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ABSTRACT

New OpenFlow switches support a wide range of network applications, such as fire-

walls, load balancers, routers, and traffic monitoring. While ternary content address-

able memory (TCAM) allows switches to process packets at high speed based on

multiple header fields, today’s commodity switches support just thousands to tens of

thousands of forwarding rules. To allow for finer-grained policies on this hardware,

efficient ways to support the abstraction of a switch are needed with arbitrarily large

rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule

caching to provide large rule tables at low cost. Unlike traditional caching solutions,

neither individual rules are cached (to respect rule dependencies) nor compressed (to

preserve the per-rule traffic counts). Instead long dependency chains are “spliced” to

cache smaller groups of rules while preserving the semantics of the network policy.

The proposed hybrid switch design satisfies three criteria: (1)responsiveness, to allow

rapid changes to the cache with minimal effect on traffic throughput; (2)transparency,

to faithfully support native OpenFlow semantics; (3)correctness, to cache rules while

preserving the semantics of the original policy. The evaluation of the hybrid switch on

large rule tables suggest that it can effectively expose the benefits of both hardware

and software switches to the controller and to applications running on top of it.
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Chapter 1

INTRODUCTION

Computer networks are growing rapidly. New devices, services and applications

are introduced to the network on a daily basis. With the addition of new entities,

network operators must have finer-grained control over their traffic to better serve

their customers. For example, operators use access control lists (ACLs) to provide

security in the network. As new applications are developed, more sophisticated rules

in the ACL are required to provide a safe network for customers.

Switches are network elements that enable a wide range of tasks such as packet

forwarding and ACLs. However, these switches have small memory space available,

which limits the granularity of the tasks that operators can define. We believe that

as the networks grow and new paradigms, such as Software Defined Networking, are

introduced the need for a switch with more memory becomes crucial.

The key contribution of this thesis is the design of a hybrid switch with a large

amount of memory using commodity hardware and software that allows the higher

demands of future networks to be met.

1.1 Switch Design Challenges

Today, a typical OpenFlow switch can process more than 100 million packets

per second (Mpps) [9]. To achieve this speed, switches use “packet classification,” a

process that Gupta and McKeown [13] define as categorizing packets into “flows” that

obey the same predefined rules. For every incoming packet, a switch has to find a rule

among all rules that are installed in its rule table that match the packet headers, and

execute the actions associated with that rule. A naive linear search through the rule
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Figure 1.1: Input Processing Pipeline of A Switch [5].

table does not perform well. In fact, in the worst case on a switch with 5,000 rules

(assuming a rule size of 320 bits) a bandwidth of 149 Tbps (100 Mpps× 5000 rules×

320 bits = 149 Tbps) between the processing unit and the memory unit is required to

allow the switch to classify 100 Mpps. This bandwidth is far from being realizable on

the current hardware. For comparison, the typical bandwidth between the external

memory and the processing unit in a modern computer is only around 20 Gbps [27].

Fortunately, there are ways that allow us to perform better and reduce this bandwidth

requirement, i.e., by using specialized hardware such as content addressable memory

(CAM) and ternary content addressable memory (TCAM). In the next section, we

explore how these hardware help to improve the performance of a switch.

1.1.1 A Closer Look at How Switches Work

Once a packet reaches a switch, the switch has to match the header of that packet

against a rule table to identify what operations need to be executed on that packet.

This is performed by passing the packet through a set of serialized data processing
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elements, which is also known as a processing pipeline that dictates how the incoming

packets are handled, i.e., the outgoing port of the packet or the VLAN that the packets

belong to is decided here. There are two main stages in this pipeline: input processing

and output processing.

In the input processing stage, packets are not modified as any modification can

affect the decisions made in later stages of this pipeline. In this stage, a set of actions

in the form of metadata is attached to the packet. This is where it is possible to

improve the lookup performance by using CAM or TCAM tables. Each of these

tables has unique properties suitable for a particular set of actions. See sections 1.1.2

and 1.1.3.

Figure 1.1 shows CAM and TCAM tables in the input processing stage [5]. The

first stage of pipelining involves checking the L2 CAM which matches against the

packet’s L2 header. Each rule in this table consists of a few bits. The L2 CAM table

contains many such entries and therefore, is long and narrow. Next, the packet is

matched against the rules stored in an L3 CAM table, which contains multicasting

and Equal-Cost Multi-Path (ECMP) rules that match against the L3 header. These

entries are typically larger than those in the L2 CAM, but at the same time are fewer

in number. Finally, at the last stage of input processing the packet is matched against

the TCAM table which is used for ACLs, and can only hold hundreds of entries.

After passing through the input processing stage, in the output processing stage

the set of actions attached to the packet is executed. It is worth emphasizing that no

new actions are attached to the packet in the output stage.

1.1.2 The CAM Table

CAMs are memory blocks that allow one to search for a piece of data in a sin-

gle operation. This mechanism is very powerful, and to build up on the example

3



Header Field # of bits

Ingress port Implementation dependent

Ethernet Source 48

Ethernet Destination 48

Ethernet Type 16

VLAN ID 12

VLAN Priority 3

IP Source 32

IP Destination 32

IP Protocol 8

IP ToS bits 6

TCP Source Port 16

TCP Destination Port 16

Table 1.1: The Twelve Tuples in a TCAM Entry.

from section 1.1, the parallel search reduces the bandwidth requirement to 29.8 Gbps

(100 Mpps× 320 bits = 29.8 Gbps); this is realizable on today’s hardware. However,

the width of the CAM table is decided at the time of design, and it only allows

for matching on exact bits. This limits the usage of CAMs to MAC learning and

multicasting. As an example, CAMs cannot be used for IP prefix matching since IP

prefixes are of variable length. Fortunately, TCAMs allow for more general types of

matching.

1.1.3 Switches Need TCAMs

TCAMs are memory blocks, which like CAMs, can be searched for a piece of

data in one operation. The main difference between the two is that TCAMs allow

for “don’t care” bits in the data. This lends great flexibility and allows the TCAM

to match on header fields that contain “don’t care” bits; these fields are known as

4



Priority Rule

10 tcp-dest-port=http → forward

9 tcp-dest-port=ssh → forward

1 * → drop

(a) Forwards HTTP and SSH traffic.

Priority Rule

10 tcp-dest-port=http → forward

9 tcp-dest-port=ssh → forward

11 * → drop

(b) Drops all traffic.

Table 1.2: TCAM Rule Table.

wildcard fields. Typically, in a commodity, switch TCAMs are used for matching on

the twelve tuples shown in Table 1.1. However, since TCAM allows for matching

on wildcard bits, collisions can occur; therefore, a priority is assigned to each rule,

so that in case of collision, only the rule with the highest priority is executed. The

combination of wildcard fields and priority lists allow for complex dependency chains.

As an example, Table 1.2a and Table 1.2b both contain the same set of rules, but

with different priorities. In Table 1.2a, since the drop rule has the lowest priority,

http and ssh packets are forwarded normally, but in Table 1.2b, because the drop

rule has the highest priority, no packets ever reach the http or ssh rules, therefore, all

packets are dropped regardless of the other two rules.

However, the flexibility of TCAMs comes at a price. Particularly, TCAMs have

larger circuitry than static random access memories (SRAMs), occupying up to 40

times more die size. Also, TCAMs are 400 times more expensive, and exceptionally

more power-hungry than SRAMs [4]. Some of these limitations can not be avoided

even with the advances in technology. For example, the power consumption problem is

inherent in the way the TCAMs work, i.e., a parallel search through all entries means

that the TCAM’s circuit is on at all times, and unfortunately this power consumption

grows linearly with the size of TCAMs.

