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ABSTRACT

This dissertation applies the Bayesian approach as a method to improve the estima-

tion efficiency of existing econometric tools. The first chapter suggests the Continuous

Choice Bayesian (CCB) estimator which combines the Bayesian approach with the

Continuous Choice (CC) estimator suggested by Imai and Keane (2004). Using sim-

ulation study, I provide two important findings. First, the CC estimator clearly has

better finite sample properties compared to a frequently used Discrete Choice (DC)

estimator. Second, the CCB estimator has better estimation efficiency when data

size is relatively small and it still retains the advantage of the CC estimator over the

DC estimator. The second chapter estimates baseball’s managerial efficiency using a

stochastic frontier function with the Bayesian approach. When I apply a stochastic

frontier model to baseball panel data, the difficult part is that dataset often has a

small number of periods, which result in large estimation variance. To overcome this

problem, I apply the Bayesian approach to a stochastic frontier analysis. I compare

the confidence interval of efficiencies from the Bayesian estimator with the classical

frequentist confidence interval. Simulation results show that when I use the Bayesian

approach, I achieve smaller estimation variance while I do not lose any reliability in

a point estimation. Then, I apply the Bayesian stochastic frontier analysis to answer

some interesting questions in baseball.
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Chapter 1

FINITE SAMPLE PROPERTIES OF STRUCTURAL ESTIMATORS

1.1 Introduction

Structural estimation methods have been popularly used for discrete choice mod-

els especially for the practical reason. The maximum likelihood (ML) estimator for a

discrete choice model is easy to compute when structural errors are type-I-extremely

distributed because the likelihood functions has a closed form ML methods can be

also used to estimate continuous choice models by discretizing choice variables. We

refer to the ML estimator from discretized data as “discretized choice (DC) estima-

tor. Recently, Imai and Keane (2004) proposed an alternative estimator that does

not require discretization. We refer to this alternative estimator as continuous choice

(CC) estimator. The main motivation of this chapter is to compare the finite-sample

performances of the DC and CC estimators.

The closed-form likelihood function for the DC estimator is obtained under the as-

sumption that structural errors are additive to utility and drawn from a type-I ex-

treme distribution. The likelihood function is misspecified if structural errors violate

distributional assumption or if observed choice or state variables contain severe mea-

surement errors. One important advantage of using the CC estimator instead of the

DC estimator is that it does not assign the strong distributional assumption on struc-

tural errors. This is so because the CC estimator is computed with approximated

value functions. In addition, the CC estimator can control for possible measurement

errors in observed variables. The likelihood function for the CC estimator is deter-
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mined by the distribution of measurement errors. As long as correct distribution

function is used for measurement errors and value functions are properly approxi-

mated, the CC estimator is expected to have desirable asymptotic properties.

Despite its flexibility, the CC estimator has not been popularly used in literature. One

possible reason is that it requires heavier use of computation and complex program-

ming than the DC estimator. For practitioners, it should be an important question

whether the gains by using the CC estimator sufficiently outweigh the computational

costs. To answer this question, we examine and compare the finite-sample perfor-

mances of the DC and CC estimators by Monte Carlo simulations. To our knowledge,

no study has examined the finite-sample performances of the DC and CC estimators.

This chapter is an attempt to fill this gap in the literatures.

Our Monte Carlo simulation exercises are designed to address three particular is-

sues. The first issue is how the DC and CC estimators perform for the cases ideal

for the DC estimator. To address this issue, we consider the case in which structural

errors are drawn from a type-I extreme distribution and data are not contaminated

by measurement errors. For this case, the CC estimator is computed with the data

contaminated with artificially generated measurement errors. The second issue is how

sensitive the performances of the DC and CC estimators are to distributional assump-

tions. For this issue, we consider the case in which structural errors drawn from a

log normal distribution with data that do not contain measurement errors. The third

and final issue we address is how the two estimators are sensitive to measurement

errors. The likelihood function for the DC estimator is obtained from the conditional

probability of the discretized choice variables. Thus, measurement errors in choice

and state variables may influence the distribution of the DC estimator differently.
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In addition to the CC estimator, we also consider the Bayesian estimation of struc-

tural parameters combining flat priors and the likelihood function used for the CC

estimator. The Bayesian estimator we consider is the posterior mean of a structural

parameter. We refer to this estimator as continuous choice Bayesian (CCB) estimator.

Asymptotically, the CC and CCB estimators are expected to have the same distribu-

tions. However, they may perform differently in finite samples. In addition, for small

samples, the confidence interval obtained from the Bayesian posterior distribution

could be more accurate than the one approximated by the asymptotic distribution

of the CC estimator. Thus, we compare the finite-sample performances of the two

estimators in the end.

Our main results are the following. First, for the cases ideal for the DC estimator

(type-I-extremely distributed structural errors which are independent and additive to

utility and no measurement errors), none of the DC and CC estimators show serious

biases. Second, the DC estimator has a bias when structural errors are not additive to

utility or drawn from a log normal distribution. The true parameter value is located

outside of the 95% confidence interval constructed from the distribution of the DC

estimates from simulated data. Third, the CC estimator provides more reliable infer-

ences than the DC estimator when data contain measurement errors. In particular,

the DC estimator is sensitive to the measurement errors in choice variables and less

sensitive to those in state variables. Fifth and finally, the distribution of the CCB

estimator has a narrower bell shape than that of the CC estimator when sample size

is small. However, as sample size increases, the two estimators have similar distribu-

tions.
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This chapter is organized as follows. Section 1.2 provides a brief literature review.

Section 1.3 introduces the model used for our simulations and explains how data are

generated. Section 1.4 describes how the DC, CC and CCB estimators are computed.

Section 1.5 reports simulation results. Concluding remarks follow in Section 1.6.

1.2 Literature Review

Structural estimation became a main subject of econometrics through a series of

papers such as Wolpin (1984) on fertility and child mortality, Miller (1984) on job

matching and occupational choice, Pake (1986) on patent renewal and Rust (1987)

on engine replacement. Those early papers shared one common setting that agents

in models have only discrete choices. The reason behind that assumption is that it

requires less computational burden compared to continuous choice models. Because

computing power was not enough to handle the discrete choice models in 1980s,

the application of structural estimation approaches on the continuous choice models,

which require even stronger computing power for estimations, should have been left

for future research.

The early expansion of structural estimation was made toward the improvement of

methods intended to deal with more complex state variables. State variables are

information used by agents to find the optimal choice that maximizes the utility of

agents. The state variables can be discrete or continuous even if the choice variables

are discrete. When the model of interest had a continuous or large discrete state

space, this model could not be handled with structural estimators proposed in the

1980s. That is because to estimate this kind of model, we need to solve for optimal

choices at every possible combination of state space values. However, it is simply

impossible to solve for optimal choices at every state variable if the state variable
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is in continuous space. Even if state variables have discrete values, it is practically

impossible to find a maximized value at every state variable, if the number of possi-

ble state variable value is too large. Keane and Wolpin (1994) and Rust (1997) are

notable papers which provide practical solutions to this difficulty.

Another direction for the expansion of structural estimation was to provide esti-

mators applicable to the model with continuous choice variables. Compared with

a discretized choice model which uses discrete value transformed from continuous

value, using continuous choice variable is attractive in that it maximizes the volume

of information from a data set because discretization discards a certain amount of

information. Another motivation for using continuous choice is that discretization

procedures require subjective judgement. The use of continuous choice variable re-

duces the concern that the subjective discretization procedure can affect estimation

results. Imai and Keane (2004) provides an estimation method which uses contin-

uous choice variables. It is the first paper using continuous choice variable without

discretization in structural estimation and also adds one valuable answer to an impor-

tant question in labor economics. Technically, the paper uses Maximum Simulated

Likelihood (MSL) to provide the most likelihood value used for Maximum Likelihood

Estimation (MLE). The most noticeable feature of the MSL approach used in Imai

and Keane (2004) is that it heavily depends on the distribution of measurement er-

ror assumed to be included in data set. This approach could solve difficult question

of obtaining the likelihood value without discretizing continuous choice variables in

structural estimation. However, rigorous theoretical proof of reliability, consistency

or unbiasedness of this approach is not included in Imai and Keane (2004).

Bayesian Markov Chain Monte Carlo approach has been one of the more popular
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estimation methods for discrete choice models. A Bayesian approach is appealing in

that it provides a posterior distribution as a result of estimation, which is especially

attractive for the following two reasons. First, it increases the reliability of estimation.

Structural estimation often has complicated estimation procedure and the distribu-

tion of the parameter is not specified in most cases. If we use posterior distribution

for point estimations, this kind of concern is reduced because we can approximate the

shape of parameter distribution. Second, the posterior distribution is a useful ingredi-

ent for other applications. One example of application is using posterior distributions

to choose the best model among competing ones using loss functions, as explained

in Gelman et al (2003). It is more attractive for structural estimation because the

selection criteria for choosing the best model is often ambiguous. Schorfheide (2000)

provides an example which applies the Bayesian loss function approach to choose the

best model for structural estimation. However, the model used for Schorfheide (2000)

has only one agent and the application of methods on more general forms of model and

data have not been tried due to computational difficulties. The Bayesian approach

has never been popular as a choice for structural estimation despite meaningful ad-

vantages due to a computational burden. Rare examples of papers applying Bayesian

approach include Lancaster (1997), which estimated very simple model. Ching et al

(2009) and Ching et al (2012) introduced a new method called the IJC algorithm

which reduces the burden of Bayesian computations for discrete choice models. By

reducing time spent on value function iteration, this new method can extend the

range of models which can be estimated by the Bayesian method.
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1.3 Model and Data Generation

1.3.1 Model

This chapter uses three models to compare properties of three structural estima-

tors, the DC, CC and CCB estimators. The first model is deterministic model. We

start with this model as a benchmark to compare the CC and DC estimators. When

we use the DC estimator, we assume that structural errors in the economic model

follows independent and additive type-I extreme distribution. Emax and likelihood

value computation of the DC estimator depends on this assumption. The model is

deterministic because, the errors satisfy this assumption, they do not affect marginal

utility of consumption. We expect the DC estimator provides reliable property when

error follows this assumption. We also check the properties of the CC estimator

which does not have specific limitation on the type of error distribution. In the sec-

ond model, we check the properties of the estimators when the additive assumption

is violated. Because errors still follow independent type-I extreme distribution, we

can check how the violation of ‘additive’ assumption affects on estimation result. In

the third model, we examine the property of estimators, when errors do not follow

extreme distribution. Errors are not additive and follow log normal distribution. We

provide the estimation results to check flexibility of each estimator. For convenience,

we call three models as model 1, model 2 and model 3.

Model 1 has following utility function.

u(cit) =
c1+αit

1 + α
(1.1)

where cit is the consumption level of agent i at time t, α is the degree of risk aversion.

The α is the only parameter to be estimated in this model. Each agent i lives 10
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years and solves the following problem to maximize utility.

max
{cit}t=10

t=1

E

[
t=10∑
t=1

δtu(cit) + εit

]
(1.2)

s.t. Ait+1 = R(Ait + git − cit) (1.3)

Ait ≥ 0 ∀i, t (1.4)

Here, Ait is the asset value at time t. We use 4% for the interest rate and 95% for

discount rate. Thus, R = 1.04 and δ = 0.95 . The transfer income from government

gt is common to all individual agents and fixed at 500.

Define:

Vt(Ait) = max
{cit}t=10

t=1

E

[
t=10∑
t=1

δtu(cit)|Ait

]
(1.5)

subject to the restrictions (1.3) and (1.4). In Bellman form, the value function Vt(Ait)

is equivalent to

Vt(Ait) = max
cit

[u(cit) + δEmax(Ai,t+1)] (1.6)

where Ai,t+1 = R(Ait + gt − cit) and Emax(Ait) = EVt(Ait). The optimal consump-

tion and asset paths {cit}t=9
t=1 and {Ait}t=10

t=2 of agent i are determined by solving the

problem (1.6) from t = 1 with given initial asset value Ai1. The consumption level at

t = 10 simply equals ci10 = Ai10 + g10

Model 2 has following utility function and error assumption.

u(cit) =
c1+αit

1 + α
(1.7)

s.t. Ait+1 = R(Ait + gt(1 + εit)− cit)

Different from model 1, this model has structural error εit which is not additive to

utility function and violate condition for using the DC estimator. We assume that

8



probability density function (pdf) of random shock εit is exp(− εit
β

)exp(− εit
β

) with β

equal to 15. Error value affects marginal utility of consumption and future Emax

value.

Model 3 shares the same utility function with Model 2 as follows:

u(cit) =
c1+αit

1 + α
(1.8)

s.t. Ait+1 = R(Ait + gt(1 + εit)− cit)

However, model 3 is different from model 2 in that εit has following distribution.

εit ∼ LN(−0.0017, 0.122) (1.9)

We use model three to check the effect of the type of error distribution on properties

of estimators.

1.3.2 Data Generation

While model 1 has deterministic data generation procedure where uncertainty of

the model only comes from initial asset generation, data generation procedure for

model 2 and model 3 is stochastic because their consumption decision depends on

given random shock εit. In this section, we first explain how to generate data from

model 1 and will specify the difference in model 2 and model 3 data generation steps.

