, as seen from (2.23) and (2.29), the TOT and 

HST predictions at a given observation point for the linear model depend on the 

previously predicted values. Thus even if an accurate model is used only for the FAFA 

cooling mode, if the error at the point of entry in the FAFA cooling mode itself is high, 

then the next prediction will similarly have a large error. The errors compound in the 

consecutive observation points resulting in temperature predictions at higher 

temperatures being very inaccurate. Thus, although the primary concern for accuracy is in 

the higher temperature ranges when the transformer is in FAFA cooling mode and the 
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insulation is running close to is thermal limits, an attempt was made to improve the 

accuracy of the predictions in OA and FA cooling modes as well. 

Due to the poor performance of the IEEE model (in the FAFA cooling mode,) we 

suspected that the linear model might predict better than the IEEE model in the OA and 

FA cooling modes as well. Hence a linear model was built for OA and FA cooling modes 

using linear regression techniques and measured load, TOT, HST and ambient 

temperature data to test such models’ performance for the respective cooling modes. The 

equations used to build the linear models for these cooling modes were same as those 

used for the FAFA cooling mode given by (2.23) and (2.29). For the IEEE models as 

well, the equations were the same as those for the FAFA cooling mode, given by (2.12) 

and (2.19), with different exponents obtained from the transformer heat-run test reports 

used for each cooling mode, as recommended by IEEE Std C57.91-1995. The accuracy of 

the linear model predictions was then compared with that of the IEEE model predictions. 

It is important to minimize the error at the FA-to-FAFA cooling-mode transition point 

in order to minimize the error in subsequent temperature predictions. Hence we 

conducted an experiment to compare the errors in the IEEE FA cooling mode model 

predictions with those of the linear FA cooling-mode-model predictions at the points at 

which the transformer was predicted to enter the FAFA cooling mode from the FA 

cooling mode. The error is given by (5.1) 

measuredpredicted eTemperatureTemperature 
 (5.1) 

This experiment was conducted for the transformer Broadway-4 for the TOT model 

built from the data available for the year 2009 from the first day of May at midnight to 



64 

the last day of September. The data was segregated during model-building into different 

cooling modes using the simulated HST calculated using (3.1), where measured TOT and 

load data were used to calculate the simulated HST. The simulations were then performed 

on the data-sets obtained, for the linear and the IEEE models of the respective cooling 

modes. Initialization to measured TOT was done at every point where the transformer 

was predicted to enter the OA and FA cooling modes respectively for both the linear as 

well as the IEEE models.  The errors of the linear model predictions were then compared 

with the errors of the IEEE model predictions at the data points at which the transformer 

was predicted to enter the FAFA cooling mode where error is given by (5.1). Figure 5.1 

gives a plot which contains the errors in TOT predictions by the linear and the IEEE 

models at the points at which the transformer was assumed to enter FAFA cooling mode 

from FA cooling mode for the transformer Broadway-4 trained on 2009 data. It can be 

seen that the linear model had an accuracy of +/- 2⁰ C whereas the IEEE model always 

under-predicted the measured TOT by 2⁰ C to 8⁰ C at these data points. 

 



65 

 
   

Figure 5.1 TOT Errors at the Points where the Transformer Enters FAFA Cooling Mode 

for Broadway-4 

Thus it was observed that the IEEE TOT model prediction error at the point at which 

the transformer was predicted to enter FAFA cooling mode from FA cooling mode was 

greater than the linear TOT model prediction error at that point. 

Since the errors were high for the IEEE model at the points at which the transformer 

entered the FAFA cooling mode, it was hypothesized that the linear model would have 

lower RMS errors in OA and FA cooling modes as compared to the IEEE model for these 

cooling modes. In order to test this hypothesis, linear models were built for OA and FA 

cooling modes using measured data which was obtained from different years for ten 

transformers, three of which did not have the FA cooling mode. The linear and IEEE 

models were used to predict the TOT as well as the HST for the entire training data-set 

which typically had three to five months of summer data. The predicted TOT and HST 

for the observation points at which the cooling mode transitions took place were 
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initialized to the corresponding measured TOT and HST for both the linear and the IEEE 

models and then the RMS errors were calculated for the different cooling modes based on 

the training data set. The errors were calculated between the predicted TOT and measured 

TOT, and between the predicted HST and measured HST for the linear and the IEEE 

models for both OA and FA cooling modes. As seen from Figure 5.2, Figure 5.3, Figure 

5.4 and Figure 5.5, the ratio of RMS error of the IEEE model to the RMS error of the 

linear model is greater than 1.0 for most of the transformers for TOT as well as HST in 

both OA and FA cooling modes. Thus it was observed that the RMS errors of the TOT 

and HST predictions in the OA and FA cooling modes for the corresponding linear 

models were lower as compared to the RMS errors for the IEEE models. 

