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ABSTRACT 

Peptide microarrays are to proteomics as sequencing is to genomics. As 

microarrays become more content-rich, higher resolution proteomic studies will parallel 

deep sequencing of nucleic acids. Antigen-antibody interactions can be studied at a much 

higher resolution using microarrays than was possible only a decade ago. My dissertation 

focuses on testing the feasibility of using either the Immunosignature platform, based on 

non-natural peptide sequences, or a pathogen peptide microarray, which uses 

bioinformatically-selected peptides from pathogens for creating sensitive diagnostics. 

Both diagnostic applications use relatively little serum from infected individuals, but each 

approaches diagnosis of disease differently. The first project compares pathogen epitope 

peptide (life-space) and non-natural (random-space) peptide microarrays while using 

them for the early detection of Coccidioidomycosis (Valley Fever). The second project 

uses NIAID category A, B and C priority pathogen epitope peptides in a multiplexed 

microarray platform to assess the feasibility of using epitope peptides to simultaneously 

diagnose multiple exposures using a single assay. Cross-reactivity is a consistent feature 

of several antigen-antibody based immunodiagnostics. This work utilizes microarray 

optimization and bioinformatic approaches to distill the underlying disease specific 

antibody signature pattern. Circumventing inherent cross-reactivity observed in antibody 

binding to peptides was crucial to achieve the goal of this work to accurately 

distinguishing multiple exposures simultaneously. 
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PREFACE 

This dissertation examines fundamental aspects of antibody behavior through the 

observation of their interaction with peptide targets.  Historically, immunodiagnostics 

have fulfilled their role in healthcare by the measurement of the interaction between 

patient antibodies and select targets, whether auto-antigens, or viral, bacterial, or fungal 

antigens.  The sensitivity and specificity of diagnostics is linked to the selection of ligand, 

and the quality of the measuring assay.  The need for high sensitivity originates from the 

need to detect outbreaks, new zoonosis and animal-to-human disease transfer, 

epidemiology, and early detection of disease.  The need for high specificity originates 

from the need to discriminate closely related pathogens, or detection of new disease in 

endemic regions, or areas of numerous commonly acquired infections.  In this tome, there 

was a directed effort to cover a broad landscape of questions that directly address the 

performance of diagnostics for infectious disease, biochemically, informatically, and 

practically. 

Chapter 2 demonstrates a diagnostic application of the Immunosignature non-

natural sequence peptide microarray for diagnosing a single infection, Valley Fever (VF), 

Coccidioidomycosis.  The introduction to this chapter explores the unmet need for a more 

sensitive diagnostic for Valley Fever false-negative individuals.  The Valley Fever patient 

sera were kindly contributed by Dr. John Galgiani from the Valley Fever Center for 

Excellence at the University of Arizona. The work described here includes experimental 

data from 3 sets of non-natural Immunosignature microarrays, and compares the results.  

Experiments were done to assess whether or not Valley Fever could be distinguished 

from other fungal infections such as Aspergillus fumigatus and other confounding 
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community acquired pneumonias such as those cause by Mycoplasma pneumoniae, 

Chlamydia pneumoniae.  Upon establishing a unique signature pattern for Valley fever, 

the sensitivity of this Immunosignaturing assay was tested using serum from patients 

obtained in the early stages of the infection in the form of independent training and test 

serum sample sets. A set of 96 predictor peptides were selected for their high sensitivity 

and tested independently on a smaller ‘VF-diagnostic’ chip to verify sensitivity.  

Chapter 3 evaluates the diagnostic accuracy of using natural antigen epitopes 

peptides versus 96 non-natural VF predictor peptides as diagnostics.  These 96 non-

natural predictor peptides were selected very early in the development of 

Immunosignatures. Although pathogen epitope proteins and never-born/non-natural 

proteins are bioinformatically compared in literature, this is the first study completing 

this comparison in a diagnostic context. From our data, the 96 non-natural VF predictor 

peptides showed higher accuracy at classifying all stages of VF infection over VF-epitope 

peptides.  

Chapter 4 highlights the challenges involved when evolving a single pathogen 

diagnostic assay into a multiplexed immunodiagnostic. The assay was developed for 

simultaneous detection of 5 or more NIAID category A, B, C priority pathogens in 

fulfillment of a project supported by the Chemical Biological Technologies Directorate 

contract HDTRA-11-1-0010 from the Department of Defense Chemical and Biological 

Defense program through the Defense Threat Reduction Agency (DTRA) to Dr. Stephen 

Albert Johnston. My role in this undertaking was to evaluate the feasibility of selecting 

pathogen epitopes, both those known to bind empirically, and those predicted to bind 

from the IEDB (Immune Epitope DataBase). Based on our analysis I designed the 
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pathogen proteome peptide (PPP) microarray to represent immunodominant antigens for 

larger pathogen proteomes and complete proteomes for smaller viruses.  I examined the 

behavior of serum from infected individuals on these peptides while dissecting the effects 

of temperature and time of incubation, concentration of primary, competitors, inter-

peptide spacing on the array surface, peptide linkers, dual and single color scanning, and 

mathematical normalization methods. We developed an assay capable of distinguishing 4 

priority pathogen infections apart with >90% AUC-ROC (Area under a receiver operator 

characteristics curve). Chapter 5 summarizes the bioinformatic efforts implemented to 

circumvent cross-reactivity observed on the multiplexed PPP pathogen epitope peptide 

microarray platform.  We interpreted the cross-reactivity observed on the PPP array using 

an antibody ‘Umbrella Approach’ for bioinformatically re-attributing observed cross-

reactivity.   

The first appendix covers the observation and characterization of globular VF 

spherule-like globular objects within infected individual’s sera. Given the paucity of VF 

diagnostics, this observation might serve to enable diagnostics in this area. The presence 

of such spherule like circulating antigen-antibody complexes might pose significant 

interference on the peptide microarray’s ability to capture antibodies bound to spherules 

as noted in other antigen based diagnostics. The second appendix includes data from VF 

epitope peptides for four immunodominant antigens showing binding of patient sera at 

various IDCF titers (incremental stages) of the infection. The third appendix summarizes 

the ASFV (Pirbright, UK) and Francisella tularensis (University of New Mexico) 

projects. These were applications requiring use of a more sensitive technology such as the 

PPP array as compared to standard ELISA assays to monitoring the antibody response 
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from various genetic immunization regimes.  Serum samples for these two projects were 

contributed by Dr. Kathryn Sykes.  My contribution to the Bead Protein Array project 

originally conceived and developed by Dr. Kathryn Sykes was to experimentally 

optimize this protein microarray system for screening of infectious or vaccinated sera 

using IVTT synthesized proteins on beads.  
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CHAPTER 1 

INTRODUCTION 

Project Overview 

Through this work we explore the use of peptide microarray platforms towards 

diagnostic applications of infectious diseases. In the first phase, of this study we use a 

non-natural sequence peptide microarray platform for diagnosing a single, specific 

infection, Valley Fever caused by Coccidioides. In the second phase, in contrast we used 

a natural sequence peptide array as a multiplexed array platform capable of 

simultaneously discerning 5 or more infections. While most of the work presented in this 

dissertation has diagnostic applications, it answers several fundamental questions about 

antigen-antibody kinetics as observed in the context of an infectious response. 

Peptide microarray as clinical diagnostics 

Peptides are useful reagents for characterizing the humoral immune response to 

disease.  Antibodies respond to a number of different types of antigens including linear 

and non-linear proteinaceous targets, polysaccharides and glycopeptides, phosphorylated 

proteins, and other biological molecules.  Peptides can simulate the physico-chemical 

structure of many of these targets (mimotopes), creating a systematic one-stop-solution 

for probing antibody behavior.  Technologies that rely on proteins as probes are varied 

[1]:  bead based immunoassay (Luminex, Austin, TX), mass spectrometry (Ciphergen, 

Fremont, CA), surface plasmon resonance (Biacore, www.biacore.com), protein 

microarrays (Zeptosens-Witterswil, Switzerland; ProtoArray-Life Technologies), electro-
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osmotic micro-fluidic LabChip (Calipertech, Hopkinton, MA), surface acoustic waves 

based micro-fluidic assays (Advalytix, Brunnthal, Germany), micro-cantilever 

measurement (Protiveris, Rockville, MD), but most widely used have been peptide 

microarrays: PEPperPRINT-Heidelberg, Germany; CombiMatrix-Mukilteo, WA; 

Immunosignaturing [2].  Microarrays enable thousands of peptides to be assayed 

simultaneously under identical assay processing conditions. Many groups have developed 

pathogen antigen based peptide microarrays diagnostics for specific infections such as 

Tuberculosis [3,4], Echinococcus spps. [5] and SARS [6,7]. The antibody response 

mapping strategy as outlined by these groups involves testing patient sera in comparison 

to normal donor sera. Using tiled regions of proteins, researchers have precisely 

identified small portions of proteins that correspond to the eliciting antigen [8].  

Immunosignaturing is a novel microarray platform as compared to pathogen antigen 

based peptide microarrays because it uses non-natural peptides to capture antibody 

response [2,9,10]. This technology has led to fundamental breakthroughs in 

understanding antigen-antibody interactions that could potentially be used for medical 

diagnostics [11-13]. 

Advantages of using peptide microarrays 

A significant advantage of using peptide microarrays is their ability to partition 

and measure separately, specific portions of an antibody response. The resolution of these 

responses captured on peptide microarrays can be traced down to the eliciting antigen 

fragments. In comparison, protein based ELISA’s or protein microarrays merely allow 
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capturing a cumulative sum of antibodies against entire proteins. Unlike certain protein 

microarrays another advantage of using peptide microarrays is the minimal test sample 

preparation and lack of complex blocking steps required during sample processing. For 

example, in Escherichia coli based in-vitro translation and transcription (IVTT) protein 

microarrays, test sera is blocked using E. coli lysate to exclude false-positive reactivity to 

E.coli proteins within the IVTT protein mixture [14]. E.coli reside within the human gut 

microbiome comprising a 100 trillion microorganisms [15] classified under phyla: 

Bateriodetes, Firmicutes and Actinobacteria [16]. Golby et al. [17] observed preliminary 

evidence for B-cell development in human fetal intestinal cells using 

immunohistochemistry studies. Additionally, recent evidence in mice suggests that 

bacteria within the gut microbiome might be capable of influencing B-cell development 

and immune response in the mouse intestine [18]. Given that the antibody response to E. 

coli residing in the intestine might be part of the primary immune response in humans, it 

would not be advisable to exclude this anti-E.coli protein lysate signature when 

attempting to capture pathogen specific antibody reactivity using microarrays. Peptide 

microarrays do not require biasing the observable infectious antibody response by 

including such high complexity sample preparation steps. Additional advantages of 

peptide microarrays are their ability to tile continuous fragments of proteins to 

characterize monoclonal antibody reactivity with higher resolution than is possible with 

protein microarrays. Peptides are easier and less expensive to produce in comparison to 

proteins through IVTT. Considering these significant advantages, it would be prudent to 
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apply peptide microarrays to diagnose and distill the complex immune response observed 

in chronic infectious diseases such as Valley fever.  

Project I: Valley Fever Immunosignaturing diagnostic 

Coccidioidomycosis (Valley Fever) is caused by a dimorphic fungus that grows in 

the southwestern desert regions of United States and Central and South Americas. The 

two genotypically variant strains are C. immitis found in California and C. posadasii 

found outside California. The disease is caused by inhalation of the spores called 

Arthroconidia and manifests initially with pneumonia-like symptoms due to the mode of 

entry being lungs. The disease is most prevalent in the states of Arizona, California, 

Nevada and New Mexico and infects more than an estimated 150,000 [19] people in the 

United States every year. 

Symptomatically, Valley Fever (VF) infection is very difficult to diagnose in the 

early stages as several of its symptoms are confounded with those of most community 

acquired pneumonias (CAP) such as tuberculosis. Approximately 60% [20] of Valley 

Fever cases are from the state of Arizona and therefore the Arizona Department of Health 

Services (ADHS) initiated an enhanced surveillance scheme for Valley Fever. ADHS 

conducted an interview based survey of 493 patients out of the 4,832 total patients 

diagnosed with Valley Fever in 2007 as part of their enhanced surveillance initiative [20]. 

They outlined several reasons for delays in the diagnosis of Valley Fever. Patients wait 

for 44 days on an average before seeking care. Another reason for delay was also lack of 

uniform awareness about the disease and treatment modalities among both physicians as 
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well as patients. From the physician’s perspective this might be due to the commonality 

of symptoms elicited by Valley Fever in comparison with other community acquired 

pneumonias. On an average Valley Fever patients visited physicians about 3 times before 

they were even tested for Valley Fever. If patients are made aware of the possibility of 

being infected due to living in an endemic region, they would perhaps not wait so long 

before seeking medical care and would even request being tested for Valley Fever. Valley 

Fever alone is known to account for $86 million in hospital charges in Arizona in the year 

2007 [20]. 

As per the CDC Summary of Notifiable Diseases in 2011 [21], 22,634 total cases 

of coccidioidomycosis were reported. Partly this number is much smaller than the 

estimated 150,000, as, in Arizona, one third [20] of the physicians were not aware that 

Valley Fever is a reportable disease and this might be the case with physicians from other 

non-endemic locations as well [22]. Also, a majority of the cases that are reported belong 

to the 40% in whom the infection does not self-resolve, thereby obscuring data from the 

remaining 60% people exposed. As per the CDC, 30-60% [23] of people living in regions 

endemic for Valley Fever will have been exposed to it. The total population of the 4 main 

states endemic for Valley Fever, namely: Arizona, California, New Mexico and Nevada 

obtained from US Census Bureau figures is approximately 49.4 million [24]. Just 30% of 

this value, 14.8 million people, as per CDC estimates would be exposed to Valley Fever 

in these endemic states.  

Current diagnostics available for this disease primarily use antibody based in-

direct methodologies such as immunodiffusion, whereby, the patients’ serum is tested for 
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the presence of IgM and IgG antibodies to major Coccidioidal antigens CF and TP. The 

problem with this technique is false negatives: approximately 5% [25] of patients [both 

immuno-compromised and immuno-competent] suffering from Valley Fever do not show 

detectable levels or even presence of antibody in their sera. A good prognosis in 

Coccidioidomycosis is when a person elicits a cell mediated immune response against the 

infection [26,27]. Sixty percent of the patients, in whom the infection is contained within 

the lungs or resolves by itself, show almost non-detectable antibody levels (by ELISA or 

Immunodiffusion) to Coccidioidal antigens. But Coccidiodes may only be contained in 

these patients’ lungs instead of being completely destroyed by their immune system and 

so the infection might recur when the patient is later in an immunocompromised state 

[26]. An antibody mediated (humoral) response is usually seen in individuals in whom 

the infection does not resolve on its own and instead disseminates. 

An alternative to this is direct detection via culturing the organism in the 

laboratory from the patients’ body fluids. However, this involves the potential risk of 

exposing the technicians to the infectious form of this fungal pathogen. Since Valley 

Fever is primarily a lung infection, a chest x-ray showing either a cavity or a patch of 

infection in the lung is followed by a nasopharyngeal wash or surgical computed 

tomogram [CT] guided lung biopsy to retrieve a sample for culturing and Hematoxylin-

Eosin staining. Both culturing and CT guided biopsies are technically cumbersome 

procedures. In an effort to avoid these invasive and potentially risky procedures, we 

propose utilizing the peptide microarray platform to ascertain a specific signature pattern 

for the early detection of Valley fever separating it from other CAPs such as tuberculosis. 
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This would help detect the infection in the 60% of people in whom the primary infection 

resolves without showing detectable antibody levels in their serum, but might latently 

recur. If patients knew they were exposed, they could make informed decisions with their 

physicians about clinical procedures requiring suppression of the immune system. 

The current alternative commercial diagnostic efforts include using nucleic acid 

amplification of Coccidioidal DNA from sputum samples through Polymerase Chain 

Reaction [28], microarray based whole genome level Comparative Genomic 

Hybridization (aCGH) technology [29] and utilizing the BacT/ALERT® [30] automated 

microbial detection media system. All these technologies do not detect early infection 

and have also not been proven to detect latent infection. The immunosignature, non-

natural peptide microarray technology [9] might surpass both these limitations, paving 

the way towards accurate and early diagnosis of Valley Fever. 

The scope of my dissertation is to ascertain the humoral immune response pattern 

that is specific for Coccidioidomycosis from IgG and IgM antibody interaction in VF 

patient sera with randomly generated (non-natural, Chapter 2) and epitope (from 

Coccidioides, Chapter 3) antigen peptides spotted on a peptide microarray platform. 

Experiments designed to examine presence and absence of classes of Coccidioides 

specific immunoglobulins were conducted in order to completely characterize the 

spectrum of patient sera we would be likely to encounter in a clinical setting. Chapter 3 

compares the diagnostic performance of non-natural sequence (random-space) VF-

predictor peptides with VF-antigen epitope peptides (life-space) to evaluate the feasibility 

of using either life versus random space diagnostic peptide reagents. Several efforts to 
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chemically characterize and classify random (never-born proteins) apart from natural 

protein sequences have been conducted in-silico [31,32]. A side by side comparison of 

non-natural versus life-space epitopes within a diagnostic context has not been previously 

reported. Through data from this work, a bioinformatic modulation to the Smith-

Waterman [33] local sequence-alignment algorithm termed ‘di-peptide inversion’ was 

suggested and implemented within GuiTope [34], an alignment program from our lab. 

This significantly improved GuiTope’s accuracy at finding alignments between natural 

VF pathogen proteins and the non-natural sequence antibody capturing VF-predictor 

peptides from the immunosignaturing platform. Platform optimization expertise obtained 

through this project was applied to the second project involving creation of a multiplexed 

peptide microarray platform for simultaneous detection of multiple priority pathogen 

infections. 

Cross-reactivity observed in peptide microarrays 

Antigen-antibody cross-reactivity is a salient feature of all immunodiagnostics 

and peptide microarrays are no exception to this rule [35]. Unlike single pathogen 

diagnostic peptide microarrays distinguishing infectious sera from uninfected sera, Felger 

et al. [5] tested their Echinococcus specific peptide microarray platform against other 

symptomatically confounding nematode infections. The peptide array was developed to 

discriminate between Echinococcus species: multilocularis and granulosus. 45 peptides 

from 6 proteins of the pathogens showed 94% specificity and 57% sensitivity, but overall 

these peptides were not effective at differentiating between the two species. Andresen et 
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al. [36] tested a 900 peptide microarray for simultaneous distinction of viral infections 

from phylogenetically related Herpes & Hepatitis C virus genotypes. CMV and EBV 

patient sera showed appropriate reactivity on their assay but Hepatitis C virus infected 

sera showed broad cross-reactivity.  

Another cross-reactive result obtained when using peptide microarrays was by 

Maeurer et al. [3] on their 7446 peptide microarray representing 12-mer overlapping 15-

mer (total length) peptides from 61 Mycobacterium tuberculosis proteins. The authors 

observed 3 patterns of patient serum IgG reactivity to peptides on the array including a 

set of 89, TB-specific peptides, capable of distinguishing TB-positive from TB-negative 

individuals. Additionally, they observed 24 TB-sensitive peptides exclusively reacting 

with TB positive patient sera but not with normal TB sero-negative sera. And, a set of 13 

peptides from M. tuberculosis exclusively recognized by only normal TB-negative 

(Quantiferon assay negative) individuals’ sera but are not recognized by TB positive 

patients sera. When performing a BLAST search of these 13 peptides for possible 

matches with the human proteome, several potential matches were identified due to 

sequence level similarities. A working hypothesis is that the innate overlap between the 

host (human) and pathogen proteomes create natural self (host)-reactive targets that react 

to identical sequences found in pathogens. Whether this could be interpreted as low level 

auto-immunity or these antibody reactivities are due to mimotopes from other 

environmental non-pathogenic Mycobacteria as originally proposed by the authors, is 

speculative in the absence of previous immune exposure history from these patients. 

Obtaining orthogonally characterized sera with detailed annotation regarding previous 
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vaccinations/infection histories would have benefitted such a study by helping resolve 

cross-reactivity observed to M. tuberculosis peptides from uninfected individuals. 

Lo et al. [6] attempted to circumvent potential cross-reactivity observed on 

peptide microarrays between phylogenetically related pathogens by selecting 27 peptides 

that were specific only to the SARS-CoV (Severe Acute Respiratory Syndrome-

Coronavirus) and not to other Coronaviruses or the human and mouse proteomes on a 

sequence level (BLAST analysis). This array was only tested against SARS infected 

versus not infected patients and not against serum from other closely related 

Coronaviruses to prove the specificity of their SARS specific peptides and justify using 

informatics intervention during peptide selection. Such an approach, of making single 

pathogen specific diagnostics using peptide microarrays is typically adopted to 

circumvent possible cross-reactivity on these assays. Due to high cross-reactivity 

observed in peptide microarray data, none of these groups have attempted multiplexing 

the diagnosis of more than one infection on the same chip/ microarray platform. 

Multiplexed diagnostics for human pathogens and bio-threat agents 

Serum based multiplexed diagnostics are implemented using technologies such as 

multiplexed ELISA’s, protein and peptide microarrays and microsphere immunoassay 

(MIA). A commercial example of a multiplexed ELISA is the ToRCH screen for 

measuring antibody reactivity in pregnant mothers against 7 vertically transmitted 

infections [37]. The infections tested are Toxoplasma gondii, Rubella virus, 

Cytomegalovirus (CMV), Herpes simplex virus (HSV) type 1 and 2, Varicella zoster 
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virus (VZV), Chlamydia trachomatis with variable IgG sensitivity per pathogen ranging 

from 46% (HSV2) to 97% (VZV) and specificity ranging from 88% (T. gondii) to 100% 

(VZV, Rubella, CMV). 

Apart from clinical diagnostic applications, multiplexed diagnostics are also 

needed for biothreat agents. Biothreat surveillance is important not only from a national 

perspective but also more pertinent to armed forces personnel being deployed in unsafe 

territories. Microbial biothreat pathogen lists from various regulatory organizations help 

prioritize exposure to pathogens based on their weapon potential and the severity of 

symptoms they are capable of causing in their hosts. The National Institute of Allergy 

and Infectious Diseases (NIAID) category A, B, C priority pathogen list [38] includes 

primarily deadly encephalitis viruses and pathogens with a high weaponization potential 

such as Bacillus anthracis in category A. Category B includes pathogens acquired of 

transmitted via food or water and Category C includes pathogens causing newly emergent 

infectious diseases. Over time these might get re-classified depending on their 

weaponization potential or change in virulence to increase severity of symptoms. Other 

priority pathogen lists are from U.S. Department of Health and Human Services (HHS) 

and U.S. Department of Agriculture (USDA) [39]. Some priority pathogens from the 

NIAID list overlap with the HHS and USDA lists, but the USDA list primarily has 

zoonotic pathogens potentially capable of infecting humans such as the African Swine 

Fever Virus (ASFV) virus [40]. The preliminary evidence for this indication came from a 

pyro-sequencing study where Loh et al. [40] found ASFV-like sequences in human 

serum from individuals having an acute febrile illness (AFI) in the Middle East and in 
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multiple sewage samples from Barcelona, Spain. Although the source of the sewage 

samples could not be identified specifically as being from human or animal origin, the 

geographic distance between these two observations was alarming enough to add ASFV 

to the HHS & USDA priority pathogen lists. 

The CDC recently developed a Luminex based microsphere immunoassay (MIA) 

simultaneously distinguishing 13 viruses listed as biothreat agents from viral families of, 

Bunyaviridae (LaCrosse encephalitis-LAC), Togaviridae (Eastern equine encephalitis-

EEE, Western equine encephalitis-WEE, Venezuelan equine encephalitis-VEE, 

Chikungunya-CHIK, Mayaro-MAY, Ross river virus-RR) and Flaviviridae (West Nile 

virus-WNV, Japanese encephalitis virus-JEV, Dengue-DEN, Yellow fever virus-YFV, 

St. Louis encephalitis-SLE, Powassan-POW) [41]. Using the LogitBoost algorithm their 

cross-validated average error rate was 8.3%. In their assay, Luminex Microplex 

(Luminex Corporation, Austin, TX) carboxylated microspheres are coated with 

commercially available anti-virus monoclonal antibodies. Viruses are generated by either 

inoculating suckling mouse brains or expressed in-vitro using recombinant vectors in 

monkey kidney fibroblast-like COS-1 cells. The viruses are then incubated with the 

monoclonal anti-viral antibody coated microspheres to allow capturing and surface 

presentation and generate a sandwich ELISA once incubated with the patient sera. The 

drawback on this assay is its requirement of unstable reagents with a shelf-life of 6 

months the handling of which needs to be monitored due to them being biothreat agents. 

These drawbacks hinder the deployability of this assay to local reference laboratories, 

requiring that samples be shipped to CDC for evaluation, delaying diagnosis. Peptide 
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microarrays on the other hand are more stable, they can be stored at room temperature 

[42] and have a shelf-life after printing can be >1 year [43,44] making them easily 

deployable to even local reference laboratories, utilize a fraction of the sample used in 

MIA’s (1:500 vs. 1:20) and represent only short sequences of biothreat agent proteomes, 

assay processing not needing supervision. The detection limit of technologies such as 

Luminex assays is 1-10 pg/ml [45].  

Alternative biothreat detection technologies such as multiplexed PCR’s and 

assays using B-cells as sensors (CANARY) [46] fall under the category of direct 

detection of pathogen instead of detecting the immune response raised by them in hosts. 

The LLMDA – Lawrence Livermore Microbial Detection Array [47,48], PathChip [49], 

GreeneChip [50] and ViroChip [51] are examples of multiplexed PCR’s. The LLMDA 

contains 388,000 probes containing 38,000 viral sequences from ~2200 viral species and 

3500 bacteria sequences representing approximately 900 different bacterial species. The 

PathChip contains approximately 170K probes and is capable of recognizing all known 

viral pathogens. The diagnostic accuracy of this assay from testing 290 pediatric nasal 

wash samples was 85.9% for Rhinoviruses or Enteroviruses and for 98.6% Parainfluenza 

virus 2. 

An antigen detection B-cell based sensor named CANARY- cellular analysis and 

notification of antigen risks and yields [46] for rapid identification of pathogens can 

detect as little as 50 CFU/50 µL of Yersinia pestis, 1000 CFU of Bacillus anthracis in 1 

ml of extraction medium, 500 CFU/50 µL of Escherichia coli (O157:H7) in contaminated 

lettuce (25 g), 500 PFU/50 µL of Vaccinia virus and 5X105 PFU/50 µL of Venezualan 
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encephalitis virus (VEE) virus. While the shelf-life of reagents required for CANARY is 

low at room temperature (RT), 2 days; prepared cells can be refrigerated for up to 2 

weeks and frozen for longer time periods. An alternative to antigen-antibody detection 

based assays would be sequencing the complementarity determining region (CDR) of 

antibodies within an infected individual’s serum to decode the antigen/pathogen they 

were raised against [52]. This technology however is cumbersome and not yet easily 

deployable in local laboratories. 

Cross-reactive components of the humoral antibody response to an infection 

The humoral antibody response in humans when responding to an 

infection/exposure could be classified into the primary and secondary adaptive immune 

response. The primary response comprises of natural antibodies, circulating antibodies 

generated through memory responses against prior exposures/ vaccinations. The 

secondary adaptive immune response is the component of humoral immunity generated 

specifically as an adaption to the new exposure. Understanding the antibody 

subcomponents is critical to creating antibody based diagnostics so as to a priori 

circumvent cross-reactivity by intelligent design of the assay. Slifka et al. [53] monitored 

the antibody response from 45 individuals for 26 years, collecting 630 serum samples 

total. They measured antibody responses to 8 pathogens, 6 being part of vaccinations e.g. 

Measles, Mumps, Rubella-MMR vaccine, Vaccinia virus (smallpox vaccine), Diphtheria 

(Corynebacterium diphtheriae) and the tetanus toxoid (Clostridium tetani). The annual 

percent change using longitudinal mixed-effects model was determined to derive the 
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antibody-half life (in years). Tetanus toxin and Diphtheria toxin had short half-lives (11 

& 19 years respectively). The half-lives of the remaining exposures ranged from 50 years 

for Varicella zoster virus to 11,552 years for Epstein Barr virus (EBV). They concluded 

that most childhood prophylactic vaccine exposures left behind circulating antibodies that 

could be detected throughout the life of these individuals tested with negligible change in 

the concentration over time. In addition to these vaccinations, Palese et al. [54] 

demonstrated through longitudinal characterization of the influenza antibodies within 40 

individual’s sera monitored for 20 years obtained through the Framingham Heart Study 

that the neutralizing antibody titers against several influenza virus strains increased over 

time. Apart from influenza they measured CMV antibodies and noted negligible change 

in anti-CMV titers within exposed individuals.  

The population prevalence estimates between 1999-2004 (age: 6-49 years) of 

CMV in United States is 50.9%, with sero-positivity in certain counties such as Los 

Angeles being higher at 69.7%.; and that among certain ethnic minorities such as 

Mexican American individuals residing in LA being 79.7% [55]. Palese et al. chose to 

measure the antibody reactivity to CMV due to the antigenic stability of this virus as 

compared to influenza and its higher prevalence within the general population. Other 

pathogens showing notable sero-prevalence within the population are Varicella (96%), 

Rubella (91.2%), Mumps (90%), Measles (95.9%), HSV-2 (17.3%), HSV-1 (58.1%), 

Hepatitis A virus (35.9%), Toxoplasma gondii (11%) [55]. Given the high prevalence of 

these exposures and their ability to leave behind a memory response with circulating 

antibodies observed throughout an individual’s lifetime, developing a sensitive diagnostic 
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capable of distinguishing all known human pathogens simultaneously becomes 

challenging. Sensitive technologies such as peptide microarrays are capable of measuring 

these interfering memory antibody responses, leading to interference observed with the 

signature of a given infection. Such as effort would require the use of data analysis 

techniques allowing for discerning more than one exposure simultaneously so as to 

distinguish the inseparable matrix of prior exposure related antibody reactivity versus the 

most current exposure and compensate for cross-reactivity observed on these platforms. 

Project II: Multiplexed priority pathogen proteome peptide array 

This work is aligned with a DTRA (Defense Threat Reduction Agency) funded 

project (Grant# HDTRA1-11-1-0010) which involves development of a scalable 

technology so as to monitor the exposure of military personnel to NIAID Category A, B, 

C Priority biothreat pathogens. The first task of this proposed work involves generation 

of a 100K random peptide silicon chip, the proprietary technology for which could later 

be used if needed to create a 1 million peptide feature chip so as to represent all known 

human pathogen proteomes. The second milestone required the production and 

evaluation of a 10K peptide prototype pathogen proteome array capable of distinguishing 

between five or more infectious bio-threat agents simultaneously in a multiplexed assay. 

This work required testing the feasibility of such a system, designing peptide candidates 

to be tested on the microarray, thermodynamically and physically optimizing array 

configuration and testing the platform, bioinformatically assessing the expected versus 

actually observed peptide antigen-antibody cross-reactivity from sera for evolutionarily 
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related and unrelated bio-threat agents. The pathogens selected to be represented on the 

array were based on infectious serum availability. Their epitope selection strategy and 

thermodynamic considerations while optimizing the assay to reduce cross-reactivity are 

explained in greater detail in Chapter 4. An analysis pipeline specific to the multiplexed 

pathogen proteome peptide array was created by combining eight statistical metrics. A 

novel aspect of this work was observing a reduction in assay accuracy after adding 

influenza peptides along-side priority pathogen peptides.  The addition of Influenza 

peptides required a change in the data-analysis strategy adopted previously and is detailed 

in Chapter 5. The antibody cross-reactivity observed after including influenza peptides 

required mapping the ‘umbrellas of antibody reactivity’ down to an n-mer (peptide sub-

sequence) level in an attempt to circumvent cross-reactivity and detect the cognate 

infection. 
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CHAPTER 2 

APPLICATION OF IMMUNOSIGNATURES TO DIAGNOSIS OF VALLEY FEVER. 

Abstract 

Background   

Valley Fever (VF, Coccidioidomycosis) infection is difficult to diagnose based on 

symptoms in part because of the similarity to community-acquired pneumonias (CAP).  

Confirmatory diagnostics detect IgM and IgG antibodies against Coccidioidal antigens 

via Immunodiffusion (ID).  However, the false negative rate using ID can be 50-70% and 

5% of symptomatic patients never show detectable antibody levels at all.  Here we test 

the capability of the immunosignature diagnostic to resolve the false negative diagnostic 

problem for VF.  Immunosignatures are developed from arrays of non-natural-sequence 

peptides. Blood antibodies bind to the arrays to create disease specific signatures. 

Methods  

A 10,000 peptide array was used to determine if VF infection produced signatures 

distinct from 3 other infections.  A similar array was used to distinguish VF infection 

from non-infection in a training/test set format. The signature peptides from the 10,000 

peptide array were used to design a smaller VF-specific array of 96 select peptides. The 

performance of the 10,000 peptide array and the 96 peptide array were compared to the 

ID diagnostic standard. 
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Results  

The 10,000 peptide array classified the VF samples from the other 3 infections with 98% 

accuracy.  The array was also able to classify all the VF, ID negative patients versus non-

infected controls with 100% sensitivity in a blinded test set. The sensitivity of ID on the 

test set was 28%. In comparison the 96 peptide array performed with 82% sensitivity on 

the same sample sets. 

Conclusion 

The immunosignature diagnostic can be used to simultaneously distinguish VF infections 

from a fungal and two other bacterial infections. The same array can diagnose with 100% 

sensitivity the clinically important ID negative patients.  A smaller 96 peptide array was 

less specific in diagnosing the ID negative patients. We conclude that by training using a 

clinically confounding sample set a robust immunosignature diagnostic could be 

developed to be used in combination, or possibly in lieu of, the existing diagnostics.  

Abbreviations 

BSL, Biosafety level; CAP, community acquired pneumonia; CF, Complement Fixation; 

CNS, Central Nervous System; CT, Computed Tomography; EIA, Enzyme 

Immunoassay; ID, Immunodiffusion; IDCF, Complement fixation antibodies detected by 

Immunodiffusion; IDTP, Tube precipitin antibodies detected by Immunodiffusion; KNN, 

K-nearest neighbors; LVS, Live Vaccine Strain; subsp, Sub-species; LDA, Linear 

Discriminate Analysis; LOOCV, Leave One Out Cross Validation; NPV, Negative 
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predictive value; PPV, Positive predictive value; TP, Tube Precipitation; TB, 

Tuberculosis; VF, Valley Fever. 

Introduction 

Coccidioidomycosis, commonly known as Valley Fever (VF), is caused by a 

fungus Coccidioides immitis (California strain) or C. posadasii found in the arid soil of 

the southwestern desert regions of United States and South America. Human disease is 

caused by inhalation of the arthroconidia (spores) of the fungus, and presents primarily 

with flu-like symptoms or, progressively, pneumonia.  VF affects an estimated 150,000 

[19] people in US every year, primarily in the states of Arizona [56], California [57], 

Nevada, New Mexico and Utah.  A major problem in the management of the disease is 

the failure of detection (sensitivity) in 30% of the infected individuals. We have tested 

whether a new diagnostic technology, immunosignatures, could address this problem. 

Sixty percent [26] of the VF exposed individuals are either asymptomatic or have 

mild symptoms with the infection usually being self-limiting. The remaining 40% [58] of 

exposed individuals demonstrate symptoms such as skin rash and respiratory ailment 

lasting from months to years.  In 5-10% [26,59] of these, infection disseminates, affecting 

other organs, skin, bones and nervous system. Individuals from non-Caucasian ethnicities 

[19] such as African Americans, Filipino and Asians and 65 years or older, pregnant 

women and patients with immunocompromised immune systems are more susceptible to 

VF and particularly the disseminated form of the disease.  As per Arizona Department of 

Health Services (ADHS), VF patients visit physicians on average three times before they 
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are tested for VF, more so if patients visiting AZ from non-endemic regions are 

diagnosed by physicians unacquainted with diseases of the American Southwest [60].  

VF alone is known to account for $86 million in hospital charges in Arizona in the year 

2007 [60], and an unestimated amount in states outside AZ. 

The confirmatory diagnostic test for VF is an immunodiffusion (ID) assay 

detecting antibodies against antigens within fungal coccidioidin causing complement 

fixation (CF) and tube precipitation (TP).  Coccidioidin is a culture filtrate of the 

mycelial form of C. immitis, the heat treated portion of which is used to detect IgM 

antibodies, and the untreated portion is used to detect IgG antibodies [61].  The 

sensitivity of IDCF is 77% and IDTP is between 75-91% [62].  An  alternative is to 

culture the organism from body fluids or tissue, but a concern is infection of technicians 

[63].  Although, culture is a preliminary diagnostic for pneumonias, the sensitivity of this 

approach for VF ranges from 23-100% depending on clinical status [64]. The recovery 

rate of this pathogen through culture ranges from 0.4% from blood to 8.3% from 

respiratory tract specimens [65].  As noted the most clinically pressing issue is the low 

sensitivity of these diagnostics as primary tests. 

We propose utilizing the immunosignature diagnostic technology [11] to address 

some or all the limitations of current diagnosis of VF, particularly as a diagnosis for 

patients misclassified at the first test.The immunosignature technology utilizes a high-

density array of non-life-space peptides to provide mimics of epitopes, for even 

discontinuous epitopes or non-protein antigens. In this report the arrays consist of 10,000 

peptides whose sequences were chosen from random sequence space.  The peptides are 
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20 amino acids long with 17 variable positions and 3 constant at the attachment end.  As 

opposed to single antigen ELISA-based assays, the disease-specific signature signal in an 

immunosignature comes from multiple peptides that form a distinct, disease-specific 

pattern of antibody binding. Most antibody based immunological tests examine the 

presence of new antibodies in infected individuals.   

An immunosignature can actually display both, the presence of new antibodies 

relative to infection or chronic disease, but also any suppression of antibodies (measured 

as loss of signal) that were commonly present in healthy controls reflecting memory 

responses to vaccinations and common pathogen exposures.  An immunosignature, unlike 

many genetic or immunological tests, is both sample sparing and robust to sample 

handling [66]. Because the sensitivity of an immunosignature is higher than that of 

ELISA-based serological tests [10,11], and disease discrimination is possible on the same 

array across multiple infectious diseases, we asked whether the platform was suited to be 

used as a VF, disease-specific diagnostic.  VF diagnosis frequently results in false 

negatives, resulting in late recognition of the disease [67-69], adversely affecting patient 

outcomes.  We therefore proposed a series of tests to characterize whether an 

immunosignature assay performs better than existing diagnostics for detecting VF.  We 

postulate this assay would detect VF earlier and with a greater sensitivity and at lower 

cost than conventional methods. Here we report testing this possibility. The ability of 

immunosignatures to distinguish VF from 3 other infections was tested. The same array 

was used to test the ability to discern ID negative patients from non-infected controls.  

The effect of reducing the number of peptides to a smaller array was also evaluated.  
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Methods 

Serum samples used in this study 

All patient sera used in this study are listed in Table 2- 1.  

Table 2- 1 Patient sample cohorts per infection utilized in this study 

No. Infection No. of patients No. of samples 

Confounding infection pilot study 

1 Aspergillus 20 20 

2 Chlamydia 20 20 

3 Mycoplasma 19 19 

4 Normal 31 31 

5 VF-Training set 18 18 

Valley fever patient sera with non-VF controls 

1 VF-Training set (U of A) 35 55 

2 VF-Test set (U of A) 25 67 

3 Normal individuals (ASU) 41 41 

4 

Influenza vaccinees (2006-

2007-seasonal vaccine) (ASU) 7 7 

 

Confounding infection samples   

For the experiment testing different infections, patient sera representing 19 

Aspergillus fumigatus, 19 Mycoplasma pneumoniae and 19 Chlamydia pneumoniae were 

processed alongside 18 VF and 31 normal sera on the 10,000 peptide microarray.  The A. 

fumigatus, M. pneumoniae and C. pneumoniae samples were acquired from SeraCare 

Life Sciences (Gaithersburg, MD) and were tested by commercial ELISA tests for 

presence of antibodies to respective infections by SeraCare (Supplementary Table 2- 1). 
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Valley Fever and normal donor serum samples used in this study  

A training cohort of 55 samples and a blinded test set of 67 samples were 

obtained as de-identified human patient sera from John Galgiani at the University of 

Arizona (IRB# FWA00004218).  Non-disease sera included 7 influenza vaccine (2006-

2007) recipient sera ‘pre-vaccine’ and ‘post-vaccine’ plus 41 locally obtained healthy 

donor samples (ASU IRB 0905004024) which were used to ensure specificity.  

Following submission of our classification results to J. Galgiani, the test set was un-

blinded and revealed to contain 25 patients with two or more serum samples collected 

longitudinally per patient during subsequent clinic visits.  For each patient in the test 

cohort the initial sample was measured as having a zero-titer (negative) on IDCF but 

sero-converted at a later date as the infection progressed.  All samples were serologically 

characterized by J. Galgiani’s laboratory for IDCF and IDTP titers.  Table 2- 2 and Table 

2- 3 describe the patients CF titer distribution in training and test cohorts respectively.  

Table 2- 2 Diagnosis (IDCF) of 55 unique patient samples from the VF training cohort 

CF 

Titer 

# 

Samples 

0 6 

1 4 

2 8 

4 5 

8 3 

16 8 

32 11 

64 5 

128 3 

256 2 
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Table 2- 3 Diagnosis (IDCF) of 67 blinded samples from the VF test cohort. 

CF 

Titer 

# Samples 

(# patients) 

0 48 (25) 

1 5 (4) 

2 7 (7) 

4 3 (3) 

8 1 (1) 

16 2 (2) 

32 1 (1) 

 

Blinded test patient sample set 

The test sample set includes 25 patients with two or more serum samples per 

individual, for a total of 67 samples.  24 of these symptomatic patients had an IDCF titer 

of zero and were given a negative diagnosis for VF after their first clinic visit.  All 24 

patients returned to the clinic for a follow-up appointment between 7 and 27 days and 

blood samples were drawn for the second time at which point 12 of them were still sero-

negative on the IDCF test.  Of the 12 IDCF negative patients only 6 returned for the third 

follow up visit due to continued symptoms and 6 others returned either for monitoring of 

increasing CF titers or re-testing due to a positive IDTP result.  The time interval for the 

third visit ranged between 4 and 159 days after the second visit.  Four of these patients’ 

samples were drawn again between 96 and 147 days at which time a verified IDCF titer 

was observed in 2 patients who were given a positive VF diagnosis.  One symptomatic 

patient returned for a fifth visit and remained negative on both the IDCF and IDTP tests 

113 days later despite being symptomatic for Valley Fever. 
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Microarray production and processing 

The 10,000 (10K) non-natural sequence peptide immunosignature array and the 

96 peptide ‘VF diagnostic’ arrays were produced and processed as described in Legutki 

and Stafford et al. [2,11]. Briefly, the peptides are spotted onto standard slides using a 

piezo-electric printer.  The average spot diameter is ~140µm.  The slides are washed with 

buffer and the serum (diluted 500-fold in buffer) is applied to the array for 1hr. It is then 

washed with buffer and the antibody binding pattern determined by incubation with a 

secondary to human IgG antibody.  The 16-bit 10µm TIFF images from the Agilent ‘C’ 

scanner were aligned using GenePix 6.0 software (Axon Instruments, Union City, CA) 

and the data files imported into GeneSpring 7.3.1 (Agilent, Santa Clara, CA) and R [70] 

for further analysis.  Each training patient sample was processed in triplicate on the 10K 

array. The 10K array data was median-normalized per chip and per feature.  Any array 

with a Pearson Correlation Coefficient less than 0.80 across technical replicates was re-

processed. Patient samples were excluded from further analyses if they consistently 

produced extremely high background and/or consistently failed to provide reproducible 

results across technical replicates, suggesting serum degradation. 

