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ABSTRACT  

   

The environmental and economic assessment of neighborhood-scale transit-

oriented urban form changes should include initial construction impacts through long-

term use to fully understand the benefits and costs of smart growth policies. The long-

term impacts of moving people closer to transit require the coupling of behavioral 

forecasting with environmental assessment. Using new light rail and bus rapid transit in 

Los Angeles, California as a case study, a life-cycle environmental and economic 

assessment is developed to assess the potential range of impacts resulting from mixed-use 

infill development. An integrated transportation and land use life-cycle assessment 

framework is developed to estimate energy consumption, air emissions, and economic 

(public, developer, and user) costs. Residential and commercial buildings, automobile 

travel, and transit operation changes are included and a 60-year forecast is developed that 

compares transit-oriented growth against growth in areas without close access to high-

capacity transit service. The results show that commercial developments create the 

greatest potential for impact reductions followed by residential commute shifts to transit, 

both of which may be effected by access to high-capacity transit, reduced parking 

requirements, and developer incentives. Greenhouse gas emission reductions up to 470 

Gg CO2-equivalents per year can be achieved with potential costs savings for TOD users. 

The potential for respiratory impacts (PM10-equivalents) and smog formation can be 

reduced by 28-35%. The shift from business-as-usual growth to transit-oriented 

development can decrease user costs by $3,100 per household per year over the building 

lifetime, despite higher rental costs within the mixed-use development. 
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CHAPTER 1 

INTEGRATED TRANSPORTATION AND LAND-USE PLANNING AND 

ENVIRONMENTAL ASSESSMENT 

Transit-oriented development (TOD) is an urban planning strategy which can be 

paired with regional policies to enable reductions in energy use and environmental 

impacts of urban living and transportation (Chester et al., 2013a, Kimball et al., 2013). 

Recent studies have challenged whether density is by itself an enabler of these reductions 

and find that mixed-use designs, access to high-capacity transit, jobs-housing balance, 

incentives for development, and balanced parking policy are each important underlying 

drivers (Chatman, 2013, Churchman, 1999, Echenique et al., 2012, Loukaitou-Sideris, 

2010, Cervero and Duncan, 2006, Tumlin and Millard-Ball, 2003). Creating TOD can 

encourage behavior changes which lead to environmental benefits. For example, mixed-

use developments can reduce travel distances for residents, favorable land parcel zoning 

can entice developers to act with reduced permits and special approvals, and parking 

restrictions correlate with increased biking, walking, and transit use. Some literature 

questions the ability to isolate a stimulus and response relationship, which can complicate 

the estimation of behavioral effects after TOD construction (Frank, 2000, Mokhtarian and 

Cao, 2008). While these factors can play a role in the success of TOD to reduce reliance 

on automobile travel and achieve energy use and environmental benefits, there are 

significant opportunities for improving the assessment of these benefits. Environmental 

life-cycle assessment (LCA), which calls for the inclusion of construction, use, 

maintenance, and end-of-life analysis, is a powerful framework for assessing the benefits 

and costs of TOD, yet its potential has not been fully realized in the increasingly 
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important area of urban sustainability. Our intended contribution to this field is a novel 

combination of new integrated transportation and land-use LCA methods with behavioral 

assessment of neighborhood infrastructure changes over time.  

TOD has potential value in the Los Angeles Metropolitan area (further referred to 

as LA) because of significant ongoing investment in accessibility through transit system 

deployment and state environmental legislation (California AB32, 2006, California 

SB375, 2008). Senate Bill 375 (SB375) calls for the development of Sustainable 

Community Strategies which are in part plans for reducing greenhouse gas (GHG) and 

other air emissions through integrated transportation and land use planning. Within LA, 

an adaptive reuse ordinance is in place to expedite the redevelopment process for old and 

under-utilized buildings. Bond sales and tax increases have been allocated to help fund 

new transit operations, urban infill, and TOD (California Prop1C, 2006, LACounty 

Measure R, 2008). Southern California Association of Governments’ Compass Blueprint 

Strategy states that regional mobility, livability, prosperity, or sustainability should not be 

sacrificed as the region grows (SCAG, 2013). These policies, coupled with population 

growth projections, create a need for a comprehensive framework for assessing the 

environmental and economic outcomes of TOD. 

The Gold Light Rail Transit (LRT) line opened in 2003 and the Orange Bus Rapid 

Transit (BRT) line in 2008, and both have been extended with follow-up projects after 

experiencing strong ridership growth and development near stations. Around the Gold 

Line, development has been spurred by incentives including public subsidies, reduced 

parking requirements, and changes to open space requirements (Loukaitou-Sideris, 2010). 

Developers have recognized the demand for housing along the Gold Line and 



  3 

construction around the line has been aided by a low cost permitting process. New 

development has also occurred along the Orange Line corridor. 

There has been no integrated transportation and land use environmental 

assessment framework that includes the impacts of deploying infrastructure, use of that 

new infrastructure, and the avoided behavior changes that may occur. To this end, an 

integrated transportation and land use life-cycle assessment (ITLU-LCA) framework is 

created building on the work of Kimball et al. (2013) and Chester et al. (2013a) to assess 

the environmental and economic impacts of targeted mixed-use developments around the 

Gold and Orange Lines. The framework uses traditional building and transportation 

environmental LCA methods, but also incorporates an estimate of household behavioral 

changes. The assessment provides an understanding of how upfront infrastructure, 

monetary, and environmental investments can be coupled with smart growth policies to 

produce environmental and economic benefits in the long-term. 
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CHAPTER 2 

A LIFE-CYCLE FRAMEWORK FOR ASSESSING TOD 

An assessment of the potential development strategies around Gold and Orange 

Line stations is developed by starting with an available land assessment, next designing 

appropriate TOD for each station, then estimating the redevelopment impacts, and finally 

developing a household and transportation behavioral assessment. While some TOD has 

already occurred near both transit lines (including North Hollywood, Memorial Park, and 

Del Mar stations), the long-run nature of the new transit lines raises questions about how 

other land may evolve in the future, whether through market forces or policy incentives. 