Model 1

With α = −0.7, we generate consumption and asset value paths for 100 agents who

live for 10 time periods for one data set. 1,000 different data sets are generated for

9



Monte Carlo study. To begin with, let us assume that the function Emax(Ait) is

known. Then, we can generate asset values and consumption levels for each agent i

as follows. First, we draw initial asset values Ai1 from N(2000, 5002). Second, we find

the optimal consumption level at time t = 1 , ci1, by solving (1.6) with Emax(Ai2)

replaced by Emax(R(Ai1 + g2 − ci1)). The asset value at the second period is deter-

mined by Ai2 = R(Ai1 +g2−ci1). Third, we repeat the second step for each t ∈ {2, 9}

to find optimal cit and Ai,t+1 .

To use the above procedure, one needs to know the Emax(Ait) functions for all t

and all possible values of Ait. For deterministic model 1 we consider here, it may not

be too difficult to find the Emax functions. However, for model 2 and 3 we consider

later, it is difficult to find the Emax functions. For this reason, we generate data

using the Emax functions approximated by the interpolation method of Keane and

Wolpin (1994). The approximation procedure is discussed in section 1.4.

Model 2 and Model 3

Similar to data generation for model 1, we start from generating initial asset value

Ai1 from following distribution.

Ai1 ∼ N(2000, 5002)

Then, each agent i is given random transfer gt(1 + εit) at the beginning of each

period. εit follows type-I extreme distribution in model 2 and log normal distribution

in model 3. Next step is to approximate Emax values using the method which will be

illustrated later in section 1.4.2.1. Then, we solve for following equation for t = 1, ...9.

Vt(Ait) = max
cit

[u(cit) + δEmax(Ai,t+1)] (1.10)

10



where Ai,t+1 = R(Ait + gt(1 + εit) − cit). The optimal consumption and asset paths

{cit}t=9
t=1 and {Ait}t=10

t=2 of agent i are determined by solving equation (1.10). The last

period consumption, ci10, is simply ci10 = Ai10 + g10(1 + εi10).

We generate data for i = 1, ..., 100 by repeating above sequence 1 − 3. To illus-

trate generated data values, table 1.1 provides generated data for agent 1 from three

different model settings. Mean values of generated data from each model is also pro-

vided in table 1.2.

Here are several things to be mentioned about this dataset illustrated in table 1.1.

First, asset has continuous space. It means that we need an approximation procedure.

Second, consumption, the only choice variable in the model, has also continuous space.

To deal with continuous choice, we need to choose between discretizing those values

and applying a recent approach such as the method from Imai and Keane (2004).

We apply both approaches in this chapter to check the validity of each method and

to compare their reliability and efficiency. Third, the fourth column of table 1 is

asset contaminated by measurement errors. We need asset values contaminated by

measurement errors for two reasons. First, we use them to check the property of the

CC estimator by Imai and Keane (2004) which requires existence of measurement er-

ror. Second, we investigate how they affect estimation results from the DC estimator,

which uses same estimation steps regardless of existence of measurement errors. For

such cases, the measurement errors ξit are drawn from N(0, 4002).
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Model 1 Model 2 Model 3

Period A1t c1t A1t+ξ1t A1t c1t A1t+ξ1t A1t c1t A1t+ξ1t

1 2153 805 1983 2697 913 2445 1632 704 1539

2 1922 790 1840 2342 871 2188 1520 678 1763

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

10 125 625 9 245 832 45 112 548 25

Table 1.1: Generated Data of Agent 1

Model 1 Model 2 Model 3

Ai1 Ai10 cit Ai1 Ai10 cit Ai1 Ai10 cit

2016.1 184.3 805.4 1989.5 150.1 755 2018.5 172.2 736.5

Table 1.2: Mean Values of Generated Data Set

1.4 Estimation Methods

1.4.1 Model 1

Continuous Choice Estimator

The continuous choice (CC) estimator is proposed by Imai and Keane (2004). To re-

place BHHH used for Imai and Keane (2004), we applied the Constrained Optimiza-

tion By Linear Approximation (COBYLA) algorithm introduced by Powell (1994) as

an numerical optimizer for the CC estimator. This algorithm does not require finding

derivatives of log likelihood functions and is particularly useful for the estimation of

structural models with complicated likelihood functions. McKinnon (1998) proved

that COBYLA provides more robust optimization results compared to the widely

used the Nelder-Mead method which is also a non-differential search method.
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Step 1. Approximating Emax values for a given α̂

To approximate values, we start with the last time period (t = 10) when the function

has the following simple form:

Emax(Ai10) = max
ci10

(
c1+α̂i10

1 + α̂

)
(1.11)

s.t. ci10 ≤ Ai10 + gi10

where α̂ is a candidate parameter value, and Ai10 is the asset value at the beginning

of the last period and the only state variable for agent i. g10 value is fixed at 500.

We search for Emax(Ai10) values for 0 ≤ Ai10 ≤ 4000 at the last period. Ai10’s range

is limited to the interval [0, 40000], because asset values in generated data do not

exceed the range. We approximate the Emax(Ai10) function using the interpolation

method of Keane and Wolpin (1994).

The approximated Emax(Ai10) function is obtained by the following procedure. First,

the approximated functional form we use is given

π0,10 + π1,10p (Ai10) + π2,10(p (Ai10))
2 + π3,10(p (Ai10))

3 (1.12)

We estimate π0,10, π1,10, π2,10 and π3,10 by the least squares using a set of the

Emax(Ai10) values on selected Ai10 values. Here p(Ai10) is Ai10’s value after the

Chebyshev polynomial transformation. We use the Chebyshev polynomial transfor-

mation, because if we use transformed values of Ai10 selected on Chebyshev nodes,

we can minimize the maximum value of errors occurred in approximation (Stewart,

1996). Table 1.3 provides selected data points used for the least squares estimation

of equation (1.12). Using the estimated values, π̂0,10, π̂1,10, π̂2,10 and π̂3,10, we can
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A10 3999.8 3997.8 · · · 2031.4 · · · 0.247

p(A10) 0.999 0.998 · · · 0.016 · · · -0.999

Emax(A10) 42.73 42.72 · · · 36.14 · · · 0.042

Table 1.3: Asset and Computed Emax Values at Chebyshev Nodes at t = 10

approximate the Emax(Ai10) value for any state variable value Ai10 by applying the

following equation.

Êmax(Ai10) = π̂0,10 + π̂1,10p(Ai10) + π̂2,10(p(Ai10))
2 + π̂3,10(p(Ai10))

3 (1.13)

At period t = 9, the procedure to approximate Emax values is similar to the proce-

dure for the last period except we need Emax(Ai10) to solve for the optimal value of

ci9. To approach this problem, we use equation (1.13) to approximate Emax(Ai10).

With the approximated Emax(Ai10), Emax(Ai9) is given

Emax(Ai9) = max
ci9

[
ci9

1+α

1 + α
+ V10(Ai10)

]
= max

ci9

[
c1+αi9

1 + α
+ Emax(Ai10)

]
≈ max

ci9

[
ci9

1+α

1 + α
+ Êmax(R(Ai9 + gt − ci9))

]
(1.14)

Solving the first order condition for problem (1.14), we can find the optimal value

ci9 for a given state variable Ai9. Now, we can approximate Emax(Ai9) for selected

values of Ai9 by repeating the procedure used for Emax(Ai9). The function that we

use is

π0,9 + π1,9p (Ai9) + π2,9p(Ai9)
2 + π3,9p(Ai9)

3 (1.15)

We again estimate the parameters π0,9, π1,9, π2,9 and π3,9 by the least squares approach

using a set of the Emax(Ai9) values on selected values of Ai9. Then, the approximated

Emax(Ai9) is given

Êmax(Ai9) = π̂0,9 + π̂1,9p(A9) + π̂2,9(p(Ai9))
2 + π̂3,9(p(Ai9))

3 (1.16)
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t π̂0 π̂1 π̂2 π̂3

2 187.58 18.796 -1.229 0.092

3 172.21 18.473 -1.265 0.098

4 155.97 18.069 -1.311 0.108

5 138.80 17.555 -1.369 0.119

6 120.61 16.880 -1.444 0.137

7 101.27 15.962 -1.541 0.166

8 80.60 14.642 -1.660 0.221

9 58.26 12.681 -1.709 0.371

10 34.55 9.489 -1.652 0.467

Table 1.4: Estimated π Values when α̂ = −0.7

At Ai8, we will use equation (1.12) to find approximated Emax(Ai8) value and the

repeat the similar approach to approximate the functions for other time periods. As

an example, Table 1.4 provides the estimated π values for the candidate parameter

α̂ = −0.7 . To check interpolation method’s validity, we used R2 as a standard. At

each period, R2 value is at least larger than 0.999 in this approximation setting.

Step 2. Finding likelihood

To find the log-likelihood for a given candidate parameter, we use the maximum

simulated likelihood (MSL) procedure suggested by Imai and Keane (2004). A dis-

tinctive feature of the MSL procedure is that measurement errors in data take an

important role. This feature is not often found in other likelihood methods. The

estimation procedure begins with the assumption that data contain measurement er-

rors. In fact, measurement errors are necessary for the MSL estimation because the
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likelihood function for the MSL estimator (CC estimator) is determined by the dis-

tribution of measurement errors. This feature leads us to an ironical situation where

if data do not contain any measurement errors, we need to contaminate the data with

artificially generated errors. We also check the effect from generated artificial error

in result section.

We consider two cases, say, Cases A and B. Case A is the case in which data are

contaminated by measurement errors, and Case B is the case in which data do not

contain measurement errors. For both cases, we draw random numbers ξit from

N(0, σ2
ξ ) for each combination of i and t. Then, we add the measurement errors to

true asset values Ait to obtain contaminated asset values ADit :

ADit = Ait + ξit (1.17)

The estimation procedures are different for Cases A and Case B. For Case A, the

ξit represent the measurement errors whose distribution is unknown, and thus σ2
ξ ,

as well as α should be estimated. In contrast, for Case B, the errors ξit represent

artificial measurement errors drawn from a known distribution (N(0, σ2
ξ ) in our case)

to construct the likelihood function. The variance of ξit, σ
2
ξ , is known and it needs

not be estimated. Thus, for Case B, the only parameter to be estimated is α.

· Steps for Case A

1. Choose candidate parameter values of α and σξ, say α̂ and σ̂ξ .

2. Fetch initial asset values (with measurement errors), ADt . Then, generate errors

ξmit from N(0, σ̂2
ξ ). Set Ami1 = ADi1 − ξmi1 and consider it to be true initial asset

value.
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3. Starting with Ami1, find the optimal consumption level cmi1 by solving

ci1
m = arg max

cmi1

[
(ci1

m)1+α

1 + α
+ Êmax(Ai2

m)

]
(1.18)

where Ami2 = R(Ami1 + gt − ci1m).

4. Apply 1−3 for t = 2, ..., 9. Then, we can find the optimal consumption and asset

value paths {ci2m, ..., ci9m} and {Ai3m, ..., Ai10m}. The last period consumption

is simply settled as ci10
m = Ai10

m + gt.

5. Repeat steps 1− 4 to generate simulated data for m = 1, ..., 150.

6. Estimate measurement errors by ξmit = ADit − Amit .

7. Define

Lmi (α̂, σ̂ξ) =
10∏
t=1

[
1

σ̂ξ
√

2π
exp

(
−(ξit

m)2

2σ̂2
ξ

)]
(1.19)

8. Likelihood function value at the candidate parameter values α̂ and σ̂ξ is given

by

l(α̂, σ̂ξ) =
100∑
i=1

[
ln

1

150

150∑
m=1

Lmi (α̂, σ̂ξ)

]
(1.20)

· Steps for Case B

The steps needed for Case B are the same as those for Case A, except now that

initial period measurement error ξmi1 is drawn from N(0, σ2
ξ ). Because σξ is known, it

needs not be estimated.

Step 3. Computing the CC estimator. We use optimal candidate parameter which

provides maximum likelihood by applying COBYLA.
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Orig. value d Disc. value cdit

0∼650 1 600

650∼750 2 700

750∼850 3 800

850∼950 4 900

Over 950 5 1000

Table 1.5: Discretization Rule of Continuous Consumption Value

Step 4. Repeating steps 1 − 3, 1,000 times. Find average and standard error of

estimated values.

Discretized Choice Estimator

Rust (1987) proposed a maximum likelihood estimator for discrete choice models.

We refer to the maximum likelihood estimator applied to discretized choice variables

as the discretized choice (DC) estimator. For our experimental model (1), the DC

estimator computation follows the steps below.

Step 1. Discretization

Discretize consumption levels. This procedure follows the rule given in table 1.5.

As shown in table 1.2, the average of consumption levels is about 800 and most of

consumption values are in the interval (550, 1050). The discretization rule we use is

similar to those which have been used for the studies of labor hours such as Houser

(2003), Rust and Phelan (2007) and Van der Klaauw and Wolpin (2008).

Step 2. Approximating Emax values.
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We start from t = 10. For t = 10, the procedure to find the Emax(Ai10) values

is same with the CC estimator. After finding the Emax(Ait) values on selected asset

value Ai10, we apply the interpolation method used for the CC estimator to obtain

Êmax(Ai10)

For the time periods t = 9, 8, ..., 2, we compute the Emax(Ait) values following the

method of Rust (1987). For time t, Emax(Ait) for a given state variable valueAit is

Emax(Ait) = ln

[
5∑
d=1

exp(V̂t(Ait,c
d
it))

]
(1.21)

where

cdit = 600 + 100(d− 1)

V̂t(Ait, c
d
it) =

(cdit)
1+α

1 + α
+ Êmax(Ait+1)

Ait+1 = R(Ait + gt − cit)

For t = 9, we use Êmax(Ai10) to find V̂ (Ait, c
d
it) at selected Ait. We can easily find

Emax(Ait) when we have V̂ (Ait, c
d
it) values using equation (1.21) which comes from

type-I extreme structural error distribution. Now we use the interpolation method

to find Êmax(Ai9) in the same way that we used for the CC estimator. To find

Êmax(Ait) for t = 2, ...8, we repeat the approach we used for t = 9 to find Êmax(Ai9)

Step 3. Computing log-likelihood.

