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ABSTRACT

Many learning models have been proposed for various tasks in visual computing.

Popular examples include hidden Markov models and support vector machines. Re-

cently, sparse-representation-based learning methods have attracted a lot of attention

in the computer vision field, largely because of their impressive performance in many

applications. In the literature, many of such sparse learning methods focus on de-

signing or application of some learning techniques for certain feature space without

much explicit consideration on possible interaction between the underlying semantics

of the visual data and the employed learning technique. Rich semantic information in

most visual data, if properly incorporated into algorithm design, should help achiev-

ing improved performance while delivering intuitive interpretation of the algorithmic

outcomes.

My study addresses the problem of how to explicitly consider the semantic infor-

mation of the visual data in the sparse learning algorithms. In this work, we identify

four problems which are of great importance and broad interest to the community.

Specifically, a novel approach is proposed to incorporate label information to learn

a dictionary which is not only reconstructive but also discriminative; considering

the formation process of face images, a novel image decomposition approach for an

ensemble of correlated images is proposed, where a subspace is built from the decom-

position and applied to face recognition; based on the observation that, the foreground

(or salient) objects are sparse in input domain and the background is sparse in fre-

quency domain, a novel and efficient spatio-temporal saliency detection algorithm is

proposed to identify the salient regions in video; and a novel hidden Markov model

learning approach is proposed by utilizing a sparse set of pairwise comparisons among

the data, which is easier to obtain and more meaningful, consistent than tradition

labels, in many scenarios, e.g., evaluating motion skills in surgical simulations.

In those four problems, different types of semantic information are modeled and

incorporated in designing sparse learning algorithms for the corresponding visual com-
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puting tasks. Several real world applications are selected to demonstrate the effective-

ness of the proposed methods, including, face recognition, spatio-temporal saliency

detection, abnormality detection, spatio-temporal interest point detection, motion

analysis and emotion recognition. In those applications, data of different modali-

ties are involved, ranging from audio signal, image to video. Experiments on large

scale real world data with comparisons to state-of-art methods confirm the proposed

approaches deliver salient advantages, showing adding those semantic information

dramatically improve the performances of the general sparse learning methods.
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Chapter 1

INTRODUCTION

Many learning models have been proposed for various tasks in visual computing.

Popular examples include hidden Markov models and support vector machines. Re-

cently, sparse-representation-based learning methods have attracted a lot of attention

in the computer vision field, largely because of their impressive performance in many

applications. For example, the so-called SRC algorithm Wright et al. (2009b) uses a

simple sparse representation method for face recognition and was able to outperform

many state-of-the-art methods when it was first proposed.

However, in the literature, many of such sparse learning methods focus on design-

ing or application of some learning techniques for certain feature space without much

explicit consideration on possible interaction between the underlying semantics of the

visual data and the employed learning technique. For example, in the SRC algorithm,

the physical conditions of the images are not explicitly considered. As a result, its

performance degrades on smaller dictionaries. Also, the physical conditions of the im-

ages cannot be recovered. We believe that, rich semantic information in most visual

data, if properly incorporated into algorithm design, should help achieving improved

performance while delivering intuitive interpretation of the algorithmic outcomes.

My study addresses the problem of how to explicitly consider the semantic infor-

mation of the visual data in the sparse learning algorithms. In this work, we identify

four problems which are of great importance and broad interest to the community.

In those four problems, different types of semantic information, from basic label of

the training images to physical process of the image formation and to the high-level

human visual system, are modeled and incorporated in designing the sparse learning

algorithms for the corresponding visual computing tasks.
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Our first semantic sparse learning method is related to dictionary learning. Dictio-

nary learning for sparse representation has been widely used in computer vision, such

as image denoising Elad and Aharon (2006), image inpainting Mairal et al. (2008c),

image compression Bryt and Elad (2008a). However, the dictionary learned thereby is

not optimized for a classification task. In other words, the learned dictionary may not

have the best discriminative power despite its representational power. To this end,

we demonstrate how can we combine the label of the data to improve the discrim-

inative capability of the learned dictionary in the proposed method. We formulate

this problem by combining the reconstruction error, classification error and sparsity

constraint and solve it efficiently as a variant of K-SVD Aharon et al. (2005). The

proposed method is evaluated on YaleB dataset and AR dataset with comparison to

the state-of-arts, which demonstrates its effectiveness.

In our second sparse learning method, we explore the physical process of image

formation and apply this process to improve the performances of face recognizer.

Existing algorithms for face recognition either utilize the statistics of the human fix-

ation of the images while ignoring the imaging process, or try to model the physical

processes of image formation under different conditions with a large dictionary. Rec-

ognizing that non-sparse conditions such as illumination change and large occlusion

are critical for face recognition, and that for a typical application we may assume only

a finite number of such conditions (e.g., a relatively small number of illumination con-

ditions or other conditions), we propose a model for representing a set of face images

by decomposing them into three components: a common component shared by images

of the same subject, a low-rank component capturing non-sparse global changes, and

a sparse residual component. The learned common and low-rank components form a

compact and discriminative representation of the original set of images. A classifier

is then built based on the comparison of subspace spanned by these components and

by a novel image to be classified. This is very compact compared with the number of

atoms in an over-determined dictionary such as that in Wright et al. (2009b). Fur-

2



ther, by explicitly modeling non-sparse conditions, the proposed approach is able to

handle both illumination changes and large occlusions, which would fail methods like

Nagesh and Li (2009).

Sparse representation together with semantic information can also be applied to

detect spatiotemporal saliency in video. In the recent years modeling and detection

of visual saliency has attracted a lot of interest in the vision community, where a lot

of different models have been proposed for computing visual saliency. Different sets

of semantic information can be used for saliency detection, e.g., the saliency region of

video is much smaller than the whole volume of the video (i.e., sparsity); the primary

visual cortex (V1), where the saliency map for human vision exists, is orientation

selective and lateral surround inhibition Simoncelli and Schwartz (1999). Based on

those semantic information, as our third problem, we propose a novel spatiotemporal

visual saliency detector for video analysis, based on the phase information of the video.

Compared with existing methods in the literature, the proposed method is much more

efficient, more capable of modeling complex dynamics and training-data-free.

For our final problem, we show that the semantic information as the relative

ranking can be applied to learn hidden Markov model for modeling the motion skills.

Existing methods for automatic evaluating motion skills typically require the skill

labels for the training data. However, labeling the skill of the motion is currently

done by human professionals, which is not only a costly practice but also one that

is subjective and less quantifiable. Thus it is difficult, if not impossible, to obtain

sufficient and consistent skill labels for a large amount of data for reliable training.

Instead, we propose a novel formulation termed Relative Hidden Markov Model and

develop an algorithm for obtaining a solution under this model. The proposed method

utilizes only a sparse set of relative ranking (based on an attribute of interest, or

motion skill in the surgical training application) between pairs of the inputs, which is

easier to obtain and often more consistent. The proposed algorithm effectively learns

a model from the training data so that the attribute under consideration (i.e., the

3



motion skill in our application) is linked to the likelihood of the inputs under the

learned model.

Several real world applications are selected to demonstrate the effectiveness of the

proposed methods, including, face recognition, spatio-temporal saliency detection,

abnormality detection, spatio-temporal interest point detection, motion analysis and

emotion recognition. In those applications, data of different modalities are involved,

ranging from audio signal, image to video. Experiments on large scale real world

data with comparisons to state-of-art methods confirmed the proposed approaches

deliver manifest advantages, showing adding those semantic information dramatically

improve the performances of the general sparse learning methods.

In the rest of the report, we will first introduce the basic of sparse learning in

Chapter 2, then we will elaborate the above four sub-problems in details in Chapter

3, 4, 5 and 6. At the end of the dissertation, Chapter 7 presents a summary of current

progress and a plan of future work along this direction.

In the presentation, we use upper case bold font for matrices, e.g., X, lower case

bold font for vectors, e.g., x and normal font for scalars, e.g., x, upper cases for

constants, e.g., N .
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Chapter 2

BASIC OF SPARSE LEARNING

In this chapter, we will introduce some basics of sparse learning. Sparse learning has

a lot of applications in computer vision, e.g., compressed sensing Donoho (2006), face

recognition Wright et al. (2009b), image denoising Elad and Aharon (2006), image

compression Elad and Aharon (2006), image super resolution Yang et al. (2012), visual

tracking Liu et al. (2011), image classification Yang et al. (2009), visual saliency Yan

et al. (2010), action recognition Guha and Ward (2012) and so on. Sparse learning

problems can be typically formulated as adding sparsity term to traditional learning

methods,

x : min
x

f(x) + g(x) s.t. x ∈ Ω (2.1)

where x is a vector, f(·) is the term from traditional learning methods and g(·) is the

sparsity term. Different terms have been proposed for g(·), e.g., ℓ0, which measures

the number of nonzero elements Chen et al. (1991), i.e., ‖x‖0 =
∑

i (xi 6= 0). However,

ℓ0 is not convex which typically makes the problem NP hard. Instead, ℓ1 norm, which

is the sum of absolute value of the elements, or ‖x‖1 =
∑

i |xi|, is more often used.

One of the simplest and most common examples is:

x : min
x

1

2
‖y−Dx‖22 s.t. |x‖0 ≤ τ (2.2)

This problem (nonconvex) can be efficiently solved via matching pursuit algorithm:

in each iteration, a column of D, di, is selected which has largest correlation with x,

then x = x− x
T
di

‖di‖2 , and we repeat this procedure until τ columns are selected or ‖x‖2
is smaller than some value.

If we replace ℓ0 by ℓ1 and apply Lagrange multipliers, we will get the following

convex problem:

x : min
x

1

2
‖y−Dx‖22 + γ|x‖1 (2.3)
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which is known as least absolute shrinkage and selection operator (or LASSO). This

problem can be solved by applying soft thresholding: x = Sγ((D
TD)−1DTy), where

St(x) = sign(x)max{0, |x| − t}. Other algorithms have also been proposed for solv-

ing ℓ1 norm related problems, e.g., GPSR Chen et al. (1991), ℓ1 magic Candes and

Romberg (2005) and so on.

Sparse learning method can also be generalized to matrix. Instead of measuring

the number of nonzero elements or sum of absolute values of the elements, the rank of

the matrix has drawn more interest, e.g, matrix completion Candes and Plan (2009),

foreground segmentation in video Wright et al. (2009a), face recognition Zhang and

Li (2012) and so on. The rank of matrix can be measured as the number of linear

independent columns or rows of the matrix, whichever is smaller. It can also be

measured as the number of nonzero singular values for the matrix Candes and Plan

(2009), i.e., rank(X) = ‖Σ‖0, where X→ UΣVT is the singular value decomposition.

However, the rank measurement is not convex, thus a relaxed convex measurement:

trace norm (or nuclear norm) is more often used Cai et al. (2008). The nuclear norm

or trace norm of a matrix is defined as the sum of the singular value of the matrix,

i.e., ‖X‖∗ = ‖Σ‖1 (please note that for Σ, all of its elements are non-negative and its

off-diagonal elements are zero.). The nuclear norm or trace norm related problems

can be solved by iterative thresholding method Lin et al. (2009).

Sparse learning problem is also related to beta process in statistical learning. A

draw from beta process BP(a, b) can be represented as:

xi = yizi

zi ∼ Bernoulli(πi)

yi ∼ N(0,Σ)

π ∼ Beta(a, b)

where a and b are parameters for beta process, x is the signal drawn from the beta

process and z ∈ {0, 1} is a vector of binary. y or Gaussian distribution decides the
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magnitude of the element in x; while z or the Bernoulli distribution controls the

sparsity of x. Thus beta process can be used to draw sparse vectors, which has been

used in Zhou et al. (2009) for dictionary learning and shown several advantages over

existing dictionary learning methods, .e.g., K-SVD Aharon et al. (2005).
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Chapter 3

DISCRIMINATIVE K-SVD FOR DICTIONARY LEARNING IN FACE

RECOGNITION

In a sparse-representation-based face recognition scheme, the desired dictionary should

have good representational power (i.e., being able to span the subspace of all faces)

while being able to support optimal discrimination of the classes (i.e., different hu-

man subjects). In this chapter, we describe the first problem and our contributions:

how to learn an over-complete dictionary that attempts to simultaneously achieve the

above two goals. The proposed method, discriminative K-SVD (D-KSVD), is based

on extending the K-SVD algorithm by incorporating the classification error into the

objective function, thus allowing the performance of a linear classifier and the repre-

sentational power of the dictionary being considered at the same time by the same

optimization procedure. The D-KSVD algorithm finds the dictionary and solves for

the classifier using a procedure derived from the K-SVD algorithm, which has proven

efficiency and performance. This is in contrast to most existing work that relies on it-

eratively solving sub-problems with the hope of achieving the global optimal through

iterative approximation. We evaluate the proposed method using two commonly-used

face databases, the Extended YaleB database and the AR database, with detailed

comparison to 3 alternative approaches, including the leading state-of-the-art in the

literature. The experiments show that the proposed method outperforms these com-

peting methods in most of the cases. Further, using Fisher criterion and dictionary

incoherence, we also show that the learned dictionary and the corresponding classifier

is indeed better-posed to support sparse-representation-based recognition.
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3.1 Introduction

Face recognition is a challenging computer vision task that has seen active research

for many years Zhao et al. (2003). Well-known, conventional approaches include

Eigenface Turk and Pentland (1991) and Fisherface Belhumeur et al. (1997), among

others. These methods usually involve two stages: feature extraction and classifica-

tion. Recently, a lot of attention has been given to applying sparse-representation-

based techniques to computer vision and image processing problems, such as image

denoising Elad and Aharon (2006), image inpainting Mairal et al. (2008c), image

compression Bryt and Elad (2008a)Bryt and Elad (2008b). In particular, the SRC

algorithm proposed in Wright et al. (2009b) uses sparse representation for face recog-

nition: training face images are used to form a dictionary, and classifying a new face

image is achieved through finding its sparse coefficients with respect to this dictionary.

Unlike conventional methods such as Eigenface and Fisherface, SRC does not need

an explicit feature extraction stage. The superior performance reported in Wright

et al. (2009b) suggests that this is a promising direction for face recognition.

The basic way of forming the dictionary by using all the training images may result

in a huge size for the dictionary, which is detrimental to the subsequent sparse solver.

For example, we may have 32 images for each person (e.g., as in the Extended YaleB

database Georghiades et al. (2001)). Then the number of atoms in the dictionary will

be 32 times the number of people. Thus for a large face database with thousands

of people, the sheer size of the dictionary becomes a practical concern. One may

manually select a subset of the training images to be used in the dictionary, as done

in Wright et al. (2009b). But this is not only tedious but also sub-optimal since

there is no guarantee that the manually-selected images form the best dictionary.

Methods for learning a small-sized dictionary for sparse-coding from the training

data have been proposed recently. For example, the K-SVD algorithm Aharon et al.

(2006) learns an over-complete dictionary from a set of signals. The algorithm has

been shown to work well in image compression and denoising. K-SVD focuses on
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only the representational power of the dictionary (or the efficiency of sparse coding

under the dictionary) without considering its capability for discrimination. Another

recent work Pham and Venkatesh (2008) attempts to address this issue by further

iteratively updating the K-SVD-trained dictionary based on the outcome of a linear

classifier, hence obtaining a dictionary that may be also good for classification in

addition to having the representational power. Other efforts along similar direction

include Mairal et al. (2008a) and Mairal et al. (2008b), which use more sophisticated

objective functions in dictionary optimization in training stage in order to gain some

discriminative power for the dictionary.

In this chapter, we propose to extend the K-SVD algorithm to learn an over-

complete dictionary from a set of labeled training face images. By directly incorpo-

rating the labels in the dictionary-learning stage (as opposed to relying on iteratively

updating the dictionary using feedback from the classification stage as in Pham and

Venkatesh (2008)), we can efficiently obtain a dictionary that retains the represen-

tational power while making the dictionary discriminative (i.e., supporting sparse-

coding-based classification). We also propose a corresponding classification algorithm

based on the learned dictionary. Incorporating the classification stage directly into

the dictionary-learning procedure has the potential of avoiding the local minimum

that may be encountered more often in the approach of Pham and Venkatesh (2008),

which computes the sub-optimal solution by alternating between solving subset of

parameters while fixing others. Furthermore, the complexity of the proposed method

is bounded by that of the K-SVD, while the approach of Pham and Venkatesh (2008)

involves multiple additional optimization procedures.

To demonstrate the effectiveness and the advantage of the proposed method for

face recognition, extensive experiments have been carried out using two commonly-

used face databases: the extended YaleB database Lee et al. (2005) and the AR

database Martinez and Benavente (2007). In addition to comparing the recognition

rates of our method with those from existing state-of-the-art approaches, we also
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analyze and compare the performance of the classifiers based on Fisher criterion.

The learned dictionaries are also compared in terms of dictionary incoherence Candès

et al. (2006)Donoho (2006). The experimental results show that the proposed method

has some clear advantages. In particular, the experiments show that with the same

dictionary size or with dictionaries of randomly-chosen training images, our method

can obtain better recognition rate than the SRC algorithm.

The rest of this chapter is organized as follows. We first briefly describe in Sec-

tion 3.2 the basic formulation of the problem of face recognition based on spare-

representation using an over-complete dictionary. Then we present the related work

in the literature in Section 3.3 followed by the proposed algorithm in Section 3.4. The

experiments and analysis of the results are reported in Section 3.5. We concludes with

discussion in Section 3.6.

3.2 Basic Formulation of the Problem

It has been observed that images of human face under varying illumination condi-

tions and expressions lie on a special low-dimensional space Belhumeur et al. (1997)

Basri and Jacobs (2003). In a sparse-representation-based face recognition scheme

like the SRC algorithm, this observation is exploited for recognition through sparse-

coding of a testing face image using an over-complete dictionary of the training faces.

Our method follows this scheme, which we briefly outline in the below.

Given sufficient samples of the i-th person, Ai = [vi,1,vi,2, . . . ,vi,ni
] ∈ R

m∗ni ,

any test sample y ∈ Rm from the same class will approximately lie in the subspace

spanned by the training samples associated with same class:

y = ai,1 ∗ vi,1 + ai,2 ∗ vi,2 + · · ·+ ai,ni
∗ vi,ni

(3.1)

where ai,j is a scalar.

By grouping samples from all the classes, we form a dictionary A:

A = [A1,A2, . . . ,Ak] = [v1,1,v1,2, . . . ,vk,nk
] (3.2)
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where k is the number of classes. Then the linear representation of y can be written

in terms of all samples as:

y = a1,1 ∗ v1,1 + a1,2 ∗ v1,2 + · · ·+ ak,nk
∗ vk,nk

= A ∗ x0 (3.3)

where x0 = [0, , . . . , 0, ai,1, ai,2, . . . , ai,ni
, 0, . . . , 0] ∈ Rn is a vector of coefficient whose

entries are all zero except for those associated with the i-th class.

Based on this idea, if we extract the coefficient α0(j) associated with the j-th

person and reconstruct the image as

y(j) = D ∗ α0(j) (3.4)

we can expect that the reconstruction error e(j) = ‖y− y(j)‖2 will be large for any

general j 6= i except for e(i). We can use this idea to recognize the test sample. While

such a scheme has been shown to be able to generate the state-of-art results in Wright

et al. (2009b), there are a few practical drawbacks associated with the method. For

example,

1. In order to improve the representational power of the dictionary, we need to use

a large number of training samples for each person. But a large dictionary is

detrimental for the subsequent sparse solver.