This ITLU-LCA evaluates the land characteristics and availability around the stations of 

each line to estimate the long-run effects of land turnover from market forces, developer 

incentives, and adaptive reuse. The ITLU-LCA framework is used to assess proposed 

urban form changes around the Gold and Orange Line stations, the resulting changes in 

residential living, commercial activity, automobile travel, and transit use and the 

associated energy use, air emissions, and costs of the system (Kimball et al., 2013, 

Chester et al., 2013a). As LA’s population is expected to grow from 9.8 to 11.6 million 

(California DOF, 2013), shifting the next household into a new residential unit with 

walking access to high-capacity transit has the potential to change travel behavior and 

building energy use. 

 

2.1 Scenario Definition 

Spatial analysis of current land use within 0.5 mile (0.8 km) of the stations is first 

performed to assess the land available for redevelopment, as shown in Figure 1. Parcels 
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are identified through one of two approaches: an Underutilized (referred to as U-TOD) 

scenario considers vacant and surface parking lots, and a Redevelopment (R-TOD) 

scenario identifies low value property. Low value parcels are those where the value of the 

land itself is greater than the value of the existing improvements on the land (LAAO, 

2012). To understand the effects of introducing TOD, a business-as-usual (BAU) 

counterpart is developed for each TOD scenario. BAU residents and shoppers are 

considered to have similar travel and living behavior to those residing in the LA area 0.5-

2 miles (0.8-3.2 km) from LA Metro’s six high-capacity transit lines (Blue, Expo, Gold, 

Green, Orange, and Red). This region is chosen to conservatively target households that 

already live in the areas nearby to future TOD, but are currently without walking access 

to high-capacity transit. 
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Figure 1: Transit Location Map with Land-Use Assessment Diagrams. The locations 

of the Gold and Orange Lines are shown within Los Angeles. Around each station is a 

half-mile circle; the acceptable walking distance to a transit station. Using this radius, 

available land parcels are identified for development. Very few vacant lots exist and 

those present are generally small, which means that few opportunities exist for 

consolidated development efforts. Also shown is the 2-mile business as usual catchment 

area for each transit line. 

 

2.2 Application of the LCA Framework 

An LCA framework is developed for building construction and use, automobile 

use (including vehicle manufacturing and gasoline production) and transit use (vehicle 

manufacturing, compressed natural gas (CNG) production and consumption, and 
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electricity production). The system boundary is shown in Figure 2 and includes impacts 

from raw material extraction/processing, assembly, and use of the infrastructure. 

 

 

Figure 2: Los Angeles ITLU-LCA System Boundary Diagram. The LCA system 

boundary includes processes, inputs, and outputs. The bold categories on the left are the 

generalized life-cycle phases, energy inputs, air emissions outputs, and the characterizing 

of emissions to impact potentials. The dashed lines separate the three phases of each 

assessment: 1) construction or manufacturing, 2) upstream energy production, and 3) 

energy use. 

 

For each system, end-use energy inputs and emissions of greenhouse gases 

(CO¬2, N2O, and CH4), carbon monoxide (CO), volatile organic compounds (VOC), 

nitrogen oxides (NOx), sulfur oxides (SOx), particulate matter smaller than 10 microns 

(PM10), and particulate matter smaller than 2.5 microns (PM2.5) are estimated as 
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detailed in sections 2.4 and 2.5. GHG emissions are characterized as CO2-equivalents 

(CO2e) by using radiative forcing factors for a 100-year outlook (IPCC, 2007). The 

EPA’s Tool for the Reduction and Assessment of Chemical and Other Environmental 

Impacts (TRACI) is used to characterize emissions to their potentials for photochemical 

smog formation (measured as O3e) and respiratory impacts (measured as PM10e) (Bare, 

2011, Bare et al., 2002, Norris, 2002). These impacts are included because the Los 

Angeles-South Coast Air Basin is listed by the EPA as out of attainment for PM2.5, a 

serious nonattainment area for PM10, and an extreme nonattainment area for 8-hour 

Ozone levels (EPA, 2012).  

 

2.3 Urban Infill Potential 

Redevelopment strategies must be sensitive to the availability of land and the 

existing communities around the Gold and Orange Lines. Parcels within 0.5 mile (0.8 

km) of each station are identified for the Underutilized and Redevelopment scenarios as 

shown in Table 1 (LAAO, 2012). The Gold Line has less available land area, but a 

greater percentage of commercial parcels. The Orange Line has fewer available parcels, 

and the majority are currently zoned for residential use. By developing all vacant land 

and developing turnover of low-value parcels in the Redevelopment scenarios, a 

reasonable upper bound of land use potential for all economically viable parcels near 

stations is assessed. A bounding analysis is created by contrasting the maximum 

development of the R-TOD scenario with the minimal development of the U-TOD 

scenario. These bounds identify the range of potential impacts associated with 

constructing TOD in LA. 
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Table 1: Land Development Characteristics. Estimates of dwelling units, residential 

floor area, and commercial floor area are shown for each TOD scenario. Adaptive reuse 

is included in the residential and commercial floor area, but is detailed separately to show 

the ratio of new construction to reconstruction. 