 

Figure 5.2 Ratio of RMS Errors of the IEEE TOT Model Prediction to the Linear TOT 

Model Prediction for FA Cooling Mode 
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Figure 5.3 Ratio of RMS Errors of the IEEE TOT Model Prediction to the Linear TOT 

Model Prediction for OA Cooling Mode 

 

Figure 5.4 Ratio of RMS Errors of the IEEE HST Model Prediction to the Linear HST 

Model Prediction for OA Cooling Mode 
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Figure 5.5 Ratio of RMS Errors of the IEEE HST Model Prediction to the Linear HST 

Model Prediction for FA Cooling Mode 

In order to further observe if using the linear models in all cooling modes led to more 

accurate predictions than the IEEE models, the linear model and the IEEE model TOT 

predictions were plotted along with measured TOT for 72 continuous hours for a number 

of transformers with the first data point initialized to the measured TOT for both models. 

The data was segregated during model-building into different cooling modes using the 

simulated HST calculated using (3.1), where measured TOT and load data were used to 

calculate the simulated HST. The simulations were then performed on the data-sets 

obtained, for the linear and the IEEE models of the respective cooling modes. Figure 5.6 

shows the continuously modeled TOT for the transformer Webber-3, starting at midnight, 

with the first data point initialized to the corresponding measured TOT for the linear as 

well as the IEEE models. In this figure, TOTm represents the measured TOT, 

TOT_Linear represents the linear model prediction and TOT_IEEE represents the IEEE 
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model prediction. It can be seen that the linear model predictions followed the measured 

data more closely than the IEEE model predictions in OA as well as FA cooling modes. 

Thus it was again observed that the linear model predictions were more accurate than the 

IEEE model predictions in all cooling modes. This behavior was observed for both 

reliable and unreliable models with the classification between reliable and unreliable 

models being made based on the FAFA model reliability, since the reliability metrics as 

described in Chapter 4 for the FAFA cooling mode have not yet been developed for OA 

and FA cooling modes. This is a matter of future work. 

 

Figure 5.6 Continuously Modeled TOT Predictions for Webber-3 Model Trained on 2010 

Data and the Corresponding Operating Cooling Modes 
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Hence the results showed that the linear model predictions in the OA and FA cooling 

modes are generally more accurate than the IEEE model predictions in OA and FA 

cooling modes respectively. Since the linear model predictions are highly dependent on 

the predictions in the previous time step, it is important that the model predictions be 

accurate at the points at which the transformer is assumed to enter the FAFA cooling 

mode. 

5.2 Linear Regression Model using Least Absolute Value Method 

The parameters of the linear model used in the work thus far have been calculated 

using the least squares (LS) method as described in Chapter 2. In order to improve bad 

data rejection, we considered using the least absolute value (LAV) method to estimate the 

model coefficients. The LAV method simultaneously detects and rejects bad data thus 

providing accurate model coefficients. Thus the LAV helps build more accurate 

regression models if there are many outliers in the measured data. The LAV regression 

coefficients are chosen to minimize the sum of the absolute values of the residuals. By 

minimizing sums of absolute values rather than sums of squares, the effect of outliers on 

the coefficient estimates is diminished. The LAV is governed by (5.2), 

 

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The formulation used to implement the LAV based regression is given by (5.3).    
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where    is the model coefficient of the j
th

 independent variable,     is the i
th

 

measurement of the j
th

 independent variable and    is the i
th

 measured value of TOT or 

HST.  

It was desired to observe whether the LAV models yield superior results as compared 

to the LS models. To that end, linear TOT models were built whose coefficients were 

obtained for the FAFA cooling mode using both the LAV and LS method. The data to 

build the models was obtained from different years for ten transformers and was typically 

available for three to five months of the summer. The data was segregated during model-

building into different cooling modes using either simulated HST or measured HST data 

(if it was available for a given transformer). The simulations were then performed on the 