2. In order to ensure that the dictionary atoms can span the underlying subspace

reasonably well, we need to carefully choose the training images. For example,

in Wright et al. (2009b), for the AR database, the authors manually chose 7

normal images (without artificial disguise) from Section 1 for each person.

3.3 Related Work

The above drawbacks associated with the SRC algorithm may be overcome if we

can learn a smaller-sized dictionary from the given training images while maintaining

the representational power of the dictionary. For example, the K-SVD algorithm
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Aharon et al. (2006) may be employed for this purpose, which finds a solution for the

following problem:

< D, α >= argmin
D,α

‖Y−D ∗ α‖2 subject to ‖α‖0 ≤ T (3.5)

where Y is the matrix of all input signals (the training face images in our case), and

T is a parameter to impose the sparsity prior. In Eqn. 3.5, each column of D is

normalized to have unit norm. This K-SVD formulation has been found to work well

for real images in applications such as image denoising and face image compression.

However, since the objective function in Eqn. 3.5 considers only the reconstruction

error and the sparsity of the coefficient, the learned dictionary is not optimized for

a classification task. In other words, the learned dictionary may not have the best

discriminative power despite its representational power.

Efforts have been reported on improving a dictionary-learning procedure for clas-

sification tasks. In Mairal et al. (2008a) and Mairal et al. (2008b), an extra term was

introduced to consider the classifier performance in dictionary learning. For a binary

classifier, this term can be represented by

< θ >= argmin
θ

∑

i

C(hi ∗ f(αi, θ)) + λ1 ∗ ‖θ‖2 (3.6)

where θ is the parameter of the classifier, hi is the label and C(x) is logistic loss

function C(x) = log(1 + e−x). The resultant problem is very complex and thus there

is no direct method to find the solution. Instead, projected gradient descent was used

in finding approximate solutions in the paper.

Another example is Pham and Venkatesh (2008), which uses a simpler formulation

for considering the classifier performance:

< W,b >= argmin
W,b

‖H−W ∗ α− b ‖2 + β ′‖W‖2 (3.7)

where W, b are parameters for a linear classifier H = W ∗α+b. Each column of H

is a vector: hi = [0, 0, . . . , 1 . . . , 0, 0], where the position of non zero element indicates
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the class. So ‖H−W ∗α+b‖2 is classification error and ‖W‖2 is the regularization

penalty term. We can set b to zero for simplicity.

Considering Eqn. 3.5 and Eqn. 3.7 at the same time, we can naturally define

the following problem for learning a dictionary with both discriminative power and

representative power:

< D,W, α > = argmin
D,W,α

‖Y−D ∗ α‖2 + γ ∗ ‖H−W ∗ α‖2 + β ∗ ‖W ‖2

s.t. ‖α‖0 ≤ T (3.8)

where Y is the set of input signals, D the dictionary, α the coefficient, H the label

of the training images, W the parameter of the classifier, and γ and β are scalars

controlling the relative contribution of the terms to the overall objective function.

The above formulation may be viewed as a special case of Pham and Venkatesh

(2008) without considering the unlabeled data therein. However, our emphasis is on

viewing the formulation of Eqn. 3.8 as an extended K-SVD problem and thus the

solution (to be presented in subsequent subsections) will be solved by a K-SVD-like

algorithm. This is in contrast with the sophisticated (and computationally involv-

ing) optimization procedures used in Mairal et al. (2008a), Mairal et al. (2008b), and

Pham and Venkatesh (2008). To better illustrate this point, we describe the following

iterative procedure for solving the problem of Eqn. 3.8 (which we will refer to as the

Baseline Algorithm later):

Baseline Algorithm

Initialize D and α with K-SVD method by Eqn. 3.5;

while not converged do

Calculate W in Eqn. 3.7 when D and α fixed;

Calculate α when D and W ;
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Calculate D when α and W fixed;

Check convergence;

end while

Essentially, the above procedure is effectively the algorithm of Pham and Venkatesh

(2008), except that here we only consider labeled data. Hence this Baseline Algorithm

will be used in our comparison of the proposed method with that of Pham and

Venkatesh (2008).

3.4 Proposed Method

The Baseline Algorithm mentioned in Sec. 3.3 can only find an approximate so-

lution to the problem of Eqn. 3.8, since the problem in Eqn. 3.8 is not convex and

in each step of the method, it only finds solution for a sub-problem of Eqn. 3.8.

While practically speaking, the final solution may converge to the real solution, the

method has big potential of getting stuck at local minimum of the sub-problems. Ad-

ditionally, as is obvious from the Baseline Algorithm, in each iteration there are three

optimization problems involved and thus the convergence, if it happens, will be slow

to reach. To get around these issues, and to leverage the proved performance of the

K-SVD algorithm, we propose the following Discriminative K-SVD (D-KSVD) algo-

rithm, which uses K-SVD to find the globally optimal solution for all the parameters

simultaneously. The task is formulated as solving the following problem

< D,W, α > = argmin
D,W,α

‖







Y

√
γ ∗H






−







D

√
γ ∗W






∗ α‖2 + β ∗ ‖W‖2

s.t. ‖α‖0 ≤ T (3.9)

We adopt the protocol in the original K-SVD algorithm: the matrix







D

√
γ ∗W






is

always normalized column-wise. Therefore, we can further drop the regularization
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penalty term ‖W‖2, and thus the final formulation of the problem can be written as:

< D,W, α > = argmin
D,W,α

‖







Y

√
γ ∗H






−







D

√
γ ∗W






∗ α‖2

s.t. ‖α‖0 ≤ T (3.10)

Now, the problem of Eqn. 3.10 can be efficiently solved by updating the dictionary

atom by atom with the following method: For each atom dk and the corresponding

coefficient αk, we solve the following problem

< dk, αk >= argmin
dk,αk

‖Ek − dk ∗ αk‖F (3.11)

where Ek = Y−
∑

i 6=k di ∗αi and Y is the training data. ‖·‖F denotes the Frobenius

norm. This is essentially the same problem that K-SVD has solved and thus the the

solution to Eqn. 3.11 is given by

U ∗ Σ ∗VT = SVD(Ek)

d̃k = U(:, 1)

α̃k = Σ(1, 1) ∗V(1, :)T (3.12)

where U(:, 1) denotes the first column of U.

3.4.1 Algorithm for Classification

Upon the completion of training with the labeled data in the previous D-KSVD

algorithm, we obtain an learned dictionary D and a classifier W. However, the

dictionary D does not readily support a sparse-coding based representation of a new

test image, since D and W are normalized jointly in the previous learning algorithm,

i.e,

‖







di

√
γ ∗wi






‖2 = 1 (3.13)

Note that we cannot simply re-normalizeD column-wise by itself, since in the training

stage W is obtained with the original, un-normalized D. Hence, we need to figure out
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a way of obtaining a valid (normalized) dictionary and the corresponding classifier,

based on the learning results, D and W. To this end, we prove the following lemma

which establishes the relationship between the desired (D′, W′) and the learned (D,

W).

Lemma: The normalized dictionary D′ and the corresponding classifier W′ can

be computed as

D′ = {d′
1,d

′
2, . . . ,d

′
k} = {

d1

‖d1‖2
,

d2

‖d2‖2
, . . . ,

dk

‖dk‖2
}

W′ = {w′
1,w

′
2, . . . ,w

′
k} = {

w1

‖d1‖2
,

w2

‖d2‖2
, . . . ,

wk

‖dk‖2
} (3.14)

where di and wi denote the i-th column of D and W, respectively.

Proof : If y is a vectorized image, then

y = D ∗ α =
∑

i

αi ∗ di =
∑

i

αi ∗ ‖di‖2 ∗
di

‖di‖2
=

∑

i

α′
i ∗ d′

i = D′ ∗ α′

l = W ∗ α =
∑

i

αi ∗wi =
∑

i

αi ∗ ‖di‖2 ∗
wi

‖di‖2
=

∑

i

α′
i ∗w′

i = W′ ∗ α′(3.15)

where d′
i =

di

‖di‖2 and w′
i =

wi

‖di‖2 are the i-th column of D and W respectively.

With the normalized D′, we can find the sparse coefficients for a given test image

y by solving the following problem

< α′ >= argmin
α′

1

2
‖y−D′ ∗ α′‖2 + σ ∗ ‖α′‖0 (3.16)

This is the typical sparse-coding problem and in practice we often resort to the fol-

lowing convex optimization problem

< α′ >= argmin
α′

1

2
‖y−D′ ∗ α′‖2 + σ ∗ ‖α′‖1 (3.17)

which can be solved by many ℓ1 optimization methods, such as GPSR Figueiredo

et al. (2007), L1 magic Candes and Romberg (2005) and so on. The stability of the

solution depends on the incoherence of D′ and sparsity of α′ Tropp (2006). When α′

is sparse and D′ is sufficiently incoherent, Orthonormal Matching Pursuit Chen et al.

(1991) can also find the sparse coefficient Figueiredo et al. (2007). According to our
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experiments with large face databases, OMP works well and run faster than other

L1-optimization methods mentioned above. Thus the results reported in this paper

are based on the OMP method.

The final classification of a test image is based on its sparse coefficient α′, which

carries most discriminative information. We can simply apply the linear classifier W′

to α′ and obtain the label of the image:

l = W′ ∗ α′ (3.18)

where l is a vector.

Note that the coefficient α′ can be viewed as the weight of each atom in recon-

structing the test image. Thus we can view each column w′
k of W′ as a factor for

measuring the similarity of atom d′
k to each class. Therefore, l = W′ ∗ α′ is the

weighted similarity of the test image y to each class. In this sense, the label of

test image y is decided by the index i where li is the largest among all elements

of the l computed in Eqn. 3.18. Obviously, in the ideal case, l will be of the form

l = {0, 0, . . . , 1, . . . , 0, 0} (i.e, with only one non-zero entry, which equals to 1).

3.5 Experiments and Analysis

In this section, we first use a simulation experiment (still based real face images)

to compare the proposed D-KSVD method with the method of Pham and Venkatesh

(2008). (As there is no code publicly available for the method in Pham and Venkatesh

(2008), our comparison is based on our implementation of the Baseline Algorithm

discussed in Sect. 3.1, which is essentially the same as that of Pham and Venkatesh

(2008).) Then we evaluate our method on two commonly-used face databases: the

Extended YaleB database and the AR database. For comparison purpose, we also

implemented the SRC algorithm. To gain more insights into how the proposed D-

KSVD method may gain over a plain K-SVD technique, we also implemented an

algorithm that directly uses the dictionary learned by the original K-SVD algorithm

for face recognition. The training stage of this algorithm runs as follows:
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1. Train D with K-SVD according to Eqn. 3.5;

2. Train W with equation W = (αTα + β ′ ∗ I)−1 ∗ α ∗HT .

In this algorithm,D andW are trained independently. The test stage is done similarly

to what described in Sect. 3.4.1. For simplicity, we will refer to this method simply

as K-SVD thereafter.

All the experiments were run on Matlab 2008a. The PC we used has an Intel P4

2.8GHz CPU and 1 GB RAM.

3.5.1 Simulation Experiments

We used 52 images from 2 random persons in the AR database (26 images each

person) for this simulation. These images contain all the possible conditions in the

AR database: varying expressions, varying illumination, and different occlusion con-

ditions. We used the same parameters in running the two competing methods: the

proposed and the Baseline Algorithm (or the method of Pham and Venkatesh (2008)).

First, we compare the methods based on the Fisher criterion, which is commonly

used to evaluate the performance of classifiers. Fisher criterion measures the ratio of

between-class variance and in-class variance. A bigger value usually means a better

classification result. For a two-class problem, the Fisher criterion can be computed

as follows:

S =
‖µ1 − µ2‖22

1

C1
∗

C1
∑

i=1

‖x1(i)− µ1‖22 +
1

C2
∗

C2
∑

i=1

‖x2(i)− µ2‖22

(3.19)

where, µ is the mean of the data, the subscripts are the class labels, and x is the

data, which is the l computed in Eqn. 3.5 in this analysis (since we wanted to see

how well the l’s computed by the two methods are). We have visualized l for all 52

images in Fig. 3.1. The computed Fisher criteria of the two methods are listed in

Table 3.1. It shows that our method get a bigger value for fisher criterion, which

means our method gets a better classification result than the method in Pham and

Venkatesh (2008) does.
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Table 3.1: The result for fisher criterion in simulation experiments.

Method D-KSVD Baseline

Fisher Criterion 1.2431 1.0924

Figure 3.1: Visualizing the computed l. The plot on the left is from the Baseline Al-
gorithm (or Pham and Venkatesh (2008)). The plot on the right is from the proposed
D-KSVD method.

Second, we measure the incoherence of the dictionary which is critical for sparse

representation. Y. Sharon et al. Sharon et al. (2007) proposed Equivalence Break-

down Point (EBP) for measuring the incoherence of the dictionary. However, com-

puting EBP is computationally prohibitive for large dictionaries (e.g., of the size

600×500 as in our experiments). Thus we used the correlation coefficients from pairs

of the atoms in the dictionary instead. This is calculated as

R(x,y) =
cov(x,y)

√

cov(x,x) ∗ cov(y,y)
(3.20)

where x and y are two atoms in the dictionary, cov computes the co-variance. A

smaller coefficient R between two atoms means that they are more incoherent. Ideally,

we want to have a small R for all possible pairs from the learned dictionary. We

computed the largest R from all pairs in the two dictionaries learned from the Baseline

Algorithm and the proposed D-KSVD algorithm, as reported in Table 3.2, which

shows that the proposed method learns a better dictionary.
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Table 3.2: The maximal pair-wised correlation for dictionary learned by D-KSVD
and Baseline in simulation experiment.

Method D-KSVD Baseline

Max R value 0.7633 0.7830
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Figure 3.2: The histogram for pairwise correlation coefficient of the atoms in dic-
tionary. The left one is dictionary with our method. The right one is that with
Baseline

3.5.2 Results with the Extended YaleB Database

The Extended YaleB database contains about 2414 frontal face images of 38 in-

dividuals. Following Wright et al. (2009b), we used the cropped and normalized face

images of 192*168 pixels, which were taken under varying illumination conditionsLee

et al. (2005). We randomly split the database into two halves. One half, which con-

tains 32 images for each person, was used for training the dictionary. The other half

was used for testing. Further, we projected the face image ∈ R
192∗168 into a vector

∈ R504 with a randomly generated matrix, which is called Randomface Wright et al.

(2009b). The learned dictionary contains 304 atoms, which corresponds to, on aver-

age, roughly 8 atoms for each person (but we must point out that, unlike in the SRC

algorithm, in our method there is no explicit correspondence between the atoms and

the labels of the people, since all the information is encapsulated into the discrimina-
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tive dictionary and the corresponding classifier). The sparsity prior assumed in the

learning was set to T = 16.

With this database, we tested 4 methods: SRC, K-SVD (as defined earlier in

the beginning of Section 4.1), the Baseline Algorithm (or equivalently the method of

Pham and Venkatesh (2008)), and the proposed D-KSVD method. The best result

reported for SRC is 98.26% when there are 32 images per person in the dictionary.

We also tested the performance of SRC when the dictionary is smaller (8 atoms

per people). This set of results are denoted by SRC† in the subsequent tables. In

Pham and Venkatesh (2008), the authors only used a few images (at most 4) per

person for training and the recognition result was very poor (about 66.4%). For a fair

comparison, we tested the Baseline Algorithm (essentially the method of Pham and

Venkatesh (2008)) with more training images. In short, the key learning parameters

used in the four methods were kept to be the same in our experiments.

All the results are summarized in Table 3.3. In the experiments, the scalar β and

γ were set to 1. From the experiments, we found that most of the failure cases (about

46 out of 54) are from images under extreme illumination conditions. Some examples

of these cases are given in Fig. 3.3. Thus, we performed another set of experiments

with these ”bad” images excluded (13 for each person). This was intended to show

the true performance of the competing methods without the interference of images

of extremely bad quality. The results of these new round experiments are listed in

the last row of the table. From the table, it is clear that the proposed D-KSVD

method always obtains better results than the K-SVD method and the Baseline (or

the method of Pham and Venkatesh (2008)); In addition, for dictionaries of the same

size, our method performs better than the SRC method.

We also evaluated the incoherence of the learned dictionaries in the experiments

by calculating the correlation coefficient for each pair of atoms in the dictionary. Since

the experiments involve multiple classes, and thus the correlation of the atoms may

exhibit more complex patterns. To avoid the situation that a big R from a single
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Table 3.3: The performance of the algorithms (recognition rate in %) for the Ex-
tended YaleB database. The 2nd row is the result when we used all 64 images for
each people. The 3rd row is the result when we excluded 13 poor-quality images for
each person. The images for training the dictionary were randomly selected.

D-KSVD SRC SRC† K-SVD Baseline

95.56 99.31 80.76 93.17 93.17

99.58 99.72 93.85 99.30 98.89

Table 3.4: The time for classifying one test image using the SRC method and the
D-KSVD method on the extended YaleB database. We record the time for all the
test images and then divide it by the number of images. The value is the average
over 4 rounds. The unit is millisecond. The 2nd row is the result when we use all
64 images for each people. The 3rd row is the result when we use 51 images for each
people.

Method D-KSVD SRC SRC†

Case 1 84 120 83

Case 2 78 121 82

pair of atoms overshadows the correlation of all other pairs, in this case, we plot the

histogram of the correlation coefficients. The results are given in Fig. 3.4 and Fig. 3.5

respectively. From these plots, it was found that the proposed D-KSVD method was

able to generate a dictionary that contains more less-correlated atom pairs. That is,

in the plots, the bars from the proposed method are on average slightly taller towards

the left side of the axis of the correlation coefficients. (Probably one cannot expect to

see dramatic difference in these plots, given that the performances of the algorithms

are already very close and the improvement is at most a couple of percents. However,

these few last percents are the hardest to obtain.)

In addition to the classification performance of the D-KSVD method and the SRC

method, we also compared their speed performance for classifying one test image. We

recorded the total time for classifying all the test images, and then divided it by the

number of the test images, hence obtaining the average processing time for each

testing image. We ran this for 4 rounds and calculated the average result, as shown

in Table 3.4. From the results in Table 3.4, we can see that, with a smaller dictionary
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Figure 3.3: Sample images under extreme illumination conditions. The left two are
from one person and the right two from another person.

(304 atoms in the dictionary for D-KSVD and SRC†, and 1216 atoms in the dictionary

for SRC), we can save about 1/3 of the time in testing. With a database involving

more people, we can expect a smaller dictionary can save even more time (see the

results below for the AR database too).

3.5.3 Results with the AR database

The AR database contains over 4000 color images for 126 people. For each person,

there are 26 images taken in two different sections. These images contain 3 different

illumination conditions, 3 different expressions and 2 different facial disguises (with

sunglasses and scarf respectively). Thus this is a more challenging dataset. In our

experiments, we used 2600 images from 50 male and 50 female. For each person, we

randomly selected 20 images for training the dictionary and the other 6 for testing,

which generally contain all the possible variations in the database. The results re-

ported in the subsequent table are from the average of three such random spits of the

training and testing images. The learned dictionary contains 500 atoms, i.e., roughly
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Figure 3.4: The histogram of pairwise correlation coefficients of the atoms in the
learned dictionary. The dictionaries were trained by 4 different methods with the
extended YaleB database.

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
0

0.05

0.1

0.15

0.2

0.25

 

 
SRC
K−SVD
Baseline
D−KSVD

Figure 3.5: The histogram of pairwise correlation coefficients of the atoms in learned
dictionary. The dictionaries were trained by 4 different methods with the extended
YaleB database with 13 poor-quality images excluded.