To obtain the log-likelihood for a given parameter, we start from finding Prob(cDit |Ait),

conditional probability of choosing consumption, cDit , given continuous asset value Ait.

We use equation (1.22) to find the probability and this equation comes from multiple
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logit conditional probability which depends on structural error assumption of type-I

extreme distribution (Train (2003)).

Prob(cDit |Ait) =
exp(Vt(Ait, c

D
it ))

5∑
d=1

exp(Vt(Ait, cdit))

(1.22)

where D is 1, 2, 3, 4 or 5.

Combine cit
D, discretized consumption value in dataset, and Ait, asset value from

dataset, we obtain equation (1.23) that we use for computing the likelihood value for

candidate α̂

L(α̂) =
100∏
i=1

10∏
t=1

Prob(cit
D|Ait) (1.23)

Then, log-likelihood value is as follows:

l(α̂) =
100∑
i=1

10∑
t=1

logProb(cit
D|Ait) (1.24)

Step 4. Find the candidate parameter which provides maximum likelihood value us-

ing numerical optimization methods. Like the CC estimator, the DC estimator uses

COBYLA for numerical search.

Step 5. Repeating steps 1 − 4, 1,000 times. Find average and standard error of

estimated values.

Continuous Choice Bayesian Estimator

The Continuous Choice Bayesian (CCB) estimator uses the same likelihood finding

step that we used for the CC estimator but finds optimal candidate value by applying

the Metropolis algorithm which is the one of Bayesian MCMC convergence method.

As an output of Metropolis algorithm, it provides the posterior distribution. This
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procedure can be summarized into following two steps.

Step 1. Finding likelihood value for a given candidate α̂.

Step 1 is same with likelihood finding steps used for the CC estimator. That is,

this step is the combination of step 1 and step 2 of the CC estimator.

Step 2. Updating candidate parameter value and making posterior distribution

We use Metropolis algorithm to update candidate parameter. Steps for Metropo-

lis algorithm has different detail according to the existence of the measurement error.

Therefore we will separately describe update procedure for case A and case B. The

setting of case A and case B is same with the CC estimator case.

· Steps for Case A

(1) Set initial candidate parameter α0 and σξ,0. We use α0 = −0.9 and σξ,0 = 150

for the initial values. We set these values far enough apart to show that Metropolis

algorithm is reliable even if we do not have the proper knowledge on initial values.

Similar approach is found in Ching et al (2009) where a initial value is set apart

from the true parameter value. Using step 1, find l(α0, σξ,0), log-likelihood of initial

parameters α0 and σξ,0.

(2) Generate new parameter candidate α̂1 from following distributional assumption.

α̂1 ∼ N(α0, σα
2) (1.25)

21



where σα is standard deviation for generation. We also define jumping distribution,

Jt(α̂t+1|αt) as the probability density function value of α̂t+1 when α̂t+1 has the fol-

lowing distribution.

α̂t+1 ∼ N(αt, σα
2) (1.26)

(3) Find l(α̂1, σξ,0), log-likelihood for α̂1 and σξ,0. Solve for update probability from

α0 to candidate α̂1 as follows:

Prob(α0, α̂1|σξ,0) = min [exp(l(α̂1, σξ,0)− l(α0, σξ,0)), 1] (1.27)

Equation (1.27) comes from following update probability definition in Gelman et al

(2003).

Prob(α0, α̂1|σξ,0) = min [r, 1] (1.28)

In equation (1.28), r is jumping rule which is defined as follows:

r =
p(α̂1|σξ,0,A, c)

p(α0|σξ,0,A, c)
(1.29)

where A and c are the vectors of asset and consumption data generated from the

true parameter. Ratio of posterior distribution,
p(α̂1|σξ,0,A,c)
p(α0|σξ,0,A,c)

is same with
L(α̂1,σξ,0)

L(α0,σξ,0)
,

the ratio of likelihood (α̂1,σξ,0) over (α0,σξ,0), when we use flat prior for α. Therefore,

we have following equation

r =
L(α̂1, σξ,0)

L(α0, σξ,0)
= exp (l(α̂1, σξ,0)− l(α0, σξ,0)) (1.30)

where L(a, b) is likelihood of candidate parameter a and b.

Then, we generate a number λα from continuous uniform distribution between 0 and

1 and compare λα with Prob(α0, α̂1). Using λα, we update α1, accepted parameter

value at 1st iteration for α, using following rule. Prob(α0, α̂1|σξ,0) ≥ λα → Update : α1 = α̂1

Prob(α0, α̂1|σξ,0) < λα → Stay : α1 = α0
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(4) Update parameter σξ,0 in similar manner used for (2) and (3). Using appropriate

σσξ , generate candidate parameter value σ̂ξ,1 from

σ̂ξ,1 ∼ N(σξ,0, σσξ
2)

(5) Find log-likelihood for σ̂ξ,1 and σξ,0 with given α using Step 1. For α value, we

use updated candidate α1 from (3). Then we solve for update probability to set

σξ,1 = σ̂ξ,1 given α1 using equation (1.31) which comes from the assumption that we

use flat prior for σξ and jumping distribution of σξ is symmetric. To obtain equation

(1.31), we apply the same logic that we used for finding equation (1.27).

Prob(σξ,0, ˆσξ,1|α1) = [exp(l( ˆσξ,1, α1)− l(σξ,0, α1)), 1] (1.31)

Then we generate a number λσξ from continuous uniform distribution between 0 and

1 to compare λσξ with Prob(α0, α̂1). Using λσξ , we update σξ,1. parameter value at

1st iteration for σξ, as follows. Prob(σξ,0, σ̂ξ,1|α1) ≥ λσξ → Update : σξ,1 = σ̂ξ,1

Prob(σξ,0, σ̂ξ,1|α1) < λσξ → Update : σξ,1 = σξ,0

(6) Update accepted parameter set {αr, σξ,r} (r ≥ 1) in similar manner that we did in

(2)∼(5). The number of iterations is set to be sufficient for convergence of parameter.

1. Generate α̂r+1 from αr using α̂r+1 ∼ N(αr, σα
2)

2. Find log-likelihood for {α̂r+1, σξ,r} and probability Prob(αr, α̂r+1|σξ,r) = exp(l(α̂r+1, σξ,r)−

l(αr, σξ,r))

3. Generate a number λα from continuous uniform distribution between 0 and 1

then decide the value αr+1 using following rule. Prob(αr, α̂r+1|σξ,r) ≥ λα → Update : αr+1 = α̂r+1

Prob(αr, α̂r+1|σξ,r) < λα → Stay : αr+1 = αr
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4. Generate σ̂ξ,r+1 from σξ,r using σξ,r+1 ∼ N(σξ,r, σξ
2)

5. Compute log-likelihood for {αr+1, σ̂ξ,r+1} and {αr+1, σξ,r}.

Then, find Prob(σξ,r, σ̂ξ,r+1|αr+1) = exp(l(σ̂ξ,r+1, αr+1)− l(σξ,r, αr+1))

6. Generate a number λσξ from continuous uniform distribution between 0 and 1

then decide the value σξ,r+1 using following rule. Prob(σξ,r, σ̂ξ,r+1|αr+1) ≥ λσξ → Update : σξ,r+1 = σ̂ξ,r+1

Prob(σξ,r, σ̂ξ,r+1|αr+1) < λσξ → Update : σξ,r+1 = σξ,r

(7) Find mean and standard deviation from posterior distribution which is set of val-

ues {αr, σξ,r}Br=b+1 where b is the number of initial burning and B is the number of

iterations.

· Steps for Case B

(1) Set initial candidate parameter α0. Initial value is set as -0.9. Using step 1,

approximate Emax values and find log-likelihood value for α0.

(2) Generate new candidate parameter α̂1 from following distributional assumption.

α̂1 ∼ N(α0, σα
2)

(3) Find log-likelihood for α̂1 using Step 1 and Step 2. Then we solve for probability

to update α0 to candidate α̂1 as follows

Prob(α0, α̂1) = [exp(l(α̂1)− l(α0)), 1] (1.32)

Equation (1.32) has simple form which has only likelihood values because we assume

the flat prior and the symmetric jumping distribution as we did for Case A. Then,
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we generate a number λ from continuous uniform distribution between 0 and 1 to

compare λ with Prob(α0, α̂1). Using λ, we update parameter value at 1st iteration,

α1, using following rule. Prob(α0, α̂1) ≥ λ → Update : α1 = α̂1

Prob(α0, α̂1) < λ → Stay : α1 = α0

(4) Update parameter αr (r ≥ 1) in similar manner used for (2) and (3). The number

of iterations is set to be sufficient for convergence of parameter.

1. Generate α̂r+1 from αr using α̂r+1 ∼ N(αr, σα
2)

2. Find log-likelihood for α̂r+1

and probability Prob(αr, α̂r+1) = [exp(l(α̂r+1)− l(αr)), 1]

3. Generate a number λ from continuous uniform distribution between 0 and 1

then decide the value αr+1 using following rule. Prob(αr, α̂r+1) ≥ λ → Update : αr+1 = α̂r+1

Prob(αr, α̂r+1) < λ → Stay : αr+1 = αr

(5) Find the mean and standard deviation of posterior distribution which is set of

values {αr}Br=b+1 where b is the number of initial burning and B is the number of

iterations.

1.4.2 Model 2 and Model 3

Continuous Choice Estimator

The CC estimator consists of following steps. The order of steps is same with the CC

estimator for the estimation of model 1 but the detail of execution is different. The

estimation of model 2 and model 3 applies the same steps except that the model 2

25



procedure includes an Emax approximation in step 1 as follows.

Step 1. Approximating Emax for a given parameter

· Model 2

At last period t = 10, we solve for approximated Emax value in following orders.

1. Generate ε10,j which follows type-I distribution with pdf, exp(− εit
β

)exp(− εit
β

)

with β equal to 15. We generate 30 errors for result in this chapter.

2. Find value of V10(Ai10, εi10,j) for a given error value ε10,j as follows

V10(Ai10, εi10,j) =
[Ai10 + g10(1 + εi10,j)]

1+α̂

1 + α̂
(1.33)

where α̂ is given parameter value. We use transformed Chebyshev nodes that

we used for the model 1 case. Using V10(A10, ε10,j) from equation (1.33), we find

Emax values as follows:

Emax(Ai10) =
30∑
j=1

V10(Ai10, εi10,j)

30
(1.34)

3. Set functional form to approximate Emax(Ai10) as follows.

π0,10 + π1,10p (Ai10) + π2,10(p (Ai10))
2 + π3,10(p (Ai10))

3 (1.35)

then, use the least squares method that we used for extreme error case to find

the following equation.

Êmax(Ai10) = π̂0,10 + π̂1,10p(Ai10) + π̂2,10(p(Ai10))
2 + π̂3,10(p(Ai10))

3 (1.36)

p(Ai10) is value after Chebyshev polynomial transformation. Now, we have

Êmax(Ai10) for all the asset values, Ai10.

To find Êmax(Ait) for period t = 9, 8, ..., 2, we use following sequences.

26



(a) Prepare a set of measurement errors, {εit,j} for j = 1, ..., 30 from type-I

extreme distribution.

(b) Find value of Vt(Ait, εit,j) for a given error value εit,j as follows.

Vt(Ait, εit,j) = max
cit

[
u(cit) + Êmax(Ait+1)

]
= max

cit

[
u(cit) + Êmax(R(Ait + gt(1 + εit,j)− cit))

]
(1.37)

Then, find Emax value at Ait as follows:

Emax(Ait) =
30∑
j=1

Vt(Ait, εit,j)

30
(1.38)

(c) To find Êmax(Ait), set functional form for Emax(Ait) as follows:

π0,t + π1,tp (Ait) + π2,t(p (Ait))
2 + π3,t(p (Ait))

3 (1.39)

Then, estimate π̂0,t, π̂1,t, π̂2,t and π̂3,t for following equation.

Êmax(Ait) = π̂0,t + π̂1,tp(Ait) + π̂2,t(p(Ait))
2 + π̂3,t(p(Ait))

3 (1.40)

(d) Repeat above sequence in (a)− (c) for t = 8, ..., 2.

· Model 3

Same with previous models, we start from approximating Emax value in terminal

period.

1. Find error values ε10,l which comes from Gauss-Hermite quadrature points

{xl}20l=1.

ε10,l = exp(
√

2xlσ + µ) l = 1, ..., 20 (1.41)

where µ = −0.0017 and σ = 0.12 which are log normal distribution parameters

used for structural error generation.

27



2. Find value of V10(Ai10, εi10,l) for a given error value ε10,l as follows

V10(Ai10, εi10,l) =
[Ai10 + g10(1 + εi10,l)]

1+α̂

1 + α̂
(1.42)

where α̂ is given parameter value. We also use Chebyshev nodes here. We use

V10(A10, ε10,l) from equation (1.42) to find Emax values as follows:

Emax(Ai10) =
20∑
l=1

V10(Ai10, εi10,l)W (l)√
π

(1.43)

where W(l) is weight value for Gauss-Hermite quadrature points.

