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ABSTRACT  

   

As global energy demand has dramatically increased and traditional fossil fuels will 

be depleted in the foreseeable future, clean and unlimited renewable energies are 

recognized as the future global energy challenge solution. Today, the power grid in U.S. 

is building more and more renewable energies like wind and solar, while the electric 

power system faces new challenges from rapid growing percentage of wind and solar. 

Unlike combustion generators, intermittency and uncertainty are the inherent features of 

wind and solar. These features bring a big challenge to the stability of modern electric 

power grid, especially for a small scale power grid with wind and solar. In order to deal 

with the intermittency and uncertainty of wind and solar, energy storage systems are 

considered as one solution to mitigate the fluctuation of wind and solar by smoothing 

their power outputs. For many different types of energy storage systems, this thesis 

studied the operation of battery energy storage systems (BESS) in power systems and 

analyzed the benefits of the BESS. Unlike many researchers assuming fixed utilization 

patterns for BESS and calculating the benefits, this thesis found the BESS utilization 

patterns and benefits through an investment planning model. Furthermore, a cost is given 

for utilizing BESS and to find the best way of operating BESS rather than set an upper 

bound and a lower bound for BESS energy levels. Two planning models are proposed in 

this thesis and preliminary conclusions are derived from simulation results. This work is 

organized as below: chapter 1 briefly introduces the background of this research; chapter 

2 gives an overview of previous related work in this area; the main work of this thesis is 

put in chapter 3 and chapter 4 contains the generic BESS model and the investment 
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planning model; the following chapter 5 includes the simulation and results analysis of 

this research and chapter 6 provides the conclusions from chapter 5. 
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CHAPTER 1  

INTRODUCTION 

In recent years, the penetration level of renewable energies such as wind and solar has 

dramatically increased with the improvement of renewable energy technologies. The 

industries and academics have paid more and more attention to renewable energies and 

proposed a new concept called microgrid. A microgrid is a small scale, local power 

system containing a variety of electric generators, loads and perhaps an energy storage 

system that normally connects to a main grid but can operate autonomously under urgent 

conditions. Microgrids are regarded as future solutions to meet the increasing power 

system load demand and the system stability requirement. Generally, a microgrid has 

many distributed electricity generation units such as rooftop solar panels, community 

photovoltaic stations, wind turbines, small gas turbines etc. When comparing to 

centralized resources, distributed resources are valuable in terms of losses and efficiency 

and they are very important for power systems reliabilities. Distributed resources give a 

microgrid the ability to operate autonomously, often referred as the island operating 

mode, as opposed to the grid-connected mode in which a microgrid is connected to a 

large power system. This kind of capability implies that a microgrid working at island 

model may survive under a huge system blackout like 2003 northeast blackout in U.S. 

With the increasing demand for power systems, especially for microgrids, renewable 

energies are supposed to play a more and more important role in solving the future energy 

crisis. The incentive behind this fact is that renewable energies have several of their own 

advantages. Unlike fossil fuel energies have limited amount on earth, renewable energies 

have unlimited capacities which is a big advantage. Besides this advantage, renewable 
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energies are also free to use and people generally assume that there is no operation cost 

for renewable energies. However, renewable energies also have big disadvantages, which 

are their inherent intermittency and uncertainty. Since wind turbines are driven by wind 

and solar panels are powered by the sun, they are easily affected by the local weather. For 

instance, a solar panel could be blocked by a cloud and then lose almost all of its power 

output; a wind turbine output may drop because the wind suddenly ceases. Another issue 

is their scheduling problem due to difficulties of weather forecast. Even the accuracy of 

wide area weather forecast today needs to be improved; it is very hard to forecast local 

weather accurately. Failing to forecast the local weather and the output of renewable 

energies will cause imbalance between power supply and demand. The imbalance 

between frequency regulation requirements and capabilities is an emerging concern for 

power systems caused by the increasing renewable portfolio standards in U.S. The fact 

that traditional thermal generators are replaced by renewable energy technologies loses 

frequency regulation capability while increasing the regulation requirements due to 

renewable energy technologies are generally unable to provide stable and consistent 

regulation power like most thermal and hydro plants [1]. 

A common way to deal with this issue is to have some backup resources in power 

systems, such as ancillary service from main grid, distributed fast response generators, 

energy storage systems etc. The main girds are often regarded as a huge power generation 

pool for microgrids operating in grid-connect mode and the main grids can provide 

enough backup resources to microgrids. Distributed fast response generators, like local 

gas turbines and energy storage systems are key equipment for microgrids operating in 

the island mode. Note that an energy storage system can not only provide backup 
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resources but can also reduce the system cost by shifting the load demand from peak 

hours to off-peak hours through charging and discharging. This kind of capability is very 

valuable to a microgrid system since it is coordinated with the purpose of microgrids to 

reduce the power system operating cost. 

Currently, many types of energy storage systems have been discussed. Some of them 

are commercialized and some of them are still in developing for commercial 

implementations. Those commercial and experimental types of energy storage systems 

including technologies like pumped hydro, Compressed Air Energy Storage (CAES), 

batteries, flywheels, supercapacitors and Superconducting Magnetic Energy Storage 

(SMES). In terms of capacity, pumped hydro type energy storage system is the most 

widely used technology. The pumped hydro unit is working like a dam but it can pump 

water up to its water reservoir. CAES is another choice of large scale energy storage 

technology; it can compress air to a tank and then uses stored air to increase the 

efficiency of the combustion generator and increases the output of the generator. Pumped 

hydro and CAES technologies are capable of storing large amount of energy but are 

deficient in their response speeds. There are several other energy storage technologies 

having relatively very fast response capabilities, like flywheels, supercapacitors and 

Superconducting Magnetic Energy Storage (SMES). Current implementations or 

demonstrations of these fast response technologies are mainly providing regulation 

service to the power grid by immediate reactions to grid disturbances. However, the 

current implemented capacities of fast response energy storages are relatively small and 

the ability to provide load shifting and load leveling services are therefore dimmed.  
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The battery energy storage systems (BESS) are able to combine the advantages of 

large scale energy storages, like pumped hydro and CAES, and fast response energy 

storage such as flywheels, supercapacitors and SMES. The BESS can afford enough 

capacity to shift or level the power grid loads and can respond to the system operator's 

command in a relatively short time. Therefore, this thesis would like to focus on BESS 

technologies and finds out its benefits in power systems. 

In order to find the benefits of BESS, a modeling of BESS is required. BESS have 

many different types of battery technologies, like lead-acid, lithium ion and sodium sulfur 

etc. Current battery models focus on the electric characteristic of batteries, those models 

capture characteristics like battery voltage, battery internal resistance, effective capacity 

etc. Based on some common features of different battery types, this research proposes a 

battery model which captures the economical side of batteries. This proposed model gives 

a "degradation cost" to batteries, and then calculates the potential benefits of BESS 

through an investment planning model. 

This thesis is organized in the following structure. Chapter 1 introduces the topic, 

followed by a literature review in chapter 2. In chapter 2, this thesis reviews past works in 

this area and proposes to aims of this thesis. The main work of this thesis is presented in 

chapter 3 and chapter 4, which include the battery degradation model and the investment 

planning model respectively. Chapter 5 illustrates the simulation results of this research. 

Conclusion and future work are given in chapter 6. 
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CHAPTER 2  

LITERATURE REVIEW 

 Since electricity is extremely hard to store as electric energy for a long time, 

electricity is usually stored as other forms of energy such as magnetic energy or chemical 

energy. Batteries are the type of devices converting electricity energy to chemical energy 

for long time storing purpose. Generally, a battery consists of an anode, a cathode and 

chemical components between these two electrodes. According to the different chemical 

components, the batteries can be categorized as lead-acid, sodium sulfur (NaS), lithium 

ion (Li-ion), nickel cadmium (NiCd), nickel-metal hydride (NiMH) etc. as described in 

reference [1]. Among these diverse battery technologies, some of them are suitable for 

and have been implemented in power system today. This chapter briefly summarizes 

several battery technologies implemented in current power systems. A part of battery data 

comes from reference [3]-[7]. 

a. Lead-acid: the lead-acid battery, which is invented in 1859, is the most mature 

battery technology today and has been developed more than hundred years.  It 

has been widely used in the daily life such as vehicle batteries. The majority 

of BESS in United States power systems are lead-acid batteries [10]. The high 

reliability and low capital cost ($150–400/kWh) are the main advantages of 

lead acid batteries. Depending on the design of lead acid batteries, their 

efficiency range from 70%-80%. However, the applications of lead-acid 

batteries are limited due to their drawback of short cycle life (1000-2000 

cycles). Besides this, lead acid batteries have a low energy density about 30-

50 Wh/kg because lead is a heavy metal. In extreme conditions, lead-acid 
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batteries need a temperature management system since their performance will 

go down significantly at low working temperature. Lead-acid batteries can be 

grouped into two types: a) flooded type lead-acid battery and b) valve 

regulated lead-acid battery (VRLA). In recent decades, a more advanced type 

of lead-acid batteries, called the Advanced Lead-acid Battery, are 

implemented. In the Advanced Lead-acid Battery a supercapacitor electrode 

composed of carbon is combined with the lead-acid battery negative plate in a 

single cell to better regulate the flow (charge and discharge) of energy, thereby 

extending the power and life of the battery [8]. 

b. NaS: unlike the lead-acid battery consisting of solid electrodes and liquid 

electrolytes, the NaS battery is made up of two liquid-metal electrodes 

(molten sulfur is anode, molten sodium is cathode) and a solid electrolyte. The 

big advantage of NaS batteries is their fitness for large-scale power system 

applications due to their high energy density (150-240 Wh/kg), good cycle 

efficiency (75%-90%) and relatively long cycle life (>2500 cycles). Another 

advantage is that the major materials of NaS batteries are relatively 

inexpensive. Thus the cost of NaS batteries is lower when compared to other 

battery technologies (capital cost is about $350~/kWh). However, a main 

problem of NaS batteries is the safety issue: i) pure sodium will be 

instantaneously burnt when it contacts water or air and ii) the NaS battery has 

to operate at about 570K temperature to allow the chemical process happen 

and heating devices are generally needed. The NaS technologies are widely 

implemented and well demonstrated in Japan from over 30 sites.  
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c. Li-ion: Lithium ion batteries have very high energy density both in size (200-

500 Wh/L) and weight (75-200 Wh/kg) and are widely used in portable 

applications such as cell phone batteries, laptop batteries etc. Also, the very 

high charge/discharge efficiency (>95%) of Li-ion batteries is another 

superiority. Li-ion batteries’ high cycle life (>10000 cycle life) gives Li-ion 

batteries a wider range of power applications. Li-ion battery is regarded as the 

most valuable potential technology and the future solution for electricity 

energy storage. One main concern of the Li-ion battery today is its high 

capital cost (>$600/kWh) due to its special manufacturing cost, which stems 

its commercializing in power system. Many Li-ion battery system 

demonstration projects have built in U.S and are being tested by utilities. 

d. NiCd: Nickel cadmium batteries have been invented for more than hundred 

years and they are very popular and mature as well as lead-acid batteries. 

NiCd batteries consist of cadmium hydroxide cathodes, nickel hydroxide 

anodes, separators and electrolytes [13]. The advantages of NiCd batteries are 

their high reliability and very low maintenance cost. NiCd batteries also have 

a high energy density (50-75 Wh/kg), a higher cycle life (2000-2500 cycle 

life) than lead acid batteries. These valuable features make NiCd batteries not 

only popular in daily life but also widely accepted in power system. However, 

their high capital cost (>$500/kWh) is a main drawback. Another well known 

phenomenon of NiCd batteries is their memory effect, which prevents partial 

discharging and charging NiCd batteries since NiCd batteries will remember 

previous partial discharging level and take the level as full-discharge level. 
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One large NiCd technology system with 27 MW for 15 min (40MW for 7 

min) and 46 MVA capability has been established in Golden Valley, Alaska, 

USA [9][11][12]. 

TABLE I summarizes some battery technology projects implemented in power 

system today and introduces their designed roles in the power system based on the 

information provided by the Department of Energy (DOE) International Energy Storage 

Database [10]. 

TABLE I 

BATTERY TECHNOLOGIES PERFORMANCES AND APPLICATIONS 

BATTERY 

TYPE 

LARGEST 

CAPACITY 
LOCATION APPLICATIONS 

Lead-acid (the 

Advanced Lead-

acid Battery) 

36 MW/24 MWh 
Goldsmith , 

TX, USA 

Renewables Capacity Firming 

Electric Energy Time Shift 

Frequency Regulation 

Sodium Sulphur 34 MW/23.8 MWh 

Rokkasho, 

Aomori, 

Japan 

Renewables Capacity Firming 

Renewables Energy Time Shift 

Electric Supply Reserve Capacity - Spinning 

Lithium ion 8 MW/32 MWh 
Tehachapi, 

CA, USA 

Voltage Support 

Electric Supply Capacity 

Renewables Capacity Firming 

Nickel Cadmium 27 MW/7.25 MWh 
Fairbanks, 

AK, USA 

Electric supply reserve capacity - spinning 

Grid-connected residential (reliability) 

Grid-connected commercial (reliability & 

quality) 

Many of current implemented BESS are designed for improving power system 

reliability and power quality. Compared to generators, the BESS has a very faster 

response time, usually is less than one minute, to the system disturbance and outages. 

This feature of the BESS is very appropriate for providing regulations in the ancillary 

services and reserves in power systems. Depending on the requirements, a BESS with a 

proper designed power conversion system (PCS) can operate in four quadrants mode and 

provide adjustable active and reactive power to power systems. 
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As described in [14]-[16], there are several different types of battery models can be 

used: electrochemical model, electrical-circuit model, analytical model etc. The 

electrochemical model requires a lot of battery details, such as the thickness of electrodes  

and is inappropriate for investment planning purposes. The electrical-circuit model uses 

circuit elements to represent battery characteristics. Although electrical-circuit model is 

less complex than electrochemical model, electrical-circuit model still incorporates 

nonlinearity. For instance, electrical-circuit model uses a capacitor to represent the 

capacity of battery, which leads to a nonlinear mathematic formulation. Analytical model 

uses differential equations to represent the battery nonlinear characteristics, which is also 

hard to solve in an investment planning aspect. 