Furthermore, TCAMs operate at sub-gigahertz frequencies [14]. This means that

5



Rule Source IP Destination IP Source Port Destination Port Protocol Action

r1 * ip1 [1,32766] [1,32766] UDP drop

r2 * ip2 [1,32766] [1,32766] UDP drop

r3 * ip3 [1,32766] [1,32766] UDP drop

r4 * * * * * accept

Table 1.3: Access Control List Table.

as the switches become faster, the TCAMs needs to be replicated on the same die

to keep up. Replication allows switches operating at gigahertz speed to distribute

requests across sub-gigahertz TCAM banks without any performance penalties, but

this replication also means that less die space is available per bank. The problem

is exacerbated with the introduction of IPv6 because the size of each entry in the

TCAM grows, which reduces the number of entries. Specifically, TCAMs can hold

entries as wide as 640bits. Moving from IPv4 to IPv6 requires 96 additional bits per

source and destination addresses. This is equivalent to 96∗2
640−256+64

= 42.85% increase

per entry size, which effectively reduces the total number of entries by 30 percent

( 1
1.4285

= 70%).

However, TCAMs are memory blocks that are required for the operation of a

switch, particularly ACLs can only be implemented on TCAMs, and future network-

ing paradigms, such as Software Defined Networking (SDN), make extensive use of

this resource.

1.2 Today’s Networking

Today, the primary use of TCAMs is in ACLs. ACLs are a means by which

a switch identifies which packets should be forwarded and which ones should be

dropped. Operators use these lists to restrict access to sensitive information within
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a network, or to mitigate distributed denial-of-service (DDoS) attacks. In these use

cases, an ACL can grow at a very rapid rate. For example, consider a distributed

denial of service attack on UDP ports 1 to 32766 that is targeting hosts with ip1,

ip2, and ip3. To mitigate such an attack, the operator might install ACL rules to

drop all the UDP traffic to these ports and hosts. This ACL configuration is shown

in Table 1.3. Due to range expansion [18], each of the first three rows in this table

requires 784 TCAM entries; therefore, this table translates to 784 × 3 + 1 = 2353

TCAM entries, which is enough to fill the TCAM table of most commodity switches.

Extra rules that do not fit in the ACL table, go through a software path which usually

causes high CPU utilization on the switch and partially disrupts a switch’s normal

functionality. In fact, today, TCAM and ACL exhaustion are well known problems,

and vendors such as Cisco have troubleshooting pages that suggest guidelines for

avoiding TCAM exhaustion [7, 8].

In summary, if the network growth trend continues, operators will require addi-

tional TCAM space to store more sophisticated ACL rules to mitigate attacks and to

better serve their customers; therefore, a solution that deals with the TCAM space

issue is imperative.

1.3 TCAM and Software Defined Networking

The Gartner report names Software Defined Networking (SDN) as one of the

emerging trends in information technology [28]. SDN separates the control and data

plane to reduce the complexity of traditional networks. This separation provides

strong abstractions and adds programmability to a distributed network. For instance,

because of this abstraction, companies such as Google [15] and Microsoft [22] have

adopted SDN in their data-centers to manage resources in a more efficient manner.

OpenFlow [19] is a protocol that makes this separation possible. By using the Open-
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Monitor

srcip=5.6.7.8 → count

Route

dstip=10.0.0.1 → fwd(1)

dstip=10.0.0.2 → fwd(2)

Load-balance

srcip=0*,dstip=1.2.3.4 → dstip=10.0.0.1

srcip=1*,dstip=1.2.3.4 → dstip=10.0.0.2

Parallel Composition of Monitoring and Routing Policy

srcip=5.6.7.8,dstip=10.0.0.1 → count,fwd(1)

srcip=5.6.7.8,dstip=10.0.0.2 → count,fwd(2)

srcip=5.6.7.8 → count

dstip=10.0.0.1 → fwd(1)

dstip=10.0.0.2 → fwd(2)

Sequential Composition of Load-balancing and Routing Policy

srcip=0*,dstip=1.2.3.4 → dstip=10.0.0.1,fwd(1)

srcip=1*,dstip=1.2.3.4 → dstip=10.0.0.2,fwd(2)

Table 1.4: Example of Composition of Several Policies [20].

Flow protocol, a central controller installs rules on switches around the network.

However, since OpenFlow allows arbitrary wildcard fields in a rule, most of these

rules can only be installed in the TCAM table. One of the many concerns regard-

ing SDN is whether the current switches can store enough rules in the TCAM space

to satisfy OpenFlow applications. To answer this question, we look at one of the

promising features of SDN, namely “composition.”

A potential benefit of SDN is providing a platform where independent software

can coexist. This gives consumers great customizability for their network as they

are free to select the software they need for their infrastructure and “compose” them

together. In their work, Monsanto et al. [20] suggest operators that make it possible

to run applications in sequence or in parallel.

To better describe these operators, consider three network applications for moni-

toring, routing, and load balancing. By using these three applications and the compo-

sition operators, it is possible to make more sophisticated applications. For example,
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if an operator wants to load balance the traffic across a set of servers, he can sequen-

tially compose load balancing and routing applications. Or, for finding a congested

link within the network, the operator might want to monitor the traffic without dis-

turbing the routing policy. In this scenario he can compose routing and monitoring

applications in parallel. Table 1.4 shows an example of the composition of these

applications.

As seen in Table 1.4, the parallel composition of two policies creates many more

rules, and in fact, composing two rules in parallel causes a multiplicative explosion in

the number of rules. Therefore, while composition is a promising feature of SDN, it

is far from being realizable considering the limited amount of TCAM space available

on today’s switches.

1.4 The Need for a Caching Solution

The need for more TCAM space is imperative in the current and future of net-

working. The solutions proposed in this space usually follow two general schemes,

“caching” and “compressing” the rules in the rule table. Rule compression combines

rules that perform the same actions and have related patterns [18]. For example, two

rules matching destination IP prefixes 1.2.3.0/24 and 1.2.2.0/24 could be combined

into a single rule matching 1.2.2.0/23, if both rules forward to the same output port.

Unfortunately, when compressing rules, we lose information on counters and timeouts

of the original policy, which can provide vital information about the nature of the

traffic in a network. Therefore, any solution should preserve the properties of each

rule.

Internet traffic follows Zipf’s law, i.e., a few rules match most of the traffic while

the majority of rules handle the small portion of the traffic [23]. Based on this, we

believe that caching is a reasonable alternative solution to the rule-space problem.
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A caching scheme saves the most “popular” rules in the TCAM, and diverts the

remaining traffic to a software switch (or software agent on the hardware switch)

for processing. Our caching algorithm carefully splits the rules among software and

hardware so that the semantics of the original policy are preserved. The combination

of hardware and software gives the operator the illusion of an arbitrarily large rule

table, while minimizing the performance penalty for exceeding the TCAM size. For

example, an 800 Gbps hardware switch, together with a single 40 Gbps software

switch could easily handle traffic with a 5% miss rate in the TCAM.

In order to make integration with existing networks easier, any good caching

solution should have three properties:

Correctness : Caching rules should not change the overall policy in any manner.

The rules should be cached very carefully so that the semantics of the original policy

are preserved. Furthermore, caching should be done so that most of the network

traffic is processed at line-rate.

Transparency : Entities that use the TCAM space should be oblivious to the

existence of a caching layer; e.g., counters of rules should be updated in a consistent

manner, and rules should timeout normally. Thus, any rule manipulation done by

the caching abstraction should be transparent with respect to these expectations.