FAFA data-set for the linear and the IEEE models. Initialization to measured TOT was 

done at every point where the transformer was predicted to enter FAFA cooling mode for 

both the linear as well as the IEEE models.  The correlation coefficients between the 

measured and predicted TOT values based on the training data were compared with those 

obtained when the model was built using the LS method.  Table 5 provides the 

correlation coefficients for the TOT models built using the LAV and LS methods. In 

order to highlight the transformers for whom the LAV method yields better results, when 

the correlation coefficient for a transformer model built using LAV method is greater 

than the correlation coefficient for the same transformer with the model built using LS 

method, the coefficients are written in green font, otherwise they are in red font. It can be 

seen that for most transformers, the correlation coefficient was higher when the model 

was built using LAV method. 
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Table 5 Comparison of Correlation Coefficients by LAV and LS Methods 

Transformer Correlation 

Coefficient by LAV 

Correlation 

Coefficient by 

LS 

Broadway-4 0.860087 0.846771 

Cheatham-2 0.990232 0.989899 

Clarck-2 0.974809 0.975209 

Cooley-3 0.988108 0.987886 

Highline-3 0.882594 0.881317 

Kirk-2 0.955133 0.951515 

QueenCreek-3 0.994953 0.994889 

Sage-4 0.635617 0.625612 

Tryon-2 0.934866 0.931673 

Wellborn-3 0.989103 0.989271 

5.3 Incremental and Decremental Models 

In the present model building application, a single thermal model is built for the 

entire time that the transformer is in FAFA cooling mode, including both, the time when 

the transformer is heating up and when it is cooling down. The oil-circulation behavior is 

different when the transformer is heating up versus when it is cooling down. Assuming 

the transformer is operating in FAFA cooling mode, when a transformer is heating up, the 

oil viscosity is low and thus it circulates faster causing the insulation to cool down faster 

by the forced air cooling. Whereas, when the transformer is cooling down, the oil 

viscosity is increasing and thus its circulation rate reduces and the insulation cools at a 

slower rate than it does when the insulation temperature is increasing. It was desired to 

determine whether temperature prediction could be improved if separate models were 

built to simulate thermal performance under increasing and decreasing temperature 

conditions. Thus a numerical experiment was conducted for some transformers where 

different sets of transformer coefficients were determined for increasing and decreasing 
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temperature periods. The data used to build the models as well as to test the accuracy of 

predictions belonged to different years for seven transformers and was typically available 

for three to five months of the summer. The equation used for building the linear models 

for the increasing and decreasing temperature periods, was same as that used for building 

a unified model, given by (2.23), with the measured data used to train the models 

belonging to the corresponding time periods. The incremental model was used when the 

measured TOT was increasing and the decremental model was used when the measured 

TOT was reducing in order to test the predictions. The data was segregated during model-

building into different cooling modes using either simulated HST or measured HST data 

(if it was available for a given transformer). The simulations were then performed on the 

FAFA data-set for the linear and the IEEE models. Initialization to measured TOT was 

done at every point where the transformer was predicted to enter FAFA cooling mode for 

both the linear as well as the IEEE models. Figure 5.7 gives a plot of the ratio of RMS 

error when a single thermal model was used to the RMS error when the incremental and 

decremental models were used for the transformers for which this experiment was 

conducted. It can be seen that this ratio is greater than one for most transformers. Hence 

by using the incremental and decremental model, the RMS error is reduced for most 

transformer models. 
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Figure 5.7 Ratio of RMS Errors of Single Model to the Incremental & Decremental 

Model 

Thus using two different models for the time periods when the insulation temperature 

is increasing and when the insulation temperature is decreasing may improve the 

accuracy of the thermal model predictions. 

5.4 Using the Hottest Winding at each Data Point for Cooling Mode 

Determination 

At present, if measured HST data is used to determine the cooling mode, we select 

one of the three windings with the highest mean HST from the given training data to 

determine the cooling modes for the entire training data-set during model building. 

Another possible way to improve the accuracy of the model predictions is to use the 

hottest winding at each time step while determining the cooling modes during model 

building, for those transformers which use measured HST to determine the cooling mode. 

However, very few transformers have the fiber-optic instruments needed to measure the 
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HST for all windings. Hence most of the transformers whose data was available to us, 

used simulated HST to determine the cooling mode. Only one of the transformers, 

Cooley-3, used measured HST to determine the cooling modes. Thus we conducted a 

numerical experiment using data from the Cooley-3 transformer where the cooling modes 

were determined by the winding with the highest measured HST at each time-step and the 

linear LS TOT model was built using data segregated in this way. (For this experiment, 

we used the measured data obtained from SRP where Cooley-3 was heavily loaded for 

two days. This is the same dataset that was used to test the performance in extrapolation 

as described in Chapter 4.) Initialization to the measured TOT was done at every point at 

which the transformer was predicted to enter FAFA cooling mode respectively for both 

linear as well as the IEEE models.  The RMS errors for the TOT linear model when the 

model was built using the above method and when the model was built using a single 

winding to determine the cooling modes, for the two over-loaded days are given in Table 

6. The experiment showed an improvement in predictions with more than 10% reduction 

in the RMS error in extrapolation when the winding to be used for cooling mode 

determination was determined at each time step as compared to when the same winding 

was used for the entire data-set. 