A lithium-ion electrochemical model is presented in [33]-[35]. Six nonlinear, coupled 

differential equations are formed in this model. These equations give the battery voltage 

and current as a function of time; further details such as potentials in the electrolyte and 

electrode phases, salt concentration, reaction rate and current density in the electrolyte are 

also given by this model as functions of time. This model has a very high accuracy and it 

is often used in the comparison against other models. However, a detailed knowledge of 

battery is needed to set up more than 20 parameters for this model. Some of those 

parameters are much more detailed such as the thickness of the electrodes, the initial salt 

concentration in the electrolyte. 

The electrical-circuit model can successfully describe the V-I characteristics of a 

battery. With more components added into the electrical-circuit model, this method can 

even include some external factors such as ambient temperature, depth of discharge etc. 

However, this type of method may not be suitable for large scale power system 
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simulation because it is too complicated for a power system level calculation. For 

example, the present generator model in the power flow calculation is a voltage source 

with an internal impedance. This is a simple model and there are other complicated 

models which can represent generator characteristics more precisely. This simple 

generator model has been widely used in nowadays power flow calculation since the 

simplified model captures the main characteristic of a generator and it is easy to 

calculate. Considering that today’s power system could contain thousands or ten 

thousands buses, it is a computational hazard if a more sophisticated generator model is 

used in the power flow calculation. 

Analytical model is a very intuitive model and is similar to electrochemical model in 

order to describe the nonlinear effects of battery. Analytical model captures battery 

electric characteristics as well as electrochemical model but with less complexities and 

less detailed knowledge of battery. Instead of calculating the model parameters from the 

battery structures like electrochemical model, analytical model determines its parameters 

by experiments. The kinetic battery model [36]-[38] is the most well-known analytical 

model. 

Although different kind of batteries have their own special characteristics, a common 

phenomenon is observed that a battery has finite charge/discharge cycles [29][30]. This 

finite number of cycles is highly related to the battery utilization pattern and the battery 

depth of discharge (DOD) is the main factor. The battery DOD is determined by the 

battery state-of-charge (SOC), reference [31] discusses about the SOC detecting method 

and noted that the accuracy of SOC detecting is very important in implementation of 

battery management system. The operating temperature is another important factor 
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affecting the battery lifetime. In fact, since batteries are complex electric-chemical 

device, temperature has influence on almost every part of batteries through affecting 

chemical reactions. For example, a Li-ion battery's effective capacity will decrease in 

cold environment and recover in normal temperature. But the effects of temperature are 

often neglected because a consistent working temperature environment is provided by 

installing accessary equipment such as battery management system. Generally, the battery 

management systems are not just maintaining the temperature of batteries but are also 

equalizing the charge/discharge process for batteries. The difference between the battery 

pack and a single cell and the impact of unbalance charging/discharging are described in 

[31]. 

Reference [32] examines the profits of several types of BESS for three different 

applications, which are load leveling, control power and peak shaving. Reference [32] 

estimates the value of BESS in load leveling application by comparing the net present 

value of BESS costs with the net present value of revenues of load leveling application. A 

delay of investment for a potential transmission line upgrade is accounted for the 

application revenue in this reference. The BESS profits for control power application are 

revenues collected in the ancillary markets subtracting the BESS cost. Peak shaving 

application benefits are considered as the savings of electricity bill for end-users as 

owners of BESS. In [32] conclusions, BESS gain its highest value by supplying primary 

control power among those three different applications.  



12 

  

CHAPTER 3  

BATTERY DEGRADATION MODELING 

3.1 Background information 

This thesis figures out the benefits of BESS in power systems. BESS  has its unique 

feature, which is different to generators and even different to other energy storage 

technologies. BESS does not have fuel cost because it stores energy produced by other 

units and send energy back to the grid later on. A common misunderstanding of BESS 

operating cost is that the cost associated with BESS stored energy is treated as BESS 

operating cost; however, this is not correct. The cost associated with the amount of stored 

energy has already been reflected in production cost of other resources. Take a single bus 

system as an example and assume this single bus system contains a generator and a 

BESS. If the BESS has charged 80 MWh energies with 80% efficiency then the generator 

must produce 100 MWh energies and, of course, there is a 100 MWh generator 

production cost. It is obvious that the generator production cost has contained the cost of 

80 MWh energies in the BESS. For this example, someone may argue that the 36 MWh 

(100 - 80×80%) losses are the BESS operating cost; however, this argument is also not 

correct. In this single bus system example, although the generator could reduce its 

production by 64 MWh due to the BESS discharges 80 MWh with 80% discharge 

efficiency, the generator is producing 100 MWh more energy when the BESS is charging. 

There are additional 36 MWh of the generator production as comparing cases with and 

without BESS implemented. Therefore, the losses cost is already included in the 

generator production cost. Other types of energy storage like pumped hydro units have 

this same feature and pumped hydro units are often modeled as generators with zero 
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operating cost. The lifetime of pumped hydro units is generally not determined by its 

DOD level. However, the BESS lifetime will be dramatically decreased when its cycling 

DOD level is high. Therefore, giving BESS a zero cost is not very appropriate. Instead of 

giving a zero cost for BESS, this thesis proposes a cost for BESS associated with its 

lifetime. This cost, called degradation cost,  is about to reflect the extra cost of replacing 

the BESS earlier. With implementing the degradation cost, BESS profits are calculated 

through an investment planning model which will be described in details in chapter 4. 

3.2 Battery degradation cost 

For a battery long-term investment planning model, there are two main factors should 

be considered: one is the battery degradation and another one is the time value of money. 

Battery degradation is a phenomenon that the residual life of a battery is highly relevant 

to its utilization. Generally, the heavy utilizing a battery will reduce its lifetime 

significantly. This phenomenon is caused by many different factors and incorporated with 

a lot of non-linearity due to the nonlinear battery chemical reaction process. Right now, 

there is no single model includes every capacity degradation factors due to the 

nonlinearity and the non-convexity. If every detail of the battery chemical reaction 

process is incorporated, then the degradation model for a battery will be highly nonlinear 

and non-convex. Such complexity will make the model difficult to solve a large-scale 

investment planning model for BESS. As a result, this thesis proposes an approach that 

approximates the degradation of the battery’s lifecycle. In terms of time value of money, 

this thesis assumes a fixed interest rate over the study periods. This is a common 

approach to calculate the time value of money in long-term, for example, 10 years or 

more.  
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Battery is a complicated electrochemical process device, which makes it hard to be 

modeled and be predicted precisely in terms ofbattery’s lifecycle. However, it is 

important to consider the degradation of the battery’s lifecycle because, otherwise, the 

utilization of the battery may cause substantial economic losses and lead to inaccurate 

investment decisions. This thesis will provide an approach to approximate battery’s 

lifecycle by capturing the major stress factors in order to calculate the substantial 

economic losses. Many stress factors affect battery life, such as DOD, charging/discharge 

rate, temperature, charging regime, dwell time at low and high states-of-charge (SOC), 

current ripple [17] etc. The most important factors are depth-of-discharge, discharge rate 

and temperature. SOC is the percentage of battery energy left versus battery capacity.  

DOD is the amplitude of SOC changed in two continuous periods. How DOD impacts 

battery cycle life is illustrated in Fig.1 below. The effect of DOD on battery cycle life is 

widely observed by many references [17][22][24][45][46] on lead-acid battery, Li-ion 

battery, NiCd battery, NaS battery etc. Battery manufactures also have widely recognized 

this phenomenon and generally provide the curve of DOD vs. cycle life [47][48]. 

Typically, the data curve is obtained by experiments. The number of charge/discharge 

cycles are counted when the battery is continuously cycling at certain DOD level until it 

fails. Although a battery is possible to cycle at different DOD levels, the influence of 

combining different DOD levels on a battery cycle life has not been well investigated. 

Therefore, assuming the number of cycle life for different DOD levels is independent is a 

practical approach so far. Details about this assumption are discussed in the following 

paragraphs. 
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Fig. 1 Batteries cycle life vs. DOD [18] 

As shown in Fig.1, the number of total possible cycles is a function of SOC level: 

𝑁𝑚𝑎𝑥 = 𝑓(𝑆𝑂𝐶)   (3.1) 

Equation (3.1) is based on the assumption that the battery is recharged to its full 

capacity after each discharge [19]. This assumption is not always valid since such a 

protocol may not be enforced in power system operations. Such a protocol inhibits 

optimal utilizing of the energy storage asset.  For instance, there could be a situation that 

an expensive generator has to start up to charge a battery to its full capacity before next 

discharge cycle.  In fact, there are two main stress factors affect a battery life: one is 

DOD and another one is the initial SOC of a discharge cycle. The DOD has larger 

influence on the battery life than the initial SOC. The battery capacity is known to be 

reduced over its lifetime with discharge and charge cycles. The evaluation method of the 

battery ageing effect is first introduced by Facinelli [20].  Facinelli observes that cycling 

damage to a battery is primarily a function of the depth of discharge (and corresponding 

recharge) to which the battery is subjected. For example, going from 10% to 30% 
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discharge and back was seen to be approximately the same as from going from 50% to 

70% and back [21]. That is saying that a full charge is not necessary after a discharge and 

before a next cycle. Therefore, equation (3.1) can be revised. It is easy to conclude that 

when a full charge is ensured after each discharge, the first stress factor can be replaced 

by SOC, which means equation (3.1) is a simplification of the battery model under 

microgrid operation. But right now there is no such complicated battery model available, 

the practical way to model battery characteristics is to revise equation (3.1) to 

approximate the actual model. The revised model uses DOD in equation (3.1) instead of 

SOC, that is: 

𝑁𝑚𝑎𝑥 = 𝑓(𝐷𝑂𝐷)  (3.2) 

The equation (3.2) can be derived from battery-life-test data sheet provided by battery 

manufacture at certain test condition, which is under constant temperature and constant 

charging/discharging rate. Discharge rate impacts have not been addressed in equation 

(3.2). However, in a multiple time periods study, the impact of discharge rate is partially 

captured. For instance, a battery depleting itself in a single period or in ten periods evenly 

will represent different discharge rates. The two different discharge rate can be captured 

by different DOD levels, that is, a single period with a DOD level versus ten periods with 

a DOD/10 level for each. However, how charging/discharging rate affects battery life is 

not quite clear so far since the lack of data.  

Equation (3.2) reveals the relationship between battery cycle life and DOD, however, 

power system operators concern more about battery life time than battery cycle life. 

Typically, battery manufactures do not provide data sheets describe the relationship 

between lifetime and DOD. So, in order to obtain this relationship, a rain-flow-counting 
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method [22] is used in this thesis. Facinelli's Miner's Rule method is originally developed 

for discrete, non-overlapping cycles, which typically be found in photovoltaic based 

battery charging system as Facinelli described. The cycle counting method used is known 

as rainflow counting method [23]. The substance of rain-flow-counting method is to 

calculate the reduction of battery lifetime rather than expected lifetime. Several 

assumptions need to be made before using this method as described in [24]: 

The cycle life lost in each period is small; 

The cycle life lost in each period is unrelated to previous cumulative loss; 

The cycle life lost in each period is independent; 

The cycle life lost in each period is caused by single discharging procedure. 

The first assumption is appropriate since a single study period (one hour) is relatively 

small to several years of a battery lifetime. 

For the second assumption, a same discharge cycle, for instance a full-cycle, will pay 

a higher opportunity cost at the end of a battery’s life than at the beginning of a battery’s 

life based on battery characteristics. In other words, the loss of cycle life is related to 

previous period. However, this is a progressive process; the cost difference in two 

consecutive periods is relatively small. Thus, it is reasonable to assume the opportunity 

costs are unchanged in a short time. 

The third assumption actually has two parts: one is the loss of cycle life is related to 

previous periods and another one is that the initial SOC of one period is related to 

previous period. According to the second assumption, the cycle life lost is independent 

from cumulative losses. And since the magnitude of the cycle was found to be more 
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important than the initial state of the cycle [24], therefore, it is reasonable to assume the 

cycle life lost is independent of the initial SOC. Thus, the third assumption is appropriate. 

The last assumption is ensured when the investment planning model only allows a 

single procedure to happen in each period. In other words, charging and discharging are 

not allowed in the same period. 

Rain-flow-counting method assumes that a battery is dead when the number of 

cumulative cycles over all periods is equal to the number of total possible cycles. That is, 

for a certain DOD level, a battery reaches its end of life when below function is held: 

𝑛𝐷𝑂𝐷 = 𝑁𝐷𝑂𝐷
𝑚𝑎𝑥    (3.3) 

Where, 𝑛𝐷𝑂𝐷  is the cumulative number of cycles at DOD level, 𝑁𝐷𝑂𝐷
𝑚𝑎𝑥  is the 

maximum number of cycles at DOD level. If 𝑛𝐷𝑂𝐷 is a portion of 𝑁𝐷𝑂𝐷
𝑚𝑎𝑥, then the battery 

is been cycled 𝑛𝐷𝑂𝐷/𝑁𝐷𝑂𝐷
𝑚𝑎𝑥 of its total life. For instance, if a battery cycles 100 times at 

100% DOD level and 500 times at 50% DOD level. Then cycle the battery at 100% DOD 

level 50 times will leave half its life, which allows the battery cycles another 250 times at 

50% DOD level. Thus, for operating at different DOD level, the criterion of the battery 

life ending is: 

∑
𝑛𝐷𝑂𝐷

𝑁𝐷𝑂𝐷
𝑚𝑎𝑥∀𝐷𝑂𝐷 = 1    (3.4) 

Based on those four assumptions above, each same DOD level cycle will cost the 

same amount of battery life. Then, if assuming a battery lifetime is L at DOD level, the 

reduction of lifetime (RoL) for a single cycle at DOD level is: 

𝑅𝑜𝐿(𝐷𝑂𝐷) = 𝐿/𝑁𝐷𝑂𝐷
𝑚𝑎𝑥   (3.5) 

By introducing a reference battery lifetime at a reference DOD level, the reduction of 

lifetime at DOD levels can be easily represented by: 
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𝑅𝑜𝐿(𝐷𝑂𝐷) = 𝑅𝑜𝐿(𝐷𝑂𝐷𝑟𝑒𝑓) − ∆𝑅𝑜𝐿(𝐷𝑂𝐷)   (3.6) 

Where, 

∆𝑅𝑜𝐿(𝐷𝑂𝐷) = 𝐿𝑟𝑒𝑓/𝑁
𝐷𝑂𝐷𝑟𝑒𝑓
𝑚𝑎𝑥 − 𝐿/𝑁𝐷𝑂𝐷

𝑚𝑎𝑥  (3.7) 

Therefore, the estimate lifetime of battery over all periods, that is, battery lifetime 

model is: 

𝐿 = 𝐿𝑟𝑒𝑓 − ∑ ∆𝑅𝑜𝐿(𝐷𝑂𝐷𝑡)∀𝑡    (3.8) 

Equation (3.8) builds a connection between a battery life time and its DOD, which 

reflects the battery utilization. Next, this thesis finds out the relationship between the 

battery cost and the battery utilization. Since batteries do not consume fossil fuel like 

generators, this thesis thinks that the battery cost is not an actual cost, instead, it is an 

opportunity cost; an opportunity cost represents the cost of replacing batteries earlier than 

designed life as well as the savings from postponing batteries replacement. 