5 atoms per person (but again, as discussed earlier, in our method there is no explicit

correspondence between the atoms and the people). The sparsity prior was set to

T = 10.

For direct comparison, we quoted the performance of the SRC algorithm on this

dataset from Wright et al. (2009b), as listed in Table 3.5. It is worth noting that,

in their experiments, they manually selected 7 images without facial disguise for

each people from first section to build the dictionary. In our experiments, we tested
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Table 3.5: The result reported for SRC. SRC‡ means first breaking the images into
blocks, then classifying each block, finally using voting policy to decide image’s label.

Test images Without disguise Sunglasses Scarves

SRC 94.7% 87.0% 59.5%

SRC‡ NA 97.5% 93.5%

Table 3.6: The performance of the algorithms (recognition rate in %) for the AR
database. SRCn means there are n atoms per person in the dictionary learned by
SRC. All other 3 methods use 500 atoms (roughly 5 per person). The images for
training the dictionary were randomly selected.

D-KSVD SRC20 SRC5 K-SVD Baseline

95.0 90.50 68.14 88.17 93.0

the SRC algorithm with randomly-selected images for building the dictionary and

experimented with two different dictionary sizes. We also tested K-SVD and the

method of Pham and Venkatesh (2008) (the Baseline) on the AR database. In the

experiments, all four methods use the same parameters. We also did the random

projection as described earlier and in this case, this was from face images ∈ R165∗120

into vectors ∈ R
540.

The final results from all the methods are listed in Table 3.6. The experiments

show that the performance of the SRC algorithm degraded dramatically when the

training of the dictionary was based on randomly-selected images: when there are 5

images per person in the dictionary, the result is merely 68.14%. From the table, the

proposed method outperforms all the competing methods.

As in the experiments with the Extended YaleB database, we also compared the

speed performance of the D-KSVD method and the SRC method for classifying one

test image on the AR database. The same method was used here. The result is shown

in Table 3.7. For SRC5 and D-KSVD, the dictionary has 500 atoms, and the size is

2000 atoms for SRC20. As expected, for a database involving more people, a smaller

dictionary can save more time, which is about 1/2 from the table.
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Table 3.7: The time for classifying one test image using the SRC method and the
D-KSVD method on AR database. We record the time for all the test images and
then divide it by the number of images. The value is the average over 4 rounds. The
unit is millisecond.

Method D-KSVD SRC20 SRC5

Result 62 131 76

3.6 Conclusion

We proposed a dictionary-learning approach, Discriminative K-SVD (D-KSVD),

for face recognition. By adding a discriminative term into the objective function of

the original K-SVD algorithm, we can ensure that the learned over-complete dictio-

nary is both representative and discriminative. The solution of the new formulation

follows a procedure derived from the original K-SVD algorithm and thus can be ef-

ficiently solved. Unlike existing approaches that iteratively solve sub-problems in

order to approximate a global solution, our method directly finds all the parameters

(the dictionary and the classifier) simultaneously. With extensive experiments on

two large, commonly-used face databases, we demonstrated the advantages of the

proposed method. The experimental results shows that: under the same learning

condition, our method always outperforms K-SVD and the method of Pham and

Venkatesh (2008); with the same dictionary size or with randomly chosen training

images, our method outperforms the SRC algorithm. Our future work includes ex-

ploring both theoretically and empirically the structure of the learned dictionaries

from our method and the competing methods, so as to reveal deeper insights on how

to incorporate label information into dictionary learning. More extensive analysis on

the speed performance of the algorithms is also another direction of interest and of

practical importance.
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Chapter 4

MINING DISCRIMINATIVE COMPONENTS WITH LOW-RANK AND

SPARSITY CONSTRAINTS FOR FACE RECOGNITION

This chapter presents our second problem, considering the physical process of image

formation, how can we extract a compact and effective subspace for face images. To

crack this problem, we propose a novel image decomposition approach for an ensemble

of correlated images, using low-rank and sparsity constraints. Each image is decom-

posed as a combination of three components: one common component, one condition

component, which is assumed to be a low-rank matrix, and a sparse residual. For a

set of face images of N subjects, the decomposition finds N common components,

one for each subject, K low-rank components, each capturing a different global condi-

tion of the set (e.g., different illumination conditions), and a sparse residual for each

input image. Through this decomposition, the proposed approach recovers a clean

face image (the common component) for each subject and discovers the conditions

(the condition components and the sparse residuals) of the images in the set. The set

of N +K images containing only the common and the low-rank components form a

compact and discriminative representation for the original images. We design a clas-

sifier using only these N +K images. Experiments on commonly-used face data sets

demonstrate the effectiveness of the approach for face recognition through compar-

ing with the leading state-of-the-art in the literature. The experiments further show

good accuracy in classifying the condition of an input image, suggesting that the

components from the proposed decomposition indeed capture physically meaningful

features of the input.
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4.1 Introduction

Face recognition has been an active research field for a few decades, and its chal-

lenges and importance continue to attract efforts from many researchers, resulting

in many new approaches in recent years. The most recent literature may be divided

into roughly two groups, where methods in the first group try to model the physical

processes of image formation under different conditions (e.g., illumination, expres-

sion, pose etc.). For example, the approach of Lee et al. (2005) models the face

image under varying illumination conditions to be a linear combination of images of

the same subject captured at 9 specially designed illumination conditions; the SRC

algorithm of Wright et al. (2009b) further assumes that face images with illumination

and expression conditions can be represented as a sparse linear combination of the

training instances (i.e., the dictionary atoms). On the other hand, the second group

of approaches utilizes mathematical/statistical tools to capture the latent relations

among face images for classification. E.g., the SUN approach Kanan and Cottrell

(2010) uses the statistics of the human fixation of the images to recognize the face

images, Volterrafaces Kumar et al. (2009b) finds a latent space for face recognition,

where the ratio of intra-class distance over inter-class distance is minimized. One

major advantage of the techniques in the first class comes from their being generative

in nature, which allows these methods to accomplish tasks like face relighting or novel

pose generation in addition to recognition. The second group of methods in a sense

ignores the physical property of the faces images and treats them as ordinary 2D

signals.

Although the methods in the first group have the above nice property, a baseline

implementation usually requires dictionaries with training images as atoms and thus

may face the scalability issue in real-world applications with a huge number of sub-

jects. Hence efforts have also been devoted to reducing the size of the dictionary while

attempting to retain the level of performance of the original dictionary. Examples

include those that generate more compact dictionaries through some learning proce-

29



dure (e.g., Mairal et al. (2008a)) and those that attempt to extract subject-specific

features that are effectively used as dictionary atoms (e.g., Nagesh and Li (2009)).

Our approach belongs to the second group. Since the expressive power of the original

dictionary-based techniques comes from largely the number of training images for

each subject, a compact dictionary may suffer from degraded performance unless the

reduced dictionary properly captures the conditions of the original data that are crit-

ical for a recognition task. For example, the method of Nagesh and Li (2009), while

shown to be effective for expression-invariant recognition, is difficulty to generalize

to handle global conditions such as illumination change, which often introduce to the

data non-sparse conditions that cannot be captured by the sparsity model proposed

therein.

Recognizing that non-sparse conditions such as illumination change and large oc-

clusion are critical for face recognition, and that for a typical application we may

assume only a finite number of such conditions (e.g., a relatively small number of

illumination conditions or other conditions), in this chapter, we propose a model for

representing a set of face images by decomposing them into three components: a

common component shared by images of the same subject, a low-rank component

capturing non-sparse global changes, and a sparse residual component. Such decom-

position is partially inspired by the observation that the reconstruction of the image

with the top few singular values and the corresponding singular vectors often capture

the global information of the image, which can be represented by a low-rank matrix.

To this end, a generic algorithm is proposed, with theoretic analysis on the conver-

gence and parameter selection. The learned common and low-rank components form

a compact and discriminative representation of the original set of images. A classifier

is then built based on comparison of subspaces spanned by these components and by

a novel image to be classified. This is very compact compared with the number of

atoms in an over-determined dictionary such as that in Wright et al. (2009b). Fur-

ther, by explicitly modeling non-sparse conditions, the proposed approach is able to
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handle both illumination changes and large occlusions, which would fail methods like

Nagesh and Li (2009).

To demonstrate the effectiveness of the proposed method, we first design synthetic

experiments with known ground truth to verify its key capability in recovering the

underlying common, low-rank and sparse components. Then we report results on

three commonly-used data sets of real face images: the Extended YaleB dataset

Georghiades et al. (2001), the CMU PIE dataset Sim et al. (2002) and the AR dataset

Martinez and Benavente (1998).The experiments show that, the proposed approach

obtained better performance than the SRC algorithm Wright et al. (2009b), which

utilizes a much larger dictionary, and the SUN approach Kanan and Cottrell (2010).

The proposed approach also achieves comparable result to Volterrafaces, which is

the current state-of-the-art in the literature for a few commonly-used data sets. In

addition, the proposed approach can explicitly model the most important feature

of the subject and the conditions in the dataset. Experiments also show that the

proposed method is robust to situations where a non-trivial percentage of the training

images is unavailable. Further, the capability of the proposed approach for classifying

the type of condition that an input image is subject to is also demonstrated by

extensive experiments. This suggests that the proposed decomposition is able to

obtain physically meaningful and thus potentially discriminative components.

We introduce the proposed method in Section 4.2, including the proposed model,

the learning algorithm and the classification method. The experiments are reported

and analyzed in Section 4.3. We conclude in Section 4.4 with a summary of the work

and brief discussion on future work.

In the presentation, we use {Xi,j}N,M
i=1,j=1 denotes a set of N ×M matrices, with

Xi,j as its (i, j)th member. We assume that N is the number of the subjects, and M
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the number of images per subject1. Thus Xi,j refers to jth image of the ith subject.

When there is no confusion, we also use X to denote the set {Xi,j}N,M
i,j=1.

4.2 Proposed Method

In this section, we first present the general formulation of the proposed model in

Section 4.2.1, and then present our algorithm for obtaining the desired decomposition

in Section 4.2.2 and analysis of its convergence in Sec. 4.2.3. With these, a face

recognition algorithm is then designed in Section 4.2.4.

4.2.1 Decomposing a Face Image Set

In many applications of image and signal processing, we often consider a set of

correlated signals as an ensemble. For efficient representation, a signal in the ensemble

can often be viewed as a combination of a common component, which is shared among

all the signals in the ensemble, and an innovation component, which is unique to this

signal. Many benefits can be drawn from this decomposition of the ensemble, such

as obtaining better compression rate and being able to extract more relevant features

Bengio et al. (2009). In face recognition, all the face images, especially the subset

corresponding to a subject, may be naturally viewed as forming such an ensemble of

correlated signals. In a sense, a sparse-coding approach like SRC implicitly figures

out the correlation of the images in the ensemble via the sparse coefficients under the

dictionary of the training images.

In this work, we aim at developing a new representation of this ensemble so that

the face recognition task can be better supported. In particular, considering the

common challenges such as illumination conditions and large occlusions, we want to

have a representation that can explicitly model such conditions. To this end, we

1For simplicity, we assume that each subject has the same number of images, which can always

be achieved by using some blank images, a situation the proposed method can handle.
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propose the following decomposition of face images Xi,j in the ensemble X as:

Xi,j = Ci +Aj + Ei,j, ∀Xi,j ∈ X (4.1)

where Ci is the common part for Subject i, Aj is a low-rank matrix, and Ei,j is a

sparse residual.

One essential difference between the proposed method and Robust PCA (RPCA

Wright et al. (2009a)), is that RPCA assumes the signals are linearly dependent,

with some sparsely corrupted entries in the signals. As a result, they build a big

matrix with each signal as a vector. The big matrix would naturally be low-rank

(because of the assumed inter-image correlation), in addition to having a sparse set

of entries. On the other hand, the proposed decomposition is partially inspired by

the observation that the reconstruction of the image with first few singular values

and the corresponding singular vectors often capture the global information of the

image Liu et al. (2008), e.g., illumination conditions, structured patterns, which can

be represented by a low-rank matrix. Here the low-rank constraint arises from certain

physical conditions (rather than due to inter-image correlation), and it is imposed on

each individual image. Accordingly, we represent images by matrices rather than

vectors, unlike other methods like Wright et al. (2009b),Wright et al. (2009a). With

this, we can expect that:

Ci is a matrix representing the common information of images for Subject i, i.e., the

common components;

Aj is a low-rank matrix capturing the global information of the image Xi,j , e.g.,

illumination conditions (Fig. 4.3), structured patterns (Fig. 4.1); and

Ei,j is a sparse matrix pertaining to image-specific details such as expression condi-

tions or noise with sparse support in the images.

In this modeling, we have assumed M different low-rank matrices, which are re-

sponsible for M different global conditions such as illumination conditions or large
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occlusions, and they are shared among the images of different subjects. However,

images of each subject do not necessarily contain all the M conditions, as we will

show in Sec. 4.2.2.

The above model can also be explained via the Retinex theory, in which image I

can be represented as:

I(p, q) = R(p, q) · L(p, q) (4.2)

where R(x, y) is the reflectance at location (x, y), which depends on the surface

property, L(x, y) is the illumination, and · is element-wise product. Converting this

into the logarithm domain, we have

log(I) = log(R) + log(L) (4.3)

The above equation indicates that we can represent the intensity of the face image as

follows:

log(Xi,j) = Ci +Aj + Ei,j, ∀Xi,j ∈ X (4.4)

where Ci = log(R) captures the common property of the images for Subject i, Aj =

log(L) captures the lighting conditions, and Ei,j captures the residual. This is a

variant of the model in Eqn. 4.1, and is especially suitable for illumination-dominated

datasets such as the extended YaleB dataset and the CMU-PIE dataset.

With the above decomposition, the entire dataset containing N ×M images can

be compactly represented by N common components and K low-rank components.

If we extract the common component Ci for face images of Subject i under different

conditions, we expect that this common component Ci represents the most significant

feature of that subject. The set of all the learned low-rank components A = {Aj}Mj=1

represents all possible global conditions of the images in the set. Hence we may use A

and Ci to span the subspace of the face images for Subject i, where, in the ideal case,

any face images of this subject should lie in, barring a sparse residual. This suggests

that we can utilize the subspaces for face recognition by identifying which subspace

a test image is more likely to lie in, which is detailed in Sec. 4.2.4.

34



4.2.2 An Algorithm for the Decomposition

Based on Eqn. 4.1, we formulate the decomposition task as the following con-

strained optimization problem, with an objective function derived from the require-

ment of decomposing a set of images into some common components, some low-rank

matrices and the sparse residuals:

C,A,E = argmin
C,A,E

∑

i,j

‖Aj‖∗ + λi,j‖Ei,j‖1

s.t. Xi,j = Ci +Aj + Ei,j, ∀Xi,j ∈ X (4.5)

where ‖Aj‖∗ =
∑

i σi(Aj) is the nuclear norm, ‖Ei,j‖1 =
∑

p,q |Ei,j(p, q)| is the ℓ1

norm and E = {Ei,j}N,M
i,j=1. Note that, unlike Wright et al. (2009a) where a set of

images are stacked as vectors of a low-rank matrix, we do not convert the image to a

vector in the decomposition stage.

To absorb the constraints into the objective function, we can reformulate Eqn.

4.5 with augmented Lagrange multiplier as:

C,A,E = argmin
C,A,E

∑

i,j

‖Aj‖∗ + λi,j‖Ei,j‖1 (4.6)

+
µi,j

2
‖Xi,j −Ci −Aj − Ei,j‖2F+ < Yi,j ,Xi,j −Ci −Aj − Ei,j >

where Yi,j is the Lagrange multiplier, λi,j and µi,j are scalars controlling the weight

of sparsity and reconstruction error accordingly. When µ is sufficiently large, Eqn.

6.11 is equivalent to Eqn. 4.5. It is worth pointing out that, while for clarity we have

written only the expression for Subject i, the optimization is actually done for the

entire set of images, since the low-rank components are deemed as been shared by all

images.

To solve the problem of Eqn. 6.11, a block coordinate descent algorithm may

be designed, with each iterative step solving a convex optimization problem Candes

and Plan (2009)Wright et al. (2009a) for one of the unknowns. To this end, we first

describe the following three sub-solutions that are needed in each iteration of such
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an algorithm, which correspond to solving only one of the unknowns (blocks) while

fixing others.

Sub-solution 1: For finding an optimal Ei,j in the t-th iteration, where the

problem can be written as

Ei,j = argmin
Ei,j

λi,j‖Ei,j‖1 +
µi,j

2
‖XE

i,j − Ei,j‖2F+ < Yi,j,X
E
i,j −Ei,j > (4.7)

with XE
i,j = Xi,j −Ci −Aj . So we do the following update Hale et al. (2008):

Ei,j = S λ
µi,j

(XE
i,j +

1

µi,j

Yi,j) (4.8)

where Sτ (X) = sign(X) ·max(0, |X| − τ).

Sub-solution 2: For finding an optimal Ak in the t-th iteration, where the

problem can be written as

Aj = argmin
Aj

∑

i

‖Aj‖∗ +
µi,j

2
‖XA

i,j −Aj‖2F+ < Yi,j,X
A
i,j −Aj > (4.9)

We use the singular value thresholding algorithm Cai et al. (2008); Goldfarb and Ma

(2011):

UΣVT ←
∑

i µi,jX
A
i,j +Yi,j

∑

i µi,j

Aj = USτ (Σ)V
T

with XA
i,j = Xi,j −Ci − Ei,j and τ = N∑

i µi,j
.

Sub-solution 3: The solution to the problem of finding optimal Ci

argmin
Ci

µi,j

2

∑

j

‖XC
i,j −Ci‖2F+ < Yi,j,X

C
i,j −Ci > (4.10)

where XC
i,j = Xi,j −Aj − Ei,j, can be obtained directly (by taking derivatives of the

objective function and setting to zero) as

Ci =

∑

j Yi,j + µi,jX
C
i,j

∑

j µi,j

(4.11)
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As alluded earlier, the images of any given subject may not range over all possible

M conditions. This may be equivalently viewed as a problem where some images are

missing for the subject. We now show how this can be addressed in a principled way.

Assume that Ω is the set of (i, j) where Xi,j is available and Ω̄ is the complement

of Ω. To deal with those missing entries, we only need to set Yi,j, µi,j and Xi,j to

0 for (i, j) ∈ Ω̄ in the initialization stage. In each iteration, we do not update Ei,j

for (i, j) ∈ Ω̄. The proposed decomposition algorithm will automatically infer the

missing images.

With the above preparation, we now propose the following Algorithm 1 to solve

Eqn. 6.11:

Algorithm 1: Learning the Decomposition

Input: X, Ω, N , M , ρ, λ and τ ;

Output: {Ci}Ni=1, {Aj}Kj=1 and {Ei,j}N,M
i,j=1;

{Initialization} t = 0, C0
i = A0

j = E0
i,j = 0; Y0

i,j =
Xi,j

‖Xi,j‖F , µ0
i,j = τ

‖Xi,j‖F for

(i, j) ∈ Ω;

Y0
i,j = 0, µ0

i,j = 0 for (i, j) /∈ Ω;

while not converged do

Solve Ei,j for (i, j) ∈ Ω by Sub-solution 1:

Solve Aj for j = 1, 2, ...,M with Sub-solution 2;

Solve Ci for i = 1, 2, ..., N using Sub-solution 3;

Yt+1
i,j = Yt

i,j + µt
i,j(Xi,j −Ct+1

i −At+1
j − Et+1

i,j ) for (i, j) ∈ Ω;

µt+1
i,j = µt

i,jρ for (i, j) ∈ Ω;

t = t+ 1;

check convergence;

end while
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where for convergence, we check
∑

i,j ‖Xi,j−Ci−Aj−Ei,j‖2F∑
i,j‖Xi,j‖2F

and if it is small enough (e.g.,

10−6), we terminate the algorithm. λ, τ and ρ are three parameters specified in input,

which are discussed in Sec. 5.3.1.