Statistical classification of disease groups   

The statistical classification of disease groups was done using Naïve Bayes from 

the R ‘klaR’ package [71] combined with the Leave one out cross validation (LOOCV) 

and Holdout algorithm as implemented in the R package ‘DMwR’ [72].  Testing the 

classifier was done using a data-holdout experiment where training and test datasets are 
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combined and 70% of randomly chosen data is used to train and predict on the remaining 

30% dataset.  This procedure is repeated 20-times to ensure every sample was predicted 

more than once by training on multiple combinations of other samples..  The evaluation 

of diagnostic metrics such as sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV) and accuracy of the CF-Titer test based on its 

performance on our specific patient sample set are reported alongside for comparison 

purposes. 

Statistical classification of confounding infections 

To assess if the random peptide microarray could specifically distinguish multiple 

confounding infections, samples were processed on the 10K random peptide array under 

similar assay conditions as before. Six different slide batches were used to process these 

sera and ComBat normalization was applied to median normalized data to eliminate 

differences between samples due to batch effects. [73,74]  243 random peptides capable 

of distinguishing between the five classes namely, VF, Aspergillus, Mycoplasma, 

Chlamydia and Normal were selected using Fisher’s exact association test as 

implemented in GeneSpring GX 7.3.1. Since a physically separate training and test 

dataset were missing for this analysis, the stringent holdout cross-validation as 

implemented in R package ‘DMwR’ was applied to the training dataset as described 

previously [72].  
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Results 

Valley Fever immunosignature is distinct from that of other infections  

Our first question was whether VF infection would produce an immunosignature 

that was distinguishable from other infections. The concern was that a general 

inflammatory response to infection may dominate the signature. To test this issue we 

used sera from individuals infected with A. fumigatus, M. pneumoniae and C. 

pneumoniae. Figure 2- 1 and Table 2- 4 show the results from an experiment where 

disease cohorts were tested for observable signature differences, and cross-validated 

using the 70/30 train/test hold out approach described in Methods. 

Table 2- 4 Classification results from samples shown in Figure 2- 1 

 Naïve Bayes was used to simultaneously classify the 108 patients into their respective 

groups using hold out (70% train, 30% test, 20 iterations) cross-validation to estimate 

error. 

Infection Sensitivity Specificity PPV NPV Accuracy 

Aspergillus 92% 98% 93% 98% 97% 

Chlamydia 95% 99% 97% 99% 98% 

Mycoplasma 98% 98% 87% 100% 97% 

VF 88% 99% 97% 98% 98% 

 

Figure 2- 1 shows the relative intensities of 243 peptides found by Fisher’s exact 

test with the grouping of the individual cohorts shown on the X-axis.  Each disease cohort 

groups together in the heatmap. A quantitative assessment of the classification using the 

Naïve Bayes algorithm is presented in Table 2- 4. The accuracy of simultaneous 
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classification was 97% for Aspergillus and Mycoplasma and 98% for Chlamydia and VF. 

These results support the conclusion that a VF specific signature can be distinguished 

from other potentially confounding infections. 

 
Figure 2- 1 Hierarchical clustering of informative peptides across five diseases.   

Peptides (Y-axis) are colored by intensity with blue corresponding to low intensity, red to 

high intensity.  Patients (X-axis) are grouped by their corresponding peptide values with 

Aspergillus (black), Mycoplasma (red), Chlamydia (green), Normal (blue) and Valley 

Fever (brown) grouping by cohort as computed by GeneSpring 7.3.1 (Agilent, Santa 

Clara, CA).  Peptides were selected by Fisher’s exact test. 
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Valley Fever immunosignature is distinct from that of uninfected individuals  

We examined antibody signature responses of 45 out of the 55 total VF clinical 

samples shown in Table 2- 2 on the 10K peptide microarray and identified 1586 peptides 

from a 1-way ANOVA (5% FWER-family wise error correction) with a threshold of 

p<1x10-14 indicating significance between the 45 VF training samples and 34 non-disease 

controls and 7 flu-vaccine recipients both pre-vaccine and 21 days post-vaccine. The 

influenza signature was included to exclude a potential common confounding signal.  

This signature is presented as a heatmap in Figure 2- 2.   

 
Figure 2- 2 Hierarchical clustering of Valley Fever Immunosignature apart from 

uninfected individuals.  
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1586 peptides from a 1-way ANOVA between VF and uninfected individuals are plotted 

on the Y-axis. Coloring is based on signal intensities obtained from relative binding on 

the 10K array with blue representing low relative intensity and red representing high 

signal intensity. Each column represents one individuals’ Immunosignature with VF 

patients (red) and uninfected individuals (blue) including influenza pre-vaccine (green) 

and post-vaccine sera (magenta).  

There are three distinct clusters within groups of non-VF normals as highlighted 

in Figure 2-2 above the status color legend. The first and third clusters within non-VF 

individuals include influenza vaccine recipient sera showing mild overlapping VF 

signature. This may be due to these samples being obtained from endemic donors. Note 

that the differences between non-VF and VF samples include reactivity that is higher in 

non-VF than the VF samples.  Using 70% of the sample to define a classification 

immunosignature and then testing the classifier on the 30% withheld and averaging the 

performance of repeating this 20 times, the infected from non-infected samples are 

classified with 100% accuracy.   

Creating a 96 peptide VF diagnostic microarray   

Under some circumstances it may be useful to use the 10K array as a discovery 

platform for informative peptides and then create a smaller, diagnostic-specific array.  To 

test this idea we selected 96 peptides from the 1586 peptide signature described above 

and using pattern matching algorithms within GeneSpring GX.  We used 96 peptides as 

this is the number easily handled on standard microtiter plates. 48 peptides were chosen 
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based on the criteria of capturing consistently high antibody signal across ID titers in the 

VF samples and low antibody signal in the flu vaccine samples. The other 48 were 

chosen based on the criteria of consistently low antibody signal in the VF samples but 

high in the flu vaccine samples. The patterns of performance are depicted in Figure 2- 3 

in a line-plot showing the values for each of the 96 peptides across patients (X-axis) 

whose signals were averaged by their CF titer.  The Y-axis shows the median normalized 

signal intensities represented on a logarithmic scale.  

 
Figure 2- 3 Signal intensity (y-axis) for 96 peptides from the 10,000 peptide microarray 

that distinguish both VF and influenza vaccine recipients.   

X-axis indicates signal response averaged across patients for each CF-titer.  Far right 

are signals averaged for the flu vaccine recipients and normal donors.  These data 



 

33 

 

originate from the full 10,000 peptide array. 48 peptides that capture high antibody 

binding in VF patients and low signals in normal/influenza vaccine recipients are colored 

in red. 48 peptides showing higher signals in normal/ influenza vaccine recipients and 

low signals for VF patients are colored in blue. Consistency is seen across the Valley 

Fever patients, and a reversal in signal is seen for non-VF patients. 

To test the robustness of these signature peptides, we performed a permuted T-test 

by randomly reassigning the patient identifiers on the samples. The best p-value then 

obtainable was p<2.8X10-3, 9 orders of magnitude larger than when patients were 

correctly labeled.  It is therefore, unlikely, that the selected peptides were obtained by 

random chance.  Figure 2- 4 shows a heatmap representation of these same 96 peptides, 

averaged per CF-titer or flu vaccine status.  Hierarchical clustering was used to cluster 

patient groups (X-axis, individual columns) and peptides (Y-axis, individual rows), with 

colors within cells representing high (red) to low (blue) intensities from the microarray.  

The horizontal red bar represents VF patients signal intensities (averaged by CF-Titer), 

blue bar represents the averaged signals from seven influenza vaccine recipients, cyan 

represents the averaged vaccine recipient’s signature response 3 days prior to receiving 

the vaccine and yellow indicates the 34 averaged normal donor signatures. Table 2- 5 

lists the performance of pairwise comparisons using 70% training/30% test, averaged 

over 20 reiterations. The best performance was in distinguishing VF infection from non-

infection (100% sensitivity, 97% specificity) and the worst was VF infection versus flu 

vaccines (100% sensitivity, 82% specificity).  Based on this performance in the context 

of the 10K array, these 96 predictor peptides were re-synthesized (Sigma GenoSys, St. 
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Louis, MO) and printed on a smaller array to test the performance of the VF focused 

array. 

 
Figure 2- 4 Heat map showing normalized average signals from the 96 predictor 

peptides as in Figure 2- 2, but displaying the cohort separation.  

Data averaged per CF titer and patient group for 45 VF patients (Red bars), 34 healthy 

controls (yellow bar), 7 pre-2006 influenza vaccine recipients (cyan bar) and 21-day post 
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vaccine (dark blue bar) (x axis).  T-test identified 96 peptides (y-axis) highly significant 

for distinguishing VF and healthy controls. 

Table 2- 5 Naïve Bayes classification results from the VF training cohort on the 10K 

peptide microarray using the 96 predictor peptides.  Holdout splits all data randomly 

into 70% train/30% predict.  Results are from 20 iterations of random holdouts. 

Dataset used: Training 

(Holdout expt.)  
Sensitivity Specificity PPV NPV Accuracy 

VF, Normal 100% 97% 97% 100% 98% 

VF, Influenza Vaccine 100% 91% 99% 100% 99% 

VF, Normal, Influenza 

Vaccine 
100% 96% 96% 100% 98% 

0 (CF-Titer), Influenza 

Vaccine 
100% 82% 76% 100% 88% 

LOOCV, noHoldOut (all 

data)  
100% 92% 92% 100% 96% 

For comparison: 

CF-Titer (IDCF results) 87% 100% 100% 50% 88% 

 

Performance of a 96 peptide VF-diagnostic microarray  

The diagnostic capability of the VF-diagnostic sub-array was tested using a 

smaller set of training and non-VF control samples.  Upon verification, the complete 

training and blinded test samples (67 blinded samples, 13 non-VF controls) were 

processed on the VF-diagnostic 96 peptide sub-array under similar conditions as the 10K 

array.  Table 2- 6 shows the resulting classification performance. Of particular note is the 

performance against the CF Titer=0 samples.  While the VF diagnostic peptide set clearly 

had higher sensitivity compared to the ID assay, there was a substantial drop in the 
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specificity compared to the ID assay and the performance of those peptides in the 10K 

array. 

Table 2- 6 Naïve Bayes classification results from 96 peptide VF diagnostic array.  Top 

Panel: 96 peptide diagnostic-array data was tested for performance on a blinded cohort 

of false-negative VF patients.  Middle Panel: Performance using all possible patient 

samples including test and training samples. Bottom Panel: Performance using only the 

training dataset. 

Dataset used: Test Sensitivity Specificity PPV NPV Accuracy 

CF-Titer (IDCF results) 28% 100% 100% 13% 35% 

CF-Titer = 0 100% 43% 92% 100% 93% 

All data (0 & other titers) 99% 43% 94% 75% 93% 

Dataset used: Training & Test 

Holdout 20 iterations 
Sensitivity Specificity PPV NPV Accuracy 

CF Titer (IDCF results) 52% 100% 100% 19% 57% 

CF-Titer = 0 91% 85% 96% 70% 90% 

All data (0 & other titers) 82% 92% 99% 37% 83% 

Dataset used: Training 

LOOCV 
Sensitivity Specificity PPV NPV Accuracy 

CF-Titer (IDCF results) 87% 100% 100% 50% 88% 

CF-Titer = 0 100% 67% 75% 100% 83% 

All data (0 & other titers) 100% 67% 96% 100% 96% 

 

To examine the difference in performance of the different arrays, we examined 

the detection limits for each peptide in the context of the actual fold change values as 

measured from patient samples. Figure 2- 5 is a graph combining real fold-change values 

for every peptide (vertical bars) plotted against the detection limit (delta, represented by 

the black curve) and the p-value obtained from a t-test between the VF vs. normal cohorts 
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(red circles). The smaller the delta (black curve), the more sensitive the peptide is to a 

signal and, consequently, the smaller the fold change needed to exceed this limit.  Of note 

are Panels B and C which compare the performance differences between 96 VF-

diagnostic peptides within the context of the 10,000 peptide arrays and the same peptides 

that were resynthesized and independently printed on the VF-diagnostic arrays.  This 

comparison demonstrates the higher performance of the 96 peptides in the context of the 

10K array. 

 

Figure 2- 5 Limits of detection graphed from a post-hoc power calculation.   

The black curve in each figure represents the ± delta (minimum detectable fold-change) 

calculated from the statistical precision of each peptide independently.  The probes along 

the X-axis are sorted by the calculated power, thus forming a smooth curve.  Delta was 
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calculated using α=1/Number of peptides/microarray, β=0.20 and N = number of 

patients per group.  The vertical bars (Y axis) represent the log2 ratio between healthy 

and VF-infected patients with red bars indicating a peptide selected to predict VF, and 

blue bars representing peptides selected for detection of non-VF condition.  The red 

circles on top of certain bars specify statistically significant fold changes at p-

value<0.01.  Panel A: 10,440 random peptides (Training dataset) using VF and healthy 

controls.  Panel B: 96 VF predictor peptides (Training dataset) within the 10K 

microarray.  Panel C:  96 resynthesized VF predictor peptides (Training dataset) ‘VF-

diagnostic’ assay.  Panel D: 96 VF predictor peptides (Test dataset) ‘VF-diagnostic’ 

assay. 

Discussion 

Our objectives in this study were to determine if the immunosignature diagnostic 

had the potential to address the clinical problem of detecting infection in IDCF-titer=0 

patients, and if so what was the best array format.  We first demonstrated that VF 

infection as assayed on the 10K array has a distinct immunosignature relative to 2 

bacterial and one other fungal infection.  We then showed using a 70% training/30% test 

format that the 10K array could accurately discriminate VF infection samples from non-

VF infection and flu vaccinees. 1586 peptides were statistically significantly different 

between the classes.  A portion of the signature was from peptides that had less reactivity 

in the VF infection samples than the non-infection controls. 96 peptides from the 1586 

that had good signature performance in the context of the 10K array were resynthesized 
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and used to create a smaller VF diagnostic subarray.  When tested against the VF 

infection and control samples this array demonstrated increased sensitivity (100%) than 

the conventional IDCF assay, but poorer specificity.  Individual statistical analysis of the 

96 peptides demonstrated that all performed better in the context of the 10K array than 

the subarray format.  

We had previously published studies demonstrating that influenza virus infection 

in mice [75] and the flu vaccine in humans [11] could be distinguished from normal 

controls by immunosignatures. Here we extend this list showing that the 

immunosignatures of two different species of bacteria and two fungi are distinct.  Only 

283 peptides of the 10K array were required to simultaneously distinguish the 4 

infections with >97% accuracy.   Development of the immunosignature diagnostic for 

clinical application will require further validation testing against other common agents of 

community acquired pneumonias and infections causing flu-like symptoms.  

As noted, for VF a clinically important issue is the people that report with 

symptoms caused by VF infection but are not detected as sero-positive by the standard 

immunological tests, the CF titer=0 patients.  Using the 10K immunosignature array we 

demonstrated that there were 1586 peptides that were reproducibly different between VF 

infection samples and non-VF samples. The non-VF samples included ones that had 

received the flu vaccine as an effort to exclude flu infection signatures.  Noteworthy is 

that a large portion of this signature was composed of peptides that had lower signal in 

the VF-infection sample than the non-infection.  We have noted this phenomenum before 

[2,11,13].  This type of reactivity would not be easily detected in standard ELISA-like 
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assays.  We pose that this may be due to the infection causing suppression or elimination 

of B-cells producing antibodies that are normally present in most people.  

A reasonable strategy for developing immunosignatures would be to use the large 

10K array as a discovery format and then produce subarrays with smaller number of 

peptides for the clinical diagnostic.  The advantages of the smaller arrays would be that 

they may be less expensive to manufacture since fewer peptides would be required, the 

peptides could be of higher quality and they may be simpler to read.  To test this 

approach we chose 96 peptides from the 1586 10K signature and pattern matching 

analysis between disease and non-disease groups.  48 were chosen which were 

consistently high in VF infection samples but low in flu vaccine samples and 48 with the 

converse signature.  From a practical perspective, 96 is convenient as it is the basic unit 

used in peptide synthesis and spotting the arrays.  The peptides were selected based on 

their consistent signal over all titers, including the CF=0, of the standard ID assay.  We 

did not determine if signatures that distinguish the titers could be selected to monitor VF 

progression.  The implication is that the antibody reactivity that these peptides measure is 

independent of that measured in the ID assay.   

This VF diagnostic sub array was tested in a blinded test against the VF infection 

and non-infection samples.  The infection samples include the CF titer=0 samples.  While 

this subarray was significantly more sensitive than the IDCF assay, it was also less 

specific.  This increase in sensitivity but loss of specificity was evident in the CF titer=0 

samples.  The implication is that this subarray at least would need to be used in 

combination with the standard ID to obtain maximum specificity and sensitivity.   
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Interestingly, the sub-array performed less well than the 10K array.  This may in 

part be due to the selection criteria for the 96 peptides which were against the flu vaccine 

samples.  Peptides selected against a wider assortment of non-VF infection samples could 

perform better.  It may also be that the additional peptides on the 10K array distribute the 

antibody response to infection in a finer resolution allowing high sensitivity and 

specificity.   The 10K format, as demonstrated here for 3 other infections, may have the 

advantage of being used to discriminate multiple infections on the same platform.   

We have demonstrated that the immunosignature platform has clinical diagnostic 

potential relative to VF infection.  It can address the clinical problem of the CF titer=0 

infections, either on the 10K format or the sub-array format in combination with the 

standard ID assay.  There are ~50M people in the VF endemic region, with an estimated 

30% being exposed over time to the infectious agent.  However, since most people have 

little if any symptoms, it is unlikely a diagnostic would be used generally to screen for 

VF infection.  There is an existing standard antifungal treatment (Fluconazole) and a new 

one in development (Nikkomycin).  An improved diagnostic could at least identify 

symptomatic patients more accurately for having VF infections and may allow more 

effective use of treatments.  
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Supplementary Data: 

 

Supplementary Table 2- 1 Non-VF infection samples, ELISA data from SeraCare 

Name of assay: Platelia for Aspergillus spp. IgG from Bio-Rad (Hercules, CA) 

No. Patient No. Infection  ELISA (AU/ml) 

 1 2016079638 Aspergillus 61.9 

 2 2016088190 Aspergillus 35.8 

 3 2016173268 Aspergillus >80 

 4 2016187069 Aspergillus 18.1 

 5 2016191891 Aspergillus >80 

 6 2016200731 Aspergillus >80 

 7 2016231777 Aspergillus 21 

 8 2016244297 Aspergillus 24.8 

 9 2016245083 Aspergillus 23.9 

 10 2016293410 Aspergillus >80 

 11 2016330923 Aspergillus 18.1 

 12 2016332606 Aspergillus 24.1 

 13 2016362872 Aspergillus 57.3 

 14 2016393395 Aspergillus 21.3 

 15 2016397247 Aspergillus 44.7 

 16 2016397812 Aspergillus >80 

 17 2016451743 Aspergillus 38 

 18 2016454148 Aspergillus 60.3 

 19 2016479167 Aspergillus 80 

 20 2016203861 Aspergillus 22.9 

 
     
Name of assay: ANI labsystems for Mycoplasma pneumoniae IgG (Vantaa, Finland) 

No. Patient No. Infection ELISA (AU/L) 

 1 86 Mycoplasma 57 

 2 131 Mycoplasma 47 

 3 1596 Mycoplasma 50 

 4 3356 Mycoplasma 96 

 5 5659 Mycoplasma 95 

 6 2011444020 Mycoplasma 91 
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7 2016061010 Mycoplasma 115 

 8 2016062204 Mycoplasma 68 

 9 2016065663 Mycoplasma 209 

 10 2016065745 Mycoplasma 71 

 11 2016065862 Mycoplasma 131 

 12 2016080956 Mycoplasma 108 

 13 2016084956 Mycoplasma 153 

 14 2016085828 Mycoplasma 84 

 15 2016086204 Mycoplasma 99 

 16 2016088339 Mycoplasma 179 

 17 2016088435 Mycoplasma 111 

 18 2016090988 Mycoplasma 141 

 19 2016091115 Mycoplasma 309 

 20 2016092572 Mycoplasma 79 

 
     
No. Patient No. Infection  ELISA (S/CO) Name of assay 

1 9245819 Chlamydia 5.456 
Trinity Biotech EIA 

(Ireland) 

2 9245824 Chlamydia 4.186 Trinity Biotech EIA 

3 9245825 Chlamydia 4.211 Trinity Biotech EIA 

4 9245826 Chlamydia 5.873 Trinity Biotech EIA 

5 9245827 Chlamydia 6.434 Trinity Biotech EIA 

6 9245829 Chlamydia 4.868 Trinity Biotech EIA 

7 9245830 Chlamydia 5.579 Trinity Biotech EIA 

8 9245833 Chlamydia 1.3 Trinity Biotech EIA 

9 2013298347 Chlamydia 43 (UA/L) 

NovaLisa from 

NovaTec for 

Chlamydia 

pneumoniae IgG 

(Germany) 

10 2013352672 Chlamydia 42 (UA/L) 

NovaLisa from 

NovaTec for 

Chlamydia 

pneumoniae IgG 

11 2016328813 Chlamydia 46 (UA/L) 

NovaLisa from 

NovaTec for 

Chlamydia 
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pneumoniae IgG 

12 2016343255 Chlamydia 41 (UA/L) 

NovaLisa from 

NovaTec for 

Chlamydia 

pneumoniae IgG 

13 BM200809 Chlamydia 2.077 Trinity Biotech EIA 

14 BM201051 Chlamydia 2.048 Trinity Biotech EIA 

15 BM201105 Chlamydia 1.815 Trinity Biotech EIA 

16 BM201340 Chlamydia 3.168 Trinity Biotech EIA 

17 BM202017 Chlamydia 1.815 Trinity Biotech EIA 

18 BM202083 Chlamydia 2.851 Trinity Biotech EIA 

19 BM205162 Chlamydia 1.124 Trinity Biotech EIA 

20 BM205163 Chlamydia 1.192 Trinity Biotech EIA 

     
Name of assay: Complement fixation antibodies detected using Immunodiffusion 

(IDCF) measured by Dr. John Galgiani's lab 

No. Patient No. Infection CF-Titer/ IDCF 

 1 VF0-1077 Valley fever 0 

 2 VF0-1176 Valley fever 0 

 3 VF1-1153 Valley fever 1 

 4 VF1-142 Valley fever 1 

 5 VF1-178 Valley fever 1 

 6 VF1-432 Valley fever 1 

 7 VF2-1304 Valley fever 2 

 8 VF2-1344 Valley fever 2 

 9 VF2-1346 Valley fever 2 

 10 VF2-2 Valley fever 2 

 11 VF16-1 Valley fever 16 

 12 VF16-1142 Valley fever 16 

 13 VF16-399 Valley fever 16 

 14 VF32-1280 Valley fever 32 

 15 VF64-262 Valley fever 64 

 16 VF64-556 Valley fever 64 
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17 VF128-1012 Valley fever 128 

 18 VF256-793 Valley fever 256 
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CHAPTER 3 

COMPARISON OF NON-NATURAL MIMOTOPE VERSUS EPITOPE PEPTIDES IN 

DIAGNOSING VALLEY FEVER 

Abstract 

Peptide-based diagnostics are not in widespread use not because of poor 

sensitivity but because of diminished specificity.  Numerous reports suggest that protein-

based rather than peptide-based detection is more specific.  We examined two different 

approaches to peptide-based diagnostics using Valley Fever (VF) as the model.  Although 

the pathogen was discovered more than a century ago, a sensitive diagnostic is not 

available.  We present a case study where two different approaches were used:  the first, a 

standard overlapping VF-epitope peptide array representing immunodominant 

Coccidioides antigens.  Second, a set of random sequence peptides that function as 

mimotopes and partial epitopes was used. Such a comparison within a diagnostic context 

has not been previously reported. My results indicate that non-natural (random) sequence 

peptides show higher accuracy at classifying all stages of VF infection over VF-epitope 

peptides in a microarray format.  The epitope peptide array did provide better 

performance than the standard immunodiffusion array, but when directly compared to the 

random sequence peptides, reported lower overall accuracy.  This study hints at novel 

aspects associated with antibody recognition on an amino acid level and suggests 

methods for improving the accuracy of peptide microarray based diagnostic 

immunoassays not previously considered. 
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Abbreviations 

CAP, Community Acquired Pneumonias; CF, Complement Fixation; CT, Computed 

Tomography; CNS, Central Nervous System; EIA, Enzyme Immunoassay; FPR, False 

Positive Rate; ID, Immunodiffusion; IDCF, Complement fixation antibodies detected by 

Immunodiffusion; IDTP, Tube precipitin antibodies detected by Immunodiffusion; LDA, 

Linear Discriminate Analysis; KNN, K-nearest neighbors; LOOCV, Leave One Out 

Cross Validation; LVS, Live Vaccine Strain; NPV, Negative Predictive Value; PPV, 

Positive Predictive Value; TP, Tube Precipitation; TB, Tuberculosis; VF, Valley Fever. 

Introduction 

Superficial fungal infections affecting nails and skin afflict approximately 1.7 

billion people worldwide and this number is much higher as compared to the 1.5 million 

people per year mortality due to invasive fungal infections [76]. Valley Fever (VF) is 

caused by a dimorphic fungus, Coccidioides, prevalent in the southwestern Sonoran 

desert region of the United States and in certain areas of South America. The pathogen is 

known to cause both superficial as well as invasive disease in infected individuals. 

Diagnosis and treatment of VF is surrounded by several delays, due to diagnostic 

challenges as well as clinical inadequacies. Figure 3- 1 is a flowchart describing the 

clinical insufficiencies hindering early diagnosis of VF infection as highlighted by an 

Arizona Department of Health Services (ADHS) survey [20]. Additionally, the diagnostic 

delays involve very low recovery rates of this pathogen, 0.4% [n=5,026] from blood and 

8.3% [n=10,372] from respiratory tract specimens [3.2% overall i.e. from blood, 
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respiratory tract, urinary tract, bone marrow, cerebrospinal fluid, other sterile and non-

sterile body sites; n=55,788] as ascertained from a retrospective analysis of fungal culture 

specimens submitted to a lab in Phoenix (endemic for VF) by Sussland et al. [77]. The 

sensitivity of serum based assays such as Enzyme Immunoassay (EIA) is 83-87%, that of 

complement fixation and tube-precipitation antibodies detected by Immunodiffusion 

(IDCF,IDTP) is 71-73% and that of complement fixation by itself is low between 56-75% 

[78,79]. We demonstrated in our previous study [80] that Immunosignatures [2,10-12] 

using non-natural sequence peptide microarray technology could be successfully applied 

to resolve the diagnostic challenges surrounding VF serum based diagnosis. The random 

peptide ‘VF-diagnostic’ microarray platform accurately classified 63 longitudinal 

samples from 25 symptomatic yet clinically false-negative (IDCF=0 titer) patients as 

having valley fever. The confirmatory assay, IDCF’s sensitivity on this specific training 

and initially blinded test dataset used in the previous assay was 52% and specificity 

100%. Despite being a difficult sample set, the non-natural sequence peptide microarray 

out-performed IDCF with an overall cross-validated (holdout) sensitivity of 82% and 

specificity of 92%.  In this work we sought to test an alternative diagnostic approach 

using epitope peptides representing immunodominant VF antigens. This article compares 

the diagnostic performance of non-natural (random) sequence predictor peptides for VF 

and that from VF-epitope (life-space) peptides representing four immunodominant VF 

antigens. In doing so, it evaluates a central hypothesis of whether randomly generated; 

non-natural sequence predictor peptides from Immunosignatures are more or less 
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effective at accurately capturing all stages of VF infection with more sensitivity and 

specificity than pathogen antigen peptides in a similar microarray. 

 

Figure 3- 1 The clinical problem in Valley fever diagnosis. 

A diagnostic peptide microarray composed of 96 random peptides was created as 

part of a prior study [80] to enable sensitive diagnosis of VF in patients that were initially 

characterized as false-negatives by the IDCF titer gold-standard diagnostic assay.  

Briefly, a well characterized VF patient serum sample training set was tested on a 10,000 

random peptide microarray to select the 96 VF predictor peptides for the smaller sub-

array.  These 96 random peptides were selected for specificity in discriminating VF 

patient samples from both non-VF disease and healthy controls in the training set. 
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Influenza vaccinee sera were included as a confounding infection. Encouraged by higher 

sensitivity obtained on this smaller sub-array for predominantly false negative samples 

(IDCF=0), we sought to test whether using antigen epitope peptides from C. immitis 

might deliver an equally sensitive and perhaps more specific diagnostic than that obtained 

by using non-natural (random-sequence) predictor peptides. To this effect, we chose to 

represent four immunodominant VF antigens that are potential vaccine candidates in the 

form of six amino acid overlapping peptides. These antigens are chitinase-F (CF) [81], 

Antigen-2 [82], Expression Library Immunization-Antigen1 (ELI-Ag1) [83] and 

Coccidioides immitis specific antigen (CSA) [84] from Coccidioides immitis (strain-RS).  

The CF antigen is considered the main immune stimulating antigen as measured by the 

IDCF assay [61].  IDCF detects antibodies to several protein antigens present within an 

untreated (by heat), autolyzed, mycelial culture filtrate.  In this study, a side by side 

comparison of the diagnostic capability of these 96 VF specific non-natural peptides was 

made with 83 antigen epitope peptides representing four VF immunodominant antigens. 

Additional bioinformatic analyses were conducted to ascertain the reasons underlying 

high sensitivity and specificity of the 96 non-natural VF predictor peptides. 

When classifying non-natural proteins versus natural antigen proteins, one of the 

several metrics used for classification is the amino acid frequency of sequences being 

compared [31]. Within these groups of characteristic metrics, a di-peptide frequency 

pattern is typically used to automatically annotate proteomes by classifying protein 

sequences and informatically attributing function based on di-peptide complexity [85]. In 

order to ascertain why the 96 non-natural peptides function as VF predictors, a di-peptide 
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and short-sequence (2-mer to 6-mer) composition analysis is performed. For the purpose 

of this study, instead of the di-peptide frequency, the total possible di-peptides in 

common between 96-random and 83-life space epitope peptides versus VF proteome is 

calculated. Additionally we use an amino acid sequence similarity based alignment 

program named GuiTope [34] to compare the 96 non-natural VF predictor peptides to the 

four VF protein antigens in an effort to de-convolute the mechanism enabling randomly 

generated non-natural sequence peptide predictors to sensitively detect VF. GuiTope is a 

program that aligns non-natural sequence peptides to natural sequence proteins based on 

sequence level amino acid physico-chemical and structural similarity in an effort to map 

back to the original antigen from observed antibody binding on a microarray. It includes 

the novel feature of aligning sequences by taking into consideration di-peptide inversions 

within random peptides which was a phenomenon first observed while analyzing the data 

presented in this article and led to statistically significant improvement in GuiTope’s 

epitope discovery accuracy. 

Methods 

Serum samples used in this study 

A training and blinded test serum sample set were collected under the University 

of Arizona’s IRB# FWA00004218 and received by The Center for Innovations in 

Medicine at Arizona State University under their IRB# 0905004024 allowing unfettered 

data analysis of this material. Most patients sample within the training and blinded test 

set were initially characterized as being false negative on the CF-titer (IDCF) assay. 



 

53 

 

Supplementary Table 3- 1 describes the CF titer distribution in the samples from the 

training cohort. A training sample set consisting of 55 longitudinal samples from 35 VF 

symptomatic individuals including some 0 CF-titer early time point sera from 6 

individuals that later sero-converted was acquired from the University of Arizona. The 

accuracy of diagnosis using IDCF for the training set sera was 88%, with sensitivity = 

87%, specificity = 100%, PPV (Positive predictive value) = 100% and NPV (Negative 

predictive value) = 50%. Supplementary Table 3- 2 describes the CF titer distribution in 

the samples from the initially blinded test cohort. A blinded test sample set was acquired 

containing 67 serum samples of which 48 which were later revealed to be sero-negative 

on IDCF. These test group sera were from 25 patients with two or more serum samples 

per individual collected longitudinally during their disease progression. Supplementary 

Table 3- 3 summarizes the individual sample characteristics of patients sera included 

within the test set. The accuracy of diagnosis using IDCF for the test set sera was 35%, 

with sensitivity = 28%, specificity = 100%, PPV = 13% and NPV = 35%. The overall 

accuracy of both training and test dataset samples using IDCF for diagnosis was 57% 

(sensitivity= 52%, specificity= 100%, PPV= 19% and NPV= 57%). 

For the exploratory non-natural feature selection training portion of the 

experiment, 45 out of the total 55 training sera were processed to ensure adequate 

representation of all CF-titers (progressive stages of infection) on a 10,000 random 

peptide Immunosignature microarray.  Additionally, blood samples were processed from 

48 otherwise healthy male and female individuals of various ages along with 7 influenza 

vaccinee’s who supplied blood 3 days prior (‘pre’) to receiving the 2006/2007 influenza 
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vaccine and 21 days later (‘post’), and the data from their antibody reactivity’s to the 

10,000 peptides were classified as ‘non-disease’ for training purposes. 96-random VF 

predictor peptides were selected out of 10K peptides from this exploratory assay as 

explained in the prior publication [80]. 

All VF training and blinded test samples were processed on the smaller diagnostic 

array containing the selected 96-random and 83-life space epitope peptides in triplicate. 

Thirteen non-disease samples, including sera from healthy volunteers as well as influenza 

vaccinee samples were processed on the smaller diagnostic array.  To measure the 

specificity of the smaller diagnostic array, we processed 10 Fransicella tularensis (LVS-

Live Vaccine Strain) vaccinated individuals sera obtained from Dr. Anders Sjöstedt’s lab 

from Umeå University. This serum was part of a time course study and the samples 

selected for processing were the ones that were collected 28-30 days post receiving the 

LVS vaccine.  

Microarray production and processing 

The 96 random peptides as well as 83 life space peptides were synthesized by 

Sigma (St.Louis, MO) and printed as described in Legutki et al. [11]  Every 17 amino 

acid peptide was designed to have an N-terminal CSG linker and printed on aminosilane-

coated glass slides which were activated with sulfo-SMCC (Pierce, Rockland, MD).  All 

peptides were printed in triplicate next to each other in a two array printings per slide 

format.  Arrays were printed using a Nanoprint 60 (ArrayIt, Santa Clara, CA) at 60% 
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relative humidity at 23°C.  Patient serum from training and test sets were processed on 

this smaller microarray in duplicate.  

Microarray slides were pre-washed with a solution containing 7.33% acetonitrile, 

33% isopropanol and 0.55% TFA to remove any unbound peptides.  Slides were blocked 

in 1X PBS, 3% BSA, 0.05% Tween 20, 0.014% β-mercaptohexanol for 1hr at 25oC.  Sera 

samples were diluted 1:500 in the Incubation buffer containing 3% BSA, 1X PBS, 0.05% 

Tween 20, and allowed to bind to the microarray for 1 hour at 37°C in 100 µl total 

volume per array on a Tecan 4800 Pro Hybridization Station (Tecan, Salzburg, Austria). 

Slides were washed in-between primary and secondary antibody incubation steps for 30 

seconds with 1X tris-buffered saline (TBS), 0.05% Tween 20 pH 7.2.  Patient IgG 

antibodies were detected using 5nM, DyLight-549 conjugated Goat anti-Human, IgG Fc 

(γ) fragment specific secondary antibody and 5nM, Dylight-649 conjugated Goat anti-

Human, IgM (5µ) fragment specific antibody from Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA diluted in the incubation buffer.  These slides were 

scanned using the Agilent ‘C’ Scanner (Agilent Technologies, Santa Clara, CA) at 532 

nm and 647 nm excitation wavelengths under 100% PMT and 100% laser power with a 

10 µm image resolution. Both red and green channel TIFF images were simultaneously 

aligned per individual array, using the GenePix software (Axon Instruments, Union City, 

CA) and the data files imported into GeneSpring 7.3.1 (Agilent, Santa Clara, CA) for 

further analysis. 
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Pre-processing of data for analysis 

Data are collected in the form of .gpr files.  Each .gpr file contains the peptide 

name and the foreground intensity for each measured peptide for both IgG (green, 545nm 

channel) and IgM (red, 647nm channel).  Data were loaded into GeneSpring GX 7.3.1 for 

analysis.  Since the diagnostic array included two color data, a Lowess normalization was 

completed in GeneSpring whereby the ratio between the signal and control channels was 

used for classification.  Any array with a Pearson Correlation Coefficient less than 0.80 

across technical replicates was re-processed. Upon reprocessing if the Pearson correlation 

between replicates did not improve, that patient’s sample was excluded from further 

analysis. 

Statistical analysis 

Classification was performed using the Naïve Bayes algorithm as implemented in 

the klaR [71] package in R. Due to the unbalanced nature of this dataset, the holdout 

algorithm was used to balance the groups, from the R package DMwR as published in the 

book, Data Mining with R [72]. This helped overcome in-accurate estimation of 

specificity due to lesser non-disease samples. The holdout experiment was done by 

combining the training and test dataset and is a more rigorous cross-validation technique 

whereby 70% of randomly selected total data was used for training and prediction was 

made on the remaining 30% data. This was done for 20 iterations so as to predict the 

class of every sample more than once and get a better assessment of diagnostic metrics 

such as sensitivity, specificity, negative predictive value (NPV), positive predictive value 
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(PPV) and accuracy. The results for both standard train and test (without cross-

validation) and holdout are included side-by-side for every comparison. 

GuiTope analysis 

Previous work done by Halperin et al. [34] showed an unusual property of 

antibody recognition of near-epitope sequences.  Two amino acids in a row could be 

swapped in position with no decrease in the apparent binding affinity.  This occurred 

often enough in a broad analysis of monoclonals and polyclonals on Immunosignature 

random peptide microarrays, and phage display datasets from MimoDB [86] that 

Halperin and colleagues embedded an allowance for this in a program for analysis of 

peptide alignments called GuiTope [34]. The current article is the first report displaying 

the use of this program for finding mimotopes within non-natural peptides through 

antibody binding observed from VF patient sera. 

The protein sequences of the four immunodominant VF antigens were uploaded 

as a .fasta format file into the Protein section of GuiTope. The 96 non-natural space 

peptide sequences were uploaded into the peptide input section. In the library section, the 

original 10K random peptide library was uploaded from which the 96-random peptides 

were selected as VF predictors. These 96 selected random peptides were excluded from 

the library section. This was done so as to calculate the false-positive rate (FPR) by 

calculating the score for an equal number of library peptides as the selected VF-

predictors (96) for multiple iterations (1000) and assessing the probability of finding 

another peptide in the library that had a higher similarity to the four VF proteins, above 
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that calculated for the 96-selected. The default amino acid distance matrix, Grantham 

1974 [87] was used but the amino acid frequencies of the query proteins and query 96-

random peptides were pasted into the appropriate sections under the Generate Matrix tab. 

Under the parameters tab, the inversion weight was set to 1 or 0 to either include or 

exclude the di-peptide inversion modulation to the Smith-Waterman maximal gapless 

local alignment algorithm [33]. A new distance matrix was generated after taking into 

consideration the amino acid frequencies for the query protein and peptide. The sampling 

iterations under the ‘Graphical output’ tab was set to 1000, which is the number of times 

96 other peptides would be selected at random from the 10K library to compare scores 

for the selected 96-peptides and generate the FPR.  

Results 

Comparing classification accuracy and sensitivity of life space versus random 

peptides 

A comparison between pathogen epitope peptides and non-natural sequence 

peptides within a peptide microarray diagnostic had not been previously reported in the 

literature.  We examined the signature response captured by 83 valley fever antigen 

epitope peptides and compared that to the antibody response captured by 96 non-natural 

VF-diagnostic peptides as depicted in Figure 3- 2. 
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Figure 3- 2 VF patient signal average intensity data per CF-titer.  

The Y-axis displays the average raw (non-normalized) signal in fluorescence intensity 

units (FIU) captured by 83 VF antigen life-space peptides in Panel A and 96 non-natural 

(random) peptides in panel B. Error bar depict standard error. The X-axis displays 

signal intensities as averaged by CF-titer (IDCF) with ‘n’ reflecting the number of 

patients in the training and test groups combined per CF-titer. 

IgG antibody averaged signals in panel A captured by tiled VF-antigen peptides 

do not show incremental correlation with increasing CF-titer until the CF-titer reaches 

1:256.  At every CF-titer, except 1:256, the 96-random peptides capture higher amount of 

antibodies on average as compared to the life-space peptides.  The 96-random VF 

predictor peptides might thus have more potential for accurately measuring symptomatic 

yet false-negative patient sera mis-classified by the IDCF test. Table 3- 1 summarizes the 

Naïve Bayes classification result from false negative (CF-titer=0) patients within the VF 

dataset and compares the performance of the 83 life-space peptides versus 96-random 

peptides.  



 

60 

 

Table 3- 1 Naïve Bayes classification result on VF test dataset using random vs life space 

peptides. 

IgG Peptides Sensitivity Specificity PPV NPV Accuracy 

0 (CF-

Titer) 

Random 

(96) 100% 43% 92% 100% 93% 

  

Life space 

(83) 96% 71% 96% 71% 93% 

       IgM Peptides Sensitivity Specificity PPV NPV Accuracy 

0 (CF-

Titer) 

Random 

(96) 94% 43% 92% 50% 87% 

  
Life space 

(83) 88% 57% 93% 40% 84% 

       Holdout exp (70- 30), 20 iterations         

IgG Peptides Sensitivity Specificity PPV NPV Accuracy 

0 (CF-

Titer) 

Random 

(96) 91% 85% 96% 70% 90% 

  

Life space 

(83) 86% 71% 93% 52% 83% 

       IgM Peptides Sensitivity Specificity PPV NPV Accuracy 

0 (CF-

Titer) 

Random 

(96) 99% 58% 86% 96% 88% 

  

Life space 

(83) 80% 68% 91% 46% 78% 

 

The random peptides are more sensitive at diagnosing valley fever than the life 

space peptides. The top half of this table represents the IgG (green-channel) and IgM 

(red-channel) sensitivity from generating a Naïve Bayes model by training on the training 



 

61 

 

dataset and testing on a physically separate test dataset. The bottom half of the table 

represents a more rigorous assessment of these metrics by performing the holdout cross-

validation for 20 iterations and using 70% randomly selected training samples to train 

and predict the remaining 30% of data. The results presented are averaged for multiple 

predictions per sample for all 20 iterations. The resulting values are more accurate 

estimates to be expected from this assay when testing with additional clinical samples in 

the future. Random peptides detect false-negative symptomatic patient sera more 

accurately as compared to life space epitope peptides. As might be expected early in an 

infectious response the IgM responses offer higher sensitivity (98.96%, random 

peptides). 