Land Selection 

and 

Development 

Scenario 
Parcels 

Available 

Land 

Available 

(acres/ 

hectares) 

Proposed 

Number 

Dwelling 

Units 

Proposed 

Residential 

Floor Area 

(million 

ft2/m2) 

Proposed 

Commercial 

Floor Area 

(million 

ft2/m2) 

Adaptive 

Reuse 

Area 

(million 

ft2/m2) 

Underutilized 

Parcels 

Developed to 

Current Zoning 

Gold 

U-TOD 
909 188/76 170 0.29/0.03 0.72/0.07 - 

Orange 

U-TOD 
232 109/44 280 0.31/0.03 0.19/0.02 - 

Underutilized 

and 

Redevelopment 

to Max Density 

Gold 

R-TOD 
7,860 

2,730/ 

1,100 
27,000 28/2.6 21/2.0 12/1.1 

Orange 

R-TOD 
5,400 

5,460/ 

2,210 
69,000 67/6.2 11/1.0 10/0.9 

 

 

2.4 Designing Appropriate Mixed-Use TOD 

For each densification strategy, mixed-use neighborhoods that include residential, 

retail, grocery, restaurant, and office space are assessed. Prototypical models for new 

construction of commercial and residential buildings for these neighborhoods are 

developed using engineering cost takeoff approaches (RSMeans, 2011) and construction 

impacts are modeled with Athena Impact Estimator (Athena, 2012). The specific building 

types are described in the Supporting Information (SI). High density high-rise buildings 

are only placed within 0.125 mile (0.2 km) of the station, medium density buildings 

within 0.25 mile (0.4 km), and lower density town houses and single-family homes are 

used for infill up to 0.5 mile (0.8 km) from the transit stations. For adaptive reuse of 
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existing commercial and residential buildings, the support structure and roof are assumed 

to remain untouched while the rest of the building is reconstructed with new materials. 

Residential and commercial buildings within the TOD are allocated separately according 

to the current zoning restrictions of land parcels, with additional medium density mixed-

use buildings placed on commercially-zoned parcels within 0.25 mile (0.4 km) of the 

stations. 

The energy consumption of residential and commercial buildings is estimated 

based on forecasts of electricity and natural gas use. These projections are developed by 

exponential extrapolation of American Housing Survey (AHS) consumption data from 

the LA area (see SI) (Census Bureau, 2011) and are based on an assumed 60-year 

lifespan for all buildings (Aktas and Bilec, 2012, Ochsendorf et al., 2011). The amount of 

electricity and natural gas consumed by commercial buildings was estimated from tables 

in the Commercial Building Energy Consumption Survey (CBECS) (EIA, 2003). The 

electricity generation portfolio will change over time as the LA Department of Water and 

Power (LADWP) strives to reach their goal of 33% renewable energy generation by 2020 

and elimination of coal by 2030 (LADWP, 2012). To capture uncertainty associated with 

this change, three future mixes of electricity generation are modeled to estimate air 

emissions (see SI). The impacts of electricity generation, natural gas production, and 

natural gas combustion are modeled with the Greenhouse Gases, Regulated Emissions, 

and Energy Use in Transportation (GREET) Fuel Cycle model (ANL, 2012). 
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2.5 Changing Automobile Travel 

Automobile travel of TOD and BAU residents is estimated to assess the possible 

transportation behavior changes which could occur from locating residents near mixed-

use developments, thereby shifting trips away from personal vehicles. National 

Household Travel Survey (NHTS) data for households which reside within 0.5 mile (0.8 

km) of the Gold, Orange, and Red Lines were used to approximate the characteristic 

travel of proposed TOD residents (FHA, 2009). The Red Line was included in this subset 

because of its proximity to the Gold and Orange lines and to increase the sample size. 

NHTS data for households within LA County, and located within a region 0.5-2 miles 

(0.8-3.2 km) away from LA Metro’s high-capacity transit lines are considered for the 

travel characteristics of BAU residents. By using this BAU cohort, it is assumed that the 

TOD infill residents are from households which would have self-selected to live near 

transit, but are instead moved within walking distance (0.5 mile/0.8 km) of the transit 

stations. The average BAU household has 1.9 vehicles, which each travel 11,900 miles 

(19,200 km) annually, while TOD households own 1.2 vehicles and drive 10,600 miles 

(17,100 km) (FHA, 2009). These distances are used as the baseline travel characteristics 

for residential automobile use and show that fewer automobiles will need to be 

manufactured to satisfy demand for the average TOD. 

The GREET model is used to estimate the impacts of gasoline production and 

vehicle manufacturing. A time-series analysis is constructed and used to project the 

average fuel economy over the 60-year analysis period as 44 mpg (19 km/liter), assuming 

that national fuel economy standards of 35 and 55 mpg (15 and 23 km/liter) in 2020 and 
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then 2050 are met (USDOT, 2012). Details of the time-series and three fuel economy 

futures used for an uncertainty assessment can be found in the SI.  

As residents move from auto-dominated neighborhoods to new TOD 

developments, they have increased opportunities to shift entire trips to transit, bicycling, 

and walking. Flynn et al. (2011) reports that 25% of riders on the Metro Orange Line 

previously performed that same trip by automobile. It is assumed that the placement of 

TOD reduces residential automobile travel by 25% (details of an associated uncertainty 

assessment are found in SI).  

The construction of commercial buildings in TOD is an opportunity to reduce 

automobile travel by TOD residents (who may shift the trip entirely to another mode) and 

by city residents that do not live in the TOD (who could benefit from the new 

development closer to their home, reducing what could have been longer trip distances). 

The Institute of Transportation Engineers (ITE) Trip Generation Manual (ITE, 2008) is 

first used to find the number of trips generated by the proposed commercial 

establishments. ITE uses US average data for their trip generation equations, and TOD 

establishments are expected to attract more transit, walking, and biking trips. Therefore, 

non-residential trips are reduced for the mixed-use TOD using an adjustment 

methodology developed by Nelson\Nygaard (2005). This approach considers a mix of 

building uses, transit accessibility, parking supply, and transportation demand 

management to estimate an adjusted trip generation rate. Estimates for total 

commercially-induced vehicle miles traveled are obtained by multiplying the expected 

number of shopping and commute trips by average trip lengths from the NHTS analysis. 