Responsiveness : A good caching solution should be dynamic, i.e., if a rule becomes

popular during a certain time period, the caching solution should react in a timely

manner, and move the rule in the cache hierarchy in order to minimize churn.

The rest of the thesis is organized as follows. Chapter 2 discusses recent caching

and compression solutions for overcoming the TCAM space limitation problem. In

Chapter 3, a caching system is proposed that satisfies correctness, responsiveness and

transparency properties. Chapter 4 evaluates the system on few network policies.

Finally, Chapter 5 discusses future work that can be studied in this space.
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Chapter 2

RELEVANT WORK

The solutions proposed to manage the rule space problem generally fall into two

main categories: caching and compression. Solutions that rely on compression, aim to

make effective use of the available memory space by combining several rules together

without affecting the semantics of the rule table. The problem with compression is

that we lose information about rules, e.g., when two rules are merged, extracting the

packet counter of each rule is not possible. This violates transparency, which is a

desired property of any solution. On the other end, caching solutions usually break

the rule table into several smaller rule tables, while preserving the semantics of the

policy. These algorithms then save each of these rule tables based on the need of the

network on fast memory, i.e., TCAM. Here, we look at a few solutions that have been

proposed to make efficient use of available TCAM space: DIFANE [29], wire speed

packet classification without TCAMs [10] and H-SOFT [11].

2.1 Scalable Flow-based Networking with DIFANE

In the early days of OpenFlow [19], solutions like Ethane [6] and NOX [12] sent

the first packet of every flow to the controller. The controller then installed rules on

switches in response to that packet. Unfortunately, sending the first packet of every

flow introduced a lot of overhead on the controller, thus, this solution was not scalable.

DIFANE proposed another solution in which packets not matching any rules on an

ingress switch traversed a longer path through “authority” switches to reach their

final destination. These authority switches then would first encapsulate the packet

11



Figure 2.1: DIFANE Flow Management Architecture [29]. (Dashed Lines Are Control

Messages. Straight Lines Are Data Traffic.)

and send it to their final destination, and second install a rule on the ingress switch.

The newly installed rule will then forward all the incoming packets from the same

flow to the corresponding egress port of the network. This way, DIFANE keeps all

the packets on the data-plane and avoids sending unnecessary packets to a controller.

At the core of DIFANE lies an algorithm that carefully partitions the rule set

across the authority switches, while preserving the semantics of the initial rule set.

The number of partitions is equal to the number of authority switches available.

The goal of the partitioning algorithm is to equally distribute the traffic among the

authority switches and also, minimize the number of rules that will be split, i.e., a

rule can extend across several partitions, in which case, the rule will be split into

several rules, and each partition holds part of the initial rule. For example, for a rule

table with rules R1, . . . , R7, and with pictorial projection 1 depicted in Figure 2.2,

1One can think of the header of a packet as a point in a discrete multidimensional space, where in
this space each axis represents a field of the packet header. Since rules can contain wildcarded fields,
each rule can encapsulate several of these points. The set of points in this space is known as the flow
space of the rule. A rule table which contains several rule, has a projection in this multidimensional
space which is referred to as pictorial projection.
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Figure 2.2: Low-level Rules and the Partition [29].

where each rule has two wildcard fields, F1 and F2, the DIFANE algorithm partitions

the rule table into four different partitions, A, B, C, D and installs each partition on

a separate authority switch.

For an incoming packet that lies in partition A, if the ingress switch has a rule for

processing the packet, it will encapsulate the packet and send it to the corresponding

egress switch. If the ingress switch does not have a rule for processing the packet, it

would then forward the packet to one of the authority switches that manages partition

A. The authority switch would then forward the packet and reactively install a rule

on the ingress switch so that the rest of the packets of the flow are processed without

hitting the authority switch. One can think of DIFANE, as a least recently used

(LRU) caching scheme that reactively installs rules on new packets on the ingress

switches while discarding the least recently used rules.

Since the rule sets in authority switches are a subset of the initial rule set, DIFANE

ends up using more TCAM space than the initial rule set. Hence, DIFANE itself is a

TCAM hungry solution that would benefit from a caching solution like ours.
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Rule Predicate and Action

I (F1 ∈ [30, 70]) ∧ (F2 ∈ [40, 60])→ permit

II (F1 ∈ [10, 80]) ∧ (F2 ∈ [20, 45])→ permit

III (F1 ∈ [25, 75]) ∧ (F2 ∈ [55, 85])→ permit

IV (F1 ∈ [0, 100]) ∧ (F2 ∈ [0, 100])→ deny

Table 2.1: A Rule Set of 4 Rules. Rules Ordered by Priority [10].

2.2 Wire Speed Packet Classification without TCAMs

Figure 2.3: Caching an Independently Defined Rule Based on the Rule Set in Ta-

ble 2.1.

Dong et al. [10] propose a hardware cache for solving the TCAM space problem.

In their work, a software component creates a rule set based on the most popular

rules, and saves it in the hardware cache. This rule set “evolves” with changes in

traffic weights. For example, consider the rule set in Table 2.1, where each rule has

two fields, F1 and F2 that can take a value between 1 to 100. The pictorial projection

of this rule table is shown in Figure 2.3. Six flows, which are shown as dots in the
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Figure 2.3, are passing through the router. As it can be seen, all of these flows are

hitting one of the first three rules in the Table 2.1. The software component then

creates a single rule, shown as the box with the dashed borders, that matches all of

the six flows and saves it in the hardware cache. This new rule only requires one entry

as opposed to three of the original policy. Note that this rule does not violate the

policy, as any flows within the dashed box are processed by one of the first three rules

which have the same set of actions as the cached rule. The rest of the traffic that is

not matched by the rules in the cache is then processed by the software component.

Evaluations suggest that by using the “evolving” cache, miss ratios that are 2 to 4

orders of magnitude lower than flow cache schemes are achieved [10]. Nevertheless,

this solution suffers from the same problem as other solutions in the compression

space, i.e., because reasoning about the rule counters is not possible, information

on the nature of the traffic is lost, therefore, this solution is not transparent to the

controller.

2.3 H-SOFT: A Heuristic Storage Space Optimization Algorithm For OpenFlow

Tables

Finally, H-SOFT uses heuristics to decompose a rule table into several tables, i.e.,

a rule table that matches on n header fields will be decomposed into n tables where

each table matches on a single header field. In the best case, decomposition can

achieve a multiplicative decrease in the rule table size, that is a rule table with M

rules and n fields can be decomposed into n rule tables, Ti with |Ti| rules. Afterwards,

by sequentially composing these rule tables in serial, i.e., connecting the output of

the each table to the input of the next table, we can build the original policy, i.e.,

n∏
i=1

|Ti| = M.
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Unfortunately, the optimal rule table decomposition is NP-hard [24]. Also, the

authors of H-SOFT do not take rule priorities into account, and because of this, their

decomposition violates the semantics of the initial rule set.

2.4 Summary

While there have been novel solutions to provide more TCAM space to the con-

troller that uses the switches, most of these solutions are not transparent to controller,

and they affect the traffic distribution in unwanted ways. Solution like DIFANE in-

troduce novel ways to “split” the rule table, but ends up using more TCAM space.

Our solution uses a combination of rule splitting and software components to provide

a transparent and responsive caching abstraction to controller and its applications.

To the best of our knowledge, our work in this thesis is the first study focusing

on a caching solution that allows a large number of rules to be installed on a switch

while preserving the semantics of the rule set and being transparent to the controller.
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Chapter 3

PROPOSED SOLUTION

In this section, we introduce CacheFlow, a caching solution that aims to achieve

the correctness, responsiveness and transparency properties which were identified in

Chapter 1. The only requirement of CacheFlow is that the network should have

separate control and data planes. This requirement leads us to design and test our

system on top of SDN and OpenFlow.