Bioinformatic rationale underlying the sensitivity of random (96) vs. life-space (83) 

epitope peptides 

A linear B-cell antibody epitope ranges from 4-12 amino acids in length as 

previously delineated through peptide microarray analysis [88].  Sun et al. [89] 

determined from 161 Protein Data Bank (PDB) antigen-antibody pair structures that in 

conformational epitopes, antibody paratopes associate with antigens in short non-

contiguous segments, 2-5 amino acids in length.  The reasons underlying higher 

sensitivity and specificity of random predictor peptides in comparison to pathogen 

epitope peptides could be bioinformatically ascertained by comparing the level of short 

sequence overlap between the two groups of predictor peptides and the VF proteome. 

Figure 3- 3 depicts the number of unique n-mers between the 96-random and 83-lifespace 
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peptides in common with the VF pathogen proteome (panel A) and the randomly 

generated VF proteome (panel B).  

 

Figure 3- 3 Sensitivity of assay - Number of unique n-mers (2-6 amino acid short 

sequences) between the 96-random and 83-lifespace peptides in common with the VF 

pathogen proteome (panel A) and the randomly generated VF proteome (panel B). 

The Y-axis shows the number of 2-6 mers in common between groups of peptides and 

pathogen proteomes as a continuous line graph with n-mer groups displayed on the X-

axis. 

The bioinformatically in-silico generated artificial VF proteome uses amino acid 

alphabets in an unbiased random manner to match the number and length per protein 

within the natural Coccidioides immitis strain-RS proteome. The total possible 

combinations of di-peptides using 20 amino acids is 400 and the 96-random peptides 

represent 360 out of those 400 possibilities. The 83 life-space peptides only represent 303 

out of the 400 possible di-peptide combinations.  The number of overlapping 6-mers in 
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common between the life-space peptides and the natural VF-proteome increase but this 

extent of overlap is not by random chance as depicted by the artificially generated VF 

proteome. The number of 6-mers identical between the 96-random peptides and both the 

natural and artificially generated VF-proteome is low and show the true randomness of 

these 96 VF-predictor non-natural peptides. 

Specificity and robustness of random (96) vs. life-space (83) VF epitope peptides 

In an effort to assess the specificity of this assay, we statistically classified all CF-

titer (non-zero) VF patient sera to test whether the peptide microarray could distinguish 

all progressing stages of VF infection apart from uninfected sera (normal donors, 

influenza vaccinees). Additionally, we processed sera from Francisella tularensis (LVS) 

vaccinated individuals 28-30 days post-vaccine. When Francisella tularensis infects the 

lungs, symptoms resemble those of respiratory distress similar to those observed in VF 

[90].  To measure specificity against a confounding exposure, the 10 LVS samples were 

randomly split between the training and the test samples (5 per group). Separate 

classifications were done for 2 groups (VF vs. non-VF – Part A, without LVS sera) or 3 

groups (VF vs. non-VF vs. LVS – Part B) (Table 3- 2). The assay performance metrics 

for IDCF are included for side-by-side comparison in Part A. 

Table 3- 2 Naïve Bayes classification results using IgG and IgM signals from VF 96 

random predictor peptides and 83 VF epitope peptides 

A.) Groups: VF, Normals (No LVS) 

IgG Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 99% 43% 94% 75% 93% 

  Life space 96% 50% 94% 57% 91% 
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(83) 

  

     

  

IgM Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 99% 25% 92% 67% 91% 

  
Life space 

(83) 90% 50% 94% 36% 85% 

CF-Titer  IDCF results 28% 100% 100% 13% 35% 

Holdout experiment (70-30), 20 iterations 

IgG Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 82% 92% 99% 37% 83% 

  
Life space 

(83) 79% 73% 96% 30% 78% 

  

     

  

IgM Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 93% 74% 97% 55% 91% 

  
Life space 

(83) 
84% 68% 96% 34% 

82% 

CF-Titer  IDCF results 52% 100% 100% 19% 57% 

       B.) Groups: VF, LVS, Normals 

IgG Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 99% 50% 92% 86% 91% 

  

Life space 

(83) 96% 62% 93% 73% 90% 

  

     

  

IgM Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 99% 46% 90% 86% 90% 

  

Life space 

(83) 87% 54% 91% 44% 
81% 

Holdout experiment (70-30), 20 iterations 

IgG Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 79% 87% 97% 44% 80% 

  

Life space 

(83) 
91% 73% 94% 62% 

87% 

  

     

  

IgM Peptides Sensitivity Specificity PPV NPV Accuracy 

All (CF-Titer) Random (96) 93% 70% 93% 67% 89% 

  Life space 83% 75% 94% 48% 81% 
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(83) 

 

A - Model classifying between 2 groups VF and Non-VF (Normal) 

B - Model classifying between 3 groups VF, Non-VF and LVS 

Holdout experiment - combine training and test set data, Train on randomly selected 

70% data and test on remaining 30% (20 iterations) 

Naïve Bayes (no holdout) yielded 99% sensitivity using both IgG and IgM signals 

from 96-random predictor peptides when including the LVS samples (Table 3- 2, Part B). 

In comparison, the 83 life-space epitope VF peptides showed 96% sensitivity when using 

IgG signals and 87% when using IgM signals. The holdout experiment was performed so 

as to reduce biased estimates of specificity due to comparatively lower number of non-

disease patient sera tested on this assay in comparison to VF patient sera. The specificity 

at distinguishing VF apart from normal by non-natural 96-random VF predictor peptides 

through the holdout analysis for IgG is 92% (Table 3- 2, Part A) in comparison to 73% 

(Table 3- 2, Part A) from 83 VF life-space epitope peptides. This was unexpected given 

our original hypothesis of expecting higher specificity from VF life-space epitope 

peptides as compared to non-natural sequence peptides (96-Random). When testing the 

classification (holdout) of these same VF and normal samples in the context of LVS, the 

specificity of non-natural peptides capturing IgG reactivity within this assay dropped 

from 92% (Table 3- 2, Part A) to 87% (Table 3- 2, Part B) merely because the platform 

was not originally trained or designed to distinguish between these specific disease 

groups. This 87% specificity though is still higher than that demonstrated by life-space 
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VF epitope peptides (73%). The sensitivity (91%) and accuracy (87%) of life-space 

peptides was higher than non-natural peptides when including the LVS group (Table 3- 2, 

Part B). 

As often seen in assays involving antigen-antibody interactions [3,5], some 

peptide-level cross-reactivity was observed from the LVS vaccinees towards some 

random and life-space peptides selected to distinguish Valley Fever from influenza and 

healthy controls.  The cross-reactivity of these VF predictor peptides to antibodies from 

individuals exposed to LVS might be partially explained due to the number of 

overlapping 5-mers between them and the pathogen proteomes tested in this analysis 

(Figure 3- 4).  
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Figure 3- 4 Cross-reactivity observed on VF-diagnostic array hypothetically explained 

using the number of unique 5-mers in common (Y-axis) between random (blue bars) and 

life space (red bars) peptides and pathogen proteomes (X-axis). 

Influenza/A/Wisconsin and New Caledonia and Influenza/B/Malaysia strains 

were included in the 2006-2007 seasonal Influenza vaccine.  The extent of identical 

overlapping 5-mers between the Valley Fever proteome and both the random and life-

space peptides is much higher compared to Influenza or Fransicella proteomes.  The 

extent of overlap may also be partially affected by the significantly different size of these 

pathogen proteomes, with C. immitis having 10,440 proteins and F. tularensis str. SchuS4 

having 1,556 proteins and F. tularensis str. LVS having 1,754 proteins while only 12 
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proteins represent the  Influenza proteomes. The 96-random peptides performed with 

higher specificity in being able to distinguish VF from non-VF patients and LVS 

vaccinees as compared to VF epitope peptides (life-space). Figure 3- 5 shows the number 

of unique n-mers (2-6 amino acids) between the 96-random and 83-lifespace peptides in 

common with the LVS proteome (panel A) and the randomly generated LVS proteome 

(panel B).  

 

Figure 3- 5 Specificity of assay - Number of unique n-mers (2-6 amino acid short 

sequences) between the 96-random and 83-lifespace peptides in common with the LVS 

proteome (panel A) and the randomly generated LVS proteome (panel B). 

The Y-axis shows the number of 2-6 mers in common between groups of peptides and 

pathogen proteomes as a continuous line graph with n-mer groups displayed on the X-

axis. 

The extent of 5-mer and 6-mer overlap between random peptides and the LVS 

proteome whose signature they were not designed to capture is low as compared to that 



 

69 

 

observed between the two peptide groups and VF proteome in Figure 3, Panel A. This 

explains why the specificity of non-natural (96-Random) peptides at distinguishing a 

previously un-trained on exposure (LVS) was higher than that of VF epitope peptides 

(life-space). 

Bioinformatic rationale underlying the specificity of random (96) vs. life-space (83) 

epitope peptides 

A comparison between the 96-random peptides and the 4 immunodominant VF 

antigens was done using GuiTope. Using the protein BLAST program [91] very few 

alignments were found between the VF proteins and 96-random peptides.  Table 3- 3 and 

Figure 3- 6 summarize the positive matches between 96-random peptides and 4 VF 

antigen proteins.  

Table 3- 3 Summary of GuiTope matches between 96-Random VF predictor peptides and 

4 VF antigens 

Score cutoff: 6.56 Moving Average: 15 

Sampling Iterations: 1000 Subtracting Mean Lib Scores? Checked 

Part A.) Inversions = 1 

Name 

Ran

k 

Max 

Score 

Max Score 

Position 

(amino 

acid) FPR 

Length 

(aa) 

No. of 

Guitope 

Matches 

CF-CIMG_02795 1 7.32 249 0 427 82 

CSA-CIMG_01181 2 6.64 40 0 146 46 

Eli-Ag1-CIMG_10032 3 6.34 159 0 224 62 

AG2-CIMG_09696 4 5.44 145 0.001 194 43 

       Part B.) Inversions = 0 
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Name 

Ran

k 

Max 

Score 

Max Score 

Position 

(amino 

acid) FPR 

Length 

(aa) 

No. of 

Guitope 

Matches 

CF-CIMG_02795 1 6.37 362 0 427 51 

CSA-CIMG_01181 2 6.33 60 0 146 23 

Eli-Ag1-CIMG_10032 3 4.68 210 0.0013 224 39 

AG2-CIMG_09696 4 4.55 74 0.0015 194 16 

 

The number of positive hits obtained when using the di-peptide inversion 

modulation in addition to the Smith-Waterman [33] positional search algorithm is higher 

than those obtained without including di-peptide inversions. The individual peptide 

positive hits per protein are summarized in Supplementary Table 3- 4 with inversions and 

Supplementary Table 3- 5 without inversions.  
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Figure 3- 6 GuiTope analysis comparing 96-random peptide VF predictors with each of 

the 4 VF proteins tiled for the 83 life-space epitope peptides.  

The X-axis shows amino acid position on the protein and Y-axis shows the GuiTope score 

calculated after library subtraction. Panel A shows the score distribution per amino acid 

residue when Inversion weight is set to a maximum value of 1 and Panel B shows the 

detection rate when the di-peptide inversion algorithm is not used to find peptide vs. 

protein matches for the same dataset (inversion weight=0).  

When inspecting the raw signal data averaged per peptide (83 life-space) per CF-

titer (Figure 3- 7), as expected, earlier in the infection (CF-titer=0), the IgM antibody 

response is much higher than the IgG antibody level.   
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Figure 3- 7 VF predictor random peptides (96) overlapping 83 life-space peptides from 

Valley fever.  

The un-normalized IgG and IgM antibody signals (X-axis) from VF patients as captured 

by the 83 life-space peptides (Y-axis) are displayed. Patient signals are averaged based 

on the individual patient’s CF-titer (cyan= 0-titer, brown = IDCF-titer 1 etc.) per life-

space peptide. The red line is a moving average representing the trend observed in these 

data. The pink line displays the overall coverage of GuiTope matches between 96-

random peptides and 4 VF protein antigens.  



 

73 

 

 

Figure 3- 8 BLAST alignment map depicting VF-protein coverage of 96-random peptides 

through positive hits from GuiTope. 

Figure 3- 8 shows the BLAST alignment map per antigen depicting positive 

GuiTope hits between 96-random peptides and matching short protein sequences on the 4 

VF antigens. Some regions have multiple positive hits with several different peptides 

within the 96-random VF predictor peptides. These bioinformatics analysis might begin 

to explain why non-natural sequence peptides are capable of capturing disease specific 

antibody reactivity. 

Discussion 

We generated a sub-array for testing the diagnostic performance of 96-random 

non-natural sequence VF predictor peptides versus 83 life-space epitope peptides from 

VF. The 96-random peptides selected for this comparison were previously empirically 

tested to be good predictors for capturing VF specific antibody reactivity [80].  The 

current comparison is presented to ascertain whether non-natural peptides or life-space 
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peptides would be most useful in distinguishing infections such as Valley Fever in a 

microarray diagnostic format.  We tested VF patient sera for IgG and IgM antibody 

against VF.  As expected for a chronic infection, we observed higher IgM antibody early 

in patients that were sero-negative on the gold-standard IDCF assay.  We then tested this 

array’s ability to distinguish VF patient sera (including false-negatives; IDCF=0) from 

normal using 55 sera with various CF-titers from an orthogonally characterized training 

set and 63 sera from an initially blinded test set.  VF patients were distinguished from 

non-VF individuals using either the 96-random or 83 life-space epitope peptides by Naïve 

Bayes.  The sensitivity of these two groups of peptides was assessed using 0-titer samples 

and comparing against non-VF sera. The specificity of diagnosing every stage of the 

infection was assessed by using incremental CF-titer samples suggestive of progression 

versus non-VF sera.  In both comparisons, random peptides performed more accurately 

compared to life-space epitope peptides.  The higher accuracy obtained might be partially 

attributable to the 96-random peptides having a higher diversity of di-peptides as 

compared to 83 life-space peptides.  More diversity of di-peptides within random 

peptides could translate to more combinations of di-peptide antibody contact points 

presented by random peptides.  A comparison of the 96-random VF predictor peptides 

versus the four life-space VF antigens using GuiTope explains why these 96 non-natural 

sequence peptides perform with higher accuracy when distinguishing VF. Using di-

peptide inversions there are 233 unique short-sequence matches (129 matches without 

inversions) between the 96 random VF predictor peptides and VF antigens allowing 



 

75 

 

random peptides to compete for antibodies originally generated against VF epitope 

peptides. 

Cross-reactivity is an inherent problem observed in antigen-antibody assays with 

VF specific assays not being an exception to this rule [92]. Kuberski et al. [93] 

recommended using the cross-reactivity observed on a Histoplasma antigen assay from 

VF infected individuals samples for VF diagnosis. By comparing a previously un-trained 

on exposure capable of presenting confounding symptoms, we assessed the specificity 

and robustness of both non-natural and epitope peptides. Since the random peptides were 

not originally trained to distinguish between VF and LVS, as expected the specificity 

dropped from 92% (without LVS group) to 87% (with LVS, Naïve Bayes, holdout, Table 

3- 2 - Part A and B).  This highlights an important problem in the biomarker field 

whereby during the initial training phase of assay development, if the diagnostic system 

is not trained a priori to rule out similar confounding infections, the sensitivity of the 

assay might not be easily affected but the specificity will change significantly. Ideally, 

for testing the specificity of such an assay one would compare clinically confounding 

infections that cause similar symptoms or are presented by pathogens that operate under 

similar mechanisms of pathogenicity (e.g. invasive mycoses). Additional appropriate 

confounding infections for training and feature selection would be Community Acquired 

Pneumonias (CAP) such as tuberculosis (TB), and invasive mycoses such as 

Blastomyces, Histoplasma and Crytococcus. 

A CF-Titer of 1:2 or 1:4 suggests a better prognosis, whereas a titer of 1:16 or 

greater (up to 1:256) is indicative of disseminated disease. Several patient case histories 
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of zero CF-Titer or a titer not suggestive of dissemination i.e. under 1:16 have been 

documented to show meningeal dissemination [67]. Approximately 1% of patient 

samples post-dissemination are false negative on the IDCF assay [94]. While this is not 

an alarming statistic, it is nevertheless important when the dissemination is meningeal. 

Early detection is crucial to better prognosis for patients with meningeal VF [95].  The 

blinded test set also included a CSF sample that was false negative on the CF-titer assay 

but was accurately diagnosed as being sero-positive for VF on the random peptide sub-

array. Thus, the immunosignature technology, due to its higher positive predictive value 

(PPV), may be able to assess disease progression, especially in cases of meningeal 

dissemination despite a negative IDCF (confirmatory test) result. 

From a survey of 39,500 infected valley fever patient sera Smith et al. [96] 

determined that within the first week, complement fixation antibodies measured by the 

IDCF assay were detected in approximately 10% of patients and were significantly 

reduced a month later.  This is correlated by the measurably lower amount of antibody 

captured by the life-space epitope peptides (as measured by average intensity) as 

compared to random peptides (Figure 3-2, panel A). Pappagianis et al. (2011) recently 

demonstrated in-vitro that early treatment with anti-fungal agents like Fluconazole, 

results in reduced or absent production of the chitinase antigen in Coccidioidal cultures 

[97].  They thereby correlated early intervention with anti-fungals such as Fluconazole in 

some patients causing a reduction in IDCF detectable levels of IgG antibodies 

predominantly to the chitinase antigen.  This, in their opinion, results in delaying patient 

diagnosis and therefore they recommend that primary pulmonary infections not be treated 
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with the antifungal before being tested and monitored for Valley Fever.  A similar trend 

in the reduction of galactomannan antigenemia in invasive Aspergillosis post anti-fungal 

intervention with Fluconazole was not mis-construed as being detrimental due to reduced 

diagnosis on assay [98].  In fact, a decrease in antigenemia correlated with survival and 

an increase despite anti-fungal intervention correlated with morbidity in infected 

individuals.  These problems in diagnosis are typically observed in single correlates of 

infection.  Technologies such as immunosignatures may surpass limitations posed by 

such single correlates for diagnosis due to being strengthened by multiple predictors 

while assessing infection. 

The 96 non-natural peptides have a higher number of 5-mer sequence overlap 

with the VF proteome (686 identical 5-mers in common) as compared to the F. tularensis 

(LVS) proteome (162 identical 5-mers in common). As per Lund et al., 85% of antibody 

structures characterized in the Protein Data Bank (PDB) database are associated with 5-

mers epitope sequences [99]. Figure 3-7 and Figure 3-8 partially explain the 96 non-

natural peptides ability to capture VF-specific antibodies through their coverage of 83 

VF-epitopes and the 4 immunodominant VF-antigens they represent, respectively. 

Current methods of diagnosis are quite course and rely on single markers such as CF titer. 

Graybill  and colleagues [100] noted that CF titer did not change significantly during 

treatment, where patient symptoms had greatly improved.  With a larger panel of sensors 

(peptides), a more complete picture of the status of the humoral immune response can be 

observed, without the risk of relying on the abundance or antibody response to a single 

antigen. High information-content technologies like Immunosignatures can enable more 
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subtle modulation of antifungal interventions, relieving the patient of the burden of side 

effects. This work presents encouraging evidence suggesting that non-natural sequence 

peptides might serve as more accurate molecular beacons for VF diagnosis than life-

space pathogen epitopes. 
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Supplementary Tables: 

Supplementary Table 3- 1 Sample characteristics of the training set for Valley fever 

study. 

IDCF 

Titer 

# Samples 

0 6 

1 4 

2 8 

4 5 

8 3 

16 8 

32 11 

64 5 

128 3 

256 2 

 

Note: 55 sera from 35 patients within the training dataset.  The IDCF titer and number of 

patients with that titer are shown in columns 1 and 2.   

Supplementary Table 3- 2 Sample characteristics of the 67 blinded test sera from 25 

patients. 

IDCF # Samples 

0 48 

1 5 

2 7 

4 3 

8 1 

16 2 

32 1 

 

Note: These samples were initially blinded by the clinic. 
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Supplementary Table 3- 3 Individual patient characteristics from the un-blinded test set. 

Tube # Patient # CF titer TP titer Date diff. 
False Negative 

CF results 
# Blood draws 

1 109 0 0 0 1 1 

2 109 2 0 25   2 

3 109 0 0 26 CSF 1 CSF 

4 116 0 0 0 1 1 

5 116 4 0 7   2 

7 123 4 0 0   1 

8 123 0 0 27 1 2 

9 138 0 0 0 1 1 

11 138 1 0 44   2 

12 162 0 0 0 1 1 

14 162 16 1 71   2 

15 184 0 0 0 1 1 

16 184 2 0 18   2 

18 188 0 0 0 1 1 

19 188 0 1 24 1 2 

20 188 0 0 84 1 3 

21 216 0 0 0 1 1 

23 216 2 0 12   2 

25 232 0 0 84 1 1 

26 232 0 0 42 1 2 

27 232 0 1 10 1 3 

28 236 0 0 0 1 1 

30 236 2 0 41   2 

31 251 0 0 0 1 1 

32 251 0 0 41 1 2 

33 251 0 0 90 1 3 

35 251 16 0 96   4 

36 288 0 0 0 1 1 

37 288 1 0 44   2 

38 288 0 0 159 1 3 

40 290 0 0 0 1 1 

41 290 0 1 23 1 2 

42 290 0 0 88 1 3 

43 363 0 0 0 1 1 

44 363 2 0 8   2 

45 383 0 0 0 1 1 

46 383 0 0 85 1 2 

47 383 1 0 14   3 
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49 391 0 0 0 1 1 

50 391 0 1 18 1 2 

51 401 0 0 0 1 1 

52 401 0 0 30 1 2 

54 401 0 1 4   3 

55 407 0 0 0 1 1 

56 407 32 0 71   2 

57 412 0 0 0 1 1 

58 412 1 0 49   2 

60 412 1 0 94   3 

61 413 0 0 0 1 1 

62 413 0 1 10 1 2 

63 437 0 0 0 1 1 

65 437 4 0 45   2 

66 437 2 0 80   3 

67 437 0 0 98 1 4 

68 472 0 0 0 1 1 

70 472 2 0 18   2 

71 473 0 0 0 1 1 

73 473 0 1 7 1 2 

74 487 0 0 0 1 1 

75 487 0 0 40 1 2 

76 487 0 1 49 1 3 

77 487 0 1 147 1 4 

79 487 0 0 113 1 5 

80 503 0 0 0 1 1 

81 503 0 0 20 1 2 

82 503 0 0 36 1 3 

84 503 8 0 113   4 

 

Note: False negative CF-titer results are coded as 1 for each sample tested. The 

accession numbers of these patients were left out of this table to de-identify them further 

for this work. 

Supplementary Table 3- 4 Summary of GuiTope results with inversion weight =1 from 

alignment of 96-random peptides to 4 immunodominant antigens of C.immitis 

Library subtracted, moving average=15 
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Match data for score cut 6.56 for protein : 

CF-CIMG_02795 

        ************** FORWARD PEPTIDES ************************** 

No. SEQUENCE 

SCOR

E 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

RVMFEGFQ

GKGPNYLQ

VGSC 6.757 5 14 15 LvqaS LqvgS 

2 

MQWHSNY

MMKRPYNP

ELGSC 6.671 9 23 8 MpnsypvPE MmkrpynPE 

3 

QVDWTRWR

KPKNEMAW

KGSC 6.903 11 45 2 

VnWaiygrgh

N 

VdWtrwrkpk

N 

4 

GFMLFGGN

PLEYAWYA

HGSC 6.872 9 45 10 vnwAiYgrG leyAwYahG 

5 

RTMNTALW

IIPLTWALW

GSC 7.893 5 47 14 WAiyG WAlwG 

6 

LYTSEQMTF

YGGRDDEIG

SC 8.235 7 49 9 iYGrghn fYGgrdd 

7 

NRKNKGHA

YRDGHNIQL

GSC 7.386 8 50 9 YgrGHNpQ YrdGHNiQ 

8 

RIIRWSPGQ

DAKFQDQN

GSC 7.943 12 52 4 

RghnpQDlK

adq 

RwspgQDaK

fqd 

9 

MAIQGMNI

YTWFTDRI

MGSC 10.485 18 61 2 

AdQfthIlyaF

anirpsg 

AiQgmnIytw

Ftdrimgs 

10 

MTRRWKTF

PHEIEDRIKG

SC 7.065 6 73 14 nirpsg drikgs 

11 

YDVMLSQP

NPVSWMRF

PGSC 7.599 17 79 2 

eVyLSdtwad

tdkhyPG 

dVmLSqpnp

vswmrfPG 

12 

YFWLDVNY

DEWTAVVD 7.804 12 79 5 

eVylsdtwAdt

D 

dVnydewtAv

vD 
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QGSC 

13 

TKRIHKWPQ

DAYRIRRGG

SC 7.76 6 91 5 khyPgD hkwPqD 

14 

TMIHMQRV

KPRKLTNY

VGSC 7.4 4 104 15 NvyG NyvG 

15 

MRPRHAMP

NIKEYMLSP

GSC 9.201 6 109 10 IKqmyL IKeymL 

16 

PNPWLEWM

HMLLWNNQ

DGSC 

8.2050

01 13 109 5 

ikqMylLkkN

Nrn 

lewMhmLlw

NNqd 

17 

EFTWMLNK

NNEMHRHP

PGSC 8.319 7 113 4 ylLkKNN wmLnKNN 

18 

WFNERKRA

QLYEVGEFT

GSC 7.787 17 118 3 

NnRnlktLlsi

GgwTyS 

NeRkraqLye

vGefTgS 

19 

HMRAMNPF

KPHTNIGRW

GSC 

7.5320

01 5 135 6 pnFKt npFKp 

20 

ARWKKKSH

FHRGKKKM

FGSC 

8.7289

99 8 142 7 SteegrKK ShfhrgKK 

21 

HRGKKAPD

FQVGYLKA

DGSC 10.442 15 145 1 

egrKKfaDtsl

klmK 

hrgKKapDfq

vgylK 

22 

RKFKKRRH

WHFPKFPK

WGSC 8.31 13 147 1 

RKkfadtslkl

mK 

RKfkkrrhwhf

pK 

23 

FDMLFKDS

YIWGMTIMF

GSC 7.937 12 157 4 

LmKDlgfdG

idI 

LfKDsyiwG

mtI 

24 

HEGLEGDQ

TIYQFMIEY

GSC 

6.9889

99 10 159 1 kdlgfdgidI heglegdqtI 

25 

KGDFGAEW

GRWRKWVT

KGSC 7.392 4 162 2 GfdG GdfG 

26 

VTGTEGQW

DGYPLWHL

FGSC 7.423 5 169 8 dweYP wdgYP 
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27 

DQWMTMR

VKFRDWVQ

LIGSC 7.391 9 181 12 DfVlLlkaC DwVqLigsC 

28 

YSWDAINW

RGKAYPVE

TGSC 7.844 11 191 4 eAldaysakhP dAinwrgkayP 

29 

KARWNGRN

MTAPVYWR

NGSC 7.75 7 198 1 akhpNGk karwNGr 

30 

YANRGNGK

KVHWLLFY

QGSC 

8.9990

01 13 198 2 

AkhpNGKK

fllti 

AnrgNGKKv

hwll 

31 

MYYFPDTG

GQPDGSMW

NGSC 7.591 12 207 1 lltiaspaGpqn 

myyfpdtgGq

pd 

32 

FNLGWKVQ

GKLDMSAP

KGSC 8.642 8 208 11 LtiasPaG LdmsaPkG 

33 

KQKLPHWY

RRLDRPVTV

GSC 8.394 12 221 1 

KlKLaemdk

yLD 

KqKLphwyrr

LD 

34 

TRQLAPYFD

WHNYSIAIG

SC 

8.6259

99 13 231 7 

ldfWnlmayd

fsg 

yfdWhnysiai

gs 

35 

DKFHYWMY

MLYGINDKI

GSC 10.083 19 232 1 

DfwnlmaYdf

sGswDKvsg 

DkfhywmYm

lyGinDKigs 

36 

EVERGDMN

WLTISVNNA

GSC 

8.4070

01 5 232 6 DfwnL DmnwL 

37 

WAEKPKIK

NWLGRQKL

GGSC 7 11 234 9 

wnLmaydfs

GS 

nwLgrqklgG

S 

38 

GFNQWFSID

NWLHTAQW

GSC 8.596 10 234 10 wnLmaydfsg nwLhtaqwgs 

39 

YKMDWSIA

FQIMHFDVS

GSC 11.234 11 234 9 

wnlMayDfS

GS 

fqiMhfDvSG

S 

40 

RPPIRLRDV

LNDHYEVR

GSC 7.092 10 235 10 nlmaYdfsGS lndhYevrGS 

41 RLCKNKTFC 8.001 8 237 12 maydfsGS fyaqweGS 
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WGFYAQWE

GSC 

42 

HGPDWTIHP

FPGLWVFD

GSC 7.614 7 237 13 maydfsg lwvfdgs 

43 

IALFDPTKW

PEHHQYFA

GSC 7.919 9 237 1 mAydfsgsW iAlfdptkW 

44 

VYEMWYNT

SANIDQDHR

GSC 

6.8819

99 10 237 4 

MaYdfSgsw

D 

MwYntSani

D 

45 

MFDYSPWW

EMYSYGVL

PGSC 8.917 11 239 2 

yDfSgsWdk

vS 

fDySpwWem

yS 

46 

NTAEADWG

TESTWSMH

RGSC 8.568 9 242 11 Sgswdkvsg Stwsmhrgs 

47 

HHRTHRPK

DGHVQWM

HVGSC 7.391 6 245 14 WdkVsg WmhVgs 

48 

IHKTEHWIS

TNADDWRA

GSC 8.196 6 245 14 wdkvsg dwrags 

49 

QDLLDYHLS

DFVLFAHM

GSC 9.332 11 246 2 

DkvsgHmSn

vf DlldyHlSdfv 

50 

VKGKLSNV

PSWFNHFHS

GSC 9.226 8 248 1 VsGhmSNV VkGklSNV 

51 

LSVISGMHS

EWPVLWLF

GSC 9.548 8 248 4 vSGhmSnv iSGmhSew 

52 

YSGHRHNV

PEIDMRQQF

GSC 8.232 8 248 1 vSGHmsNV ySGHrhNV 

53 

KYIGEHPVF

ESTEYRQGG

SC 6.672 5 255 8 VFpST VFeST 

54 

MYDAATNF

FMDSKGVR

KGSC 8.877 8 267 9 FssdKaVk FmdsKgVr 

55 

TPTDHIRSA

AARHKYLIG 7.499 15 275 4 

DyIkagvpan

KivlG 

DhIrsaaarhK

yliG 
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SC 

56 

QKAPNKFE

HNVINAHN

WGSC 

7.8569

99 5 282 3 paNKi apNKf 

57 

KLVLQWAV

HMRKWNA

MDGSC 9.563 18 285 1 

KiVLgmply

gRafastDG 

KlVLqwavh

mRkwnamD

G 

58 

MTFHGYMV

RGSRGDIID

GSC 9.089 11 293 5 ygrafaStdgI gymvrgSrgdI 

59 

SLDGVARS

WPGGYGEG

HGSC 8.418 14 299 1 

StDGigtSfn

GvgG 

SlDGvarSwp

GgyG 

60 

GEDDTMQR

SYNWYQTN

VGSC 6.584 8 301 4 DgigtSfN DtmqrSyN 

61 

YMEAHKTY

NKQISRGVS

GSC 7.036 5 310 15 vggGS gvsGS 

62 

ISVETQWVP

LHDTGWDQ

GSC 8.628 11 314 2 

SwEngvwdy

kD 

SvEtqwvplh

D 

63 

YAENGAWD

VRVYSSAN

QGSC 9.904 8 316 3 ENGvWDyk ENGaWDvr 

64 

TNATWHYY

SINLMYQAQ

GSC 

6.6629

99 15 317 2 

NgvWdYkd

mpqqgaq 

NatWhYysinl

myqa 

65 

PKMRDRIQ

WTPVFTELQ

GSC 8.318 15 322 3 

ykDmpQqga

qvTELe 

mrDriQwtpvf

TELq 

66 

DRQQLEGTL

VERFERLW

GSC 

6.8520

01 14 328 6 

qGaqVtelEdi

aaS 

eGtlVerfErlw

gS 

67 

KKQSAWGL

WVAELNYM

HGSC 7.268 13 329 7 

GaqVtELedi

aaS 

GlwVaELny

mhgS 

68 

KYSNQKIW

ASYDSAPSR

GSC 7.739 9 347 4 NkryliSYD NqkiwaSYD 

69 

NGKDNVSID

YLHTRLGIG

SC 7.956 8 348 3 Krylisyd Kdnvsidy 
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70 

DTFWQFEK

YPEYNMHM

DGSC 7.546 12 355 1 

DTvkiagKka

EY 

DTfwqfeKyp

EY 

71 

TEYSLTPEK

VEYYAWEG

GSC 8.248 13 359 5 

iagkKaEYitk

nG 

ltpeKvEYya

weG 

72 

KSITDRGQK

TWWEWRR

NGSC 6.934 4 376 11 mWwe wWew 

73 

YLSTSMEQE

QEQVHGNW

GSC 7.346 15 385 4 

TgnEslvgtV

vnglG 

TsmEqeqeqV

hgnwG 

74 

RWFVGSMN

GQNPVGTFS

GSC 8.828 9 386 8 gneslVGTv ngqnpVGTf 

75 

GRWLGEPN

VQAGPTFFP

GSC 7.641 12 390 3 

lvGtvvnglGg

T 

wlGepnvqaG

pT 

76 

VKPVDFMG

RYGQLHNF

EGSC 8.166 14 395 4 

VnglGgtGkL

eqrE 

VdfmGryGq

LhnfE 

77 

TLAPWQGL

KIWERQVPN

GSC 7.757 9 401 6 tGkleqren qGlkiwerq 

78 

SYKQYHIGR

HIDLESLEG

SC 

7.2020

01 14 403 6 

kleqrenelSyp

eS 

higrhidleSleg

S 

79 

DSNKNEEN

QTDRSQYDS

GSC 8.612 15 406 3 

qrenElsypeS

vYDn 

nkneEnqtdrS

qYDs 

80 

IHQFEVTRQ

QHEYSPFDG

SC 7.888 7 406 8 qrenElS rqqhEyS 

81 

RKGNVPRT

ARLFSVEW

WGSC 7.753 5 422 2 KngmP KgnvP 

82 

PVENKGRTS

THGFILWHG

SC 6.841 6 422 4 knGmpS nkGrtS 

        

Match data for score cut 6.56 for protein : 

CSA-CIMG_01181 
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        ************** FORWARD PEPTIDES ************************** 

No. SEQUENCE 

SC

OR

E 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

KYIGEHPVFES

TEYRQGGSC 

7.01

6 5 15 7 vpFtS pvFeS 

2 

RWFVGSMNG

QNPVGTFSGS

C 

7.23

6 5 15 13 VpftS VgtfS 

3 

PKMRDRIQWT

PVFTELQGSC 

7.18

2 4 15 11 vpFT pvFT 

4 

VYEMWYNTS

ANIDQDHRGS

C 

6.84

9 10 25 8 sttdlsyDth tsanidqDhr 

5 

QDLLDYHLSD

FVLFAHMGSC 

7.37

5 18 27 1 

tDLsydthyD

dpslAlsG 

qDLldyhlsDf

vlfAhmG 

6 

NSWNQEYTD

HVVYHGMFG

SC 

8.20

9 19 30 2 

SydthYdDps

lalsgvtcs 

SwnqeYtDhv

vyhgmfgsc 

7 

SYKQYHIGRHI

DLESLEGSC 

7.20

4 6 30 1 SYdthy SYkqyh 

8 

ISVETQWVPL

HDTGWDQGS

C 

7.23

7 8 32 12 DThyDdpS DTgwDqgS 

9 

ETNRWHRNR

QGYLAHSTGS

C 

8.09

100

1 15 34 6 

Hyddpslalsg

vtcs 

Hrnrqgylahst

gsc 

10 

TNATWHYYSI

NLMYQAQGS

C 

6.96

3 15 34 6 

HYddpsLals

gvtcs 

HYysinLmyq

aqgsc 

11 

YDVMLSQPNP

VSWMRFPGSC 

6.83

8 11 35 1 

YDdpslalsg

V 

YDvmlsqpnp

V 

12 

TRQLAPYFDW

HNYSIAIGSC 

10.2

67 10 35 10 yddpSlAlsg whnySiAigs 

13 

NRKNKGHAY

RDGHNIQLGS

C 

7.15

8 9 36 11 DdpslaLsg DghniqLgs 

14 

MYYFPDTGGQ

PDGSMWNGS

C 

6.70

9 8 37 12 DpSlalsg DgSmwngs 

15 

YKMDWSIAFQ

IMHFDVSGSC 

6.94

2 6 37 4 DpSlAl DwSiAf 
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16 

LSVISGMHSE

WPVLWLFGSC 

8.89

1 8 39 1 slalSGvt lsviSGmh 

17 

RTMNTALWIIP

LTWALWGSC 

7.19

4 5 40 15 lalsg alwgs 

18 

VQERMHNRT

WKRFGGSMG

SC 

8.32

7 6 43 15 sgvtcs gsmgsc 

19 

FDMLFKDSYI

WGMTIMFGSC 

8.20

500

1 9 48 7 sdgdnGMit dsyiwGMti 

20 

EVERGDMNW

LTISVNNAGSC 

9.78

8 14 50 5 

GDngmiTkg

yNtAG 

GDmnwlTisv

NnAG 

21 

GEDDTMQRSY

NWYQTNVGS

C 

6.96

9 11 50 1 

GdngmitkgY

N 

GeddtmqrsY

N 

22 

SKTRSLSHAH

QMPASWFGSC 7 11 56 3 

TkgyntAgei

P TrslshAhqmP 

23 

HMRAMNPFKP

HTNIGRWGSC 

6.57

3 9 57 9 KgyntaGei KphtniGrw 

24 

GFNQWFSIDN

WLHTAQWGS

C 

7.61

5 13 58 1 

GyNtageIpN

ypH 

GfNqwfsIdN

wlH 

25 

MFDYSPWWE

MYSYGVLPGS

C 

7.03

1 15 59 4 

YntagEipnY

phvgG 

YspwwEmys

YgvlpG 

26 

RVMFEGFQGK

GPNYLQVGSC 

9.44

5 10 63 9 

GeiPNYphV

G 

GkgPNYlqV

G 

27 

RKFKKRRHW

HFPKFPKWGS

C 

6.69

6 9 64 10 eiPnyPhvG hfPkfPkwG 

28 

MQWHSNYM

MKRPYNPELG

SC 

9.48

9 7 66 12 PnyPhvG PynPelG 

29 

RKGNVPRTAR

LFSVEWWGSC 

10.6

53 16 67 4 

NyPhvggaFt

VEtWnS 

NvPrtarlFsV

EwWgS 

30 

DTFWQFEKYP

EYNMHMDGS

C 7.33 7 67 12 nypHvgG ynmHmdG 

31 

GRWLGEPNVQ

AGPTFFPGSC 

7.32

2 9 69 7 PhVggafTv PnVqagpTf 

32 

YSWDAINWR

GKAYPVETGS

C 

8.88

6 8 72 10 GgAftVET GkAypVET 
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33 

YAENGAWDV

RVYSSANQGS

C 

12.3

19 16 73 5 

GAftVetwnS

pNcGkC 

GAwdVrvys

SaNqGsC 

34 

QKAPNKFEHN

VINAHNWGSC 

6.58

3 14 75 7 

FtvetwNspN

cGkC 

FehnviNahN

wGsC 

35 

IHKTEHWISTN

ADDWRAGSC 

7.16

8 7 78 5 EtWnSpN EhWiStN 

36 

YFWLDVNYD

EWTAVVDQG

SC 

7.32

2 11 78 10 

EtwnspncGk

C 

EwtavvdqGs

C 

37 

TMIHMQRVKP

RKLTNYVGSC 

8.17

9 8 87 9 KcyKvTyn KprKlTny 

38 

HRGKKAPDFQ

VGYLKADGSC 

6.64

1 8 89 9 ykVtYnak fqVgYlka 

39 

NRAKHRHWL

FPDKDHNLGS

C 

9.50

7 14 96 6 

ktifltaiDHsn

sg 

rhwlfpdkDH

nlgs 

40 

INRHGDWNQH

FQIPKHPGSC 

7.67

9 9 107 8 NsgFnIaKk NqhFqIpKh 

41 

ARWKKKSHF

HRGKKKMFGS

C 

6.95

4 10 108 7 

SgFniaKKs

M 

ShFhrgKKk

M 

42 

MYDAATNFF

MDSKGVRKGS

C 

7.23

7 7 110 7 fniakks nffmdsk 

43 

MAIQGMNIYT

WFTDRIMGSC 

6.73

6 10 112 1 iAkksMdvlT mAiqgMniyT 

44 

KSITDRGQKT

WWEWRRNGS

C 

7.21

099

9 5 120 3 lTngr iTdrg 

45 

LYTSEQMTFY

GGRDDEIGSC 7.82 7 123 12 GRaeElG GRddEiG 

46 

DRQQLEGTLV

ERFERLWGSC 

10.1

22 18 124 2 

RaeelGrikvt

yEevasS 

RqqleGtlverf

ErlwgS 

        

Match data for score cut 6.56 for protein : 

Eli-Ag1-CIMG_10032 

        ************** FORWARD PEPTIDES ************************** 

No. SEQUENCE SCORE 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 
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1 