3. Set functional form to approximate Emax(Ai10) as follows.

π0,10 + π1,10p (Ai10) + π2,10(p (Ai10))
2 + π3,10(p (Ai10))

3 (1.44)

Estimate π’s in equation (1.44) to find following equation.

Êmax(Ai10) = π̂0,10 + π̂1,10p(Ai10) + π̂2,10(p(Ai10))
2 + π̂3,10(p(Ai10))

3 (1.45)

p(Ai10) is value after Chebyshev polynomial transformation. Now, we have

Êmax(Ai10) for all the asset values, Ai10.

To find Êmax(Ait) for period t = 9, 8, ..., 2, we use following sequences.

(a) Prepare set of measurement errors, {εit}, on Gauss-Hermite quadrature

points as we did for the last period. {εit} is same for all i and t.

(b) Find value of Vt(Ait, εit,l) for a given error value εit as follows.

Vt(Ait, εit,l) = max
cit

[
u(cit) + Êmax(Ait+1)

]
= max

cit

[
u(cit) + Êmax(R(Ait + gt(1 + εit,l)− cit))

]
(1.46)

Then, find Emax value at Ait as follows:

Emax(Ait) =
20∑
l=1

Vt(Ait, εit,l)W (l)√
π

(1.47)
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(c) To find Êmax(Ait), set functional form for Emax(Ait) as follows:

π0,t + π1,tp (Ait) + π2,t(p (Ait))
2 + π3,t(p (Ait))

3 (1.48)

Then, estimate π̂0,t, π̂1,t, π̂2,t and π̂3,t for following equation.

Êmax(Ait) = π̂0,t + π̂1,tp(Ait) + π̂2,t(p(Ait))
2 + π̂3,t(p(Ait))

3 (1.49)

(d) Repeat above sequence in (a)− (c) for t = 8, ..., 2.

Step 2. Finding log-likelihood

We use similar MSL approach that we applied for the estimation of model 1 case.

However, this approach is slightly different in that we need εmit to solve for equation

(1.50).

cmit = arg max
citm

[
(cmit )

1+α

1 + α
+ Êmax(Amit+1)

]
(1.50)

where Amit+1 = R(Amt + gt(1 + εmit ) − cmit ). Therefore, we need to generate εmit at the

beginning of each period. Aside from this difference, we use the same simulation

procedure as for the extreme error case.

Step 3. Finding optimal candidate value.

We use numerical search method for this step. For contaminated data, we use two

way optimization to maximize l(α̂, σ̂ξ) while we use one way optimization for pure

data case to maximize l(α̂|σξ = 200). Like extreme structural error case, we use

COBYLA as numerical optimizer.
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Discrete Choice Estimator

The DC estimator always assumes added type-I extreme distribution. Therefore, we

do not give any change to the estimator according to the structural error distribution.

For the estimation of model 2 and model 3, we follow the same steps in the DC

estimator that we use for model 1.

Continuous Choice Bayesian Estimator

When we apply the CC or CCB estimator for a dataset with different structural error

distribution, difference only exists in the likelihood finding step. For the estimation

of data from model 2 and the model 3, the CCB estimator follow the same likelihood

finding step of the CC estimator. Then the CCB estimator applies the Metropolis

algorithm to find estimated value and posterior distribution.

1.5 Simulation Results

In this section, we provide results from the CC estimator and the DC estimator

under various error conditions. We start this section by providing estimation results

on data generated from model 1. Theoretically, this assumption supports reliable

estimation result when we use the DC estimator. We use the result from this error

setting as a benchmark for other error settings. We will proceed to the estimation of

model 2. As we specified in model section, structural error is not additive to utility

function. Then we check the simulation results of the estimators on data generated

from model 3 where structural errors do not follow type-I extreme distribution. Next

topic is about the change of estimation quality that comes from the existence of mea-

surement errors. First, we add measurement errors to asset values in the dataset that

we used for benchmark result. Second, we add measurement errors to consumption

values and check the change in the estimation quality. For this setting, there is no
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DC CC

Parameter Est.V. S.E. Est.V. S.E.

Value -0.708 0.045 -0.694 0.025

Table 1.6: Model 1, No Measurement Errors

Figure 1.1: Model 1, No Measurement Errors

measurement errors on asset values. We execute this test to check whether the type

of contaminated variable, state or choice, affects the estimation reliability. Finishing

this section, we provide estimation results from the CCB estimator as a comparison.

1.5.1 Model 1 without Measurement Error

In table 1.6, we obtain the expected results from the benchmark test. Structural

error assumption follows conditions assumed for the use of the DC estimator, so it

is reasonable that the DC estimator provides reliable point estimation. The CC es-

timator also brings unbiased estimation result. There are two notable features of

the benchmark estimation result, the first is that the CC estimator provides smaller
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DC CC

Parameter Est.V. S.E. Est.V. S.E.

Value -0.470 0.014 -0.695 0.065

Table 1.7: Model 2, No Measurement Errors

variances even for the estimation of the models whose structural errors are set to be

ideal for the use of the DC estimator and the second is that the CC estimator works

well when we use the CC estimator on data set without measurement error. Because

there is no measurement error in data set, we generated artificial measurement errors

and added them to asset values. Estimation result shows that the CC estimator still

provide reliable point estimation.

Figure 1.1 provides histograms of 1,000 estimated values. In the histogram from

the CC estimator, estimated values are condensed around the true parameter value

with uni-modal shape while distribution from the use of the DC estimator is more

dispersed, which means that we can reduce the risk of obtaining biased estimated

value when we use the CC estimator.

1.5.2 Model 2 without Measurement Error

When we estimate data generated from model 2, our focus is on checking the

properties of estimators when the additive assumption of errors for the DC estimator

is violated. Estimation results in table 1.7 shows that the use of the DC estimator on

dataset which does not have additive structural error may cause serious bias problem.

True parameter value is clearly rejected at 5% significance level. As shown in figure

1.2, the histogram of estimated values from the DC estimator fails to obtain estimated
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Figure 1.2: Model 2, No Measurement Errors

DC CC

Parameter Est.V. S.E. Est.V. S.E.

Value -0.580 0.037 -0.715 0.050

Table 1.8: Model 3, No Measurement Errors

value close to true parameter value. This result shows that it is very concerning to

use the DC estimator if we do not have clear evidence that structural errors con-

tained in data follow additive to utility. On the other hand, the CC estimator shows

more reliable estimation results. In figure 1.2, estimated values are located around

true parameter value and, in particular, the mode is close to −0.7. By the way, esti-

mation results shows that standard error of estimation is much increased compared

with model 1 case. This results seem reasonable when we consider that model 1 is

deterministic and random shock from structural errors added uncertainty to model 2.
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Figure 1.3: Model 3, No Measurement Errors

1.5.3 Model 3 without Measurement Error

We test estimators with this model setting for two reasons. The first goal is to

check the reliability and efficiency of the DC estimator when error assumptions for

the DC estimators are seriously biased. The second goal is to check the flexibility of

the CC estimator which can adjust estimation approach according to the type and

structure of errors. In model 3, error setting violates two important assumptions for

the DC estimator. The structural error is not additive to utility function and does

not follow type-I extreme distribution. The result can be meaningful in two ways. If

we obtain good estimation result, it refutes criticism about the DC estimator under

error conditions other than additive type-I error distribution. In opposite case, results

will motivate us to find an alternative estimator for estimation of datasets which may

not have additive type-I extreme error distribution. Estimation results provide the

following findings.
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DC CC

Parameter Est.V. S.E. Est.V. S.E.

Model 1 -0.781 0.038 -0.680 0.085

Model 2 -0.471 0.014 -0.717 0.133

Table 1.9: Model 1 and Model 2, with Measurement Errors

The DC estimator shows significant decline in the estimation quality compared with

benchmark model 1 setting. In table 1.8, the estimation result from the DC estimator

provides large bias in point estimation with 95% confidence interval of (−0.652,−0.510)

which does not contain the true parameter value.

On the other hand, we do not find that a change of the error assumption has a

significant effect on estimation performance of the CC estimator. The CC estimator

shows reliable estimation result in unbiasedness standards because the CC estimator

uses a structure that simply uses distribution of measurement error without further

assumption. In a similar vein, the CC estimator may have highly reliable estima-

tion result when it is used for different types of structural error distribution. Along

with robustness shown with tests on data containing measurement errors, this result

shows that the use of the CC estimator should be seriously considered when we esti-

mate data with unknown error properties. However, further investigation is seriously

needed with regards to the properties of the CC estimator with other structural error

distributions to argue that the CC estimator proves its reliability; because we only

tested two different type of structural error distributions in this chapter.
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Figure 1.4: Model 1, with Measurement Errors

Figure 1.5: Model 2, with Measurement Errors

1.5.4 Model 1 and Model 2 with Measurement Errors

Estimation results in table 1.9 show that existence of measurement error signifi-

cantly decreases estimation quality of the DC estimator. In the estimation of model

1, estimated value of α from the use of the DC estimator has 95% confidence inter-

val (−0.852,−0.704) and does not contain a true parameter value. Bias is a more

serious problem when we use the DC estimator for model 2 data which contain mea-

surement error. On the other hand, the CC estimator provides reliable result. One
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Model 1 Model 3

# of Agent 100 200 500 100 200 500

Est. Value -0.684 -0.688 -0.688 -0.687 -0.687 -0.688

S.E 0.026 0.022 0.019 0.027 0.023 0.019

Table 1.10: Estimation Result from Different Sample Size, the CC Estimator

possible explanation for this difference is that the DC estimator does not consider

the existence of measurement error and has no way to measure that kind of error

and adjust estimation as the CC estimator does. The third histogram in figure 1.4

is a histogram illustrating estimated value of measurement error. Estimated values

are mostly located around the true parameter, demonstrating that the CC estimator

provides reliable measurement error estimation.

Table 1.10 provides estimation results when we have different number of agents in

dataset. Results show that efficiency of estimation improves as the number of sam-

ple sizes grows. Specifically, point estimation results show less bias as the number

of agents goes up. We can not argue that the CC estimator is consistent with this

limited finite sample test. However, this result indicates that the CC estimator has

consistency as an estimator. Figure 1.6 provides histogram of estimated α values

from data set with different number of agents. It shows that estimated values are

more condensed around true parameter value as the number of agents increases for

both error distribution cases. It also shows the distributional shape becomes more

uni-modal. This means that the risk of obtaining seriously biased point estimation

result from single application gets lower as sample size increases.
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Figure 1.6: Estimation Result From Different Sample Size, the CC Estimator

DC CC

Parameter Est.V. S.E. Est.V. S.E.

Value -0.824 0.065 -0.695 0.021

Table 1.11: Model 1, with Measurement Errors on Consumption

1.5.5 Model 1 with Measurement Errors on Choice Variable

Previously in this section, we added the measurement error to asset which is

the state variable. We will now check the properties of estimators when the choice

variable contains measurement error. To contaminate consumption with measurement

error, we generate a random shock of ηt which follows ηt ∼ N(0, 502) and add each
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Figure 1.7: Model 1, with Measurement Errors on Consumption

measurement error to true consumption value ct and data set has contaminated value

of cDt as follows.

cDt = ct + ηt

To find log likelihood for the CC estimator, we use almost identical steps that we

used to obtain equation (1.19).

Estimation results in table 1.11 show that measurement error on choice variable leads

to an even worse bias problem and may have larger decline of the DC estimator’s

estimation quality. This result also clearly demonstrates that the CC estimator is

robust against the measurement errors contained in the choice variable. Actually, the

histogram shape that we obtain when we apply the CC estimator for a dataset with

contaminated choice variable looks better than histogram from the CC estimator ap-

plication for a dataset that contains measurement errors in asset values. One possible

explanation for the improvement of estimation results is that the initial value of the

asset has no measurement error in this simulation case. Because the initial value of
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Model 1 Model 3

Parameter alpha sigma alpha sigma

Est. Value -0.689 98.11 -0.696 99.70

S.E 0.020 2.34 0.031 2.61

Table 1.12: The CCB Estimator on Model 1 and Model 3

Figure 1.8: The CCB Estimator on Two Type of Structural Errors

the asset affects the whole likelihood finding procedure, the use of a true initial asset

value may improve the CC estimator’s reliability.

1.5.6 Continuous Choice Bayesian Estimator

This section provides results from the Continuous Choice Bayesian (CCB) estima-

tor which is structural estimation method first applied in this paper. As a comparison

to the CC estimator, we applies the CCB estimator on datasets with both types of

structural error. Datasets also contains measurement errors. In table 1.11, the CCB

estimator shows better estimation results in both unbiasedness and efficiency stan-

dards compared with the DC estimator. Any Notable features of the CCB estimator
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from this study are summarized as two following findings.

First, the CCB estimator provides reliable estimation results on data with both model

1 and model 2. Compared with the CC estimator, it has less bias problem for data

from both models as shown in table 1.12. The shape of histogram is clearly uni-modal

in the estimation of model 1. The histogram from model 2 estimation is close to uni-

modal even though it is not as clear as model 1 estimation result. These results mean

that we can expect the CCB estimator deliver reliable estimation result in single ap-

plication.