OpenFlow uses a central controller that installs rules on the switches to manage

the network. These rules are generated by applications running on the central con-

troller, but since the limited rule space available on a switch is shared among all

Figure 3.1: Architecture of CacheFlow.
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such applications, it is very difficult for the central controller to efficiently manage

this space. CacheFlow hides this rule space limitation from the controller and its

applications, therefore enabling the controller to install, theoretically, infinitely many

rules on the switches.

In order to provide a large rule space, CacheFlow makes a collection of one (fast)

hardware switch and several slower switches (software, hardware or local agents) act

like a single switch. The controller views this “virtual switch” as a normal switch with

which it can communicate with using OpenFlow instructions. This virtual switch then

distributes the rules among the underlying switches using the OpenFlow protocol.

This architecture is shown in Figure 3.1. Since CacheFlow is transparent to the

controller, it can be integrated into any system without modification.

Underneath, CacheFlow uses a dependency graph to manage the rule space and

uses new algorithms in conjunction with this dependency graph to decompose the rule

table of the virtual switch among multiple switches. Furthermore, this decomposition

is done in such a manner that most of the network traffic passes through the (fast)

hardware switch.

The other switches (S1, . . . , Sn in Figure 3.1) together form a backup repository,

where packets that experience a cache miss in the hardware switch are forwarded

for processing. Thus, CacheFlow is purely a control-plane component (with control

sessions shown as dashed lines), while OpenFlow switches forward packets in the data

plane (as shown by the solid lines).

3.1 CacheFlow System

Figure 3.2 shows different possible configurations for CacheFlow deployment. We

examine the four different deployment scenarios and compare their benefits and trade-

offs.
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(a) On the controller (b) On the switch

(c) In a separate box (d) A hybrid version

Figure 3.2: Design Choices for Placement of CacheFlow.

Deploying on the controller. The most accessible place to deploy CacheFlow is

on the OpenFlow controller, as shown in Figure 3.2a. This gives CacheFlow

a global view of the network, and allows CacheFlow to make network-wide

decisions. For example, if a rule, R1, is cached by a switch, it is arguably

beneficial to cache R1 on every other switch in the network to provide low

latency to all the packets that hit R1.

The problem with this approach is that deploying several instances of CacheFlow

on the controller requires a significant amount of processing power. Therefore,

the scalability of this solution is bounded by the processing power of the con-

troller.
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Deploying on the switch. Another possible scenario is to deploy CacheFlow di-

rectly on the hardware switches, as shown in Figure 3.2b. This approach has

benefits compared to deploying on the controller, namely, it is much faster be-

cause CacheFlow has direct access to counters and timeouts, and requires mini-

mal resources on the controller side. Also, because each switch has a CacheFlow

instance running, this solution is not bounded by the processing power of the

controller, consequently, scalability is simplified. Finally, since CacheFlow re-

sides on the switch itself, it does not depend on the control plane protocol, i.e.,

it is not necessary to use OpenFlow in this scenario as CacheFlow has direct

access to hardware.

The immediate problem with this configuration is that CacheFlow cannot op-

timize its decisions based on the available network-wide information. Also,

this approach cannot scale beyond the processing power of the switch, which is

naturally limited.

Deploying on a dedicated box. Another approach is to run CacheFlow on a sepa-

rate box (Figure 3.2c). This configuration provides fault tolerance (since several

instances of CacheFlow can manage the same switch), and scalability (since sev-

eral switches can be using the same CacheFlow instance). The problem with

this approach is that CacheFlow is tightly bound to the control plane protocol

and lacks the global view that deploying CacheFlow on the controller provides.

Hybrid. A hybrid approach between the first and the third option allows CacheFlow

to benefit from the global view of the network, and it also becomes scalable and

fault tolerant, as shown in Figure 3.2d.

As we will see in Chapter 4, due to the simplicity of deploying CacheFlow on a

controller platform, we chose the first configuration for our evaluations which is shown
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in Figure 3.2a. We implemented our system on top of Ryu, an OpenFlow controller,

and use OpenVSwitch instances to evaluate CacheFlow.

3.2 CacheFlow Algorithm

In this section, we present CacheFlow’s algorithm for placing rules in a TCAM

with limited space. Since CacheFlow’s algorithm runs in polynomial time, it can

rapidly update the TCAM space, therefore, allowing CacheFlow to achieve respon-

siveness. CacheFlow then selects a set of “important” rules from the rules given by

the controller, and caches them in the TCAM, while redirecting the cache misses to

the software switches. Rules are split across TCAM and software switches so that the

semantics of the overall policy are preserved. This allows CacheFlow to achieve cor-

rectness. CacheFlow also acts as a single OpenFlow switch, therefore it is transparent

to the controller.

The input to the algorithm that CacheFlow uses to split the rule table, is a

prioritized list of n rules R1, R2, . . . , Rn, where rule Ri has higher priority than rule

Rj if i < j. Each rule, Ri, also has a match, a set of actions, and a weight wi that

captures the volume of traffic matching the rule. The output is a prioritized list of k

rules (1 ≤ k ≤ n) to store in the TCAM. CacheFlow aims to maximize the sum of the

weights that correspond to “traffic hits” in the TCAM, while processing “all” packets

according to the semantics of the original prioritized list. It is worth emphasizing that

CacheFlow does not simply install rules on a cache miss. Instead, CacheFlow makes

decisions based on traffic measurements over the recent past. In practice, CacheFlow

should measure traffic over a time window that is long enough to prevent thrashing,

and short enough to adapt to legitimate changes in the workload.
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3.2.1 Dependency Graph

The algorithm uses a dependency graph as the data structure for holding the rule

table. By using this data structure, CacheFlow can efficiently split the rule table

among switches. In what follows, we define a set of key concepts to allow for a more

formal discussion.

Definition 1. A field, f , is a finite sequence of 0, 1 and ‘x’ (“don’t care”) bits.

Definition 2. A predicate is an n-tuple of (OpenFlow) fields. We use the notation

fi to access the ith field in the tuple.

This definition complies with how predicates are saved in a TCAM, i.e., if a predicate

does not have a header field, it can be modeled as a predicate with a header field

with a sequence composed of “don’t care”s.

Definition 3. A priority, is an integer in the range of 0 to 232 − 1.

Definition 4. An action, a, specifies how a packet is processed in the pipeline, e.g.,

dropped or forwarded.

In this thesis, we ignore the semantics of an action and view it as a string. Two

actions are equal if their strings are equal.

Definition 5. A rule, r, is a triple consisting of a priority, a predicate and a set of

actions.

To access the fields in a rule r, we use the notation shown in Table 3.1.

Definition 6. A rule table, T , is an ordered list of rules, where the priority of rules

in the list is in non-increasing order, that is:

∀ri, rj ∈ T, i > j ⇐⇒ prio(ri) ≥ prio(rj).
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Function Description

pred(r) Returns predicate of rule r.

prio(r) Returns priority of rule r.

A(r) Returns the set of actions of rule r.

h(p) Returns ph, the n-tuple of packet p’s header fields.

reg(f) Returns the regular expression associated with field f .

Table 3.1: Functions for Accessing Elements in Rules and Packets.

Definition 7. A packet, p, is a finite sequence of 0 and 1 bits.

Definition 8. A packet field, pf , is a subsequence of bits within a packet.

Definition 9. A packet header, ph is an n-tuple of (OpenFlow) 1 . We use the

notation phi to access the ith field in the tuple.