QDLLDYHLS

DFVLFAHM

GSC 11.818 10 1 6 mHLSgiVfaf yHLSdfVlfa 

2 

FDMLFKDS

YIWGMTIMF

GSC 6.879 10 3 10 lsGivfaFsS iwGmtimFgS 

3 

YKKMYFRR

WQPTARLS

RGSC 7.137 9 21 6 FRlvdPppR FRrwqPtaR 

4 

YFWLDVNY

DEWTAVVD

QGSC 7.189 5 21 2 FrLvd FwLdv 

5 

YSGHRHNV

PEIDMRQQF

GSC 6.567 9 24 11 vDppprgfS iDmrqqfgS 

6 

VQERMHNR

TWKRFGGS

MGSC 6.562 10 37 8 trfpcgGqSM rtwkrfGgSM 

7 

PVENKGRTS

THGFILWHG

SC 7.219 6 47 4 sKsRTS nKgRTS 

8 

SKTRSLSHA

HQMPASWF

GSC 11.149 7 48 1 ksrtSvS sktrSlS 

9 

TEYSLTPEK

VEYYAWEG

GSC 6.562 6 51 1 TsvSLT TeySLT 

10 

YKMDWSIA

FQIMHFDVS

GSC 7.267 11 58 3 

lempIAlemg

H 

mdwsIAfqim

H 

11 

ISQQMVLH

MRYAPELL

GGSC 6.902 9 58 7 LeMpiAlEm LhMryApEl 

12 

MAIQGMNI

YTWFTDRI

MGSC 

7.9699

99 6 62 1 iAlemg mAiqgm 

13 

LSVISGMHS

EWPVLWLF

GSC 

9.5919

99 14 64 4 

lemgHdqtaV

qvLl 

isgmHsewpV

lwLf 

14 

HEGLEGDQ

TIYQFMIEY

GSC 12.15 13 69 7 

DQTavQvlla

lGS 

DQTiyQfmie

yGS 

15 DKFHYWMY 6.665 13 73 7 vqvLlalgshp mymLygindk
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MLYGINDKI

GSC 

GS iGS 

16 

HHRTHRPK

DGHVQWM

HVGSC 

8.1079

99 8 74 12 qvllalGS vqwmhvGS 

17 

TRQLAPYFD

WHNYSIAIG

SC 7.772 5 77 15 lAlGS iAiGS 

18 

ETNRWHRN

RQGYLAHS

TGSC 8.791 7 79 13 LgshpGS LahstGS 

19 

VKGKLSNV

PSWFNHFHS

GSC 6.671 12 79 5 

LgshPgsnfni

t 

LsnvPswfnhf

h 

20 

ASNSHHRPP

KLHNFYPH

GSC 7.209 4 82 16 hpGS phGS 

21 

KARWNGRN

MTAPVYWR

NGSC 9.49 10 88 8 NiTlvptfRq 

NmTapvywR

n 

22 

PKMRDRIQ

WTPVFTELQ

GSC 

7.3809

99 8 92 11 vptfrqvG pvftelqG 

23 

QRSWFSGK

EPKFQRIWK

GSC 7.645 9 93 10 PtFrqvglG PkFqriwkG 

24 

RVMFEGFQ

GKGPNYLQ

VGSC 6.898 7 93 12 PtfrQVG PnylQVG 

25 

FNLGWKVQ

GKLDMSAP

KGSC 

7.7529

99 15 95 5 

frqvGlgDfcl

PsvS 

wkvqGklDm

saPkgS 

26 

WAEKPKIK

NWLGRQKL

GGSC 

8.1849

99 6 96 13 RQvglG RQklgG 

27 

VYEMWYNT

SANIDQDHR

GSC 6.736 11 106 8 pSvslDeqrlG tSaniDqdhrG 

28 

YLSTSMEQE

QEQVHGNW

GSC 9.074 16 107 3 

SvSldeqrlgV

kpvdG 

StSmeqeqeq

VhgnwG 

29 

NGKDNVSID

YLHTRLGIG 7.101 11 107 7 

SvsldeqRLG

v SidylhtRLGi 
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SC 

30 

NSWNQEYT

DHVVYHGM

FGSC 7.049 15 109 2 

Sldeqrlgvkp

vdGM 

Swnqeytdhvv

yhGM 

31 

VKPVDFMG

RYGQLHNF

EGSC 10.087 7 117 1 VKPVDgM VKPVDfM 

32 

EVERGDMN

WLTISVNNA

GSC 11.996 12 121 5 

dgMNatlqv

VtN 

gdMNwltisV

nN 

33 

INRHGDWN

QHFQIPKHP

GSC 8.169 9 121 5 dgmNatlQv gdwNqhfQi 

34 

RTMNTALW

IIPLTWALW

GSC 9.139 9 123 3 MNatLqvvt MNtaLwiip 

35 

MYYFPDTG

GQPDGSMW

NGSC 10.358 11 131 7 

TnGdPnGgl

yN 

TgGqPdGsm

wN 

36 

NRKNKGHA

YRDGHNIQL

GSC 7.036 10 133 11 

gdpNggLyn

C dghNiqLgsC 

37 

LYTSEQMTF

YGGRDDEIG

SC 

6.6410

01 9 139 1 LYncadiTF LYtseqmTF 

38 

YSWDAINW

RGKAYPVE

TGSC 

7.2769

99 20 140 1 

YncadItfsstte

ytvpsSC 

YswdaInwrg

kaypvetgSC 

39 

ISVETQWVP

LHDTGWDQ

GSC 7.56 8 149 2 StteytVP SvetqwVP 

40 

KYIGEHPVF

ESTEYRQGG

SC 

8.7830

01 9 151 12 TEYtvpsSC TEYrqggSC 

41 

MRPRHAMP

NIKEYMLSP

GSC 7.238 6 152 12 EYtvps EYmlsp 

42 

RPPIRLRDV

LNDHYEVR

GSC 7.327 8 152 13 eYtVpsSC hYeVrgSC 

43 

KGDFGAEW

GRWRKWVT

KGSC 7.754 7 153 14 ytvpsSC wvtkgSC 
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44 

KQKLPHWY

RRLDRPVTV

GSC 7.34 6 154 15 tvpsSC vtvgSC 

45 

RLCKNKTFC

WGFYAQWE

GSC 

7.1720

01 5 159 3 CKNgT CKNkT 

46 

RKGNVPRT

ARLFSVEW

WGSC 12.072 14 160 2 

KngtgvTAtp

FSgE 

KgnvprTArl

FSvE 

47 

LANVLYRE

QTRPNATER

GSC 6.604 13 160 7 

kngTgvtATp

fsg 

reqTrpnATer

gs 

48 

EFTWMLNK

NNEMHRHP

PGSC 7.471 13 160 7 

kngtgvtatPfs

g 

nknnemhrhP

pgs 

49 

HGPDWTIHP

FPGLWVFD

GSC 7.806 11 162 2 

GtgvTatPFs

G 

GpdwTihPFp

G 

50 

YDVMLSQP

NPVSWMRF

PGSC 7.291 4 169 16 pfsg fpgs 

51 

GRWLGEPN

VQAGPTFFP

GSC 7.291 4 169 16 pfsg fpgs 

52 

DSNKNEEN

QTDRSQYDS

GSC 7.795 16 177 4 

rNanesTpng

QpqrGn 

kNeenqTdrs

QydsGs 

53 

YAENGAWD

VRVYSSAN

QGSC 

7.3279

99 6 182 13 StpNgq SsaNqg 

54 

YMEAHKTY

NKQISRGVS

GSC 11.146 13 183 7 

TpNgQpqR

GnSGS 

TyNkQisRG

vSGS 

55 

RWFVGSMN

GQNPVGTFS

GSC 

9.7984

99 12 185 8 

NGQpqrGns

gsg 

NGQnpvGtfs

gs 

56 

KSITDRGQK

TWWEWRR

NGSC 7.435 5 189 15 qRgnS rRngS 

57 

TLAPWQGL

KIWERQVPN

GSC 6.768 6 189 14 QrgNsg QvpNgs 

58 HMRAMNPF 6.626 5 190 15 rgnsg grwgs 
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KPHTNIGRW

GSC 

59 

MFDYSPWW

EMYSYGVL

PGSC 7.046 15 200 3 

niaghlEtatw

GVLg 

dyspwwEmy

syGVLp 

60 

GFNQWFSID

NWLHTAQW

GSC 

9.9959

99 12 200 7 

nIaghLeTAt

WG 

sIdnwLhTAq

WG 

61 

NTAEADWG

TESTWSMH

RGSC 7.695 7 206 9 etaTWgv tesTWsm 

62 

GFMLFGGN

PLEYAWYA

HGSC 7.391 10 214 1 

GaivvGGva

L GfmlfGGnpL 

        

Match data for score cut 6.56 for protein : 

AG2-CIMG_09696 

        ************** FORWARD PEPTIDES ************************** 

No. SEQUENCE 

SCOR

E 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

MQWHSNY

MMKRPYNP

ELGSC 8.671 8 1 1 MQfshali MQwhsnym 

2 

RTMNTALW

IIPLTWALW

GSC 6.791 11 7 9 lIaLvaAglaS iIpLtwAlwgS 

3 

KGDFGAEW

GRWRKWVT

KGSC 6.622 6 31 4 FvealG FgaewG 

4 

HEGLEGDQ

TIYQFMIEY

GSC 8.102 7 35 3 lgndgcT glegdqT 

5 

MAIQGMNI

YTWFTDRI

MGSC 7.222 11 41 10 TrlTDfkchcs 

TwfTDrimgs

c 

6 

INRHGDWN

QHFQIPKHP

GSC 

6.8359

99 16 42 3 

RltDfkcHcsk

PelPG 

RhgDwnqHf

qiPkhPG 

7 

YKMDWSIA

FQIMHFDVS 7.175 9 43 12 ltdfkchcs mhfdvsgsc 
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GSC 

8 

EVERGDMN

WLTISVNNA

GSC 7.333 15 63 1 

veEacpldaris

vsN 

evErgdmnwlt

isvN 

9 

RKGNVPRT

ARLFSVEW

WGSC 

8.4790

01 12 68 6 

PldARisvsni

v 

PrtARlfsvew

w 

10 

TPTDHIRSA

AARHKYLIG

SC 7.951 7 68 2 PlDariS PtDhirS 

11 

QDLLDYHLS

DFVLFAHM

GSC 

7.8309

99 12 69 2 ldarisvSniVv dlldyhlSdfVl 

12 

YFWLDVNY

DEWTAVVD

QGSC 8.695 16 69 4 

LDarisvsniV

VDQcS 

LDvnydewta

VVDQgS 

13 

YKKMYFRR

WQPTARLS

RGSC 6.596 4 71 13 ARiS ARlS 

14 

HRGKKAPD

FQVGYLKA

DGSC 7.04 12 73 9 

isVsnivvDqc

s 

fqVgylkaDgs

c 

15 

TNATWHYY

SINLMYQAQ

GSC 7.318 8 75 8 vSnivvdQ ySinlmyQ 

16 

DTFWQFEK

YPEYNMHM

DGSC 

8.8300

01 8 77 13 NivvDqcs NmhmDgsc 

17 

HGPDWTIHP

FPGLWVFD

GSC 7.701 7 78 14 iVvDqcs wVfDgsc 

18 

YDVMLSQP

NPVSWMRF

PGSC 7.545 11 79 1 

vvdqcSkagv

p 

ydvmlSqpnp

v 

19 

YSGHRHNV

PEIDMRQQF

GSC 6.96 4 88 8 VPie VPei 

20 

PKMRDRIQ

WTPVFTELQ

GSC 

6.6939

99 8 90 7 IeipPVdT IqwtPVfT 

21 

IALFDPTKW

PEHHQYFA

GSC 

7.6719

99 11 92 1 

IppvDtTaaP

E 

IalfDpTkwP

E 
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22 

GRWLGEPN

VQAGPTFFP

GSC 7.902 12 102 6 

EPsetAePTa

eP 

EPnvqAgPTf

fP 

23 

LANVLYRE

QTRPNATER

GSC 7.252 9 112 8 EpTeeptaE EqTrpnatE 

24 

TEYSLTPEK

VEYYAWEG

GSC 7.158 14 114 1 

TEeptaeptaE

ptA 

TEysltpekvE

yyA 

25 

KYIGEHPVF

ESTEYRQGG

SC 

8.0820

01 13 131 5 

hePteEpTav

ptG 

ehPvfEsTeyr

qG 

26 

ISVETQWVP

LHDTGWDQ

GSC 6.588 11 134 4 teeptavptgt etqwvplhdtg 

27 

KARWNGRN

MTAPVYWR

NGSC 7.157 9 138 10 TAvptgtgG TApvywrnG 

28 

MYYFPDTG

GQPDGSMW

NGSC 6.643 6 140 4 vPtgtG fPdtgG 

29 

SLDGVARS

WPGGYGEG

HGSC 10.264 15 140 5 

VptgtgGGvp

tGtGS 

VarswpGGyg

eGhGS 

30 

RWFVGSMN

GQNPVGTFS

GSC 11.723 15 140 4 

VptgtGggvp

tgtgs 

VgsmnGqnp

vgtfsg 

31 

VTGTEGQW

DGYPLWHL

FGSC 7.705 17 143 2 

gtggGvptGtg

sftvtG 

tgteGqwdGy

plwhlfG 

32 

YSWDAINW

RGKAYPVE

TGSC 6.97 10 145 10 

GggvPtgTG

S GkayPveTGS 

33 

ETNRWHRN

RQGYLAHS

TGSC 6.922 9 146 11 GgvptgTGS GylahsTGS 

34 

MYYFPDTG

GQPDGSMW

NGSC 6.643 6 148 4 vPtgtG fPdtgG 

35 

LYTSEQMTF

YGGRDDEIG

SC 7.173 11 150 3 TgtgsftvtGR 

TseqmtfygG

R 

36 NTAEADWG 7.82 11 150 8 tgtgsftvtgr gtestwsmhrg 
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TESTWSMH

RGSC 

37 

KQKLPHWY

RRLDRPVTV

GSC 6.976 4 156 15 tvtG vtvG 

38 

IHKTEHWIS

TNADDWRA

GSC 7.934 11 164 9 

STpAefpgA

GS 

STnAddwrA

GS 

39 

YAENGAWD

VRVYSSAN

QGSC 7.23 6 172 5 agsnVR gawdVR 

40 

MTFHGYMV

RGSRGDIID

GSC 7.785 11 173 5 

GsnVRaSvG

gI 

GymVRgSrG

dI 

41 

YMEAHKTY

NKQISRGVS

GSC 

6.9819

99 5 177 14 RasvG RgvsG 

42 

ISQQMVLH

MRYAPELL

GGSC 6.93 7 183 11 iAaaLLG yApeLLG 

43 

KKQSAWGL

WVAELNYM

HGSC 7.933 9 186 5 AllglaAyL AwglwvAeL 

 

Supplementary Table 3- 5 Summary of GuiTope results with inversion weight =0 from 

alignment of 96-random peptides to 4 immunodominant antigens of C.immitis 

Library subtracted, moving average=15 

Match data for score cut 6.56 for protein : 

CF-CIMG_02795 

        

 

************** FORWARD PEPTIDES ************************** 

No. SEQUENCE 

SCOR

E 

ALIGN 

LENGTH 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

ARWKKKSH

FHRGKKKM

FGSC 6.67 7 144 10 eeGrKKf hrGkKKm 

2 

KARWNGRN

MTAPVYWR 7.437 19 363 1 

KAeyitkNg

mgggmWwe

KArwngrN

mtapvyWrn
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NGSC sS gS 

3 

HMRAMNPF

KPHTNIGRW

GSC 6.584 10 122 8 lKtllsIGgW fKphtnIGrW 

4 

KQKLPHWY

RRLDRPVTV

GSC 8.394 12 221 1 

KlKLaemdk

yLD 

KqKLphwyr

rLD 

5 

KSITDRGQK

TWWEWRRN

GSC 6.762 3 377 11 WWE WWE 

6 

QVDWTRWR

KPKNEMAW

KGSC 6.903 11 45 2 

VnWaiygrg

hN 

VdWtrwrkp

kN 

7 

NRKNKGHA

YRDGHNIQL

GSC 7.386 8 50 9 YgrGHNpQ YrdGHNiQ 

8 

HHRTHRPKD

GHVQWMHV

GSC 6.709 7 52 3 RgHnPqD RtHrPkD 

9 

VKGKLSNVP

SWFNHFHSG

SC 9.226 8 248 1 VsGhmSNV VkGklSNV 

10 

MTRRWKTFP

HEIEDRIKGS

C 6.9 13 137 5 

fKTpasteEg

RkK 

wKTfpheiEd

RiK 

11 

MRPRHAMP

NIKEYMLSP

GSC 

8.294

999 12 201 8 

PNgKkflLti

aS 

PNiKeymLs

pgS 

12 

TPTDHIRSAA

ARHKYLIGS

C 7.499 15 275 4 

DyIkagvpan

KivlG 

DhIrsaaarhK

yliG 

13 

KYSNQKIWA

SYDSAPSRG

SC 7.739 9 347 4 NkryliSYD NqkiwaSYD 

14 

YMEAHKTY

NKQISRGVS

GSC 6.956 10 276 1 

YikAgvpaN

K 

YmeAhktyN

K 

15 

HRGKKAPDF

QVGYLKAD

GSC 7.162 4 361 3 GKKA GKKA 

16 

RTMNTALWI

IPLTWALWG

SC 7.893 5 47 14 WAiyG WAlwG 
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17 

DQWMTMRV

KFRDWVQLI

GSC 7.391 9 181 12 DfVlLlkaC DwVqLigsC 

18 

KKQSAWGL

WVAELNYM

HGSC 7.268 13 329 7 

GaqVtELedi

aaS 

GlwVaELny

mhgS 

19 

DKFHYWMY

MLYGINDKI

GSC 7.278 13 62 1 

DqFthilYafa

nI 

DkFhywmY

mlygI 

20 

QDLLDYHLS

DFVLFAHMG

SC 7.948 6 180 9 nDFVLl sDFVLf 

21 

KLVLQWAV

HMRKWNA

MDGSC 9.563 18 285 1 

KiVLgmply

gRafastDG 

KlVLqwavh

mRkwnamD

G 

22 

YANRGNGK

KVHWLLFY

QGSC 

8.999

001 13 198 2 

AkhpNGKK

fllti 

AnrgNGKK

vhwll 

23 

MYYFPDTGG

QPDGSMWN

GSC 7.566 10 309 9 

GvggGSwe

NG 

GqpdGSmw

NG 

24 

MFDYSPWW

EMYSYGVLP

GSC 8.917 11 239 2 

yDfSgsWdk

vS 

fDySpwWe

myS 

25 

HEGLEGDQT

IYQFMIEYGS

C 6.562 5 12 8 QTlvQ QTiyQ 

26 

GEDDTMQRS

YNWYQTNV

GSC 6.584 8 301 4 DgigtSfN DtmqrSyN 

27 

FDMLFKDSY

IWGMTIMFG

SC 7.937 12 157 4 

LmKDlgfdG

idI 

LfKDsyiwG

mtI 

28 

DTFWQFEKY

PEYNMHMD

GSC 7.546 12 355 1 

DTvkiagKk

aEY 

DTfwqfeKy

pEY 

29 

PNPWLEWM

HMLLWNNQ

DGSC 

8.205

001 13 109 5 

ikqMylLkk

NNrn 

lewMhmLlw

NNqd 

30 

YAENGAWD

VRVYSSANQ

GSC 9.904 8 316 3 

ENGvWDy

k ENGaWDvr 

31 DRQQLEGTL 6.852 14 328 6 qGaqVtelEd eGtlVerfErl
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VERFERLWG

SC 

001 iaaS wgS 

32 

YKMDWSIAF

QIMHFDVSG

SC 

11.23

4 11 234 9 

wnlMayDfS

GS 

fqiMhfDvS

GS 

33 

LSVISGMHS

EWPVLWLF

GSC 9.047 12 18 2 

SsmSsMpns

yPV 

SviSgMhse

wPV 

34 

GFMLFGGNP

LEYAWYAH

GSC 6.872 9 45 10 vnwAiYgrG leyAwYahG 

35 

SLDGVARSW

PGGYGEGHG

SC 8.418 14 299 1 

StDGigtSfn

GvgG 

SlDGvarSw

pGgyG 

36 

KYIGEHPVF

ESTEYRQGG

SC 6.672 5 255 8 VFpST VFeST 

37 

YDVMLSQPN

PVSWMRFPG

SC 7.599 17 79 2 

eVyLSdtwa

dtdkhyPG 

dVmLSqpnp

vswmrfPG 

38 

SYKQYHIGR

HIDLESLEGS

C 6.564 13 2 4 

rflIGalltLqt

L 

qyhIGrhidLe

sL 

39 

YSWDAINW

RGKAYPVET

GSC 

7.599

999 11 352 1 

iSyDtvkiaG

K 

ySwDainwr

GK 

40 

WFNERKRA

QLYEVGEFT

GSC 7.787 17 118 3 

NnRnlktLlsi

GgwTyS 

NeRkraqLye

vGefTgS 

41 

VKPVDFMG

RYGQLHNFE

GSC 8.166 14 395 4 

VnglGgtGk

LeqrE 

VdfmGryGq

LhnfE 

42 

NGKDNVSID

YLHTRLGIG

SC 7.931 8 122 11 LkTlLsIG LhTrLgIG 

43 

YSGHRHNVP

EIDMRQQFG

SC 8.232 8 248 1 vSGHmsNV ySGHrhNV 

44 

EFTWMLNK

NNEMHRHPP

GSC 8.319 7 113 4 ylLkKNN wmLnKNN 

45 

RVMFEGFQG

KGPNYLQVG 6.755 10 359 7 iaGKkaeYit 

fqGKgpnYl

q 
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SC 

46 

RWFVGSMN

GQNPVGTFS

GSC 7.354 4 241 16 FSGS FSGS 

47 

PKMRDRIQW

TPVFTELQG

SC 8.318 15 322 3 

ykDmpQqga

qvTELe 

mrDriQwtpv

fTELq 

48 

ISVETQWVP

LHDTGWDQ

GSC 7.241 13 152 4 

dTslklmkDl

GfD 

eTqwvplhDt

GwD 

49 

TEYSLTPEK

VEYYAWEG

GSC 8.248 13 359 5 

iagkKaEYit

knG 

ltpeKvEYya

weG 

50 

TRQLAPYFD

WHNYSIAIG

SC 6.944 7 230 7 YlDfwNl YfDwhNy 

51 

VYEMWYNT

SANIDQDHR

GSC 

6.881

999 10 237 4 

MaYdfSgsw

D 

MwYntSani

D 

        

Match data for score cut 6.56 for protein : 

CSA-CIMG_01181 

        ************** FORWARD PEPTIDES ************************** 

No

. SEQUENCE 

SCOR

E 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

RKFKKRRHW

HFPKFPKWG

SC 6.696 9 64 10 eiPnyPhvG hfPkfPkwG 

2 

ARWKKKSHF

HRGKKKMFG

SC 6.954 10 108 7 

SgFniaKKs

M 

ShFhrgKKk

M 

3 

RKGNVPRTA

RLFSVEWWG

SC 

10.65

3 16 67 4 

NyPhvggaFt

VEtWnS 

NvPrtarlFsV

EwWgS 

4 

SKTRSLSHAH

QMPASWFGS

C 7 11 56 3 

TkgyntAgei

P 

TrslshAhqm

P 

5 

RTMNTALWII

PLTWALWGS

C 7.192 10 11 6 AavfvPfTsA AlwiiPlTwA 
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6 

QKAPNKFEH

NVINAHNWG

SC 6.583 14 75 7 

FtvetwNspN

cGkC 

FehnviNahN

wGsC 

7 

MYDAATNFF

MDSKGVRKG

SC 6.77 8 93 2 YnAkTiFl YdAaTnFf 

8 

IHKTEHWIST

NADDWRAGS

C 7.168 7 78 5 EtWnSpN EhWiStN 

9 

EVERGDMN

WLTISVNNA

GSC 9.788 14 50 5 

GDngmiTkg

yNtAG 

GDmnwlTis

vNnAG 

10 

MFDYSPWWE

MYSYGVLPG

SC 7.031 15 59 4 

YntagEipnY

phvgG 

YspwwEmy

sYgvlpG 

11 

LYTSEQMTF

YGGRDDEIGS

C 7.82 7 123 12 GRaeElG GRddEiG 

12 

GEDDTMQRS

YNWYQTNV

GSC 6.969 11 50 1 

Gdngmitkg

YN 

GeddtmqrsY

N 

13 

YAENGAWD

VRVYSSANQ

GSC 

12.31

9 16 73 5 

GAftVetwn

SpNcGkC 

GAwdVrvys

SaNqGsC 

14 

GFNQWFSIDN

WLHTAQWGS

C 7.615 13 58 1 

GyNtageIpN

ypH 

GfNqwfsId

NwlH 

15 

NSWNQEYTD

HVVYHGMFG

SC 6.918 8 30 2 SydthYdD SwnqeYtD 

16 

YKMDWSIAF

QIMHFDVSGS

C 6.942 6 37 4 DpSlAl DwSiAf 

17 

MAIQGMNIY

TWFTDRIMG

SC 6.736 10 112 1 iAkksMdvlT 

mAiqgMniy

T 

18 

YSWDAINWR

GKAYPVETG

SC 8.886 8 72 10 GgAftVET GkAypVET 

19 

MQWHSNYM

MKRPYNPEL

GSC 8.238 10 52 6 

NgMitkgYN

t 

NyMmkrpY

Np 

20 RVMFEGFQG 9.445 10 63 9 GeiPNYphV GkgPNYlqV
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KGPNYLQVG

SC 

G G 

21 

INRHGDWNQ

HFQIPKHPGS

C 7.679 9 107 8 NsgFnIaKk NqhFqIpKh 

22 

ISVETQWVPL

HDTGWDQGS

C 7.237 8 32 12 DThyDdpS DTgwDqgS 

23 

TRQLAPYFD

WHNYSIAIGS

C 6.68 8 35 10 yddpSlAl whnySiAi 

        

Match data for score cut 6.56 for protein : 

Eli-Ag1-CIMG_10032 

        ************** FORWARD PEPTIDES ************************** 

No

. SEQUENCE 

SCOR

E 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

KARWNGRN

MTAPVYWRN

GSC 7.759 10 161 5 NGtgvTAtpf 

NGrnmTAp

vy 

2 

RKGNVPRTA

RLFSVEWWG

SC 7.586 14 160 2 

KngtgvTAtp

FSgE 

KgnvprTArl

FSvE 

3 

KSITDRGQKT

WWEWRRNG

SC 6.694 4 54 2 SlTD SiTD 

4 

KGDFGAEWG

RWRKWVTK

GSC 

6.640

999 13 208 6 

AtWGvlgai

VvgG 

AeWGrwrk

wVtkG 

5 

SKTRSLSHAH

QMPASWFGS

C 8.974 6 15 5 SLStAH SLShAH 

6 

YMEAHKTYN

KQISRGVSGS

C 

11.14

6 13 183 7 

TpNgQpqR

GnSGS 

TyNkQisRG

vSGS 

7 

RLCKNKTFC

WGFYAQWE

GSC 

7.172

001 5 159 3 CKNgT CKNkT 

8 

PVENKGRTST

HGFILWHGSC 7.219 6 47 4 sKsRTS nKgRTS 
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9 

RTMNTALWII

PLTWALWGS

C 8.551 17 198 2 

TsNiAghleta

TWgvlG 

TmNtAlwiip

lTWalwG 

10 

DKFHYWMY

MLYGINDKIG

SC 6.665 13 73 7 

vqvLlalgshp

GS 

mymLygind

kiGS 

11 

QDLLDYHLS

DFVLFAHMG

SC 8.154 8 1 6 mHLSgiVf yHLSdfVl 

12 

YLSTSMEQE

QEQVHGNW

GSC 7.191 6 190 14 rGNsGS hGNwGS 

13 

EVERGDMN

WLTISVNNA

GSC 7.045 16 97 1 

qVglGDfclp

svSlde 

eVerGDmn

wltiSvnn 

14 

WAEKPKIKN

WLGRQKLGG

SC 6.622 7 110 11 LdeQrLG LgrQkLG 

15 

YKKMYFRR

WQPTARLSR

GSC 7.137 9 21 6 FRlvdPppR FRrwqPtaR 

16 

MYYFPDTGG

QPDGSMWNG

SC 

10.35

8 11 131 7 

TnGdPnGgl

yN 

TgGqPdGs

mwN 

17 

MFDYSPWWE

MYSYGVLPG

SC 7.046 15 200 3 

niaghlEtatw

GVLg 

dyspwwEmy

syGVLp 

18 

LYTSEQMTF

YGGRDDEIGS

C 

6.641

001 9 139 1 LYncadiTF LYtseqmTF 

19 

HEGLEGDQTI

YQFMIEYGSC 12.15 13 69 7 

DQTavQvll

alGS 

DQTiyQfmi

eyGS 

20 

FDMLFKDSYI

WGMTIMFGS

C 6.879 10 3 10 lsGivfaFsS 

iwGmtimFg

S 

21 

NTAEADWGT

ESTWSMHRG

SC 

6.794

999 15 143 5 

ADitfsSTtey

tvpS 

ADwgteST

wsmhrgS 

22 

HGPDWTIHPF

PGLWVFDGS

C 7.806 11 162 2 

GtgvTatPFs

G 

GpdwTihPF

pG 

23 

GFNQWFSIDN

WLHTAQWGS

9.995

999 12 200 7 

nIaghLeTAt

WG 

sIdnwLhTA

qWG 
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C 

24 

NSWNQEYTD

HVVYHGMFG

SC 6.658 7 148 2 SsttEYT SwnqEYT 

25 

YKMDWSIAF

QIMHFDVSGS

C 7.267 11 58 3 

lempIAlemg

H 

mdwsIAfqi

mH 

26 

LSVISGMHSE

WPVLWLFGS

C 7.292 7 75 13 VLlalGS VLwlfGS 

27 

GFMLFGGNP

LEYAWYAHG

SC 7.391 10 214 1 

GaivvGGva

L 

GfmlfGGnp

L 

28 

KYIGEHPVFE

STEYRQGGSC 

8.783

001 9 151 12 TEYtvpsSC TEYrqggSC 

29 

VKPVDFMGR

YGQLHNFEG

SC 

10.08

7 7 117 1 VKPVDgM VKPVDfM 

30 

NGKDNVSID

YLHTRLGIGS

C 7.101 11 107 7 

SvsldeqRLG

v SidylhtRLGi 

31 

ISQQMVLHM

RYAPELLGGS

C 6.902 9 58 7 LeMpiAlEm LhMryApEl 

32 

TLAPWQGLKI

WERQVPNGS

C 6.643 15 119 4 

PvdGmnatlq

vVtNG 

PwqGlkiwer

qVpNG 

33 

RVMFEGFQG

KGPNYLQVG

SC 6.898 7 93 12 PtfrQVG PnylQVG 

34 

RPPIRLRDVL

NDHYEVRGS

C 7.327 8 152 13 eYtVpsSC hYeVrgSC 

35 

INRHGDWNQ

HFQIPKHPGS

C 8.047 9 77 11 lalgsHPGS fqipkHPGS 

36 

ISVETQWVPL

HDTGWDQGS

C 6.771 13 14 1 

ISlsTahfrLv

Dp 

ISveTqwvp

LhDt 

37 

TEYSLTPEKV

EYYAWEGGS

C 6.562 6 51 1 TsvSLT TeySLT 

38 TRQLAPYFD 7.772 5 77 15 lAlGS iAiGS 
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WHNYSIAIGS

C 

39 

VYEMWYNTS

ANIDQDHRG

SC 6.736 11 106 8 

pSvslDeqrl

G 

tSaniDqdhr

G 

        

Match data for score cut 6.56 for protein : 

AG2-CIMG_09696 

        ************** FORWARD PEPTIDES ************************** 

No

. SEQ 

SCOR

E 

ALIGN 

LENGT

H 

PRO 

POS 

PEP 

POS 

PRO 

WINDOW 

PEP 

WINDOW 

1 

ETNRWHRNR

QGYLAHSTG

SC 6.922 9 146 11 GgvptgTGS GylahsTGS 

2 

RTMNTALWII

PLTWALWGS

C 6.791 11 7 9 lIaLvaAglaS 

iIpLtwAlwg

S 

3 

KKQSAWGL

WVAELNYM

HGSC 

7.236

001 9 12 5 AaGLasAqL 

AwGLwvAe

L 

4 

IHKTEHWIST

NADDWRAGS

C 7.934 11 164 9 

STpAefpgA

GS 

STnAddwrA

GS 

5 

QDLLDYHLS

DFVLFAHMG

SC 6.597 6 69 4 LDariS LDyhlS 

6 

EVERGDMN

WLTISVNNA

GSC 7.257 5 73 12 ISVsN ISVnN 

7 

YKKMYFRR

WQPTARLSR

GSC 6.596 4 71 13 ARiS ARlS 

8 

SLDGVARSW

PGGYGEGHG

SC 

10.26

4 15 140 5 

VptgtgGGv

ptGtGS 

VarswpGGy

geGhGS 

9 

IALFDPTKWP

EHHQYFAGS

C 

7.671

999 11 92 1 

IppvDtTaaP

E 

IalfDpTkwP

E 

10 

GRWLGEPNV

QAGPTFFPGS 7.902 12 102 6 

EPsetAePTa

eP 

EPnvqAgPT

ffP 
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C 

11 

YSWDAINWR

GKAYPVETG

SC 6.97 10 145 10 

GggvPtgTG

S 

GkayPveTG

S 

12 

MTFHGYMVR

GSRGDIIDGS

C 7.785 11 173 5 

GsnVRaSv

GgI 

GymVRgSr

GdI 

13 

ISQQMVLHM

RYAPELLGGS

C 6.93 7 183 11 iAaaLLG yApeLLG 

14 

INRHGDWNQ

HFQIPKHPGS

C 

6.835

999 16 42 3 

RltDfkcHcs

kPelPG 

RhgDwnqHf

qiPkhPG 

15 

PKMRDRIQW

TPVFTELQGS

C 

6.693

999 8 90 7 IeipPVdT IqwtPVfT 

16 

YFWLDVNYD

EWTAVVDQG

SC 8.695 16 69 4 

LDarisvsniV

VDQcS 

LDvnydewta

VVDQgS 
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CHAPTER 4  

MULTI PATHOGEN PEPTIDE BASED SEROLOGICAL DIAGNOSTIC 

Abstract 

Pathogen detection is vital for successful detection of sudden outbreaks with 

diffuse symptoms.  It is important to detect pathogens with high specificity.  While DNA 

detection conforms to the requirement of high specificity, sufficient pathogen must 

remain in the patient to ensure positive signals.  Host-based immunological detection 

should overcome this limitation, as well as provide information on the hosts’ health 

status, unlike pathogen based PCR.  To enable the broadest possible panel of 

immunological tests that are highly accurate, such that a new outbreak (SARS) or an 

intentional bio-threat release could be rapidly located, one requires a larger, more 

complex detection panel, such as one representing all NIAID priority pathogens.  While a 

peptide microarray tiling all possible pathogen proteins may seem like a promising 

platform for such a detection panel, we tested the concept and found non-obvious 

problems that appeared, and possible solutions.  We developed a pathogen peptide 

microarray using tiled peptides.  Results suggest a profound lack of specificity, but 

illuminated several possible sources for cross-reactivity.  We modified a number of assay 

conditions to minimize cross-reactivity and provide a comparison study of six different 

pathogen exposures.  We eventually improved our assay from <50% specificity to 

simultaneous detection accuracy with >90% AUC-ROC on a 4K peptide microarray.  The 

array is composed of peptides from fourteen priority pathogens.  The basic platform 

could be further developed as a surveillance tool or as an epidemiological probe for 
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monitoring outbreaks, but more importantly, several fundamental biochemical conditions 

were optimized specifically for multiplexed host-based immune detection. 

Keywords 

Multiplexed, peptide microarray, multi-pathogen, specificity, peptide cross-reactivity, 

epitope, diagnostic assay, immunosignature, antibody. 

Abbreviations 

BLAST, Basic local alignment search tool; Cytomegalovirus, CMV; Epstein Barr virus, 

EBV; Hepatitis C virus, HCV; HSV1, Herpes simplex virus 1; HSV2, Herpes simplex 

virus 2; Human Immunodeficiency virus, HIV; ROC-AUC, Receiver operator 

characteristics – area under the curve; Severe acute respiratory syndrome, SARS; 

ToRCH, Toxoplasma gondii+Rubella+CMV+HSV1 & HSV2. 

Introduction 

Peptide microarray-based diagnostics have been used for diseases such as 

tuberculosis [3,4], Echinococcus spps. [5] and SARS [6,7].  The antibody response 

mapping strategy as outlined through these research efforts involve testing patient sera 

relative to normal donor sera.  List et al [5] diverged from this accepted methodology and 

tested their Echinococcus specific peptide microarray platform against other 

symptomatically confounding nematode infections.  Due to the relatively high cross-

reactivity observed in peptide epitope arrays, none of these groups have attempted 

multiplexing the diagnosis of more than one infection from unrelated pathogens on the 
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same microarray.  The goal of the present project was to test the feasibility of creating a 

functional multiplexed pathogen proteome peptide epitope array. 

Cross-reactivity is a generic feature of any antigen-antibody detection system 

[101,102]. Polyreactivity is a feature of certain viral infections such as Hepatitis viruses, 

HIV and Epstein Barr virus (EBV) [103].  Ulrich et al. [92] attempted to use Yersinia 

pestis protein microarrays to distinguish infections of Y. pestis as well as seven other 

species of gram-negative bacteria vs. Bacillus anthracis.  The authors acknowledged 

detection of cross-reacting antibodies to Y. pestis proteins from these unrelated pathogen 

exposures but rather than see this as a lack of specificity, instead used it as a fingerprint 

for detecting those unrelated infections.  They attributed this cross-reactivity to sequence-

level similarities between different unrelated bacterial proteins. 

Following the success of creating multiplexed ToRCH [104] protein assays that 

use crude whole pathogen protein extracts from five vertically transmitted pathogens, 

namely, Toxoplasma gondii, Rubella, Cytomegalovirus and Herpes simplex virus 1 and 

2, Andresen et al. [36] created a peptide microarray containing 900 peptides for 

distinguishing Hepatitis C virus, EBV, Cytomegalovirus (CMV), Herpes simplex virus 1 

(HSV1) and HSV2.  Individual patients infected with CMV and EBV showed reactivity 

to their cognate peptides but the authors noted broad cross-reactivity from HSV1 and 

HSV2 infected patients making it impossible to serologically discriminate between these 

viruses using antibody-binding data from multiplexed peptide arrays.  From this work we 

expected to observe inconsistent patterns of antibody binding per patient and infection on 

our multiplexed array.  
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Similarly confounding results were obtained by List et al. [5], when they 

attempted to discriminate between Echinococcus species: multilocularis and granulosus 

using 45 peptides from 6 proteins of the pathogens.  One of the best performing peptides 

out of 45 selected had 94% specificity and 57% sensitivity at detecting Echinococcosis 

apart from other nematode infections, but was ineffective at differentiating between the 

two species.  Maeurer et al. [3] on their 7446 peptide microarray representing 61 

Mycobacterium tuberculosis proteins found positive antibody reactivities from TB 

negative (Quantiferon assay negative) individuals’ sera.  Whether this could be 

interpreted as cross-reactivity attributable to non-pathogenic Mycobacterium species or to 

autoimmunity is speculative in the absence of immune histories from these patients.  

Auto-immunity has been documented to be a side effect from several common infections 

such as measles, mumps and chicken pox [103].  Chow et al. [6] attempted to circumvent 

this issue by selecting 27 peptides that were restricted to the SARS-CoV (Severe Acute 

Respiratory Syndrome-Coronavirus) but without any portion of other Coronaviruses or 

human or mouse proteomes.  This array was only tested against SARS infected versus 

uninfected patients, not against serum from other closely related Coronaviruses but it 

implied that informatics should be used to filter peptide selection. 

In our study we developed a multiplexed pathogen peptide array representing 14 

priority pathogens such that either the complete proteomes of small viruses or a few 

immunodominant antigens for large bacteria and viruses were tiled contiguously.  

Surprisingly there was a pronounced lack of specificity in initial assays.  In order to 

reduce cross-reactivity, we subsequently optimized physical assay conditions to capture 
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specific reactivity from infected sera and reduce signals from non-targets.  First, we 

examined the effect of the surface density of the peptides by changing the spacing of the 

linker that attaches peptide to the glass slide.  Next, we examined detecting antibody 

concentrations, then the temperature of incubation and finally we tested a number of 

competitors for the primary sera incubation step.  The literature for antigen-antibody 

thermodynamics [105] and protein and peptide microarray optimization [3,5,6,8,36], 

suggests that incubating serum samples longer (as in an ELISA) might allow the system 

to approach equilibrium and better discriminate antibody affinities.  The patient serum 

samples we used to train this system are characterized using alternative immunoassays 

(ELISA or immunodiffusion) representing exposures to Coccidioides spps. (Valley 

Fever-VF), Fransicella tularensis - attenuated live vaccine strain (LVS), Vaccinia (small 

pox), African Swine Fever Virus (ASFV, a non-human pathogen), Plasmodium (Malaria) 

and West Nile Virus (WNV). 

Methods 

Serum samples and rationale for choosing pathogens to be represented 

Human patient serum samples from five Vaccinia vaccine recipients and five non-

disease individuals were collected under the ASU IRB 0905004024, “Blood Collection 

for Immunological Studies”.  Fransicella tularensis subsp. holarctica live vaccine strain 

(LVS) vaccinated individuals’ sera from 11 individuals were received from Dr. Anders 

Sjöstedt’s laboratory at Umeå University, Sweden under the same IRB approval.  

Samples used were 28-30 days post-vaccination.  VF infected patient sera was received 
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from Dr. John Galgiani at the University of Arizona (IRB# FWA00004218, 122 

samples).  Two Plasmodium and 6 WNV infected sera was obtained from SeraCare Life 

Sciences (Milford, MA).  Four ASFV infected porcine sera with 2 uninfected control pig 

sera were obtained from Dr. Linda Dixon at The Pirbright Institute, UK under the USDA 

import license # 111099 by Dr. Kathryn Sykes. The choice of pathogens to be 

represented on the assay was based on serum sample availability for testing NIAID 

Category A, B and C priority pathogens [38]. The majority of pathogens chosen were 

small encephalitis viruses along with other priority pathogens with larger proteomes.  

Table 4- 1 displays the distribution of peptides per pathogen on the pathogen proteome 

peptide (PPP) array.  

Table 4- 1  Peptide selection strategy for PPP array 

Type of 

Pathogen 

Pathogen Name 

(NIAID Priority 

Pathogens list 

category) 

Number of 

Proteins in 

Proteome 

Proteins 

Selected 

Number 

of 

Peptides 

% Coverage 

(Proteome) 

Viruses 

Japanese 

encephalitis virus 

(B) 

13 all 203 100% 

Equine 

encephalitis virus 

(B) 

2 all 223 100% 

Venezuelan 

encephalitis virus 

(B) 

2 all 215 100% 

Machupo Virus 

(A) 
4 all 181 100% 

Junin Virus (A) 4 all 199 100% 

Guanarito Virus 

(A) 
4 all 204 100% 

Lassa Virus (A) 4 all 205 100% 

West Nile Virus I 13 + 13 all 194 + 120 100% 
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+ II (B) 

African Swine 

Fever Virus 

(USDA 

Veterinary 

services select 

agent) 

188 
12 [106-

108] 
299 6.38% 

Vaccinia Virus – 

Western Reserve 

(A) 

223 
32 [109-

111] 
567 14.34% 

Bacteria 

Francisella 

tularensis SCHU 

S4 (A) 

1604 
45 

[112,113] 
862 2.80% 

Bacillus anthracis 

(A) 
5715 1 [114-116] 44 0.05% 

Protist 

Plasmodium vivax 

(Infections 

observed in 

deployed 

populations) 

5051 17 [117] 708 0.31% 

Fungi 
Coccidioides 

immitis (C) 
10454 

4 [81-

83,118,119] 
83 0.03% 

 

Three approaches were considered for selecting the epitopes to be represented on 

the array.  The first approach utilized the Immune Epitope Database’s (IEDB) collection 

of empirically mapped epitopes that yielded 4,124 total B-cell epitopes representing the 

14 priority pathogens.  The distribution of these epitopes was severely skewed for some 

pathogens.  The second approach relied on utilizing information from the six [120-123], 

B-cell linear epitope prediction algorithms provided through IEDB.  Each one of these 

algorithms gives weight to a certain characteristic of the peptide sequence, e.g. the Chou 

& Fasman Beta turn prediction algorithm, predicts whether a portion of the protein could 

have a trans-membrane domain due to presence of beta-turns in their structure.  The 

Bepipred algorithm includes propensity scaling of the amino acids based on their 
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probability of occurring in an antigenic site in addition to a Hidden Markov model 

(HMM) approach to systematically identifying cryptic sites.  This resulted in ~24,000 

peptide epitopes predicted from the 11 out of 14 pathogen proteomes under 

consideration. A summary of both these approaches is depicted in Table 4- 2. 