4.2.3 Convergence of the Algorithm

The convergence property of an iterative optimization procedure like the algorithm

proposed above is critical to its usefulness. The Algorithm 1 has similar convergence

property as the methods described in Lin et al. (2010), which are also augmented

Lagrange multiplier based approaches. We can draw the following theorem:

Theorem 1 If
∑∞

t=1 µ
t+1
i,j (µt

i,j)
−2 < ∞ and limt→∞ µt

i,j(E
t+1
i,j − Et

i,j) = 0 ∀i, j, then

Algorithm 1 will converge to the optimal solution for the problem of Eqn. 4.5.

The proof of Theorem 1 is included in the Appendix A.

4.2.4 Face Recognition Using the Decomposition

With the components in Eqn. 4.1 estimated from the previous algorithm, we now

discuss how to classify a test image. Recognizing that the sparse residual captures

only image-specific details that have not been absorbed by the common or the global

condition, we discard the sparse residuals from the decomposition (training) stage

and keep only the common and the low-rank components.

Ideally a face image from Subject i should lie in a subspace spanned by its common

component Ci and the low-rank components A. Therefore, we propose the following

classification scheme based on comparing the distance between subspaces spanned by

the training components and those spanned by replacing the training common by the

test image y. We first build the subspace Si for subject i, which contains all the

linear combinations of the images of Subject i under all conditions, i.e.,

Si = {x|x =
∑

k

wk × (ci + aj) ∀w ∈ R
M} (4.12)
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where ci and aj is the vectorized form of Ci and Aj respectively. Subspace Si can

be sufficiently represented by a set of “basis”, i.e., {ci + aj}Mj=1. Accordingly, we can

build the subspace Sy for the test image y as the follows:

Sy = {x|x =
∑

k

wk × (y + aj) ∀w ∈ R
M} (4.13)

Then we use the principal angles Knyazev and Argentati (2002) between these sub-

space to measure their similarities. In this paper, the principal angles measure the

cosine distance between the subspaces, which is calculated as s(Si,Sy) =
∑

k cos
2(θk),

where θk is the kth principal angle between Si and Sy. The assign i as the label of f,

for which s(Si,Sy) is maximal.

4.3 Experimental Results

Experiments have been done to evaluate the proposed model and algorithms. In

this section, we report several sets of results from such experiments. First, simulations

(Sec. 5.3.1) are employed to demonstrate the convergence and parameter selection

of the proposed decomposition algorithm. Then, we show the decomposition of the

images from extended YaleB dataset and also how the learned components can be

used to reconstruct new images in Sec. 4.3.2. Finally, we demonstrate the appli-

cation of the proposed method and algorithms in classification tasks, including face

recognition (Sec. 4.3.3) and identifying the conditions of the images (Sec. 4.3.4). The

performance of the proposed method in face recognition task is compared with that of

SRC Wright et al. (2009b), Volterrafaces Kumar et al. (2009b) and SUN Kanan and

Cottrell (2010) on 2 commonly used datasets, i.e., extended YaleB Lee et al. (2005)

and CMU-PIE Sim et al. (2002).

4.3.1 Simulation-based Experiments

In this subsection, we use synthetic data to demonstrate the convergence of the

algorithm and selection of the parameters. The common components and condition

components used in this experiment are shown in Fig. 4.1 (b,c), where the condition
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(a)

(b)

(c)

(d)

(e)

Figure 4.1: (a) shows the 25 images generated in the experiment, where the sparse
part has 20% support of each image. (b,c) shows the ground truth of the common
components and condition components accordingly. We also show the common com-
ponents (d) and condition components (e) decomposed from (a) when ρ = 1.25 and
τ = 2.

components are from Portilla and Simoncelli (2000) and both components are rescaled

to range [0, 1]. The sparse components are sampled from a uniform distribution in

the range of [0, 1]. We use those components to generate 25 images, which are used

in this experiment, as Eqn. 4.1.

Algorithm 1 in Sec. 4.2.2 requires three parameters, ρ controls the convergence

speed; λ controls the sparsity of the sparse residuals; and τ is a scalar. In Lin et al.

(2010), they suggest ρ = 1.5, τ = 1.25 and λ = 1√
m

for Robust PCA, where m is the

width of Xi,j. We have also found that λ = 1√
m

is optimal from the experiments, thus

we adopt this selection in our paper. From the experiment, we found that τ ∈ [1.25, 2]

and ρ = 1.25 would be an optimal choice. Fig. 4.1 shows an example of the recovered

40



(a)

(b)

(c)

Figure 4.2: (a) the input data with 10 image manually removed, (b,c) is the common
components and condition components decomposed from (a) accordingly.

common components (d) and condition components (e) when the sparse part has 20%

support of the image.2

To demonstrate the robustness of the algorithm, when only part of data is avail-

able, we randomly remove 10 images from the 25 images (Fig. 4.2(a)) and run the

algorithm with the same set of parameters. The results are shown in Fig. 4.2, where

(b) is the recovered common components and (c) is the recovered condition compo-

nents. These results suggest that the algorithm is still able to produce reasonable

results even with 40% of the images missing.

4.3.2 Decomposing a Set of Images

In this subsection, we first demonstrate the decomposition of the set of images

from Extended YaleB datasetGeorghiades et al. (2001). All the 2432 images from

38 subjects under 64 illumination conditions were used. The common components

and the condition components are illustrated in Fig. 4.3. Comparing these with the

2The recovered parts are subject to a linear shift and scaling. We identify the parameters for this

linear shift and scaling then map them back with those parameters.
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(a) (b)

Figure 4.3: The decomposition of the extended YaleB dataset. We use all the 2432
images which contain 38 subjects (b) and 64 illumination conditions (a).

original data, it is evident that the recovered commons are largely clean pictures of

the subjects, while the condition components align well with the given illumination

conditions. This experiment shows the capability of the proposed method with the

Retinex model to discover the illumination conditions and the subject commons from

a set of real images.

Next, we randomly pick 32 illumination conditions out of the decomposed 64

conditions and the common components of Subject 1 to form a subspace as described

in Eqn. 4.14. Then we use the proposed method to identify whether a new image is in

this subspace, by reconstructing this image as the linear combination of the “basis”

of this subspace, i.e., c1 + aj. Fig. 4.4 shows an example, where the new image

is also picked from Subject 1; and Fig. 4.5 shows another example, where the new

image is picked from Subject 2. These examples suggest that the learned components

can be used for identifying which subject a new image belongs to. Similarly, the
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Figure 4.4: (a) the coefficient for the linear combination, (b) the input image, which
is not observed in the images for training the 32 illumination conditions, and (c) the
reconstructed image.

learned components can also be used for identifying which conditions the new image

is associated with. These two scenarios are further evaluated in the following two

subsections, with real face images.

4.3.3 Recognizing the Face Images

In this subsection, we demonstrate the performance of the proposed method in

face recognition task, with the comparison to SRC, Volterraface and SUN on the

extended YaleB dataset and CMU PIE dataset. As these two datasets are dominated

by illumination conditions, we use the Retinex model for the proposed method, i.e.,

the image is converted to logarithm. In the SRC method, we build the dictionary

by containing all the training images as its columns. Since there is no code publicly

available for SRC, we build our own implementation. For ℓ2 optimization used by
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Figure 4.5: (a) the coefficient for the linear combination, (b) the input image and
(c) the reconstructed image.

SRC, we used Orthonormal Matching Pursuit (OMP)Aharon et al. (2005) as the

solver. We set the number of non-zero elements in the sparse coefficient (refer as K

later) to be twice the number of conditions in the training data. In addition, each

image is normalized to have zero mean and unit l2 norm for SRC. For Volterrafaces

and SUN, we use the author’s original implementation and the provided parameters.

For all the results, we present the both mean and standard deviation of the accuracy

of 3 rounds of experiments.

To examine the robustness of the approaches with respect to the amount of train-

ing data, we use the following scheme. In the experiment, we only pick “#train

per subject” images for each subject as the training instances, according to the ran-

domly generated sample matrix (Ω), where some of the elements are set to 0 and the

corresponding images won’t be used for training.
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The Extended YaleB dataset Georghiades et al. (2001) contains N = 38 subjects

with 64 images for each subject, which correspond to 64 illumination conditions in the

dataset. The images are resized to 48×42. The results on the extended YaleB dataset

are summarized in Tab. 4.1. From this table, we find that the proposed approach and

Volterrafaces achieve the best results; and SUN gets obviously the lowest accuracy.

The performance of SRC degrades dramatically as the size of dictionary (i.e., number

of training instances) reduced.

The CMU PIE dataset Sim et al. (2002) contains N = 68 subjects with varying

poses, illuminations and expressions etc.. For all the images, we manually crop the

face region, according to the eye position, then resize them to 50 × 35. The results

are summarized in Tab. 4.2. In Experiment 1, all 4 methods get similar results; in

Experiment 2, the proposed method and Volterrafaces get the best result; and in

Experiment 3, the proposed approach gets the best result. In addition, the proposed

method is more robust to the missing of training images. The performance of SRC

degrades obviously as the size of dictionary reduced.

To illustrate the speed performance of the proposed approach, we compared the

time required to classify one image in our approach and the SRC approach. This

time was about 0.84 seconds in our method, and about 1.59 seconds in SRC. The

time for the decomposition (i.e., Algorithm 1) is less than 5 minutes. The most time

consuming part for the proposed approach is the singular value decomposition (SVD),

which is used in computing the principle angle, so an efficient implementation of SVD

can make the proposed algorithm even faster.

4.3.4 Identifying the Conditions

Finally, we use an experiment to show how the proposed method can be applied

to identifying the conditions the testing images are associated with. The AR dataset

Martinez and Benavente (1998) contains N = 100 subjects and 26 images for each

subjects. The dataset contains 2 sessions, which are taken at different times. Each
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(a) Experiment 1

#train per subject 32 24 16 8

Proposed 99.78±0.24% 99.54±0.04% 99.18±0.14% 95.15±1.03%

SRC 96.48±0.44% 95.29±0.52% 91.90±0.94% 78.65±1.81%

Volterrafaces 99.95±0.06% 99.80±0.26% 99.48±0.49% 90.22±11.84%

SUN 89.61±1.85% 87.64±2.80% 76.91±3.71% 60.17±2.09%
(b) Experiment 2

#train per subject 16 12 8 4

Proposed 99.56±0.00% 99.33±0.23% 98.32±0.03% 80.03±2.17%

SRC 89.14±0.00% 87.88±0.44% 81.02±0.13% 58.54±1.26%

Volterrafaces 99.25±0.34% 99.17±0.39% 96.27±4.03% 91.03±2.43%

SUN 79.22±0.00% 76.75±0.00% 68.86±0.00% 51.60±0.00%
Table 4.1: The results on extended YaleB dataset. Experiment 1: we randomly pick
M = 32 illumination conditions for training and the remaining for testing, i.e., we will
obtain N = 38 common components and M = 32 conditions by the proposed method.
Experiment 2: we manually pick M = 16 illumination conditions for training and the
remaining for testing.

session contains 13 conditions: 4 for expressions, 3 for illuminations, 3 for sun glasses

and 3 for scarves. In our experiments, we use one session for training and the other

session for testing. The images are converted to gray scale and resized to 55× 40. To

recognize the associated condition, we slightly change the formulation of the subspace:

Si = {x|x =
∑

j

wj × (ai + cj) ∀w ∈ R
N} (4.14)

Sy = {x|x =
∑

j

wj × (y+ cj) ∀w ∈ R
N} (4.15)

where Si is the subspace for condition i and Sy the subspace for the test image. The

other settings were the same as those of previous face recognition experiments.

The proposed method achieves an accuracy of 91.77% in recognizing the con-

ditions, with the confusion matrix given in Fig. 4.6, where we achieved over 96%

accuracy for all but conditions 1, 2, 3 (3 expressions) and 12. This experiment again
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(a) Experiment 1

#train per subject 20 15 10 5

Proposed 100±0.00% 100±0.00% 99.65±0.37% 97.49±0.21%

SRC 99.88±0.07% 99.88±0.07% 99.73±0.14% 97.73±0.54%

Volterrafaces 100±0.00% 100±0.00% 100±0.00% 95.83±4.16%

SUN 100% 99.84±0.11% 99.45±0.43% 95.75±0.49%
(b) Experiment 2

#train per subject 12 9 6 3

Proposed 100±0.00% 99.960.08% 99.17±0.15% 94.70±0.20%

SRC 99.91±0.16% 98.89±1.74% 96.90±3.73% 87.18±1.78%

Volterrafaces 100±0.00% 100±0.00% 99.54±0.31% 94.30±4.72%

SUN 100±0.00% 99.84±0.05% 98.53±0.29% 88.75±4.72%
(c) Experiment 3

#train per subject 40 30 20 10

Proposed 99.98±0.03% 99.92±0.06% 99.24±0.06% 90.95±0.70%

SRC 99.98±0.03% 99.45±0.03% 96.79±0.28% 86.98±0.16%

Volterrafaces 99.60±0.22% 98.37±0.47% 97.63±0.28% 89.72±1.45%

SUN 99.93±0.05% 99.38±0.14% 97.89±0.30% 88.29±0.02%
Table 4.2: The result on CMU-PIE dataset. Experiment 1: we pick the images
with frontal pose (C27), which include 43 illumination conditions for each subject.
We randomly pick M = 20 conditions for training and the remaining for testing.
Experiment 2: we again only pick the image with frontal pose, but we randomly pick
M = 12 conditions for training and the remaining for testing. Experiment 3: we use
all the images from 5 near frontal poses (C05, C07, C09, C27, C29), which includes
153 conditions for each subject. We randomly pick M = 40 conditions for training
and the remaining for testing..

demonstrates the effectiveness of the proposed method in capturing the physical con-

ditions in the form of low-rank components.

4.4 Conclusions and Future Work

In this paper, we proposed a novel decomposition of a set of face images of multiple

subjects, each with multiple images. The decomposition finds a common image and
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Figure 4.6: The confusion matrix (in percentage) of condition recognition result
from the proposed method, where both axes are the condition index. The axis is
index of the conditions.

a low-rank image for each of the subjects in the set. All the low-rank images form a

set that is used to capture all possible global conditions existing in the set of images.

This facilitates explicit modeling of typical challenges in face recognition, such as

illumination conditions and large occlusion. Based on the decomposition, a face

classifier was designed, using the decomposed components for subspace reconstruction

and comparison. The classification performance shows that the proposed approach

can achieve state-of-the-art performance. Experiments also showed that the proposed

method is robust with missing training images, which can be an important factor to

consider in a practical system. We also demonstrated with experiments that the

decomposition indeed captures physically meaningful conditions, with both synthetic

data and real data.

There are a few possible directions for further development of the work. In par-

ticular, the current algorithm assumes that the low-rank conditions of the training

images are known and given for each of them. In practice, if the data do not have

such image-level label (but still with a finite set of low-rank conditions), it is possi-

ble to expand the current algorithm by incorporating another step that attempts to

estimate a mapping matrix for assigning a condition label to each image, during the
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optimization iteration. This problem can be formulated as following:

C,A,E = argmin
C,A,E

∑

i,j

‖Aj‖∗ + λi,j‖Ei,j‖1

s.t. Xi,j = Ci +
∑

k

Akαi,j(k) + Ei,j, ∀Xi,j ∈ X

‖αi,j‖1 = 1, ‖αi,j‖0 = 1, ∀(i, j) ∈ Ω (4.16)

where αi,j is a vector indicating the condition of Xi,j, i.e., Xi,j takes Condition k,

if and only if αi,j(k) 6= 0. In Eqn. 4.16, we assume each image takes one and only

one condition, which may be too restrictive in some scenarios. Thus we could also

consider remove this constraint and get a relaxed problem:

C,A,E = argmin
C,A,E

∑

i,j

‖Aj‖∗ + λi,j‖Ei,j‖1

s.t. Xi,j = Ci +
∑

k

Akαi,j(k) + Ei,j, ∀Xi,j ∈ X

‖αi,j‖1 ≤ τ, ∀(i, j) ∈ Ω (4.17)

Note, we still impose a sparsity constraint on αi,j to make the problem more deter-

mined.
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Chapter 5

UNSUPERVISED VIDEO ANALYSIS BASED ON A SPATIOTEMPORAL

SALIENCY DETECTOR

The third problem is related to visual saliency detection and its potential application

in varying visual tasks. Visual saliency, which predicts regions in the field of view that

draw the most visual attention, has attracted a lot of interest from researchers. It

has already been used in several vision tasks, e.g., image classification, object detec-

tion, foreground segmentation. Recently, the spectrum analysis based visual saliency

approach has attracted a lot of interest due to its simplicity and good performance,

where the phase information of the image is used to construct the saliency map. In

this chapter, we propose a new approach for detecting spatiotemporal visual saliency

based on the phase spectrum of the videos, which is easy to implement and compu-

tationally efficient. The method is based on the prior information that, the salient

objects is typically small compared with the whole spatiotemporal volume and the

background, either static or dynamic, usually has sparse support in frequency domain.

With the proposed algorithm, we also study how the spatiotemporal saliency can be

used in two important vision task, abnormality detection and spatiotemporal inter-

est point detection. The proposed algorithm is evaluated on several commonly used

datasets with comparison to the state-of-art methods from the literature. The ex-

periments demonstrate the effectiveness of the proposed approach to spatiotemporal

visual saliency detection and its application to the above vision tasks.

5.1 Introduction

In the recent years modeling and detection of visual saliency has attracted a lot of

interest in the vision community. One early work that is widely known is the approach

by Itti et al. Itti et al. (1998). Since then, a lot of different models have been proposed
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for computing visual saliency. Such models may be roughly divided into two groups:

bottom-up models (or stimulus driven) that are mainly based on low-level visual

features of the scene, and top-down model (goal-driven) that employs information

and knowledge about a visual task. A survey of both groups of methods was reported

in Borji and Itti (2012). Visual saliency analysis has been applied with success to

other vision tasks including object detection Alexe et al. (2012), image classification

Sharma et al. (2012), foreground segmentation Li et al. (2011) and securities Zhao

et al. (2013).

Recently, spectral-based approach has gained increased interest due to its simplic-

ity and good performance. In Hou and Zhang (2007), the spectrum residual together

with the phase information was used to construct a saliency map. In Guo et al.

(2008) it was found that it is the phase information rather than the spectrum leads

to a better saliency map. However, there was a lack of theoretic justification for

such methods until Hou et al. (2012), where it was shown that, if the background is

sparsely supported in the DCT domain and the foreground is sparsely supported in

the spatial domain the foreground will receive high value on the computed saliency

map.

In the real world, the visual field-of-view of a human may constantly change, and

thus visual saliency often depend on not only a static scene but also the changes in the

scene. To this end, spatiotemporal saliency has been proposed, which tries to capture

regions attracting visual attention in the spatiotemporal domain. Spatiotemporal

saliency has been applied to vision tasks such as video summarization Ma et al.