Definition 10. The regular expression of a field, reg(f), is a regular expression in

which each occurrence of ‘x’s in f is substituted with (0|1) expression.

For example, the field, 0x11x has a corresponding regular expression of the form

0(0|1)11(0|1).

Definition 11. A field matches a packet field if the regular expression of the field

matches the packet field, i.e.,:

field match(f, pf )← pf ∈ reg(f).

Definition 12. A rule, r, matches a packet, p, if:

m(p, r)← (∀i =⇒ (pred(r)i =⇒ field match(pred(r)i, h(p)i))).

That is, the headers in predicate of the rule and the packet header are equal.

1Please note that packet field is different than a field. A field is a list of 0, 1, or ‘x’s whereas a
packet field is a list of 0 and 1s
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By using the above definitions we can talk about a rule that matches a packet in

rule table, T .

Definition 13. Rule ra in rule table, T , matches the packet, p, if:

(∀r ∈ T, prio(r) > prio(ra) =⇒ ¬m(p, r)) ∧m(p, ra).

Definition 14. A packet, p, “hits” a rule r in rule table T , if r matches p in T .

Definition 15. A rule ra is shadowed by a rule rb, if the priority of rb is higher than

the priority of ra, and every packet that matches ra also matches rb, that is:

shadow(ra, rb)← (∀p,m(p, ra) =⇒ m(p, rb)) ∧ (prio(rb) > prio(ra)).

When a rule, ra, is shadowed by another rule, rb, no packets will ever hit ra. Therefore,

it can be safely removed from T without affecting the semantics of rule table, T .

By using the definitions above, we can now define the dependency between two

rules, ra and rb in a rule table T .

Definition 16. Rule ra depends on rule rb if:

d(ra, rb)← (∃p,∀r ∈ T, prio(ra) < prio(r) < prio(rb) =⇒

¬m(p, r) ∧m(p, ra) ∧m(p, rb))∧

(prio(ra) < prio(rb)).

That is, there exists a packet that is matched by rb and ra, but rules with priorities

in between prio(ra) and prio(rb) do not match the packet.

Definition 17. The dependent set of rule ra is a set of rules, D(ra), where for every

rule, r, in D(ra) the property d(ra, r) holds, that is:

D(ra) = {r|(r ∈ T ) ∧ d(ra, r)}
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It is now possible to define a dependency graph given these definitions.

Definition 18. Given a rule table T, a dependency graph is a directed acyclic graph

where the nodes correspond to the rules in the rule table T , and there exists an edge

ea,b from rule ra to rb if the property d(ra, rb) holds.

Theorem 1. The dependency graph is acyclic.

Proof. We prove by contradiction that the dependency graph is acyclic. If there

is a cycle C in the graph with nodes r1, . . . , rn, r1, it means that there is an edge

from rn → r1, hence prio(rn) < prio(r1), but it is also the case that prio(r1) <

prio(r2) < · · · < prio(rn). Due to total ordering of integers the prio(r1) < prio(r2) <

· · · < prio(rn) < prio(r1) relation cannot hold. Therefore, the dependency graph is

acyclic.

In the next section, we first give a naive algorithm to build the dependency graph.

After, we provide an incremental algorithm that builds upon the naive algorithm

and is more efficient on machines with few processing cores. Also, in the next few

sections, the arithmetic used for subtraction and intersection of predicates is based

on the work of [16]. Below, you may find a short summary of the arithmetic of header

space analysis for subtraction and intersection of predicates.

3.2.2 Arithmetic of Header Space Analysis

In the header space analysis [16], a predicate, also known as a wildcard expression,

is a list of length L where each element can be 0, 1 or ‘x’ (wildcard), i.e., {0, 1, x}L.

Each wildcard expression can be viewed as a region in the hypercube with dimension

L. A header space is the union of these wildcard expressions. The arithmetic defined

here helps us to calculate the subtraction or intersection of these header space objects.
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b1

b′1
0 1 x

0 0 z 0

1 z 1 1

x 0 1 x

Table 3.2: Intersection Rule for Bits.

Intersection: Two headers can have a non-empty intersection if they have the

same value in every bit that is not a wildcard. Table 3.2 shows the intersection rule

for the bits, b1 and b′1, that are wildcarded.

Union: Union of the header space objects creates a new header space object that

has the wildcard expressions in both of the initial header space objects. For example,

if h1 and h2 are two header space objects:

h1 = {xxxx0000, xx110001}

h2 = {xxxx1111, xx110001}

Then, the union of h1 and h2 is:

h1 ∪ h2 = {xxxx0000, xx110001, xxxx1111}

Complementation: The complement of header h is the union of all headers that do

not intersect with h, i.e.:

Subtraction: Subtraction of two header space objects is equal to the intersection

of the first header and the complement of second header, that is:

h1 − h2 = h1 ∩ h̄2
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h′ ←

for bit bi in h do

if bi 6= x then h′ ← h′ ∪ x . . . xb̄ix . . . x

end if

end for

3.2.3 Static Algorithm for Building the Dependency Graph

The input to the “static” algorithm for building the dependency graph is a rule

table, and the output is the dependency graph associated with the rule table. The

most naive approach for creating the dependency graph is to iterate through all rule

pairs in the rule table, and check whether Definition 16 holds. To verify Definition 16,

we have to find a packet that can reach ra after passing through the rules with

priorities in between prio(ra) and prio(rb), or in the other words, the packet that

“leaks” from rb to ra. To do that, we “subtract” the predicate of rb and the predicate

of rules in between ra and rb from the predicate of ra. The subtraction gives a set of

packet headers that will hit ra but none of the rules in between ra and rb. The intuition

behind this subtraction is that if CacheFlow installs ra on a hardware switch then it

also has to install rb to preserve the semantics of the policy. Section 3.2.5 discusses

why this installation preserves the semantics.

Since this algorithm runs on “snapshots” of a rule table, and the computation

involved in this algorithm is independent of all the previous computations, we call it

the “static” algorithm for building the dependency graph.

The static algorithm, which is shown in Algorithm 1, looks at every pair of rules

(and the rules in between them) in a rule table with n rules. Therefore, it requires

O(n2) checks to build the dependency graph. The strength of this algorithm comes

from the fact that edges are computed separately, thus, it can be readily parallelized.
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However, on a switch or a controller with a few processing cores, this algorithm

does not perform well. In fact, short-lived rules cause rapid changes in a rule table,

which in turn, cause a full recomputation of the dependency graph using the static

algorithm. In the next section, we propose another algorithm that can incrementally

modify the dependency graph to accommodate short-lived rules and rapid changes to

the rule table.

Algorithm 1 Static Algorithm for Building the Dependency Graph
function static-algorithm-for-one-rule(T , j, G)

packet space = pred(T [j])

for j = j − 1 to 1 do

if packet-space ∩ T [j] is not empty then

G[j][j] = packet-space

else

break

end if

packet-space -= pred(T [j])

end for

end function

function static-algorithm(T )

G[][] = empty

% Iterate the rule table. Ri is the ith rule in the table T .

for Ri in T do

% For each rule build the dependency graph

static-algorithm-for-one-rule(T , i, G)

end for

return G

end function

3.2.4 Incremental Algorithm for Building the Dependency Graph

The input to the incremental algorithm is a rule table, T , a rule, Rj (that is

going to be inserted into T or removed from it), and the dependency graph, G asso-

ciated with the rule table. The output of the algorithm is a new dependency graph
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Algorithm 2 Incremental Algorithm for Maintaining the Dependency Graph.
function find-affected-edges(T , j, G)

edges = hash(set())

for ei,j ∈ G do

between = i < j ∧ j >j

if between ∧(T [i]∩pred(T [j])) 6= ∅ then

edges[i].push j

end if

return edges

end for

end function

function update-affected-edges-weights(edges, T , j, G)

for key, edge-list ∈ edges do

% sort all edges by the priority of the parent

edge-list = sorted(edge-list)

% add the new edge between R1 and Rj as shown in Figure 3.3c

G[j][edge-list[0]] = G[key][edge-list[0]]

for edge in edge-list do

G[key][edge] = G[key][edge] - pred(T [j])

end for

end for

end function

function incremental-algorithm(T , j, G)

edges = find-affected-edges(T , j, G)

update-affected-edges-weights(edges, T , j, G)

static-algorithm-for-one-rule(T , j, G)

end function

corresponding to the new rule table.