Table 4- 2 Predicted & Empirical epitopes (IEDB-Bepipred) [Accessed on: 30th 

November, 2011] 

Organism  

# Predicted Epitopes 

(Bepipred)  

# Epitopes in 

IEDB database  

Total proteins in 

Proteome  

Bacillus anthracis  18486 3174 5289 

Francisella 

tularensis (SchuS4)  4365 797 1604 

ASFV  723 128 128 

Junin virus  98 4 4 

Machupo virus  96 4 4 

Guanarito virus  98 4 4 

Lassa fever virus  86 4 4 

West Nile virus I & 

II  137 2 10 + 10 

JEV  70 1 10 

VEE  136 3 2 

EEE  137 3 2 

Total  24432 4124 7071 

 

The third approach involved tiling the whole proteome of the pathogen into 

contiguous 17-mers.  This is easily achievable for several of the encephalitis viruses 

having smaller proteomes, containing at most 2-10 proteins in their proteome.  Bacteria 

and fungi have much larger proteomes and would result in more 17-mer peptides than the 

physical limit allowed on this platform.  As summarized in Table 4-3 the 14 pathogen 

proteomes under consideration have 12,744 total proteins and would amount in 344,316 
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contiguous 17-mer peptides. Our current piezo printed array can accommodate only 

20,000 peptides per slide.   

Table 4- 3 Number of peptides per priority pathogen proteome 

Organism  

Total proteins 

in Proteome  Amino acids total  

# of contiguous non-

overlapping 17-mers  

Bacillus anthracis  5289 1460522 85913 

Francisella 

tularensis 

(SchuS4)  1604 497951 29291 

Vaccinia virus  223 57833 3402 

Plasmodium vivax 

(Sal-I) 5390 3748088 220476 

ASFV (Georgia 

2007/1) 188 55884 3287 

Junin virus  4 3353 197 

Machupo virus  4 3363 198 

Guanarito virus  4 3332 196 

Lassa fever virus  4 3377 199 

West Nile virus I 

& II  10 + 10  

WNV-I: 3433 + 

WNV-II: 3430 202 + 202  

JEV  10 3432 202 

VEE  2 3748 221 

EEE  2 5612 330 

Total 12744 5853358 344316 

 

We therefore chose to represent complete viral proteomes for small viruses and 

partial proteomes for larger pathogens representing tiled empirically classified 

immunodominant proteins (Table 4- 1).  We hypothesized that including only 

immunodominant antigens would be sufficient to help distinguish that infection from 

others on the array.  The peptides were filtered so as not to include any duplicate 16 or 

17-mers.  Any duplication in a sequence between amino acid lengths 5 through 15 was 
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noted so as to map possible binding events observed due to short peptide sequence 

identity (Table 4- 4). The n-mer level overlap observed when using natural sequence 

epitopes is much higher than that observed by chance in a randomly generated peptide 

library containing the same number of peptides and in comparison to two separate 

randomly generated, non-natural sequence 10K Immunosignature peptide libraries (Table 

4- 4). The peptides were then printed onto glass slides and all assay conditions such as 

time and temperature of serum sample incubation, slide surface, blocking buffer were 

systematically optimized to reduce cross-reactivity. 

Table 4- 4 Duplicate 5-mers – 16-mers within the 4337 peptides from the PPP array and 

10K non-natural sequence peptide Immunosignature array 

n-mer 

size 

# n-mers observed more 

than once in pathogen 

peptides 

#n-mer observed more 

than once in random 

sequence peptides 

10K(v2) 10K(v1) 

16-mer 211 2 2 0 

15-mer 345 5 16 0 

14-mer 522 8 141 0 

13-mer 763 13 378 5 

12-mer 1061 19 635 12 

11-mer 1435 27 908 32 

10-mer 1903 37 1123 45 

9-mer 2482 62 1389 61 

8-mer 3467 358 1659 114 

7-mer 4673 694 2167 584 

6-mer 6737 1819 5143 3912 

5-mer 9171 3143 9530 8309 
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Microarray production and processing 

An N-terminal CRH (cysteine-arginine-histidine) linker sequence was added to 

the 17mer pathogen peptides.  A total of 4337 peptides were purchased from Sigma 

Genosys (St. Louis, MO).  Array printing was performed at AMI (Applied Microarrays, 

Tempe, AZ) using non-contact piezo printing.  Slides were either Schott Nexterion 

(Gena, Germany) aminosilane-coated slides which provide ~1nm spacing between 

covalently-attached peptides, or Postech NSB slides (Seoul, Korea).  The NSB slides 

were either NSB-9 (3nm spacing between peptides) or NSB-27 (6nm spacing between 

peptides).  All slide surfaces were coated with sulfo-SMCC linker (Pierce, Rockland, 

MD) and peptides were conjugated to the surface using maleimide conjugation chemistry 

at 70% humidity.  Identical arrays were printed on the top and bottom half of each slide, 

and each peptide was printed twice within an array. 

Microarray slides were pre-washed with a solution containing 7.33% acetonitrile, 

33% isopropanol and 0.55% TFA to remove unbound peptide.  Slides were blocked in 1X 

PBS, 3% BSA, 0.05% Tween 20, 0.014% β-mercaptohexanol for 1hr at 25oC.  Sera 

samples were diluted 1:500 or 1:5000 in Incubation buffer containing 3% BSA, 1X PBS, 

0.05% Tween 20, and allowed to bind to the microarray for varying time points including 

1 or 16 hour at either 23°C or 37°C in 200 µl total volume per array.  A Tecan 4800 Pro 

Hybridization Station (Tecan, Salzburg, Austria) was used for array incubation and 

primary sera was detected using Alexa Fluor-647 conjugated Goat anti-Human, IgG Fc 

(γ) fragment specific secondary antibody from Jackson ImmunoResearch (West Grove, 

PA).  The slides were scanned using Agilent C scanner (Santa Clara, CA) at 635nm 
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excitation wavelength with 100% PMT and high laser power at 10 µm image resolution.  

The 16-bit TIFF images were aligned using GenePix 6.0 software (Axon Instruments, 

Union City, CA) and the data files imported into GeneSpring 7.3.1 (Agilent, Santa Clara, 

CA) and Matlab (version R2012a, MathWorks, Natick, MA) for further analysis.  Every 

patient’s serum sample was processed in duplicate and since every peptide was printed 

twice within a sub-array, it gave 4 measurements from the same peptide upon combining 

both technical replicates.  Any sample with a Pearson Correlation Coefficient less than 

0.85 across technical replicates was re-processed. Upon meeting the quality criteria, all 

technical replicates for a given individual patient were averaged for further data analysis. 

Data analysis 

Median spot signal intensities were imported into Matlab (Natick, MA) for further 

analysis.  Spots flagged as bad based on visual inspection were treated as missing data, 

and values of replicate spots were averaged.  The global median background intensity 

was subtracted from each slide.  The background subtracted median spot signals are 

referred to as the peptide signals in subsequent analysis.  Analysis of patient data used 

eight statistical metrics for scoring pathogen peptides, average signal, T-test, and 

Pearson’s Correlation were the most predictive. Each pathogen on the array is not 

represented by equal numbers of peptides.  The proportion of peptides per array and per 

pathogen was noted for each assessment.  

Analysis methods: 
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1) Average signal method: the arithmetic mean signal intensity of the peptides 

belonging to each pathogen is used to generate a rank order, without incorporating 

standard deviation or number of peptides/pathogen. 

2) T-test p-value method: the p-value from a one-sided t-test between the signal 

intensities of the peptides belonging to each pathogen compared to the rest of the 

peptides on the array, assuming variance is unequal. 

3) Pearson Correlation method:  correlation is calculated between a vector 

containing the signal intensities for a patient and a binary vector composed of 1’s 

(representing a signal within the cognate pathogen) and 0’s (everywhere else).  

4) Signal – log(P-value) method:  The mean signal for each patient’s peptides 

multiplied by the negative of the log10 p-value across the patient vs. all other 

peptides on the array. 

5) Signal to noise method:  The average peptide signal for each pathogen group is 

divided by the standard deviation of the peptide signal across those groups. 

6) Median Signal method:  A nonparametric rank based on the median of the signal 

of peptides within a pathogen.  Highest rank is the designated call. 

7) Mean ranks method:  Per sample, peptides are ranked by signal intensity and the 

mean of the rank is calculated per pathogen. 

8) Wilcoxon Mann Whitnet Rank sum method:  Non-parametric version of T-test 

across patient peptides and all other peptides on the array. 
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In the NSB-9 and NSB-27 combined analysis, the geometric mean of the average signal 

or t-test p-value were used, while the arithmetic mean of the Pearson correlations from 

each platform were used. 

Receiver Operating Characteristics (ROC) curve calculation 

Receiver Operating Characteristics (ROC) [124] curves were calculated using the 

‘perfcurve’ function in Matlab.  A ROC curve is a plot of the True Positive Rate (TPR) 

against the False Positive Rate (FPR).  The area under the ROC curve (AUC) represents 

the probability that a positive example (in this case the score for the correct pathogen) has 

a higher score than a negative example (in this case the score for another pathogen). 

Results 

Physical optimization of pathogen proteome peptide (PPP) array 

Basic peptide microarray assay conditions such as the blocking and incubation 

buffer and the concentration of the secondary antibody were previously optimized for 

other peptide microarray assays[11].  These were the starting conditions and provided 

extremely low specificity when testing multiple infectious sera.  The temperature and 

incubation time had been optimized for Immunosignature arrays, so these conditions may 

not be optimal for the analysis of antibody binding to cognate linear epitopes [105].  The 

first condition tested was the effect of temperature. 
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Comparison 1: The effect of temperature on antibody-peptide association 

The Aminosilane slide surface was used and temperature of incubating serum 

sample or monoclonal antibody was varied (23°C vs. 37°C). The primary sera incubation 

time was held constant at 1 hour with 1:500 serum dilution or 5nM monoclonal antibody 

concentration processed. Figure 4- 1 represents the average signal intensities of peptides 

per pathogen group of proteins from Aminosilane slides at the end of one hour 

incubation.  Serum samples from one LVS vaccinee, one VF patient, one Normal donor 

and monoclonal antibody p53Ab1 were tested.  Red bars represent data from slides 

processed at 37°C and blue bars from slides processed at 23°C.  The monoclonal 

antibody against human P53 protein (p53Ab1) identified its cognate epitope, a peptide 

containing the 5-mer ‘RHSVV’ and some other peptides containing the same 5-mer. LVS 

and VF exposed polyclonal sera had more non-specific binding to other pathogen 

peptides as compared to cognate pathogen peptides FTT or VF (highlighted with red 

boxes). The LVS serum is showing higher reactivity to Lassa, Guanarito and Machupo 

virus peptides as compared to FTT, cognate peptides. The VF infected individual’s serum 

is showing higher reactivity to FTT, Junin and Lassa virus peptides alongwith showing 

reactivity to VF cognate antigen peptides. 
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Figure 4- 1  The effect of incubation temperature on various samples tested on the 

pathogen array. 

The average signal intensities for peptides per pathogen proteins are represented using 

bar graphs with red bars representing signals from slides processed at 37°C and blue 

bars from slides processed at 23°C. Panel A shows the antibody reactivity from a F. 

tularensis LVS vaccinated individual on the PPP array with FTT peptide (cognate) 

signals highlighted in the red box. Panel B shows the antibody response from a VF 

infected individual with a red box highlighting VF specific peptide signals (cognate). 

Panel C shows the antibody reactivity from a Normal individual’s serum sample. Panel D 
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shows a monoclonal antibody (p53Ab1) binding its epitope peptide containing sequence 

‘RHSVV’ (red box) and few other peptides, containing the epitope sub-sequence. 

We observed statistically significant discrimination between cognate and non-

cognate peptide groups at 23°C, so further analysis was conducted at this temperature.  

Table 4- 5 summarizes the AUC obtained from this analysis.   

 

Table 4- 5 AUC derived from ROC summary of incubating samples on Aminosilane 

slides at varying temperatures, time of primary antibody incubation is held constant at 1 

hour. 

Surface: Aminosilane, Primary antibody incubated for 1 hour at 37°C 

Infection (No. of 

patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

Valley fever (1) 0.98 0.98 0.98 

LVS (1) 0.13 0.03 0.03 

p53Ab1 (1) 1.00 1.00 1.00 

    Surface: Aminosilane, Primary antibody incubated for 1 hour at 23°C 

Infection (No. of 

patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

Valley fever (1) 0.98 0.98 0.98 

LVS (1) 0.25 0.02 0.03 

p53Ab1 (1) 1.00 1.00 1.00 

 

In an effort to estimate cross-reactivity, well-characterized monoclonal antibodies 

(anti-FLAG and anti-p53Ab1) were processed on aminosilane arrays with and without 

the epitope peptides for the monoclonals being tested.  Figure 4-2 shows the signal 

intensities from binding observed on arrays at the end of 1 hour of primary incubation at 

23°C.  Even in the absence of the epitope peptide, the monoclonal antibodies bound 
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pathogen peptides that either naturally contained the partial monoclonal epitope or a 

mimotope of their cognate site.  The monoclonal antibodies show reduced binding to the 

non-cognate peptides when the epitope peptide was present suggesting higher affinity for 

the cognate sequence.   

 

Figure 4-2 Estimating cross-reactivity - Histograms displaying signal intensities from 

arrays with or without monoclonal antibody epitopes. 

The Y-axis shows the number of peptides at a given signal intensity displayed on the X-

axis in all four panels. Panels A and B display the binding of the FLAG tag monoclonal 

antibody on arrays without and with cognate epitope peptides respectively. Panels C and 

D display the binding of p53Ab1 monoclonal antibody on PPP arrays without and with 
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cognate epitope peptides respectively. Panels A and C show data from arrays without the 

monoclonal antibody epitope and panels B and D show data from arrays containing the 

monoclonal epitope. 

Reducing cross-reactivity on array by reducing peptide density on array surface 

To reduce non-cognate peptide binding due to high peptide density on the surface, 

we tested NanoSurface Biosciences [125] NSB-9 and NSB-27 slide surfaces.  The 

primary amine groups on these surfaces are spaced 3nm and 6nm apart, respectively, as 

compared to aminosilane slides where space between amine groups is approximately 

1nm.  In order to determine spot morphology on these alternate slide surfaces as 

compared to Aminosilane, peptides were biotinylated using NHS ester-coupled biotin 

from Thermo Scientific (Rockford, IL). This approach was designed to be used to semi-

quantitatively assess the quality of spotting within various slide print batches of a given 

Immunosignature array [126]. Free amine groups on the peptides were bound with biotin, 

and Alexafluor 647-conjugated streptavidin bound only biotinylated sites (Figure 4- 3).  

The NSB-9 slides show lower dynamic range of signal intensity of peptide compared to 

aminosilane, due to the higher distance between peptides than AS.  The higher distance of 

primary amine groups on NSB-27 slides contributed to lower dynamic range of signal 

than both NSB-9 and AS slides. The spot morphology of NSB-27 slides was not optimal 

and hence for the initial comparison with Aminosilane only NSB-9 slides were used.  
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Figure 4- 3 Biotinylation for comparing the spot morphology and dynamic range of 

signal from three slide surfaces, Aminosilane (AS), NSB-9 and NSB-27. 

The histograms display the binding of streptavidin conjugated Alexafluor 647 on the 

three different slide surfaces. The images inset are screen shots of the three surfaces 

showing spot morphology. 

Six monoclonal antibodies were processed for estimating binding specificity on 

NSB-9 slides for 1 hour at 23°C: anti-FLAG, anti-V5, anti-cMyc, anti-p53Ab1, anti-

p53ab8 and anti-Leu Enkephalin.  All antibodies other than anti-Leu-Enkephalin bound 

their cognate epitopes along with other peptides that partially contained the epitope sub-

sequence or mimics of it. (Supplementary Figure 4- 1) 
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Comparison 2: Slide surface  

A comparison was made between Aminosilane vs. NSB-9 slides to decide which slide 

surface to use for printed PPP arrays to test polyclonal infectious sera. The primary serum 

incubation time was held constant at 1 hour and 23°C and 1:500 dilution of primary.   

The samples processed for the previous comparison were now processed on NSB-9 slide 

surface. Table 4- 6 summarizes the results from comparing three samples on both 

Aminosilane and NSB-9 slides. A moderate improvement in ROC-AUC for detecting the 

LVS sample is observed on NSB-9 slides as compared to Aminosilane. This observation 

would need to be tested with additional samples for the two infection groups to be 

confirmed. 

Table 4- 6 ROC-AUC for comparing slide surfaces Aminosilane versus NSB-9 

Surface: Aminosilane, Primary antibody incubated for 1 hour at 23°C 

Infection (No. of patients) Mean Signal T-test p-value Pearson Correlation 

Valley fever (1) 0.98 0.98 0.98 

LVS (1) 0.19 0.02 0.04 

p53Ab1 (1) 1.00 1.00 1.00 

    Surface: NSB-9, Primary antibody incubated for 1 hour at 23°C 

Infection (No. of patients) Mean Signal T-test p-value Pearson Correlation 

Valley fever (1) 0.98 0.15 0.96 

LVS (1) 0.47 0.13 0.09 

p53Ab1 (1) 1.00 0.55 1.00 

 

Note: The normal sample from the previous comparison was excluded when re-

calculating the ROC-AUC for the previous set of AS slides and while calculating it for 

NSB-9 slides as a more relevant comparison would be between infectious groups. 
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In addition to the samples processed to match those used in comparison 1, the 

anti-FLAG tag antibody was processed under identical conditions for this comparison. 

Figure 4- 4 summarizes the box-plots from antibody binding distribution as observed on 

NSB-9 and Aminosilane slides. The top left panel showing anti-FLAG epitope specific 

monoclonal antibody reactivity show lesser non-cognate peptide reactivity on NSB-9 

slides as compared to on AS. The top right panel, showing anti-P53Ab1 antibody 

binding, displays higher cognate epitope binding observed on NSB-9 slides as compared 

to on AS. However, both bottom panels showing polyclonal exposure specific response 

from VF infected and LVS vaccinated individuals’ sera does not show significantly 

higher cognate pathogen peptide binding than that observed on other non-cognate 

pathogen peptides. The LVS sample processed on NSB-9 slides shows higher median 

binding of both cognate as well as non-cognate groups of pathogen peptides than that 

observed on AS slides. The VF sample tested shows moderately higher binding to 

cognate peptides as compared to non-cognate peptides on AS slides. 
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Figure 4- 4 Box-plots showing antibody binding distribution as observed on NSB-9 

versus Aminosilane (AS) slides.  

The top two panels show the binding observed on the array using two monoclonal 

antibodies, anti-FLAG tag and anti-P53Ab1. The bottom two panels show the antibody 

binding distribution to cognate pathogen versus non-cognate peptides for one exposed 

individual each from VF and F. Tularensis (LVS). The antibody binding distribution of 

peptides is plotted along the X-axis, while the Y-axis is discontinuous and compares 
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signal intensity data from NSB-9 versus AS for every sample processed. The antibody 

binding distribution from cognate pathogen peptides or monoclonal antibody epitope 

peptides are plotted as a separate distribution and highlighted in red next to the antibody 

binding observed from the remaining peptides on the array (blue dots). 

Additional sera from both these infectious groups would need to be processed to 

evaluate this antagonistic observation per infection. However, given that the monoclonal 

antibodies show better specificity on NSB-9 slides, they were used for all further 

comparisons. Figure 4- 5 supplements this observation by showing the exact position of 

cognate peptides (highlighted in black) within the overall antibody binding distribution 

observed on AS and NSB-9 slides for the same samples.  The LVS sample (top right 

panel) shows a significant change with higher cognate reactivity distribution on NSB-9 

slides as compared to AS. 
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Figure 4- 5 Histograms displaying cognate peptide reactivity on Aminosilane (AS) and 

NSB-9 slides. 

The X axis shows the number of peptides sorted based on signal intensities depicted on 

the Y-axis. The coloring is based on an arbitrary scale in Matlab. The cognate peptides 

for two monoclonal antibodies and one sample each of LVS and VF are highlighted in 

black.   

Three VF infected individuals and three F. tularensis (LVS) vaccinee sera were 

used to verify the previous observation of improvement in LVS cognate reactivity on 

NSB-9 slides.  The 37°C comparison is included to ensure the 23°C criterion established 

previously for AS is also valid for NSB-9 slides. Table 4- 7 summarizes the ROC-AUC 

of distinguishing VF vs. LVS on NSB9 slides at varying temperatures.   
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Table 4- 7 ROC-AUC obtained for 2 infections on NSB9 slide surface at varying 

temperatures  

Time of incubation held constant at 1 hour, temperature 23°C vs. 37°C 

Surface: NSB9, Primary incubated for 1 hour, 37°C 

Infection (No. of 

patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

VF(3) 0.90 0.10 0.66 

F. tularensis(3) 0.21 0.36 0.24 

         

Surface: NSB9, Primary incubated for 1 hour, 23°C 

Infection (No. of 

patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

VF(3) 0.85 0.10 0.73 

F. tularensis(3) 0.23 0.24 0.25 

 

The NSB-9 (Table 4- 7) slides show moderate improvement in detecting 

F.tularensis (LVS) exposure as compared to aminosilane slides (Table 4-5). Following 

this methodical analysis, we then tested the effect of incubation time of sera on the PPP 

array.  

Comparison 3: Time of Incubation of sera.  

Single antigen ELISA’s, show high specificity at capturing appropriate antibody 

reactivity. Longer times of incubation were tested to mimic ELISA like binding 

conditions (overnight incubation). Supplementary Figure 4- 2 demonstrates the change in 

binding over varying incubation times of a monoclonal antibody against TP53 to its 

cognate epitope peptide on the array.  Binding to a number of non-cognate peptides 

containing the identical ‘RHSVV’ recognition sequence of this monoclonal or other 
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mimics such as ‘RHSVI’ or ‘RHSII’ at the end of 1 hour of incubation is higher than that 

observed at the end of 36 hours.  It appears that by 16 hours the monoclonal antibody 

binding its cognate epitope peptide starts tending towards equilibrium. At 24 and 36 hour 

time points, the antibody likely degrades as observed through progressively lower signals 

for one of the two epitope peptides on the array. Additionally, three VF infected and LVS 

vaccinated patient sera were used as before to compare incubation of the antibody for 1 

hour versus 16 hours (factors held constant: slide surface-NSB-9, 23°C, 1:500 serum 

dilution) 

Figure 4-6 displays histograms for one LVS and VF exposed individual each out 

of the three tested per group, showing data from all peptides on NSB-9 slides colored by 

an arbitrary scale in Matlab. The cognate pathogen peptides FTT or VF are highlighted in 

black.  Incubating the primary antibody for a longer duration of 16 hours increases the 

overall binding observed on the assay (cognate and non-cognate). Higher cognate 

pathogen peptide reactivity is observed at 16 hour serum incubations for all six sera as 

depicted by data in Table 4-8.  
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Figure 4-6 Cognate pathogen peptide reactivity is enhanced at 16 hour in comparison to 

after 1 hour of serum incubation.  

Histograms displaying raw signal intensities on the Y-axis and number of peptides on the 

X-axis sorted based on signal intensity. The top panel displays one LVS and bottom panel 

displays one VF exposed individuals sera binding the PPP array after 1 hour and 16 

hour (red) respectively in paired panels next to each other. The distribution of cognate 

pathogen peptides (VF or LVS) is highlighted in black.  
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Table 4- 8 ROC-AUC during varying incubation times on NSB-9 surface 

Surface: NSB9, Primary incubated for 1 hour, 23°C (reproduced 

for comparison from Table 4-4) 

Infection (No. of 

patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

VF (3) 0.85 0.10 0.73 

F. tularensis (3) 0.23 0.24 0.25 

    Surface: NSB9, Primary incubated for 16 hour, 23°C 

Infection (No. of 

patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

VF (3) 0.89 0.16 0.84 

F. tularensis (3) 0.28 0.21 0.35 

 

From observing this moderate improvement in cognate peptide binding at 23°C after 16 

hours of incubation, we continued to process additional infectious sera on the PPP array 

under these conditions. 

Comparison 4: Spacing of peptides affecting polyclonal antibody capture.  

We tested the concentration of deposited peptide on the surface and the effect it had on 

antigen presentation and the specificity of antibody association on the array. To do this 

we used NSB-9 and NSB-27 slides along with serum incubation conditions optimized in 

the previous comparison. The incubation time for infectious sera was held constant at 16 

hours, 23°C with 1:500 serum dilution.   

Figure 4- 7 summarizes the ROC-AUC of detecting 6 different infections apart on 

both NSB-9 and NSB-27 slide surfaces at longer incubation times (16 hour) and 23°C.  
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NSB-9 slides showed greater detection accuracy for VF and Malaria samples as 

compared to NSB-27.  F tularensis (LVS) samples however were detected with greater 

accuracy using NSB-27 slides. 

 

Figure 4- 7 ROC curve AUC summarizing ability to distinguish one infection from 

another on the PPP array under longer incubation 

The NSB-27 slides showed inconsistent spot morphology and poorer replicate 

correlations due to the interaction between printing conditions (volume and peptide 

concentration held constant throughout) and the 6nm distant primary amines. We 

expected this higher distance between individual peptides to improve specificity on the 

assay. This higher spacing likely affected its reproducibility; therefore, NSB-27 slides 
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were excluded from further analysis except to test limiting conditions of antigen 

presentation and antibody dilution in the next comparison. A score combination approach 

which combined the scores for the eight statistical metrics obtained from NSB-9 (1:500) 

and NSB-27 (1:500) slides was also tested, but did not yield significantly higher accuracy 

as depicted in Table 4- 9 as compared to results in Figure 4- 7, panel A. This approach of 

combining multiple observations is typically utilized when analyzing Surface Plasmon 

Resonance (SPR) data. The NSB-9 and NSB-27 data were treated as replicates when 

completing this analysis. 

Table 4- 9 ROC-AUC after combining NSB9 and NSB-27 (1:500) data 

Infection (No. of patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

Valley fever(3) 0.82 0.14 0.84 

Francisella tularensis-LVS 

(3) 0.38 0.31 0.35 

ASFV (4) 0.97 0.60 1.00 

WNV (5) 0.51 0.99 0.77 

Vaccinia (5) 0.89 0.42 0.85 

Malaria (2) 0.05 0.04 0.02 

 

Comparison 5: Dilution of primary patient sera 1:5000 patient serum dilution 

In order to test the robustness of this system and estimate physical conditions 

under which it would fail to detect the appropriate pathogen infection, the assay was 

processed under limiting conditions of peptide antigen and antibody from 

infected/exposed sera. Doing this exercise gives us an estimate of likely assay conditions 

or sample related problems (degradation) to be tested in the event of failure. We used 

NSB-27 slides to test limiting conditions of antigen presentation for this assay and diluted 
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the serum 10 fold higher than is recommended for use on piezo-printed peptide glass 

microarray based Immunosignature platforms [11]. Table 4-10 summarizes the ROC-

AUC of distinguishing VF from LVS under these limiting conditions.  Processing patient 

sera under these conditions did not significantly reduce the detection ability of this assay 

using the pathogen mean signal metric as can be observed from comparing Figure 4- 7, 

Panel B and Table 4-10. The p-value score and Pearson Correlation scores however were 

significantly lower as compared to those observed from NSB-27 slides processed at 1:500 

serum dilution (Figure 4- 7, Panel B).  

Table 4-10 ROC-AUC of detection of 2 infections at limiting concentrations of antigen 

and antibody 

Surface: NSB27, Primary (1:5000) incubated for 16 hour, 

23°C 

 

Infection  

(# patients) 

Mean 

Signal 

T-test p-

value 

Pearson 

Correlation 

VF (3) 0.63 0.13 0.15 

F. 

tularensis(3) 0.51 0.55 0.76 
 

 

In summary, the information content obtained from such a multiplexed assay is 

dependent on several thermodynamic parameters and physical assay conditions tested 

above.  Figure 4- 8 demonstrates this concept by displaying the average signal intensities 

of peptides per pathogen groups of proteins between aminosilane (top panel) and NSB-9 

and NSB-27 slides (bottom panel).  One VF infected individuals’ serum is visualized 

under different thermodynamic conditions. Kinetic factors being tested here are amount 

of antigen presented on the surface (AS-dense, NSB9 and NSB27-less dense), 
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temperature (23°C vs. 37°C) and time of incubation of primary antibody (1 hour vs. 16 

hours).  Longer incubation times on the NSB9 surface at 23°C (blue bars, panel B) 

showed highest resolution of cognate VF peptide reactivity (highlighted with red box).  

The graph shows data for one Valley Fever-infected individual but is representative of 

the effect of optimizing these parameters for all infections studied in this work. 

 

Figure 4- 8  Effect of incubation time, temperature and slide surface on information 

content of array. 

Each bar represents the signal from peptides composing a given pathogen protein. Signal 

intensities to VF peptides averaged as proteins highlighted using a red box. Panel A 
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depicts the signal intensities as captured by pathogen peptides on the entire PPP 

microarray printed on Aminosilane slides. Panel B depicts the signal intensities as 

captured by pathogen peptides on the entire PPP microarray printed on NSB-9 and NSB-

27 slides. Blue bars represent one VF infected individual’s serum sample processed on 

Aminosilane or NSB-9 slide at 23°C. The red bars in Panel A represent this same VF 

infected individual’s serum sample binding PPP peptides at 37°C on Aminosilane slide 

surface. The red bars in Panel B represent this VF patient’s serum binding PPP array 

printed on NSB-27 slides.  

Discussion 

We have demonstrated that biochemical parameters associated with peptides 

spotted onto a glass microarray can be optimized to reduce the cross-reactivity observed 

in a multiplexed microarray.  A peptide array representing epitope peptides from 14 

priority pathogens was created and examined for accuracy of simultaneously 

distinguishing multiple exposures.  Three bioinformatic peptide selection strategies were 

explored but empirical evidence from other research groups [3,6,36] suggested it was 

ambiguous whether using bioinformatic selection would be beneficial only when testing 

single pathogen and not as useful when simultaneously detecting multiple pathogen 

exposures.  The hypothesis tested in this work was whether antigens previously shown to 

be immunoreactive would be sufficient to identify the infection among the pathogens 

represented on the peptide array.  To this effect we represented complete proteomes for 

smaller viruses and partial proteomes for larger pathogens.  The proteins tiled as peptides 



 

143 

 

for larger pathogens were immunodominant antigens from protein microarray 

experiments and those listed as B-cell epitopes in IEDB.  We used well -characterized 

monoclonal antibodies and ELISA or immunodiffusion characterized infectious sera to 

assess cross-reactivity on our multiplexed platform. 

Likely parameters that should affect antibody binding such as temperature, 

peptide spacing, and duration of incubation, were tested and optimized.  The selected 

parameters (23°C, 16 hour incubation, NSB-9 slide surface) were empirically determined 

based on improvement in the accuracy of simultaneous detection.  Additionally, eight 

statistical analyses were tested for their ability to distinguish infections.  The three most 

predictive analytical methods were average signal from groups of pathogen peptides, p-

value across pathogens (groups of peptide) and Pearson’s Correlation score (within and 

across pathogen peptide groups).  Four out of the six inefections/exposures tested 

resolved on one of these three statistical metrics with >90% ROC-AUC.  While no 

statistical method worked best for all infections, these four could be detected with greater 

than 80% ROC-AUC on the Pearson’s Correlation score metric.  Different infections 

resolved to a varying extent using the eight metrics tested.  VF, Fransicella (LVS) and 

ASFV resolved on the Mean signal pathogen scoring scale while WNV and Vaccinia 

resolved best on the P-value scale.  Malaria did not resolve well on any of the eight 

metrics tested.  

Temperature, longer patient serum incubation times and concentration of antigen 

presented on the surface had a significant impact on the information content obtained 

from the assay.  Prior work on antigen-antibody interactions using surface plasmon 
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resonance (SPR) demonstrates a reduction in the association and dissociation rate 

constants during antibody affinity maturation [127].  A longer incubation time should 

allow the binding to overcome mass transport limitations and approach equilibrium so 

that the binding observed better correlates with affinity [128].  The immune response to 

an infection/exposure has an initial natural antibody component and a latter adaptive 

(specific to the infection) component [129].  These natural antibodies are poly-reactive 

and often not high-affinity unlike those generated later in the infection post affinity 

maturation [103].  Longer incubations result in dissociation from non-cognate peptides 

and support association of slow on-rate or mass-action limited high affinity antibodies 

with cognate peptides.   

The statistical method by which different infections were detected may rely on the 

extent of peptide diversity required to accurately capture a given infection in the presence 

of other pathogen peptides. The P-value scale tends to resolve infections such as WNV, 

whose complete proteome is represented on the array in the form of 17-mer peptides.  

The probability of detecting the infection (e.g. WNV) improves with comprehensively 

mapping the entire proteome.  Exposures such as Vaccinia vaccination resolved on the P-

value scale suggesting that perhaps a minimum amount of proteome coverage is required 

(14.3% of Vaccinia proteome represented) for accurate detection.  Fransicella tularensis 

(LVS) vaccine (2.8% of proteome represented), VF (0.03%) and Malaria (0.31%) did not 

resolve on the P-value scale.  Additional testing using patient samples for pathogen 

proteomes completely represented on the array would be required to verify this trend. 
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ASFV and VF resolved on the average signal scale.  ASFV is a porcine infection 

with the potential for infecting humans [40].  The sera tested for ASFV was of swine 

origin and had overall higher reactivity as compared to human infection/exposure sera.  

Supplementary Figure 4- 3 displays the average signal intensity observed per individual 

per infection.  VF is a chronic infection and one of the largest pathogen proteomes 

represented on the assay.  The antibody response observed in all patients from VF 

infection is higher than other human infections or exposures tested on the platform, 

except one Vaccinia vaccinee as observed in Supplementary Figure 4- 3.  The Pearson 

Correlation score for WNV, Vaccinia, VF and ASFV is high suggesting more cognate 

pathogen peptides are responsible for the higher signal intensities on the array, which in 

turn influences the Pearson’s Correlation score. 

LVS and Malaria resolved with low accuracy on the average signal scale.  The 

Pearson correlation score was also low for these infections suggesting more cross-

reactivity observed to non-cognate peptides on the assay for LVS and Malaria.  One 

possible explanation might be low proteome representation on the array, 2.8% and 0.31% 

respectively, and also certain peculiarities of these infections.  Francisella is a gram-

negative bacteria and the majority of the host immune response is directed to the lipo-

polysaccharide (LPS) surrounding this pathogen [130] rather than to specific linear 

stretches of pathogen proteins.  Using a commercial antibody against Fransicella LPS 

and one against VEE we observed very little binding on the assay.  Supplementary Figure 

4- 4 demonstrates this, where only a handful of peptides show high reactivity for anti-

LPS antibody or anti-VEE antibody.  None of these peptides showing high antibody 
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binding are cognate peptides belonging to FTT or VEE peptide groups. Peptides 

belonging to the pathogen being compared are highlighted with arrows on the histogram 

and are marked in red.  Additionally, histograms of polyclonal sera generated by 

immunizing naïve special pathogen free mice with peptides are also depicted (FT03, 

Rco1, Rco2, Rco3 and Rco4).  Three out of five polyclonal sera recognized the cognate 

peptides used for immunization accurately with high signal intensity.  Two of these 

immunized peptides were not recognized but other peptides representing partial 

mimotopes (Supplementary Table 4-1) had higher signal intensities on the array than the 

cognate peptides demonstrating the possibility of generating cross-reactive antibodies 

even on immunizing with a 20-amino acid peptide. 

Plasmodium infected erythrocytes produce surface antigens to which IgG 

response is observed in infected individuals [131].  Additionally, pathogen specific 

antibody (IgG and IgM) may remain bound to circulating antigens [132-135] and the 

sample used to assess this reactivity on our assay is serum without the infected RBC’s.  

No additional pre-treatment to dissociate circulating immune-complexes from sera were 

applied in our protocol.  It is likely that for infections like malaria, that produce 

circulating immune complexes, pre-treatment of plasma from blood collected in anti-

coagulant tubes and treated with heat to dissociate circulating antigen and RBC bound 

antibodies might be necessary before separating the plasma for detecting anti-

Plasmodium antibodies [136].  From these data, to best ensure capturing cognate 

pathogen reactivity it would be optimal, to represent the complete pathogen proteome in 
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the form of peptides.  For representing larger pathogens this would mean generating an 

array containing up to 1 million peptides. 

The platform could be optimized to distinguish current versus prior exposure 

consistently based on measuring a quantitative increase in the immune response captured 

over time of exposure.  From studying the Vaccinia vaccination response on our array, 

we could predict more recent exposure versus vaccination received 4 years ago.  

Supplementary Figure 4- 5 demonstrates a proportionate increase in the response 

captured between current versus prior vaccination recipients.  Plots demonstrate the P-

value score on X-axis and pathogen ranking based on the score on Y-axis for individual 

vaccinees.  The two most recently vaccinated individuals show higher P-value score than 

the remaining three vaccinees.  This concept needs to be validated with additional 

samples and tested for consistency in different infections and on different print-batches of 

arrays.  

Additionally, optimizing the platform to distinguish closely related pathogens, 

such as various strains of Influenza or various Flaviviruses might prove beneficial.  The 

second leading cause of death in the world, 5.7 million deaths/year, are attributed to 

cerebrovascular disease [137].  Viral meningitis with estimated 434,000 hospitalizations 

(1988-1999)[138] is known to cause cerebrovascular complications [139].  Viral 

encephalitic meningitis infections such as those due to most NIAID priority pathogens do 

not have FDA approved diagnostics available that could readily be used in local 

laboratories for early detection of exposure.  Due to the severity of meningeal symptoms 

typically a spinal-tap procedure is performed for acquiring cerebrospinal fluid (CSF).  
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This CSF is then used for PCR-based direct detection of the pathogen.  To avoid these 

invasive procedures we recommend utilizing a pathogen proteome based peptide 

microarray, which would yield the infecting pathogen using as little as 1 µl of blood [66].  

Given that most encephalitis viral proteomes are small (2-12 proteins in proteome), it 

would be possible to represent all known encephalitis viruses on a higher density peptide 

array. 

Cross-reactivity on peptide microarray platforms such as the one presented is 

predominantly linear under the conditions optimized and easy to re-attribute to the 

original antigen.  Natural pathogen proteome specific peptide space is fairly conserved 

and redundant [140].  The cross-reactivity observed from monoclonal antibody binding 

can be re-attributed to either the partial epitope or a linear mimotope similar to the 

cognate epitope.  Similar analysis can be attempted on polyclonal patient sera to de-

convolute and re-attribute cross-reactivity to the cognate antigen responsible for 

infection/exposure. Although epitope-based peptide microarrays are of great utility, they 

also require physical optimization and rigorous bioinformatic analysis to reattribute 

cross-reactivity.  Based on the decreased monoclonal cross-reactivity when the epitope 

peptide is present on the array, we would expect including proteomes for commonly 

exposed pathogens might absorb antibodies from prior exposures to them and thus reduce 

non-cognate binding.  Given that complete medical histories and prior exposures for the 

patients tested are generally unknown, adding more pathogens might help 

comprehensively map the antibody response for individuals.   
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Supplementary Figures and Tables: 

 

Supplementary Figure 4- 1 Histograms displaying array data for 6 monoclonal 

antibodies on NSB-9 slides  

The X-axis demonstrates the signal intensity obtained from the assay and Y-axis 

represents the number of peptides displaying a given signal intensity. Every plot 

represents one monoclonal antibody’s reactivity as observed on the pathogen array. 
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Supplementary Figure 4- 2 Change in signal distribution and cognate versus non-

cognate reactivity of p53Ab1 monoclonal incubated on NSB-9 slides for 1, 16, 24 and 36 

hours respectively.   

The X-axis demonstrates the signal intensity obtained from the assay and Y-axis 

represents the number of peptides displaying a given signal intensity. Every plot displays 

the reactivity of p53Ab1 monoclonal antibody on the array under incremental times of 

incubation. The signal intensity of its cognate epitope is depicted on the histogram using 

an arrow to demarcate its position within the histogram of peptide signal intensities. 
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Supplementary Figure 4- 3 Average signal intensity observed for various infections on 

NSB-9 slides at 16 hour incubation, 23°C and serum dilution of 1:500  
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The X-axis represents number of patients tested per infection group and Y-axis displays 

average signal intensities. The Y-axis for ASFV control (un-infected) and infected groups 

is different as compared to that for human infections merely to display all data.  

 

Supplementary Figure 4- 4 Structural (anti-LPS, anti-VEE) and polyclonal antibodies 

(FT03, Rco1, Rco2, Rco3, Rco4) on array. 