Average commute trip lengths for the TOD and BAU residential areas are calculated as 
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1.5 and 9.7 miles (2.4 and 15.6 km), respectively. For TOD and BAU shopping trips, 

these distances are 1.5 and 3.4 miles (2.4 and 5.5 km). Additional transit operations due 

to increased residential and commercial TOD travel is included (see SI). 

 

2.6 TOD Cost Estimation 

An economic assessment is developed to quantify the public, developer, and user 

cost changes which may result from each TOD strategy over 60 years. The costs 

associated with building construction and adaptive reuse, building energy use, automobile 

ownership, automobile operation, transit vehicle purchasing, and transit operation are 

estimated in 2012 US dollars. RSMeans (2011) is used to estimate the developer costs of 

building construction and adaptive reuse. LAAO (2012) is used to find land value of the 

proposed TOD parcels and estimate equivalent BAU land purchase costs that would be 

included in developer costs. Additional permitting costs, utility relocation, and other site-

specific conditions are included as a percentage increase to building materials and 

construction: 20% added to BAU construction and 15% to TOD construction (Rose, 

2014). The AHS is used to estimate residential building use-phase costs of water, sewer, 

and energy for LA specific households (Census Bureau, 2011). The cost of energy use for 

commercial buildings is estimated using CBECS (EIA, 2003). The costs of ownership 

and operation of a mid-size sedan (assumed to be the characteristic vehicle) are estimated 

from AAA (2012). To project the building and automobile use-phase costs over the 60-

year analysis period, forecasts from EIA (2003) are used to find the average price of 

electricity, natural gas, and gasoline. The cost of purchasing a bus for the Orange Line is 

found in LA Metro (2011), while the cost of purchasing a Gold Line train is provided by 
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Mitchell and Cannell (2009). The operational costs for each line are estimated from 

operating expenses and revenue service miles provided by LA Metro (2013). 
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CHAPTER 3 

LIFE-CYCLE ENVIRONMENTAL BENEFITS OF TOD 

The results show that TOD are likely to decrease energy consumption and 

environmental impacts compared to typical BAU development in LA (Figure 3). Again, 

we emphasize that the changes in urban form may have to be accompanied by policies 

that provide incentives for transit, walking, and biking and disincentives for single 

occupancy automobile use. The savings result from three primary factors: 1) increasing 

household mobility options so that some fraction of existing auto trips can shift to transit, 

walking, and bicycling, 2) movement of households and commercial space closer to the 

urban core, thereby reducing automobile trip lengths, and 3) shifting some households to 

smaller, less energy consuming dwelling units. The majority of savings derive from 

reducing trip distances by adding people to the urban core: residents located within 0.5 

mile (0.8 km) of high-capacity transit in LA drive an average of 1.6 miles (2.6 km) per 

trip, compared to 7.9 miles (13 km) per trip for residents residing in the 0.5-2 miles (0.8-

3.2 km) buffer. The life-cycle results also show the dependence between land 

development and transportation infrastructure, how transit infrastructure creates mobility 

options for higher density living, and that greater upfront impacts of constructing TOD 

enable savings in other life-cycle phases and overall savings for the development. These 

findings align with California’s SB375 by using development patterns and transportation 

demand management strategies to reduce GHG emissions from automobile use 

(California SB375, 2008). The results can be used to assess LA Metro’s 2009 Long 

Range Transportation Plan that calls for the introduction of mixed-use developments, 
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enabling forms of transportation, reducing air emissions, and consuming energy 

efficiently (LA Metro, 2009). 
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Figure 3: Comparative 60-year Transportation and Land Use Life-cycle Impacts. 

Results for the Gold LRT Line (top) and Orange BRT Line (bottom) are shown 

disaggregated by building (reds and oranges), automobile (blues and purples), and transit 

(greens) life-cycle processes. The Transit-Oriented Development (TOD) scenarios 

(Underutilized-TOD and Redevelopment-TOD) are shown followed directly underneath 

by the corresponding Business-as-Usual (BAU) scenario. 

 

 

An overall reduction in energy consumption and emissions can be expected, 

however, there are emissions increases in some life-cycle processes. Construction of 

high-density residential buildings is estimated to produce up to 15% more GHG 

emissions, 6% more PM10e and 11% more O3e emissions than an equivalent number of 

BAU dwelling units. Shifting trips to transit generates additional, but negligible (< 2%), 

emissions from the bus and light rail manufacturing and use-phase processes. When 

coupled together, shifting 25% of automobile trips to walking, biking, and transit, and 

reducing the automobile trip distances by nearly 80% for commercial activities creates 

the transportation-based emission reductions. GHG emissions show savings up to 40% 

over BAU, due predominantly to reductions as high as 80% in automobile travel 

emissions and lower residential electricity and natural gas consumption. The potential for 

respiratory effects and smog formation are influenced most heavily by raw material 

extraction, refining, and production processes. Despite LA’s commitment to reduce coal-

powered electricity generation by 2030, coal and natural gas plants comprise roughly 

50% of the generation portfolio over 60-years and produce large quantities of particulate 
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emissions during the extraction of fuel and combustion. The manufacturing of vehicles 

and construction of high-density buildings requires many metals and composite materials 

which also contribute significant particulate emissions from mining and processing. The 

energy production and use phases of each scenario emit the most smog precursors due to 

the combustion of fuels and production of gasoline for transport processes (ANL, 2012). 