Second, the CCB estimator requires heavy computational burden. To provide in-

formation about the cost of computation, Table 1.13 has measured time of estimation

from approaches covered in this paper. Compared to the CC estimator, the CCB

estimator consumes 35 times more time. To mitigate increased computational bur-

den, we applied parallel programming approach 1 on the CC and CCB estimator. In

table 1.12, ‘# Core’ represents for the number of CPU cores used for estimation at

the same time. When we used 6 cores, we could save about 65% of computing time

for each estimators compared to typical single core processing. This result shows that

the benefit of using parallel computing will be significant as the number of parameters

increases for complex model. If we compare the histograms in figure 1.5 and figure

1.6, distribution shape from the CC estimator gets as good as or better than that from

the CCB estimator as sample size increases. This result show that use of the CCB

estimator is encouraged when we have relatively small sample size or we need pos-

terior distribution as a result of estimation if we consider huge computational burden.

1We used OpenMP with gcc to speed up loop calculation
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Estimator DC CC CCB

# Core 1 core 1 core 6 core 1 core 6 core

Model 1 .5s 52s 19s 34 m 1s 12 m 29s

Model 3 .9s 1m 02s 22s 35 m 55s 13 m 16s

Table 1.13: Measured Time of Estimation

Figure 1.9: Posterior Distribution, Continuous Choice Bayesian Estimator

Figure 1.8 provides the example of the posterior distribution which is useful out-

put from the CCB estimator. It comes from collecting accepted candidate α̂ and σ̂ξ

in each use of the CCB estimator after burning initial 100 values that were accepted

before convergence.

1.6 Concluding Remarks

This study was conducted to check the finite sample properties of the structural es-

timators. Especially, the CC estimator has intuitively appealing factors as a structural

estimator but this estimator has not been frequent choice for structural estimation

researches. It is partly due to practical difficulty which comes from the demand-

ing computational burden accompanied by the CC estimator application. However,

more substantial obstacle blocking frequent use of this seemingly attractive estimator

is that its property as an reliable estimator has not been thoroughly investigated.
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Using Monte Carlo simulation study, we provide the following findings about finite

sample properties of estimators.

First, the CC estimator provides reliable estimation results. This estimator does

not show bias problem in estimation results on a dataset from different kind of error

settings. As expected from its flexible setting which can be adjusted according to

the expected model, its estimation quality is not significantly affected by the types of

structural error. This estimator also shows reliable estimation result when substantial

amount of measurement errors exists. On the other hand, these errors caused sig-

nificant decline of estimation quality for the DC estimator that estimated parameter

value from the DC estimator is rejected at 95% significance level. The reliability of

the CC estimator is not affected by the types of variable (choice or state) which con-

tains measurement errors, either. Another notable feature of the CC estimator is that

the histogram of estimated values becomes more uni-modal and condensed around

the true parameter value as the sample size increases. It means that we can expect

improved estimation quality from the CC estimator when we have larger sample size.

Second, the DC estimator results raise concern for its reliability especially when this

estimator is used under structural error conditions other than additive type-I extreme

distribution. The DC estimator results clearly show that estimation quality declines

seriously, when the DC estimator is used outside additive type-I extreme error dis-

tribution. Another concern for the use of the DC estimator is that this estimator

can be affected by the existence of measurement errors, which is common in practice.

The estimation results from the DC estimator show bias problem as the size of mea-

surement errors contained in data set gets large. The decline of error quality become

more significant when measurement errors contaminate choice variable.
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Third, the CCB estimator provides mixed result. This estimator shows no bias prob-

lem under two different error settings tested and provides histogram of estimated

values, which is close to uni-modal shape. It means that we can use the CCB estima-

tor and obtain useful posterior distribution without concern for reliability. However,

the CC estimator can provide estimation result as good as the CCB estimator as

sample size grows. This means that use of the CCB estimator is only encouraged

when we have small sample size or we need posterior distribution as an outcome of

estimation because the CCB estimator requires heavy burden of computation com-

pared to the CC or DC estimator. We could reduce estimation time to one third

the original time when we applied parallel programming and this result shows that

use of parallel programming can partly mitigate this increased computational burden.

Lastly, it is important to take into account the cost of using the continuous ap-

proaches, CC and CCB. As shown in measured time of estimation, when we apply

these estimators, we clearly have increased computational burden. So far, advantages

of simplicity provided by the DC estimator have been widely accepted by previous

researches. However, advanced operation speed by recent processors and easier access

to servers ideal for parallel programming remove significant portion of cost which has

prevented the use of those methods, and this trend will grow, making such computing

even cheaper. This study proves that the use of the continuous approaches are worth

conductions.
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Chapter 2

ESTIMATION OF MANAGERIAL EFFICIENCY IN BASEBALL: A BAYESIAN

APPROACH

2.1 Introduction

After each baseball season, the Boston Globe ranks the baseball managers of 30

Major League Baseball (MLB) teams. In 2013 grading, John Farrell of the Boston

Red Sox, which is the home team of the Boston area, was ranked as a top manager

among all MLB teams. The Boston Globe explains that they used the opinions

from a number of baseball people, including managers, coaches, scouts, players, and

front office executives to formulate this ranking. However, not every baseball fan

including me will agree on the ranking from the Boston Globe based only on the

Boston Redsox’s winning the 2013 world Series championship. I have two arguments

against this ranking. One is that several baseball teams were seriously plagued by a

disastrous series of injuries to their key players. Team performance of those teams

can be worse than the Boston Redsox regardless of Managerial efficiencies. Another

argument is that the Boston Redsox boasts of the fourth biggest payroll in MLB that

it consists of better players than small payroll teams like the Tampa Bay Rays who

spent the mere amount of $57,030,272 which is only one third of Boston’s payroll but

still could advance to the Divisional Series.

The goal of this paper is to provide a quantitative solution to the above question:

“Which team has shown better managerial efficiency? To answer that question, we

use a stochastic frontier function approach and estimate the managerial efficiency in

baseball. As a result, we will first provide the value of estimated managerial efficiency
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of each team. Using this value, we can compare the managerial performance of each

MLB team. Another focus of this paper is about the reliability of this comparison

procedure. As Bera and Sharma (1999) pointed out, it is unfortunate that we have

not given much attention to the reliability of comparison procedure. To approach

this topic, we will estimate uncertainty in stochastic frontier production function

model with two different methods. The first one is the Multiple Comparison with

the Best (MCB) suggested by Horace and Schmidt (1996) and the other one is the

Bayesian estimation approach suggested by Koop, Osiewalski, and Steel (1997) . Here

is the reason why we focus on above two approaches. Bera and Sharma (1999) and

Green (2007) suggest MCB as the most frequently used method to build confidence

interval for the stochastic frontier function. Holloway (2005) argues that the Bayesian

approach has an advantage as an alternative to the frequentist approach. The reason

behind his argument is that the choice of distributional assumption for inefficiencies

has little effect on estimation result as is mentioned in Koop, Osiewalski and Steel

(1997). To check the validity of this argument, we check the estimated values and

the variance under different distributional assumptions in this paper. Here is another

reason why we focus on the application of Bayesian approach on baseball data. Sickles

and Schmidt (1984) shows that when we apply stochastic frontier analysis on panel

data, if we use panel data with fairly large number of period, estimated value of

inefficiency will be precise. However in baseball, the typical contract length for the

manager is three years and this contract is not easily extended. When we have panel

dataset with the only small number of periods, Horace and Schmidt (2000) argue that

the estimated variance of individual inefficiency is fairly large and confidence interval

of efficiency should be large as a result. In this case, it is not easy to compare the

managerial efficiency of two teams. In this paper, we apply the Bayesian approach and

test whether it provides smaller variance value for inefficiency estimation. To validate
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the Bayesian approach, we will first show that the Bayesian approach provides reliable

point estimation with a smaller variance using a simulation study. In simulation

study, Bayesian approach does not necessarily obtain narrower confidence intervals.

An informative prior is needed to provide narrower confidence interval. We will use

data from the 2011 to 2013 MLB seasons with generated inefficiency values. Then,

we will provide efficiency estimation results to answer interesting questions related to

managerial efficiency in MLB. Here is additional reason why we choose baseball as

a topic. Porter and Scully (1982) argues that baseball data is especially appealing

target for frontier analysis because outputs and inputs are unambiguously measured,

and production function is simply specified. They showed that managerial skill in

baseball contributes very substantially to the production process.

This paper is organized as follows. Section 2.2 provides a brief description of

related literatures. Section 2.3 describes the model used for estimation. Section

2.4 explains the data we use for this paper. Section 2.5 will compare the Bayesian

approach and the frequentist approach mainly using simulation study. Section 2.6

answers various questions about baseball. Some concluding remarks follow in Section

2.7.

2.2 Literature Review

The contemporary model for stochastic frontier analysis which focuses on esti-

mating inefficiencies in production was first suggested by Aigner, Lovell and Schmidt

(1977) and Meeusen and Van den Broeck (1977). This chapter is also based on basic

frame works by Aigner, Lovell and Schmidt (1977). However, there had been research

papers focusing on production inefficiencies before Aigner, Lovell and Schmidt (1977)

and Meeusen and Van den Broeck (1977) combined stochastic error concept to fron-

tier function. Deterministic analysis of production inefficiency was first started by
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Debreu (1951) and Farrell (1957).

Schmidt and Sickles (1984) provide the way to solve some difficulties originally

presented in Aigner, Lovell, and Schmidt (1977) by using panel data. In their paper,

they showed that if panel data is used and the number of periods is large enough,

these three difficulties can be avoided:

1. A question of consistency in the estimation of technical inefficiency

2. Choice of distributional assumption for the distribution of technical inefficiency

3. Probable correlation between regressors and inefficiency.

Battese and Coelli (1992) and Battese and Coelli (1995) provide the method which

is useful for a practical approach for the estimation of panel data. They also provides

computational packages which can be conveniently used for estimation procedure.

This paper also uses their R package ‘Frontier’ to provide estimation result and con-

fidence interval provided by frequentist approach.

A meaningful suggestion for building the confidence interval was first made by Ho-

race and Schmidt (1996). Horace and Schmidt (1996) introduces the MCB concept of

Hochberg and Tamhane (1987) to find confidence interval of production inefficiencies

and provide an application example. Hsu (1996) is more detailed reference for the

MCB concept. Bera and Sharma (1999) argues that one of the main goals when pro-

duction inefficiency is estimated is to compare inefficiency level among cross-sectional

entities and confidence interval is useful for estimating reliability of the comparison.

Horace and Schmidt (2000) provides a more user-friendly recipe to build confidence

interval with MCB which was introduced in Horace and Schmidt (1996) with more

various kind of application examples. In this chapter, we use method presented in

Horace and Schmidt (2000) to build the frequentist confidence interval.

A Bayesian approach to stochastic frontier analysis was introduced by Broeck,
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Koop, Osiewalski and Steel (1994). This paper shows that when the number of

periods in panel data is not large enough, the difficulty which comes from the choice

of distributional assumption of technical efficiency can be reduced by the Bayesian

approach. In this chapter, we additionally show that the estimation output from

a Bayesian approach shows better efficiency compared to other approaches. As a

illustration, we compare the interval of estimated technical efficiency estimation from

a Bayesian approach with the frequentistss interval.

An empirical application of stochastic frontier approach has covered a wide range

of topics in economics and other study areas. It is well summarized in Fried, Lovell and

Schmidt (2007). Especially in sports economics, there have been works on estimating

the technical efficiency of the coach or organization in team sports using a stochastic

frontier function. Dawson, Dobson and Gerrard (2000) estimates the efficiency of

coach in English Premier League from 1992 to 1998 using panel data stochastic frontier

model. Rimler, Song and Yi (2010) estimates technical efficiency in Atlantic 10

conference in NCAA Basketball. This paper argues that the managerial efficiency

difference is trivial and focus more on the contribution of player statistic on winning

percentage.

In baseball, Porter and Scully (1982) uses a frontier model to estimate man-

agerial efficiency and Ruggiero, Hadley and Gustafson (1996) evaluates managerial

efficiencies using Data Envelopment Analysis method. Both papers are using the non-

stochastic model so they inevitably have the drawbacks all the deterministic frontier

models share.

2.3 Model

Our study estimates the managerial efficiency in baseball games using the stochas-

tic frontier function with a Bayesian approach. To explain the goal and the organiza-
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tion of our study, we start by briefly introducing the concept of the stochastic frontier

function and the reason behind using a Bayesian approach.

Stochastic frontier analysis was first introduced by Aigner, Lovell, and Schmidt

(1977). In this paper, they suggest an approach to the estimation of frontier produc-

tion functions. They define stochastic frontier function for firm i at period t, and it

is given by:

yit = f(xit; β)euit (2.1)

where yit is the maximum level of output, xit is a vector of input, β is an unknown

parameter vector and euit is error term. Then, they assume there exists a technical

inefficiency as deviation of actual production from maximum level of output. With

existence of technical inefficiency, stochastic frontier production function is given by:

yit = f(xit; β)τie
uit (2.2)

where 0 ≤ τi ≤ 1 is a measure of firm specific inefficiency. By using error term,

we can fix the critical problem shared by all the deterministic frontier estimation

models. That problem is that any deviation of an observation from the frontier must

be attributed to an inefficiency because a deterministic model does not assume the

existence of statistical noises or measurement errors.

A Model for estimating managerial efficiency comes from equation (2.2). Let’s

assume that production function f(·; ·) is Cobb-Douglas production function. Using

log linear transformation, equation (2.2) becomes:

ln yit = lnx′itβ + uit − zi, i = 1, · · · , N, t = 1, · · · , T (2.3)

where zi = − log τi.