The X-axis represents signal intensities observed on array, Y-axis represents the number 

of peptides displaying a given signal intensity. The position of cognate epitopes is 

highlighted in red on the histogram.  
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Supplementary Figure 4- 5 Capturing the memory immune response from exposure and 

distinguishing time of exposure – Vaccinia vaccination 

The X-axis depicts the p-value score for the cognate group of pathogen peptides (VACWR 

- Vaccinia) versus all other groups of pathogen peptides on the array. The Y-axis 

displays the ranks of pathogen groups basis p-values from top to bottom. The graph is 

colored on an arbitrary scale correlating to the range of p-values. The P-value score is 

calculated basis how significantly a group of pathogen peptides contributes to signal 

intensities observed on the array. 
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Supplementary Table 4- 1  Guitope match data (score cut=3) 
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KSKHNRREG 

3.7

3 2 5 15 HN HN 

JEV[NS1](1

037-1053) 

CRHGRGEQQI

NHHWHKSGSS 

4.0

01 3 5 9 hni qin 

WNV-I-NY-

99[E](677-

693);WNV-
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II-

956[E](673-

689) 

CRHKKADITSK

VNHVKEKTS 

3.9

73 3 5 13 hni nhv 

PVX_09770

0(783-799) 

CRHGHPVSRG

TAKLRWLVER 

4.6

01 4 14 8 SiGT SrGT 

WNV-I-NY-

99[NS5](258

0-

2596);WNV-

II-

956[NS5](25

77-2593) 

CRHLLWGGFP

WVSLGYSQTE 

5.4

42 5 12 11 yfSiG wvSlG 

FTT0614(13

7-153) 

CRHALTFKAC

DHIMKSGDLK 

4.0

62 5 15 13 Igtgs Imksg 

VACWR148

(222-238) 

CRHVRHTHSK

HKYHCICPMK 

3.1

07 3 17 7 TgS ThS 

EEE[GP2](6

9-85) 

CRHYSSTWHQ

DANHPYRTWN 

5.4

55 3 4 12 Ahn Anh 

WNV-II-

956[NS5](28

15-2831) 

CRHPHFVQHS

YTVQCKCRST 

3.3

82 4 17 12 TgsC TvqC 

PVX_00099

5(341-357) 

CSGYGGFLYG

GFLYGGFLAA 

4.3

6 2 19 1 sc cs 

anti-Leu-

Enkaphalin 

clone 

1193/220  

CRHERSHPEIW

HHLSTLIKQ 

5.4

5 6 9 10 wilyfS iwhhlS 

Machupo-

Lprot(422-

438) 

CRHMDEYVQE

LKGLIRKHIP 

3.6

36 7 10 14 ilyfsIg lirkhIp 

Machupo-

Lprot(1-17) 

CSGYGGFYGG

FYGGFYGGFA 

4.3

6 2 19 1 sc cs Peptide 9449 

CRHVERCYLQ

ALSVCNKVKG 

3.6

22 2 11 8 ly yl 

Junin-

Lprot(322-

338) 

CRHIHAMTPER

VQRLKASRP 

3.5

82 2 4 5 ah ha 

VEE[GP2](1

599-1615) 

CRHTQEKFEM

GWKAWGKSIL 

4.3

48 4 13 8 FsiG FemG 

JEV[NS1](9

01-917) 

EFWDKEWHTR

ADWPVWDGS

6.1

19 3 18 18 GSC GSC 

Rco2-

Control 
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C 

CRHGVMVEGV

FHTLWHTTKG 

3.3

92 4 5 12 Hnif Htlw 

WNV-I-NY-

99[NS3](154

4-

1560);WNV-

II-

956[NS3](15

40-1556) 

CRHSESHSPQE

VCEKYCSWG 

4.9

75 5 12 16 YfSiG YcSwG 

ASFV006(1

27-143) 

CRHPSESDLEY

SWLNLAAHH 

5.0

76 4 2 16 ipAH laAH 

Lassa-

Lprot(1538-

1554) 

CRHILGFYHLK

HKPPKKKCK 

4.7

48 4 12 7 yfsi fyhl 

ASFV194(1

9-35) 

CRHYGRCTRT

RHSKRSRRSV 

3.6

98 3 18 5 GsC GrC 

JEV[preM(2

19);M(220)](

205-221) 

CRHVAKAEEA

KKEADNAKVA 

3.1

48 3 4 14 AhN AdN 

PVX_09768

0(647-663) 

CRHSLMHWDL

ETQAPKNSIN 

6.5

08 6 1 12 TipahN 

Tqapk

N 

FTT1775(47

7-493) 

CRHKGCTLKIE

GEYAYGWLR 

3.6

48 2 9 18 Wi Wl 

FTT0191(13

7-153) 

CRHTALHFLN

AMSKVRKDIQ 

3.2

06 3 11 6 LyF LhF 

JEV[RNAPo

l](3208-

3224) 

CRHCHQGINN

KLTAHEVKLQ 

5.2

43 6 2 12 ipAHni ltAHev 

Lassa-

Lprot(221-

237) 

CRHEIDRIYKTI

KQYHESRK 

3.9

97 5 11 8 lYfsI iYktI 

VACWR130

(222-238) 

 

Table displaying alignment matches of high signal intensity peptides with immunized 

cognate peptides (FT03, Rco3) using alignment program GuiTope [34]. Setting a low 

cut-off score = 3, so as to capture discontinuous and short epitope matches. 
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CHAPTER 5 

DE-CONVOLUTING ANTIBODY CROSS-REACTIVITY OBSERVED ON A 

PATHOGEN PROTEOME PEPTIDE MICROARRAY 

Abstract 

Multiplexed proteomic microarray platforms have been unsuccessful at 

distinguishing infections apart due to antigen-antibody cross-reactivity on the assay. 

Given the specificity of antigen antibody interactions and diagnostic success of single 

pathogen based ELISA assays, using epitope peptide microarrays might appear to be a 

logical transition. Previous studies have failed to address cross-reactivity observed on 

multiplexed pathogen proteome based microarrays. We developed a multiplexed, 

pathogen proteome peptide (PPP) microarray designed to distinguish four priority 

pathogens apart. Despite optimizing microarray processing conditions on the PPP array to 

reduce cross-reactivity, we observed non-obvious antibody binding between unrelated 

pathogen peptides. We investigated the underlying factors that impact specificity and 

report several biochemical and computational aspects that affect and, if resolved, could 

enhance the accuracy of multiplexed epitope microarrays. A confounding aspect in 

mapping infection is observing cross-reactivity on the array from identical 5-7 amino acid 

long sequences in common between unrelated pathogen peptides. Secondly, the presence 

of common pathogen epitopes, such as Influenza virus, reduces the specificity of the 

remaining non-influenza pathogen peptides on a multiplexed assay.  The primary goal of 

this work is to assess the limitations of the PPP array while simultaneously distinguishing  
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priority pathogen and common pathogen exposures. Third, to circumvent cross-reactivity 

we developed an alternative data analysis strategy which uses a pattern of common short-

sequence motifs in the cross-reactive response to accurately detect an infection.  We 

utilized peptide sequence identity on a 2-mer to 7-mer repetitive epitope level to analyze 

data and discern groups of peptide n-mer motifs that we refer to as an ‘umbrella of 

antibody reactivity’. We classified the original infection/exposure by reading a pattern of 

antibody reactivity after averaging the signal intensity for these individual n-mer 

umbrellas. In doing so, we attempt to mathematically re-appropriate antibody cross-

reactivity observed on the platform to the actual pathogen causing the infection. This 

approach could be applied to historical peptide microarray data, likely considered 

unusable due to cross-reactivity, thus rescuing a number of important research projects. 

Abbreviations 

ASFV, African Swine Fever Virus; BLAST, Basic local alignment search tool; CMG, 

Comparative microbial genomics; FIU, Fluorescence intensity units; HIV, Human 

Immunodeficiency Virus; HCV, Hepatitis C Virus; JEV, Japanese Encephalitis Virus; 

NIAID, National Institute of Allergy and Infectious Diseases; PPP, Pathogen proteome 

peptide; WNV, West Nile Virus. 

Keywords 

Multiplexed, peptide microarray, multi-pathogen, specificity, peptide cross-reactivity, 

epitope, diagnostic assay, immunosignature, antibody. 
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Introduction 

Pathogen protein sequences are extremely conserved. While it may not be 

immediately apparent on the protein level, it definitely is on an n-mer (short-peptide) 

level [140]. A B-cell antibody epitope ranges from 4-12 amino acids in length [88].  

Mapping this level of n-mer commonality is crucial to understand cross-reactive 

observations when developing immunoassays. Previous work done by our group [141] 

explored the feasibility of using a life space peptide array representing epitopes for 14 

NIAID category A, B, C  priority pathogens to distinguish those infections on a single 

multiplexed platform. From six infectious sera tested on that platform, four infections 

were distinguished with >90% AUC-ROC (area under a receiver-operator characteristics 

curve) simultaneously. These four groups of infectious sera were from exposures to, 

Coccidioides spps. (Valley Fever), African Swine Fever Virus (ASFV), West Nile Virus 

(WNV) and Vaccinia, the smallpox vaccine. The platform failed to correctly distinguish 

Malaria and Francisella tularensis LVS-live vaccine strain sera.  In this paper, we 

examine the effect of a change in chemical diversity of the platform on the interaction 

and local competition between antibodies and peptides on the microarray. This work 

addresses the peptide-antibody cross-reactivity observed on a multiplexed assay using 

bioinformatic solutions to eliminate confounding effects of cross reactivity on pathogen 

identification. 

The humoral antibody response to an infection consists of multiple components 

including but not limited to natural antibodies, highly neutralizing antibodies specific to 

the infection or exposure, poly-reactive antibodies and cross-reactive antibodies [129]. 
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The persistent presence of cross-reactive antibodies has been documented through 

numerous studies in infections such as Influenza, Dengue, HIV, HCV and Malaria  [142]. 

The advent of advanced indirect (antibody based) pathogen surveillance assays, has 

resulted in discovering pre-existing reactivity to Influenza virus strains such as the swine-

origin H1N1 [143] and Japanese encephalitis virus (JEV) [144] in previously unexposed 

populations. Cross-reactivity is an inherent feature of all antigen-antibody reactions 

partly due to plausible conformational and structural reasons highlighted in literature 

[101]. In some instances cross-reactivity is beneficial, due to offering cross-protection for 

example, neutralization of the pandemic swine (2009 H1N1) and avian (1997, H5N1) 

origin influenza viruses due to a memory response from seasonal influenza vaccine 

strains [145-147]. When developing a single pathogen based diagnostic serological assay, 

explaining cross-reactivity captured on the assay from other unrelated pathogens is 

difficult. Ulrich et al [92] encountered this problem while developing a Yersinia pestis 

(gram-negative) specific proteome protein microarray. They observed cross-reactivity on 

Y.pestis proteins from rabbit sera experimentally infected with seven other genetically un-

related gram-negative bacteria and Bacillus anthracis a gram-positive. They used the 

signature pattern of cross-reactivity from other infections observed on their Y. pestis 

protein microarray to distinguish the cross-reactive pattern per pathogen.  

Cross-reactions are observed on serology based assays within genetically related 

strains of a given virus, for example, within Dengue strains 1, 2, 3 and 4 and also within 

viruses belonging to the same family, Flaviviridae- between Dengue and JEV [148,149]. 

Cross-reactivity has been documented on multiplexed diagnostic assays such as the 
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ToRCH assay that simultaneously measures antibodies from five vertically transmitted 

pathogens. The assay sensitivity when measuring antibodies against genetically distinct 

Toxoplasma gondii and Rubella versus Herpesviruses: Cytomegalovirus (CMV), Herpes 

Simplex virus 1 (HSV-1) and HSV-2 using ToRCH is variable per infection ranging from 

46-97% and specificity between 88-100% [37]. Cross-reactivity in antigen-antibody 

diagnostics could be explained as being observed due to short n-mer identity on a 5-mer 

to 11-mer amino acid level between unrelated pathogen proteomes. Based on this 

rationale, Kanduc and Kobinger et al. map the redundancy between pathogens and the 

human (host) proteome, for developing better pathogen targeted vaccines that could 

potentially generate lesser self-reactive antibodies [140,150,151].  

In this study, we tested how incrementally adding common exposure pathogen 

peptides on the PPP array affected its ability to discern priority infection antibody 

response. The original platform contained 12 pathogen epitopes (PPP-12) from either 

immunodominant antigens for larger pathogens or complete proteomes for smaller 

viruses. To test the effect of change in chemical diversity, we made two incremental sets 

of arrays, one in which we added ASFV and Vaccinia peptides (PPP-14) and another in 

which we added Influenza peptides (PPP-15). ASFV and Vaccinia viruses are both 

double stranded DNA viruses closely related to Herpes viruses. These pathogen peptide 

groups were added due to recent availability of sera and to measure the effect of adding 

peptides that are potentially capable of capturing Herpes virus cross-reactivity. The 

addition of ASFV and Vaccinia peptides did not have a detrimental effect on the PPP 

array’s ability to distinguish multiple infections. By adding influenza peptides, we 
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evaluate the effect of including a common exposure yet priority pathogen on the array. 

Due to the frequency of human exposures to various influenza strains [152], we expected 

to observe a distinct separation of memory influenza specific antibody response and 

priority pathogen reactivity, leading to more specific priority pathogen detection. The 

addition of influenza peptides on the array however, reduced the assay’s ability to 

distinguish priority pathogen infections. The most parsimonious explanation for this 

observation might be that the influenza peptides likely competed for antibody reactivity 

to other priority pathogen peptides. This competition reduced the pathogen specific 

response apparent on arrays without influenza peptides. This observed cross-reactivity to 

influenza peptides from all infectious sera led us to developing an improved 

bioinformatics approach to mathematically reattribute cross-reactivity. While doing so we 

used the cross-reactivity observed due to the addition of influenza peptides on the 

multiplexed assay to distinguish priority pathogen infections apart.  

Methods 

Serum samples and monoclonal antibodies used in this study 

Human patient serum samples from Influenza and Vaccinia vaccine recipients and 

healthy non-disease individuals were collected under the ASU IRB 0905004024, “Blood 

Collection for Immunological Studies”. Fransicella tularensis subsp. holarctica live 

vaccine strain (LVS) vaccinated individuals’ sera was received from Dr. Anders 

Sjöstedt’s laboratory at Umeå University, Sweden. They are part of a time course study; 

samples used were 28-30 days post-receiving the LVS vaccine. Valley fever infected 
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patient sera was received from Dr. John Galgiani at the University of Arizona (IRB# 

FWA00004218). Plasmodium vivax and West Nile virus infected sera was obtained from 

SeraCare Life Sciences (Milford, MA). All monoclonal antibodies used in this 

publication are listed in Supplementary Table 5- 1. 

Microarray production and processing 

Pathogen proteome peptide microarrays were produced as described in Chapter 4. 

Briefly, peptides were obtained from Sigma Genosys (St.Louis, MO) and printed on 

NSB-9 aminosilane slides from NSB Postech (Los Alamitos, CA). All slide surfaces were 

coated with sulfo-SMCC linker (Pierce, Rockford, IL) and peptides were conjugated to 

the surface using maleimide conjugation chemistry. Each peptide was printed twice on a 

two-up array by Applied Microarrays Inc. (Tempe, AZ) using piezo electric printing.  

The following pathogen peptides were represented on the PPP array: 

a.) PPP-12: Array representing 12 pathogens (3546 peptides) - Francisella tularesis 

[Tularemia-LVS], Coccicioides immitis [Valley fever], West nile virus (WNV) 

[strain: I & II], Japanese encephalitis virus (JEV), Plasmodium vivax [Malaria], 

Venezualan Equine Encephalitis, Eastern Equine Encephalitis, Bacillus anthracis, 

Machupo virus, Junin virus, Guanarito virus, Lassa virus and monoclonal 

antibody epitope peptide controls. 

b.) PPP-14: Array representing 14 pathogens (4337 peptides) - PPP(12) peptides + 

African swine fever virus [ASFV] and Vaccinia [strain: Western Reserve] 

peptides. 
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c.) PPP-15: Array representing 15 pathogens (4693 peptides) - PPP(14) + 283 

Influenza PR8 (H1N1) peptides 

Microarray slides were pre-washed with a solution containing 7.33% acetonitrile, 

33% isopropanol and 0.55% TFA to remove unbound peptides.  Slides were blocked in 

1X PBS, 3% BSA, 0.05% Tween 20, 0.014% β-mercaptohexanol for 1hr at 25oC.  Sera 

samples were diluted 1:500 in the Incubation buffer containing 3% BSA, 1X PBS, 0.05% 

Tween 20, and allowed to bind to the microarray for 16 hours at 23°C in 100 µl total 

volume per pathogen peptide array. The optimum thermodynamic parameters chosen for 

processing these pathogen arrays were based on empirical data from our previous work 

[141]. A Tecan 4800 Pro Hybridization Station (Tecan, Salzburg, Austria) was used for 

array incubation and primary sera was detected using Alexa Fluor-647 conjugated Goat 

anti-Human, IgG Fc (γ) fragment specific secondary antibody from Jackson 

ImmunoResearch (West Grove, PA).  

The slides were scanned using Agilent C scanner (Santa Clara, CA) at 635 nm 

excitation wavelength with 100% PMT and laser power at 10 µm image resolution. The 

16-bit TIFF images were aligned using GenePix 6.0 software (Axon Instruments, Union 

City, CA) and the data files imported into GeneSpring 7.3.1 (Agilent, Santa Clara, CA) 

and Matlab (Natick, MA) for further analysis. Every patient’s serum sample was 

processed in duplicate and since every peptide was printed twice within a sub-array, it 

gave 4 measurements from the same peptide upon combining both technical replicates. 

Any array with a Pearson Correlation Coefficient less than 0.85 across technical 
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replicates was re-processed. Upon meeting the quality criteria, all technical replicates for 

a given individual patient were averaged for further data analysis.  

Statistical analysis and software used 

The arrays were initially analyzed using Matlab (Natick, MA) code written from 

our previous work [141]. Short sub-sequence n-mer analysis was performed using a 

regular expression search program published in Richer et al. [153]. The algorithm was 

designed to find short identical sub-sequences in common within the peptides represented 

on a microarray. From a peptide sequence library, the algorithm divides all peptides into 

all possible subsequences within user input length ranges, 2-19 amino acids for a 20-mer 

peptide length array. The signal intensity associated with each one of these peptide sub-

sequences is extracted from the original peptide sequence they belong to and averaged 

together per sub-sequence, provided there are at least 2 replicates per sub-sequence full-

filling signal intensity criteria. These list of subsequences with signal intensities 

associated with them are ranked and sorted based on their signal intensity and 

subsequences below user input signal intensity cut-off (<500 FIU-Fluorescence intensity 

units) are excluded. This list of significant sub-sequences, are obtained per individual 

sample and the number of n-mers in common per infection and per individual are 

estimated using a custom python script. The mathematical pattern containing this 

information is used to classify the sample into an infectious group using leave one out 

cross-validated (LOOCV), Support Vector Machine (SVM) algorithm from the e1071 

library in R. The number of n-mer sub-sequences in common between individual serum 
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samples or individual pathogens was calculated using a custom python script. Using these 

numbers the Connectograms in Figures 2 and 3 are constructed using Circos online [154]. 

The pathogen proteome BLAST matrices are generated using CMG-biotools [155]. 

Influenza PR8 whole virus ELISA protocol 

Nunc Maxisorp microtiter ELISA plates were coated by incubating overnight at 

4°C with purified UV-inactivated Influenza H1N1 A/PR/8/34 (PR8) virus commercially 

available through Advanced Biotechnologies Inc. (Cat. No.: 10-2/3-500, Lot: 8J0006) at 

100 ng/well. Additional plates were coated with 5% non-fat milk in TBST (19.98mM 

Tris, 136mMNaCl, pH 7.4 with 0.05% Tween 20) as control for background binding and 

the same serum samples were processed on them simultaneously. The non-specific 

absorbance obtained from these plates was then subtracted from that obtained from PR8 

coated plates. As a positive control for secondary binding, 1:500 diluted pooled naïve 

mouse (C57BL6J) and uninfected pooled human sera was applied in 2 wells each, per 

plate. All control sera and antigens were diluted in the carbonate/bicarbonate buffer 

(15mM Na2CO3, 35mM NaHCO3). As a secondary antibody negative control, 3 wells per 

plate were coated overnight with the antigen and blocked to be detected directly with the 

anti-human secondary antibody and three with the anti-mouse secondary antibody per 

plate. These absorbance values were then averaged and subtracted from their respective 

human or mouse sera wells as background absorbance due to secondary antibody. All 

plates were washed between steps three times each using TBST. The plates were then 

blocked with 5% non-fat milk and incubated for 1 hour at 37°C. For the assay, serum 
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samples were serially twofold diluted in PBST and incubated on the plates for 1 hour at 

37°C starting at 1:50 dilution up to 1:800.  The bound serum antibodies were detected 

using the appropriate species specific secondary antibodies diluted 1:1000 in PBST. Anti-

mouse IgG (H+L)-HRP conjugated (Bethyl Laboratories, Montgomery, TX; Cat. 

No.:A90-216P) for mouse sera and anti-human IgG (H+L)-HRP conjugated (Vector 

laboratories, Burlingham, CA; Cat. No. PI-3000) for human sera, were incubated for 1 

hour at 37°C. Bound secondary antibody was detected by adding 100 µL of the substrate 

for HRP, ABTS (KPL, Gaithersburg, MD) and incubating for 30 minutes at 37°C. This 

colorimetric reaction was stopped using SDS (1%, 50 µL per well) and absorbance’s 

were read using the SpectraMax 190 absorbance microplate reader (Molecular Devices, 

Sunnyvale, CA) at 405nm.  

Results 

Redundancy observed within priority pathogen proteomes represented on PPP 

array 

We first sought to quantitatively measure the degree of sequence redundancy 

present in the pathogen proteomes.  Figure 5-1 is a BLAST (Basic local alignment search 

tool) matrix generated using the CMG-biotools [155] proteome comparison workbench. 

The figure represents 289 comparisons (17X17) of pathogen proteomes represented on 

the PPP array. Every cell of this BLAST matrix represents a summary of BLAST queries 

with a 50% homology restriction applied to between 2 (EEE and VEE proteomes) and 

10,454 proteins (Coccidioides immitis proteome) summarizing the results of 
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approximately 543 million BLAST searches between 23,311 total proteins. The epitope 

peptides used as positive control on the assay are intentionally included in this analysis to 

display no overlap at a stringent restriction of 50% identity in at least 50% alignment 

match of the two proteins being compared. As is expected Flaviviruses, WNV strains I 

and II and JEV are 76.9% homologous represented by bright green cells in the matrix. 

The Arenaviruses (Junin, Machupo, Lassa and Guanarito) are homologous amongst 

themselves as are the equine encephalitis viruses (EEE and VEE). The last row of this 

matrix depicts homology within the proteome and larger proteome pathogens such as 

Bacillus anthracis (Sterne) have up to 258 redundant homologous proteins within their 

proteome. In summary, on a proteome level, there is not much apparent homology 

between phylogenetically distant priority pathogens, at least under these criteria. 
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Figure 5- 1 BLAST matrix depicting homology between pathogens chosen to be 

represented on the pathogen proteome peptide (PPP) microarray.  
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A BLAST hit within this program is considered homologous (green) if at least 50% of the 

two protein sequences are aligned and 50% of the amino acids within the alignment are 

identical. The last row at the bottom of this matrix depicts homology within a given 

pathogen proteome under the strict homology criteria (gray to red scale). 

Redundancy observed within priority pathogen peptides represented on PPP array 

Homology calculated between full length proteins would be insufficient to explain 

the observed cross reactivity between evolutionarily distant priority pathogen proteomes.  

Therefore, we explored sequence identity on a finer scale, examining sequence motifs in 

the range of common epitope lengths.  The numbers of identical 5 to 10-mers in common 

between pathogen proteomes represented on the pathogen array and common pathogens 

such as Herpes and Influenza were calculated using a Python script from a suite of 

programs published in Richer et al. [153]. The overlap between pathogens based on 

shared sequence motifs is illustrated as a connectogram in Figure 5- 2.  
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Figure 5- 2  Pathogen space is extremely conserved on a 5-mer peptide motif level.   

Every pathogen has a unique color and the size of the ribbon is proportional to the level 

of overlap between those pathogens on either a 5 amino acid sequence (5-mer) or 10 

amino acid sequence (10-mer) levels. The extent of overlap appears to diminish as 

epitope length increases with 10-mers having the least overlap suggesting short sequence 

motifs might be responsible for driving cross-reactivity. The code for designations on the 

circle is given in a table on the left. 

Redundancy observed within peptides on the PPP array and pathogen proteomes 

Having established that a number of identical short motifs are conserved between 

unrelated pathogens, we sought to characterize the motifs present on the PPP array.  The 

implication from this analysis would be to a priori expect cross-reactivity to non-cognate 

pathogen peptides due to identical n-mers in common between the infecting pathogens 

proteome and several other pathogen peptides on the array. The peptides were selected 

for inclusion on the PPP so as not to represent any duplicate 16 & 17-mers. Any 

duplication in sequence between amino acid lengths 5 through 15 was noted so as to map 

possible cross-reactive binding between unrelated pathogen peptides. Distribution of 

common 5-mers between pathogen proteomes and peptides on the PPP is presented in 

Figure 5- 3 as a connectogram. The size of the ribbon between two groups is correlated 

to the extent of overlap between those groups.  A distinct pattern of common motifs 

radiates outward from each pathogen. This analysis indicates that multiple 5-mers are 

commonly present between complete pathogen proteomes and unrelated pathogen 

peptides on the array.  As depicted in Figure 5- 3, it may be possible using this 
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information to predict a priori cross reactivity between Valley Fever (Coccidioides 

immitis) infected individual’s serum antibodies to Francisella tularensis and Plasmodium 

vivax peptides on the PPP array.  Taken together this suggests that the unique pattern of 

potentially cross-reactive n-mers may be used to identify the priority pathogen exposure. 
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Figure 5- 3 Circular connectogram displaying 5-mer level overlap between peptides 

represented on the pathogen array and their respective proteomes 

Every pathogen has a unique color and the size of the ribbon is proportional to the level 

of overlap between those pathogens peptides and other pathogen proteomes on a 5 amino 

acid sequence (5-mer). The code for designations on the circle is given in a table on the 

left. 

Monoclonal antibody binding on the PPP array  

The sequence analysis indicates that common short motifs might be responsible 

for antibody cross-reactivity observed on the PPP array.  To test this hypothesis, we 

tested the binding of individual well characterized monoclonal antibodies on the 

platform. These monoclonals bound specifically to their cognate linear epitope peptide 

along with other peptides having amino acid sequence similarities as demonstrated in 

Figure 5- 4. As listed in the top panel of Figure 5- 4, the p53Ab1 monoclonal antibody 

recognizes the linear peptide sequence ‘RHSVV’ with high affinity (estimated kD 

<100pM) [2]. Additionally, on the array, it binds other unrelated peptides that either have 

the exact 5-mer epitope or have a structural analog of it such as, ‘RHSII’ and ‘RHSVI’ as 

listed in table. This group of antibody reactivity could thus be classified as one ‘umbrella 

of reactivity’ due to one antibody binding all these related peptides and will be referred to 

as such, throughout the Chapter. This result was verified with 4 other monoclonal 

antibodies namely, p53Ab8, cMyc, FLAG, V5-tag and support the hypothesis that the 

presence of short motifs in unrelated pathogen peptides might drive cross-reactivity.  
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Figure 5- 4 Monoclonal antibody binding observed on PPP-14 array (p53Ab1) 

The top panel lists the median signal intensity obtained for peptides binding the 

monoclonal antibody p53Ab1 alongside their sequence. The alignment of consensus 

sequence within these peptides is depicted in the last column. The bottom panel shows the 

amino acid structure and properties of a mimotope peptide within Lassa virus that has an 

analog of p53Ab1’s original recognition sequence ‘RHSVV’. 

Simultaneous detection of priority pathogen and common exposure pathogen 

signature 

Within a population, individuals are always exposed to common pathogens that 

may confound diagnosis of a priority pathogen through manifesting similar symptoms or 

increased lethality during co-infection [156].  For this reason, we sought to test the 

multiplexed PPP array’s ability to distinguish more than one infection/exposure in the 

same individual’s serum sample. The hypothesis was that the array would be capable of 

simultaneous detection of common pathogen signature (e.g. Influenza, Herpes) and 

priority pathogen signature. To test this concept we added 283 peptides representing 

100% of the Influenza-A/PuertoRico/8/1934 (H1N1) proteome. Given the high frequency 

of influenza exposures in human populations [157] and maintenance of long term 

memory responses to various influenza strains [54], we expected to be able to separate 

influenza and priority pathogen reactivity on the array simultaneously. Adding influenza 

peptides to the existing 14 pathogen peptides (PPP-14) reduced the specificity of the PPP 

array to distinguish between pathogens.  
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Figure 5- 5 P-value score chart for 1 WNV infected individual’s sera on 3 different array 

platforms.  

The X-axis depicts the P-value score for group of pathogen peptides versus all other 

peptides on the array and the Y-axis displays the ranks of these pathogens based on the 

P-value score. The group labeled ‘Other’ represents signals from antibody binding to 

internal control monoclonal antibody epitopes peptides. The p-value cut-off for PPP-12 

is 0.0003 and that for PPP-14 and PPP-15 is 0.0002. The p-values of WNV group of 

peptides calculated on all 3 arrays are displayed within the graph. 

The addition of influenza peptides altered antibody binding to cognate infection 

pathogen peptides for all infections being tested. This can be observed in Figure 5- 5 

showing p-value score based pathogen rank plots. The 3 panels of Figure 5- 5 show 

change in antibody binding for one WNV virus infected individual on 3 different arrays, 

merely representing the trend observed in this dataset for all infectious samples tested. 
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The first panel shows this WNV infected individual’s antibody binding as observed on an 

array representing peptides for 12 priority pathogens, not including Influenza, ASFV and 

Vaccinia. The p-value score of WNV group of peptides is 3.60 x 10-8, statistically 

significantly higher as compared to the p-value score of the remaining pathogen groups 

of peptides. The p-value score of Lassa (0.00014) and JEV (0.00012), other encephalitis 

viruses are above the p-value score cut-off = 0.0003 for this platform, displaying cross-

reactivity on the assay. These p-values however are much lower as compared to that of 

WNV showing a clear separation of WNV specific antibody reactivity. Panel 2 shows 

this same individuals’ antibody binding profile on an array that included ASFV and 

Vaccinia, but not influenza peptides. The addition of Vaccinia and ASFV peptides 

capable of capturing other poxvirus (such as Herpes) related antibody response, appears 

to improve the assay’s capability of detecting the priority pathogen antibody response. 

The p-value score of WNV group of peptides is 1.26 x 10-10, and while cross-reactivity to 

JEV (9.25 x 10-5) is retained and above p-value cut-off 0.0002, the p-value of WNV is 

significantly lower than that of JEV. Panel 3 displays how the change in antibody binding 

on the array after the addition of influenza peptides diminishes the platform’s ability to 

distinguish the WNV signature. The p-value score of WNV group of peptides is 0.05, 

with Vaccinia (VACWR) group of peptides being ranked highest at p-value 0.0005 below 

cut-off 0.0002. Using existing analysis techniques that involved ranking groups of 

pathogen peptides through eight statistical metrics did not resolve any of the priority 

pathogen signature responses including WNV on arrays containing influenza peptides.  A 

summary of results from all three versions of arrays is depicted in Table 5- 1 and all the 
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scoring metric transitions between these three array versions are summarized in Table 5- 

2. This observation warranted a bioinformatic intervention to re-appropriate cross-

reactivity observed on the assay regardless of change in the platforms’ chemical 

diversity.  

Table 5- 1 ROC summary displaying accuracy of diagnosing the cognate infection on 

three platforms 

Infection 

(No. of 

patients) 

PPP (12 

pathogens, 

no 

ASFV,VA

CWR,PR8

) 

Mean  

Sig. 

T-test  

p-val. 

Signal

*-

log(P-

val) 

Signal 

 to  

Noise 

Median  

Signal 

Mean  

Ranks 

Wilc

oxon 

Pearson  

Correlation 

Valley 

fever (6) 
0.94 0.24 0.41 0.43 0.77 0.38 0.20 0.80 

WNV (5) 0.58 0.95 0.86 0.44 0.63 0.87 0.95 0.69 

Malaria (3) 0.52 0.04 0.06 0.20 0.36 0.14 0.17 0.23 

LVS-

Francisella 

tularensis 

(5) 

0.37 0.48 0.41 0.15 0.23 0.37 0.47 0.57 

         Infection 

(No. of 

patients) 

PPP (14 

pathogens, 

added 

ASFV, 

VACWR) 

Mean  

Sig. 

T-test  

p-val. 

Signal

*-

log(P-

val) 

Signal 

 to  

Noise 

Median  

Signal 

Mean  

Ranks 

Wilc

oxon 

Pearson  

Correlation 

Valley 

fever (3) 
0.91 0.24 0.46 0.38 0.73 0.35 0.17 0.85 

ASFV (4) 0.96 0.46 0.89 0.90 0.96 0.73 0.92 0.98 
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WNV (6) 0.68 0.97 0.94 0.34 0.62 0.89 0.96 0.80 

Vaccinia 

(5) 
0.81 0.93 0.95 0.39 0.78 0.73 0.91 0.89 

Malaria (3) 0.37 0.35 0.11 0.41 0.08 0.38 0.44 0.54 

LVS-

Francisella 

tularensis 

(5) 

0.45 0.33 0.32 0.22 0.27 0.25 0.24 0.40 

         Infection 

(No. of 

patients) 

PPP (15 

pathogens, 

added 

PR8, 

ASFV, 

VACWR) 

Mean  

Sig. 

T-test  

p-val. 

Signal

*-

log(P-

val.) 

Signal 

 to  

Noise 

Median  

Signal 

Mean  

Ranks 

Wilc

oxon 

Pearson  

Correlation 

Valley 

fever (3) 
0.90 0.19 0.30 0.20 0.18 0.30 0.31 0.92 

ASFV (4) 0.99 0.64 0.96 0.69 0.98 0.94 0.84 0.99 

WNV (6) 0.57 0.59 0.61 0.47 0.61 0.49 0.38 0.57 

Vaccinia 

(5) 
0.89 0.36 0.56 0.67 0.88 0.63 0.44 0.80 

Malaria (3) 0.43 0.18 0.17 0.17 0.39 0.29 0.35 0.38 

LVS-

Francisella 

tularensis 

(3) 

0.29 0.58 0.46 0.25 0.19 0.49 0.46 0.54 

Influenza(5

) 
0.84 0.96 0.97 0.33 0.66 0.96 0.97 0.99 

 

Table 5- 2 Summary of the worst AUC-ROC changes between array iterations, after the 

addition of Influenza peptides in PPP (15), PPP (no. of pathogens represented as 

peptides on array). 

Infection (no. of patients) 

PPP 

(12) 

PPP 

(14) 

PPP 

(15) Statistical metric 
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Valley fever (3) 0.94 0.91 0.90 Mean Signal 

WNV (6) 0.95 0.97 0.59 T-test p-value 

Vaccinia (5) NA* 0.93 0.36 T-test p-value 

Francisella tularensis 

(LVS) (6) 0.37 0.45 0.29 Mean Signal 

Malaria (3) 0.23 0.54 0.38 

Pearson 

Correlation 

 

Cross-reactivity observed on pathogen peptide array from evolutionarily related 

pathogen exposures 

Cross-reactivity is not limited to the inclusion of influenza peptides. Two out of 

the five tested Vaccinia vaccinees showed reactivity to both ASFV and Vaccinia 

peptides. Given that both these pathogens are double stranded DNA viruses and belong to 

evolutionarily related viral families, Asfarviridae and Poxviridae, one might expect 

significant commonality in peptide motifs. Cross-reactivity is also observed between 

Herpes virus infected individuals (human sera) and ASFV/Vaccinia peptides as 

demonstrated in Figure 5-6. 
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Figure 5- 6 Cross-reactivity displayed on three versions of PPP arrays from one HSV-2 

infected individual’s sera.  
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The Y-axis shows the scale of non-normalized signal intensity from averaging signal of 

peptides per pathogen protein (X-axis). The green bars display signal from peptides 

averaged per protein from the 12 pathogen peptide array. Blue bars represent signal 

from the 14 pathogen peptide array and Red bars represent signal intensities from the 15 

pathogen peptide array containing influenza peptides. 

ASFV is a swine infection and has currently not been documented as being 

transmitted to humans. Though ASFV-like genetic sequences have been isolated from 

febrile patient’s sera in the Middle East and several sewage sources [40]. It is highly 

unlikely the sera we tested represents past exposure to ASFV. Therefore the reactivity on 

ASFV peptides is almost assuredly due to cross-reactivity. The prior exposure and 

vaccination history of both Vaccinia vaccines and herpes virus infected sera is 

unavailable. It is therefore, not possible to exclude prior Vaccinia vaccination in Herpes 

infected sera or Herpes exposure in Vaccinia vaccines. To test whether antibody cross-

reactivity between related pathogens poses a significant diagnostic problem, we tested 

four Herpes virus infected patient sera on the arrays which do not have herpes virus 

peptides represented. We observed cross-reactivity to ASFV and Vaccinia peptides 

(Figure 5-6) which was expected given that they are both dsDNA viruses like Herpes 

[40]. 

Simulating an artificial infection using multiple monoclonal antibodies 

In order to de-convolute cross-reactivity observed from infected sera on PPP-15 

arrays containing influenza peptides a mix of monoclonal antibodies was processed on all 
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three versions and array signals obtained. The monoclonal antibody mix experiment was 

done to mimic a polyclonal infection specific immune response, except where the linear 

epitope peptides expected to capture those antibodies were known a priori. The 

experiment included eight pre-characterized linear epitope binding monoclonal antibodies 

as listed in Supplementary Table 5- 1. In addition to the eight monoclonals, three 

influenza polyclonals against immunodominant antigens hemagglutinin (HA), 

neuraminidase (NA) and nucleoprotein (NP) were added in samples denoted as ‘with 

Influenza (INF)’ to study the effect of having a memory influenza antibody component 

within non-influenza infectious sera. Figure 5- 7 illustrates the median signal intensity 

for three peptide groups on three array versions with or without the influenza antibody 

component.  
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Figure 5- 7 Median signal intensities on a log10 scale for 8 monoclonal antibody 

epitopes (blue bars) versus signals from all other peptides on the array (green bars) and 

PR8 influenza peptides (red bars). Error bars represent standard error, P-value cut-off = 

0.125. 

* Significant between arrays with and without influenza peptides for monoclonal 

antibody mix experiment without an influenza antibody component on a one-tailed, 

paired t-test (p-value=0.02) 

* Significant between arrays with and without influenza peptides for monoclonal 

antibody mix experiment with an influenza antibody component on a one-tailed, paired t-

test (p-value=0.02) 

The blue bars represent the binding observed on the eight linear monoclonal antibody 

epitope peptides. Signals from all the remaining peptides on the array are represented by 
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green bars and influenza PR8 peptides on PPP-15 array containing them are represented 

by red bars.  

The remaining peptides (non-monoclonal pathogen epitopes) on the array (green 

bars) have 19%, 3-mers in common with the immunogens used to generate the 8 

monoclonal antibodies. These 3-mers might represent potential antibody contact points 

which explains the cross-reactivity observed on some non-monoclonal epitope peptides 

on each version of the array (green-bars). This number of n-mers in common between the 

remaining peptides and monoclonal antibody immunogens reduces as expected to 1.8% 

in common when searching for 4-mers. Despite the addition of influenza polyclonal 

antibodies within the monoclonal antibody mix, a clear bifurcation of influenza specific 

and monoclonal specific antibody responses can be measured on PPP-15 array. A 

surprising observation, during this analysis was the binding observed on influenza 

peptides from monoclonal antibodies despite no influenza polyclonals added with the 

monoclonal antibody mix (PPP-15, MAbMix_NoINF). This as well could be partially 

explained by the number of 3-mers in common between influenza peptides and 

monoclonal antibody immunogens (22%). Additionally, the amount of antibody 

reactivity captured from monoclonal antibodies on PPP-15 was statistically significantly 

lower as compared to that observed on PPP-14. This observable change in median signal 

intensities corresponds to a significant change in antibody binding distribution on the 

three array versions as observed from the antibody binding histograms of this data in 

Figure 5-8. The peptides for each monoclonal antibody are highlighted using arrows 
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demarcating their position within the histograms. This suggests cross-reactivity occurs on 

a short n-mer amino acid level to partial epitopes within unrelated peptides. 



 

190 

 

 
 

Figure 5- 8 Monoclonal antibody mix on pathogen arrays.  
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Histograms showing the distribution of signal intensities due to monoclonal antibodies 

binding peptides on three PPP arrays. The Y-axis shows the number of peptides at a 

given signal intensity (red=high signal, blue=low signal) whose range is displayed on the 

X-axis. The positions within these histograms showing cognate monoclonal antibody 

binding epitope peptides, is highlighted with arrows. (PPP-12 has 12 pathogen peptides 

excluding Influenza, ASFV and Vaccinia peptides; PPP-14 has 14 pathogen peptides 

excluding influenza peptides; PPP-15 has 15 pathogen peptides including influenza). 

Influenza antibody reactivity observed in individuals responding to non-influenza 

virus exposures 

Due to a high level of homology among all influenza virus proteomes, 

representing the Influenza PR8 proteome in the form of peptides, inadvertently also 

represents multiple human vaccine strains. Figure 5- 9 summarizes the analysis 

performed to de-convolute influenza peptide related cross-reactivity observed on the PPP 

array. 
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Figure 5- 9 Influenza reactivity observed in individuals with non-influenza exposures.  
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A. Influenza PR8 proteome homology with other human influenza vaccine virus 

proteomes (60 to 100% homologous) B. Box-Cox plot displaying pre-existing reactivity 

observed in special pathogen free naïve mice (D0) Influenza Pre (blue) versus 40 days 

(D40) post infection (red) on 283 influenza PR8 peptides from pathogen proteome 

peptide array. The line in the center of the box represents the median signal intensity. C. 

PR8 ELISA (blue bars), a measure of antibody reactivity observed in naïve mice (D0 = 

Day 0) along with reactivity from same sera on day 40 (red bars). D. Reactivity of serum 

antibodies in a whole virus (PR8) ELISA for some human donors whose serum antibodies 

strongly bound PR8 epitope peptides on the pathogen array (green bars). Averaged 

values from 3 replicates per ELISA measurement are shown and error bars in panels B 

and D represent standard deviation. The Y axes represent relative fluorescence on array 

in panel B and absorbance at 405 nm in panels C & D. The data reported in panels C 

and D is from 1:50 serum dilution for both mouse and human sera. 

Figure 5- 9, Panel A is a BLAST matrix obtained through CMG-biotools 

representing the extent of proteome overlap between Influenza PR8 and human vaccine 

strains. The matrix represents 49 comparisons (7X7) of pathogen proteomes. Every cell 

of the BLAST matrix represents BLAST queries with a 50% homology cut-off between a 

total of 72 proteins summarizing the results of 4,418 BLAST searches. The 2006-2009 

human influenza vaccine strains were 60%-100% homologous with PR8. In order to 

determine if influenza peptides could compete for non-influenza infection specific 

antibody response, some patient sera with sufficient volumes available were tested for 

cross-reactivity using a whole PR8 virus ELISA. We hypothesize that the change in 
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antibody binding observed from non-influenza infections might be due to competition for 

antibodies between influenza peptides and cognate priority pathogen’s peptides. To test 

this hypothesis without potentially confounding vaccination history from human sera, 

specific pathogen free (SPF) Naïve mouse sera were collected before and 40 days after 

PR8 infection and their antibody response was measured on both the PPP-15 microarray 

(Figure 5- 9, Panel B) and PR8 ELISA (Figure 5- 9, Panel C). All mice tested including 

Naïve, showed pre-PR8 exposure antibody cross-reactivity to Influenza PR8 in the 

ELISA and on the pathogen proteome array. Using Gnotobiotic mice instead of SPF mice 

might show lesser PR8 reactivity pre-exposure; however, this does not exclude the ability 

of influenza peptides to non-specifically capture antibody reactivity not related to PR8 

exposure. 