First, we study how inserting a new rule affects the edges in the dependency graph.

When inserting Rj into graph, G, it can affect the other edges in one of the several

ways shown in Figure 3.3.

In the case that the priority of Rj is lower or higher than both R1 and R2, since

the weight of edge e1,2 depends only on the rules in between R1 and R2, addition of

Rj will not affect e1,2. This is shown in Figures 3.3a and 3.3b.
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In the other case that the priority of Rj falls in between priority of R1 and R2, edge

e1,2 can change in one of the several ways. In the first case, if pred(Rj)∩pred(R1) = ∅,

e1,2 is not affected in anyway. Otherwise, if e1,2−pred(Rj) = ∅, we can safely remove

edge e1,2, as R1 is shadowed by Rj. This is shown in Figure 3.3c. Finally, as shown

in Figure 3.3d, if w(e1,2) − pred(Rj) 6= ∅, we only update the weight of e1,2 to

w(e1,2)− pred(Rj).

The core of the incremental algorithm is finding the edges that are affected by

the addition of new rule Rj. Afterwards updating the weights of these edges is quite

straightforward. Algorithm 2 shows a pseudo code of this approach.

3.2.5 Dependent-Set, a Naive Algorithm for Splicing Dependency Chains

A simple straw-man approach allows us to build intuition about the problem.

Using this intuition, we then proceed to find an optimal algorithm that avoids caching

low-weight rules. From here on out, the straw-man algorithm is referred to as the

“dependent-set” algorithm.

The input to the dependent-set algorithm is a rule table, T , a dependency graph,

G, and a threshold. The threshold specifies the number of rules that can be safely

installed in the TCAM. To maximize the traffic that is processed using the TCAM,

we select rules that match the most traffic, and “cache” them in the TCAM. To

preserve the semantics of the original policy, all the dependencies of the candidate

rules should be cached in the TCAM as well. For example, consider the rule table

shown in Figure 3.4. The dependency graph associated with this rule table is shown in

Figure 3.5. On a switch capable of holding only one TCAM rule, because the weight

of the rule R6 is the highest, one might cache R6 in the TCAM, and redirect the

remaining traffic to the slower switches which hold the remaining rules. Unfortunately,

only caching R6 violates the semantics of the policy, as now part of the packets that
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(a) prio(Rj) > prio(R2) >

prio(R1)

(b) prio(R2) > prio(R1) >

prio(Rj)

(c) prio(R2) > prio(Rj) >

prio(R1)

(d) prio(R2) > prio(Rj) >

prio(R1)

Figure 3.3: Affect of Inserting a New Rule into the Dependency Graph.

were hitting R4, when storing everything in the same table, will now hit R6. Therefore,

it is not possible to only save R6 in the TCAM. In this case, the solution is to either

cache R1 or R2 as these rules do not depend on any other rules.

Now consider the case that the switch can hold four TCAM entries. Going back

to Figure 3.4, because of the dependency between R6 and R4, when caching R6, R4

needs to be saved on the TCAM as well. However, there is also a dependency between

R4 and R2. Therefore, to preserve the semantics when caching R6, we should also
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Figure 3.4: Example Rule Table.

Figure 3.5: Dependency Graph Associated with the Rule Table in Figure 3.4.

cache two additional rules, R4 and R2. This implies that in order to preserve the

semantics of our policy, all the rules in a dependency chain should be cached. In this

case, the optimal rule set for caching is R6, R4, R2, and R1. In order to allow for a

more precise discussion, we continue by first formalizing the problem statement.

In order to cache ra, the set of dependents of ra, D(ra), should also be cached. We

refer to the union of ra and D(ra) as S(ra). Therefore, to install ra, at most |S(ra)|
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(a) Dependent-set Algorithm. (b) Cover-set Algorithm.

Figure 3.6: Dependent-set vs. Cover-set Algorithms (L0 Cache Rules in Red).

TCAM entries are needed. We refer to this number as the “cost” of rule ra. Let w(rj)

be the traffic that has been processed by rule rj so far 2 . Also, let xj be the indicator

variable that denotes whether a rule rj is installed in the TCAM or not.

The problem of choosing rules for installation in the TCAM, can be formulated

as an integer linear programming (ILP) problem, i.e.:

maximize
∑
rj∈T

w(rj) · xj

subject to
∑
rj∈T

xj ≤ threshold

∑
rj∈S(ri)

xj ≥ |S(ri)| × xi

xi ∈ 0, 1

The objective function is designed to maximize the traffic that is processed in the

hardware switch. The first condition ensures that there is enough space in the TCAM

2This can be either the packet counter or the byte counter of rule rj .
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(a) Dependent-set Cost (b) Cover-set Cost.

Figure 3.7: Dependent-set vs. Cover-set Costs (L0 Cache Rules in Red).

for the chosen rules to be installed. The second condition specifies that if a rule, rj,

is chosen to be installed in the TCAM, all the dependent rules of rj, S(rj), should

also be installed in the TCAM.

Unfortunately, because an ILP problem is NP-hard, it is impractical to solve this

problem on a controller. Therefore, we propose heuristics that gives a solution in

O(nk), where n is the total number of rules, and k is the number of entries in the

TCAM. Our heuristic uses a greedy approach, where at each stage of the algorithm,

a set, S(ra), with the highest aggregated weight to cost ratio, w(S(ra))/|S(ra)|, is

chosen to be cached in the TCAM, this process is repeated until k rules are chosen

for installation. This algorithm is shown in Algorithm 3. For example, for the rule

table of Figure 3.4, with 4 available TCAM entries, the greedy algorithm would first

choose R6, R4, and R2, and then R1, which brings the total cost to 4.
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Algorithm 3 Dependent-Set Algorithm
function preprocess-dependent-set

% Calculate the weights and costs according

% to the dependent-set weight and cost.

end function

function dependent-set(threshold, T , G)

preprocess-dependent-set

rules = T

dep-rules = []

while threshold > 0 do

% Find the rule with the max weight

candidate-rule = find-max(T ,key=weight/cost)

candidate-dep-rules = candidate-rule.subgraph.rules

if threshold < 1 + candidate-dep-rules.length then

% We do not have enough space to save this rule

% ignore it in the next iterations.

rules.remove(candidate-rule)

continue

end if

dep-rules.push(candidate-rule)

rules.remove(candidate-rule)

for rule ∈ candidate-dep-rules do

dep-rules.push(rule)

rules.remove(rule)

end for

threshold -= (1+candidate-dep-rules.length)

end while

return dep-rules

end function

3.2.6 Cover-Set, an Intuitive Approach for Splicing Dependency Chains

Respecting rule dependencies is not always feasible as it can lead to long depen-

dency chains, i.e., a long chain of rules might need to be installed for caching a single

rule. This can happen if a rule depends on many low-weight rules. For example, in

a firewall with a single high-traffic, low-priority “accept” rule and many low-traffic,

high-priority “deny” rules, caching the single accept rule requires installing many, if
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not all of the “deny” rules as well. Fortunately, it is possible to cache more efficiently

by a variety of semantic-preserving methods. In particular, in this section, our algo-

rithm “splices” the dependency chain by creating a small number of new rules that

shadow many low-weight rules and sends the affected packets to the software switch.