Assuming the battery replacement cost is a, then the time value of money for 

replacing the battery every 𝐿𝑟𝑒𝑓 years over infinite time is: 

𝑎(1 + 𝑖)−𝐿𝑟𝑒𝑓
+ 𝑎(1 + 𝑖)−2𝐿𝑟𝑒𝑓

+ 𝑎(1 + 𝑖)−3𝐿𝑟𝑒𝑓
+ ⋯  

= 𝑎(1 + 𝑖)−𝐿𝑟𝑒𝑓
∑ (1 + 𝑖)−𝑛∙𝐿𝑟𝑒𝑓∞

𝑛=0   

= 𝑎(1 + 𝑖)−𝐿𝑟𝑒𝑓
[1 − (1 + 𝑖)−𝐿𝑟𝑒𝑓

]⁄   (3.9) 

Where, 𝑎 = 𝐶𝑏
𝑐𝑎𝑝 ∙ 𝑆𝑂𝐶𝑏

max, which represents the battery replacement cost. 

The time value of money for replacing the battery at 𝐿 years in the first time, and then 

replacing the battery at 𝐿𝑟𝑒𝑓 years over infinite time is: 

𝑎(1 + 𝑖)−𝐿 + 𝑎(1 + 𝑖)−𝐿−𝐿𝑟𝑒𝑓
+ 𝑎(1 + 𝑖)−𝐿−2𝐿𝑟𝑒𝑓

+ ⋯  

= 𝑎(1 + 𝑖)−𝐿 ∑ (1 + 𝑖)−𝑛∙𝐿𝑟𝑒𝑓∞
𝑛=0   
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= 𝑎(1 + 𝑖)−𝐿 [1 − (1 + 𝑖)−𝐿𝑟𝑒𝑓
]⁄    (3.10) 

The extra cost is equation (3.9) substracting equation (3.10): 

𝑎 ∙ [(1 + 𝑖)−𝐿 − (1 + 𝑖)−𝐿𝑟𝑒𝑓
] [1 − (1 + 𝑖)−𝐿𝑟𝑒𝑓

]⁄    (3.11) 

If battery energy system operation sticks to the reference DOD level, that is, the 

battery lifetime will be the same as the reference lifetime, then the battery energy system 

should have no penalty cost. This is shown in function (3.10), when 𝐷𝑂𝐷 =

𝐷𝑂𝐷𝑟𝑒𝑓 , 𝐿 = 𝐿𝑟𝑒𝑓, the extra cost is zero.  

Substitute equation (3.8) into equation (3.11): 

𝑎 (1 + 𝑖)−𝐿𝑟𝑒𝑓
[(1 + 𝑖)∑ ∆𝑅𝑜𝐿𝑡

∀𝑡 − 1] [1 − (1 + 𝑖)−𝐿𝑟𝑒𝑓
]⁄  (3.12) 

Equation (3.12) indicates that, the penalty cost for ∆RoLt in time period t is related to 

previous cumulative loss of lifetime and this is called aging effect. This means that the 

penalty cost is higher when cumulative loss is growing 

Like in the discussion about the third assumption, here in the model, this thesis will 

divide one ten-year period into ten one-year periods, then every one-year period has its 

own opportunity cost. Although it is not necessary to run an investment planning model 

for 10 years, which is also hard to do that; our model brings the idea that at different year, 

a battery may have a different opportunity cost in the model based on estimated 

cumulative lifetime loss. 

From equation (3.12), it is easy to find that the total degradation cost consists of two 

parts: one is DOD and another one is battery utilization (∑ ∆𝑅𝑜𝐿𝑡
∀𝑡 ). The opportunity 

cost is proportional to DOD, and is a function of battery utilization. By assuming a lead-

acid battery's capital cost is $330/kWh and its reference life is 10 years, the degradation 

cost can be calculated from equation (3.12) and plotted in Fig. 2.  
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Fig. 2 Lead-acid battery degradation cost 

3.3 Battery degradation model 

From Fig. 2 it can be see that the opportunity cost (OPC) is a nonlinear function of 

DOD, this nonlinear function is linearized to a piecewise linear function below. 

𝑂𝑃𝐶 = 𝛼0 + ∑ 𝛼𝑛 ∙ 𝐷𝑂𝐷𝑛
𝑁
𝑛=1    (3.13) 

Subject to, 

0 ≤  𝐷𝑂𝐷𝑛 ≤ 𝐷𝑂𝐷;  𝑛 = 1,2, … , 𝑁   (3.14) 

∑ 𝐷𝑂𝐷𝑛
𝑁
𝑛=1 = 𝐷𝑂𝐷   (3.15) 

In this thesis, DOD is calculated on a daily basis, that is, DOD is the value of 

maximum SOC subtracting minimum SOC within 24 hours. This is an approximation 

technique because the batteries life time is mainly determined by major charge/discharge 

cycles, which is the largest DOD cycle occurs in a certain time period according to 
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reference [22]. Giving 𝜁𝑡 represents the amount of energy cycled in t period, then DOD 

will be given by 𝐷𝑂𝐷 = 𝜁𝑡/𝑆𝑂𝐶𝑏
𝑚𝑎𝑥 and the overall cost in d days is represented by: 

𝑐𝑜𝑠𝑡 = 𝑂𝑃𝐶 ∙ 𝑆𝑂𝐶𝑏
𝑚𝑎𝑥 = 𝛼0 ∙ 𝑆𝑂𝐶𝑏

𝑚𝑎𝑥 ∙ 𝑑 + ∑ ∑ ∑ 𝛼𝑛𝜁𝑏,𝑛
𝑑𝑁

𝑛=1∀𝑏∀𝑑    (3.16) 

Subject to, 

0 ≤  𝜁𝑏,𝑛
𝑑 ≤ 𝑙𝑛 ∙ 𝑆𝑂𝐶𝑏

𝑚𝑎𝑥;  𝑛 = 1,2, … , 𝑁   (3.17) 

∑ 𝜁𝑏,𝑛
𝑑𝑁

𝑛=1 = 𝜁𝑏
𝑑    (3.18) 

𝜁𝑏
𝑑 ≥  𝑀𝐴𝑋𝑏

𝑑 − 𝑀𝐼𝑁𝑏
𝑑   (3.19) 

𝑀𝐴𝑋𝑏
𝑑 ≥ 𝑆𝑂𝐶𝑏,𝑡 ∀𝑏, ∀𝑡 ∈ { 24(𝑑 − 1) + 1, … , 24𝑑 | 𝑑 = 1,2, … }   (3.20) 

𝑀𝐼𝑁𝑏
𝑑 ≤ 𝑆𝑂𝐶𝑏,𝑡 ∀𝑏, ∀𝑡 ∈ { 24(𝑑 − 1) + 1, … , 24𝑑 | 𝑑 = 1,2, … }   (3.21) 

Battery operations also subject to some physical rules, which result in these 

constraints below: 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑏,𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥   (3.22) 

𝑆𝑂𝐶𝑏,𝑡 = 𝑆𝑂𝐶𝑏,𝑡−1, + 𝜂𝑏
𝑐ℎ𝑐ℎ𝑏,𝑡 −

1

𝜂𝑏
𝑑𝑐ℎ 𝑑𝑐ℎ𝑏,𝑡   (3.23) 

𝑑𝑐ℎ𝑏,𝑡 − 𝑑𝑐ℎ𝑏,𝑡−1 + 𝑐ℎ𝑏,𝑡−1 − 𝑐ℎ𝑏,𝑡 ≤ 𝑃𝐸𝑚𝑎𝑥   (3.24) 

𝑑𝑐ℎ𝑏,𝑡−1 − 𝑑𝑐ℎ𝑏,𝑡 + 𝑐ℎ𝑏,𝑡 − 𝑐ℎ𝑏,𝑡−1 ≤ 𝑃𝐸𝑚𝑎𝑥   (3.25) 

Constraint (3.22) is the battery capacity constraint. In (3.22), the lower bound is using 

𝑆𝑂𝐶𝑚𝑖𝑛 instead of using 0 because a battery may not be fully utilized due to the battery 

design. When discharging a battery beyond the lower bound limit, the battery may be 

ruined or cannot recharge anymore. Therefore, using 𝑆𝑂𝐶𝑚𝑖𝑛  rather than 0 is more 

logical. In fact, 𝑆𝑂𝐶𝑚𝑖𝑛  can set to be 0 if a battery does not have a lower bound. 

Constraint (3.23) is SOC transition constraint, 𝜂𝑏
𝑐ℎ , 𝜂𝑏

𝑑𝑐ℎ  are charging and discharging 
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efficiencies. Constraint (3.24) and (3.25) are the battery charge and discharge ramping 

rate constraints.  

As mentioned in chapter 2, one of BESS’s applications is to provide ancillary service. 

Constraints (3.26)-(3.28) describe characteristics of BESS for providing spinning 

reserves. 

0 ≤ 𝑟𝑏,𝑡 ≤ 𝑃𝐸𝑚𝑎𝑥   (3.26) 

0 ≤ 𝑟𝑏,𝑡 ≤ 𝑐ℎ𝑏,𝑡 + 𝑃𝐸𝑚𝑎𝑥 − 𝑑𝑐ℎ𝑏,𝑡   (3.27) 

0 ≤ 𝑟𝑏,𝑡 ≤ 𝜂𝑏
𝑑𝑐ℎ ∙ 𝑆𝑂𝐶𝑏,𝑡   (3.28) 

3.4 Charging and discharging status variables 

In practice, a battery cannot charge and discharge at the same time. However, in 

mathematics, a battery may charge and discharge at the same time while keeping the 

same output characteristic. For example, a battery charging at 1unit is mathematically 

equal to charging at 2 units and discharging at 1unit or charging at 3 units and 

discharging at 2 units etc. Since this obeys the actual process, constraints (3.26), (3.27) 

are needed to prevent charge and discharge to happen at the same time: 

 0 ≤ 𝑐ℎ𝑏,𝑡 ≤ 𝑃𝐸𝑚𝑎𝑥𝑥𝑏,𝑡    (3.29) 

0 ≤ 𝑑𝑐ℎ𝑏,𝑡 ≤ 𝑃𝐸𝑚𝑎𝑥(1 − 𝑥𝑏,𝑡)    (3.30) 

This thesis thinks that (3.29) and (3.30) are not necessary in some cases. Because the 

model of this thesis penalizes DOD (the change of SOC) and the model will minimize the 

change of SOC. This thesis find that a situation with charging and discharging a battery at 

the same time will have a larger change of SOC and then will result in diseconomy for a 

battery. In this situation, (4.1) and (4.2) could be relaxed without loss of model accuracy. 

Later part of this section will give some examples and then proves it. 
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TABLE II 

EXAMPLE CASES FOR DIFFERENT CHARGE AND DISCHARGE RATE 

𝜂 𝑐ℎ = 0.5,  𝜂𝑑𝑐ℎ = 0.5 

Case # 1 2 3 4 5 6 7 

The battery 

external 

characteristics 

Charging at 1 unit 
Charging 

at 0.4 

unit 

Discharging at 1 unit 
Do 

nothing 

Internal 

combinations 

of ch&dch 

ch=1, 

dch=0 

ch=1.2, 

dch=0.2 

ch=4/3, 

dch=1/3 

ch=0.4, 

dch=0 

ch=0, 

dch=1 

ch=1, 

dch=2 

ch=0, 

dch=0 

DOD 0.5 0.2 0 0.2 -2 -3.5 0 

TABLE II shows that even two different charging/discharging situations have the 

same external characteristic, they will have different DOD. For example, case 1 and case 

2 are both charging at 1 unit but case 1 has a 0.5 unit DOD while case 2 only have a 0.2 

unit DOD. TABLE II also implies that a battery will gain less energy or lose more energy 

if it is charging and discharging at the same time. Take case 1 and case 2 as an example 

again, a battery gain only 0.2 unit increment of SOC in case 2; however, case 1 with the 

same charging power as case 2 has a 0.5 unit increment of SOC; case 2 gains 0.3 unit less 

of energy than case 1. Below paragraphs demonstrate that above conclusions are general 

and x variables with associated constraints can be relaxed.  

Proof: 

For charging process, assume that the battery is charging at x. Then the real case (the 

battery is only charging) is 𝑐ℎ = 𝑥 (𝑥 > 0), 𝑑𝑐ℎ = 0. According to State-of-Charge 

equation, 

𝛥𝑆𝑂𝐶 = 𝜂𝑐ℎ ∙ 𝑥 

Considering any unreal case (the battery is charging and discharging), for 

instance, 𝑐ℎ = 𝑦, 𝑑𝑐ℎ = 𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑦 − 𝑧 = 𝑥. In this situation, 

𝛥𝑆𝑂𝐶′ = 𝜂𝑐ℎ ∙ 𝑦 − 𝑧/𝜂𝑑𝑐ℎ 

Then take the difference of 𝛥𝑆𝑂𝐶 and 𝛥𝑆𝑂𝐶′: 



25 

  

𝛥𝑆𝑂𝐶 − 𝛥𝑆𝑂𝐶′ = 𝜂𝑐ℎ(𝑥 − 𝑦) + 𝑧/𝜂𝑑𝑐ℎ 

= 𝜂𝑐ℎ(𝑥 − 𝑦) + (𝑦 − 𝑥)/𝜂𝑑𝑐ℎ 

= (𝜂𝑐ℎ − 1/𝜂𝑑𝑐ℎ)(𝑥 − 𝑦) 

Because 0 < 𝜂𝑐ℎ < 1, 0 < 𝜂𝑑𝑐ℎ < 1, so  

(𝜂𝑐ℎ − 1/𝜂𝑑𝑐ℎ) < 0 

Since 𝑥, 𝑦, 𝑧 > 0, then  

(𝑥 − 𝑦) < 0 

Therefore,  

𝛥𝑆𝑂𝐶 − 𝛥𝑆𝑂𝐶′ > 0, 

Which means a battery will gain less energy if it is charging and discharging at the 

same time. 