The availability and current use of land around the Gold and Orange Lines 

dictates the building placement strategy, which influences the energy consumption and 

emission reductions over the 60-year assessment period. Gold Line savings experienced 

in the automobile phases comprise 77%-99% of total savings because vehicle 

manufacturing, fuel production, and fuel consumption are all reduced with decreased 

automobile travel. Commercial developments are estimated to reduce impacts more than 

residential due to their potential for reducing travel by both TOD residents and non-TOD 

residents. For the Gold Line, up to 75% of the TOD floor area is commercial, thereby 

producing large automobile use-phase savings from work and shopping trips that are 70% 

shorter, and some trips that are completely replaced by transit or walking. The Orange 

Line experiences 74%-92% savings in the automobile phases, and reduced energy 

consumption in each dwelling unit comprises the remaining reduction. This balanced 

combination of savings from dwelling units and automobile travel enables the Orange 

Line to reduce an equal or greater percent of impacts than the Gold Line for all impact 

characterizations considered. 

The Underutilized scenario produces a magnitude of emission reductions at 

roughly 1% of the Redevelopment scenario reductions, however, U-TOD identifies an 

opportunity to immediately begin low cost infill construction and introduce new residents 
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to high-capacity transit and walkable neighborhoods. Construction of the developments 

could begin immediately because they are placed on vacant and surface lots and are 

designed to meet current zoning rules, removing a time and monetary burden for 

developers by not requiring applications for zoning exemptions. Energy consumption and 

GHG emissions decrease from 30%-36%, while avoiding up to 30% of  PM10e and O3e 

emissions could be attractive to the South Coast Air Basin (a larger geographical area 

than Los Angeles city), which is repeatedly out of attainment for both (EPA, 2012). The 

U-TOD scenario represents a smaller-scale planning opportunity with few development 

barriers which would introduce new residents to the mega-region with fewer 

environmental impacts.  

The Redevelopment scenario creates opportunities for the much larger impact 

reductions due to developing vacant lots, paved lots, and some low-value parcels to a 

maximum possible density with new construction. Additional savings for the scenario are 

created by employing adaptive reuse of existing low value buildings to create dwelling 

units and commercial spaces in the TOD. To achieve these reductions, R-TOD is 

dependent on favorable zoning for dense, mixed use developments and LA’s Adaptive 

Reuse Ordinance such that developers can maximize profits without being mired in the 

approval process before new construction (City of Los Angeles, 2006). This combination 

of new construction and adaptive reuse enables 37% reductions in GHG emissions and 

35% avoided respiratory and smog emissions on both lines. Contrary to the U-TOD 

scenario, energy use experiences the smallest reductions for R-TOD on both transit lines: 

only 31%. This is due to the inclusion of adaptive reuse, which requires almost equivalent 

energy consumption during the refurbishing process, but with fewer emissions than new 
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construction. The impact reductions vary between U-TOD and R-TOD because adaptive 

reuse and higher density residential buildings are deployed in R-TOD, which shows that 

these two building policies in isolation are not necessarily the best strategies for regional 

emission reduction. 
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CHAPTER 4 

LIFE-CYCLE ECONOMIC BENEFITS OF TOD 

Developers, transit agencies, and private consumers experience different benefits 

and costs across life-cycle components, and the results indicate that despite higher 

residential real-estate costs to TOD residents, long-term reductions in home energy use 

and transportation cause net savings. The life-cycle economic assessment results 

presented in Figure 4 show that TOD may be cheaper to develop (while land acquisition 

costs per unit area are higher with TOD, much more land is needed in BAU) and lead to 

user savings in the use phases over a 60-year planning horizon when comparing TOD to 

BAU. Building construction costs are up to 5% greater in the TOD scenarios than their 

BAU counterparts due to the material composition and construction processes associated 

with higher density buildings which require more concrete, steel, and labor than BAU 

developments, where 60% of the dwelling units are wooden single-family homes. But, 

total development costs are potentially lower in the TOD scenarios because the cost of 

purchasing greater amounts of land for less-dense BAU development far outweighs the 

minor increase to TOD building construction costs. The energy savings experienced in 

high-density apartments because of shared walls, centralized heating and cooling 

systems, and smaller dwelling units translate to user savings, which more than recover 

higher rent costs within the TOD. Savings from reduced fuel expenditures lead to an 

overall cost reduction for TOD resident travel, despite the added expense of operating 

transit systems at a greater capacity in the R-TOD scenario. 
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Figure 4: Economic Changes between Business-as-Usual (BAU) and Transit-

Oriented Development (TOD) in LA. The 60-year life-cycle costs for the 

Underutilized-TOD and Redevelopment-TOD scenarios are shown in the left figure and 

costs per avoided impact in the right. In the left figure, all costs are in billions of 2012 US 

dollars. The life-cycle process color coding corresponds to that of the life-cycle 

environmental results. The cost per avoided impact is presented as a range. Where 

negative, TOD reduces emissions at long-term economic savings. 

 

The building composition varies by TOD scenario (shown in Table 1) and 

influences the associated emissions and costs (Figure 3 and Figure 4). Normalizing these 

results to dollars-per-avoided-emissions can help guide policymakers toward strategies 

that cost-effectively reduce energy use and improve air quality. The upper bound of the 

cost range per avoided impact is computed by dividing the additional cost of constructing 

TOD, rather than BAU, by the avoided emissions from each scenario. These costs can be 

negative because the total developer costs for a sprawling BAU scenario can be higher 
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than the costs of the equivalent TOD, in which case a lower cost TOD also enables 

impact reductions. The lower bound of the cost range is computed as the TOD user 

savings divided by the avoided impact in that scenario. This range presents the ‘developer 

cost-per-avoided-emission’ and the ‘user cost-per-avoided-emission’, which each can be 

used to inform different project stake-holders of their potential costs for reducing 

impacts. The pattern to note from this cost assessment is that the Gold Line U-TOD 

scenario is the least economical due to its land availability, current zoning, and proposed 

building composition. However, more aggressive development around the Gold Line is 

shown to have greater economic and emission reduction potential. TOD around the 

Orange Line has the greatest potential for economic savings and emission reductions 

based on the cost of available land around the line and potential for higher density mixed-

use near the stations. We recognize that our assessment of land value and construction 

costs may be imperfect because of transit market effects and the challenges of estimating 

site-specific costs. However, establishing a framework to assess the integrated 

transportation and land use costs associated with investments in GHG emissions 

reductions is important and site-specific future research can leverage our methods. There 

exists a ‘break-even’ point where TOD is more expensive to construct if unforeseen site 

preparation costs double to be 30% of building construction, rather than the 15% which is 

currently assessed and presented (Rose 2014). However, when major overhead costs for 

site development are kept low, TOD can be cheaper to construct, enable user savings, and 

reduce environmental impacts, which supports LA Metro’s recent endeavors to construct 

mixed-use around numerous stations. 
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CHAPTER 5 