Table 6 RMS Errors for the TOT Linear Model in Extrapolation 

Date on which the 

transformer was 

over-loaded 

RMS error with a 

single winding used 

for cooling mode 

determination 

RMS error with 

different windings 

used for cooling mode 

determination 

Percentage 

improvement  

6/29/2013 1.32877 1.1864 10.71442 

6/30/2013 1.803 1.5585 13.56073 
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As the new transformers being installed have the fiber-optic instruments necessary to 

measure the winding temperature, this method may help improve the predictions of the 

linear models for these transformers. 

5.5 Summary 

It was shown that the linear model predictions are more accurate than the IEEE model 

predictions in OA and FA cooling modes. Since the linear model predictions at a given 

data point depend on the predictions in the previous data-point, using the more accurate 

linear models for OA and FA cooling modes can help improve the thermal model 

predictions in FAFA cooling mode due to the more accurate initialization used at the 

point at which the transformer is assumed to enter the FAFA cooling mode. Also the 

LAV method can be used instead of the LS method to obtain better linear models. The 

accuracy of predictions may also be improved by using two different models for the time 

periods when the insulation temperature is increasing and the insulation temperature is 

decreasing. Also the hottest winding can be selected at each data point while determining 

the cooling modes during model building for those transformers that have measured HST 

data available, in order to obtain more accurate data-to-cooling-mode assignment and 

consequently increasing the accuracy of temperature predictions. 

One or more of the above methods can be used to improve the accuracy of the 

thermal model predictions and thus yield more reliable dynamic loading results. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The research reported was directed towards detecting unreliable thermal models and 

improving the accuracy of the thermal model predictions for substation distribution 

transformers. The three aspects investigated in detail in this research are: 

 Identifying reliable and unreliable thermal models based on various metrics. This 

involved determining the quality of a thermal model in terms of easily 

comprehensible terminology such as 'Excellent', 'Good', 'Fair', 'Poor' and 

'Unacceptable'. Metrics such as correlation coefficients, RMS errors, time constants, 

residual plot quality and model coefficients were used to arrive at the 'Model Quality'. 

 Identifying the possible causes behind unreliable thermal models. This involved 

judging if the actual fan turn-on and turn-off points are compliant with the desired set 

points based on the residual plot shape and identifying if a transformer thermal model 

has a "V-shaped" residual plot. 

 Improving the accuracy of the thermal model predictions by:  

o Using linear regression model for OA and FA cooling modes. 

o Using the least absolute value (LAV) method instead of least squares (LS) 

method to build a linear regression based thermal model. 

o Using two different models for the modes when the insulation temperature is 

increasing and decreasing.  

o Selecting the hottest winding at each data point while determining the cooling 

modes during model building for those transformers that have measured HST 
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data available, in order to obtain more accurate data-to-cooling-mode 

assignment. 

Based on the above research, we have been able to refine the process of building 

thermal models and thus increase the reliability of the results obtained for the dynamic 

loading calculations. 

Also a different application has been developed in order to automate the process of 

building both the IEEE and linear thermal models for transformers. The application uses  

historical measured data of load, TOT, HST and the ambient temperature to build the 

linear models, while the IEEE model requires the data from the PTLoad files. With the 

automatic model building application, the user needs to specify the folders which contain 

the transformer historical data files and the IEEE parameter files. The application builds 

the thermal models for all the transformers in the specified folder and provides the results 

of the model building process and comments about the model reliability to the user for 

each transformer. A .csv file, called 'XfmrModelParameters.csv', is generated which 

contains the data necessary for the dynamic loading application, DLTA, also known as 

the operator tool. Also a summary of the model building process is provided in a .csv file 

named ' Report_Xfmr_Thermal_Models.csv'. Further details about this application are 

provided in the appendix. 