For discharging process, assume that the battery is discharging at x. 

Then the real case (the battery is only charging) is 𝑐ℎ = 0, 𝑑𝑐ℎ = 𝑥 (𝑥 > 0) . 

According to State-of-Charge equation: 

𝛥𝑆𝑂𝐶 = −𝑥/𝜂𝑑𝑐ℎ 

Considering any other unreal case (the battery is charging and discharging), for 

instance, 𝑐ℎ = 𝑦, 𝑑𝑐ℎ = 𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑧 − 𝑦 = 𝑥. In this situation,  

𝛥𝑆𝑂𝐶′ = 𝜂𝑐ℎ ∙ 𝑦 − 𝑧/𝜂𝑑𝑐ℎ 

Then take the difference of 𝛥𝑆𝑂𝐶 and 𝛥𝑆𝑂𝐶′: 

𝛥𝑆𝑂𝐶 − 𝛥𝑆𝑂𝐶′ = −𝜂𝑐ℎ𝑦 + (𝑧 − 𝑥)/𝜂𝑑𝑐ℎ 

= −𝜂𝑐ℎ𝑦 + (𝑥 + 𝑦 − 𝑥)/𝜂𝑑𝑐ℎ 

= (1/𝜂𝑑𝑐ℎ − 𝜂𝑐ℎ)𝑦 

Because, 0 < 𝜂𝑐ℎ < 1, 0 < 𝜂𝑑𝑐ℎ < 1, so, 
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(1/𝜂𝑑𝑐ℎ − 𝜂𝑐ℎ) > 0 

Since 𝑥, 𝑦, 𝑧 > 0, then  

𝛥𝑆𝑂𝐶 − 𝛥𝑆𝑂𝐶′ > 0 and |𝛥𝑆𝑂𝐶| < |𝛥𝑆𝑂𝐶′| 

Which means a battery will lose more energy if it is charging and discharging at the 

same time.  

Proof over. 

The above proof shows that fictitious cases, a batter charging and discharging at the 

same time, are uneconomical in terms of battery energy; this proof also indicates that 

model is unlikely to choose fictitious cases. This inference is valid for discharge process 

since the penalty cost of fictitious case is larger than the penalty cost of the real case (a 

battery only charge or discharge at a time). The higher cost is due to the absolute change 

of SOC in fictitious case is greater than it in real case. As for charging process, someone 

may argue that since this thesis associated a penalty cost for the absolute change of SOC, 

the model will choose fictitious cases in order to reduce the penalty cost. For example, 

someone may argue that the model will choose case 2 instead of case 1 in TABLE II 

because case 2 has less penalty cost. However, this thesis finds that the above inference is 

suit for both charging and discharging process. 

For the charging process,  if the model is going to choose case 2 instead of case 1 to 

reduce the penalty cost by allowing the battery charge and discharge at the same time, 

then the model will just simply choose case 3 instead of case 2 in TABLE II. Because the 

change of SOC in case 3 is zero and then, consequently, the penalty cost is zero, which is 

the lower bound of the penalty cost. However, when case 3 compares to the case 5 in 

TABLE II, a battery in case 3 will need 1 more unit of charging power from the grid. 
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Even though the penalty costs are zero for both case 3 and case 5 but the power grid in 

case 3 has a higher generation cost than it in case 5 and the overall system cost of case 3 

is higher. Obviously, case 3 is less attractive for the model than case 5. On the other hand, 

when comparing case 2 and case 4, it is obvious that case 4 is a more efficient solution 

than case 2. The battery in case 4 only uses 0.4 unit of charging power (comparing to 1 

unit of charging power in case 2) and gains the same amount of energy in case 2. Since 

case 2 consumes more energy from the main grid and result in a higher overall system 

cost, consequently, case 4 is the optimal solution if the model is going to choose between 

case 2 and case 4. This outcome implies that fictitious cases (like case 2) are not good 

choices when a certain amount of energy is needed for a battery. 

Therefore, fictitious cases are not likely to be selected by the minimization model 

unless there is over generation in the system or a negative locational marginal price 

(LMP) is observed at the BESS location. 

When there is over generation occurs in a power system, the model will choose 

fictitious case to meet the node balance constraint. For instance, a battery with 50% 

charging and discharging efficiency in a microgrid, which has 3MW over generations, 

will charge at 3MW and discharge at 1MW to absorb this 3MW over generations while 

keeping SOC unchanged. At this time, the battery behaves as an artificial load. This type 

of problem is typically caused by uncertainty of renewable energies like wind and solar. 

Due to uncertainties of renewable energies, it is possible that the real time power output 

of a renewable energy like wind is larger than the forecasted power output. Generally, 

two methods are implemented to take care of this issue: one is reducing power outputs 

from other generation units and another one is curtailing the extra amount of power 
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outputs of renewable energies. Here, this thesis uses the second method to deal with over 

generation problem by assuming that wind and solar energy can be cut off immediately in 

any time by any amounts. Such that this thesis could relax x variable for taking care of 

over generation issue and reduce the model complexity and computational time. 

Another situation is when the battery location bus has a negative LMP. The model 

may choose fictitious cases and let the battery behave as an artificial load such that the 

total system cost could be decreased. However, the chance of having negative LMPs in 

the system is very low. Negative LMPs situation is unlikely to occur and, therefore, x 

variable can be relaxed in most situations. Furthermore, in this thesis, a two-step method 

is going to take care of this issue. Since it is unlikely that the model will choose to have 

the energy storage device to charge and discharge at the same time this thesis initially 

solves the problem with neglecting the binary variable x and then check to see if there is a 

violation. In other words, this thesis is going to check to see if there is a period where the 

energy storage asset is said to be charging as well as discharging. If no such situation 

exists, then the resulting solution is the global optimal solution to the original formulation 

that includes the binary variable. If the resulting solution has charging and discharging 

occurring for the energy storage device during the same hour, then the model is re-solved 

by then enforcing the binary variable in order to get the true global solution. 
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CHAPTER 4  

INVESTMENT PLANNING MODEL 

The investment planning model is about to answer two types of questions: a) what 

kind of BESS should be placed in what location in a  power grid; b) what are the benefits 

of this BESS. Considering that it is extremely hard to answer these two questions within 

one model, this thesis proposes an investment planning model containing two different 

parts and finds the type, size, location and benefits of BESS in the power grid. 

First of all, the type, size and location of BESS are needed before accurate calculating 

the benefit of BESS. In chapter 2 literature reviews, many researches just analyze the 

benefits of BESS but do not give specified solutions for investment planning decision. 

For example, reference [32] discusses the value of BESS in power system and gives an 

analysis of its benefits. But [32] does not give the answer that what type of BESS should 

be chosen and where should it be located. Moreover, [32] do not consider the power 

system network topology; the results are basically derived from a single bus point of view 

and pre-determined BESS operations. Pre-determined BESS operations assign a peak 

hour discharging and off-peak hour charging cycle for arbitrage activities and average 

market price is used to calculate BESS benefits. However, this thesis believes that the 

BESS benefits analysis with considering the power system network topology should be 

more trustworthy. Therefore, the investment planning model proposed in this thesis takes 

the power system network topology into consideration. In order to answer the questions 

that what are the type, location and size of BESS and find the proper operation schedule 

for the grid, binary variables are incorporated in this model. For example, binary 

variables with BESS type, location and size indexes are used for deciding the appropriate 

BESS type and location. Typically, 1 is interpreted as 'chosen choice' and 0 is interpreted 
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as 'ignored choice'. The idea of BESS type and location options are modeled as binary 

variables are very straightforward. Although BESS size options are generally considered 

as continuous variables, this thesis models these options as binary variables. One reason o 

model BESS size options as binary variables is that continuous variables will create a lot 

of nonlinearities and will cause a lot of computational burdens. Another reason is that 

manufacturers usually only provide finite options of commercial products. Even though 

discrete BESS size sets may result in a suboptimal solution when compared to continuous 

sets and loss of the accuracy, the accuracy of result can be improved by increasing the 

number of discrete BESS options. In fact, he discrete set of BESS size is a trade-off 

between the model accuracy and the computational efficiency.  

The first part of the investment planning model, called the decision planning model, 

is a mixed integer linear program (MILP) due to those binary variables mentioned in the 

paragraph above. Generally, a MILP is very hard to solve in a relatively short time. 

Ideally, an investment planning analysis is expected to take consider of all time periods in 

the overall time window but, in practice, this is impossible for current solver. This thesis 

proposes a method called daily cycle method to take care of this issue. The basic idea of 

the daily cycle method is to estimate the longtime overall cost through a small number of 

days, more details are explained in section 4.1. 

After determining the BESS type, size and location in the decision planning model, 

the production cost model, which is the second part of investment planning model, will 

find out the annual benefit of BESS in a grid. Although the decision planning model can 

give a total operating cost of a grid, the result is not accurate enough because the daily 

cycle method only uses a small amount of days to represent a long period like a year. This 
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thesis believes that a good evaluation of the BESS annual benefits should take all days in 

a year into consideration. Remember that an important reason behind using daily cycle 

method in the decision planning model is that many binary decision variables of BESS 

are incorporated. However, since the production cost model can gain information about 

the BESS type, size and location from the result of the decision planning model those 

BESS binary decision variables are no longer needed for the production cost model. In 

order to include all days in the model and gain results in a reasonable time, further 

approximations and simplifications are needed because the decision planning model still 

cannot handle the job of evaluating the BESS annual benefits with considering all days in 

a year; even after the decision planning model neglects BESS binary decision variables 

and associated constraints. Therefore, the production cost model further neglects binary 

variables such as generator status variables, generator startup variables and generator 

shut-down variables (though startup/shut-down variables are not modeled as binary 

variables in this thesis but they are typically modeled as binary variables) and makes the 

production cost model a LP model such that the production cost model is able to run on a 

365-day period. In here, costs like generator no load cost and startup/shut-down cost are 

neglected. Even though the benefits of BESS may be underestimated by neglecting no 

load cost and startup/shut-down cost, the estimation result is still trustworthy since the 

major part of generation cost is generator fuel cost, which is not neglected. To estimate 

the overall benefits in a BESS total life, it is not necessary to run the model for every 

single year. A common way to estimate the overall benefits for a transmission planning in 

industry today is to calculate the annual savings of several selected years and then 

estimate the annual savings of other years by extrapolating. This thesis calculates the 
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savings on year 1, 3, 5 and 10 first and then interpolates those points on the graph to 

estimate the remaining years’ savings. In the production cost model, the capital cost of 

BESS is not modeled. Since all generators are committed and constraints like minimum 

up/down time are relaxed in the production cost model, each modeled year is relatively 

independent. Therefore, solving the production cost model for each year separately is 

potentially equal to solving 10 years together. This means that the BESS benefits of year 

1, 3, 5 and 10 are unlikely influenced by calculating them separately and they are 

substantially the same as the results of year 1, 3, 5 and 10 from calculating 10 years 

together. An advantage of this estimation method for BESS annual benefits is that less 

computational resources are required. The drawback of this method is that a potential loss 

of accuracy exists. Further details of the production cost model can be found in section 

4.2. 

4.1 Decision planning model 

The decision planning model is the first part of the investment planning model. The 

decision planning model is meant to find the optimal type, location and size of BESS, the 

overall benefits of BESS will be estimated in the production cost model. But, even a day-

ahead stochastic UC is a computational hard problem due to today’s computation 

capability, let alone solve a stochastic UC model over a long time window. Scenarios in 

stochastic UC model are the primary reasons cause computational difficulties. Scenarios 

largely increase the size of the model and make the model spend a lot of time, like days, 

to solve it or even become unsolvable. Therefore, this thesis proposes a daily cycle 

method to reduce the size of the model and make it solvable in a reasonable time without 

or with little loss of accuracy. 
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This daily cycle method comes from the idea of periodic waves, whose whole 

characteristics can be found in one period since wave characteristics in each period are 

identical. Another foundation of this method is the similarity of load curves. Although a 

load curve in summer peak day may very different from a load curve in spring peak day, 

but a load curve changes relatively small from day to day in a short period. These two 

facts provide a way to capture the main characteristic of annual load profile by a small 

amount of days. In this daily cycle method, 365 days of annual load profile are grouped 

into some characteristic days, like summer day, summer peak day, winter day, winter 

peak days etc. After grouping all 365 days into several day types, the annual cost are 

calculated through those characteristic days. 

As explained above, generator outputs and generator statuses of two identical and 

consecutive days are the same. Therefore, for instance, generator power outputs and 

generator statuses of the second day are obtained once the UC problem of the first day is 

solved. Fig.3 illustrated the idea of this method. 

 
Fig. 3 Daily cycle  

Instead of calculating two days UC problem, one day UC problem has been 

calculated. Because the solutions for these two days are exactly the same with assuming 

that the initial and end status of these two days are the same. Note that a previous day’s 
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last hour status is the initial status of the next day and a started up (or shut down) 

generator in the last day may remain “on” (or “off”) in the next day due to the minimum 

up (or minimum down) time constraint. By properly setting the initial and end status 

constraints and the generators minimum up or down time constraints, the solution for this 

one day UC (daily cycle) will be the same as the solution for consecutive two or more 

days. Thus, instead of running the model over several consecutive same days, this method 

solves the model for just one day and multiplies the result by the number of days to get 

the savings. For instance, 365 days are grouped into spring day, summer day, fall day, 

winter day with n1, n2, n3, n4 days respectively, then the annual savings are: n1×spring day 

savings+n2×summer day savings+n3×fall day savings+n4×winter day savings. Obviously, 

this method is a trade-off between computational time and model accuracy and can be 

adjusted due to different requirement. It is easy to find that the accuracy of this method is 

getting higher when the number of characteristic days is increasing, but the 

computational time is also increasing. 