Figure 5- 9, Panel D shows antibody cross-reactivity as measured by an ELISA 

from infected human sera (green bars) having non-influenza pathogen exposures. The 

blue bars represent un-infected pre and post-vaccine sera from one 2006-2007 seasonal 

influenza vaccinee (ND43) and one Francisella tularensis Live vaccine strain (LVS) 

recipient sera collected in 2009 (LVS93). The probability that LVS93 might have either 

received or been exposed to the strains in 2006-2007 seasonal Influenza vaccine cannot 

be excluded. The Influenza vaccine (ND43) pre and post-vaccine serum was included to 

demonstrate the specificity of the PR8 ELISA. This individual had received the 2006-

2007 seasonal influenza vaccine which included another H1N1-like virus A/New 

Caledonia/20/99 strain, 90.9% homologous to the PR8 strain. ND43’s pre and post-

vaccine sera did not show significant antibody reactivity on the A/Puerto Rico/8/1934 
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H1N1 ELISA. This was not an end-point ELISA because it was performed as an 

alternative measurement of the cross-reactivity observed from non-influenza infection on 

the PPP array. Average absorbance values were calculated for the most descriptive 

dilution. The remaining dilutions till 1:800 were processed to observe a linear trend in 

data so as to verify the observations from 1:50 diluted sera. The sensitivity of a peptide 

microarray is higher as compared to that of an ELISA [158]. Therefore, the 1:50 dilution 

was more informative on an ELISA as compared to the 1:500 used for the peptide 

microarray. Additionally, arrays were processed using 1:50 and 1:100 serum dilution to 

estimate if concentrating the serum amount would overcome the influenza peptide 

directed cross-reactivity. The assumption was that increasing the concentration of sera 

would saturate the influenza peptides sufficiently to reduce competition, thereby, 

allowing priority pathogen specific antibodies to bind their appropriate target peptides. 

The two serum concentrations tested, 1:50 and 1:100, however were not sufficient to 

improve the ability of priority pathogen peptides to capture additional reactivity. Figure 

5- 10 shows two WNV infected individuals sera in panels A and B at the default standard 

1:500 serum dilution versus 1:50 and 1:100. The arrays were processed under 

thermodynamic conditions previously optimized for this platform to reduce cross-

reactivity, primary sera incubated for 16 hours at 23°C. At both higher concentrations the 

average antibody reactivity captured by influenza peptides and several other non-cognate 

infection pathogen groups is higher than the average antibody reactivity captured by 

cognate WNV peptides. A similar experiment was repeated using arrays without 

influenza peptides to observe the antibody reactivity at varying concentrations of serum 
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dilution. The average signal response from pathogen groups of peptides for three VF 

infected individuals is depicted in panels A, B, and C of Figure 5- 11 at the standard 

1:500 versus 1:50 and 1:100 serum dilution. As depicted in the figure at 1:500 serum 

dilution, two out of three individuals’ VF reactivity is higher than that of other pathogen 

groups of peptides. This suggests that the 1:500 serum dilution as previously optimized 

for this assay is appropriate to allow cognate pathogen antibodies to bind their target 

pathogen peptides under thermodynamic conditions optimized for this assay. 

 

Figure 5- 10  WNV Patients sera processed at three dilutions on PPP-15. 

The average signal per pathogen groups of peptides is plotted on the Y-axis. Two WNV 

infected individuals sera at varying antibody dilutions are presented in panels A and B. 

The average signal per pathogen groups of peptides is plotted with WNV group antibody 

signal highlighted in red and Influenza PR8 group antibody signal highlighted in green. 
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Figure 5- 11 VF Patient sera processed at three dilutions on PPP-14.  

Three VF infected individuals at varying antibody dilutions as listed in the figure are 

plotted in panels A, B and C. The average signal per pathogen group of peptides is 

plotted on the Y-axis with signal from 83 VF epitope peptides averaged together and 

highlighted in red.  

Taken together these observations indicate that, increasing the concentration of 

serum on the platform is not sufficient to retrieve cognate infection reactivity from 

competing influenza peptides. Including influenza peptides might compete for the 

antibody response captured by priority pathogen peptides on the PPP array. Antibody 

binding data obtained from arrays containing influenza peptides would be impossible to 
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re-attribute to the original infection using the eight statistical metrics developed for data 

analysis likely requiring bioinformatic intervention.  

Defining the umbrella of antibody reactivity observed on the pathogen array 

Using standard statistical metrics previously designed for this assay, the pathogen 

peptide ranking system failed to classify priority pathogen infection on an array including 

influenza peptides. The cross-reactivity observed on this assay might be likely 

attributable to short, identical amino acid sequences in common between influenza 

peptides and other priority pathogen peptides. As attempted earlier by Ulrich et al. [92], 

we utilized the pattern of cross-reactivity due to short, identical amino acid sequences in 

common between unrelated pathogens to re-attribute cross-reactivity observed towards 

influenza peptides. A regular expression search algorithm developed by Richer et al. 

[153] was used to select the most statistically significant n-mers per individual patient 

based on averaging signal intensities above background (>500 FIU).  
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Table 5- 3 displays the results from using the pattern of number of 2-7mer 

epitopes in common between individual patients classified using SVM with leave one out 

cross-validation (LOOCV). The classification method is applied to all three versions of 

the array. Panel C shows the recovery from cross-reactivity and incorrect infection 

assignment when using SVM to classify samples based on n-mer commonality. 
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Table 5- 3 SVM (LOOCV) results from PPP-15 using the n-mer analysis for 

classification 

A.) Infections tested on 

PPP-12 

Total 

samples 

No. correctly 

classified 

%Correctly 

classified 

Malaria 3 0 0 

ASFV NA 

Not 

processed, no 

peptides NA 

WNV 5 4 80 

LVS 5 1 20 

Vaccinia NA 

Not 

processed, no 

peptides NA 

VF 6 6 100 

    B.) Infections tested on 

PPP-14 

Total 

samples 

No. correctly 

classified 

%Correctly 

classified 

Malaria 2 0 0 

ASFV 4 4 100 

WNV 6 6 100 

LVS 5 1 20 

Vaccinia 5 4 80 

VF 3 2 67 

 

 

C.) Infections tested on 

PPP-15 

Total 

samples 

tested 

No. correctly 

classified 

%Correctly 

classified 

Malaria 3 1 33 

ASFV 4 4 100 

WNV 6 5 83 

LVS 3 1 33 

Vaccinia 5 5 100 

VF 3 3 100 

Influenza 5 5 100 
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Due to comparing the count of unique 2-mers, 3-mers through 7-mers in common 

within individual patients, the fundamental assumption of independence among features 

required for using machine learning algorithms like SVM is not violated. The n-mers in 

one individual are compared to the n-mers in another completely independent individual. 

Using n-mer umbrella classification arrays containing influenza virus peptides, PPP-15, 

showed 100% correct classification for ASFV, Vaccinia, VF and Influenza samples. This 

method was able to partially recover the accuracy of this assay to detect WNV, 5/6 sera 

correctly detected 83% correct. The WNV infected patient serum set contained one 

patient whose sera was part of a longitudinal seroconversion panel from SeraCare (PWN-

901) [159]. On day 0 time point of this panel when the patient was still sero-negative on 2 

different standard WNV EIA tests (Focus IgG, IgM and PANBIO IgG, IgM) for IgG & 

IgM and the Taqman RNA was <30 copies/ml, it was accurately detected on the PPP-15 

array as having WNV using n-mer umbrella classification.  This demonstrates the utility 

of such an n-mer approach in sensitively classifying disease. LVS and Malaria sera tested 

however could not be accurately detected (1/3 sera correctly classified).  

Discussion 

My goal in this study was to increase the accuracy of the multiplexed PPP array 

and test its limitations. For de-convoluting whether or not the addition of common 

exposure pathogen peptides on PPP array improves the accuracy of detection of the 

priority pathogen, three versions of arrays were made with incremental addition of 

common exposure pathogen peptides. Initially we created a pathogen proteome peptide 
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array representing 12 priority NIAID categories A, B, C pathogens (PPP-12) and tested 

sera from 4 exposures (VF, WNV, Malaria and F. tularensis LVS) to discern the 

predictive potential of such a system. VF and WNV out of the four exposures tested 

could be successfully distinguished using cognate peptides from those pathogens. We 

added ASFV and Vaccinia peptides to this existing array (PPP-14) and re-tested its 

accuracy at discerning 6 exposures apart. VF, ASFV, WNV, and Vaccinia could be 

distinguished with AUC-ROC >90%. There was moderate improvement in the AUC for 

F. tularensis and Malaria exposures as compared to the previous 12 pathogen peptide 

platform. It was estimated that the addition of Vaccinia and ASFV pathogen peptides 

represented sufficient double stranded DNA virus related peptides to be able to capture 

Herpes virus related reactivity. The hypothesis was that the addition of common pathogen 

peptides might improve the accuracy of distinguishing priority pathogen exposure. This 

was tested by processing Herpes virus infected patient sera on the array to observe cross-

reactivity with ASFV and Vaccinia and several other pathogen peptides on the array 

despite not directly representing any Herpes virus specific peptides. To test this concept 

further, PR8 influenza peptides were added to this 14 pathogen array (PPP-15) given that 

the H1N1 PR8 strain overlaps significantly with other human influenza virus vaccine 

strains. The addition of influenza peptides significantly reduced the ROC-AUC of 

detecting priority pathogen specific antibody response on the multiplexed PPP array.  

The arrays without influenza peptides showed the best ROC-AUC classification 

accuracy. The addition of influenza peptides to the array resulted in adversely affecting 

the detection capability of the platform for exposures such as WNV, Vaccinia, F. 
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tularensis and Malaria. VF, ASFV and Influenza reactivity was not adversely affected by 

the addition of Influenza peptides. Cross-reactivity to influenza within VF, WNV, LVS 

exposure patient sera was confirmed on a PR8 ELISA. Several special pathogen free 

naïve mice also showed PR8 cross-reactive antibodies in an ELISA before being 

experimentally infected with PR8. Since antibodies cross-reactive to influenza were 

found to be present in un-related pathogen exposures, it was deemed best to avoid 

including influenza peptides within a priority pathogen array so as to maintain its ability 

to discern multiple priority pathogen infections apart. One strategy to improve the assay’s 

detection ability was to remove cross-reacting common pathogen representing peptides. 

An alternative strategy would be to develop a bioinformatic analysis pipeline that would 

discern the appropriate cognate infection while circumventing the cross-reactivity 

observed on the assay. 

In order to delineate whether or not changing the peptide diversity on the array 

lead to significantly different antibody binding, an artificial infection sera, including eight 

well-characterized monoclonal antibodies, was processed on each array. Change in 

peptide diversity significantly altered the binding pattern observed on the platform 

between PPP-12, 14 and 15 as depicted by Figure 5-8 panels A, C and E. Monoclonal 

antibodies to linear peptide epitopes not directly related to influenza epitopes appeared to 

bind influenza PR8 peptides. The presence or absence of influenza polyclonal antibody 

component within the mix of 8 monoclonal antibodies did not have a statistically 

significant contribution to directing the binding observed on the assay in contrast to the 

effect observed by adding or removing influenza peptides.  
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One explanation for the observed change in binding after adding influenza 

peptides could be that on an amino acid frequency level, influenza, unlike any other 

pathogen represented on the assay has a greater frequency of the negatively charged, 

glutamic acid within their proteome. And while this difference in amino acid frequencies 

might not be significantly high, it appears to be enough to redirect other pathogen 

antibody reactivity and even unrelated monoclonal antibodies to influenza peptides. The 

charge on an antigen is known to increase non-specific cross-reactive binding in 

immunoassays [160]. Herpes viruses, for example, have more Arginine’s (positively 

charged amino acid) in their proteome as compared to any other priority pathogen tested 

on this array. For the purpose of this study though, it is empirically evident that exclusion 

of influenza peptides from a multiplexed assay designed to distinguish multiple priority 

pathogen infections might be an appropriate strategy to accurately detect priority 

pathogen infection. 

A bioinformatic strategy was implemented to trace the original groups of 

antibodies generating the signature response on the array, thereby de-convoluting the 

cross-reactivity observed. We ignored existing peptide annotations obtained from amino 

acid position within pathogen proteomes and instead re-analyzed the datasets based on 

signal intensities of ‘umbrellas of antibody reactivity’. The ultimate goal was to generate 

an algorithm capable of bioinformatically discerning the umbrellas of antibody reactivity 

observed on the assay despite apparent cross-reactivity allowing distinction of the correct 

infection/antigen (exposure) regardless of changes in the platforms peptide diversity. This 

strategy aims to delineate the antibody n-mer umbrella of reactivity per infection, 
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measuring how many n-mers overlap within individual patients and using those set of 

infection specific umbrella patterns to de-convolute the original infection. This strategy 

of counting the number of occurrences of a given n-mer or string to create a mathematical 

signature which could then be used to classify data is typically used in natural language 

processing for example, when creating e-mail spam-filters [161]. The signature response 

represents the number of n-mers in common per patient with a given infection versus all 

other infections. All individuals having a given infection have a specific pattern of 

overlapping n-mers in common with individuals having other infections and thus based 

on the extent of overlapping n-mers, get classified into a specific infection group. The 

antibodies from infected individuals and therefore, high signal intensity peptides they 

bind on PPP array as well as n-mer umbrellas observed within individuals sera having a 

given exposure are not always the same for all individuals having that exposure. This 

individual variation in immune response for one infection could be explained by the 

observation that immunizing animals experimentally with the same antigen yields 

antibodies reacting to different epitopes within that antigen per individual animal within 

the group [162].  

Representing the complete proteome of a pathogen ensures accurate detection on 

the assay. While this trend has been observed for small viruses such as WNV and 

Influenza on PPP array, it is yet to be tested for larger pathogens in a multiplexed format. 

The assay has tremendous utility if all known encephalitis viruses are represented on it, 

as it would reduce the need for central nervous system infection diagnosis requiring 

invasive procedures such as lumbar puncture. Given the limited diagnostic algorithms 
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applied to this data, it might be best to avoid inclusion of common pathogens such as 

influenza alongside priority pathogens. In conclusion, the addition of influenza virus 

peptides, to the PPP array does not improve its diagnostic ability.  
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Supplementary Information 

Supplementary Table 5- 1 Monoclonal and polyclonal antibodies used on PPP array 
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b 
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A 
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Tubulin 

alpha-1A 
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se 

IgG1
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a 

Biotin 
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cMyc 

MYC_HU

MAN Myc 

proto-

oncogene 

protein 

9E-

10 
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L 10 

AbD 

Serote
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protein V  
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c 
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         Influenza polyclonal antibodies 

HA 
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A 

PR8(H1N1

) HA 
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2 
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nucleoprotein 
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m 
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93 
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se 

IgG2

a 
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CHAPTER 6 

CONCLUSION 

Coccidioidomycosis 

The first cases of Valley Fever (VF) were observed in agricultural workers from 

central California in 1890’s. In 1892, a physician named Alejandro Posada, diagnosed the 

cutaneous inflammation in an Argentinian soldier originally misdiagnosed as cancer as 

instead emanating from an infectious source, Coccidioides [163,164]. The infection 

initiates post exposure of hosts to spores namely, Arthoconidia. The weaponization 

potential of Coccidioides (Lethal Dose LD50, 300 arthroconidia in non-human primates) 

is greater than that of Bacillus anthracis (LD50, 8000 spores in monkeys), which was 

why it was included in the NIAID Priority pathogen list [165]. Johnson et al. [63] 

estimated that a single arthroconidia was sufficient to cause in infection in mice. Between 

1 to 10, arthroconidia are sufficient to establish infection in humans [166]. Once infected 

the arthroconidia convert into spherules with sizes ranging from 3 µm [167-169] to 200 

µm [170] with the largest recorded at 262 µm [171]. The size of the spherule depends on 

the immune status of the host, with observable differences in C57BL/6 VF susceptible 

mice versus resistant mice to Coccidioides, Swiss-Webster [169]. Galgiani et al. 

documented that spherules sizes observed in-vitro (80-100 µm) were smaller than those 

observed in vivo [172]. The size of B and T cells typically ranges between 7-10 µm in 

diameter and that of antigen presenting cells such as dendritic cells and macrophages is 

between 10-22 µm [173] rendering them partially ineffective when responding to larger 
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spherules. Given that the immune machinery of hosts is severely overwhelmed by this 

pathogen, early detection of disease is crucial to facilitate appropriate anti-fungal 

treatment. Newer drugs like Nikkomycin Z have shown promising results in murine 

models by eradicating infections if given 5 days post-exposure [174] and also in dogs 

[175].  

The recovery rate of this fungus from blood unlike Mycobacterium tuberculosis is 

very low, 0.4% i.e. 20 out of a total of 5,026 samples (6-year retrospective study); 

making direct pathogen detection based diagnostics less sensitive [65]. To date, 

depending on the site of primary infection and symptoms manifested due to this disease, 

the presumptive differential diagnosis can include everything on the spectrum from 

cancer (fungal granuloma/swollen lymph nodes), arthritis (joint pain), community 

acquired pneumonias such as tuberculosis (lung nodule/patch, respiratory distress), 

psychological distress/ depression (meningitis) to chronic fatigue syndrome (chronic 

muscular pain). Early detection of VF infection would also help obviate unnecessary 

costs associated with incorrect differential diagnosis.  

Development of a microarray diagnostic that exceeds existing diagnostic standards 

Developing higher sensitivity assays often comes at the cost of specificity. After 

selecting random peptide features for the valley fever diagnostic sub-array, we learnt that 

using as broad a training dataset representing as many confounding conditions during 

feature selection was crucial to maintaining high assay specificity. The ‘VF-diagnostic’ 

sub-array (Chapter 2) is a 100% sensitive diagnostic and could be used in combination 
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with the higher specificity immunodiffusion (IDCF) and enzyme immunoassays (EIA) 

for differential diagnosis of disease [164]. The comparison of natural epitopes to non-

natural mimotopes has been reviewed on multiple occasions both structurally and 

informatically [31,89,176]. Chapter 3 shows an empirical comparison of life-space 

epitopes versus non-natural sequence peptides in the context of a diagnostic assay. Life-

space VF epitope peptides show higher specificity when distinguishing VF from LVS and 

normal, but random peptides show higher sensitivity. An interesting aspect of this work 

was the di-peptide modulation suggested to improve the accuracy of the Smith-Waterman 

[33] local alignment algorithm in a sequence alignment program, GuiTope [34]. This 

observation was made when de-convoluting why random VF predictor peptides 

performed with higher sensitivity than VF epitope peptides. GuiTope found several short 

sequence motifs in common between random peptides and VF antigens. The frequencies 

of di-peptides within a given protein, have been used to classify them into functional 

protein families [85], for designing tumor homing peptides, anti-cancer peptides 

[177,178] and designing cell penetrating peptides [179]. Rubenstein et al. [180] and Sun 

et al. [89] while characterizing epitopes noticed cooperativeness of certain di-peptide 

pairs as being observed at a higher frequency within epitopes as compared to non-epitope 

regions on antigens. Inverse-docking also known as ‘target fishing’ has been 

informatically viable when applied in molecular docking software for searching ‘target-

like’ structures [181]. The high binding associated with short sequences having di-peptide 

inversions in common between life-space VF antigens and VF-predictor random peptides 

is empirical proof of the viability of the inverse-docking approach.   
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Bioinformatic analysis of pathogen proteomes toward the development of a 

multiplexed life-space peptide microarray diagnostic 

While creating a multiplexed pathogen proteome peptide array (Chapter 4), our 

work assessed the various informatics strategies applied for epitope mapping. A T-cell 

epitope typically ranges in length from 8-12 amino acids [182] and  linear B-cell epitopes 

range from 4-12 amino acids [88]. A conformational B-cell epitope is estimated to 

contain 3-mer (60%) to 5-mer (85%) linear stretches involved in epitope-paratope 

binding [99]. While selecting the epitopes to be represented on the multiplexed PPP 

array, for larger pathogens we represented protein antigens predicted to be surface 

proteins (ASFV) or empirically documented to be immunodominant (IEDB). For some 

small viruses such as WNV, we represented the whole viral proteome. Given that the 

human population has >3000 different MHC alleles [183], it might be prudent to 

represent every pathogen using their whole proteome to enable accurately capturing 

individual variance in antibody response to an infection. Whole proteome based protein 

microarray experiments performed by Felgner et al. document that a small portion of the 

pathogen’s proteome is immunoreactive (~26%, Vaccinia) [109]. Due to the fine 

resolution obtained when using peptide microarrays as compared to using protein 

microarrays, it is very likely that no a priori selection of immunodominant or surface 

antigens was necessary. This concept however might need additional testing using larger 

patient serum sets and pathogen peptide groups to specifically compare whole proteomes 

peptides versus partial proteome peptides ability to capture infection specific immune 

response in a side by side comparison. In our comparison, the immunodominant antigen 
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peptides (partial proteome) were sufficient and capable of capturing and distinguishing 

infection specific response from other pathogen peptides. The multiplexed pathogen 

proteome array was capable of distinguishing 4 priority pathogen infections (VF, WNV, 

Vaccinia, and ASFV) apart simultaneously despite moderate cross-reactivity with greater 

than 90% ROC- AUC accuracy. 

Designing a multiplexed pathogen proteome peptide microarray – Future directions 

Although there was substantial measurable (and in many cases predictable) cross-

reactivity between host antibodies and peptide antigens, there were a number of non-

obvious causes for this observation on the PPP array.  Given the amount of cross-

reactivity observed, the discussion addresses a number of methods, both bioinformatic 

and biochemical, to ameliorate this seemingly intractable specificity problem.  Antigen-

antibody interactions observed on a multiplexed PPP array are a function of both the 

human patient sample being tested as well as the extensive overlap between natural 

pathogen sequences. The workarounds illustrate some important and quite fundamental 

aspects of physical characteristics of peptides, their presentation on the assay, and the 

intricate ways in which antibodies interact with them. 

While creating the multiplexed pathogen proteome peptide (PPP) array we printed 

the 15 pathogen peptides in no specific physical order together in a single array (Chapter 

4). Under thermodynamically optimized conditions to reduce cross-reactivity the array 

functioned with greater than 90% ROC-AUC at distinguishing 4 infections apart (VF, 

WNV, Vaccinia, and ASFV) simultaneously while it had 14 pathogen peptides. Upon 
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adding influenza peptides, the array’s ability to distinguish between influenza versus 

priority pathogen infection diminished. From this experience we concluded that creating 

multiplexed assays using pathogen epitope peptides and circumventing the cross-

reactivity observed to common pathogen peptides would require bioinformatic 

intervention in array design as depicted in Figure 6- 1.  

 

Figure 6- 1 Schema for designing a multiplexed pathogen proteome peptide microarray 

Initially, a pathogen proteome level comparison between all pathogens of interest 

to be included on the array would be necessary to estimate an obvious overlap based on 

protein sequences within phylogenetically related and unrelated pathogens (BLAST). 
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Using such an analysis, the cross-reactivity observed in Japanese, Dengue virus infected 

individuals to JEV could be explained [149]. Figure 6- 2 is a blast matrix generated by 

comparing the proteomes of various Flaviviruses using CMG-biotools [155]. 7 proteomes 

(7 X 7=49 comparisons, 96 total proteins) are compared through 7,886 BLAST searches 

using the 50% identity and 50% length match between compared fragments homology 

criteria. Between Japanese encephalitis virus, West Nile virus and Dengue viruses there is 

a significant proteome level overlap ranging from 12% to 100% and this might explain 

some of the cross-reactivity observed on immunoassays between these Flaviviruses 

[148]. 

 

Figure 6- 2 Blast matrix depicting proteome level overlap between the four main races of 

Dengue virus (reference proteomes) and WNV-I and II and JEV 



 

216 

 

A BLAST hit within the CMG-biotools program is considered significant (green) if at 

least 50% of the two protein sequences being compared are aligned and 50% of amino 

acids within the alignment are identical. The last row at the bottom of this matrix depicts 

homology within a given pathogen proteome under the strict BLAST search match 

criteria (grey to red scale).  

If significant overlap is observed between pathogen proteomes, those pathogen 

peptides could either be excluded from being multiplexed together or they could be 

printed on a physically separate sub-array such as that depicted in the 24-sub array format 

in Figure 6- 1. Additionally, each individual pathogen’s peptides could be printed 

separately within a sub-array on a single glass slide representing up to 24 pathogen 

proteomes. Alternatively, multiple pathogen peptides could be multiplexed together 

based on lack of obvious proteome level overlap allowing representation of more than 24 

pathogens on a single chip. In summary, when detecting Flaviviruses using pathogen 

epitope peptides, it might be advisable to print them on separate sub-arrays and process 

patient sera on them separately. 

Another example where a proteome level overlap analysis would be sufficient to 

explain lower specificity (46 - 97%) observed on an immunoassay is on the ToRCH assay 

[37].  
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Figure 6- 3  Blastmatrix showing ToRCH assay pathogen proteome overlap. 

Proteomes included: Toxoplasma gondii, Rubella, Chlamydia trachomatis, HSV-1, HSV-

2, HSV-3 and CMV. A BLAST hit within the CMG-biotools program is considered 

significant (green) if at least 50% of the two protein sequences being compared are 

aligned and 50% of amino acids within the alignment are identical. The last row at the 

bottom of this matrix depicts homology within a given pathogen proteome under the strict 

BLAST search match criteria (grey to red scale). 
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Figure 6- 3 summarizes 86 million BLAST searches generated from pathogen 

proteomes represented on the ToRCH assay using the Blastmatrix program in CMG-

biotools [155]. The figure summarizes a BLAST comparison of 9275 total proteins in 7 

proteomes (7x7=49 comparisons). From this comparison given that HSV-1 and HSV-2 

show greater than 94.7% proteome level overlap (50% identity, 50% length match 

criteria), it might be prudent to include them on separate sub-arrays to avoid cross-

reactivity. Despite printing pathogen proteomes showing a high level of proteome level 

overlap on separate sub-arrays, it is likely that infected individual’s sera might still 

display cross-reactivity to both sub-arrays. While they may still display cross-reactivity, 

the peptides of one pathogen will not be able to compete for reactivity from antibodies 

generated against another pathogen sharing multiple identical short peptides. A new data 

analysis pipeline would need to be developed from training on well-characterized serum 

samples to evaluate the extent of expected cross-reactivity. A probabilistic model based 

on log-odds ratios might need to be developed as has been done for the LLMDA 

(Lawrence Livermore Microbial detection array) [47,184] to estimate which infection, 

HSV-1 or HSV-2 or both is more likely based on prior empirical observations from sera 

for both infections respectively and co-infections processed on such an array. 

If there is no obvious overlap observed through a BLAST matrix analysis then an 

n-mer level analysis of overlap should be conducted on both a peptide level and between 

peptides and pathogen proteomes if representing partial proteomes. Given that B-cell 

linear epitopes range from 4-12 amino acids in length and a conformational epitope 

shows 3-mer to 5-mer contiguous contact points within the antibody paratope as 
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ascertained in structural studies, it might be appropriate to note the 3-12 mer overlap and 

exclude pathogens showing significant overlap or print their peptides on a separate sub-

array. A peptide to peptide comparison will allow a priori estimation of 3-mers to 12-

mers in common between genetically unrelated pathogens and expected cross-reactivity 

attributable to these short motifs.  

An example of the benefit of such n-mer short sequence level analysis can be 

provided using data from Andresen  et al [36]. They developed a 900 peptide microarray 

representing peptides from closely related Herpes viruses (HSV-1, HSV-2, CMV, EBV) 

and Hepatitis C virus. They observed specific reactivity to CMV and EBV peptides from 

infected sera tested for those infections. However they were unsuccessful at 

distinguishing these Herpes viruses apart from Hepatitis C infected sera due to broad 

cross-reactivity observed from HCV infected sera towards Herpes virus peptides. Figure 

6- 4 summarizes 173K BLAST searches generated using CMG-biotools representing 

pathogen proteomes from the Andresen et al. study. It represents a comparison of 416 

total proteins in 5 proteomes (5x5=25 comparisons). On a proteome level, there is no 

obvious overlap under stringent BLAST search criteria between HCV and the herpes 

viruses. However, on a 5-amino acid short sequence (n-mer) level, the extent of overlap 

between these proteomes is obvious as summarized in Table 6- 1, Panel A. As expected 

this 5-mer overlap diminishes when searching for identical 9-mers between these 

proteomes (Table 6- 1, Panel B). 
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Figure 6- 4 Pathogen proteome level overlap for pathogens represented in a multiplexed 

900 peptide microarray showing cross-reactivity in Andresen et al (2009).  

The pathogen proteomes included in this comparison are HSV-1, HSV-2, CMV, EBV and 

Hepatitis C. A BLAST hit within the CMG-biotools program is considered significant 

(green) if at least 50% of the two protein sequences being compared are aligned and 

50% of amino acids within the alignment are identical. The last row at the bottom of this 

matrix depicts homology within a given pathogen proteome under the strict BLAST 

search match criteria (grey to red scale). 
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Table 6- 1 Unique 5-mers and 9-mers in-common between pathogens tested on the 

Andresen assay 

A.) Unique 5-mers in 

common HSV2 EBV 

CMV-

HSV5 Hepatitis C  HSV1 

HSV2 36488 2212 2795 173 18833 

EBV 2212 38977 2556 144 2116 

CMV-HSV5 2795 2556 58960 169 2703 

Hepatitis C  173 144 169 3151 167 

HSV1 18833 2116 2703 167 36444 

 

B.) Unique 9-mers in 

common HSV2 EBV 

CMV-

HSV5 Hepatitis C  HSV1 

HSV2 38159 26 15 0 12186 

EBV 26 39939 11 0 24 

CMV-HSV5 15 11 60809 0 15 

Hepatitis C  0 0 0 3154 0 

HSV1 12186 24 15 0 37715 

 

From our own pathogen proteome peptide (PPP) array data, we observed cross-

reactivity to ASFV and Vaccinia peptides from Herpes virus infected individuals 

(Chapter 5). We also noted ASFV peptide cross-reactivity from Vaccinia vaccine 

recipient sera. This cross-reactivity to ASFV and Vaccinia peptides from herpes virus 

infections could not be explained on a proteome level overlap as depicted in Figure 6- 5. 

The Blastmatrix generated using CMG-biotools [155] compares proteomes of the 8 

known variants of herpes simplex virus with Vaccinia and ASFV representing 1294 total 

proteins comparisons (11X11) summarizing 1.49 million BLAST searches. The stringent 
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homology cut-off of 50% identity and 50% length match between query sequences was 

applied. HSV-1 and 2 showed 94.7% identity, HSV-3 showed 4.9% and 4.2% identity 

with HSV-1 and 2 respectively. The two HSV-6 strains showed 65.4% identity among 

themselves and HSV-6 and HSV-7 showed 28.3% (HSV-6 strain: U1102) and 32.6% 

(HSV-6 strain: Z29) identity. On a pathogen proteome protein level there is no overlap 

between ASFV and Vaccinia proteomes with Herpes virus proteomes.  

 

Figure 6- 5 Blast matrix depicting proteome level overlap between Herpes viruses 

(Herpesviridae) and other pox-viruses ASFV (Asfarviridae) and Vaccinia 

(Orthopoxviridae) 

A BLAST hit within the CMG-biotools program is considered significant (green) if at 

least 50% of the two protein sequences being compared are aligned and 50% of amino 
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acids within the alignment are identical. The last row at the bottom of this matrix depicts 

homology within a given pathogen proteome under the strict BLAST search match 

criteria (grey to red scale). 

This cross-reactivity could however be explained by annotating the high number 

of 5-mers in common between these double stranded DNA viruses belonging to distinct 

viral families. Table 6- 2 summarizes the number of 5-mer identical epitopes in common 

between ASFV, Vaccinia and all eight Herpes virus strains. Cells in the table are colored 

with red if the value is greater than 1000 identical 5-mers in common. On a 5 amino acid 

peptide motif level the number of identical unique 5-mers in common between all herpes 

viruses and ASFV ranged from 1,043 to 1,716. There are 1,140 to 1,846 identical 5-mers 

in common between Vaccinia and herpes viruses. Between ASFV and Vaccinia there are 

2,161 identical 5-mers in common. This implies that the probability of humoral 

antibodies generated against one herpes virus infection showing cross-reactivity with an 

identical 5-mer epitope within an ASFV or Vaccinia peptides is plausible. 
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Table 6- 2 Five mers in common between ASFV and Vaccinia proteomes (orange) and 

several Herpes viruses (yellow). 

 

Noting the peptide to pathogen proteome commonality is recommended because 

pathogen proteome space is extremely conserved resulting in overlaps within distinct 

pathogens. To assess if the extent of overlap between life-space pathogens versus those 

randomly generated, is greater than that possible by chance, pathogen proteomes 

matching the original size of the priority pathogens represented on the PPP array were 

generated in-silico using a custom script written in R. The amino acid frequency of 

priority and common pathogen proteomes was calculated using MEGA5 [185]. This 

amino acid frequency observed in life space pathogen proteomes, depicted in Table 6- 3 

was intentionally ignored while generating the random proteomes. The Blast matrix 

program within the CMG-biotools environment was used as before to assess the extent of 

overlap between pathogens due to random chance. There was no overlap observed within 

any of the randomly generated proteomes indicating that amino acid bias is essential for 

inter-pathogen overlap. 
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Table 6- 3 Amino acid frequencies in proteomes of priority pathogens and common 

pathogens 
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 When representing partial proteomes for larger pathogens, while certain peptide 

sequences may be excluded from the array they might be represented through another 

unrelated pathogen’s peptides. If an infected individuals sera shows antibody reactivity 

against these excluded motifs due to them being presented by the pathogen to their 

immune system, that might result in cross-reactivity. For antibody association on peptide 

microarrays short sequence identities are sufficient, but so is the context of presentation 

(surrounding sequence). The surrounding context within a peptide might be inhibitory to 

antibody association. If the context is not inhibitory, then from our experience with 

monoclonal antibody binding (e.g. p53Ab1) we have observed non-cognate reactivity. An 

analysis to estimate commonality between the peptides chosen to be represented on the 

assay and all pathogen proteomes of interest for the assay can help decide whether that 

pathogen’s peptides might need to be presented in a separate sub-array to avoid 

competition between peptides for antibodies. 

Cross-reactivity attributable to common exposures and vaccinations: 

Certain pathogen proteomes might have to be excluded when multiplexing 

priority pathogens on an epitope peptide microarray format to avoid observing residual 

memory antibodies from vaccinations or common infections. Miller  et al. [54] have 

demonstrated through their longitudinal study characterizing Influenza A and 

Cytomegalovirus (CMV) serum antibody in 40 individuals for 20 years that influenza 

antibodies capable of neutralizing the virus increase during the lifetime of an individual. 

CMV antibody titers on the other hand remained stable in the 15 out of 40 individuals 
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that tested positive for CMV in the first assessment. The duration of circulating 

antibodies to common exposure pathogens such as Varicella and Epstein Barr virus 

(EBV) or common vaccinations such as Measles, Mumps, Rubella (MMR vaccine), 

Vaccinia (small-pox vaccine), Clostridium tetani (Tetanus) and Corynebacterium 

diphtheriae (Diphtheria) measured by Slifka and colleagues [53] ranged with half-lives 

from 50 to 200 years and were short-lived for Tetanus (11 years) and Diphtheria (19 

years). Herpes simplex viruses are ubiquitous human pathogens that have a worldwide 

sero-prevalence in the population of up to 90% [186-188].  
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Figure 6- 6 Commonality on a 5-mer sequence level between priority pathogen 

proteomes and common pathogen proteomes such as Herpes viruses and influenza 

vaccine proteomes (highlighted in the legend in yellow).  

In context to the priority pathogens represented on the PPP array, Figure 6- 6 

represents the number of unique 5-mer sequences in common between the priority 

pathogen peptides and common pathogens. The common pathogen proteomes included 

for this analysis were eight herpes viruses and influenza vaccine strains (2006-2009) not 

intentionally represented on the array. The connectogram was generated using an online 
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tool, Circos [154]. The size of the ribbon represents the number of 5-mer sequences in 

common between peptides represented on the array and pathogen proteomes of priority 

and common pathogens. While the extent of overlap between common pathogens 

apparent on a 5-mer level is less in comparison to that observed between some unrelated 

priority pathogens it might be sufficient to drive competition on the assay. 

Thus, when developing extremely sensitive multiplexed pathogen specific assays 

the contribution and presence of these circulating antibodies to persistent common 

pathogens; common vaccinations and homologous pathogens cannot be neglected. To 

summarize this with respect to a multiplexed peptide microarray platform, the antibody 

response observed post exposure to a new priority pathogen could potentially have 3 

primary components. An adaptive immune response specific to the priority pathogen, a 

component representing specific reactivity to epitopes not represented on the array and a 

component representing non-specific, residual reactivity from prior exposure to a 

homologous or unrelated pathogen either part of a vaccination or persistent chronic 

infection. 
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APPENDIX I  

COCCIDIOIDES SPHERULES IN SERA  

INTERFERENCE IN MICROARRAYS – SUPPLEMENTAL FIGURES AND TABLES 

FOR CHAPTER 2  
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The recovery of culturable Coccidioides spherules from blood is 0.4% (n=5,026; 

0.4% = 20 samples) as per a retrospective study from processing 55,788 samples in a 

diagnostic lab in Phoenix (endemic for Coccidioides) [77]. The highest recovery rate of 

this pathogen through culturing techniques is directly from the primary site of infection, 

i.e. respiratory tract specimens is 8.3% (n=10,372; 8.3% = 861 samples).  Coccidioidal 

antigenemia to galactomannan [136] or coccidiodes specific antigens [189,190] has been 

detected in patient sera through ELISA’s for antigens and DNA using PCR [191].  

Fungemia [192] is a common feature of several fungal infections, but only observed in 

the disseminated form of Coccidioidomycosis [193].  The prognosis of these patients is 

poor with mortality rates up to 73% [194] Till date, 113 cases showing fungemia have 

been reported in literature as reviewed by Blair et al. in 2010 [195]. The detection of 

fungemia in Coccidioidomycosis is impeded due to physician’s not ordering the fungal 

blood culture assay or the assay not being performed in clinical laboratories with 

modifications providing higher recovery rates from blood [193]. One such modification is 

the lysis centrifugation system whereby, whole blood is lysed and centrifuged so that the 

microorganisms are released from polymorphonuclear leukocytes and the sediment is 

cultured on appropriate fungal culture media [193]. 

The spherules of Coccidioides range in size from 3 µm to the largest recorded in 

literature from a patient, 262 µm [171]. The following observation is the first report on 

Coccidioidal spherules-like objects observed in Valley Fever (VF) infected patient sera 

and the probable interference they might impose on antibody detecting peptide 

microarrays. Coccidioidal antigenemia in sera is reported to interfere with antigen 
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detection based assays yielding lower true positives. For example, in the MiraVista 

Diagnostic Coccidioidal anti-galactomannan antibodies were used to detect antigenemia 

in EDTA and heat treated sera (73.1% positive) versus untreated sera (28.6% true 

positives detected). In context to the peptide microarray, if Coccidioidal spherules 

capture VF infected individuals antibody, a protocol change allowing dissociation of 

circulating antigen-antibody complexes without degrading antibodies from VF infected 

sera might enhance detection of antibodies on our assay. 

I noted the presence of brightly fluorescent spherule-like globular objects when 

processing patient sera from VF infected individuals (Figure A1- 1, Figure A1- 2).  A 

summary of these incidental observations is presented in Table A1- 1.  The diameter of 

these N=15 spherule-like globules observed from 12 patient sera falls within the range 

observed in clinical samples with the exception of the larger spherules (290 to 

486µm).The size of these objects made it unlikely that they were T or B cells (7-10µm), 

Dendritic cells or Macrophages (10-22µm) Neutrophils (8-15µm) and Eosinophils (10-

12µm) [173] or auto-fluorescent human skin cells [196] from the stratum-corneum (34-

44µm) [197].  The spherule-like objects likely showed high fluorescence in both red 

(IgM-Median fluorescence intensity units (FIU) range: 6,237.5 to 50,358) and green 

channels (IgG-Median FIU range: 1,040 to 11,711).  These images were obtained during 

routine scanning of 1:500 diluted patient sera which was incubated on the VF diagnostic 

peptide sub-array and detected using anti-human secondary antibodies.  Such globular 

objects were not observed on slides when processing any other infected sera (West Nile 

Virus (WNV) infected human sera, F.tularensis Live Vaccine Strain (LVS) vaccinated 
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human sera, Normal human sera, African Swine Fever Virus (ASFV) infected swine sera, 

Influenza PR8 strain infected mouse sera, Vaccinia-Western Reserve strain vaccinated 

human sera) under similar microarray processing conditions.  

 

Figure A1- 1 A screenshot of a spherule-like object (Slide No. CNS00209) as captured 

using GenePix Pro on the VF diagnostic sub-array (slide surface: Aminosilane). 

The distribution of signal in fluorescence intensity (FIU) within the encircled area 

selected is depicted at a wavelength of 649 nm. 
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Figure A1- 2 A screenshot of a spherule-like object (Slide No. CNS00209) as captured 

within GenePix on the VF diagnostic sub-array (slide surface: Aminosilane) 

The distribution of signal in fluorescence intensity units (FIU) within the encircled area 

selected is depicted at a wavelength of 549 nm. 
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Table A1- 1 Summary of Spherules-like objects observed in VF infected individuals sera 

when incubated on aminosilane surface VF diagnostic sub-arrays.  

Signals depicted in Fluorescence intensity units (FIU). 

No. 
Patient 

No. 

Slide 

Num

ber 

Area-

GenePix 

estimate(

µm2) 

GenePix 

estimated 

Diameter 

(µm) 

Mean 

Signal 

FIU 

(649nm) 

Mean 

Signal 

FIU 

(549nm) 

Spherule-

like 

objects 

1 BL55  

(0-407) 

CNS0

0206 
78400 316 

39527 3184 

 

2 
32-555 

CNS0

0146 
21800 167 

13817 3016 
 

3 BL58  

(1-412) 

CNS0

0208 
44000 237 

31604 3842 
 

4 BL58  

(1-412) 

CNS0

0208 
21800 167 

21461 3034 
 

5 BL57  

(0-412) 

CNS0

0209 
96400 350 

47544 11011 
 

6 BL58  

(1-412) 

CNS0

0209 
29200 193 

26146 2568 
 

7 BL61  

(0-413) 

CNS0

0210 
29200 193 

22687 2814 
 

8 BL62  

(0-413) 

CNS0

0213 
73600 306 

25863 3040 
 

9 BL68  

(0-472) 

CNS0

0216 
166100 460 

25608 2690 
 

10 32-

1280 

CNS0

0149 
53600 261 

16971 2935 
 

11 BL49  

(0-391) 

CNS0

0201 
151700 440 

34247 6707 
 



 

259 

 

12 BL49  

(0-391) 

CNS0

0201 
185600 486 

24104 11521 
 

13 
2-7 

CNS0

0123 
35200 212 

11996 1602 
 

14 
64-607 

CNS0

0152 
66400 291 

25537 3474 
 

15 BL52  

(0-401) 

CNS0

0205 
38500 221 

32862 13208 
 

 

Several aspects of processing peptide microarrays are identical to pre-processing 

conditions applied in Immunohistochemistry (IHC).  For example, the peptide microarray 

slide surface used in this analysis was Aminosilane activated with SMCC (primary 

amines present on surface at a density of one free primary amine group ~ per 1nm).  In 

IHC cytospin protocols, cells are fixed on silanated glass slides [198].  The patient sera in 

this assay was diluted 1:500 in the standard microarray incubation buffer and incubated 

on the array at 37°C for 1 hour using the Tecan Pro automated hybridization station.  In 

IHC a short fixing protocol involves fixing the cellular material on plain glass slides for 

30 minutes to 1 hour at room temperature [198,199] or on a 37°C slide warmer.  