6.2 Future Work 

While we have been using three-phase load to build our models, hottest-spot 

temperature is dependent on individual phase loads. Since there is unbalance in the phase 

loading of all transformers, we are hoping to record transformer phase currents to build 
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better hottest-spot models. We also hope to be able to predict the amount of transformer 

unbalance by looking at certain metrics and plots we obtain for model screening 

We are investigating whether introducing some nonlinearities into our model, such as 

a more complex time constant, for example that given by the IEEE model, or an oil-

viscosity model, such as that proposed by Susa et al., may yield improved results. 

Finally, research into applying similar metrics to those proposed here to the HST 

model for unreliable-model determination is ongoing. Also similar metrics need to be 

developed for the IEEE models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

REFERENCES 

 [1] IEEE Guide for Loading Mineral-Oil-Immersed Power Transformers, IEEE 

C57.91-1995. 

 

[2] D. J. Tylavsky, Q. He, G. A. McCulla and J. R. Hunt, “Sources of Error and 

Quantization on Transformer Dynamic Thermal Modeling,” IEEE Transactions On 

Power Delivery, Vol. 15, No. 1, Jan. 2000, pp. 178-185. 

 

[3] B. C. Lesieutre, W. H. Hagman and J. L. Kirtley Jr., “An Improved Transformer 

Top Oil Temperature Model for use in an On-line Monitoring and Diagnostic 

System,” IEEE Transactions On Power Delivery, Vol. 12, No. 1, Jan. 1997. 

 

[4] Ali Abur and Antonio Exposito, “Power System State Estimation: Theory and 

Implementation,” Taylor & Francis, New York, 2004. 

 

[5] G. Swift, T.S. Molinski and W. Lehn, “A Fundamental Approach to Transformer 

Thermal Modeling—Part I: Theory and Equivalent Circuit,” IEEE Transactions on 

Power Delivery, Vol. 16, No. 2, April 2001, pp. 171-175. 

 

[6] G. Swift, T. S. Molinski and W. Lehn, “A Fundamental Approach to Transformer 

Thermal Modeling—Part II: Field Verification,” IEEE Transactions on Power 

Delivery, Vol. 16, No. 2, April 2001, pp. 176-180. 

 

[7] L. W. Pierce, “An Investigation of the Thermal Performance of an Oil Filled 

Transformer Winding,” IEEE Transactions on Power Delivery, Vol. 7, No. 3, July 

1992, pp. 1347-1356. 

 

[8] L. W. Pierce, “Predicting Liquid Filled Transformer Loading Capability,” IEEE 

Transactions on Industry Applications, Vol. 30, No. 1, January/February 1994, pp. 

170-178. 

 

[9] D. Susa, M. Lehtonen and H. Nordman, “Dynamic Thermal Modeling of  Power 

Transformers,” IEEE Transactions on Power Delivery, Vol. 20, No.1, January 2005, 

pp. 197-204. 

 

[10] L. Jauregui-Rivera and D. J. Tylavsky, “Acceptability of Four Transformer Top-

Oil Thermal Models—Part 1: Defining Metrics,” IEEE Transactions on Power 

Delivery, Vol. 23, No. 2, April 2008, pp. 860-865. 

 

[11] L. Jauregui-Rivera and D. J. Tylavsky, “Acceptability of Four Transformer Top-

Oil Thermal Models—Part 2: Comparing Metrics,” IEEE Transactions on Power 

Delivery, Vol. 23, No. 2, April 2008, pp. 866-872. 

 



81 

[12] D. J. Tylavsky, Xiaolin Mao and G.A.McCulla, “Data Screening to Improve 

Transformer Thermal Model Reliability,” Proceedings of the 37th Annual North 

American Power Symposium, pp.560-568, 23-25 Oct. 2005. 

 

[13] Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining, 

“Introduction to Linear Regression Analysis,” Wiley Series in Probability and 

Statistics: Texts, References, and Pocketbooks Section, New York, 2001 

 

[14] Lida. Jauregui-Rivera, “Reliability Assessment of Transformer Thermal 

Models,” Ph.D Dissertation, Arizona State Univ., Tempe, 2006. 

 

[15] Oluwaseun Adeyemi Amoda, “Evaluation of Models for Predicting Hottest-spot 

Temperature in Substation Distribution Transformers”, Ph.D Dissertation, Arizona 

State Univ., Tempe, 2009. 

 

[16] Ming Zhang, “Dynamic Loading of Substation Distribution Transformers: An 

Application for use in a Production Grade Environment”, M.S. Thesis Dissertation, 

Arizona State Univ., Tempe, 2013. 

 

[17] Shruti Rao, Ming Zhang and Daniel Tylavsky, “Data Screening to Improve 

Transformer Thermal Model Reliability,” Proceedings of the 37th Annual North 

American Power Symposium, pp. 560-568, 23-25 Oct. 2013. 