The decision planning model and detailed explanations are illustrated below: 

       min{∑ ∑ 𝜌𝑠[∑ (𝐶𝑔𝑃𝑔,𝑡,𝑠 + 𝑁𝐿𝑔𝑢𝑔,𝑡,𝑠, + 𝑆𝑈𝑔𝑣𝑔,𝑡,𝑠 + 𝑆𝐷𝑔𝑤𝑔,𝑡,𝑠)∀𝑔 +∀𝑡∀𝑠

       ∑ ∑ ∑ (𝛼ℎ
0 ∑ 𝑆𝑂𝐶ℎ,𝑚

𝑚𝑎𝑥𝐼𝑏,ℎ,𝑚∀𝑚 + 𝛼ℎ,𝑛𝜁𝑏,ℎ,𝑡,𝑠,𝑛)∀𝑛∀ℎ∀𝑏 ] +

       ∑ ∑ ∑ 𝐶𝐴𝑃ℎ𝑆𝑂𝐶ℎ,𝑚
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑚∀𝑚∀ℎ∀𝑏 + ∑ ∑ ∑ 𝐶𝐴𝑃ℎ

𝑃𝐸𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧∀ℎ∀𝑏 }      (4.1) 

Equation (4.1) is the objective function of the decision planning model. This contains 

generators cost, battery degradation cost and capital cost of battery and power electronics. 

𝑃𝑘,𝑡,𝑠 − 𝐵𝑘(𝜃𝑖,𝑡,𝑠 − 𝜃𝑗,𝑡,𝑠) = 0; ∀𝑘, 𝑖 ∈ 𝑓𝑟𝑜𝑚_𝑏𝑢𝑠(𝑘), 𝑗 ∈ 𝑡𝑜_𝑏𝑢𝑠(𝑘)   (4.2) 

Equation (4.2) is the line flow constraint.  
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∑ 𝑃𝑘∀𝑘∈𝜋(𝑖,∗) − ∑ 𝑃𝑘∀𝑘∈𝜋(∗,𝑖) + 𝐿𝑖,𝑡 = ∑ 𝑃𝑔,𝑡,𝑠∀𝑔∈𝐺𝐸𝑁(𝑖) +        ∑ (𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠 −∀𝑏∈𝐵𝐴𝑇(𝑖)

𝑐ℎ𝑏,ℎ,𝑡,𝑠) + ∑ 𝑃𝑜,𝑡,𝑠∀𝑜∈𝑆𝑂𝐿(𝑖) ; ∀𝑖, ∀ℎ, ∀𝑡, ∀𝑠         (4.3) 

Equation (4.3) is the load balance constraint. 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔,𝑡,𝑠 ≤ 𝑃𝑔,𝑡,𝑠 ≤  𝑃𝑔

𝑚𝑎𝑥𝑢𝑔,𝑡,𝑠; 𝑔 ∈ 𝐺𝑛𝑜𝑟𝑚𝑎𝑙, ∀𝑡, ∀𝑠   (4.4) 

Equation (4.4) is the generators output constraint. 

𝑃𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑚𝑎𝑥; ∀𝑘    (4.5) 

Equation (4.5) is the transmission line constraint. 

𝑣𝑔,𝑡,𝑠 − 𝑤𝑔,𝑡,𝑠 = 𝑢𝑔,𝑡,𝑠 − 𝑢𝑔,𝑡−1,𝑠;   ∀𝑔, ∀𝑠, 𝑡 ∈ {2,3, … , 𝑇}   (4.6) 

𝑣𝑔,1,𝑠 − 𝑤𝑔,1,𝑠 = 𝑢𝑔,1,𝑠 − 𝑢𝑔,𝑇,𝑠;   ∀𝑔, ∀𝑠    (4.7) 

Equation (4.6) and (4.7) are the generators status transition constraints. (4.7) is the 

initial generators status transition constraint because the last time period status is the 

initial status of the first time period in the daily cycle method. 

𝑢𝑔,𝑡,𝑠 ∈ {0,1}; ∀𝑔, ∀𝑡, ∀𝑠    (4.8) 

0 ≤ 𝑣𝑔,𝑡,𝑠 ≤ 1; ∀𝑔, ∀𝑡, ∀𝑠   (4.9) 

0 ≤ 𝑤𝑔,𝑡,𝑠 ≤ 1; ∀𝑔, ∀𝑡, ∀𝑠   (4.10) 

Equation (4.8), (4.9), (4.10) are the generator status variables constraints. 

∑ 𝑣𝑔,𝑞,𝑠 ≤ 𝑢𝑔,𝑡,𝑠
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1 ;  ∀𝑔, ∀𝑠 , 𝑡 ∈ {𝑈𝑇𝑔, … , 𝑇}                   (4.11) 

∑ 𝑣𝑔,𝑞,𝑠
𝑇
𝑞=𝑇−𝑈𝑇𝑔+𝑡+1 ≤ 𝑢𝑔,𝑡,𝑠;  ∀𝑔, ∀𝑠, 𝑡 ∈ {1, … , 𝑈𝑇𝑔 − 1}                   (4.12) 

Equation   (4.11) and   (4.12) are the generators minimum up time constraints.   (4.11) 

and   (4.12) ensure the minimum up time works in the daily cycle model. Take T=7, 

UTg=4 as an example, if a generator start up at t=6 then this generator needs to be on at 

t=6, 7, 8, 9. Since a daily cycle model is implemented in this thesis, t=8, 9 of previous 
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day are t=1, 2 in the next day in fact. In this case,   (4.11) ensures that t=6, 7 must be on 

and   (4.12) ensures that t=1, 2 (t=8, 9) must be on.  

∑ 𝑤𝑔,𝑞,𝑠 ≤ 1 − 𝑢𝑔,𝑡,𝑠
𝑡
𝑞=𝑡−𝐷𝑇𝑔+1 ;  ∀𝑔, ∀𝑠, 𝑡 ∈ {𝐷𝑇𝑔, … , 𝑇}    (4.13) 

∑ 𝑤𝑔,𝑞,𝑠
𝑇
𝑞=𝑇−𝑈𝑇𝑔+𝑡+1 ≤ 1 − 𝑢𝑔,𝑡,𝑠;  ∀𝑔, ∀𝑠, 𝑡 ∈ {1, … , 𝐷𝑇𝑔 − 1}    (4.14) 

Equation (4.13) and (4.14) are similar to   (4.11) and   (4.12), but equation (4.13) and 

(4.14) force generators to be off instead of on. 

𝑃𝑔,𝑡,𝑠 − 𝑃𝑔,𝑡−1,𝑠 ≤ 𝑅𝑔
+𝑢𝑔,𝑡−1,𝑠 + 𝑅𝑔

𝑆𝑈𝑣𝑔,𝑡,𝑠; ∀𝑔, ∀𝑡, ∀𝑠    (4.15) 

𝑃𝑔,𝑡−1,𝑠 − 𝑃𝑔,𝑡,𝑠 ≤ 𝑅𝑔
−𝑢𝑔,𝑡−1,𝑠 + 𝑅𝑔

𝑆𝐷𝑤𝑔,𝑡,𝑠; ∀𝑔, ∀𝑡, ∀𝑠    (4.16) 

Equation (4.15) and (4.16) are generators ramping up & down constraints. When a 

generator is on, the ramping capability of this generator is restricted by R+ (R-). If a 

generator is switched from off to on, the ramping capability of this generator is restricted 

by RSU (RSD). 

𝑆𝑃𝑡 ≥ 𝑃𝑔,𝑡,𝑠 + 𝑟𝑔,𝑡,𝑠;  𝑔 ∈ 𝐺𝑛𝑜𝑟𝑚𝑎𝑙 , ∀𝑡, ∀𝑠    (4.17) 

𝑆𝑃𝑡 ≥  𝛽 ∑ 𝑃𝑜,𝑡,𝑠∀𝑜∈𝑆𝑂𝐿𝐴𝑅 + 𝛾 ∑ 𝐿𝑖,𝑡∀𝑖 ; ∀𝑡, ∀𝑠     (4.18) 

𝑆𝑃𝑡 − ∑ 𝑟𝑔,𝑡,𝑠∀𝑔∈𝐺 − ∑ ∑ 𝑟𝑏,ℎ,𝑡,𝑠∀ℎ∈𝐻∀𝑏∈𝐸𝑆 ≤ 0;  ∀𝑡, ∀𝑠    (4.19) 

Equations (4.17) to (4.19) are the system spinning reserves constraints. This thesis do 

not consider slow start up generators as spinning reserves providers as presented in 

(4.17), where Gnormal is the set of all generators except slow start up generators. (4.18) 

specifies the requirement of overall spinning reserves which is a percentage of the sum of 

total load and installed solar capacities. BESS is considered to provide spinning reserves 

in this research as illustrated in (4.19), which requires the total spinning reserves 

provided by generators and BESS should be larger than the requirement of overall system 

spinning reserves. 
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0 ≤ 𝑟𝑔,𝑡,𝑠 ≤ 𝑅𝑅𝑔
+𝑢𝑔,𝑡,𝑠;  𝑔 ∈ 𝐺𝑛𝑜𝑟𝑚𝑎𝑙, ∀𝑡, ∀𝑠    (4.20) 

𝑟𝑔,𝑡,𝑠 ≤  𝑃𝑔
𝑚𝑎𝑥𝑢𝑔,𝑡,𝑠 − 𝑃𝑔,𝑡,𝑠;  𝑔 ∈ 𝐺𝑛𝑜𝑟𝑚𝑎𝑙, ∀𝑡, ∀𝑠    (4.21) 

Spinning reserves provided by generators are limited by constraints (4.20) and (4.21). 

These two constraints indicate that the capability of providing spinning reserves for a 

generator is limited by the generator 10 minutes ramping rate and the margin power 

output. 

𝑢𝑔,𝑡 = 𝑢𝑔,𝑡,𝑠;  𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤, ∀𝑡, ∀𝑠    (4.22) 

𝑣𝑔,𝑡 = 𝑣𝑔,𝑡,𝑠;  𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤 , ∀𝑡, ∀𝑠    (4.23) 

𝑤𝑔,𝑡 = 𝑤𝑔,𝑡,𝑠;  𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤, ∀𝑡, ∀𝑠    (4.24) 

𝑢𝑔,𝑡 ∈ {0,1};  𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤 , ∀𝑡    (4.25) 

0 ≤ 𝑣𝑔,𝑡 ≤ 1;  𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤 , ∀𝑡    (4.26) 

0 ≤ 𝑤𝑔,𝑡 ≤ 1;  𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤, ∀𝑡    (4.27) 

Equation (4.22)-(4.27) are slow generators constraints. Note that the left-hand-side 

variables don’t have scenario index s. As described in [27], a generator status may be on 

or off in different scenarios and this is not practical for slow start up generators since they 

cannot switch on and off immediately. Therefore, (4.22) to (4.24) enforce status of slow 

start up generators unchanged among different scenarios. 

0 ≤ 𝑐ℎ𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝑥𝑏,𝑡,𝑠∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠     (4.28) 

0 ≤ 𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥(1 − 𝑥𝑏,𝑡,𝑠)∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠     (4.29) 

Equation (4.28) and (4.29) are similar to equations (3.29) and (3.30) in section 3.4. 

Except (4.28) and (4.29) use ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥

∀𝑧  instead of 𝑃𝐸𝑚𝑎𝑥 in (3.29), (3.30), where z is a 

size index for power electronic devices. When x equals to 1, the battery discharge output 
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dch is restricted to 0 and charging power ch can vary between 0 and ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥

∀𝑧 . On the 

contrary, ch is equal to 0 while dch can be greater than 0 when x equals to 0. 

0 ≤ 𝑐ℎ𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠     (4.30) 

0 ≤ 𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠    (4.31) 

Equations (4.30) and (4.31) are charging and discharging output limit constraints. At 

the right hand side of these two constraints, IPE is a binary variable as the selection of 

power electronic device size.  

𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠 − 𝑑𝑐ℎ𝑏,ℎ,𝑡−1,𝑠 + 𝑐ℎ𝑏,ℎ,𝑡−1,𝑠 − 𝑐ℎ𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑠, 𝑡 ∈

{2 … 𝑇}              (4.32) 

𝑑𝑐ℎ𝑏,ℎ,𝑡−1,𝑠 − 𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠 + 𝑐ℎ𝑏,ℎ,𝑡,𝑠 − 𝑐ℎ𝑏,ℎ,𝑡−1,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑠, 𝑡 ∈

{2 … 𝑇}             (4.33) 

𝑑𝑐ℎ𝑏,ℎ,1,𝑠 − 𝑑𝑐ℎ𝑏,ℎ,𝑇,𝑠 + 𝑐ℎ𝑏,ℎ,𝑇,𝑠 − 𝑐ℎ𝑏,ℎ,1,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧  ; ∀𝑏, ∀ℎ, ∀𝑠              

             (4.34) 

𝑑𝑐ℎ𝑏,ℎ,𝑇,𝑠 − 𝑑𝑐ℎ𝑏,ℎ,1,𝑠 + 𝑐ℎ𝑏,ℎ,1,𝑠 − 𝑐ℎ𝑏,ℎ,𝑇,𝑠 ≤ ∑ 𝑃𝐸ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧  ; ∀𝑏, ∀ℎ, ∀𝑠        

               (4.35) 

Equations (4.32)-  (4.35) are the battery ramping rate constraints.  

0 ≤ 𝑟𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑃𝐸𝑏,ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠        (4.36) 

0 ≤ 𝑟𝑏,ℎ,𝑡,𝑠 ≤ 𝑐ℎ𝑏,ℎ,𝑡,𝑠 + ∑ 𝑃𝐸𝑏,ℎ,𝑧
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑧

𝑃𝐸
∀𝑧 − 𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠  (4.37) 

0 ≤ 𝑟𝑏,ℎ,𝑡,𝑠 ≤ 𝜂𝑏,ℎ
𝑑𝑐ℎ ∙ 𝑆𝑂𝐶𝑏,ℎ,𝑡,𝑠; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠        (4.38) 

Equations (4.36)-(4.38) are the BESS spinning reserve constraints. 

0 ≤ 𝑆𝑂𝐶𝑏,ℎ,𝑡,𝑠 ≤ ∑ 𝑆𝑂𝐶ℎ,𝑚
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑚∀𝑚 ;  ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠   (4.39) 

Equation (4.39) is the battery capacity constraint. SOCmax is a parameter and Ib,h,m is a 

binary variable for picking up the appropriate size of the BESS. 