BENEFITS OF TOD IMPLEMENTATION 

The potential exists to substantially reduce environmental impacts while 

introducing new residents to LA if redevelopment concentrates residential and 

commercial growth around existing high-capacity transit service. The sunk cost in the 

transit infrastructure can be positioned as an investment to more effectively utilize land 

around the LRT and BRT stations. While the results of this assessment are specific to 

each transit line, some general patterns can be noted about the potential for TOD infill to 

reduce life-cycle energy use and environmental impacts: 1) The avoided impacts of 

utilizing mixed-use urban infill and related transportation and development policies can 

help attain some of the state’s planning, mobility, and air quality goals such as those set 

forth by SB375 and Assembly Bill 32 (AB32). 2) Up-front environmental impact 

investments must be made by developers because construction of higher density mixed-

use TOD will generate more emissions than a comparable amount of sprawl 

development. Incentives that protect developers from major unforeseen site costs may 

help to overcome development barriers, enable construction in ideal locations, and ensure 

that energy-efficiency measures are integrated. 3) Reducing impacts does not depend 

exclusively on the density of the TOD, but is influenced by the mix of uses, proximity to 

high-capacity transit, connection to urban cores, reduced dwelling unit sizes, and 

walkability around stations. 4) TOD activity in the LA area has the potential to trigger 

impact reductions on local, regional, and national levels, when life-cycle effects are 

considered. 



  25 

The uncertainty associated with each scenario is presented in Figure 5 to illustrate 

the effects of behavioral and technological changes. While TOD is often accepted as a 

lower environmental impact urban form, it is important to consider the conditions for 

which this is true. The bottom of the black uncertainty bars shows an LA regional 

electricity mix with a large share of renewables, heavy transit adoption by TOD residents, 

and high vehicle fuel economy while the top shows an electricity mix with low renewable 

penetration, no transit adoption by TOD residents, and low fuel economy. When the 

uncertainty bars for any two scenarios overlap, this implies that it is possible for TOD to 

produce more impacts than BAU. However, it is improbable that TOD will trigger greater 

emissions than BAU because factors such as the regional electricity mix will apply to 

both scenarios in the future. For TOD to produce greater emissions than BAU, residents 

would have to continue to consume the same amount of energy in the TOD and proceed 

with identical driving habits to BAU residents. The most striking variability can be seen 

in the respiratory impacts because of high sensitivity to LADWP’s goal of removing all 

coal-fired generation from their mix by 2025 (LADWP, 2012). Technological progress 

and changing behaviors have the potential to increase emissions by 150% or decrease 

them by 21% over the baseline results. 
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Figure 5: Uncertainty. The uncertainty associated with each scenario is presented as the 

total scenario impacts with an uncertainty range due to future behavioral and 

technological changes. The results shown here in grey are the same total results shown in 

Figure 3. The solid grey bar represents a ‘realistic’ future scenario as described in the 

methods, while the black uncertainty bar designates optimistic and pessimistic futures. 
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Policy changes for urban form and transportation services in LA have 

environmental consequences outside of the region. LCA can identify these indirect and 

supply chain impacts such that prioritizations can be made for cost-effective local 

reductions (Chester et al., 2013b). For every 10 kg of CO2e emissions in the Gold Line 

U-TOD scenario, 7.1 kg will be emitted in the LA area (by building construction, 

automobile operation, electricity generation, and natural gas consumption), 2.3 kg will be 

produced at the regional level (by the processing of raw materials and electricity 

generation), and the remaining 0.6 kg will be produced on a national or international level 

(by vehicle manufacturing and crude oil refining and distribution). Estimations from the 

Gold Line U-TOD show that for every 10 kg PM10e emissions, 5.4 kg will be local, 3.5 

kg will be regional, and 1.1 kg will be outside of the region. For O3e emissions, the 

sources change to 5.9 kg local, 2.6 kg regional, and 1.5 kg outside of the region. The 

majority of smog and respiratory effects are localized to the area of emission, but 

California’s efforts to reduce their own impacts are also triggering reductions outside of 

the region and state. Transportation and land use systems are highly interconnected, and 

while the benefits of TOD policies may be predominantly local and supportive of state 

GHG reduction policies, remote impacts could be considered for multi-state 

environmental policy, including a regional cap-and-trade program (CARB, 2013). 
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CHAPTER 6 

ITLU-LCA FOR URBAN POLICYMAKING 

The ITLU-LCA framework shows how various policies can be implemented at 

different stages of TOD development. Initially, the creation of incentives for developers 

to construct near transit stations is critical. Transit-oriented district planning is one policy 

that helps developers by changing the zoning of the parcels proximate to high-capacity 

transit to allow for mixed uses and higher densities. Developers incur fewer expenses and 

can begin construction sooner when zoning is already in place to support this type of 

development. Parking requirements have the potential to deter TOD around the Gold and 