(2005), human-computer interaction Itti et al. (2004), video compression Guo and

Zhang (2010), and abnormality detection Gao et al. (2009).

In this chapter we propose a novel spatiotemporal visual saliency detector for video

analysis, based on the phase information of the video. With the saliency map com-

puted using the proposed method, we analysis how it can be used for two fundamental

vision tasks, namely abnormality detection and spatiotemporal interest point detec-
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tion. We evaluate the performance of the proposed algorithm using several widely

used datasets, with the comparison to the state-of-art in the literature.

The proposed method, compared with the existing work on spatiotemporal saliency

in the literature, has several advantages. First, it computes the saliency information

from the entire video span, which is different from many existing approaches in the

literature. For example, Guo et al. (2008) computes temporal information by only

the differences of two adjacent frames, which is insufficient for modeling complex ac-

tivities, as shown in the experiment part. Second, the proposed approach is easy to

implement and computationally efficient. The core parts of the algorithm involve only

a three-dimensional Fourier transform, whose complexity is only O(N logN), where

N is the size of the input. Last but not least, no training stage or prior information

is needed for the proposed approach, which is a significant advantage for applications

like abnormality detection.

The rest of the chapter is organized as follows: in Sec. 5.2 we describe the proposed

method including the analysis and the relationships with the existing methods; Sec.

5.3 evaluate the proposed spatiotemporal saliency detector in saliency detection on

both synthetic dataset and two real video dataset; studies of how the spatiotemporal

saliency computed by the proposed method can be used for two important vision

tasks, abnormality detection and spatiotemporal interest point detection, is presented

in Sec. 5.4; and the chapter is concluded in Sec. 5.5.

5.2 Proposed Method

As reviewed above, spectrum analysis based approaches to visual saliency has seen

some success, although the existing work has been primarily on predicting salient

objects for a given (static) image. For a dynamic scene, temporal information should

be taken into consideration for properly predicting the salient objects. For example,

it was found in Ölveczky et al. (2003) that objects attract more visual attention if

they move differently than their neighbors. Considering this, we propose to compute

52



the saliency map of dynamic scenes by utilizing the phase information of the temporal

domain together with the phase information of the spatial domain. In the proposed

method, we compute the saliency map for 3D data X ∈ RM×N×T as:

Z =

∣

∣

∣

∣

F−1

(

Y

|Y|

)∣

∣

∣

∣

2

(5.1)

where Y = F(X), F is 3D discrete Fourier transform and F−1 is the corresponding

inverse transform. After we get the saliency map, we smooth it with a 3D Gaussian

smooth filter. The 3D Fourier transform can be computed as:

Y(u, v, w) (5.2)

=
∑

t

∑

i

∑

j

X(i, j, t)e−i2π( ui
M

+ vj

N
+wt

T )

=
∑
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e−i2π wt
T

∑

i

∑
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X(i, j, t)e−i2π( ui
M

+ vj

N )

=
∑

t

e−i2π wt
T

∑

i

e−i2π ui
M

∑

j

X(i, j, t)e−i2π ui
M

i.e., the 3D Fourier transform can be computed as a sequence of 1D Fourier transforms

on each coordinate.

The proposed method detects spatiotemporal saliency, which has been also dis-

cussed in some existing works. For example, in Guo et al. (2008), the detection was

done by combining color information of one frame and the differences of this frame

to the previous one with quaternion Fourier transform. As a result, the temporal

information is limited to two adjacent frames and is insufficient for modeling com-

plex scenes. On the other hand, the spatiotemporal saliency proposed in this chapter

considers the temporal information over a much larger temporal span, which is up to

the entire video.

The method in Eqn. 5.1 evaluates the saliency of a region by exploring the infor-

mation of the entire video. In some situations, we may also be interested in detecting

a region that is salient within a temporal window of the video. For example, if a video

contains multiple scenes, each capturing a different activity, we may be more inter-

ested in analysis the saliency within each scene instead of the entire video. For this
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reason, we propose multi-scale analysis for spatiotemporal saliency, which is inspired

by short-time Fourier transform. We first apply the window function to the input

signal X·w(i, j, t), where · is the element-wise multiplication and w(i, j, t) the window

function centered at position (i, j, t), which is nonzero for only a small support (i.e.,

the size of window function). The saliency map is computed for the windowed signal:

Y = F [X ·w(i, j, t)] (5.3)

Z(i, j, t) = F−1

[

Y

|Y|

]

By sliding the window function on the input video, we still obtain the saliency map

for the entire video. The size of the sliding window determines the temporal reso-

lution: with a larger window, more global information of the input is revealed but

the resolution is lower; with a smaller window, resolution is improved. The window

function can be applied in either temporal direction, spatial direction or both. As

a result, we can perform saliency detection from varying scales, which enables us to

reveal the information at different spatiotemporal resolution, similar to short time

Fourier transform.

Combining different visual cues is important for not only scene saliency but also

spatiotemporal saliency. In this chapter, we proposed to compute the saliency map

for each cue independently then compute the summation of saliency maps from all

visual cues. In Guo and Zhang (2010), quaternion Fourier transform (QFT) is utilized

to combine the three-channel color information and frame differences. However, the

QFT could be very expensive (e.g., time consuming) when applied in spatiotemporal

domain. In fact we find that (Appendix B): given a data with four feature channels,

the saliency map computed with QFT is very similar with the sum of saliency maps

computed with FFT over each feature channel.

Finally, we summarize the proposed algorithm below:

Algorithm for Spatio-Temporal Visual Saliency Detection
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Input: data X, Gaussian filter g, window function w

Output: saliency map Z

for each window location do

for each feature channel do

Apply w to the input X;

Compute Fourier coefficient Y = F [X];

Extract the phase information Ŷ = Y

|Y| ;

Do the inverse transform Z =
∣

∣

∣
F−1[Ŷ]

∣

∣

∣

2

;

Smooth saliency map Z = Z ∗ g;

end for

Combine the Z of all channels together;

end for

where W is the window function. Currently, we only apply the window function along

temporal direction and rectangle window is used. The size of the window is depending

on the data. By incorporating the phase information of the temporal domain, the

proposed method can not only suppress the static background, as achieved by visual

saliency for images, but also suppress the object which is static or moving “regularly”

as will be presented in Sec: 5.3.1.

5.2.1 Analysis

There has been several explanations for why spectral domain based approach is

able to detect saliency region from the image. For example, Bian and Zhang (2009)

explained by its biological plausibility that saliency map exists in the primary visual

cortex (V1), which is orientation selective and lateral surround inhibition Simoncelli

and Schwartz (1999). The spectral magnitude measures the total response of cells
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tuned to the specific frequency and orientation. According to lateral surround in-

hibition, similarly tuned cells will be suppressed depending on their total response,

which can be modeled by dividing its spectral by the spectral magnitude Zhaop-

ing and Dayan (2006). Hou et al. (2012) provided another explanation from sparse

representation which states that, if the foreground is sparse in spatial domain and

background is sparse in DCT domain (e.g., periodic textures), the spectral domain

based approach will highlight the foreground region in the saliency map.

Motion, like color and texture, is also perceptually salient. Huber and Healey

(2005) studied how three properties of motion, namely flicker, direction and velocity,

contribute to this saliency. By setting the target object having different flicker rate,

moving direction or motion velocity from the other objects, the target object can be

easily identified by human subjects, i.e., being salient. In spectral, the target object

and other objects can be mapped to two different bands (frequency and orientation),

where the band corresponding to the target object has a much lower response than

the band for the other object. Thus if we set the magnitude of the spectral to one,

as the proposed method dose, the band for the other objects will be suppressed more

than the target object, which makes the target object “popped out” in the output.

In Sec. 5.3.1, we will verify this analysis with experiments on synthetic data.

5.2.2 Relationship to Existing Works

Our method is related to some existing works and based on the way in which they

computed the temporal information, we can roughly divide them into two categories:

1. Methods of the first category represent the temporal information by the mo-

tion, e.g., by frame differences Ma et al. (2005) or by more dedicated motion

estimation method including homography of adjacent frames Zhai and Shah

(2006) and phase correlation Bian and Zhang (2009). However, methods of this

temporal information typically have limited temporal span, e.g., two adjacent

frames (Zhang et al. (2009) tried to compute the frame differences of frames at
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a predefined sets of temporal spans), thus they are not sufficient for modeling

the complex motion patterns.

2. In this category, the saliency of a spatiotemporal cuboid (refer as cuboid later) is

measured by the “differences” of this cuboid to other cuboids of the video or the

template in the dictionaries, which may require high computational cost and/or

require additional training data. The “differences” of cuboids can be measured

by distances Seo and Milanfar (2009), relative entropy Li et al. (2010) mutual

information Mahadevan and Vasconcelos (2010) and coding length increments

Ban et al. (2008).

The proposed method is different from these methods. First, it does not rely on

prior knowledge. Instead, it explores within the input video to detect the poten-

tial “outliers”. Second, the “outliers” are found by exploring the whole temporal

span. This makes the proposed algorithm be able to detect salient patterns from

complex dynamic background. In addition, the propose method has low computa-

tional costs and is easy to implement. Fourier transform for multiple dimensional

data can be computed as a sequence of 1D Fourier transform on each coordinate of

the data, thus the computational cost of 3D Fourier transform for data X ∈ RM×N×T

is O(MNT log(MNT )). Thus the total computation cost for the proposed algorithm

is O(KMNT log(MNT )), where K is the number of feature channels.

5.3 Experiment

In this section, we evaluate the proposed method in saliency detection on both

syntheic data (Sec. 5.3.1) and on two real image datasets (Sec. 5.3.2), CRCNS-

ORIG and DIEM. The performances of the proposed methods are compared with the

existing methods, some of which are state-of-art.
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5.3.1 Simulation Experiment

In this section, we evaluate the proposed method on synthetic data. In Huber and

Healey (2005), how three properties of motion, namely flicker, direction and velocity,

contribute to the saliency was studied. In this section, we generate the synthetic data

according to their protocol. The input data is a short clip where the resolution is

174 × 174 with 400 frames at the frame rate of 60 frames per second. We put 36

objects of size 5× 13 in a 6× 6 grid and a target object is randomly selected out of

those 36 objects. All the objects are allowed to move within a 29×29 region centered

at their initial position (and warped back, if they move out of this region). The video

is black-and-white. We design the following three experiments:

1. Flicker: we set the objects on-off at a specified rate and the target object at a

different rate from the other 35 objects;

2. Direction: we set the objects moving in a specified direction and the target

object in a different direction. The velocities of all the objects are the same;

3. Velocity: we set the objects moving in a specified velocity and the target object

moves in a different velocity. The moving direction of the all the objects are

the same.

All the other parameters are the same as used in Huber and Healey (2005). According

to Huber and Healey (2005), the target object could be easily identified by human

subjects, when its motion property (e.g., flicker rate, moving direction and velocity)

is different from the other objects. We also include some “blind” trials, where the

target object has the same motion property as the other 35 objects. In this case, the

target object can’t be identified by the human subjects, i.e., there is no salient region.

We apply the proposed method to the input data. For comparison, we also eval-

uate the method proposed in Bian and Zhang (2009) and Hou et al. (2012). We use

the area under receiver operating characteristic curve as the performance metric. The
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ground truth mask is generated according to the location of the target object. The

experiment result is shown in 5.1.
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Figure 5.1: The AUC on the synthetic data for the proposed method and two
existing methods. For “Direction” and “Velocity”, we also include some “blind” trials
(X-axis has value 0), where the target object has exactly the same motion property
as the other 35 objects. In those trials, the target object can’t be identified by human
subjects, i.e., there is no salient object Huber and Healey (2005).

Blind Flicker Direction Velocity
Figure 5.2: Some visual sample of the synthetic data for different experiments.

From the experiment results, we can find that the proposed method detects the

salient region much more accurately than Bian and Zhang (2009) and Hou et al.

(2012) in all except the “blind” trials. For the “blind” trials, the AUC for the pro-

posed method significantly reduces, which shows that the proposed method is also

robust. However, Bian and Zhang (2009) and Hou et al. (2012) don’t survive in those

“blind” trials. Surprisingly, Bian and Zhang (2009) and Hou et al. (2012) achieves

quite similar performances, though Bian and Zhang (2009) was supposed to achieve

better result as it include the differences of two adjacent frames as motion (temporal)

information.
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5.3.2 Spatiotemporal Saliency Detection

In previous section, we test the proposed spatiotemporal saliency detector on syn-

thetic videos, with the comparison to two other saliency detectors, where the proposed

detector shows better performances in capturing the temporal information. In this

section, we evaluate the proposed spatiotemporal saliency detector on two challeng-

ing video datasets for saliency evaluation, CRCNS-ORIG Itti (2009) and DIEM Mital

et al. (2011). For this experiment, we first convert each frame into the LAB color

space, then compute the spatiotemporal saliency in each channel independently and

the final spatiotemporal saliency is the summation of the saliency maps of all three

channels.

CRCNS-ORIG includes 50 video clips from different genres, including TV pro-

grams, outdoor scenes and video games. Each clip is 6-second to 90-second long at

30 frames per second. The eye fixation data is captured from eight subjects with

normal or correct-normal vision. In our experiment, we down-sample the video from

640×480 to 160×120 and keep the frame rate untouched, then apply our spatiotem-

poral saliency detector. To measure the performance, we compute the area under

curve (AUC) and F-measure (harmonic mean of true positive rate and false positive

rate). The experiment result is shown in Fig. 5.3, where the area under curve (AUC)

is 0.6639 and F-measure is 0.1926. Tab. 5.1 compares the result of the proposed

method with some state-of-art methods on CRCNS-ORIG, which indicates that our

method outperforms them by at least 0.06 regarding AUC. The per-video AUC score

is shown in Fig. 5.4.

DIEM dataset collects data of where people look during dynamic scene viewing

such as film trailers, music videos, or advertisements. It currently consists of data

from over 250 participants watching 85 different videos. Each video in DIEM dataset

includes 1000 to 6000 frames at 30 frames per second. Similarly as CRCNS, we down-

sample the video to 1/4 (e.g., from 1280 × 720 to 320 × 180) while maintaining the

aspect ratio and frame rate. We observe that each video in DIEM dataset is consisted
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Figure 5.3: The receiver operating characteristic curve of the propose method in
CRCNS-ORIG dataset and DIEM dataset. The area under the curve is 0.6639 and
0.6896 accordingly.

of a sequence of short clips, where each clip has 30 to 100 frames. To properly detect

the saliency from those videos, we apply the window function to our spatiotemporal

saliency detector, where the size of the window (along temporal direction) is 60-frame.

The experiment result is shown in Fig. 5.3 and Tab. 5.1, where the AUC is 0.6896 and

F-measure is 0.35. From the table, we can find that the proposed method outperforms

the state-of-arts by over 10%. The per-video AUC score is shown in Fig. 5.5.

5.4 Application of Spatiotemporal Saliency

In the previous section, we show that the proposed method is able to detect

the saliency region in the video. The saliency detection for image has been used

more and more in other visual tasks, e.g., image segmentation, object recognition. A

natural question arises that can we also apply the spatiotemporal saliency detection

for some important vision tasks. In this section, we show how can we applied the

spatiotemporal saliency computed by the proposed methods to two important vision
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Figure 5.4: The AUC of the proposed method for each video from CRCNS-ORIG
dataset.

tasks, i.e., abnormality detection (5.4.1) and spatiotemporal interest pointer detection

(5.4.2).

5.4.1 Abnormality Detection

According to our previous analysis, the salient region should be different from the

neighbor, both spatially and temporally. This spatiotemporal saliency shares a lot of

common to the concept of abnormality in video. Thus in this section, we show how

can we utilize the proposed spatiotemporal saliency detector to detect abnormality

from the video.

For abnormality detection, we start with computing the saliency map for the input

video as described above. The regions containing abnormalities can be detected by

founding the region where the saliency value is above a threshold. Then the saliency

score of a frame is computed as the average of saliency value of the pixels in that
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Method AUC Method AUC

AWS Garcia-Diaz et al. (2009) 0.6000 AWS Garcia-Diaz et al. (2009) 0.5770

HouNIPS Hou and Zhang (2008) 0.5967 Bian Bian and Zhang (2009) 0.5730

Bian Bian and Zhang (2009) 0.5950 Marat Marat et al. (2009) 0.5730

IO 0.5950 Judd Judd et al. (2009) 0.5700

SR Hou and Zhang (2007) 0.5867 AIM Bruce and Tsotsos (2005) 0.5680

Torralba Torralba (2003) 0.5833 HouNIPS Hou and Zhang (2008) 0.5630

Judd Judd et al. (2009) 0.5833 Torralba Torralba (2003) 0.5840

Marat Marat et al. (2009) 0.5833 GBVS Harel et al. (2006) 0.5620

Rarity-G Mancas (2007) 0.5767 SR Hou and Zhang (2007) 0.5610

CIOFM Itti and Baldi (2006) 0.5767 CIO Itti and Baldi (2006) 0.5560

Proposed 0.6639 Proposed 0.6896

Table 5.1: The result the proposed method compared with the results of the top
ten existing methods on CRCNS dataset (left) and DIEM dataset (right) according
to Borji et al. (2012). From this table, we can find that the propose method gets
obvious better performances than the state-of-arts on both two datasets.

frame, i.e.,

s(t) =
1

NM

∑

i

∑

j

X(i, j, t) (5.4)

where s(t) is the saliency score of tth frame, N ×M is the size of one frame, i, j, t are

row, column and frame index of the 3D saliency map accordingly. The frame with

high saliency score would contain abnormality.

We evaluate the proposed method for abnormality detection in videos from two

datasets: UMN abnormal dataset1 and UCSD dataset Mahadevan et al. (2010). Ab-

normal detection has attracted a lot of efforts from the researchers. However, most

of the existing works require training stage, e.g., social force Mehran et al. (2009),

sparse reconstruction Cong et al. (2011), MPPCA Kim and Grauman (2009), i.e.,

they need training data to initialize the model. The proposed method, instead, dose

NOT need any training stage or training data.

1http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
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Figure 5.5: The AUC of the proposed method for each video from DIEM dataset.

The result on UMN abnormal dataset is shown in Tab. 5.2, where we compute

the frame-level true positive rate and false positive rate then compute the area under

the ROC (Fig. 5.6). Fig. 5.7 shows the result for videos of three scenes, where

we plot saliency value of each frame and show some sample frames. The result on

UCSD dataset is shown in Tab. 5.3, where we report frame-level equal-error rate

(EER) Mahadevan et al. (2010). Fig. 5.8 shows the ROC for UCSD dataset with the

proposed method; Fig. 5.9 shows eight samples frames, where red color highlights

abnormal regions. We can find that, without training data, the proposed method still

outperforms several state-of-arts in the literature, e.g., social force, MPPCA.

5.4.2 Spatiotemporal Saliency Point Detector

The regions which attract human’s attention most would contribute most to peo-

ple’s perception of the scene. The saliency map computed with the proposed method
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Method AUC

Optical flow Mehran et al. (2009) 0.84

Social force Mehran et al. (2009) 0.96

Chaotic invariants Wu et al. (2010) 0.99

NN Cong et al. (2011) 0.93

Sparse reconstruction Cong et al. (2011) 0.978

Interaction force Raghavendra et al. (2011) 0.9961

Proposed 0.9378

Table 5.2: The result on UMN dataset. Note, we have cropped out the region which
contains the text “abnormal”, and results in frame resolution 214× 320. Please note
that, most of those methods, except the proposed one, need a training stage.