 

[18] Lida. Jauregui-Rivera, Xiaolin Mao and Daniel Tylavsky, “Improving Reliability 

Assessment of Transformer Thermal Top-Oil Model Parameters Estimated From 

Measured Data,” IEEE Transactions on Power Delivery, vol. 24, January 2009.



82 

APPENDIX A 

USER'S MANUAL FOR THE MODEL BUILDING APPLICATION 
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The dynamic loading application (DLTA) requires transformer thermal models in order to 

calculate the maximum dynamic load that it can sustain without violating the thermal limits of 

the insulation. Those thermal models are produced by the Model Building Tool (MBT) described 

below and output as the .csv file: "XfmrModelParameters.csv".  

Overview: 

Once the Model Building Tool (MBT) is started, the user will select the directories which 

contain the historical TOT, and HST data files and the IEEE parameter files and then the 

application will build the models for all the transformers that have sufficient data in those 

directories. All of the results, such as the model coefficients and comments about the model 

reliability, are stored in excel and .MAT files which are needed by DLTA and can be used by 

engineers to scrutinize the models built. 

1 System Requirements 

CPU: Intel Pentium 4 or above 

Memory: At least 1 GB, recommended 2 GB 

Disk Space: At least 500 MB 

Operating System: Microsoft Windows 7, 64 bit 

2 Other Prerequisites for Running the Model Building Tool (MBT) 

The MBT must be run in a MATLAB environment. Verify that the MATLAB Compiler 

Runtime (MCR) is installed and ensure you have installed version 8 or later. If the MCR is not 

installed, run “MCRInstaller.exe”, which is provided on the CD under the folder "MCRInstaller" 

in the root directory "Model Building Application". The folder contains the "MCRInstaller.exe" 

files for 32-bit and 64-bit Windows computers. For more information about the MCR and the 
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MCR Installer, see “Working with the MCR?” in the MATLAB Compiler User Guide found at 

http://www.mathworks.com/help/compiler/working-with-the-mcr.html. 

The MCRInstaller can also be downloaded from:  

http://www.mathworks.com/products/compiler/mcr/ 

The version downloaded must be version 8.0 or later. 

Note: You will need administrator rights to run MCRInstaller. 

3 Install the MBT 

Copy the entire "Model Building Application" directory from the CD to the location where 

you want the program to be installed, e.g. C:\myprogram. 

The program to be run is “MBT.exe”. You may want to create a shortcut for it on your 

desktop. However the original executable file must be in the folder "Model Building 

Application". This folder contains some data files necessary for the application to run. Please 

note that if you want to run it from the desktop, it is necessary to create a shortcut for it. Copying 

the file to desktop will not suffice since the folder that contains "MBT.exe" must also contain the 

other data files necessary for it to run successfully. 

4 Run the MBT 

Double click the "MBT.exe" file. The main interface of the program will appear as shown in 

Figure 1. 

Note: A pop-up window may appear and ask for administrator rights to run the application. 

You should click on ‘Yes’ in order to give the authority to run the application. 

http://www.mathworks.com/help/compiler/working-with-the-mcr.html
http://www.mathworks.com/products/compiler/mcr/
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Figure 1 Main Interface of the MBT 

Step 1: Select the folder containing the historical TOT and HST files. 

The main interface of the model building application is shown in Figure 1. A pop-up window 

will appear when you click on the push button labeled "Select Historical Data Folder" on the 

main interface. The interface of the pop-up window is as shown in Figure 2. Browse to the folder 

which contains the historical data files and click on the button labeled "Select Folder". (The 

required format for the historical data files is given in Section 5.2.) Also it is important to note 

that each transformer should have only one data file in that folder. (If multiple files for the same 

transformer are present, the results for the file(s) processed first will be over-written by the 

results for the file processed last.) 
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Figure 2 Interface to Select the Directory Containing TOT, HST Historical Data Files 

Step 2: Select the folder containing the IEEE parameter data files.  

A pop-up window will appear when you click on the push button labeled "Select IEEE 

Parameter Folder" on the main interface of MBT. The interface of the pop-up window is similar 

to the figure as shown in Figure 2. Browse to the folder containing the IEEE parameter files and 

click on "Select Folder". The IEEE parameter files are the ''*.run'' files obtained from EPRI 

software PTLoad.  