Here i indexes teams and t indexes time periods while 1 period is 1 season in

baseball. We make equation (2.4) by splitting xit in equation (2.3) into xo,it and xd,it.
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We use (2.4) to estimate managerial efficiency and β’s:

ln yit = lnx′o,itβo + lnx′d,itβd + uit − zi, i = 1, · · · , N, t = 1, · · · , T (2.4)

where yit is the ratio of run made by team i over run allowed by team i in season t(
Runmade,it
Runallowed,it

)
. xo,it is the vector of offensive numbers for team i in season t, including

single, double, triple, homerun, steal, walk, strikeout. xd,it is vector of defensive

numbers including single allowed , homerun allowed, walk allowed, strikeout made,

error commited (by team i). Data values are yearly summation of each team’s whole

regular season games. βo and βd are coefficients for offensive and defensive variables.

Most of the previous papers estimating technical efficiency in team sports use

winning percentage as the value of yit. But we use run ratio as the value of yit

following Bill James (1981). In his book which started current sabermetrics, Bill

James argues that difference between a run production and a run allowance is the

best tool to describe the team’s quality and each baseball team try to maximize

the difference between a run production and a run allowance. Following this view,

there have been various researches such as Pythagorean approach to find formula

to link team’s run difference and winning percentage. In other sports, this view is

recently gaining more attention. For example, in basketball, point differential per 100

possessions (NetRtg) is regarded as the best source to judge the real quality of a team

that National Basketball Association (NBA) official power ranking provides NetRtg

along with peer review of basketball experts to rank the NBA teams’ real quality.

For stochastic frontier analysis with a Bayesian approach, we use assumptions

used by Koop, Osiewalski, and Steel (2007). They can be summarized as follows:

For i = 1, , N

1. uit ∼ N(0, η−1) and the uits are independent to each other

2. Prior distribution for η: η ∼ γ(s−2, ν)
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3. uit and zi are independent to one another

4. zi and zj are independent to each other when i 6= j.

5. Prior distribution for zi: zi ∼ Exp(µz)

6. Prior distribution for µ−1z : µ−1z ∼ γ(µ−1
z
, νz)

7. Prior distribution for β: β ∼ N(β, V )

where µz, s
−2, ν, µ−1

z
, νz , β and V are hyperparameters.

Among all the assumptions, the most critical one is the assumption of zi ∼

Exp(µz) because choice for the distribution of technical efficiency always has been the

most difficult part in the application of stochastic frontier analysis. Van den Broeck

et al. (1994) argues the exponential is the least sensitive prior distribution in a study

of the most commonly used models and we follow their argument for our study.

From equation (2.4) and additional assumptions, likelihood function is given as:

p(y|β, η, z) =
N∏
i=1

eta
T
2

(2π)
T
2

{
exp

[
−η

2
(yi −Xiβ + ziιT )′(yi −Xiβ + ziιT )

]}
(2.5)

where Xi = [Xi1 . . . XiT ]′, Xit = [x′o,it, . . . , x
′
d,it] and β = [βo βd]

Using likelihood function (2.5) and distributional assumptions, we are ready to

make posterior distribution of parameters. Starting from β, we multiply likelihood

function with assumption β ∼ N(β, V ) then, posterior distribution of β is given as:

β|y, η, µz ∼ N(β, V ) (2.6)

where V =

(
V −1 + η

N∑
i=1

X ′iXi

)−1
and β = V

(
V −1β + η

N∑
i=1

Xi
′ [yi + ziιT ]

)
To find posterior distribution of η, we use likelihood function (2.5) and assumption

2 where prior distribution of η is η ∼ γ(s−2, ν). Then, posterior distribution of η is

given as:
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η|y, β, z, µz ∼ Gamma(s−1, ν) (2.7)

where ν = TN + ν and s2 =

N∑
i−1

(yi+ziιT−Xiβ)′(yi+ziιT−Xiβ)+νs2

ν

The posterior distribution of µ−1z can be found in the similar way when we use

assumption 6 and the likelihood function (2.5). The posterior distribution of µ−1z is:

µz
−1|y, β, η, z ∼ Gamma(µz

−1, ν) (2.8)

where νz = 2N + νz and µz
−1 =

2N+νz

2
N∑
i=1

zi+νzµz

.

Now, we find the posterior distribution to generate technical inefficiency, zi. Using

Bayes’ theorem, we know

p(z|y, β, η, µz) ∝ p(y|z, β, η, µz)p(z|β, η, µz)

We already have likelihood function (2.5) and the assumption for the prior distri-

bution of zi as zi ∼ Exp(µz). Then, posterior distribution of zi comes from multipli-

cation of likelihood function (2.5) and the prior distribution of zi as follows:

p(zi|yi, Xi, β, η, µz) ∝ φ
(
zi|Xiβ − yi − (Tηµz)

−1, (Tη)−1
)
I (zi ≥ 0) (2.9)

where yi =

T∑
t=1

yit

T
and X i is a row vector containing the average value of each explana-

tory variable. I(zi ≥ 0) is the indicator function. We should note that (2.9) uses

assumption 4 which makes this formula simpler.

Using equations for posterior distributions from (2.6) to (2.9), we can find posterior

distributions for coefficient β’s, parameter values η, µz and technical efficiencies zi’s.

We use Gibbs sampling to generate posterior distributions.

2.4 Data

Our study estimates data from Major League Baseball from 1969 to 2013 season.

We set 1969 as the starting year for the data because MLB added four teams (Kansas
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City Royals, Milwaukee Brewers, San Diego Padres and Montreal Expos) to the

organization and made the fundamental changes in organization. Data comes from

a baseball reference site: www.baseball-reference.com. During the period, the 1972,

1981, 1994 and 1995 seasons are omitted from the data because the number of games

was reduced severely due to the labor disputes between players and MLB organization

on those seasons. The number of teams has changed over the period because new

teams have joined. Here is the summary of the number of teams:

Year Number of seasons Number of teams Team added

1998-2013 16 30 AZD, TBR

1993-1997 3 (except for 94,95) 28 FLA, COL

1977-1992 15 (except for 81) 26 SEA, TOR

1969-1976 7 (except for 72) 24

Table 2.1: The Number of Teams over 1969-2013 Seasons

Because there are the different number of teams, the estimation procedure for

seasons from 1969 to 2013 should use an approach for the unbalanced case.

In the data set, there are three kind of values used for the analysis. We take log

on both input and output values.

1. Output values - Run ratio. As described in section 2.3, a team’s run ratio is the

fraction of the summation of run produced by a team over the summation of run

allowed by a team in a season.

2. Input values

2. a. Offensive input for run production - Single, Double & Triple, HR, Steal, Walk,

and K are used as the values. We use Double & Triple together as an input value

rather than each of Double and Triple because the number of triple is too small to

use it as an additional explanatory variable. We decide to use Double & Triple to
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increase the efficiency of estimation. Batting average, on base percentage (OBP),

slugging percentage (SLG), and OPS (OBP + SLG) are the values decided by single,

double, triple and homerun so we will not use them as explanatory variables to pre-

vent multicollinearity problem.

2. b. Defensive input for run allowance - Single allowed, HR allowed, Walk allowed,

K made, Error, Double play. Other important defensive variables such as ERA and

WHIP are omitted from inputs because use of them can cause multicollinearity prob-

lem because ERA and WHIP are strongly related with other explanatory variables.

Descriptive statistics of input data is provided baseball seasons (from 1969 to 1976)

to modern baseball seasons (from 2007 to 2013) in table 2.2.

Input 1969 - 2013 1969 - 1976 2007-2013

mean sd mean sd mean sd

Single 996 66 1023 66 958 70

2B & 3B 297 39 251 30 317 30

Homerun 148 39 120 31 160 32

Stolen Base 107 41 93 43 99 30

Walk 535 69 545 70 520 64

Strikeout 973 157 855 105 1146 125

Error 121 24 143 21 98 16

Table 2.2: Descriptive Statistics of Input Data (Yearly Value)

We can find several characteristic changes from the comparison of values from

the old baseball and the modern baseball. At first, the number of extra base hits

increased by large margin. There is huge increase in the average number of homeruns

(+33.3%) and Double & Triples (+26.3%). On the other hand, the number of single
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hits decreased (−6.4%). Second, the number of strikeouts increased significantly

(+34.0%). When we combine the first and second change in descriptive numbers, it

is highly possible that offensive players in the modern baseball are focusing more on

producing extra base hits compared to old players. Because they are trying to load

more power on each of their swings, they can make increased number of extra hits

at the cost of more strikeouts. Third, this table shows that the number of errors

decreased by large (−31.5%). This feature is actually related to the first and the

second characteristics mentioned above. The decreased number of errors means that

it is more difficult to make hits due to the improved fielding ability of defensive

players. Increased difficulty of making a hit is also verified in the decreased number

of single hits. Therefore, it is more difficult to produce runs from the series of hits in

the modern baseball. This is the reason why the modern baseball players focus more

on power hitting to produce extra base hits which can make runs without making a

series of hits. Another possibility is that the power hitting tendency is the reason

for the decreased number of errors. Longballs from power hitting tend to be more

related to outfielders and errors happen more frequently in infield play than outfield

play. This characteristic change of baseball also affects managerial efficiency and the

change will be explained in detail in section 2.6.

We perform a graphical check on data using Quantile Quantile plot (QQ plot). In

figure 2.1, the dependent variable, run ratio, shows normality and other explanatory

variables do not show extreme skewness, either. Therefore, this dataset do not violate

the necessary assumptions required for stochastic frontier approach, which is related

to ordinary least squares requirements.
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Figure 2.1: QQ Plot of Input and Output Data (1969 2013)

2.5 Comparison of Estimation Approach

2.5.1 Simulation Study

The goal of this section is to provide empirical evidence that the Bayesian approach

can provide narrower confidence intervals for managerial inefficiencies compared to

MCB approach when we analyze panel data with relatively small number of periods.

We also try to find the reason why Bayesian approach provides narrower confidence

intervals. We have an interest in this result because the typical contract term for a
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baseball manager is merely 3 years. We started this paper with the question about

the managerial efficiency of John Farrell and the length of his first contract term as

a manger was a mere 2 years with Toronto Blue Jays. Therefore, finding estimator

which provides a relatively smaller confidence interval when we have small T value is

important for the study of managerial efficiency in baseball. Simulation study con-

sists of following steps.

Step 1. Prepare data to be estimated. To generate artificial run ratio which will

be used as the dependent variable, we need the following values:

1. Explanatory variables (Offensive and Defensive variables)

2. Two stochastic error terms for production error and inefficiencies

3. Coefficient for Explanatory variables

First, we use the explanatory variables from 2011 to 2013 MLB seasons. Same

with data used for the estimation procedure, explanatory variables are the values of

following variables: single hit, sum of double and triple, homerun, steal, walk, strike-

out, error, single allowed, the sum of single, double and triple allowed, homerun, walk

allowed, and strikeout made. Second, we generate stochastic error terms, production

random shock from simple distribution as follows:

uit ∼ N(0, 0.052)

Third, we generate team-specific managerial inefficiencies from following distribution.

zi ∼ Exp(λ)

where rate parameter λ = 0.05 to make average efficiency value be set close to 0.95

which is close to the average estimated efficiency value from 1969 to 2013 season.
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Fourth, we find the coefficients for explanatory variables from ordinary least square

(OLS) estimation of true run ratio (dependent variable) and explanatory variables.

Now, we can generate artificial run ratio value from explanatory variable, stochastic

error terms and estimated coefficient from OLS. Lastly, We generate 1,000 different

datasets with different sets of stochastic error term uit by repeating procedures above.

Step 2. Estimate managerial inefficiency from generated datasets from step 1.

For Step 2, we use two different stochastic frontier estimation approaches. First, we

will follow estimator suggested by Battese and Coelli (1992) to find frequentists ineffi-

ciency point estimation value. Then, we build the confidence interval of inefficiencies

by applying MCB from Horace and Schmidt (2000). Second, we will estimate effi-

ciency with Bayesian estimator following Koop, Osiewalski and Steel (1997). Third,

we repeat estimation of efficiencies using both the frequentist and Bayesian approach

on 1,000 different datasets from step 1 and report mean value of 95% confidence

interval of efficiencies.

Figure 2.2 provides box plots which provide 95% confidence intervals of 30 MLB

baseball team from the third procedure of step 2. In figure 2.2, we can find the follow-

ing things. First, the Bayesian estimation clearly provides the narrower confidence

interval of production inefficiency. Second, estimated inefficiencies from two different

methods are close to each other. Especially, order of each estimated values are almost

identical. We have additional chance to check the order of efficiencies from two dif-

ferent methods in section 2.5.2. Table 2.3 provides the table of generated inefficiency

values and estimation result (95% confidence interval) from the frequentist approach

and the Bayesian approach.
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Figure 2.2: Box Plot of Estimated Efficiencies - Simulated Data (1,000 Times)

Result in table 2.3 shows that both approaches do not show the serious problem

in estimation. None of estimated values are rejected at typical 5% significance level.

However, confidence intervals from the Bayesian approach are clearly narrower than

intervals from frequentist approach. At the same time, the sum of difference between

true inefficiency and mean of estimated inefficiencies from the Bayesian approach is

-0.435 which is smaller than -0.604 from the frequentist approach. This result shows

that the Bayesian approach provides estimation performance at least as precise as

frequentist approach for this dataset.