Method Ped1 Ped2 Overall

Social force Mehran et al. (2009) 31% 42% 37%

MPPCA Kim and Grauman (2009) 40% 30% 35%

MDT Mahadevan et al. (2010) 25% 25% 25%

Adam Adam et al. (2008) 38% 42% 40%

Reddy Reddy et al. (2011) 22.5% 20% 21.25%

Sparse Cong et al. (2011) 19% N.A. N.A.

Proposed 27% 19% 23%

Table 5.3: The frame level EER (the lower the better) for UCSD dataset. Please
note that, most of those methods, except the proposed one, need a training stage.
From the result, we can found that the proposed method, even without traing stage
or training data, can still outperform social force, MPPCA.
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Figure 5.6: The ROC for the UMN dataset computed with the propose method.

will highlight those regions. Thus we propose to sample the interest points based on

the saliency map of the data, which we refer as spatiotemporal saliency point detector

(STSP).

To detect interest point, we also starts with computing the saliency map Z for

the input data X. Then we apply non-maximum suppression on the saliency map to

sample the interest points: an interest point is selected at (x, y, t) if and only if

Z(x, y, t) ≥ ρ (5.5)

Z(x, y, t) ≥ Z(i, j, k) ∀(i, j, k) ∈ N(x, y, t)

where ρ is a predefined threshold (e.g., 2µ) and N(x, y, t) is the set of positions near

(x, y, t).

Similar as Laptev (2005), for each interest points (x, y, t), we extract a descriptor

within its neighbor area characterized as (x, y, t, σ, τ), where (x, y, t) is the center, σ, τ

are the spatial and temporal scales (we use 18×18×10, 25×25×14 and 36×36×20

here) accordingly. The neighbor is further divided into multiple sub-blocks (e.g.,

3 × 3 × 2 along spatial and temporal direction accordingly); for each sub-block, we
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Scene 1

Scene 2

Scene 3
Figure 5.7: Some sample results for the UMN datasets, where we pick one video for
each scene. The top is the saliency value (Y-axis) for each frame (X-axis) and bottom
are sample frames picked from different frames (as shown by the arrow).

computed the 3D gradient g = [gx, gy, gt]; then we quantize the orientations of the

gradients into a histogram of four bins; finally the histogram of each sub-block is

normalized to unit l1 norm and histograms of all sub-blocks is concatenated into one

histogram, i.e., the descriptor for interest point (x, y, t).
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Figure 5.8: The ROC for the UCSD dataset computed with the propose method.

Peds1: Wheelchair Peds1: Skater Peds1: Bike

Peds1: Cart Peds2: Skater Peds2: Bike
Figure 5.9: Some sample results for the UCSD datasets, where the red color high-
lights the detected abnormal region, i.e., the saliency value of the pixel is higher than
four times of the mean saliency value of the video.

Compared with existing spatiotemporal interest point detectors, which mostly

choose the location where the gradient is strong and stable cross different scales.

However, the gradient is low level information and is insufficient to capture the com-

plex dynamics as the human vision does. Instead, the proposed method explores the
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relationship of each location over all spatial and temporal spans, which is able to

model complex dynamics in the video.

For evaluation, we use three datasets: Weizmann dataset Gorelick et al. (2007),

KTH dataset Schuldt et al. (2004) and UCF sports dataset Rodriguez et al. (2008).

Since the method is proposed for detecting interest points, we only compare it with

several state-of-art spatiotemporal interest point detectors including Harris3D Laptev

(2005), Gabor Dollar et al. (2005), Hessian3D Willems et al. (2008) and dense sam-

pling Kläser (2010), where the result are summarized in Kläser (2010). The parame-

ters of the detectors are set as suggested by the chapter accordingly.

Fig. 5.10 shows the saliency map for some sample frames of videos from UCF

sports action dataset and KTH dataset. From the figure, we can found that the

saliency map computed with the proposed method highlights the moving region while

suppressing the background. The proposed method is also robust to moving back-

ground (Row 1), clutter background (Row 2) and scale variation (Row 3). In ad-

dition, from Row 3 to 4, we can found the moving parts of body, e.g., hands, get

higher saliency value (red color) then other body parts. The spatiotemporal saliency

interest points will be mostly sampled from those highlighted regions and augment

the description of the action of interest.

To quantitatively evaluate the performances of different detector, we use the in-

terest points detected by those detectors to train a classifier for activity recognition.

We use both histogram of gradient (HoG) and histogram of optical flow (HoF) as the

descriptor. Bag of words is used to represent the video, where each input is repre-

sented as a histogram of words in the code-book (size of of code-book is k = 2000);

then classifier (support vector machine with χ2 kernel) is applied to those histograms

to classify the input. For Weizmann dataset and UCF sports dataset, we use leave-

one-out scheme for training and testing; for KTH dataset, we follow the standard

partition in Schuldt et al. (2004).
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Method Weizmann KTH UCF sports

Harris3D 85.6% 91.8% 78.1%

Gabor N.A. 88.7% 77.7%

Hessian3D N.A. 88.7% 79.3%

Dense N.A. 86.1% 81.6%

Proposed 84.5% 88.0% 86.7%

Proposed* 95.6% 92.6% 85.6%

Table 5.4: The performances of different detectors on three datasets. For “pro-
posed*”, we extract the descriptor on the saliency map instead of on the video.

Tab. 5.4 reports the performances of different detectors on three dataset, where

we test extracting feature on the original video and also extracting feature on the

saliency map of the original video (refer as “proposed*”). From the table we find

that, the proposed method (especially “proposed*”) achieves the best result over all

three datasets. Especially “proposed*” achieved the best results for KTH dataset and

Weizmann data; “proposed” achieved the best results for UCF sports action dataset.

For video with simple background(e.g., KTH dataset and Weizmann dataset), extract-

ing descriptor on saliency map instead of the video itself could be a better choice.

Figure 5.10: Some samples frames (left) from UCF sports action dataset (Column
1, 2) and KTH dataset (Column 3, 4) with their saliency maps (right).
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5.5 Conclusion and Discussion

In this chapter, we proposed a novel approach for detecting spatiotemporal saliency,

which was simple to implement and computationally efficient. The proposed approach

was inspired by recent development of spectrum analysis based visual saliency ap-

proaches, where phase information was used for constructing the saliency map of the

image. Recognizing that the computed saliency map captured the region of human’s

attention for dynamic scenes, we proposed two algorithms utilizing this saliency map

for two important vision tasks. These approaches were evaluated on several well-

known datasets with comparisons to the state-of-arts in the literature, where good

results were demonstrated. For the future work, we will focus on theoretical analysis

of the proposed method and the analysis on the selection of the window function.
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Chapter 6

RELATIVE HIDDEN MARKOV MODELS FOR EVALUATING MOTION

SKILLS

In our fourth problem, we work on how to learn a proper temporal model, which is

essential to analysis tasks involving sequential data. In computer-assisted surgical

training, which is the focus of this study, obtaining accurate temporal models is a

key step towards automated skill-rating. Conventional learning approaches can have

only limited success in this domain due to the lack of sufficient amount of data with

accurate labels. In this chapter, we propose a novel formulation termed relative

Hidden Markov Model and develop an algorithm for obtaining a solution under this

formulation. The method requires only a sparse set of relative ranking information

between input pairs (e.g., about 1000 out of 90000 pairs or about 1.1%), which are

readily available from training sessions in the target application, hence alleviating

the requirement on data labeling. The proposed algorithm learns a model from the

training data so that the attribute under consideration is linked to the likelihood

of the input, hence supporting comparing new sequences. For evaluation, synthetic

data are first used to assess the performance of the approach, and then we experiment

with real video data from a widely-adopted surgical training platform. Experimental

results suggest that the proposed approach provides a promising solution to motion

skill evaluation from video. To illustrate the generality of the method, we also report

experiments on the task of emotion recognition from speech data.

6.1 Introduction

Human capability in mastering body motion is the key in domains such as sports,

rehabilitation, surgery and dance. Computer-based approaches have been developed

over the years for facilitating acquiring (e.g., training in sports and surgery) or regain-
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ing (e.g., in rehabilitation) such motion-related skills by human subjects. One central

task faced by systems using such approaches is the analysis of motion skills based

on some temporal sensory data. With such analysis, skill metrics may be extracted

and assigned to a given movement and feedback may accordingly be provided to the

subjects for taking actions to improve the underlying skill. For example, Duan et al.

(2008) utilized control trajectories and motion capture data for human skill analysis,

Watanabe and Hokari (2006) reported motion skill analysis in sports using data from

motion sensors, Suzuki et al. (2004) studied computational skill rating in manipu-

lating robots, and Satoshi and Fumio (2010) considered hand movement analysis for

skill evaluation in console operation.

Among others, surgery-related applications have attracted increasing interests,

where motion expertise is the primary concern. To improve their motion exper-

tise, surgeons often have to go through lengthy training processes. In recent years,

simulation-based surgical training platforms have been developed and widely applied

in surgical education. One prominent example is the Fundamentals of Laparoscopic

Surgery (FLS) Trainer Box (www.flsprogram.org). With such platforms, it is pos-

sible to develop computational approaches to provide objective and quantifiable per-

formance metrics, overcoming the shortcomings in traditional training that relies on

costly practice of direct supervision by senior surgeons. Recognizing the sequential

nature of motion data, many analysis approaches utilize state-transition models, such

as the Hidden Markov Model (HMM). For example, Rosen et al. (2002) provided an

HMM-based method to evaluate surgical residents’ learning curve. The method first

constructs different HMMs for each different levels of expertise, and then calculates

a probability distance between the expert and a novice resident. The magnitude of

the probability distance is used to rate the level of the novice resident. HMM was

also adopted in Kahol et al. (2006) to measure motion skills in surgical tasks, where

a recorded video is first segmented into basic gestures based on velocity and angle

of movement, with segments of the gestures corresponding to the states of an HMM.
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In Zhang and Li (2011), Hierarchical Dirichlet process hidden Markov model (HD-

PHMM Fox (2009)) was utilized, which relaxed the requirement of predefining the

number of the states for the model.

One practical difficulty in these approaches is that they require the skill labels for

the training data since the HMMs are typically learned from sets of data streams with

corresponding skill levels. Labeling the skill of a trainee is currently done by senior

surgeons, which is not only a costly practice but also one that is subjective and less

quantifiable. Thus it is difficult, if not impossible, to obtain a large amount of data

with sufficiently reliable skill labels for HMM training. This problem has also been

encountered in other fields such as image classification. For example, in Parikh and

Grauman (2011), it was argued that using binary labels to describe images is not only

too restrictive but also unnatural and thus relative visual attributes were used and

classifiers were trained based on such features. Relative information has also been

used in other applications, e.g., distance metric learning Schultz and Joachims (2004),

face verification Kumar et al. (2009a), and human-machine interaction Parikh et al.

(2012).

In this chapter, we propose a novel formulation termed Relative Hidden Markov

Model and develop an algorithm for obtaining a solution under this model. The pro-

posed method utilizes only a sparse set of relative ranking (based on certain attribute

of interest, or motion skill in the surgical training application) between pairs of in-

puts, which is easier to obtain and often more consistent. This is especially useful

for the applications like video-based surgical training, where the trainees go through

a series of training sessions with their skills get improved over time, and thus the

time of the sessions would already provide natural relative ranking of the skills at

the corresponding time. The proposed algorithm effectively learns a model from the

training data so that the attribute under consideration (i.e., the motion skill in our

application) is linked to the likelihood of the inputs under the learned model. The

learned model can then be used to compare new data pairs. For evaluation, we first
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design synthetic experiments to systematically evaluate the model and the algorithm,

and then experiment with real data captured on a commonly-used surgical training

platform. The experimental results suggest that the proposed approach provides a

promising solution to the real-world problem of motion skill evaluation from video.

The key contribution of the work lies in the novel formulation of learning temporal

models using only a sparse set of relative information and the proposed algorithm for

obtaining solutions under the formulation. A discussion of its relationship to the

latent support vector machine is also provided to assist the understanding of why the

proposed formulation is suitable for the proposed scenarios. Additional contributions

include the specific application of the proposed method to the problem of video-based

motion skill evaluation in surgical training, which has seen increasing importance in

recent years. An earlier exposition of the proposed method can be found in Zhang and

Li (2013). This current paper represents a full exploration of the method, including a

new learning algorithm that is more efficient, new comparative analysis of the method,

and new and updated experiments. Source code accompanying this paper is made

publicly available to interested researchers for further exploration and comparison 1.

In the remainder of this chapter, we first review some of the related work in Sec.

6.2 and describe basic notations of the HMM in Sec. 6.3. The proposed method is

then presented in Sec. 6.4, including a new algorithm for getting the solutions in

Sec. 6.4.3 and a discussion of its relationship to latent support vector machine in Sec.

6.4.4. The proposed method is evaluated on three types of data in Sec. 6.5 including

synthetic data (Sec. 6.5.1) and videos from surgical simulation systems (Sec. 6.5.2).

We also present the experiment on the emotion recognition on speech data set to

show the generality of the proposed method in domains other than surgical training.

The paper is concluded in Sec. 6.7.

1The code is available at www.public.asu.edu/~bli24/CodeSoftwareDatasets.html
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6.2 Related Work

In this section, we review two categories of existing work, discriminative learning

for hidden Markov models and learning based on relative information, which are most

related to our effort. Distinction between our proposed method and the reviewed work

will be briefly stated.

Discriminative learning for HMM: Maximum-likelihood methods for learning

HMM (e.g., the forward-backward algorithm) in general do not guarantee the dis-

crimination ability of the learned models. To this end, several discriminative learning

methods for HMM have been proposed. In Collins (2002), a discriminative training

method for HMM was proposed based on perceptron algorithms. The methods iter-

ates between the Viterbi algorithm and the additive update of the models. Hidden

Markov Support Vector Machine (HM-SVM) was proposed in Altun et al. (2003),

which combines SVM with HMM to improve the discrimination power of the learned

model. These methods are “supervised” in nature, and thus the labeling of the

state sequence is required for the training data, which limits their practical use. In

Sloin and Burshtein (2008), another discriminative learning method for HMM was

proposed, which only requires the labels of the training sequences. The method ini-

tializes the HMMs with maximum-likelihood method and then updates the models

with SVM. One drawback is that, the updated models do not always lead to valid

HMMs, which could be problematic for a physics-driven problem where the model

states have real meanings (like the gesture elements in Kahol et al. (2006)). Our

proposed method requires neither the labeling of the states nor the class label for the

training sequences, which are difficult to obtain or even not accessible in applications.

Instead, only a sparse set of relative ranking of the training data is used (e.g., about

1000 out of 90000 pairs or about 1.1%), and the resultant model is a valid HMM.

Learning with relative information: Several methods for learning with rel-

ative information have been proposed recently. In Schultz and Joachims (2004), a

distance metric is learned from relative comparisons. Considering the limited train-
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ing examples for object recognition, Wang et al. (2010) proposes an approach based

on comparative objective similarities, where the learned model scores high for objects

of similar categories and low for objects of dissimilar categories. In Kumar et al.

(2009a), comparative facial attributes were learned for face verification. The method

of Parikh and Grauman (2011) learns relative attributes for image classification and

the problem is formulated as a variation of SVM. Similar idea was also been used

in Parikh et al. (2012) for the purpose of human-machine interaction. In Kovashka

et al. (2012), relative attributes feedback, e.g., “Shoe images like these, but sportier”,

is used to improve the performance of image search. Relative information between

scene categories has also been used to enhance the performances of scene categoriza-

tion in Kadar and Ben-Shahar (2012). These approaches are mostly for image-based

attributes, whereas our current task is on modeling sequential data, for which it is

natural to assume that the most relevant attributes (e.g., motion skills) are embedded

in a temporal structure. This is what our proposed method attempts to address.

6.3 Basic Notations of HMM

In this section, we briefly describe HMM and introduce some basic notations that

will be used later. An HMM can be defined by a set of parameters: the initial

transition probabilities π ∈ RK×1, the state transition probabilities A ∈ RK×K and

the observation model {φk}Kk=1, where K is the number of states. There are two

central problems in HMM: 1) learning a model from the given training data; and

2) evaluating the probability of a sequence under a given model, i.e., the decoding

problem.

In the learning problem, one learns the model (θ) by maximizing the likelihood

of the training data (X):

θ∗ : max
θ

∏

X
i∈X

p(Xi|θ) ∼ max
θ

∑

X
i∈X

log p(Xi|θ) (6.1)

where X is the set of i.i.d. training sequences.
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One efficient solution to the above problem is the well-known Baum-Welch algo-

rithm Baum et al. (1970). Another scheme, namely the segmental K-means algorithm

Juang and Rabiner (1990), may also be used to seek a solution, and it has been shown

that the likelihoods under models estimated by either of the two algorithms are very

close Juang and Rabiner (1990). When the training data include sequences of multi-

ple categories, multiple models would be learned and each model will be learned from

data of each category independently.

In the decoding problem, given a hidden Markov model, one needs to determine

the probability of a given sequence X being generated by the model. Generally we

are more interested in the probability associated with the optimal state sequence

(z∗), i.e., p(X, z∗|θ) = maxz p(X, z|θ). The optimal state path can be found via the

Viterbi algorithm. To use HMM in classification, we first compute the probability of

the given sequence drawn from each model, then we choose the model yielding the

maximal probability.

6.4 Proposed Method

Based on the previous discussion, we are concerned with a new problem of learning

temporal models using only a sparse set of relative information. This is a problem

arising naturally in many applications involving motion or video data. In the case

of video-based surgical training, the focus is on learning to rate/compare the perfor-

mance of the trainees from recorded videos capturing their motion. To this end, in

recognition of some fruitful trials of HMMs in this application domain, we propose

to formulate the task as one of learning a Relative Hidden Markov Model, which not

only maximizes the likelihood of the training data, but also maintains the given set

of relative rankings of the input pairs. In its most basic form, the proposed model
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can be formally expressed as (following the notations defined in Eqn. (1))

θ : max
θ

∏

X
i∈X

p(Xi|θ) (6.2)

s.t. F (Xi, θ) > F (Xj, θ), ∀(i, j) ∈ E

where F (X, θ) is a score function for data X given by model θ, which is introduced

to maintain the relative ranking of the pair Xi and Xj , E is the set of given pairs

with prior ranking constraint and F is the set of given pairs required to have same

response for the score function. E and F could be very sparse set compared with all

pairs of training data. Different score functions may be defined, as described in the

following subsections.

From this formulation, the difference between the proposed method and any of

the existing HMM-based methods is obvious. In an existing HMM-based method, a

set of models is trained using the training data of each category independently. That

is, explicit class labels are required for each training sequence. The proposed model

has the following unique features:

• The model does not require explicit class labels. What needed is only a relative

ranking.

• The model explicitly considers the ranking constraint between given data pairs,

whereas independently-trained HMMs in existing methods can’t guarantee it.

• Only one model is learned for the entire set of data. There are two benefits:

more data for training and less computation during testing.

Our method is also different from the existing work on learning with relative attributes

in that it models sequential data and the relative ranking information is captured

in a temporal dynamic model of HMM (albeit new algorithms are thus called for),

which has demonstrated performance in modeling physical phenomena like human

movements.
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In the following subsections, we present two instantiations of the general model

expressed in Eqn. (2), and develop the corresponding algorithms in each case. It will

become clear that the first model (Sec. 6.4.1), while being intuitive, has some practical

difficulties, which motivated us to develop the improved model of Sec. 6.4.2. Both

models/algorithms are presented (and evaluated later in Sec. ) for the progressive

nature of the methods and for facilitating the understanding of the improved model

and algorithm of Sec. 6.4.2, which is the recommended solution.