Fluorescent dye labeled anti-pathogen antibodies have been used for direct detection and 

differentiation of Coccidioides from other fungal pathogens in microscopy and IHC 

techniques [200].  The direct detection technique involves fixing the pathogen on a glass 

slide and detecting the pathogen with fluorescent dye labeled anti-pathogen serum.  The 

indirect detection technique involves fixing the pathogen on a glass slide, incubating 

patient serum on it and detecting the pathogen bound patient serum using an anti-host 

fluorescently labeled antibody.  The peptide microarray slides were scanned on a Perkin 
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Elmer ProScan Array HT microarray scanner (Melville, NY) in two channels, 633 nm 

(Red wavelength) and 543 nm (Green wavelength) at 10µm resolution.  This scanner 

scans slides from the top, slide-facing surface. The secondary anti-host (human) IgM and 

IgG antibodies are conjugated to fluorescent dyes, Dylight 649 and Dylight 549 

respectively. The microarray images included in this Appendix are from the PerkinElmer 

scanner, but were also scanned using the Agilent ‘C’ scanner (Santa Clara, CA).  The 

Agilent microarray scanner scans the back of the slide with excitation at 633 nm (Red) 

and 532 nm (Green) with 10µm resolution. 

Hypothesis 

In the red and green wavelength, we might be detecting fluorescence from the 

secondary anti-human IgM (5µ) and anti-human IgG (Fcɣ) antibody detecting the Fc 

portion of pre-bound IgM and IgG antibodies from the patient’s serum, on the spherule-

like object.  The fluorescence intensity estimated by GenePix in both red and green 

wavelengths is much higher than background fluorescence observed from these slides. 

This hypothesis could be tested by either culturing the pathogen from patient sera 

listed in Table A1- 1 or checking for fungal auto-fluorescence using UV illumination in 

fluorescence microscopy (serum sediment).  Fungi including Coccidioides spherules are 

known to auto-fluoresce upon UV illumination in the green wavelength [201,202].  This 

fungal auto-fluorescence has been used for diagnosis with a sensitivity of 97.8% and 

specificity of 100% (n=64) to distinguish Aspergillus, Candida and Zygomycetes cases  

in Hematoxylin and Eosin stained tissue sections from several tissue sites by Rao et al 
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[203].  A more sensitive confirmation could be made utilizing PCR to confirm the 

presence of DNA from Coccidioides in centrifuged patient serum sediment [191]  Given 

the paucity of accurate VF diagnostics and variability of symptoms, any approach 

enabling direct detection of VF is useful and is therefore documented in this report. 
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APPENDIX II 

SUPPLEMENTAL DATA FOR CHAPTER 3 – VALLEY FEVER EPITOPE 

PEPTIDES 
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The raw IgG and IgM antibody reactivities in FIU (Y-axis) captured by 83 life 

space epitope peptides representing 4 Valley Fever (VF) immuno-dominant antigens is 

plotted per peptide (X-axis) in these graphs. The 4 antigens were chitinase F (CF) [81], 

Expression Library Immunization Eli-Ag1 [83], Antigen 2 [82] and Coccidioides specific 

antigen (CSA) [84]. These data show the trend (bright red line) in humoral immune 

responses at various stages of Valley Fever infection from CF-Titer=0 (primary) to CF-

titer=256 (dissemination). The advantage of using peptide microarrays is their ability to 

separate each component of the humoral immune response to an infection/exposure. This 

high resolution is advantageous while evaluating whether or not certain VF proteins offer 

protection and could potentially be used as vaccine candidates against VF. For example, 

the signal sequence of Ag2 (amino acids 1-18) is known to be protective in BALBc (VF 

susceptible) mice upon immunization and challenge [204]. In our data as well, some VF 

patients display a high IgG antibody response to Ag2 peptides at the same amino acid 

positions (1-17, 13-29 and 25-41) in primary infection (CF-titer = 1, Figure A2-3). 

At all CF-titers (0, 1, 2, 4, 8, 16, 32, 64, 128, 256) the IgM graphs show higher 

binding than IgG data at multiple epitope sites displaying the breadth of IgM response. 

The IgM response might also be broad because IgM is a much larger molecule (36nm x 

4nm- planar disk) [205] as compared to IgG (20-40nm) [206,207] and is reactive to many 

VF epitope peptides in this solid phase assay (antigen peptide attached to solid slide 

surface). From our own experimental data however, we know that the specificity when 

using IgM data is lower than that obtained using IgG data for distinguishing VF versus 

normal (Table 3-2, Panel A) or VF versus non-VF (normal and LVS, Table 3-2, Panel B). 
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Thus it would be unlikely that IgM array data alone might be sufficient for diagnosis. 

This concept would need to be tested on a larger peptide microarray (>96 peptides). 
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Figure A2-1 IgG antibody reactivity captured on VF epitope peptides (83) from false-

negative CF-titer=0 patients sera (N=54).Each line on the graph represents antibody 

response from one VF sample. 
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Figure A2-2 IgM antibody reactivity captured on VF epitope peptides (83) from false-

negative CF-titer=0 patients sera (N=54) Each line on the graph represents antibody 

response from one VF sample. 
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Figure A2-3 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=1 patients sera (N=9). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-4 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=1 patients sera (N=9). Each line on the graph represents antibody response from 

one VF sample.  
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Figure A2-5 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=2 patients sera (N=15). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-6 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=2 patients sera (N=15). Each line on the graph represents antibody response from 

one VF sample.  
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Figure A2-7 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=4 patients sera (N=8). Each line on the graph represents antibody response from 

one VF sample. 



 

274 

 

 

Figure A2-8 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=4 patients sera (N=8). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-9 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=8 patients sera (N=4). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-10 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=8 patients sera (N=4). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-11 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=16 patients sera (N=10). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-12 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=16 patients sera (N=10). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-13 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=32 patients sera (N=12). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-14 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=32 patients sera (N=12). Each line on the graph represents antibody response from 

one VF sample.  
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Figure A2-15 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=64 patients sera (N=5). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-16 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=64 patients sera (N=5). Each line on the graph represents antibody response from 

one VF sample.  



 

283 

 

 

Figure A2-17 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=128 patients sera (N=3). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-18 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=128 patients sera (N=3). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-19 IgG antibody reactivity captured on VF epitope peptides (83) from CF-

titer=256 patients sera (N=2). Each line on the graph represents antibody response from 

one VF sample. 
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Figure A2-20 IgM antibody reactivity captured on VF epitope peptides (83) from CF-

titer=256 patients sera (N=2). Each line on the graph represents antibody response from 

one VF sample. 
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1.) F. tularensis Vaccine Project: Overcoming ELISA limitations using the pathogen proteome 

peptide (PPP) array 

The pathogen proteome peptide (PPP) array was used to discern the antibody response 

generated from Francisella tularensis vaccinated rat sera. The study involved serum samples 

from the following 4 groups of immunized rats provided by our collaborators at the University of 

New Mexico as part of their Tularemia vaccine development consortium (TVDC) project: 

 Group 1 – Naïve rats 

 Group 2 – Francisella tularensis Live Vaccine Strain (LVS) vaccinated  

 Group 3 – O-Antigen mutant Francisella tularensis SchuS4 strain vaccinated 

 Group 4 – Immunized with 23 SchuS4 Proteins [Only 1 protein out of these 23 was 

represented on the PPP array, in the form of 30 non-contiguous peptides. The PPP array 

carried 862 Francisella tularensis SchuS4 peptides in total]. 

We anticipated significant differences in the antibody responses among these 4 groups 

based on observations through similar studies [208]. However, this serum set did not show 

statistically significant difference between Naïve (Group1) versus Vaccinated (Groups 2, 3, 4) 

when tested by ELISA. The limit of detection (LOD) of antibodies on peptide microarrays is 

between 0.5 to 2ng/ml, many-fold lower than an ELISA’s LOD, 7ng/ml [158,209]. Therefore, I 

attempted to use a more sensitive technology to be able to measure subtle differences in immune 

responses between these 4 different groups. I hypothesized that pathogen specific peptides fixed 

in a microarray format, such as the PPP array, would enable smaller differences in the immune 

response to be detected. As a proof of concept, Figure A3- 1 shows the antibody response 
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generated by individual rats within the 4 groups as captured using 862 F. tularensis (SchuS4) 

peptides on the PPP array.  

 

Figure A3- 1 Box plots of immune response from individual rats per group (X-axis) as captured 

on 862 F. tularensis (SchuS4) peptides printed on an array. The raw (un-normalized) 

fluorescence intensity units (FIU) are plotted on the Y-axis on a log scale. The line at the center 

of every box represents the median signal intensity for that individual rat. 

When these antibodies were measured by ELISA, all animal sera in each group were 

pooled.  However, here on the PPP array, Rat 1 in the Naïve set shows a higher antibody 

response as compared to other rats within the Naïve group. This disparity in immune response 

within animals belonging to the same group has been observed in other studies [162]. It is thus 

obvious through the use of a more sensitive technology such as the pathogen proteome peptide 

microarray that Rat 1 from the Naïve set might bias the observation in a pooled ELISA leading 
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to non-observable differences between the 4 groups. This assay could thus be used to trace 

underlying reasons for lower statistical differences between groups when pooling sera due to 

single outliers such as Naïve Rat 1 from Group 1. An appropriate analysis to estimate whether or 

not the response from the treated group is indeed statistically significantly different due to the 

treatment (vaccination or genetic immunization) as compared to Naïve would be to calculate the 

statistical differences between the mean responses of Naïve versus treated both with and without 

the outlier. Table A3- 1 summarizes the statistical differences between Naïve versus the 3 

immunization groups using data from PPP array FTT peptides. As expected, the whole pathogen 

vaccine LVS shows the most significant difference when compared to Naïve. However the 

average antibody response observed on vaccinating with the O antigen mutant SchuS4 strain 

(group 3) was lower than that of Naïve rats. In comparison the 23 protein immunization also 

shows a significant p-value over Naïve above cut-off 0.001. Protection data post-challenge might 

be more indicative of the impact of these three vaccination strategies on these groups of animals. 

Table A3- 1 Difference between immunization groups and Naïve sera using PPP array data 

Groups 

Mean 

Signal 

(FIU) 

Standard 

Deviation Variance 

p-value (single 

tailed, two-

sample 

unequal 

variance) 

Group 1 - Naïve 300 227 51565   

Group 2 - LVS Vaccine 701 694 481871 6.61E-305 

Group 3 - O Ag 

Mutant SchuS4 207 245 60038 7.08E-89 

Group 4 - 23 protein 

immunization 419 596 355696 8.57E-41 

 

p-value cut off = 1/n = 1/862 FTT peptides = 0.00116 
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A more informative set of peptides for completing this comparison should be ones 

representing the whole proteome of F. tularensis (SchuS4 and LVS). This would allow a 

comparison of antibody responses from individual animals vaccinated with the complete 

pathogens (LVS-Group2 or SchuS4-Group3) versus those that were immunized using 23 

proteins from F. tularensis (SchuS4)-Group4. These peptides should be printed on an array by 

themselves instead of within the context of other pathogen peptides. This would reduce 

competition on the array from other unrelated pathogen peptides for capturing Francisella 

specific antibodies as observed from the addition of influenza peptides to the PPP array in 

Chapter 5. 

Conclusion: The pathogen proteome peptide microarray can be used to segregate minor 

differences in the immune response generated from individuals within the same group. 

Additionally it also allows for more sensitive differences in antibody response between 

immunization groups beyond those observable through an ELISA. 

 

2.) ASFV Vaccine project: Mapping humoral response from genetic immunization using the 

PPP array 

The African Swine fever virus (ASFV) is a double stranded DNA virus from the family 

Asfarviridae. The disease infects wart-hogs, bush-pigs, domesticated pigs and ticks. 

Phylogenetically it is very closely related to the human infection causing viruses from 

Herpesviridae and Poxviridae (Variola-smallpox) families [40]. The swine sera were obtained 

from Dr. Linda Dixon at the Institute of Animal Health (IAH), Pirbright, UK and the primary 

goal of that project was to create a vaccine protective in domestic pigs against ASFV. It is a 
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priority pathogen of interest on the U.S Department of Agriculture (USDA) list [39] due to its 

ability to potentially infect humans [40].  

The following double vaccinia boosted, sera from 4 groups of six inbred pigs/group was 

obtained from IAH, Pirbright as follows:  

Group 1: Randomly selected antigens 1-20 + Vp30, Vp72 

Group 2: Randomly selected antigens 21-40 + Vp30, Vp72 

Group 3: 12 known surface antigens (including Vp30, Vp72) 

Group 4: Vp30, Vp72 

The above sera are part of a Genetic Immunization Screen (#2) to optimize the expression 

library immunization (ELI) [210] protocol for pigs. These animals were not challenged with the 

virulent strain of ASFV post-genetic immunization. Vp30 and Vp72 proteins in group 4 are 

immunodominant antigens of ASFV, as established by conventional ELISA and Western blot 

assays [107,211]. Immunization with these antigens produces neutralizing antibodies against the 

virus [108]. These proteins were included in every group as a genetic immunization control and 

their reactivity was measured in all sera by ELISA.  

We selected 299 peptides to print on the PPP array that represent antigens from group 3 

and group 4. Peptides representing all proteins in group 1 and group 2 would comprise 1000 

additional peptides required to complete this analysis. As an initial proof of concept that the 

peptide microarray is capable of accurately capturing ASFV specific antibody responses post-

genetic immunization, Figure A3- 2 displays the range of immune responses per individual 

animal using Box-Cox plots. Data for groups 1 through 4 immunized animals in comparison to 

one Day 0 sera from group 1 and the special pathogen free (SPF) out-bred ASFV infected and 
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uninfected pigs within the French cohort is plotted. The immune response mounted in all 4 

groups of genetically immunized animals as captured by 299 peptides is equivalent to that 

mounted in a real infection (French cohort) and captured by the antigens in group 3. All 4 groups 

were immunized using Vp30 and Vp72 which were included as peptides on the array, in addition 

to 20 other antigens in groups 1 and 2 and 12 additional antigens in group 3. 

 

Figure A3- 2 A simultaneous comparison of infectious (French cohort) versus genetic-

immunization (UK cohort) antibody responses as captured by 299 ASFV peptides on PPP array. 

The box-plot depicts raw (un-normalized) fluorescence intensity units (FIU) plotted per 

individual animal on the Y-axis using a log scale. The French cohort represents a separate 

experiment involving ASFV infected and uninfected out-bred pigs. One day zero (D0), pre-
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immunization sample and all day final – post-immunization (DF) samples from the UK cohort 

are presented on the X-axis.  

The Day 0 sample from swine no. 393 of group 1 had a higher antibody response even 

pre-immunization as expected than that of the 2 uninfected negative control SPF pigs in the 

French cohort. It was processed on the array to test whether it would be worthwhile to subtract 

the pre-immunization response of individual out-bred pigs (UK cohort) from their post-

immunized samples. The medians of antibody responses capture by the 299 ASFV peptides from 

group 3 and 4 protein immunized animals were comparably higher (except Day Final-DF pig 421 

from group 4) than the immune response observed from an infection (French cohort). 

Apart from Vp30 and Vp72, none of the 20 distinct antigens of group 1 or 2 were 

represented on the PPP array. As mentioned in Chapter 4, Supplementary Figure 4-3, the overall 

reactivity captured on PPP arrays from ASFV sera despite dilution (1:500) was much higher than 

that observed from any of the human exposures tested (VF, WNV, LVS, Vaccinia). Figure A3- 3 

shows a similar trend when using genetically immunized sera from groups 1 through 4.  The 

average signal obtained per individual swine sera in all 4 groups on the PPP array seems roughly 

proportional to the number of antigens they were exposed to per genetic immunization group (22 

constructs each in groups 1 & 2, 14 constructs in group 3 and 2 in group 4). The extent of cross-

reactivity observed from this assay to non-ASFV peptides was high due to the total antibody 

response captured despite processing these arrays under optimized thermodynamic conditions to 

reduce cross-reactivity (incubating sera for 16 hours at 23°C). 
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Figure A3- 3 Average signal captured by PPP array for 4 groups of ASFV genetic immunization 

are depicted with every animal’s antibody response represented per bar on the X-axis.  

The background subtracted average raw (un-normalized) signal intensity data is plotted on the 

Y-axis. One Day 0 – pre-immunization (D0_393) and all Day Final – post-genetic immunization 

(DF) pig sera are depicted in these bar graphs.  

Once conditions for the genetic immunization of pigs were established through this 

experiment, and it was confirmed that the immunization led to both T-cell (Pirbright) and B-cell 

responses (ELISAs, PPP array-CIM), they were applied to the next two immunization regimes. 

Both immunization protocols contained a boosting step using recombinant Vaccinia viruses 

(rVV), each expressing an ASFV gene. A group of such recombinant Vaccinia viruses were then 

combined into a single inoculum and delivered to the animals 2 and 3 weeks post the gene gun 

immunization. Each recombinant Vaccinia virus containing one ASFV antigen was present at 

109pfu/dose. Each pig received 2 x 109 pfu/100µL dose of rVV. A summary of the steps involved 

in these genetic immunization regimes are as follows: 
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1. Day 0 & 2/3: Double prime + CPG adjuvant (left & right ear-5 gene gun shots) 

2. 2 Weeks later: DNA Boost + CPG adjuvant (left & right ear-5 gene gun shots) 

3. 3 Weeks later: 1st recombinant vaccinia boost (intra-dermal) 

4. 2 Weeks later: 2nd recombinant vaccinia boost (intra-dermal) 

Immunization Protocol # AR000158:  

Although Vp30 and Vp72 are immunodominant antigens for ASFV, there are 

confounding reports on whether or not groups of neutralizing antibodies generated against these 

antigens are sufficient to protect against challenge with a virulent ASFV strain. Barderas et al. 

have shown that immunization of pigs with a chimeric protein combining Vp30 and Vp54 

proteins was sufficient to protect them against a virulent ASFV isolate E75 challenge [106]. 

Neilan et al. immunized pigs with baculovirus expressed ASFV-pr4 isolate Vp30, Vp72, Vp54 

and Vp22 antigens and found that they did not survive post-challenge with the pr4 strain [108]. 

An experiment was conducted to isolate the effect of adding Vp30 along with the bin of antigens 

in all Groups. The rationale for this experiment was to test if Vp30 alone or in combination with 

Vp72 was responsible for the non-protective immune response as observed by Neilan et al. [108] 

Group A: all antigens from previous Groups 1, 2 and 3 [= 37 antigens including Vp30] (6 pigs) 

Group B: all antigens except Vp30 (6 pigs) 

Group C: no ASFV antigens, irrelevant antigens for challenge control-HA, AAT, gp160 (3 pigs) 

Post vaccination, pigs were intramuscularly challenged with 104 (50% hemadsorbing 

doses) HAD50/ml ASFV strain Georgia 2007/1 (Genotype-II).  None of these animals survived 

the challenge and had to be humanely euthanized on day 6 and 7 post-challenge. Collaborators 
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from IAH sent information on viral load estimated via PCR from blood and tissues (spleen, 

tonsil, mesenteric & gastro-hepatic lymph nodes) on the third day post-challenge. They also sent 

other clinical parameters such as weight gain in kg, temperature per individual and clinical 

scores based on the severity of disease symptoms manifested. Group A pigs showed moderately 

higher viraemia in blood on day 3 as compared to pigs from group B. Group C pigs showed 

higher viraemia as expected in comparison to groups A and B. All individual pigs in group A, 

showed higher weight loss as compared to weight gain observed in 4 out of 6 pigs in group B 

and 4 out 6 group C pigs. Normal body temperature in pigs is 38-39°C, and temperature of 

febrile pigs in the immunized groups A and B raised to greater than 40.5 two days post-challenge 

where as that of group C pigs became febrile three days post-challenge (except pig C5, febrile on 

day 2). A clear bifurcation in the distribution of viraemia in blood was observed between 

individual animals in all three groups. The sera for two pigs showing higher viraemia and two 

showing lower viraemia in blood per group were processed on the PPP array and data presented 

in Figure A3- 4.  
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Figure A3- 4 Humoral immune response as measured on PPP array from Group A, B, C pigs 

sera post-challenge with ASFV 

Average signal intensities in FIU (Y-axis) from animals in groups A, B and C (X-axis) as 

measured using ASFV (red bars) and Vaccinia (blue bars) peptides on the pathogen proteome 

peptide (PPP) microarray. The error bars represent standard error. 

Figure A3- 4 represents the average signal intensities from ASFV as well as Vaccinia 

(rVV boost) peptides as measured from capturing antibodies from individual pig sera. Pigs A5 

and A6 had lower viraemia as compared to pigs A1 and A2 and this seems to correlate with 

observing a marginally higher relative antibody response in pig A5 and a significantly higher 

response in pig A6 as compared to A1 and A2. Pigs B4 and B6 had lower viremia as compared 

to pigs B2 and B3 but the antibody response captured on the PPP array does not reflect a clear 

correlation between viraemia and antibody response. 
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Figure A3- 5 Signal intensities from ASFV peptides averaged per ASFV protein as measured on 

the PPP array from group A, B and C samples post-ASFV challenge.  

Figure A3- 5 represents the signal averaged for peptides per ASFV protein from 

individual animals in groups A, B and C. The control group C animals were not genetically 

immunized with ASFV antigens and still mounted a strong antibody response to challenge 

infection especially pig C1. Additional comparisons might be necessary to establish whether the 

PPP array platform can be used to correlate protection post-challenge. 

The Immunosignature non-natural sequence peptide microarray has been used to 

distinguish the outcome from different vaccine regimens [75]. The pathogen proteome peptide 

microarray could be potentially used for similar studies. Figure A3- 6 displays an individual 

pigs’ antibody response as captured by the PPP array from group A before immunization, after 
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immunization and post-challenge. Panel B displays an individual pig’s antibody response from a 

separate experiment, before and after immunization with an attenuated ASFV vaccine strain and 

post-challenge with ASFV Georgia/2007 strain. In both cases the antibody immune response to 

the challenge was lower as compared to that observed post-immunization. In Panel B, the 

recombinant vaccinia vector containing ASFV antigens was not used for boosting the immune 

response from the immunization and yet the peptide microarray captures cross-reactivity to 

Vaccinia peptides. Ideally, for mapping the protective response post-immunization and challenge 

the peptides for the complete ASFV viral proteome should be printed on a separate microarray 

by themselves and not within the context of other pathogen peptides as done here on the PPP 

array. 

 

Figure A3- 6 Average signal intensities in FIU (Y-axis) from various stages (X-axis) in two 

separate immunization and challenge regimes.  

Panel A displays the antibody response as captured by PPP array peptides representing ASFV 

(red bars) and Vaccinia (blue bars) peptides and Panel B displays the antibody response from 
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another pig immunized with the ASFV OURT88/3, attenuated vaccine strain. Both pigs were 

challenged with ASFV Georgia/2007 virulent strain. The error bars represent standard error. 

Despite the observable cross-reactivity when printing multiple pathogen peptides on a 

single assay, an advantage of using the PPP microarray is its ability to resolve linear antibody 

epitope within immunodominant antigens despite significant competition from several other 

unrelated pathogen peptides. Figure A3- 7 displays the significant epitopes within the 

hierarchical clustering map of Vp30. Figure A3- 8 displays Vp72 with a high resolution mapping 

of exactly which linear peptide segments the individual pigs were responding to post-challenge. 

 

Figure A3- 7 Peptides tiling Vp30 (ASFV127) an immunodominant antigen of ASFV displaying 

individual (X-axis) responses from sera on PPP array.  
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Every column represents one individual pig and every row represents one peptide within the 

ASFV127 protein. The coloring within this heatmap is based on median normalized signal 

intensities obtained from the microarray. Blue squares represent no antibody binding whereas 

yellow to orange represent moderate-high binding of antibody to those peptides on a relative 

scale as colored in GeneSpring GX 7.3.1 (legend on right). 

 

Figure A3- 8 Peptides tiling Vp72 (ASFV113) an immunodominant antigen of ASFV, displaying 

individual (X-axis) responses from sera on PPP array.  

Every column represents one individual pig and every row represents one peptide within the 

ASFV113 protein. The coloring within this heatmap is based on median normalized signal 
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intensities obtained from the microarray. Blue squares represent no antibody binding whereas 

yellow to red represent high binding of antibody to those peptides on a relative scale as colored 

in GeneSpring GX 7.3.1 (legend on right). 

Table A3- 2 summarizes the T-test p-value results reflecting statistical significance of 

groups A and B over control non-ASFV genetic immunization (group C) sera.  The p-value was 

calculated using antibody signal intensities captured using ASFV and Vaccinia peptides on the 

PPP array between groups A and B versus group C. Both groups A and B are statistically 

significantly different as compared to the control group (p-value cut-off = 0.001155). The mean 

antibody response post-challenge in group B is statistically significantly lower as compared to 

the control group C. The addition of Vp30 in group A resulted in statistically significantly higher 

mean antibody response as compared to animals in group C post-challenge.  

Table A3- 2 Summary of statistical differences between groups A, B and control group C post-

ASFV challenge. 

Groups Mean 

Standard 

Deviation Variance 

p-value 

(single 

tailed, 

paired) 

A 15718 16037 257172615 5.00099E-63 

B 7254 5173 26764966 1.0717E-106 

C 10370 7875 62020663   

p-value cut off = 1/no. of ASFV + Vaccinia peptides = 1/866 = 

0.001155 
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The protective ability of Vp30 however could not be assessed using this immunization 

regime as all pig’s perished post-challenge. It was estimated that the immune system of pigs in 

group’s A and B was likely overwhelmed due to the amount of DNA injected from 37 and 36 

ASFV genes respectively. An alternate protocol was therefore attempted with a balanced and 

reduced DNA load in immunization protocol # AR000302. 

Immunization Protocol # AR000302: 

Group A: 21 antigens (contains Vp30) 

Group B: 16 antigens approximately equivalent in DNA size to 21 antigens in group A. This was 

done so as to roughly normalize for the amount of genetic material used for immunization 

between Groups 1 and 2. 

Group C: no ASFV antigens, irrelevant antigens for genetic-immunization control-HA, AAT, 

gp160. 

None of the pigs survived post-challenge. Our collaborators from IAH sent us in-vitro T-

cell response to virus as measured by an IFN-ɣ ELIspot assay pre-challenge and post-

immunization and boost from Day 70. Pigs from group A (A3, A4 and A5) showed a higher T-

cell response as compared to those from groups B and C. This observation correlates with our 

antibody measurement using PPP array as summarized in Table A3- 3. Group A had a 

significantly higher mean antibody response as compared to the immunization control group C. 

The antibody response as measured in group B was not significant at the p-value cut-off of 

0.001.  
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Table A3- 3 T-test p-value from samples on Day 70 post-immunization and boost, pre-challenge 

as captured using ASFV and Vaccinia peptides on PPP array 

Groups  Mean 

Standard 

Deviation Variance 

p-value 

(single tailed, 

two-sample, 

unequal 

variance) 

A 22723 13140 172649302 1.74057E-42 

B 18316 11988 143704928 0.017567 

C 17575 15348 235549616   

 

p-value cut-off: 1/n = 1/866 = 0.001155 

 

Figure A3- 9 summarizes the results from measuring the antibody response on the PPP 

array. Day 70 is after the second live vaccinia-ASFV construct boost and one day before 

challenge. Day 76/77 is a time point post-challenge before these animals were humanely 

euthanized. The immediately observable trend from this data is that of lower signals on Day 

76/77 and this might be because these samples were severely hemolyzed and coagulated, making 

them unusable for this comparison.  
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Figure A3- 9 Signal intensities averaged per ASFV protein (N=12) tested in the form of peptides 

on the PPP microarray.  

Day 70 (post-immunization and one day pre-ASFV challenge) and Day 76 (post-ASFV 

challenge) sera per pig are depicted on the X-axis. The Y-axis displays the average raw (non-

normalized) signal intensities from background subtracted microarray data in FIU. 

In summary, the antibody response obtained from group A, pigs A1 and A3 were higher 

post-immunization and boost as compared to that obtained from group B pigs, not immunized 

with Vp30, except pig B5, and group C control pigs (except pig C3). Given that neither of these 

animals survived post-challenge, the protective effect of including Vp30 could not be isolated. 

Conclusion: The PPP microarray can be used to distinguish the immune response generated 

during various modulations of an immunization regime using genetic-immunization. Additional 
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sera need to be processed to compare if quantifiable differences in the immune response due to 

vaccination using an attenuated virus versus genetic-immunization could be accurately 

distinguished using the PPP array. 

3.) IVTT bead protein array–Rapid screening of immunogenic/immunodominant proteins 

The IVTT bead protein array is part of the MPID (Membrane proteins in Infectious 

diseases) grant. Performing in-vitro translation of proteins in the presence of uncoupled (without 

protein anti-tag antibody) tosyl-activated magnetic beads, results in binding of the membrane 

proteins to the beads. This is an irreversible hydrophobic interaction which allows the membrane 

protein to stabilize on the tosyl-activated bead surface. The beads containing proteins are printed 

onto aminosilane glass surface using sonication printing technology developed by Matt Greving. 

All proteins printed on the slide have the folding reporter green fluorescent protein (frGFP) 

construct integrated within their expression cassette. The frGFP construct was included to allow 

a quick quality control over the spotting and appropriate folding and presentation of these 

proteins by measuring the fluorescence from frGFP [excitation 490nm, emission 510nm [212]] 

under the blue wavelength (488 nm) on the Perkin Elmer ProScan Array HT microarray scanner 

(Melville, NY).  

Sonication printing protocols 

Three different print protocols were used for printing in the first print run so as to be able 

to optimize for the best printing conditions going forward. The array was initially printed with 13 

reagents, some proteins being captured on Dynabeads MyOne-1 µm diameter bead versus some 

on M280-2.8 µm beads from Life Technologies (Grand Island, NY) as listed: 

1.) frGFP LEE (Linear Expression Element) [213] #1 - MyOne 
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2.) frGFP LEE#2 - MyOne 

3.) ASFV113-F1 - MyOne 

4.) ASFV113-F2 - MyOne 

5.) FTT0583-frGFP - MyOne 

6.) FTT1258-frGFP - MyOne 

7.) GFP-HA in pET 32 - MyOne 

8.) Mock IVT (no template) – Negative control 

9.) My one beads – clean (no protein bound) – Negative control 

10.) frGFP LEE#1 – M280 

11.) frGFP LEE#2 - M280 

12.) ASFV113F1 - M280 

13.) GFP-HA in pET 32 - M280 

Out of the 13 reagents mentioned above, only proteins 3, 5, 6, 7, 12 and 13 were 

expressed and observed on a protein gel during pre-printing quality control. Reagents numbered 

8 and 9 are negative controls to allow estimation of background fluorescence from spots due to 

either the beads themselves or the IVT reagent mixture. All proteins represented on the array 

have the folding reporter GFP tag on them. The same calibration file was used for all 13 

solutions.  However sample 9 did not print consistently with these conditions in initial tests.  It 

was removed from the map and printed afterwards with a slight increase in energy onto the same 

slide. 

Slide 1: 400787 
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5µL of each bead-PBS buffer solution were placed in a 1536 well plate.  Each sample 

was laid out in a square pattern of 4 replicates. A dot pitch of 0.5mm was used, which is the 

distance between IVTT bead protein spots on array.  The samples were printed in a randomized 

manner with each well ejecting 10 times and hitting 10 different blocks of 4 in order to ensure 

even drying on the surface.  The rapid cycling through the sets of 13 samples was an attempt to 

ensure that the beads remained in suspension in the solution over the entire time of the print (~20 

minutes.) Slide 3 (400931) was printed using this same protocol. 

Slide 2: 400940 

The print plate from slide 1 was used for slide 2 and a pitch of 0.5mm was used for 

printing the slide.  However, in order to test the quality of the suspension over time, each sample 

was printed completely (~350 prints) before moving on to the next sample.  Additionally, each 

well was primed onto a disposable surface between each print on the final slide.  Visually this 

produced worse alignment of reagents on the slide as compared to slide 1. This might perhaps be 

due to the loading and unloading of the target plate. The plate map for the 0.5mm pitch is 

included in Figure A3- 10. 
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Figure A3- 10 Plate map for 0.5 mm pitch sonication printing protocol.  

The red and white squares in a ‘Z’ pattern show location of proteins expressed in IVTT on the 

array, green show the location of negative control and un-expressed proteins.  

Slide 4: 400941 

The slide was printed with a pitch of 0.75mm.  The printing was done with 5 prints from 

each source well.  Sample 9 printed slightly off target alignment but within register from the rest 

of samples.  This is most likely due to the unloading of the target for priming. The plate map for 

the 0.75mm pitch is included in Figure A3- 11. 
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Figure A3- 11 Plate map for 0.75 mm pitch sonication printing protocol.  

The red and white squares in a number ‘1’ pattern show location of proteins expressed in IVTT 

on the array, green show the location of negative control and un-expressed proteins. 

For quality control, the arrays were screened using a polyclonal Rabbit anti-frGFP 

primary antibody and appropriate reactivity detected using a secondary Alexa Fluor 647 

conjugated antibody as seen in Figure A3-12, Panels A, B and C. In all four panels, the green 

spots are from bead-protein mixtures where the protein were not expressed and therefore the 

folding reporter GFP could not be detected with the anti-frGFP antibody. The orange-red 
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fluorescence is from the polyclonal rabbit anti-GFP antibody binding the GFP protein tag, 

detected using an Alexa Fluor 647 labeled anti-rabbit secondary antibody in panels A, B and C. 

In panel D the faint orange fluorescence from certain spots highlighted with white dotted lines is 

from the anti-mouse Alexa Fluor 647 labeled secondary antibody detecting mouse antibodies to 

cognate antigens used in immunization. The spot margins are much more regular at 0.75 mm 

pitch (Slide 4) instead of the 0.5 mm pitch (Slide 1, 2 and 3) The printing protocol used for Slide 

2 produced some brighter spots due to the same protein being printed on the whole slide (~350 

prints) first and then resuming other proteins sequentially. But the positioning of these spots was 

extremely irregular making alignment using the GenePix Pro (Molecular Dynamics, Sunnyvale, 

CA) program difficult. The signal intensities obtained from testing these 4 slides are represented 

in Table A3- 4 (Section A-D). 
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Figure A3-12  Anti-GFP antibody reactivity captured from translated proteins on IVTT bead 

protein array. 

Panels A, B and C show orange dots representing anti-GFP antibody recognizing the GFP tag 

on IVTT proteins on beads being detected by an Alexa Fluor 647 labeled secondary antibody. 

Panel D shows the anti-FTT583 protein polyclonal mouse sera detected using an anti-mouse 

secondary binding cognate bead-protein spots (highlighted using grey dotted squares).  
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Table A3- 4 Signal captured from slides included in the printing protocol comparison in 

Fluorescence intensity units (FIU).  

The count N represents the number of replicates printed & measured per reagent on a given 

slide.  

A.) Rabbit anti-GFP (polyclonal) - 5nM (Slide 1-400787, pitch=0.5 mm) 

Reagent 

No. Reagent 

Protein 

Expression Count(N) 

Min 

(FIU) 

Max 

(FIU) 

Mean 

(FIU) 

Median 

(FIU) 

1 

rGFP_LEE#1 

(MyOne) -ve 167 98 220 137 132 

2 

rGFP_LEE#2 

(MyOne) -ve 169 112 263 147 141 

3 

ASFV113-F1 

(MyOne) +ve 170 236 9952 2656 1721 

4 

ASFV113-F2 

(MyOne) -ve 176 104 268 138 136 

5 

FTT0583 in 

GFP 

(MyOne) +ve 171 859 18593 4142 3290 

6 

FTT1258 in 

GFP 

(MyOne) +ve 171 152 6416 1661 1032 

7 

GFP-HA-in 

pET32 

(MyOne) +ve 168 378 5045 1352 1111 

8 

Mock IVT 

(IVT 

reaction/no 

template) 

(MyOne) -ve 174 112 296 168 166 

9 

MyOne 

beads clean -ve 170 99 165 121 119 

10 

rGFP_LEE#1 

(M280) -ve 166 107 228 147 143 

11 

rGFP_LEE#2 

(M280) -ve 167 104 237 131 127 
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12 

ASFV113-F1 

(M280) +ve 174 139 4277 2096 1978 

13 

GFP-HA-in 

pET32 

(M280) +ve 172 203 1553 431 379 

        B.) Rabbit anti-GFP (polyclonal) - 5nM  (Slide 2-400940, pitch=0.5 mm) 

Reagent 

No. Reagent 

Protein 

Expression Count(N) 

Min 

(FIU) 

Max 

(FIU) 

Mean 

(FIU) 

Median 

(FIU) 

1 

rGFP_LEE#1 

(MyOne) -ve 305 123 378 203 201 

2 

rGFP_LEE#2 

(MyOne) -ve 312 132 405 201 200 

3 

ASFV113-F1 

(MyOne) +ve 312 518 16820 2812 1403 

4 

ASFV113-F2 

(MyOne) -ve 307 119 371 174 170 

5 

FTT0583 in 

GFP 

(MyOne) +ve 312 238 6064 2170 1637 

6 

FTT1258 in 

GFP 

(MyOne) +ve 312 331 8450 1702 1016 

7 

GFP-HA-in 

pET32 

(MyOne) +ve 312 342 8017 2123 1614 

8 

Mock IVT 

(IVT 

reaction/no 

template) 

(MyOne) -ve 305 127 338 171 166 

9 

MyOne 

beads clean -ve 300 111 318 197 197 

10 

rGFP_LEE#1 

(M280) -ve 308 135 290 204 203 

11 

rGFP_LEE#2 

(M280) -ve 313 0 376 204 200 

12 

ASFV113-F1 

(M280) +ve 312 741 41258 6338 4710 
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13 

GFP-HA-in 

pET32 

(M280) +ve 312 352 14723 2654 1658 

        C.) Rabbit anti-GFP (polyclonal) - 5nM  (Slide 4-400941, pitch=0.75 mm) 

Reagent 

No. Reagent 

Protein 

Expression Count(N) 

Min 

(FIU) 

Max 

(FIU) 

Mean 

(FIU) 

Median 

(FIU) 

1 

rGFP_LEE#1 

(MyOne) -ve 164 76 224 149 157 

2 

rGFP_LEE#2 

(MyOne) -ve 166 79 237 143 140 

3 

ASFV113-F1 

(MyOne) +ve 164 181 13491 2080 1632 

4 

ASFV113-F2 

(MyOne) -ve 164 76 208 139 143 

5 

FTT0583 in 

GFP 

(MyOne) +ve 164 217 18515 2623 1701 

6 

FTT1258 in 

GFP 

(MyOne) +ve 166 140 6143 1484 1391 

7 

GFP-HA-in 

pET32 

(MyOne) +ve 164 110 2657 673 561 

8 

Mock IVT 

(IVT 

reaction/no 

template) 

(MyOne) -ve 164 92 225 172 184 

9 

MyOne 

beads clean -ve 166 66 229 137 138 

10 

rGFP_LEE#1 

(M280) -ve 164 72 251 152 161 

11 

rGFP_LEE#2 

(M280) -ve 164 75 218 141 144 

12 

ASFV113-F1 

(M280) +ve 166 178 10222 2645 2383 

13 

GFP-HA-in 

pET32 

(M280) +ve 162 89 1777 434 344 
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D.) Polyclonal mouse anti-FTT0583 sera (1:500 diluted) - (Slide 3-400931, 

pitch=0.5mm) 

Reagent 

No. Reagent 

Protein 

Expression Count 

Min 

(FIU) 

Max 

(FIU) 

Mean 

(FIU) 

Median 

(FIU) 

5 

FTT0583 in 

GFP 

(MyOne) +ve 168 108 505 190 156 

 

On slide 1-400787 (Table A3- 4, Section A), from the maximum signal captured, MyOne 

bead-proteins showed higher signal as compared to M280 for 2 antigens ASFV113-F1 and 

Hemagglutinin (HA). This is an unexpected result given that M280 beads have a larger surface 

area as compared to MyOne beads. One reason why this might have happened could be due to 

lesser retention of M280 (larger) beads on the aminosilane surface as compared to MyOne beads 

during slide processing. Bead run-off before and after microarray processing would be difficult 

to estimate. Alternatively, the suspension time of beads in buffer during printing might be more 

important for M280 (heavier) beads. The effect of suspension time on beads is tested in Section 

B on slide 2-400940 whereby one reagent is printed on the complete slide before moving onto 

the second reagent. Here as expected M280 bead-proteins show higher signal intensity as 

compared to MyOne for both proteins ASFV113-F1 and HA. The quality of suspension 

decreases over time as observed when comparing intensities obtained from these two proteins 

between Section A and B. Higher sonication energy was used to deposit beads in slide 4 – 

400941 (Table A3- 4, Section C) to estimate if doing so would equalize the amount of deposited 

bead-proteins regardless of the bead diameter. Increase in sonication energy was sufficient to 

overcome the difference in spotting between M280 and MyOne bead-proteins and resulted in 

better spot morphology as compared to Slides 1 and 2. 
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We also probed the array with polyclonal sera from mice immunized with protein # 5 

(FTT0583) and protein # 6 (FTT1258). The overall signal obtained from polyclonal sera was low 

and very close to background as depicted in Figure A3-12, Panel D and Table A3- 4, Section D. 

This observation might be because polyclonal sera takes longer to equilibrate as observed from 

the pathogen proteome peptide (PPP) microarray in Chapter 4 and we only incubated the primary 

polyclonal sera for 1 hour during our initial test. Going forward, we would be testing polyclonal 

sera reactivity observed after 16 hours of incubation, which is recommended for protein 

microarrays [214].  

For the next set of experiments, I would recommend testing different slide surfaces and 

using the print protocol that was approved in this first round of comparison. Again quality 

control testing should be repeated using the polyclonal anti-tag antibody so as to decide which 

slide surface provides maximum retention of beads. This technology could potentially be used 

for screening proteins from a pathogen whose epitope peptides have not been empirically 

mapped in literature or the Immune Epitope DataBase (IEDB) to rapidly identify both 

immunoreactive and immunodominant antigens.  
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