To find the reason behind the narrower confidence interval from the Bayesian ap-

proach, we checked the simulation result when we apply a Bayesian approach without
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Team Data Frequentist Inform. Bayesian

efficiency lb mean ub Lb mean ub

ARI 0.967 0.883 0.974 1.000 0.937 0.977 0.995

ATL 0.962 0.883 0.974 1.000 0.922 0.977 0.989

BAL 0.945 0.878 0.969 1.000 0.893 0.958 0.993

BOS 0.952 0.882 0.973 1.000 0.947 0.972 1.000

CHC 0.980 0.889 0.981 1.000 0.943 0.987 0.995

CHW 0.945 0.880 0.971 0.999 0.914 0.961 0.997

CIN 0.976 0.887 0.979 1.000 0.951 0.988 0.991

CLE 0.906 0.865 0.954 0.998 0.879 0.925 0.954

COL 0.910 0.868 0.958 0.999 0.873 0.929 0.968

DET 0.954 0.880 0.971 1.000 0.943 0.974 1.000

HOU 0.923 0.874 0.965 0.999 0.855 0.940 0.964

KCR 0.967 0.888 0.980 1.000 0.956 0.982 1.000

LAA 0.970 0.884 0.976 1.000 0.970 0.979 1.000

LAD 0.969 0.877 0.967 0.999 0.954 0.964 1.000

MIA 0.969 0.887 0.978 1.000 0.968 0.979 1.000

MIL 0.968 0.886 0.978 1.000 0.937 0.978 0.995

MIN 0.969 0.885 0.976 1.000 0.901 0.976 0.987

NY 0.959 0.883 0.974 1.000 0.939 0.973 0.996

NYY 0.950 0.881 0.972 1.000 0.871 0.961 0.968

OAK 0.975 0.887 0.978 1.000 0.955 0.985 0.996

PHI 0.979 0.887 0.979 1.000 0.969 0.985 1.000

PIT 0.949 0.879 0.970 1.000 0.921 0.967 0.994

SDP 0.907 0.866 0.955 0.998 0.832 0.932 0.933

SFG 0.918 0.867 0.957 0.999 0.902 0.943 0.999

SEA 0.954 0.880 0.970 1.000 0.913 0.967 0.989

STL 0.960 0.881 0.972 1.000 0.955 0.976 1.000

TBR 0.963 0.884 0.975 1.000 0.941 0.977 0.998

TEX 0.924 0.872 0.962 0.999 0.844 0.950 0.948

TOR 0.863 0.846 0.933 0.996 0.802 0.887 0.901

WAS 0.956 0.881 0.972 1.000 0.916 0.974 0.985

Table 2.3: Estimation Result: Simulation Study

uninformative prior for each team’s efficiency value. We use uniform distribution as

a prior distribution for this test instead of exponential distribution. In this case, we

need to apply Metropolis-within-Gibbs approach as an updating procedure to gener-

ate posterior distribution of managerial inefficiencies because we cannot find closed

form posterior generating function. Table 2.4 provides the simulation result. 95 %

interval of estimated efficiency values are containing true efficiency values for all 30

teams. However, we can not conclude that interval lengths are narrower than those

from frequentist approach. It shows that the use of exponential prior (informative
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Team Data Uninform. Bayesian

efficiency lb mean ub

ARI 0.967 0.861 0.947 0.998

ATL 0.962 0.865 0.950 0.999

BAL 0.945 0.840 0.936 0.998

BOS 0.952 0.861 0.949 0.999

CHC 0.980 0.882 0.961 1.000

CHW 0.945 0.840 0.936 0.998

CIN 0.976 0.884 0.960 1.000

CLE 0.906 0.800 0.903 0.989

COL 0.910 0.811 0.912 0.991

DET 0.954 0.858 0.945 0.998

HOU 0.923 0.818 0.923 0.997

KCR 0.967 0.870 0.953 0.999

LAA 0.970 0.872 0.953 0.999

LAD 0.969 0.848 0.940 0.998

MIA 0.969 0.864 0.950 0.999

MIL 0.968 0.866 0.951 0.999

MIN 0.969 0.863 0.951 0.999

NY 0.959 0.856 0.943 0.998

NYY 0.950 0.842 0.938 0.997

OAK 0.975 0.878 0.958 1.000

PHI 0.979 0.875 0.955 0.999

PIT 0.949 0.849 0.940 0.998

SDP 0.907 0.808 0.912 0.992

SFG 0.918 0.820 0.920 0.993

SEA 0.954 0.852 0.941 0.998

STL 0.960 0.859 0.946 0.999

TBR 0.963 0.867 0.952 0.999

TEX 0.924 0.829 0.926 0.996

TOR 0.863 0.761 0.875 0.978

WAS 0.956 0.861 0.946 0.998

Table 2.4: Simulation Result: Bayesian Approach with Uninformative Prior

prior) affected narrower confidence intervals of the Bayesian approach in table 2.3.

2.5.2 Frequentist and Bayesian Approach on Real Data

In this section, we apply a frequentist and Bayesian approach on the real data

from MLB. We estimate panel data from 1998 to 2013 seasons. From 1998 season,

MLB has the current system of 30 teams by adding the Arizona Diamondbacks and

the Tampa Bay Devil Rays. The purpose of this estimation is to compare the result

from two different approaches. Our interest will span estimated values of coefficients
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for offensive and defensive inputs and a efficiency estimation.

Coefficient estimation results in table 2.5 shows that estimated values are not

strongly affected by the type of approach. However, the efficiency estimation result

in table 2.6 contains more complicated results.

Coefficient Frequentist Bayesian

Single 0.684 0.684

2B & 3B 0.329 0.346

Homerun 0.322 0.323

Steal 0.034 0.033

Walk 0.256 0.259

Strikeout -0.029 -0.022

S & 2B &3B allowed -1.054 -1.039

Homerun allowed -0.333 -0.327

Walk allowed -0.292 -0.289

Strikeout made -0.032 -0.014

Reached on error -0.070 -0.071

Table 2.5: Coefficient Estimation Result

First, estimated values and the order of estimated efficiencies from the frequentist

and Bayesian approach are similar to each other. However, variance of estimated

efficiencies are fairly different and the Bayesian approach consistently provides smaller

variance values. We already verified this characteristic from the simulation study in

section 2.5.1. Figure 2.3 shows difference in variance more clearly.

Result in section 2.5 can be summarized as follows. First, the frequentist and

the Bayesian approach do not show critical difference in point estimation. Second,

the Bayesian approach provides smaller variance when we estimate managerial ineffi-
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Team Frequentist Bayesian

lb mean ub rank lb mean ub rank

ARI 0.942 0.964 0.986 28 0.947 0.962 0.978 29

ATL 0.968 0.990 1.000 1 0.985 1.000 1.000 1

BAL 0.944 0.965 0.987 26 0.952 0.967 0.983 25

BOS 0.930 0.952 0.973 30 0.924 0.939 0.955 30

CHC 0.944 0.966 0.988 25 0.951 0.966 0.981 27

CHW 0.952 0.974 0.997 15 0.969 0.985 1.000 14

CIN 0.957 0.979 1.000 8 0.975 0.991 1.000 8

CLE 0.950 0.972 0.994 17 0.962 0.977 0.993 18

COL 0.950 0.972 0.994 19 0.961 0.976 0.991 19

DET 0.945 0.966 0.989 23 0.954 0.970 0.985 23

HOU 0.961 0.983 1.000 6 0.981 0.996 1.000 6

KCR 0.966 0.988 1.000 3 0.985 1.000 1.000 3

LAA 0.962 0.984 1.000 5 0.984 0.999 1.000 5

LAD 0.951 0.973 0.995 16 0.966 0.982 0.997 16

MIA 0.944 0.966 0.988 24 0.952 0.968 0.983 24

MIL 0.953 0.975 0.997 14 0.967 0.982 0.998 15

MIN 0.956 0.978 1.000 10 0.975 0.991 1.000 9

NY 0.956 0.977 1.000 12 0.974 0.989 1.000 11

NYY 0.946 0.968 0.990 22 0.955 0.970 0.986 22

OAK 0.966 0.988 1.000 2 0.985 1.000 1.000 2

PHI 0.949 0.971 0.993 20 0.960 0.975 0.991 20

PIT 0.959 0.981 1.000 7 0.980 0.995 1.000 7

SDP 0.950 0.972 0.994 18 0.963 0.978 0.994 17

SFG 0.953 0.975 0.998 27 0.969 0.985 1.000 26

SEA 0.942 0.964 0.986 13 0.951 0.966 0.982 13

STL 0.963 0.985 1.000 4 0.984 1.000 1.000 4

TBR 0.942 0.964 0.986 29 0.949 0.964 0.980 28

TEX 0.956 0.977 1.000 11 0.972 0.988 1.000 12

TOR 0.957 0.979 1.000 9 0.974 0.990 1.000 10

WAS 0.947 0.969 0.991 21 0.958 0.974 0.989 21

Table 2.6: Efficiency Estimation Result From 1998 to 2013 Seasons

ciency. In section 2.6, we will try to answer questions related to managerial efficiencies

in baseball using the Bayesian approach.

2.6 Estimation of Managerial Inefficiency for Baseball Questions

2.6.1 Evolution of Baseball over Time

In this section, we estimate the role of each offensive and defensive inputs in

baseball to produce the run ratio of run production over run allowed. To find the

contribution from each inputs, we first estimate coefficient values of each offensive
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Figure 2.3: Box Plot of Estimated Efficiencies - Data from 1998 to 2013 Season

and defensive inputs. Then we find how managerial efficiencies have changed over the

history of baseball due to the value change of each coefficients.

Posterior distributions of coefficient estimation from the old baseball (from 1969

to 1976) and the modern baseball (from 2007 to 2013) are provided in figure 2.4 and

figure 2.5.

Comparison of two figures provides meaningful information about different char-

acteristic of two baseball periods. The most important information is that making

single hit was more important in old baseball. The coefficient of single is clearly

larger than coefficient of single for the modern baseball. It is also verified in table 2.7

which provides coefficients estimation results. On the other hand, figures show that
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Figure 2.4: Posterior Distribution of Coefficients - Data from 1969 to 1976 Season

the production of extra base hit such as double, triple and homerun has become more

important in the modern baseball. One of the noticeable tendency of MLB teams

in the modern baseball is filling line up with hitters with more power even though

they do not have a good contact skill. These results prove that this kind of strategy

makes sense from sabermetric point of view. One of the possible reason behind this

result is that it is more difficult to produce serial hits in the modern baseball. This

characteristic change of game is also related to the improved fielding ability which

was already mentioned in section 2.4 when we showed decreased number of errors in
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Figure 2.5: Posterior Distribution of Coefficients - Data from 2007 to 2013 Season

large margin.

From table 2.7, we can provide the amount of change in run ratio from each

offensive and defensive values. For example, when single increased by 10%, run ratio

will increase by 0.0844 (= 0.1 ∗ 0.844). From table 2.2 which provides mean offensive

variable numbers, 10% increase in modern baseball is about 96 singles. Therefore,

we conclude that if a team produce 96 additional singles while other offensive and

defensive variables remain at the same level, there will be 10% increase in run ratio.

How can we apply this sabermetric information on the management? We use
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1969-1976 2007-2013

Coefficient mean sd mean sd

Single 0.844 0.068 0.588 0.061

2B & 3B 0.357 0.036 0.418 0.040

Homerun 0.245 0.019 0.293 0.020

Steal -0.006 0.010 0.059 0.011

Walk 0.375 0.030 0.243 0.031

Strikeout -0.019 0.038 -0.010 0.039

S & 2B &3B allowed -1.075 0.072 -0.962 0.072

Homerun allowed -0.240 0.023 -0.334 0.027

Walk allowed -0.323 0.029 -0.316 0.032

Strikeout made -0.043 0.034 0.052 0.045

Reached on error -0.109 0.029 -0.101 0.021

Table 2.7: Coefficient Estimation Result

a free agent transaction for the application example. After the 2010 season, Boston

Redsox acquired outfielder Carl Crawford with the annual average salary of 21 million

and Washington Nationals made the contract with outfielder Jayson Worth with the

annual average salary of 18 million. Both of them are considered to have a good

defensive skill so we assume their defensive values are at the same level. According

to the depth chart of each team, Carl Crawford will replace Darnell McDonald to

play a left fielder and Jayson Worths back up will be Jerry Hairston Jr. in a right

fielder position. The additional offensive production over replacement player from

Crawford and Worth is in table 2.8. For the numbers 2010 season records are used.

The difference in salary over replacement player is also provided

68



Boston Redxos Washington

Input Crawford McDonald Difference Worth Hairston Difference

Single 184 86 98 164 105 59

2B&3B 43 18 25 48 15 33

HR 19 3 16 27 10 17

SB 47 9 38 13 9 4

BB 46 30 16 82 31 51

SO 104 85 19 147 54 93

Salary 21 mil 0.47 mil 20.53 mil 18 mil 2 mil 16 mil

Table 2.8: Additional Offensive Production of Crawford and Worth

In table 2.8 the additional offensive production provided by Crawford increases

the run ratio by 15.24% when the coefficient estimates from 2007 to 2013 season in

table 2.7 are used. When we use the same approach, Worth increases run ratio by

13.63%. The Boston Redsox spent 1.35 million to increase 1% higher run ratio, while

the Washington Nationals invested 1.17 million for 1% higher run ratio. Therefore, we

can conclude that the Nationals made more cost efficient investment. While Worth

is still playing for the Nationals, the Boston Red Sox traded Crawford away to the

Dodgers during 2013 season. The Red Sox even needed to throw in several young

prospects in the deal to make the Dodgers to take the contract with Crawford.