6.4.1 The Baseline Model

One intuitive choice of the score function in Eqn. (2) is the data likelihood, i.e.,

F (Xi, θ) = p(Xi|θ). With this, the formulation in Eqn. (2) can be rewritten as

θ : max
θ

∏

X
i∈X

p(Xi|θ) (6.3)

s.t. p(Xi|θ) > p(Xj|θ), ∀(i, j) ∈ E

It has been proved in Merhav and Ephraim (1991) that, the marginal likelihood

is dominated by the likelihood with the optimal path and their difference decreases

exponentially with regarding to the length (number of frames) of sequence. This

idea was used in segmental K-means algorithm and similarly we can approximate the

marginal data likelihood p(X|θ) by the likelihood with optimal path p(X, z∗|θ) (when

there is no ambiguity, we will use z for z∗), which can be written as:

log p(X, z|θ) = log p(X1|φz1
) + log π(z1) +

T
∑

t=2

[log p(Xt|φzt) + logA(zt|zt−1)] (6.4)

For some observation models, e.g., multinomial (more details in Appendix C), we

can write log p(Xi, zi|θ) = θTh(Xi, zi). Accordingly, Eqn. 6.3 can be finally written

80



as

θ : max
θ∈Ω

θT
∑

i:Xi∈X

h(Xi, zi) (6.5)

s.t. θTh(Xi, zi) ≥ θTh(Xj, zj) + ρ, ∀(i, j) ∈ E

where ρ ≥ 0 defines the required margin between the logarithms of likelihood for a

pair of data and Ω defines the set of valid parameters for the hidden Markov model,

i.e.:

θ(i) ≤ 0 ;
∑

i:θ(i)∈log(π)
eθ(i) = 1 (6.6)

∑

i:θ(i)∈log(Aj)

eθ(i) = 1 ;
∑

i:θ(i)∈log(φj)

eθ(i) = 1

where i : θ(i) ∈ log(Aj) is the set of the indexes which corresponds to the jth row of

matrix A.

For the model in Eqn. 6.3, we assumed that every pair-wise ranking constraint

provided in the sparse set is correct (or valid). However, in real data, there may

be outliers in such training pairs. To handle this, we further introduce some slack

variables ǫ and η, and accordingly Eqn. 6.5 can be written as following:

θ : max
θ∈Ω

θT
∑

X
i∈X

h(Xi, zi)− γ
∑

(i,j)∈E
ǫij

s.t. θT [h(Xi, zi)− h(Xj , zj)] + ǫij ≥ ρ, ∀(i, j) ∈ E

ǫij ≥ 0 (6.7)

where γ is the weight for the penalty term
∑

(i,j)∈E ǫij . For initialization, we can set

ǫij = 0. We will defer the optimization algorithm for Eqn. 6.7 to Sec. 6.4.3. After the

model is learned, it can be used to a testing pair: For each sequence we evaluate the

data likelihood via the Viterbi algorithm and use the logarithm of the data likelihood

as the score of the data. By definition, the obtained scores can be used to compare

the pair.
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6.4.2 The Improved Model

In the model described in Eqn. 6.7, we compare the logarithm of the data likeli-

hood, which is, according to Eqn. 6.4, roughly proportional to the length of the data.

Thus a shorter sequence is likely to have a larger score. This means that the learned

model would be biased towards the shorter sequences. If the observation describes

a long, periodic event, e.g., repeating an action multiple times within a sequence,

we may consider normalizing the logarithm of the data likelihood by the number of

frames of the observation. However, this cannot be applied directly for non-periodic

observations.

To overcome the above practical problem, we consider an improved version. Recall

that in HMM, we classify a sequence based on the model with which the sequence

gets the maximal likelihood, i.e., it is the ratio of data likelihood with different models

that decides the label of the data. For example, if log p(X,ẑ|θ1)
p(X,z̃|θ2) > 0, then we assign X

to Model θ1. Thus we propose to use the ratio of the data likelihoods of two HMMs

as the score function, i.e., F (X, θ) = log p(X,ẑ|θ1)
p(X,z̃|θ2) , where we “partition” the original

model into two models (or, effectively, we train a pair of HMMs simultaneously). This

results in the following improved model:

θ1, θ2 : max
θ1,θ2

∑

i∈Ξ1

log p(Xi, ẑi|θ1) +
∑

j∈Ξ2

log p(Xj , z̃j |θ2)− γ
∑

(i,j)∈E
ǫij

s.t. log
p(Xi, ẑi|θ1)
p(Xj , z̃j |θ2)

− log
p(Xj , ẑj |θ1)
p(Xj , z̃j |θ2)

+ ǫij ≥ ρ

ǫij ≥ 0

where Ξ1 is the set of data associated with Model θ1 (Ξ2 for Model θ2), ẑ
i is the

optimal path for sequence xi with Model θ1 and z̃i for optimal path with Model θ2.
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With log p(Xi,ẑi|θ1)
p(Xj ,z̃j |θ2) = θT1 h(X

i, ẑi)− θT2 h(X
i, z̃i), we can rewrite the model in Eqn.

6.8 as the similar form in Eqn. 6.7:

θ : max
θ∈Ω

θT







∑

i∈Ξ1
h(Xi, ẑi)

∑

j∈Ξ2
h(Xj, z̃j)






− γ

∑

(i,j)∈E
ǫij

s.t. θT







h(Xi, ẑi)− h(Xj , ẑj)

h(Xj, z̃j)− h(Xi, z̃i)






+ ǫij ≥ ρ (6.8)

ǫij ≥ 0

where θ = [θT1 , θ
T
2 ]

T . The optimization algorithm for Eqn. 6.8 will be presented in

Sec. 6.4.3. After we learn the model with the improved algorithm, we can apply it

to a given pair by first computing their likelihoods with respect to the ”sub-models”

given by θ1 and θ2 (with the Viterbi algorithm), and then we use the logarithm of the

ratio of the data likelihoods as the score to rank/compare the pair.

The learned models θ1 and θ2 serve as a unified model to rank the data. We may

view them as the centers of two clusters, where the distances of the data to those two

centers can be related to the ranking score.

It needs to be emphasized that the improved model is not equivalent to a su-

pervised HMM with two classes. In a 2-class HMM setting, two models will be

independently trained with their respective training sets. Here, the proposed model

trains two ”sub-models” jointly with only relative ranking constraints. Specifically,

if there is no further information for Ξ, we could assume that Ξ1 = {i|(i, j) ∈ E, ∀j}

and Ξ2 = {j|(i, j) ∈ E, ∀i}, and thus there could be overlaps between Ξ1 and Ξ2

(which will become clear in the experiment with synthetic data in Sec. 6.5). This

situation not even allowed by a supervised HMM setting. We don’t require any extra

properties for Ξ1 and Ξ2, e.g., balances.

6.4.3 Algorithms for Updating the Model

One important step of both the baseline algorithm and the improved algorithm

is updating the models, as formulated in Eqn. 6.7 and Eqn. 6.8 accordingly. It
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is a nonlinear programming problem (due to the nonlinear equality constraint). In

our previous paper, we solve it by the primal-dual interior point method, which is of

dimension K(1 +K +D) + |E| (or 2K(1 +K +D) + |E|) with 2|E|+K(1 +K +D)

(or 2|E|+2K(1+K +D)) linear inequality constraints and 1+K +D (or 2(1+K +

D)) nonlinear equality constraints for the baseline model (or the improved model).

Although the Hessian matrix is diagonal, the computational cost could be still very

high when there are a large number of training pairs. In this section, we propose to

use a new algorithm by utilization the special structure of the problems in Eqn. 6.7

and Eqn. 6.8.

Eqn. 6.7 (similarly for Eqn. 6.8) can be written in the following form:

θ, ǫ : min
θ,ǫ

fT θ + γ1T ǫ (6.9)

s.t. : Aθ + ǫ ≤ ρ

Ceθ = 1

θ ≤ 0; ǫ ≥ 0

For example, for Eqn. 6.7, we have f = −
∑

X
i∈X h(X

i, zi), A and C are constructed

according to Eqn. 6.7 and 6.6.

Eqn. 6.9 is a nonlinear programming problem (due to the nonlinear equality

constraint). To solve this problem, we first introduce a slack variables φ, where

log φ = θ. Then Eqn. 6.9 can be rewritten into the following problem:

θ, ǫ, φ : min
θ,ǫ,φ

fT θ + γ1T ǫ (6.10)

s.t. : Aθ + ǫ ≤ ρ

Cφ = 1

log φ = θ

θ ≤ 0; ǫ ≥ 0; 0 ≤ φ ≤ 1

According to Eqn, 6.10, φ will be a valid hidden Markov model (or hidden Markov

model pairs [φ1, φ2] for improved model). We then apply the Augmented Lagrange
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multiplier method to the equality constraint log φ = u of the problem in Eqn. 6.10:

θ, ǫ, φ : min
θ,ǫ,φ

fT θ + γ1T ǫ+ < λ, θ − log φ > +
µ

2
‖θ − logφ‖22

s.t. : Aθ + ǫ ≤ ρ

Cφ = 1

θ ≤ 0; ǫ ≥ 0; 0 ≤ φ ≤ 1 (6.11)

where λ is the Lagrange multiplier and µ is some non-negative constant. In Eqn.

6.11, the nonlinear equality constraint is removed.

Eqn. 6.11 can be solved via block coordinate descent by iterating between the

following two sub-problems:

Sub-problem 1: fix φ to solve θ and ǫ, which is

θ, ǫ : min
θ,ǫ,φ

fT θ + γ1T ǫ+ < λ, θ − log φ > +
µ

2
‖θ − log φ‖22

s.t. : Aθ + ǫ ≤ ρ

θ ≤ 0; ǫ ≥ 0 (6.12)

It is a quadratic programming problem with linear inequality constraints.

Sub-problem 2: fix θ and ǫ to solve φ, which is

φ : min
φ

< λ, θ − log φ > +
µ

2
‖θ − log φ‖22 (6.13)

s.t. Cφ = 1

0 ≤ φ ≤ 1

It is a nonlinear problem with linear constraints.

Given the special structures ofC, where each column has one and only one element

being nonzero (recall Eqn. 6.6), Sub-problem 2 can be separated into a set of smaller

problems:

φk : min
φk

< λk, θk − logφk > +
µ

2
‖θk − log φk‖22

s.t. 1Tφk = 1 (6.14)

0 ≤ φk ≤ 1
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where k is the set of indexes of columns, whose values are nonzero at kth row of C.

Those smaller problems are again a nonlinear problem with linear constraint, whose

dimensions are only K (number of states) or D (number of feature dimension).

To solve this problem we can use the primal-dual interior point method, whose

gradient and hessian are computed as

J =
−λk + µk logφk − µkθk

φk

H = Λ(
λk − µ logφk + µθk + µ

φk · φk
)

where Λ(· · · ) converts a vector to a diagonal matrix. In addition, we can compute the

starting point of the problem in Eqn. 6.14 as: by taking the gradient of the objective

function with regard to log φk, we have −λk + µ(logφk − θk) = 0, i.e., φk = e(θ
k+λk

µ
).

The linear constraint can be solved by simply projection, i.e., φk = 1
N
e(θ

k+λk

µ
), where

N =
∑

e(θ
k+λk

µ
).

Finally, we briefly summarize the algorithms for the baseline model (Eqn. 6.7) and

the improved model (Eqn. 6.8) below (noting the similarity in form of the algorithms

and thus putting them compactly together):

Al-

gorithm for the Baseline (Improved) Model

Input: X, E, ρ, γ, σ (, Ξ1 and Ξ2)

Output: φ

Initialization: Initialize φ (or φ1 and φ2) via ordinary HMM learning algorithm,

λ = log θ
|θ|2 and µ = 1.25

|θ|2 ;

while not converged do

Compute optimal path z (or ẑ and z̃) for each sequence with φ (or φ1 and φ2);

solve Sub-problem 1;

solve Sub-problem 2;

update λ = λ+ µ(θ − logφ) and µ = µ× σ;
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check convergence;

end while

According to Bertsekas (1982), the proposed method will converge to the local min-

imum of the problem in Eqn. 6.9. And for convergence, we check ‖θ−log φ‖2
‖θ‖2 . If it is

smaller than some value, e.g., 10−6, the algorithm will be terminated. In initialization,

|θ|2 is the vector L2 norm of of θ.

Remarks on the Parameters: The parameter γ controls the weight of the

penalty term with the slack variables, which is similar to the functionality of C in

support vector machines Chang and Lin (2011). The parameter ρ controls the desired

gap of the score of two data, i.e., p(Xi,zi|θ)
p(Xj ,zj |θ) ≥ eρ ∀(i, j) ∈ E in the baseline model and

p(Xi,ẑi|θ1)
p(Xi,z̃i|θ2)

p(Xi,z̃j |θ2)
p(Xi,ẑj |θ) ≥ eρ ∀(i, j) ∈ E in the improved model. In Sec. 6.5.1, we will

evaluate different parameter settings (Fig. 6.2), which leads us to set γ = 1000 and

ρ = 10 in our final experiments. The parameter σ controls convergence speed of the

algorithm in Sec. 6.4.3, which should be a positive number and larger than 1. σ is

typically within 1.1− 1.5, and 1.25 is used in this paper.

The proposed algorithm, compared with the one used in Zhang and Li (2013), has

lower computational cost, due to the removal of the nonlinear equality constraint with

augmented Lagrange multiplier. For Sub-problem 1, the quadratic term is a diagonal

matrix and many solvers (e.g., CPLEX) can solve it quite efficiently. Sub-problem 2

is a nonlinear minimization problem with linear equality constraints; however, it can

be decomposed into several smaller problems.

A comparison between the method in Zhang and Li (2013) and the proposed

method for updating the baseline model is shown in Tab. 6.1. In Sec. 6.5.1, we

will also compare the computational time of those two methods under varying E on

synthetica data (Fig. 6.6).
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Method in Zhang and Li (2013)
Proposed Method

Sub-problem 1 Sub-problem 2

Problem Size K(1 +K +D) + |E| K(1 +K +D) + |E| K(or D)

# Linear Const. 2|E|+K(1 +K +D) 2|E|+K(1 +K +D) 1+2K(or 1+2D)

# Nonlinear Const. 1 +K +D 0 0

Table 6.1: Comparing the method in Zhang and Li (2013) and the proposed method
for updating the baseline model, with regarding to the problem size, number of linear
constraints and nonlinear constraints. For Sub-problem 2 of the proposed method, it
can be divided into several smaller problems.

6.4.4 Relationship to Existing Methods

The proposed method is related to latent support vector machine Felzenszwalb

et al. (2010). Given a training set of input-output pairs {(xi, yi)}ni=1, where yi ∈

{−1, 1}, Latent SVM tries to learn a predictor of the form:

fw(x) = max
z

wTΨ(x, z) (6.15)

where w is the parameter of the predictor, Ψ(x, z) is the feature mapping function

and z is the latent variable. The training stage of Latent SVM can be formulated as

the following problem:

min
w

1

2
‖w‖22 + C

∑

i

max (0, 1− yifw(xi)) (6.16)

Latent SVM is a non-convex problem, as the latent variable is unknown, and the

coordinate descent approach is used for solving this problem.

Given a training set {(xi, yi)}ni=1, where xi = (xL
i ,x

R
i ) is a pair of sequences and

yi ∈ {−1, 1} is the ranking of the pair, by defining the feature mapping function as

Ψ(xi, zi) = [h(xL
i , z

L
i )− h(xR

i , z
R
i )] and latent variable zi = (zLi , z

R
i ) is a pair of state

sequences for the pair of sequences xi = (xL
i ,x

R
i ) accordingly, we have

min
w

1

2
‖w‖22 + C

∑

i

ǫi (6.17)

s.t. yi max
zLi ,z

R
i

{

wT [h(xL
i , z

L
i )− h(xR

i , z
R
i )]

}

+ ǫi ≥ 1

ǫi ≥ 0
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We can find that Eqn. 6.17 is similar to our baseline model (Eqn. 6.7), except for

the following differences.

1. In Eqn. 6.17, the L2 norm is applied to the parameter of the predictor w (which

is related to the margin). In the proposed methods we require w to be a valid

hidden Markov model while defining a fixed-margin, i.e., ρ. Thus the proposed

method can always guarantee the learned model is a valid hidden Markov model.

2. In Eqn. 6.17, the two state sequences z (i.e., the latent variables) are opti-

mized jointly, where no known efficient solution is available. In the proposed

method, the two state sequences are optimized separately with regarding to the

likelihood, which can be solved efficiently via dynamic programming (i.e., the

Viterbi algorithm);

3. Given the model learned by the latent SVM (Eqn. 6.7), we can only rank a pair

of sequences. However, the model learned by the proposed method is capable of

not only ranking a pair of sequences but also assigning a score for each sequence.

Those differences make the proposed method (both the baseline model and the im-

proved model) more suitable for modeling the sequential data, e.g., video, speech.

6.5 Experiments

In this section, we evaluate the proposed methods, including the baseline method

and the improved method, using both synthetic data (Sec. 6.5.1) and realistic data

collected from the surgical training platform FLS box (Sec. 6.5.2). The performance

of the proposed methods is compared with a supervised 2-class HMM. (Lacking a

comparative approach in the literature that is both unsupervised and works with

only relative rankings, this is believed to be a reasonable way of generating a reference

point to assess the proposed methods.)
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6.5.1 Evaluation with Synthetic Data

To evaluate the proposed method, we generate synthetic data: we first generate

six different HMMs (θ1 to θ6, which are referred as data-generating models), from

each of which we draw 200 sequences, with the length being uniformly distributed

between 80 to 120. Each data-generating model has five states. For the sequences

from each data-generating model, we randomly assign 50 of them to the training set

and the remaining to the testing set. We assume there exists a score function such

that F (Xi) > F (Xj) if and only if Xi ∼ θk, X
j ∼ θl and k < l. That is, the sequences

from a data-generating model with a lower index are viewed to have a higher score

(or ranking) than those from a data-generating model with a higher index. A set

of pairs {(i, j)|Xi ∼ θk,X
j ∼ θk+1, k = 1, · · · , 5} are then formed accordingly, some

sparse subset of which are then randomly selected as the training pairs E.

We use the proposed methods and also HMM to learn models from the training

pairs. For the HMM algorithm and the improved method, we initialize the two sets

as Ξ1 = {i|(i, j) ∈ E, ∀j} and Ξ2 = {j|(i, j) ∈ E, ∀i}. Note, the data generated from

data-generating Models θ2 ∼ θ5 could be included in both Ξ1 and Ξ2. Thus existing

discriminative learning methods for HMM could not be applied here.

The learned models are then used to evaluate the testing set, i.e., how many

testing pairs that they rank the same as ground truth. The result of the methods

with different number of training pairs is summarized in Fig. 6.3, where due to

the computational time it takes, we don’t have the results for the baseline method

when there are more than 3750 training pairs.. From Fig. 6.3, we can find that the

improved method achieves the best results on both the training set and the testing

set; and the HMM method gives the worse result. In addition, the performance

of both of the proposed methods stabilized after certain number of training pairs.