39 

  

𝑆𝑂𝐶𝑏,ℎ,𝑡,𝑠 = 𝑆𝑂𝐶𝑏,ℎ,𝑡−1,𝑠 + 𝜂𝑏,ℎ
𝑐ℎ 𝑐ℎ𝑏,ℎ,𝑡,𝑠 −

1

𝜂𝑏,ℎ
𝑑𝑐ℎ 𝑑𝑐ℎ𝑏,ℎ,𝑡,𝑠; ∀𝑏, ∀ℎ, ∀𝑠, 𝑡 ∈ {2 … 𝑇}   

             (4.40) 

𝑆𝑂𝐶𝑏,ℎ,1,𝑠 = 𝑆𝑂𝐶𝑏,ℎ,𝑇,𝑠 + 𝜂𝑏,ℎ
𝑐ℎ 𝑐ℎ𝑏,ℎ,1,𝑠 −

1

𝜂𝑏,ℎ
𝑑𝑐ℎ 𝑑𝑐ℎ𝑏,ℎ,1,𝑠;  ∀𝑏, ∀ℎ, ∀𝑠     (4.41) 

Equation (3.2.37) and (3.2.38) are the BESS SOC transition constraints. 

𝑀𝐴𝑋𝑏,ℎ,𝑠
𝑑 ≥ 𝑆𝑂𝐶𝑏,ℎ,𝑡,𝑠  ∀𝑏, ∀ℎ, ∀𝑠, ∀𝑡  (4.42) 

𝑀𝐼𝑁𝑏,ℎ,𝑠
𝑑 ≤ 𝑆𝑂𝐶𝑏,ℎ,𝑡,𝑠   ∀𝑏, ∀ℎ, ∀𝑠, ∀𝑡  (4.43) 

𝜁𝑏,ℎ,𝑡,𝑠
𝑑 ≥  𝑀𝐴𝑋𝑏,ℎ,𝑡,𝑠

𝑑 − 𝑀𝐼𝑁𝑏,ℎ,𝑡,𝑠
𝑑 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠, ∀𝑘    (4.44) 

∑ 𝜁𝑏,ℎ,𝑡,𝑠,𝑛
𝑑𝑁

𝑛=1 = 𝜁𝑏,ℎ,𝑡,𝑠
𝑑 ; ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠, ∀𝑘   (4.45) 

0 ≤  𝜁𝑏,ℎ,𝑡,𝑠,𝑛
𝑑 ≤ 𝑙𝑛 ∙ ∑ 𝑆𝑂𝐶ℎ,𝑚

𝑚𝑎𝑥𝐼𝑏,ℎ,𝑚∀𝑚 ; 𝑛 = 1,2, … , 𝑁   (4.46) 

Equations (4.42)-(4.46) are similar to equations (3.17)-(3.21). 

∑ ∑ 𝐼𝑏,ℎ,𝑚∀𝑚∀ℎ ≤ 1; ∀𝑏, ∀ℎ, ∀𝑚   (4.47) 

∑ ∑ ∑ 𝐼𝑏,ℎ,𝑚∀𝑚∀ℎ ≥∀𝑏 1; ∀𝑏, ∀ℎ, ∀𝑚   (4.48) 

∑ 𝐼𝑏,ℎ,𝑧
𝑃𝐸

∀𝑧 = ∑ 𝐼𝑏,ℎ,𝑚∀𝑚 ; ∀𝑏, ∀ℎ, 𝐼𝑏,ℎ,𝑧
𝑃𝐸 ∈ {0,1}   (4.49) 

𝑆𝑂𝐶𝑏,ℎ,𝑡,𝑠 ≥ ∑ 𝑆𝑂𝐶ℎ,𝑚
𝑚𝑎𝑥𝐼𝑏,ℎ,𝑚∀𝑚 − 𝑀 ∙ (1 − 𝐼𝑏,𝑡

𝐹𝐶); ∀𝑏, ∀ℎ, ∀𝑡, ∀𝑠   (4.50) 

∑ 𝐼𝑏,𝑡
𝐹𝐶

∀𝑡 = ∑ ∑ 𝐼𝑏,ℎ,𝑚∀𝑚∀ℎ , ; ∀𝑏, ∀ℎ, ∀𝑚, 𝐼𝑏,𝑡
𝐹𝐶 ∈ {0,1}   (4.51) 

Equation (4.47) and (4.48) ensure that the whole system has at least one BESS while 

each bus has at most one BESS. Power electronic devices selection constraint is 

described as (4.49), which promise that a bus with BESS must have one power electronic 

device. Equations (4.50) and (4.51) are the BESS full charge constraints, which ensure 

that the BESS will be fully charged at least once in a day. 
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4.2 Production cost model 

Production cost model is the second part of the investment planning model. After the 

decision planning model determines the BESS location, size and battery type, the 

production cost model will calculate the estimate annual savings of the BESS. The 

production cost model is based on the DCOPF model. Some variables and constraints are 

relaxed in order to form a LP model such that this model is suitable for long term 

calculation. For instance, generator status variables and their constraints are not included 

in this production cost model compared to the decision planning model. Generally 

speaking, the nonlinear parts of the decision planning model are neglected or linearized in 

the production cost model; the BESS location, size and battery type are fixed in the 

production cost model. Also, the capital cost of batteries and power electronic devices are 

excluded from calculating the operating cost of the system with BESS. As described in 

the beginning of section chapter 4, annual savings of 1st, 3rd, 5th and 10th year are 

calculated first and then the annual savings of other years can be found by interpolating. 

The production cost model is stated and explained in below: 

min[∑ ∑ (𝐶𝑔𝑃𝑔,𝑡)∀𝑔∀𝑡 + ∑ ∑ ∑ (𝛼𝑏
0𝑆𝑂𝐶𝑏

𝑚𝑎𝑥 + 𝛼𝑏,𝑛𝜁𝑏,𝑡,𝑛)∀𝑛∀𝑡∀𝑏 +       ∑ ∑ 𝜆(𝐷𝑒𝑔 ∙𝑡𝑏

𝑆𝑂𝐶𝑏
𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑏,𝑡)]   (4.52) 

(4.52) is the production cost model's objective function, including generators linear 

cost, the battery degradation cost and the battery full-charge penalty cost. The first two 

terms are similar to what described in above section 4.1. The last term 𝜆(𝐷𝑒𝑔 ∙

𝑆𝑂𝐶𝑏
𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑏,𝑡) is the battery full-charge penalty cost, which is a fictitious cost in 

order to penalize that the BESS is not in fully charged status. λ is the full-charge penalty 

price, a positive number. Deg is a parameter which represents the battery capacity 
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degradation process. Ignoring the parameter Deg first, (𝑆𝑂𝐶𝑏
𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑏,𝑡) represents the 

gap between the BESS SOC and the BESS capacity, this term is always positive and 

when this gap times the full-charge penalty price the result are also positive. Since the 

production cost model is a minimization model, the production cost model will try to 

minimize the BESS gap with considering the generators operating cost and the battery 

degradation cost. A very big number will fix the BESS SOC at the maximum capacity 

while a very small number will not have a significant impact on the BESS SOC. In this 

research, λ is set to be about $0.1/MWh, this value is gained by test. Deg is a battery 

capacity degradation parameter. As discussed in chapter 2, the capacity of a battery will 

decrease when cycle it. In this research, the capacity of the BESS is supposed to degrade 

at a constant rate, for example 2%. That is, the capacity in the first year is 100%, then 

98% in the second year and then 96.04% in the third year etc. 

The production cost model constraints are listed below: 

𝑃𝑘,𝑡 − 𝐵𝑘(𝜃𝑗,𝑡 − 𝜃𝑖,𝑡) = 0; 𝑘 ∈ 𝐿𝑖𝑛𝑒, 𝑖 ∈ 𝑓𝑟𝑜𝑚_𝑏𝑢𝑠(𝑘), 𝑗 ∈ 𝑡𝑜_𝑏𝑢𝑠(𝑘)             (4.53) 

∑ 𝑃𝑘∀𝑘∈𝜋(𝑖,∗) − ∑ 𝑃𝑘∀𝑘∈𝜋(∗,𝑖) + 𝐿𝑖,𝑡 = ∑ 𝑃𝑔,𝑡∀𝑔∈𝐺𝐸𝑁(𝑖) + ∑ (𝑑𝑐ℎ𝑏,𝑡 −∀𝑏∈𝐵𝐴𝑇(𝑖)

       𝑐ℎ𝑏,𝑡) + ∑ 𝑃𝑜,𝑡∀𝑜∈𝑆𝑂𝐿(𝑖) ;  𝑖 ∈ 𝐵𝑈𝑆, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆         (4.54) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑡 ≤  𝑃𝑔

𝑚𝑎𝑥; ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇   (4.55) 

𝑃𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑚𝑎𝑥; 𝑘 ∈ 𝐿𝐼𝑁𝐸   (4.56) 

𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
+;  ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇   (4.57) 

𝑃𝑔,𝑡−1 − 𝑃𝑔,𝑡 ≤ 𝑅𝑔
−;  ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇   (4.58) 

𝑆𝑃𝑡 ≥ 𝑃𝑔,𝑡 + 𝑟𝑔,𝑡;  ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇   (4.59) 

𝑆𝑃𝑡 ≥  𝛽 ∑ 𝑃𝑜,𝑡∀𝑜 + 𝛾 ∑ 𝐿𝑖,𝑡∀𝑖 ; ∀𝑜 ∈ 𝑃𝑉, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐵𝑈𝑆   (4.60) 

𝑆𝑃𝑡 − ∑ 𝑟𝑔,𝑡∀𝑔∈𝐺 − ∑ 𝑟𝑏,𝑡∀𝑏∈𝐸𝑆 ≤ 0;  𝑡 ∈ 𝑇   (4.61) 
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0 ≤ 𝑟𝑔,𝑡 ≤ 𝑅𝑅𝑔
+;  ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇   (4.62) 

𝑟𝑔,𝑡 ≤  𝑃𝑔
𝑚𝑎𝑥 − 𝑃𝑔,𝑡;  ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇   (4.63) 

Equation (4.53)-(4.56) are similar to constraints (4.2)-(4.5). Equations (4.57)-(4.63) 

are similar to constraints (4.15)-(4.21). 

0 ≤ 𝑐ℎ𝑏,𝑡 ≤ 𝑃𝐸𝑏
𝑚𝑎𝑥; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇    (4.64) 

0 ≤ 𝑑𝑐ℎ𝑏,𝑡 ≤ 𝑃𝐸𝑏
𝑚𝑎𝑥; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇   (4.65) 

𝑑𝑐ℎ𝑏,𝑡 − 𝑑𝑐ℎ𝑏,𝑡−1 + 𝑐ℎ𝑏,𝑡−1 − 𝑐ℎ𝑏,𝑡 ≤ 𝑃𝐸𝑏
𝑚𝑎𝑥; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇    (4.66) 

𝑑𝑐ℎ𝑏,𝑡−1 − 𝑑𝑐ℎ𝑏,𝑡 + 𝑐ℎ𝑏,𝑡 − 𝑐ℎ𝑏,𝑡−1 ≤ 𝑃𝐸𝑏
𝑚𝑎𝑥; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇    (4.67) 

0 ≤ 𝑆𝑂𝐶𝑏,𝑡 ≤ 𝐷𝑒𝑔 ∙ 𝑆𝑂𝐶𝑏
𝑚𝑎𝑥;  ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇   (4.68) 

𝑆𝑂𝐶𝑏,𝑡 = 𝑆𝑂𝐶𝑏,𝑡−1 + 𝜂𝑏
𝑐ℎ𝑐ℎ𝑏,𝑡 −

1

𝜂𝑏
𝑑𝑐ℎ 𝑑𝑐ℎ𝑏,𝑡; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇   (4.69) 

𝑀𝐴𝑋𝑑 ≥ 𝑆𝑂𝐶𝑏,𝑡; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ { 24(𝑑 − 1), … , 24𝑑 | 𝑑 = 1,2, … }   (4.70) 

𝑀𝐼𝑁𝑑 ≤ 𝑆𝑂𝐶𝑏,𝑡; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ { 24(𝑑 − 1), … , 24𝑑 | 𝑑 = 1,2, … }   (4.71) 

0 ≤ 𝑟𝑏,𝑡 ≤ 𝑃𝐸𝑏
𝑚𝑎𝑥; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇   (4.72) 

0 ≤ 𝑟𝑏,𝑡 ≤ 𝑐ℎ𝑏,𝑡 + 𝑃𝐸𝑏
𝑚𝑎𝑥 − 𝑑𝑐ℎ𝑏,𝑡; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇   (4.73) 

0 ≤ 𝑟𝑏,𝑡 ≤ 𝜂𝑏
𝑑𝑐ℎ ∙ 𝑆𝑂𝐶𝑏,𝑡,; ∀𝑏 ∈ 𝐸𝑆, ∀𝑡 ∈ 𝑇   (4.74) 

∑ 𝜁𝑏,𝑛
𝑑𝑁

𝑛=1 = 𝜁𝑏
𝑑; ∀𝑏 ∈ 𝐸𝑆, ∀𝑑   (4.75) 

0 ≤ 𝜁𝑏,𝑛
𝑑 ≤ 𝑙𝑛 ∙ 𝐷𝑒𝑔 ∙ 𝑆𝑂𝐶𝑏

𝑚𝑎𝑥;  ∀𝑏, ∀𝑛, ∀𝑡, ∀𝑑   (4.76) 

𝜁𝑏
𝑑 ≥ 𝑀𝐴𝑋𝑑 − 𝑀𝐼𝑁𝑑;  ∀𝑏, ∀𝑑   (4.77) 

Equation (4.64)-(4.77) are battery related constraints. Most of them are similar to 

battery constraints of the decision planning model, but there are some differences. For 

instance, since the BESS size and power electronic device size are already found by 

decision planning model, the right hand sides of (4.64)-(4.67) become PEmax and the right 
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hand sides of (4.68) become SOCmax. Besides, the parameter Deg are added into (4.68) 

and (4.76). 

 

4.3 Model implementation for distribution networks 

This section briefly discusses about the implementation of the proposed model on 

distribution levels. The discussion will briefly describe the differences between 

transmission levels and distribution levels. More detailed discussions about distribution 

level applications are left to future work. The proposed investment planning model is 

developed base on DCOPF, which is suited for high voltage transmission or sub-

transmission networks. The proposed formulation may become inappropriate for 

distribution networks since the assumptions of DCOPF may not be hold in distribution 

networks.  

One assumption is that the DCOPF is a lossless model, which is assuming that line 

resistance is negligible, that is, R<<X. The R/X ratio in distribution networks is generally 

higher than the ratio in transmission level and, thus, the lossless line assumption is not as 

valid for distribution networks.  