Orange Lines because open space is more restricted near the transit stations. This 

challenge can be managed by reducing the required amount of parking for higher density 

developments, which may discourage use of automobiles. District planning can also 

create a more walkable community around each station and configure a ‘necklace of 

pearls’ alignment (Cervero, 2006) where needs can be fulfilled at one station, or transit 

can be used to access a nearby station with other desired amenities. The goal of each of 

these policies is to help developers construct TOD under low barrier and cost conditions, 

and create a livable community where residents are not dependent on personal 

automobiles for the majority of their trips. Policies that encourage sustained long-term 

transit use and lower building energy use are also critical. Dwelling unit size restrictions, 

appliance rebates, maximum parking standards, appropriately priced parking, and 

appropriate mixed-use zoning will in the long-run help to ensure that residents and non-

residents who use the TOD have higher shares of transit travel and lower home energy 

use. 
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AB32 and SB375 legislation in California call for transportation and land-use 

planning to be paired together to achieve GHG emission reduction goals, and a 

comprehensive framework does not currently exist to analyze the integrated short-term, 

long-term, and supply chain effects of urban form changes. The ITLU-LCA framework 

can be used to estimate the environmental and economic effectiveness of urban planning 

strategies by pairing physical infrastructure effects with behavioral changes. The co-

benefits of smart growth are identified across a broad suite of environmental indicators, 

and the few short-term impacts are shown to be far outweighed by long-term benefits. 

Ultimately, the framework highlights the importance of coupled transportation and land 

use planning processes to illuminate the paths toward environmental benefits of urban 

form changes. Future research objectives for TOD should include the effects of scheduled 

deployment of developments, social barriers to urban infill, and potential success of TOD 

around lower-capacity transit systems. 
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1 PROTOTYPICAL RESIDENTIAL AND COMMERCIAL BUILDINGS 

Four residential building models are created: a 1,500 ft2 (139 m2) slab-on-grade single-

family home, a slab-on-grade multi-family town house with two dwelling units, a 3-story 

wooden apartment building with 24 1,100 ft2 (102 m2) dwelling units, and a 10-story concrete 

and steel high-rise building with 80 1,100 ft2 (102 m2) dwelling units. The American Housing 

Survey (AHS) is used to find average dwelling unit sizes and energy consumption characteristics 

for Los Angeles (Census Bureau, 2011). Two commercial building models are used: a single-

story, stand-alone wood and steel building with 11,000 ft2 (1,000 m2) of space and a 4-story 

concrete and steel building with 44,000 ft2 (4,100 m2) of space. The floor area within the 

commercial buildings is allocated to five types of establishments: grocery, retail, sit-down 

restaurants, fast-food restaurants, and office space. 

For both new construction and adaptive reuse, parking infrastructure impacts are included 

based on an assessment by Chester et al. (2010), with a garage included in the single-family 

home and all other buildings paired with a parking structure or lot. Buildings utilized as adaptive 

reuse have existing parking and are not required to meet all parking codes according to the City 

of Los Angeles Adaptive Reuse Ordinance (City of Los Angeles, 2006). Therefore, the impacts 

of new parking constructed for these buildings are estimated to be as much as 60% lower than 

the impacts of parking facilities for a new building. 

 

2 ENERGY CONSUMPTION ANALYSIS 

2.1 Residential Building Energy Consumption 

A summary of the projected 60-year average energy consumption of single-family homes 

and apartment dwelling units is presented in Table S1: 60-Year Average Residential Energy 
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Consumption. The methods for estimating future energy consumption are shown in sections 

2.1.1 and 2.1.2. 

Table S1: 60-Year Average Residential Energy Consumption 

 Electricity Consumption 

(kWh/MJ) 

Natural Gas 

Consumption (MJ) 

Single-Family Home 

(1,900 ft2/177 m2) 
10,000/39,000 72,000 

Apartment Dwelling Unit 

(1,000 ft2/93 m2) 
5,400/20,000 33,000 

 

2.1.1 Energy Consumption of Single-family Homes 

The AHS (Census Bureau, 2011) data was filtered to include only stand-alone single-

family home residences. Energy consumption of each residence was graphed against the year the 

building was constructed (shown in Figure S1 and Figure S2), and exponential regressions were 

fit to the data. This regression was used to project energy consumption changes over time, and 

the 60-year average consumption was normalized per unit of floor area. Because the AHS data is 

provided as a monthly cost, an electricity price of $0.18/kWh and a natural gas price of $0.01/MJ 

was used with the Consumer Price Index for Los Angeles County to calculate energy use from 

the given expenditure. 
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Figure S1: Single-Family Home Monthly Electricity Bill vs. Construction Year 

 

Figure S2: Single-Family Home Monthly Natural Gas Bill vs. Construction Year 
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2.1.2 Energy Consumption of Multi-family Structures 

Apartment dwelling units are analyzed separately because shared walls, lighting loads, 

increased system efficiencies, and smaller living quarters have been shown to lower energy use 

(Gomez-Ibanez et al., 2009). The AHS data were filtered to include only buildings of 20 or more 

units, to align with this study’s typical apartment buildings. Energy consumption of each 

residence was graphed based on the year the building was constructed (Figure S3 and Figure S4), 

and an exponential regression was fit to the data set. This regression was used to project energy 

consumption changes over time, and the 60-year average consumption was normalized per unit 

of floor area. This normalized consumption value was multiplied by 1,000 ft2 (93 m2, the 

average dwelling unit size in the area of study) to obtain the forecasted energy consumption 

profile for a typical apartment dwelling unit.  