Optional step: Modify secure parameters used for the model building process:  

The Access Secure Parameters panel in the MBT window displays the default parameters 

used in the program which can be modified by the authorized user if he wishes to do so by typing 

“SRP” in the password field. These parameters include thresholds used in the model building 
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process such as the maximum TOT and HST for steady-state load rating calculation, desired R 

squared and VIF values for the model screening. The explanation of these variables is provided 

in Table 7. The window that pops up when the correct password is entered looks as shown in 

Figure 3. The user can modify the parameters as desired and then click on "OK" to save the 

changes. If the user wishes, he can revert to the default parameters by clicking on "Restore". 

 

Figure 3 Access Secure Parameters Window 
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Table 7 Explanation of the variables in "Access Secure Parameters" Window 

Maximum Steady state 

load rating (SSLMax) 
The maximum load to which a transformer can be 

subjected, without violating the defined TOT or HST 

limits under steady state conditions 
R

2 
(Coefficient of 

determination) 
Determines how well the data fits the linear regression 

model 
VIF (Variance Inflation 

Factor) 
Indicates if the predictor variables in the linear regression 

models are correlated with each other 
 

Step 3
1
: Run! 

Once the first two steps are completed, click on the push button ''Run!''. A pop-up message 

will appear similar to as shown in Figure 4. If the user selects "Yes", the model building process 

will start. A progress-bar will appear as shown in Figure 5. The progress-bar is provided with a 

Cancel button. Due to the large amount of data being processed during model building, the 

application may take a long time to respond to any interruption that may be attempted during the 

execution of the model building process. Please allow up to 5 seconds for the Cancel button or 

any other interruption to be acknowledged. If the user clicks on the small "x" on the top right 

corner of the progress-bar, the progress-bar window will close temporarily. When the program 

updates it again, the window will reappear. 

 

Figure 4 Pop-Up Message that Appears on Clicking "Run!" 

                                                 
1 Be sure that you have selected the folders containing IEEE parameter and historical data files. If these steps have 

not been executed before starting the model building process, the application will give an error message, requesting 

that you select the folders. 
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Figure 5 Progress-Bar 

Once the program acknowledges the cancel request, a warning message will appear as shown 

in Figure 6. If the user selects "No", the message will disappear and the program will resume 

operation. If the user clicks on "Yes", the process will be cancelled and the results for the 

transformer data file that were completely processed will be available for the user to analyze. 

 

Figure 6 Warning Message on Clicking "Cancel" 

If the user attempts to interrupt the program in any other way, for instance if he clicks on 

"Select Historical Data folder" during the execution of model building process, the program will 

complete the current task and then acknowledge the interruption. An error message will pop-up 

as shown in Figure 7. 

 

Figure 7 Error Message 
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Once the model building process has started, the "Results" panel in Figure 1 is updated as 

and when each file is processed. This is shown in Figure 8. Once all the data files have been 

processed, the "Results" panel displays the message "Model building process is complete." 

 

Figure 8 Updated Results Window as Files are Processed 

If the user clicks on the "x" on the top right corner of the main interface, a warning message 

as shown in Figure 9 will appear. If the user clicks on "Yes", the application will terminate its 

operation and close the window. If the user clicks on "No", the warning message will disappear 

and the application will resume its operation. 

 

Figure 9 Warning Message on Attempting to Close the MBT Window 
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Step 4: Analyze Results! 

In this step, the user can view the detailed information about the transformer TOT and HST 

models built and compare the performances of the linear and IEEE models. 

If the user clicks on "Analyze Results!", a new window titled "Analyze results" will appear 

as shown in Figure 10.  

Note: This button will automatically be disabled whenever the model building process is in 

progress. The user can click on it only before starting a new process or after the termination of 

the present process. If the window of "Analyze results" is already open and the user starts the 

model building process, he will get a warning message requesting him to wait until the 

completion of the process before trying to view the model-building reports. 

In order to view the model-building reports for a particular transformer, the user needs to first 

select the desired transformer from the drop-down list provided in Step 1 of "Analyze results" 

window. The drop-down list contains a list of names of all transformer data files processed. The 

user then needs to select the results that he wishes to see. They can select one or more options 

from the following: 

1. A window which contains the summary of the TOT and HST model coefficients, the load 

duration curve of the load data used to build this models, prediction error duration curves for the 

data sets used to train the data and the normal probability distribution plots for SSLMax predicted 

(assuming TOT and HST values as the limiting criteria.). 

2. A window containing a plot of the measured TOT and the TOT values predicted by the 

linear-model and the IEEE-model. 