Another assumption of DCOPF is that the system is a 3-phase balanced system and 

this is also the base of ACOPF. In a 3-phase balanced system, 3-phase calculation can be 

modeled as a single phase calculation. However, this assumption of balanced 3-phase 

operation is barely valid in distribution levels. Distribution networks may 1, 2 or 3 phase 

loads and load for each phase is to be determined. Therefore, 3-phase power flows cannot 

be calculated by a single phase model. 
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Besides previous two assumptions, the DCOPF assumes that bus voltages are one per 

unit. Because in transmission levels, bus voltages are typically around one per unit within 

a small range. Thus, for simplicity, DCOPF assumes that bus voltages are equal to one. 

While voltage drop becomes larger in distribution networks, bus voltages will deviate one 

per unit in a much larger range. In ACOPF, this bus voltage assumption is relaxed. Bus 

voltages are not set to one per unit and AC power flows take bus voltages into 

consideration. The general formulations of ACOPF are listed in below. 

min ∑ 𝑐𝑔𝑃𝑔∀𝑔   

𝑃𝑘𝑖𝑗
2 + 𝑄𝑘𝑖𝑗

2 ≤ 𝑆𝑘
2, ∀𝑘   (4.78) 

𝑃𝑘𝑗𝑖
2 + 𝑄𝑘𝑗𝑖

2 ≤ 𝑆𝑘
2, ∀𝑘   (4.79) 

𝑉𝑖
2𝐺𝑘 + 𝑉𝑖

2𝐺𝑖𝑘 − 𝑉𝑖𝑉𝑗[𝐺𝑘 cos(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑘 sin(𝜃𝑖 − 𝜃𝑗)] − 𝑃𝑘𝑖𝑗 = 0, ∀𝑘   (4.80) 

𝑉𝑗
2𝐺𝑘 + 𝑉𝑗

2𝐺𝑛𝑘 − 𝑉𝑗𝑉𝑖[𝐺𝑘 cos(𝜃𝑗 − 𝜃𝑖) + 𝐵𝑘 sin(𝜃𝑗 − 𝜃𝑖)] − 𝑃𝑘𝑗𝑖 = 0, ∀𝑘   (4.81) 

𝑉𝑖
2𝐵𝑘 + 𝑉𝑖

2𝐵𝑖𝑘 + 𝑉𝑖𝑉𝑗[𝐺𝑘 cos(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑘 sin(𝜃𝑖 − 𝜃𝑗)] − 𝑄𝑘𝑖𝑗 = 0, ∀𝑘   (4.82) 

𝑉𝑗
2𝐵𝑘 + 𝑉𝑗

2𝐵𝑗𝑘 − 𝑉𝑗𝑉𝑖[𝐺𝑘 cos(𝜃𝑗 − 𝜃𝑖) − 𝐵𝑘 sin(𝜃𝑗 − 𝜃𝑖)] − 𝑄𝑘𝑗𝑖 = 0, ∀𝑘   (4.83) 

∑ 𝑃𝑘𝑗𝑖𝑘∈𝜋(𝑖,∗) − ∑ 𝑃𝑘𝑖𝑗𝑘∈𝜋(∗,𝑖) − ∑ 𝑃𝑔𝑔∈𝐺𝐸𝑁(𝑖) + 𝐿𝑖
𝑃 = 0, ∀𝑖   (4.84) 

∑ 𝑄𝑘𝑗𝑖𝑘∈𝜋(𝑖,∗) − ∑ 𝑄𝑘𝑖𝑗𝑘∈𝜋(∗,𝑖) − ∑ 𝑄𝑔𝑔∈𝐺𝐸𝑁(𝑖) + 𝐿𝑖
𝑄 = 0, ∀𝑖   (4.85) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔 ≤ 𝑃𝑔

𝑚𝑎𝑥 , ∀𝑔   (4.86) 

𝑄𝑔
𝑚𝑖𝑛 ≤ 𝑄𝑔 ≤ 𝑄𝑔

𝑚𝑎𝑥, ∀𝑔   (4.87) 

−𝜃𝑚𝑎𝑥 ≤ 𝜃𝑖 − 𝜃𝑗 ≤  𝜃𝑚𝑎𝑥 , ∀𝑘   (4.88) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤  𝑉𝑚𝑎𝑥 , ∀𝑖   (4.89) 

The last several paragraphs briefly talk about the assumptions of DCOPF and 

introduce the general ACOPF formulations. This is not saying that the ACOPF has to be 
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adopted for distribution networks. Depending on specific purposes, the DCOPF can also 

be applied for distribution level investment planning. For instance, if the voltage 

regulation is not the main purpose of the BESS, the DCOPF is still a very attractive 

investment planning model approach for distribution networks not facing severe voltage 

drop and 3-phase unbalance. In this situation, after carefully modeling the losses, the 

DCOPF will not suffer much loss of accuracy but get lots of benefits in solution time. 

Furthermore, distribution networks are typically overbuilt, which means congestions 

seldom happen. The DCOPF problem could be further simplified as economic dispatch 

problem as long as system losses are properly calculated. Correspondingly, the ACOPF 

could handle situation where voltage drops are considered, like investigating BESS 

voltage regulation performances. How to deal with 3-phase unbalance is also situational 

based. Unbalanced 3-phase OPF problem can be solved through 3-phase analysis or some 

approximation approaches like in reference [51] [52] [53].The general ACOPF is a non-

convex problem, which is considered as very hard to solve. Reference [50] proves that 

the ACOPF problem can be solved by the convex dual problem with zero duality gaps in 

tree networks, which are very common in distribution level power grids. In this section, 

the implementation of proposed model on tree structure distribution networks is 

discussed; mesh distribution networks are left for future work. Reference [50] provides a 

very useful tool to solve the ACOPF for radial distribution networks and can also be 

applied to this thesis's model. Considering that, in distribution networks, the potential 

BESS location is usually at substations and the number of buses is relatively small 

comparing to transmission networks. Therefore, in order to fully utilize the advantage of 

reference [50] approach, the BESS location, type and size is founded through heuristic 
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search method for radial distribution networks instead of using integer decision variables. 

Each iteration of heuristic search will not take a very long time since the ACOPF is a 

convex problem in radial distribution networks. The total number of iterations would not 

be a large number as the total buses in a small radial distribution network is limited. 

 

4.4 Model variations for different microgrids operation mode 

Microgrids generally have two types of operation modes: one is the island mode and 

another one is the grid-connect mode. The island mode is that the microgrid satisfies its 

demand by its own resources. Not every microgrid can supply enough power by itself to 

its customers, thus, load shedding is generally considered in the microgird island mode. 

For implementing the investment planning model on microgrids under island mode 

operation, the proposed investment planning mode needs to add load shedding cost to its 

objective function and more constraints related to load shedding. The grid-connect mode 

is that the microgrid satisfies its demand through the combination of buying power from 

the main grid and producing power by its own resources. The main grid is typically 

treated as a power resource like a generator and the main grid is often modeled as a 

generator in terms of energy buying. Without considering selling power from the 

microgrid to the main grid, the proposed investment planning model can be used for 

mircogrids under grid-connect mode operations after some modifications, which are 

adding buying cost in the objective function and associated buying constraints.  
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CHAPTER 5  

SIMULATIONS AND RESULTS 

5.1 Test case 

This research uses one area, the area A, of the IEEE Reliability Test System 1996 

(RTS96) as the test case. This test case contains 33 generators, 24 buses and 37 branches. 

More details of this test case power system can be found in [25][26]. The test case system 

diagram is illustrated in Fig. 4. Photovoltaic stations have been added to bus 7, bus 13 

and bus 22 with the amount of solar capacity 300 MW, 200 MW and 300 MW 

respectively. These solar resources are resulted in about 20% penetration of renewable 

energy. For calculation convenience and without loss of essential elements of solar 

energy, the same patterns and scenarios have been implemented to all three photovoltaic 

stations with the exception that these stations have different peak outputs. An illustration 

of solar scenarios is shown in Fig. 5. The five solar scenarios in Fig. 5 are deriving from 

National Renewable Energy Laboratory (NREL) TMY3 data set [43]. Introducing solar 

scenarios for an investment planning model is to improve the model accuracy by 

considering solar variability. But the model computational complexity has also increased. 

Generally, results with more scenarios are considered better. Five scenarios are a small 

number of solar scenarios; however, the simulation will face out-of-memory issue when 

more scenarios are taken into consideration due to computer capability in this simulation. 

Compared to day-ahead UC problem, the investment planning model contains more time 

periods and thus the number of scenarios for the investment planning model will be 

smaller for the same computational resources. Depending on the size of test base, more 

than five solar scenarios are possible for a smaller system. Here, in this simulation, five 
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scenarios capturing the major solar characteristics are selected due to balancing model 

accuracy and computational burden. 

 

Fig. 4 IEEE RTS-96 area A 

 
Fig. 5 Solar Scenarios 
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As described in section 3.2, several day types have been chosen in this simulation. 

For balancing computational difficulty and accuracy of results, three day types are 

selected in this simulation as illustrated in Fig. 6. The three day types are named 

“winter”, “summer” and “spring/fall”. Spring season and fall season are grouped into one 

day type for simplicity. The load demand for each day type is the average demand value 

across the corresponding season. For example, the load demand of summer day type in 

hour 1 (0:00-1:00) is calculated by taking the average value of each load demand of all 

days in summer season (day 126-210) in hour 1. Although demand values have effects on 

estimation results, the number of day types is more crucial. For just one day type, any 

kind of demand generation method is not sufficient. Here, this thesis uses average value 

(also equals to the expectation value in this case) because it makes more sense than peak 

value or off-peak value. In situation only has one day type, the peak value of demand will 

overestimate BESS benefits and the off-peak value will underestimate BESS benefits 

while the average value is expected to get a more accurate result. 

More number of day types and more detailed day types will generally give higher 

estimation accuracy. However, more number of day types also increase the computational 

burden and may even make the MILP model become unsolvable. The number of day 

types should be used is also depending on simulation test base. In this simulation, with 5 

solar scenarios and 3 day types, about 90000 variables and more than 300000 constraints 

are included in the decision planning model, which takes more than two days to solve it. 

If more day types are used for the simulation, the problem will become unsolvable within 

reasonable time. When six day types (winter weekday, winter weekend, summer 

weekday, summer weekend, spring/fall weekday and spring/fall weekend) are used for 
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the simulation, the solver will return a run-out-of-memory result. Besides this 

computational difficulty, another reason to use just three day types is that these three day 

types can also capture the major part of the problem. Comparing the result of one winter 

day type and the result of winter weekday and winter weekend day type, the BESS size, 

type and location are the same and the result mismatch is less than 6%. The similar 

situation is applied for summer season and spring/fall season. That is saying, the result of 

three day types is within a reasonable range when more day types are tested. However, 

the solution time of 6 day types is more than double of the solution time for three day 

types. Therefore, using these three day types is the most practical way for the simulation 

in this thesis. The number of day types could be larger when the model is used for a 

smaller network than in this thesis. The annual load data of this test system can be found 

in [25][26]. For this test system, the annual peak load is occurred in the winter as well as 

the winter load profile has the highest peak demand in all three load profiles.  

 
Fig. 6 Day type load profiles 
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The battery data used in this simulation is listed in TABLE III and the data can be found 

in reference [28]. The load demand growth rate for this simulation is set as 1% according 

to reference [49]. The interest rate is crucial to the simulation since the degradation cost 

is sensitive with the interest rate; the higher interest rate will give a lower degradation 

cost and vice versa. This thesis chooses a moderate interest rate, 6%, for the simulation. 

 TABLE III 

BATTERY PARAMETERS IN SIMULATION 

 Capital cost 
Power electronics 

cost 
Efficiency 

Number of 

cycles 

(20%DOD) 

Lead-acid $330/kWh $350/kWh 75% 2000 

Li-ion $600/kWh $400/kWh 95% 15800 

5.2 Decision planning model results 

In this research, the decision planning model assumes discrete values for the battery 

capacity instead of treating the capacity as a continuous variable, which will add 

additional computational complexity to the problem. In this result, the battery capacity 

options have been set as 50 MWh, 100 MWh, and 150 MWh. The battery power output 

options have been set as 50 MW, 100 MW and 150 MW. These numbers are chosen in 

order to demonstrate the validity of the investment planning model. It is preferable to 

consider more discrete options for the battery capacity and the battery power output; 

however, the computational time will dramatically increase when the number of discrete 

options increases. In this simulation, the battery potential locations are chosen as bus 7, 

bus 13 and bus 22. A more exhaustive decision planning model would search for the 

optimal location to place the battery; however, this is left to future work. The simulation 

is running on a computer with two Xeon E5-2687W CPUs and 128 GB RAM. The 

optimal solution derived from the decision planning model is listed in TABLE IV below. 
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TABLE IV 

OPTIMAL SOLUTION OF THE DECISION PLANNING MODEL 

BESS type BESS capacity BESS rate BESS location Solution time 

Li-ion 150 MWh 50 MW Bus 7 12 hours 

Li-ion battery type has been chosen in this thesis. This result indicates that even 

though the capital cost of Li-ion battery is substantially higher than the capital cost of 

lead-acid battery, the higher efficiency and higher number of cycles dominate the 

investment decisions. A low efficiency will directly reduce the profit of BESS. For 

example, a 75% efficiency will change a 100 MWh charging energy into 56.25 MWh 

(100MWh*75%*75%) discharging energy. In this case, in order to make a profit, the 

selling price will need to be about twice the buying energy price while a BESS with 95% 

efficiency could make profits at a much smaller price difference, about 11%, when 

buying and selling energy. One concern is that the current maximum capacity for Li-ion 

systems is smaller than the maximum capacity of lead-acid systems since large scale 

systems for Li-ion are still being developed. However, this result demonstrates that a Li-

ion type of BESS is a better option than a lead-acid BESS when these two options have 

the same capacity size. Maybe Li-ion technology is infeasible for a large power system 

load leveling or load shifting purpose, but the result still has an important meaning for 

small scale power systems like a microgrid. In a small system, the capacity of Li-ion 

battery is comparable to the capacity of lead-acid battery even under current 

technologies. So the Li-ion BESS is a more attractive option for a small scale power 

system and the future of Li-ion system is very inspiring if the large scale Li-ion system 

becomes available. Besides this, these results suggest that Li-ion batteries have a bigger 

price cut space than mature lead-acid batteries in the future, which means that the price 
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difference of these two types of battery will decrease in the future. At that time, Li-ion 

type of BESS will be a very competitive solution for a microgrid. 