 

 

Figure S3: Apartment Monthly Electricity Bill vs. Construction Year 
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Figure S4: Apartment Monthly Natural Gas Bill vs. Construction Year 

 

2.2 Commercial Building Energy Consumption  

Commercial natural gas and electricity consumption were estimated based on the unit 

area of each type of establishment from summary tables provided by the Commercial Building 

Energy Consumption Survey (CBECS) (EIA, 2003). Each of the five commercial building 

typologies in this study (grocery, sit-down restaurant, fast-food restaurant, retail, and commercial 

office) were evaluated. Recent changes to building codes include increased efficiency measures, 

such as insulation and improvements to HVAC systems, but increased plug loads may counteract 

efficiency gains (Pacific Northwest National Laboratory, 2011, DOE, 2011). Therefore, the 

factors are used for the entire 60-year analysis period without any future projections as presented 

in Table S2. 
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Table S2: Average Annual Commercial Energy Consumption 

 
Electricity Consumption 

Natural Gas 

Consumption 

 kWh/ft2 MJ/ft2 MJ/m2 MJ/ft2 MJ/m2 

Grocery 51 184 1,980 33 355 

Sit-down Restaurant 48 171 1,840 204 2,200 

Fast Food Restaurant 48 171 1,840 299 3,220 

Retail 18 64 689 32 344 

Commercial Office 12 43 463 28 301 

 

  

3 THE CHANGING ELECTRICITY MIX OF LOS ANGELES 

The current and future projection electricity generation portfolios for the Los Angeles 

Department of Water and Power (LADWP) are shown in Table S3. LADWP has set goals to 

reach 33% renewable generation by 2020 and completely remove coal-powered generation by 

2030 (LADWP, 2012). Three future scenarios are assessed to capture the uncertainty associated 

with Los Angeles’ future mix: i) 2010 generation levels remaining constant, ii) meeting the 

LADWP goals on time and remaining constant after 2030, and iii) meeting the 2030 goals by 

increasing only renewable energy sources and reducing consumption. In the uncertainty 

assessment the baseline scenario is the 2030 goal, the existing 2010 portfolio is considered as 

pessimistic future, and meeting the 2030 goals by increasing only renewable sources and system 

efficiencies is the most optimistic scenario. 
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Table S3: LADWP Future Electricity Generation Portfolio 

 
2010 Portfolio (%) 2030 Goal (%) 

Meet 2030 Goal with 

Renewable Sources (%) 

 2010 60-year Avg 2030 60-year Avg 2030 60-year Avg 

Natural Gas 22.0 22.0 47.7 40.5 22.0 22.0 

Coal 39.0 39.0 0.0 8.6 0.0 6.7 

Nuclear 11.0 11.0 9.3 9.6 9.3 9.6 

Large Hydro 3.0 3.0 4.7 4.5 4.7 4.4 

Unspecified 5.0 5.0 0.0 0.5 0.0 0.9 

Renewable 20.0 20.0 38.3 36.3 64.0 56.4 

Total: 100 100 100 100 100 100 

 

  

4 FUTURE AUTOMOBILE FUEL ECONOMY 

To capture the future variability of changing vehicle technologies, best and worst case 

scenarios are developed for an uncertainty assessment. The worst case scenario is meeting a 

future fuel economy of 35 mi/gal (15 km/l) in 2020 with no further increases, and the best case is 

meeting an accelerated 55 mi/gal (23 km/l) goal in 2020 and then holding constant through the 

remainder of the 60 years. The baseline scenario used in the assessment is meeting the 35 mi/gal 

(15 km/l) goal in 2020, then meeting the 55 mi/gal (23 km/l) goal in 2050 with no further 

improvement. These scenarios are shown in Table S4 along with the 60-year average fleet fuel 

economy if linear increases are projected between the current fuel economy and future goals. 

Time series for each life-cycle process are constructed based on these goals: vehicle 

manufacturing (assumed to change with fuel economy and light-weighting), fuel production 

(changing with the penetration of oil sands and other sources), and vehicle operation (changing 

as the average fleet fuel economy continues to increase). Greenhouse Gases, Regulated 
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Emissions, and Energy Use in Transportation (GREET) model forecasts are used to estimate 

future changes and their associated environmental effects. 

 

Table S4: Future Vehicle Fuel Economy Scenarios 

 Only 2020 

(35 mi/gal) Goal 

2020 and 2050 

Goals  

Accelerated 2020 

(55 mi/gal) Goal 

 mi/gal km/l mi/gal km/l mi/gal km/l 

2012 Fleet 24 10 24 10 24 10 

2020 Goal 35 15 35 15 55 23 

2050 Goal N/A N/A 55 23 N/A N/A 

2071 Fleet 35 15 55 23 55 23 

60-Year 

Average 
34 14 44 19 51 22 

 

 

 5 MODE-SHIFT TO TRANSIT 

A bounding analysis is performed for the residents’ mode-shift to transit to capture the 

behavioral uncertainty of future TOD residents. A worst case scenario is considered as no shift to 

other forms of transit and a best case scenario as a 44% shift away from automobile travel. These 

bounds are based on findings from a national TOD survey by Cervero and Arrington (2008) and 

are built into the analysis uncertainty assessment. 

The existing transit lines have the capacity to support some additional riders without 

additional infrastructure construction, but new vehicles (or greater capacity through increased 

vehicle sizes) will have to be added to the lines at a certain level of adoption. Chester et al. 

(2013), using LA Metro forecasts, projected increases from 43 to 93 riders per two-car train on 



43 

the Gold Line and from 35 to 53 riders per bus on the Orange Line by around 2030. These 

increases were associated with unanalyzed land use changes and network expansion. The 

proposed U-TOD scenarios would introduce new ridership which could be accommodated within 

the increases proposed by Chester et al. (2013) and the remaining capacity within the current 

vehicles based on the current operating schedule. Using peak occupancy estimates from Chester 

et al. (2013) and all the remaining vehicle capacity, an estimated 13 additional Gold Line trains 

will be needed and 7 additional Orange Line buses in the R-TOD scenario to handle the new 

demand for ridership. No impacts from transit are considered in the U-TOD scenarios because 

ridership can be handled at current operating capacity and only the impacts due to additional 

vehicle manufacturing and operation are considered in the R-TOD assessment. Additional 

electricity and CNG consumption are analyzed using the GREET model including future 

renewable portfolio electricity mixes. The impact from vehicle manufacturing of buses and trains 

are taken from Chester et al. (2013). 
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