For the example in Figure 3.6a, instead of selecting all dependent rules for R6, we

calculate new rules that cover the packets that would otherwise incorrectly hit R6.

The extra rules direct these packets to the software switches, thereby breaking the

dependency chain. For example, we can install a high-priority rule R∗4 with match

1*1* and action forward to SW switch 3 , along with the low-priority rule R6.

Similarly, we can create a new rule R∗3 to break dependencies on R5. We avoid

installing higher-priority, low-weight rules like R2, and instead have the high-weight

rules R5 and R6 inhabit the cache simultaneously, as shown in Figure 3.6b.

More generally, the algorithm must calculate the cover-set for each rule R. To

do so, we find the immediate ancestors of R in the dependency graph and replace

the actions for these rules with a forward to SW switch action. For example, the

cover-set for rule R6 is the rule R∗4 in Figure 3.6b; similarly, R∗3 is the cover-set for

R5. The rules defining these forward to SW switch actions may also be merged, if

necessary. The cardinality of the cover-set defines the new cost value for each chosen

rule. The new cost value is much less for rules with long chains of dependencies. For

example, the old dependent-set cost for the rule R6 in Figure 3.7a is 3 as shown in

the rule cost table whereas the cost for the new cover-set for R6 in Figure 3.7b is only

2 since we only need to cache R∗4 and R6. Algorithm 4 shows an implementation of

this cover-set approach.

3This is just a standard forwarding action out some port connected to a software switch.
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3.3 Preserving OpenFlow Semantics

To preserve OpenFlow semantics, CacheFlow acts as a single OpenFlow switch by

intercepting incoming OpenFlow messages and responding with appropriate actions.

Table 3.3 shows the list of messages that the controller can send to an OpenFlow

switch. For example, Section 3.2.5, 3.2.6 discussed algorithms that allow CacheFlow

to correctly handle “Flow Modification” commands. For the rest of this chapter, we

discuss how proper responses are generated based on the intercepted messages.

Flow Modifications. In the last section, we introduced two new algorithms for

picking rules for installation in the TCAM. We also introduced a new data

structure, the dependency graph, that could handle changes in the rule table,

either statically or incrementally. When CacheFlow received a flow modification

message, it first updates the dependency graph, and then picks a set of rules

for caching in the TCAM by using either the dependent-set or the cover-set al-

gorithms. Afterwards, CacheFlow sends a stream of flow modification messages

to the hardware switch to update the cache, and also issues a flow modification

message to every software switch to update the rule table of that switch.

Packet Outs. A packet-out message allows a controller to inject arbitrary packets

into the network on a specific port of a switch. Since CacheFlow advertises

hardware switch ports as the ports of a virtual switch, it is therefore enough for

CacheFlow to change the port field of every incoming packet-out message to the

corresponding hardware switch port. After, CacheFlow forwards the modified

packet-out message to the hardware switch.

Port Modifications. Controllers manage the port behaviour using the port-mod

messages. For example, by using port-mods, a controller can enable or dis-
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able the spanning tree algorithm on a specific port. Similar to packet-outs,

CacheFlow preserves the semantics by forwarding these messages to the hard-

ware switch after changing the virtual port field to the underlying hardware

port number.

Barrier Requests. In the OpenFlow protocol, there are no guarantees on the exe-

cution order of received messages. Therefore, a controller uses a barrier-request

message to ask the switch to finish processing all the previous messages before

processing any new messages. After the switch has finished processing all the

messages, it sends a barrier-reply back to the controller.

When CacheFlow receives a barrier-request message, it sends a barrier-request

to all the underlying switches, and waits for the all the switches to reply back

with a barrier-reply message. After receiving a barrier reply from every switch,

CacheFlow then sends a barrier-reply back to the controller. This guarantees

that all the pending messages have been executed before notifying the controller.

Flow Statistics Requests. A controller can request various statistics about a par-

ticular flow from the switch. These statistics include, duration, timeouts,

packet-counts, and byte-counts.

Preserving duration is straightforward, as CacheFlow can save the initial time

a flow was added to the rule table, and return the elapsed time, Telapsed, to the

controller.

To preserve rule timeouts, CacheFlow carefully calculates a “new” timeout when

installing the rule on hardware or software switches. To calculate the new rule

timeout, CacheFlow subtracts the initial timeout from the Telapsed, and installs

the rule with this new timeout.
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# OpenFlow Command

1 Flow Modification

2 Flow Statistics Request

3 Packet Out

4 Port Mod

5 Barrier Request

Table 3.3: List of OpenFlow 1.0 Switch Messages.

CacheFlow periodically polls the switches for rule packet-counts and byte-counts.

These statistics allow CacheFlow to update the rule weights in the algorithms

introduced in Section 3.2.5 and 3.2.6. Fortunately, CacheFlow can use the same

flow statistics to reply back to flow-stat requests for byte-counts and packet-

counts.

3.4 Summary

In this chapter, we introduced a dependency-graph data structure, which allows

CacheFlow to correctly distribute the rule table across the switches. After, to im-

prove the overhead of updating the dependency graph, we introduced an incremental-

update algorithm to allow for rapid changes in the rule-table, therefore, we achieved

responsiveness. Then, to transparently process OpenFlow messages, we introduced

dependent-set and cover-set algorithms and also discussed how the rest of the Open-

Flow messages are transparently processed.
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Algorithm 4 Cover-Set Algorithm
function preprocess-cover-set

% Calculate the weights and costs according

% to the cover-set weight and cost.

end function

function cover-set(threshold, T , G)

preprocess-cover-set

rules = T

cover-rules = []

while threshold > 0 do

% Find the rule with the max weight

candidate-rule = find-max(T ,key=weight/cost)

star-rules = (candidate-node.children() - cover-rules)

% if we have saved this rule as a star-rule,

% it would not take any additional space in the TCAM

% to overwrite the star-rule.

space = 1

if candidate-rule ∈ cover-rules then

space = 0

end if

if threshold < space + star-rules.length then

% We do not have enough space to save this rule

% ignore it in the next iterations.

rules.remove(candidate-rule)

continue

end if

cover-rules.push(candidate-rule)

rules.remove(candidate-rule)

for rule ∈ star-rules do

cover-rules.push(rule)

end for

threshold -= (1+star-rules.length)

end while

return cover-rules

end function
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Chapter 4

EVALUATION

We implemented a prototype [1] for CacheFlow in Python on top of the Ryu controller

platform [26]. At the moment, the prototype transparently supports the semantics

for the OpenFlow 1.0 features, except rule timeouts. We evaluated our prototype on

top of an Open vSwitch as the software switch, and a Pica8 3290 as the hardware

switch. This configuration is depicted in Figure 4.1.

As another experience, to evaluate the efficiency of the cover-set and dependent-

set algorithms, we used two policies and assigned traffic weights based on the size of

the flow-space, e.g., a rule that matches on source IP of 10.0.0.0/16 has 256 times

more traffic than a rule that matches on source IP of 10.0.0.0/24. Then, we summed

the traffic weights of the rules chosen by the algorithms. This sum is equal to the

expected traffic-hit rate in the hardware switch. Table 4.1 shows a summary of the

type of traffic and policies used in each experiment.