The model result selects 150 MWh capacity and 50 MW power output, which are the 

largest capacity and the smallest power output among options. This result indicates that 

large capacity BESS with moderate power output rate are more appropriate for load 

leveling or load shifting purposes. This conclusion is correspond to what is described in 

reference [1], which says that applications like load peaking or load shifting and 

arbitraging economic activities tend to prefer an energy storage with higher energy level 

but with less demand on its instantaneous power level. The utilization patterns of the 

battery in different scenarios for the three characteristic days are illustrated in Fig. 7,   

Fig. 8, and Fig. 9 below. The average battery energy storage utilization, which is 

calculated by the expectation of discharged energy of all scenarios in 24 hours, in 

different day types is listed in TABLE V. 

 
Fig. 7 The pattern of utilizing battery in winter days 
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Fig. 8 The pattern of utilizing battery in summer days 

 
Fig. 9 The pattern of utilizing battery in spring or fall days 
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TABLE V 

BATTERY UTILIZATION IN DIFFERENT DAY TYPES 

 Winter Summer Spring/Fall 

Expectation of 

utilization in 24 hours 
185 MWh 220 MWh 119 MWh 

Maximum utilization of 

a single hour 
82 MWh 92 MWh 52 MWh 

TABLE V results show that the utilization of the BESS is correlated to the system 

demand. That is, the higher load is very likely to require more energy from the BESS as 

the load demand in winter days and summer days is higher than in spring or fall days as 

shown in Fig. 6. This phenomenon can also be observed from Fig. 7, Fig. 8 and Fig. 9. In 

the summer, the BESS has the largest SOC variation, both in the total amount and the 

deepest SOC point. For winter days, the deepest SOC is about 70 MW, which occurred in 

scenario 3; for summer days, the deepest SOC is about 60 MW, which occurred in 

scenario 1; for spring and fall days, the deepest SOC is about 100 MW, which occurred in 

scenario 5. Basically, a BESS is cycled at on-peak hours and off-peak hours while 

noticing that several cycles occurred in 24 hours of one day and this implied that a BESS 

operating strategy is not necessary to only cycle the battery once a day. Many researchers 

make this assumption that a BESS charges at off-peak hours and discharge at on-peak 

hours to calculate the value of the BESS. From Fig. 7, Fig. 8 and Fig. 9 above, it is easy 

to find that a charge-discharge cycle could also occur in off-peak hours or on-peak hours. 

For example, in scenario 2 of summer days, the BESS is discharging at off-peak hours 

when the load is increasing. This example and similar examples imply that charging at 

off-peak hours and then discharging at on-peak hours may not be the only way to collect 

revenue for a BESS. By accounting for the cost associated to the utilization of BESS, 

more profitable cycles have been found in a daily load profile.  
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From the BESS utilization patterns above, this thesis also finds several relationships 

between solar scenarios and utilizing of the BESS. One relationship is that a BESS seems 

to be cycled more frequently in a cloudy scenario. Scenario 2 is a sunny day solar 

radiation profile and the result BESS SOC pattern of scenario 2 has 4 cycles of 

charge/discharge, while the BESS has 6 charge/discharge cycles on a cloudy day like 

scenario 4. Another relationship is that a BESS is likely to discharge at a deeper SOC 

level on a cloudy day than on a sunny day. For example, the discharging SOC level for 

cloudy days in the spring/fall like scenario 4 and 5 is deeper than it for the summer sunny 

day like scenario 2. 

From those three utilization patterns above, a conclusion can be inferred that partial 

cycles are preferred to full charge/discharge cycles for load shifting purpose since full 

charge/discharge cycles have much higher degradation costs. This type of result may not 

be very intuitive because people generally expect to fully utilize a generator’s capacity 

and impose this idea to BESS. However, a key difference between a generator and BESS 

is that a generator’s lifetime will not (or maybe slightly) affected by its operating level 

while BESS lifetime is associated with DOD level. This means that to pursue BESS short 

term profits by shifting load may result in a long term loss due to the reduction of BESS 

lifetime. Since the degradation cost is not linear, the cost for utilizing half of a BESS 

capacity is much higher (more than 2 times) than just utilizing 1/4 part of it. So even if 

the first situation has double discharging energy than the later one but the first situation is 

actually losing money when arbitrage prices of two situations are the same. In other 

words, the profitable arbitrage price will be pushed higher when BESS tries to collect 

more money through discharging more energy. 
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Although the SOC level seems to be never below a certain value in those three 

figures, but the BESS can cycle at a deeper level. Note that the three load profiles are 

average values of some load profiles and there is few load demand varieties shown in 

them. More demand varieties and maybe subsequently more energy price volatilities will 

be observed when a smaller time scale, like 15-minute, is used in simulations. In this 

situation, arbitrage activities of BESS are expected to increase and the lowest SOC level 

may go deeper that what are illustrated in Fig. 7, Fig. 8 and Fig. 9. 

5.3 Production cost model results 

In the second part of the investment planning model, the production cost model finds 

the operating cost of the system with the BESS and without the BESS. The annual 

benefits of the BESS are calculated from the savings between the two operating costs 

above. In the simulation, the annual benefits of BESS at year 1, 3, 5 and 10 are calculated 

by the production cost model and the annual benefits of BESS in the rest years are 

estimated by interpolating. Each annual benefits result is gained from the production cost 

model with 365 days load profiles. The system load profile used is from [25][26] and 1% 

load increment is assumed in this case. Results are shown in TABLE VI. From results in 

TABLE VI, the extrapolations of savings for the rest of the years are given in Fig. 10. 

TABLE VI 

ESTMATION OF THE BESS ANNUAL SAVINGS 

Year 
Annual cost 

without BESS 

Annual cost 

with BESS 
Annual Savings 

1 396915000 395353000 1562000 

3 401598000 399994000 1604000 

5 406721000 405087000 1634000 

10 421905000 420123000 1782000 
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Fig. 10 Extrapolations of the BESS annual savings 

TABLE VII 

ANNUAL CAPACITY DEGRADATION OF FIG.10 

Year 1 3 5 10 

Capacity degradation 1.63% 1.65% 1.61% 1.62% 

The results shown in Fig. 10 are BESS annual savings without considering capacity 

degradations. TABLE VII gives the annual capacity degradation rate in percentage of the 

BESS capacity in previous year. As described in chapter 3, BESS generally will lose its 

capacity as it keeps cycling. This effect is important and, therefore, this thesis considers 

this effect and reruns the simulation by assuming a constant capacity degradation rate 

1.6% based on information in TABLE VII. Capacity degradations are correlated to 

utilizations of BESS but the problem will become a nonlinear programming problem if 

the BESS capacity is modeled as a function of BESS utilizations. Therefore, modeling 

the capacity degradation effect as a constant degrading rate is more practical. The rerun 

simulation result is illustrated in Fig. 11. 
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Fig. 11 BESS annual savings considering capacity degradation 

TABLE VIII 

ANNUAL CAPACITY DEGRADATION OF FIG.11 

Year 1 3 5 10 

Capacity degradation 1.63% 1.61% 1.60% 1.61% 

The annual capacity degradation of Fig. 11 results are presented in TABLE VIII. 

Comparing TABLE VII and TABLE VIII, the result of capacity degradation rate seems 

not to be biased a lot by taking the phenomenon of degrading capacity into consideration. 

The BESS annual savings are affected by this phenomenon; not just the overall savings 

are decreased but also almost every single year's savings become smaller. The reason 

behind this is quite straightforward: a smaller BESS is expected to have a lower profit 

capability. Since the capacity degradation rates are not deviating much in those two 

simulations, the result with considering BESS capacity degradation is a more accurate 

estimation. 

The total estimated savings are about 17 million dollars. Although the estimated 

savings are less than the capital cost of the BESS, the actual savings would be larger than 

this number because several types of cost are neglected in the production cost model, for 
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instance, generators' no load cost and start-up/shut-down cost. An expensive generator 

may not need to start up due to the BESS and the startup cost and no load cost of the 

expensive generators are also the savings of the BESS. BESS can save money from 

emission regulations. Power systems containing high pollution generators, such as old 

type coal plants, may want BESS to reduce their emissions by operating the high 

emission generator less frequently. A BESS is also a good power system ancillary service 

provider due to the fast response speed. A BESS may provide regulation and spinning 

reserve with properly designed power electronic devices. There would be substantial 

amount of revenue for a BESS participating in those reserve markets. Taking the BESS 

established by Golden Valley Electric Association (GVEA) [11] as an example, the BESS 

is in operation for 10 years and it has covered more than 60 percent of power supply type 

of outages. GVEA has published annual total number of outages covered by this BESS 

online [44]. From this point of view, the overall system stability has been greatly 

improved and the BESS could gain significant savings from preventing a large amount of 

outages. Although GVEA did not report the specific amount of money, which is also hard 

to quantify as this thesis stated before, this amount of money must be played a very 

important role in recovering the capital cost of the BESS. As the capital cost decreases, 

BESS will become even more attractive.  Furthermore, considering that this research only 

calculates the benefit of the BESS for load leveling usage, the actual benefits of the BESS 

are larger than the number shown in TABLE VI as the BESS has other applications 

mentioned in chapter 2 like black start capability, voltage support etc. These benefits are 

not included in this study but they are left for future work.  
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The red dot line is the trend line for annual savings, which implies that the annual 

savings is growing up as the BESS service time increases. In this simulation, generator 

expansions and transmission line planning are not included. As load demand increases 

annually, the overall production cost will also increase and the system congestions will 

become larger. With BESS implemented in the system, the congestions are decreased and 

then the system overall production cost is expected to decrease. The role of BESS is 

generally more important in more congested system; thus, the annual savings of BESS is 

higher in later years of its life. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

This thesis focuses on the modeling of a BESS and proposes a BESS investment 

planning analysis. This model tries to provide a useful tool for the BESS investment 

planning by putting a cost for utilizing the BESS based on the opportunity cost caused by 

degradation of the BESS. This proposed BESS degradation model is a generic model and 

it is suited for both transmission level and distribution level networks. Some formulation 

modifications are needed when the investment planning model is applied for distribution 

networks.  There are several conclusions that can be drawn from the results of this thesis. 

The capital cost of a BESS is very important in investment planning, but the 

efficiency, the number of charge/discharge cycles, and the deep charge/discharge 

capability are also very important for the BESS investment planning problem. A high 

value of efficiency can substantially improve the profit of a BESS and such that reduces 

the investment recovery period. A BESS with a higher tolerance for charge/discharge 

cycles over its life time could save money by not having to replace the BESS too 

frequently. The capability to charge/discharge with higher DOD levels for a BESS gives a 

BESS higher effective capacity and provides a higher ramping reserve to power systems. 

A BESS utilization pattern is related to load demand of power systems. A proper way 

to utilize a BESS is charging/discharging the BESS with a deeper cycle in summer or 

winter and saving the BESS lifetime in spring/fall by using it at a shallow level. Through 

this type of strategy, a BESS would gain its major revenue in high demand period (like 

summer or winter in chapter 5) and recover the lost lifetime in low demand period (like 

spring or fall in chapter 5). 
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Variations in the solar production have an impact on the number of charge/discharge 

cycles of a BESS and the depth of those cycles. Two types of solar uncertainties take the 

main roles in terms of influencing the BESS investment planning decisions: the 

frequency of solar radiation changes and the deviation of solar radiation changes. A place 

with frequent short time weather changes may prefer a battery with a large number of 

shallow charge/discharge cycles while a location with occasional long time weather 

changes may select the battery type with high DOD cycling capability. 

Current battery technologies may still be too expansive for load shifting or load 

leveling purposes in power systems. If load shifting and load leveling are the only tasks 

for an energy storage system in power systems, then other energy storage technologies 

may be more attractive. However, a BESS can provide variety of ancillary services like 

voltage regulation and power factor compensation in a short response time. Since the 

response time of a BESS is typically less than one minute, a BESS can provide services 

from regulation (highest response time requirement) to non-spinning reserve (lowest 

response time requirement) in the ancillary service market. This type of capability is very 

important to small scale power systems, especially for microgrids to ensure a reliable, 

stable operating condition. Moreover, a BESS can receive substantial amount of revenue 

by providing service like regulation reserves and spinning reserves. Depending on the 

microgrid conditions and electricity market structure, a BESS could be a crucial 

component to improve system stability and save large amounts of money even under 

current BESS technology cost. The described GVEA example in chapter 5 is a very good 

demonstration of BESS for improving power system stability. When BESS technology 
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cost decreases in the future, BESS will become much popular for improving power 

system stability and have a higher economic benefit. 

This thesis has considered BESS in power systems to save the operating costs; the 

future work will take plug-in hybrid electric vehicle (PHEV) into considerations. PHEVs 

are considered as valuable resources and potential energy storage options for power 

systems. Prior researches have proposed that PHEVs may provide vehicle-to-grid (V2G) 

services to a power system from distributed charging stations in the network. At that time, 

a power system would require fewer reserves from traditional generators and improve its 

stability and flexibility by acquiring fast response reserves from distributed PHEVs. 

PHEVs are usually using batteries as their energy storage devices and the degradation 

model in this thesis could be used to study V2G service. The battery degradation model 

of this thesis provides a valuable tool to analyze the benefits of PHEVs and gives power 

system operators a better understanding of utilizing V2G services from PHEVs in order 

to maximizing the overall social benefits. 

Furthermore, the model proposed in this thesis will take wind into consideration as 

well as solar. As another important renewable energy, wind can act as an important role 

like solar. Typically, wind turbines have a large power level than solar panels. Unlike 

solar panels, wind turbines could produce electricity at night when there is no sunshine. 

The power outputs of wind turbines are directly related to wind speed; the wind power 

production is a nonlinear function of wind speed. References [41] and [42] provide 

approaches to model wind outputs according to wind speeds. Note that wind forecasts 

usually need a lot of scenarios to show uncertainties. This consequence will cause more 

computational difficulties and it is a main issue that should be considered in future work. 
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As discussed in previous chapters, the decision planning model is very hard to solve 

in a short time. However, several advanced algorithm can mitigate this difficulty such as 

decomposition techniques like Benders’ decomposition [40]. Benders’ decomposition 

method breaks one large problem into smaller parts and then solves those smaller 

problems instead of the original large problem. The computational burden of the original 

large problem is likely to decrease as this is the purpose of Benders’ decomposition. 

Depending on different cases, Benders’ decomposition or other methods could be applied 

to the investment planning model in this thesis to reduce the solution time in the future 

work. 
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