The characteristic change of baseball game strongly affects managerial strategy.

Extra hits has added value in modern baseball so players who can produce with

extra power take more spots in line up. However, these kind of hitters have the

typical shortcomings which comes from their swinging tendency. To give more power

to their swinging, they tend to hit the ball to the side of the field from which he
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bats. It seriously limit their direction of hitting and defensive shift has become very

important part of managing. The result is that this new tendency in baseball more

frequent use of defensive shift gives more variance to managerial efficiency of modern

baseball managers because baseball managers should make additional decision other

than traditional ones. As you clearly see in the comparison of figure 2.6 and figure 2.7,

managerial efficiency level shows more variance in the modern baseball. One possible

reason behind the increased volatility is that teams are more aggressively searching

for the manager who maximizes the run difference (run made - run allowed) with

limited offensive and defensive inputs and it leads to the shorter contract terms for

field managers.

Figure 2.6: Managerial Efficiency - Data from 1969 to 1976 Season

2.6.2 Steroid Era and Moneyball

In the book “Moneyball (2003)” by Michael Lewis, Billy Beane, the general man-

ager of Oakland Athletics, hires Art Howe as a manager who would understand that

a field manager is not the boss to implement the ideas of front office with full con-

trol. The idea of Beane is anything that increases the offense’s chance of making an
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Figure 2.7: Managerial Efficiency - Data from 2007 to 2013 Season

out is bad. So, offensive strategies such as sacrifice bunt, hit and run, and steal are

considered to be against efficiency and the manager should keep extremely passive

stance to be more effective. Additionally, Beane has the model which argues that an

extra point of on-base percentage is worth three times an extra point of slugging per-

centage. Based on this model, Athletics front office showed an obsession for a players

ability to get on base. Art Howe manages Athletics from 1996 to 2002. Figure 2.8

has the distribution of managerial efficiencies over this period.

Figure 2.8: Managerial Efficiency - Data from the Steroid Era
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Figures 2.8 shows that Athletics had the top notch managerial efficiency in this

period. This period is called “The Steroid era” in baseball history. ESPN defines the

steroid era as follows: “A period of time in Major League Baseball when a number

of players were believed to have used performance-enhancing drugs, resulting in in-

creased offensive output throughout the game”. There is no clear guideline on the

start or end time of steroid era. Our study set the 1996 season as the start time for

the era because many players such as Mark McGwire began producing 50 plus home-

runs from 1996 season, which was unprecedented in baseball. Especially, total team

extra base hits numbers had a big increase from 1996 season. We also use 2002 season

as the end point because the MLB office began test on Performance Enhancement

Drug (PED) from the 2003 season. Even after PED test started, there happened

intermittent PED scandals, team offensive values began regressing back to the level

which was more common before the steroid era from 2003. Data from the steroid

era clearly shows different numbers in several categories compared to other periods.

Table 2.8 is provided to show the characteristic of the steroid era.

It is easily verified that the number of double and homerun are increased over the

steroid era compared to other two periods. It is possible that increase of extra base

hits come from the use of the steroid. These differences lead to critical change on the

coefficients of offensive inputs provided in table 2.9.

Most characteristic feature of the steroid era is that the coefficient of walk is

critically higher in the steroid era. As is mentioned in Moneyball (2003), Beane tried

to draft the player with the exceptional skill on getting more number of walks. Typical

example is Kevin Youkilis who was praised in Moneyball (2003) as an example of the

ideal type of player who can draw more walks. Result in table 2.10 justifies that

Beane’s draft strategy was right one for the steroid era. The value of walk become

lower after the steroid era. Another noticeable finding in table 2.10 is that the effect
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Input 1986-1992 Steroid 2007-2013

mean sd mean sd mean sd

Single 996 62 987 62 958 70

2B & 3B 284 28 322 28 317 30

Homerun 133 34 177 34 160 32

Stolen Base 126 34 107 34 99 30

Walk 531 75 565 75 520 64

Strikeout 926 92 1055 92 1146 125

Error 125 17 114 17 98 16

Table 2.9: Descriptive Statistics of Input and Output Data (Yearly Value)

from error is limited during the steroid era compared to other baseball seasons. Beane

also recognized this characteristic of steroid era and used this feature to minimize the

team payroll. He made contract with players who could not find their places due to

the weak fielding ability even though they have good offensive skills. In Moneyball,

Beane mentions Jeremy Giambi as the typical player in this category. Beane argues

that he did not concern that Giambi is prone to a fielding error because a fielding

error is not a important factor in baseball and Giambi is very good at drawing walks.

Beane’s strategy worked extremely well in the steroid era like tailor-made suit and

table 2.10 partly explains why he was so successful during that era. However, Beane,

who has worked as a general manager since 1996, and Oakland Athletics had not been

stellar after the steroid era. Figure 2.9 shows that managerial efficiency of Athletics

is not staying in the top level after the steroid era. One possible explanation for this

change of performance is the decreased impact of walk as is shown in table 2.10.
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1986-1992 Steroid 2003-2013

Coefficient mean sd mean sd mean sd

Single 0.769 0.075 0.768 0.058 0.588 0.061

2B & 3B 0.272 0.035 0.364 0.036 0.418 0.040

Homerun 0.261 0.020 0.285 0.018 0.293 0.020

Steal 0.047 0.013 0.027 0.010 0.059 0.011

Walk 0.285 0.031 0.314 0.026 0.243 0.031

Strikeout 0.009 0.042 -0.005 0.041 -0.010 0.039

S & 2B &3B allowed -0.961 0.076 -1.078 0.065 -0.962 0.072

Homerun allowed -0.249 0.024 -0.318 0.022 -0.334 0.027

Walk allowed -0.304 0.034 -0.265 0.027 -0.316 0.032

Strikeout made -0.035 0.040 0.003 0.037 0.052 0.045

Reached on error -0.110 0.027 -0.035 0.021 -0.101 0.021

Table 2.10: Coefficient Estimation Result

Figure 2.9: Managerial Efficiency - Data from 2003 to 2010 Season
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2.6.3 Personal Evolution of Managerial Efficiency: Tony La Russa Case Study

This section compares the managerial efficiency of Tony La Russa, the former

manger of St. Louis Cardinals. Tony La Russa started his job as a MLB manager

in 1979 for the White Sox. In his career, he has managed the three MLB teams,

White Sox, Athletics, and Cardinals and the length of his service is 35 years. By

comparing the managerial efficiency in his career over different periods, we show that

the efficiency, even from a same manger, can vary over time. Figure 2.10 provides the

managerial efficiency over the period from 1979 to 1985 seasons when Tony La Russa

managed the White Sox.

Figure 2.10: Managerial Efficiency - Data from 1979 to 1985 Season

In figure 2.10, the managerial efficiency of the White Sox was placed among the

lower class and ranked at 21st place. During 1986 season, he was acquired by Ath-

letics. Figure 2.11 shows the managerial efficiency of Tony La Russa with Athletics.

During this period, Tony La Russa and Athletics provided very good performance

and Athletics was ranked at 5th place in managerial efficiency. Before Tony La

Russa era, the managerial efficiency of Athletics was ranked at 19th among team.

This shows that Tony La Russa played the important role in improving managerial
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Figure 2.11: Managerial Efficiency - Data from 1987 to 1992 Season

efficiency of the Athletics. During this period, Tony La Russa and Athletics made

three appearances on World Series out of 6 years. After 1992, team owner Walter Haas

Jr. who paid even highest payroll in baseball went away and new owners of Athletics

started to tighten team’s payroll. Tony La Russa was then already one of the most

acclaimed managers on the field and acquired by the Saint Louis Cardinals. He had

been the manager of Cardinals since 1996 and figure 2.12 provides the managerial

efficiency from 1996 to 2010 seasons.

Figure 2.12: Managerial Efficiency - Data from 1996 to 2010 Season
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In this period, the managerial efficiency of the Cardinals is ranked at 19th. Even

though, the Cardinals has made two playoff berths and won the World Series in 2006

with Cardinals, but the managerial efficiency of the Cardinals was not staying at the

top level among the teams. From the longitudinal analysis of managerial efficiencies

over three teams, we find that the field manager’s contribution to managerial efficiency

can vary over time and it is highly affected by the characteristic of the team.

2.6.4 Is John Farrell the Most Efficient Manager in the 2013 Baseball Season?

In this section, we estimate managerial efficiency in 2013 MLB season. The data

used for this section is daily game statistics of the 2013 season for 30 MLB teams. We

applied the same Bayesian stochastic frontier approach for this analysis. However, we

use daily data values for this study while we used yearly data values for the previous

studies. We need to modify the dependent variable of the model because we cannot

use a run ratio of the game finished like 2:0. Therefore, we use run difference as the

dependent variable for this study. It is also impossible to use log value of output

variables because some of them has zero values in daily data. Therefore we use input

values without taking log on them. Figure 2.13 briefly shows that the Boston Redsox

did not have the best managerial efficiency in the 2013 season. This result does not

deny the peer review provided by the Boston Globe. However, result shows that

New York Yankees’s Joe Girardi provided better managing performance in spite of

seriously damaged Yankees line up due to serial injuries to their key players such as

Derek Jeter, Mark Teixeira, and Mariano Rivera.

Table 2.11 more clearly shows that the managerial efficiency of the Yankees who

ranked as the second was managed more efficiently than the Boston Redsox. The

interesting part of this result is that personal evolution of managerial efficiency is

replayed in this estimation result. Managers who took two bottom spots in the rank
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Figure 2.13: Managerial Efficiency - 2013 Season

Team lb mean ub Rank

ARI 0.960 0.995 1.000 7

ATL 0.964 0.999 1.000 4

BAL 0.959 0.994 1.000 9

BOS 0.944 0.979 1.000 13

CHC 0.878 0.913 0.948 28

CHW 0.857 0.892 0.927 30

CIN 0.964 0.999 1.000 3

CLE 0.963 0.998 1.000 6

COL 0.911 0.946 0.981 21

DET 0.915 0.950 0.985 20

HOU 0.943 0.978 1.000 14

KCR 0.964 0.999 1.000 5

LAA 0.960 0.995 1.000 8

LAD 0.946 0.981 1.000 12

MIA 0.920 0.955 0.990 17

MIL 0.936 0.971 1.000 16

MIN 0.916 0.951 0.986 19

NY 0.939 0.974 1.000 15

NYY 0.965 1.000 1.000 2

OAK 0.946 0.982 1.000 11

PHI 0.866 0.901 0.937 29

PIT 0.918 0.953 0.988 18

SDP 0.897 0.932 0.967 25

SFG 0.906 0.941 0.976 23

SEA 0.879 0.915 0.950 27

STL 0.965 1.000 1.000 1

TBR 0.906 0.941 0.976 22

TEX 0.892 0.927 0.962 26

TOR 0.949 0.984 1.000 10

WAS 0.902 0.937 0.972 24

Table 2.11: Estimated Managerial Efficiency in the 2013 Season
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are Robin Ventura for the Chicago White Sox and Ryne Sandberg for the Philadelphia

Phillies. Even though they are well-recognized as likely being good managers in the

future, team managerial efficiencies with these first time managers stayed at a lower

level.

2.7 Concluding Remarks

In this chapter, we have estimated the efficiency of baseball manager using a

stochastic frontier model with the Bayesian approach. Data used for estimation is

yearly data from 1969 to 2013 season and daily data in 2013 season.

Main finding of our study is that we could obtain the narrower confidence interval

when we applied the Bayesian approach to stochastic frontier analysis compared to the

interval found by the frequentist approach. This is the case when we use informative

prior. However, Bayesian approach does not obtain narrower confidence intervals if

uninformative prior is used. To illustrate the comparison, we build confidence interval

of estimated efficiencies using both the Bayesian and the frequentist estimator on

artificially generated data. Another finding is that the narrower confidence intervals

are related to the use of informative prior distribution.

Our study also provides reasonable answers to the questions in baseball. It shows

characteristic change of baseball over two different periods from the comparison of the

classical baseball and the modern baseball. The specific features of baseball during

the limited period which is characterized as the steroid era is analyzed in this paper.

From the results, we could find the clue to interesting baseball question: “Why Billy

Beane, the hero of sensational Moneyball, is not showing his old performance in

steroid era?” The case study of the one of the baseball managing legend “Tony La

Russa” shows that he was not born as legendary manager but evolved into the legend

as he accumulated experience. The 2013 season estimation provides the evidence
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that this estimation of efficiency has strong relationship with the work of the front

office in real baseball world from the following result. The managers who showed low

efficiency were replaced with very high rate by the front office. 50% of managers who

were ranked in the bottom 10 managerial efficiency were fired. It means that this

estimation model has power to provide tools needed by the front office for decision

making.

Here is the last question for this paper. The Boston Redsox was the only 13th in

managerial efficiency during the 2013 MLB season. However, the Redsox still could

win the championship. At the same time, the Boston Redsox did not have the highest

payroll. Then, how the Boston Redsox could beat all the other teams. While studying

on managerial efficiency topic, I came to find that there are two kind of production

efficiencies in Baseball. The first efficiency is the one we covered in this chapter. This

efficiency is mainly decided by the field strategies. This efficiency is affected by how to

choose optimal field manager and organize most suitable players for team’s strategies.

The second and seemingly more important efficiency is to make more offensive and

defensive production out of limited payroll cost. The key to answer the reason behind

the Boston Red Sox 2013 championship seems to be finding a way to estimate the

second efficiency.
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