4.1 ClassBench Experiment

The first policy is a synthetic Access Control List (ACL) generated using Class-

Bench [25]. The policy has 10K rules that match on the source IP address, with

Experiment Policy used Traffic Trace Available # of packets # of rules

Synthetic
Stanford Backbone 7 N/A 1, 836

ClassBench 7 N/A 10, 000

Hardware-OVS REANNZ 3 3, 899, 296 456

Table 4.1: Experiments Summary.
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Figure 4.1: CacheFlow Configuration (Pica8 3290 - OVS).

long dependency chains of maximum depth 10. In the absence of a traffic trace, we

created a dependency graph, and assigned traffic to each rule proportional to the

portion of flow space it matches. Afterwards, we ran the cover-set and dependent-set

algorithms, and measured the traffic that was being matched on the TCAM; that is,

we summed up the traffic of the rules that were selected for caching.

Figure 4.2 shows the cache-hit percentage across a range of TCAM sizes, expressed

relative to the size of the policy, e.g., for TCAM Cache Size of 1%, we assumed that

the TCAM has space for 10000 ∗ 1% = 100 entries. The cover-set does better than

the dependent-set algorithm, mainly because of the long dependency chains in the

ClassBench policy, which causes the dependent-set algorithm to install a long chain

of rules, whereas the cover-set can install a few rules for each of the long rule chains.

While cover-set has a hit rate of around 87% for 1% cache size (of total rule-table),

both algorithms have around a 90% hit rate with just 5% of the rules in the TCAM.

It is worth noting that since this experiment is deterministic, i.e., subsequent runs of
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Figure 4.2: ClassBench Results.

the experiment give the same result, therefore, the algorithms were only run once.

4.2 Stanford

Figure 4.3 shows the results for a real-world Cisco router configuration on a Stan-

ford backbone router [3]. This policy matches on pairs of source and destination IP

addresses. Therefore, to transform the policy into an equivalent OpenFlow policy we

used the nw src and nw dst fields specified in the OpenFlow specification, to match

on source and destination IP addresses. This translation resulted in 1, 836 OpenFlow

1.0 rules that match on the source and destination IP address, with dependency chains

with at most 6 levels of depth. Similar to the ClassBench experiment, We analyzed

the cache-hit ratio by assigning traffic volume to each rule proportional to the size of
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Figure 4.3: Stanford Results.

its flow space. The poor performance of dependent-set algorithm is explained by the

fact that this policy, similar to ClassBench, has long dependency chains, which forces

the dependent-set algorithm to cache all the rules in of a chain in the TCAM.

While there are differences in the cache-hit rate, all three algorithms achieve at

least 70% hit rate with a cache size of 5% of the policy. In this experiment, our

algorithms did worse than the ClassBench case; this performance degradation is due

to the fact that the flow space of each rule in the Stanford policy has a similar size,

i.e., the traffic is distributed equally across the rules. Because of this similarity in

size, every rule is as important as other rules with similar flow-space sizes to be cache

in the TCAM. Similar to the ClassBench experiment, because of the deterministic

nature of the experiment, we only ran the experiment once.
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4.3 REANNZ Policy and Traffic Trace
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Figure 4.4: REANNZ Results.

Figure 4.4 shows results for the forwarding policy on an SDN-enabled Internet

eXchange Point (IXP) in New Zealand that supports the REANNZ research and

education network [2]. This real-world OpenFlow policy has 456 Openflow 1.0 rules

matching on multiple packet headers like inport, dst ip, eth type, src mac. The

dependency graph of this policy has mostly dependencies of depth 1. As a result, we

expected to see similar performance across all three rule-caching algorithms.

We replayed a traffic trace that we logged for two days to understand how a peri-

odic cache update affects the cache-miss rate. We updated the cache using dependent-

set and cover-set algorithm every two minutes and measured the cache-hit rate over

the entire two-day period. Because of the shallow dependencies, all three algorithms
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have the same performance. All the algorithms see a cache hit rate of more than

80% with a hardware cache of just 2% of the rule table size. With just 10% of the

rules, the average cache hit rate increases to as much as 97%. This experiment was

performed 5 times to reduce the effect of the start time of replaying the traffic on the

software and hardware switches.

To check the correctness of our prototype, we looked at rule counters in the ab-

sence and presence of CacheFlow and confirmed that CacheFlow is not affecting the

counters. During the experiment, we did not modify any of the applications running

on the controller, e.g., RouteFlow [21]. This suggests that CacheFlow is a transparent

layer that does not affect the controller or the applications running on top of it.

4.4 Summary

Our evaluations on synthetic policies, namely Stanford and ClassBench, suggest

that we can achieve very high cache hit rates by putting few rules in the TCAM of

the hardware switch. We confirmed this hypothesis by running the experiments on a

collection of a hardware switch and a software switch, by using a real network policy

and traffic trace.
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Chapter 5

CONCOLUSION AND FUTURE WORK

In this thesis, we discussed the need for a caching solution for switches in a network,

then continued by talking about the properties of a good caching solution. Based

on these properties, we designed CacheFlow, a caching system to enable fine-grained

policies in Software-Defined Networks by optimizing the use of the limited rule-table

space in hardware switches. CacheFlow achieves this by dividing the rule table so

that most of the traffic is processed on the hardware switch, while the rest of the

traffic goes through one or more slower switches. Several deployment configurations

for CacheFlow were proposed, and we discussed how cache misses are handled in each

of them: (i) one or more software switches to keep packets in the “fast path,” at

the expense of introducing new components in the network, (ii) in a software agent

on the hardware switch to minimize the use of link bandwidth, at the expense of

imposing extra CPU and I/O load on the switch, or (iii) at the SDN controller to avoid

introducing new components while also enabling new network-wide optimizations, at

the expense of extra latency and controller load.

Two algorithms (dependent-set and cover-set) and a data structure (dependency

graph) are suggested that make CacheFlow possible. As part of future work, we

believe that the dependency graph introduced in this work can be effectively used

for other purposes as well, e.g., Net Plumber [17], removing shadowed rules, caching,

minimizing priority lists are a few other applications that may benefit from this

dependency graph.

Note that CacheFlow is by no means a final solution to the TCAM limitation

problem and there are still a wide range of questions that can be asked, e.g., multi-
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table caching, global caching behaviour, and caching in conjunction with compression.

Multi-table Caching. As of now, CacheFlow can only manages a single rule

table, but in OpenFlow 1.1+, there are instructions for creating multi-table

packet processing pipelines. This raises the question of how a caching solution

would look for a multi-table pipeline, e.g., is it more efficient to cache each table

individually? How is a cache miss handled in this pipeline? Is it beneficial to

move cache misses to the beginning of a multi-table pipeline?

Global Caching Behaviour. CacheFlow only manages the space of one switch.

One might argue that a global caching solution, which takes the network-wide

state into account when deciding whether to cache a rule or not, can provide

lower latency to the end users and improve overall user experience; this config-

uration is shown in Figure 3.2a.

Caching and Compression. One can also consider “caching” and “compression”

together, i.e., is it possible to compress and cache rules and satisfy responsive-

ness, transparency and correctness?

In light of the lessons learned in this thesis, we believe a rule-caching system is

a viable solution to the memory limitation problem in switches around the network.

Our caching solution provides a strong abstraction from the underlying hardware,

and guarantees a uniform behavior across the switches. This is done by exposing

a virtual switch interface which allows controllers to install a large number of rules

regardless of the switch type. Further analysis is needed to quantify the extent to

which one can exploit CacheFlow and its effect on network performance.
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