3. A window containing a plot of the measured HST and the HST values predicted by the 

linear-model and the IEEE-model. 
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Figure 10 Analyze Results Window 

If either of the two steps is skipped, an error message will appear, requesting the user to 

complete it. 

The window that has the summary of the model details, load duration curve, error duration 

curves and probability density plots is shown in Figure 11. If the measured input data is corrupt 

or insufficient to build a reliable linear model, the application mentions that in the comments 

section. (In this case the IEEE models built by this application will be used by DLTA for 

dynamic loading provided these models are acceptable.)  

The TOT prediction comparison and HST prediction comparison plots
2
 are shown in Figure 

12 and Figure 13. 

                                                 
2 In order to generate these plots, the corresponding results for all transformer models are stored in .MAT files in a 

folder named "Model Results" in the same directory as the "MBT.exe" file. 
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Figure 11 Model Results Window 

 

Figure 12 TOT Prediction Comparison Plot for Hottest Five Days 
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Figure 13 HST Prediction Comparison Plot for Hottest Five Days 

In addition to these results, two excel files are generated in the folder "Model Results". The 

first file "Report_Xfmr_Thermal_Models.csv" contains a report of the entire model building 

process, including the number of data files processed, the number of failed and successful 

models and a summary of all the transformer models. If a model cannot be built successfully for 

any transformer, the cause for the failure is given in the summary. If this file or any of the other 

.MAT files are modified by reading them into a text editor and editing them or are deleted by the 

user, the user may not be able to view the model building results using the “Analyze Results!” 

option within the MBT main interface. 

The second excel file "XfmrModelParameters.csv" contains all the linear and IEEE model 

parameters which will be required for dynamic loading. It is important that this file is not 
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modified as it is required for the operator tool, DLTA, to function. See the DLTA user’s manual 

for information on how this file is to be used. The file contains the detailed descriptions of the 

contents of all the columns in the file. 

5 Required Formats 

5.1 Installation Directory 

The "Model Building Application" folder in Figure 14 is the installation folder that may be 

located anywhere on the hard drive. 

 

Figure 14 Directory Structure of the MBT 
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In Figure 14, "MCR Installer" is a folder that contains the runtime engine, MATLAB 

Compiler Runtime (MCR) installation files. The ".exe" is the executable file to launch the 

application. "Data" is a folder that contains the files IEEE param.csv and ttemp.mat that are 

necessary for the application to run. The folder "Model Results" contains the .MAT files and 

excel files that contain the results of the model building process.  

Note: All the folders and file names should be strictly in accordance with what is shown in 

Figure 14. The user should not change the name of the folders or files. 

5.2 Historical TOT and HST Data Files (*.txt Files) 

The historical TOT and HST data files (*.txt files) are the files that contain measured data 

which are supplied by the user. The requirements for the format of real-time data files are as 

follows: 

a. The data file should be in Text (Tab Delimited) format. 

b. There should be one data file that contains all measured data associated with any given 

transformer (including ambient temperature data.) 

c. First nonblank line should contain transformer name. The next line should contain a text 

string specifying the name of the ambient temperature location. 

d. The column heading title line should immediately follow the ambient temperature location 

line. The first column heading title must be “Date” (no quotes in data file). Other column 

heading titles are: 

“MVA” (Load at the sample time, MVA) (mandatory) 

“AIR” (Primary ambient temperature, ºF) (mandatory) 

“OIL” (Top oil temperature, ºC) (mandatory) 
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“WindingA” (Hottest spot temperature at WindingA, ºC) (mandatory) 

“WindingB” (Hottest spot temperature at WindingB, ºC) (mandatory) 

“WindingC” (Hottest spot temperature at WindingC, ºC) (mandatory) 

“QC” (Quality Control Index) (mandatory) 

“Tamb1” (Secondary ambient temperature, ºF) (optional) 

e. Immediately following the column heading title line should be the first row of data and the 

data should start from midnight (00:00:00). 

f. Column heading titles should match data. 

g. A “QC” column is considered as the data quality check for the data in the immediately 

preceding column. The data file may contain multiple “QC” columns. If one or more “QC” 

values are found to be “?” in a row, that whole row of data will be discarded. 

h. The secondary ambient temperature is the temperature that would be used as back up in 

dynamic loading calculation if AIR has missing data. 

Note: To create a *.txt file, you can create a data file in an Excel format and then save it as 

Text (Tab delimited) format. 

A sample of the historical data file format is provided in Figure 15. 
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Figure 15 A Sample of the Real-Time Data File Format 

 