However the performance of the HMM method drops dramatically when the number

of training pairs reaches about 6250. It can be explained by that the two HMMs share

a lot of common data (for those generated by θ2 ∼ θ5) and the models are trained
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independently without consideration of their discrimination ability. Normalizing the

logarithm of data likelihood does not improve the performance of baseline method,

which could be explained by that, all the sequences have roughly the same length, i.e.,

80 ∼ 120. Fig. 6.4 shows the logarithm of the data likelihood ratio with the models

learned by the improved method, when about 1250 training pairs are provided. This

clearly demonstrates that, although we formed the training pairs only with data from

data-generating models of adjacent indexes (i.e., i and i + 1), the learned model is

able to recover the strict ranking of the original data.

Convergence and Speed For empirically understanding the convergence be-

havior of the improved method, we plot in Fig. 6.5 the objective value in the model

as a function of the number of iterations. We can find that the improved method

converges fairly quickly (within about 14 iterations) and the value of the objective

function monotonically increases.

We also compare the computational time of the optimization method in Zhang and

Li (2013) (shown as red curve) and the proposed optimization method (in Sec. 6.4.3

and shown as green curve) in solving the improved model under varying number of

training pairs in Fig. 6.6. In Zhang and Li (2013), a primal-dual interior point method

is utilized to update the model; while in this paper, we design an augmented Lagrange

multiplier method which utilizes the special structure of the objective function of the

problem. From the plot, we can find that the proposed optimization method has a

much lower computational cost than the one proposed in Zhang and Li (2013).

Parameter Selection: to understand the effect of parameters to the perfor-

mances of the improved method, including accuracy and computation cost, we evalu-

ate it with varying combination of parameters. First we learn the model with varying

numbers of states (K), from 6 to 30. The result is shown Fig. 6.1. From Fig. 6.1(b),

we can find that, though the accuracy for the training data increases with the num-

ber of states, the accuracy for testing doesn’t following this trend, which indicates a

potential risk of over-fitting. The computational time and number of iteration until
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convergence get minimized when the number of states is 11− 13. We also do experi-

ment with different combinations of γ (controlling the weight of the penalty term with

slack variables) and ρ (controlling the margin of the model), where the experiment

result is shown in Fig. 6.2. From this experiment we can find that, γ ∈ [1, 1000] and

ρ ∈ [4, 32] are good choices.
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Figure 6.1: The experiment result with different numbers of states: (a) the com-
putational time (blue solid curve) and number of iterations needed for convergence
(green dashed curve); (b) the accuracy of the improved method. The X-axis is the
number of states.
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Figure 6.2: The accuracy of the improved method: (a) with different γ (ρ is fixed
to 10), which controls the weight of the penalty term with slack variables; (b) with
different ρ (γ is fixed to 1000), which controls the margin of the learned models.
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Figure 6.3: The results of four methods on training set (dashed curve) and testing
set (solid curve) with different numbers of training pairs.

It is obvious from this experiment that the sequences are different from (or similar

to) each other only because they are from different (or the same) data-generating

models, whereas their relative ranking can be arbitrarily defined. In the end, the

proposed methods will learn a temporal model to reflect the defined rankings. This

suggests that, as long as we can assume there are some data-generating models for the

given sequential data, we can use the proposed methods to learn a relative HMM. This

is the basis for applying the approach to the surgical training data in the following

sub-section, where it is reasonable to assume that movement patterns of subjects with

different skill levels may be modeled by different underlying HMMs while the ranking

can be based on the time of training, which reflects the skill level of the subject at

the time.

6.5.2 Skill Evaluation Using Surgical Training Video

We now evaluate the proposed method using real videos captured from the FLS

trainer box, which has been widely used in surgical training. The data set contains 546
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Figure 6.4: The logarithm of the data likelihood ratio with the models learned by
the improved method. Top: the result for the testing set. Bottom: the result for
the training set. The data are grouped (as the section partitioned by the red lines)
according to the data generation model from which they are synthesized.

videos captured from 18 subjects performing the “peg transfer” operation, which is

one of the standard training tasks a resident surgeon needs to perform and pass. The

number of frames in each video varies from 1000 to 6000 (depending on the trainees’

speed in completing a training session). The data set covers a training period of four

weeks, with every trainee performing three sessions each week.

In the training, the subject needs to lift six objects (one by one) with a grasper by

the non-dominant hand, transfer the object midair to the dominant hand, and then

place the object on a peg on the other side of the board. Once all six objects are

transferred, the process is reversed, and the objects are to be transferred back to the

original side of the board. The videos capture the entire process inside the trainer

box, showing how the tools and objects are moved by the subject. The motion skill is
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Figure 6.5: The convergence behavior of the improved method, where around 1250
training pairs were used. The blue curve/axis shows the value of the objective func-
tion, and the green curve/axis shows the number of constraints satisfied.

related to how well the subjects perform in such operation. In the existing practice,

senior surgeons rate the performance of the trainees based on such videos. Our goal

is to perform the rating automatically with the proposed model.

Based on the reasonable assumption that the trainees improve their skills over time

(which is the whole point of having the resident surgeons going through the training

before taking the exam), the time of recording is used to rank the recorded videos

within each subjects’ corpus (i.e., a later video is associated with a better skill).

Other than this relative ranking, there are no other labels assumed for the video, e.g.,

there is no rank information between videos of different subjects (which would be hard

to obtain anyway, since there are no clearly-defined skill levels for a group of trainees

with diverse background). Based on this, our training set is built as we first build a

set as {(i, j) : i is the video for the last week , j is the video of first week ∀subject},
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Figure 6.6: The computation time for solving the improved model with the method
proposed in Zhang and Li (2013) (red curve) and the method proposed in Sec. 6.4.3
(green) under varying number of training pairs. For illustration purpose, we use log-
log plot, where X-axis is the number of training pairs (from around 125 to around
9000) and Y-axis is the computation time in unit second (from about 20 to around
6000). The time is measured in Matlab on a dual-core PC platform.

then from it, we randomly pick 300 pairs as the training set. The training set is very

sparse compared with over 8000 pairs.

Feature Extraction: we use the “bag of words” approach for feature extraction

from the videos as follows. The spatiotemporal interest point detector Laptev (2005)

is applied to obtain the histogram-of-gradient (HoG) features. K-means (k = 100) is

then used to build a code book for the descriptors of the interest points. Finally, the

code book is used to obtain a histogram of interest points for each frame, and thus

each video is represented as a sequence of histograms. This representation, compared

with the existing way of using bag of words in action recognition, i.e., transforming

each video into a single histogram, can better capture the temporal information of

the data. For all three methods, we set the number of states to ten.
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After learning the models from the training data, we compute the score of the test

data as the logarithm of data likelihood (for the baseline method) or the logarithm

of the data likelihood ratio (for the improved method and the HMM). We compare

these scores for each pair of the testing data (within each subject) and compute the

percentage of correctly labeled pairs (recall that, we use their time of recording as

ground truth). The result is summarized in Tab. 6.2, where the improved method

obtained a significantly better result than the other approaches. Surprisingly, the

baseline method even performed slightly worse than the HMM method. This is largely

due to the wide range of variations of the length of the input sequences. Fig. 6.7

shows the computed scores with the learned models, where for better illustration

purpose we group them by their subject ID and within each subjects’ corpus we sort

the videos by their recording time. From the figure, we can find that the improved

method (bottom) reveals a more clear trend for the data than both the HMM method

(top) and the baseline method (middle), i.e., the scores of the data increase over times

(X-axis) for each subject (segments within the red lines). It is worth emphasizing that

only one joint model is learned from ranked pairs of subjects with potentially varying

skill levels. Still the learned model is able to recover the improving trend, independent

of the underlying skill levels.

It is also interesting to look at what the jointly-learned models look like in the

proposed approach. Fig. 6.8 depicts the two models learned by the improved method

in this real-data based experiment. From the figure, we can see that the two models

have different transition patterns. For example, the transition from State 8 to States

2 and 5 are only observed in Model 1. This may be linked to different motion patterns

for data of different surgical skills.

6.6 Emotion Recognition from Speech Data

Although the proposed approach was evaluated above in the context of motion

skill analysis in surgical training, the approach itself is general and applicable for other
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Method HMM Baseline Improved

# Pairs 6363 6215 6993

Accuracy 79.39% 77.54% 87.25%

Table 6.2: The result for experiment on evaluating surgical skills. There are 8015
pairs in total (only 300 for training), excluding the comparisons among data of dif-
ferent subjects.
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Figure 6.7: Top: the logarithm of the data likelihood ratio from two models learned
by HMM. Middle: the logarithm of data likelihood with the model learned by the
baseline method. Bottom: the logarithm of the data likelihood ratio with the models
learned by the improved method. The red vertical lines separate the data of different
subjects, where X-axis is the corresponding subject ID. Within each subjects’ corpus,
the videos are sorted according to their time of recording.

applications involving temporal data. To show that the proposed method can also be

used to solve temporal inference problems other than motion skill assessment, we now

consider the problem of speech-based emotion recognition. Recognizing the emotional

state of the speakers has received quite some interests from researchers, due to its

broad applications. For example, in human-machine interaction, better responses can

be made if the emotional state of the human can be recognized. Existing work on

this in the literature mainly focuses on developing models for assigning the labels like

“pleasing”, “angry” and “neural” to the data, e.g., Nwe et al. (2003), Schuller et al.

98



Model 1

1

2 34

5

6

7

89

10

0.54

0.23

0.20/0.10

0.19 0.68

0.010.01

0.14

0.44/0.100.03/0.88

0.02

0.16

0.02
0.02

0.13

0.85

0.33/0.110.31/0.04

0.46/0.02

0.04

Model 2

6

8

4

5 7

32

10

1

9

0.59

0.29

0.18/0.10

0.02

0.51

0.12/0.44

0.72

0.40/0.05
0.01

0.02

0.02

0.38

0.05/0.03
0.26/0.25

0.13

0.02/0.01

0.45

0.46

1.00

Figure 6.8: The two component models (Model 1 for Ξ1 and Model 2 for Ξ2) learned
by the improved method, where we only draw the edges with a transition probabil-
ity larger than 0.01 and ignore self-transitions. The number attached to each edge
indicates the transition probability.

(2003), El Ayadi et al. (2011), Tarasov and Delany (2011). Most of those efforts are

supervised in natural, i.e., the ground truth labeling for the training data is required.

For example, Kim et al. (2004) used support vector machines, Nwe et al. (2003)

used hidden Markov models, both utilizing fully-labeled data. The ground truth data

typically require manual labeling by human, which is an error-prone process especially

if absolute labels must be assigned to ambiguous data. With the proposed model,

we can support learning with only relative labels like “Audio a is more pleasing than

Audio b”, which is easier to obtain and also less error-prone.

In this experiment, we use Utsunomiya University Spoken Dialogue Database For

Paralinguistic Information Studies (UUDB)Mori et al. (2008), which contains 4840

assets labeled across six dimensions (pleasantness, arousal, dominance, credibility,

interest and positivity) on a scale of 1 to 7. The ground truth is based on the average

of scores of three annotators. For experiment, we pick the assets which are longer

than 1 second to ensure the effectiveness of emotional recognition, which results in 991

assets, where half of the data are used for training and the remaining for testing. For

generating the training set of pairs, we randomly picks 1000 pairs from the training
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Dimension Improved Baseline HMM

Pleasantness 77.30% 57.96% 75.05%

Arousal 86.95% 55.74% 69.55%

Dominance 87.95% 63.04% 77.32%

Credibility 76.68% 55.11% 71.74%

Interest 81.90% 62.56% 78.07%

Positivity 74.99% 67.84% 70.36%

Average 81.28% 53.14% 73.72%

Table 6.3: The result for experiment on UUDB datasets. We evaulate the accuracy
of ranking pairs with the learned models compared with the ground truth ones.

assets, which is very sparse considering total of about 1000, 000 pairs. Note that, we

say two assets are similar, if the difference of the labeled scores of two assets is within

the range of (−1, 1). The data can be downloaded at http://uudb.speech-lab.org.

For feature extraction, we use Hidden Markov Model Toolkit (HTK)Woodland

et al. (1994), where the MFCC coefficients are extracted with the following config-

urations: sampling rate is 100 HZ, windows size is 25 millisecond, number of filter

bank channels is 26, cepstral liftering coefficient is 22 with 12 cepstral parameters

and the feature vector is normalized. K-means is applied to the MFCC coefficients

of all the training data to generate a code book of 64 elements. Finally, each data

is converted to a sequence of histograms. We use the same set of parameters as the

previous experiment.

The experimental results are reported in Tab. 6.3. From the table, we can find

that the improved method consistently outperforms than both plain HMM and also

the baseline method in all six dimensions. We also find that the baseline method gets

low accuracy on this experiment, which can be explained by that the length of the

audio (in number of temporal frames) varies dramatically and the baseline method

obviously cannot handle this variation very well.
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6.7 Discussions and Conclusions

In this chapter, we presented a new formulation for the problem of learning tem-

poral models using only relative information. Algorithms were developed under the

formulation, and experiments using both synthetic and real data were performed to

verify the performance of the proposed method. In essence, the proposed method

attempts to learn an HMM with relative constraints. Such a setting is useful for

many practical applications where relative attributes are easier to obtain while ex-

plicit labeling is difficult to get. The application of video-based surgical training was

the focus of this study, and the evaluation results using realistic data suggests that

the proposed method provides a promising solution to the problem of motion skill

evaluation from videos. For future work, we plan to extend the proposed method to

cover different observation models so that more types of applications may be handled.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we presented our study on problems of how to model the

semantic information of the visual data and incorporate it into the sparse learning

methods. In this work, we identified four problems which are of great importance

and broad interest to the community. Specifically, a novel approach was proposed to

incorporate label information to learn a dictionary which is not only reconstructive but

also discriminative; considering the formation process of face images, a novel image

decomposition approach for an ensemble of correlated images was proposed, where a

subspace is built from the decomposition and applied to face recognition; based on the

observation that, the foreground (or salient) objects are sparse in input domain and

the background is sparse in frequency domain, a novel and efficient spatio-temporal

saliency detection algorithm was proposed to identify the salient regions in video;

and a novel hidden Markov model learning approach was proposed by utilizing the

pairwise comparisons among the data, which is easier to obtain and more meaningful,

consistent than tradition labels, in many scenarios, e.g., evaluating motion skills in

surgical simulations.

In those four problems, different types of semantic information were modeled

and incorporated in designing sparse learning algorithms for the corresponding visual

computing tasks. Several real world applications were selected to demonstrate the

effectiveness of the proposed methods, including, face recognition, saliency detection

in video, abnormality detection, motion analysis and emotion recognition. In those

applications, data of different modalities were involved, ranging from audio signal,

image to video. Experiments on large scale real world data with comparisons to
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state-of-art methods confirmed the proposed approaches deliver manifest advantages,

showing adding that semantic information dramatically improve the performances of

the general sparse learning methods.

The major work has been published or submitted to peer-reviewed venues: the

work in Chapter 3 was initially reported in Zhang and Li (2010a); the work in Chapter

4 has been reported in Zhang and Li (2010b) Zhang and Li (2012) and part of the

work in Chapter 6 was reported in Zhang and Li (2013).

7.2 Future Work

The current work may potentially be further improved from the following aspects.

In D-KSVD, we are currently using square loss for measuring the classification error.

Though achieving good results in face recognition tasks, it can still be improved by

using more sophisticated loss type, e.g., logistic loss or hinge loss.

As regarding to JSM-MC, one potential direction could be removing the assump-

tion that the low-rank conditions of the training images are known and the constraint

that each image is only related to one imaging condition. To this end, we plan to

expand the current algorithm by incorporating another step that attempts to esti-

mate the coefficient of assigning a condition to each image, during the optimization

iteration. This problem can be formulated as following:

C,A,E = argmin
C,A,E

∑

i,j

‖Aj‖∗ + λi,j‖Ei,j‖1

s.t. Xi,j = Ci +
∑

k

Akαi,j(k) + Ei,j, ∀Xi,j ∈ X

‖αi,j‖1 ≤ τ, ∀(i, j) ∈ Ω (7.1)

where αi,j is a vector indicating the condition ofXi,j, i.e., Xi,j takes Condition k, if and

only if αi,j(k) 6= 0. This formulation is more general than the original formulation

however also involves a more complex optimization algorithm, which shall be the

direction of future work.
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Chapter 5 demonstrates the effectiveness of the proposed spatiotemporal saliency

in detecting salient region from the video. However, more efforts are needed on the

theoretic analysis of the proposed method. e.g., some psychology studies may help

us to reveal why the proposed method is able to identify the salient volumes.

Finally, being effective in modeling the motion skills in surgical simulation, the

relative HMM described in this dissertation still have several limitations, e.g., only

multinomial observation model is allowed; and the current algorithm can only find a

local optimum. Thus for the future work, we plan to extend the algorithm to enable

other observation model, e.g., Gaussian mixture model; and improve the current

algorithm by using simulated annealing for finding better local optimum.

104



ACKNOWLEDGEMENTS The work was supported in part by a grant (Grant No.

0904778) from the National Science Foundation. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

105



REFERENCES

Adam, A., E. Rivlin, I. Shimshoni and D. Reinitz, “Robust real-time unusual event
detection using multiple fixed-location monitors”, PAMI 30, 3, 555 –560 (2008).

Aharon, M., M. Elad and A. Bruckstein, “K-SVD: Design of dictionaries for sparse
representation”, Proceedings of SPARS 5 (2005).

Aharon, M., M. Elad and A. Bruckstein, “¡ img src=”, Signal Processing, IEEE
Transactions on 54, 11, 4311–4322 (2006).

Alexe, B., T. Deselaers and V. Ferrari, “Measuring the objectness of image windows”,
PAMI 34, 11, 2189 –2202 (2012).

Altun, Y., I. Tsochantaridis, T. Hofmann et al., “Hidden markov support vector
machines”, in “MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN
CONFERENCE-”, vol. 20, p. 3 (2003).

Ban, S., I. Lee and M. Lee, “Dynamic visual selective attention model”, Neurocom-
puting 71, 4, 853–856 (2008).

Basri, R. and D. W. Jacobs, “Lambertian reflectance and linear subspaces”, Pattern
Analysis and Machine Intelligence, IEEE Transactions on 25, 2, 218–233 (2003).

Baum, L. E., T. Petrie, G. Soules and N. Weiss, “A maximization tech-
nique occurring in the statistical analysis of probabilistic functions of markov
chains”, The Annals of Mathematical Statistics 41, 1, pp. 164–171, URL
http://www.jstor.org/stable/2239727 (1970).

Belhumeur, P. N., J. P. Hespanha and D. Kriegman, “Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 19, 7, 711–720 (1997).

Bengio, S., F. Pereira, Y. Singer and D. Strelow, “Group sparse coding”, Adv. NIPS
(2009).

Bertsekas, D. P., “Constrained optimization and lagrange multiplier methods”, Com-
puter Science and Applied Mathematics, Boston: Academic Press, 1982 1 (1982).

Bian, P. and L. Zhang, “Biological plausibility of spectral domain approach for spa-
tiotemporal visual saliency”, NIPS pp. 251–258 (2009).

Borji, A. and L. Itti, “State-of-the-art in visual attention modeling”, PAMI PP, 99,
1 (2012).

Borji, A., D. N. Sihite and L. Itti, “Quantitative analysis of human-model agreement
in visual saliency modeling: a comparative study”, (2012).

Bruce, N. and J. Tsotsos, “Saliency based on information maximization”, in “Ad-
vances in neural information processing systems”, pp. 155–162 (2005).

Bryt, O. and M. Elad, “Compression of facial images using the k-svd algorithm”, Jour-
nal of Visual Communication and Image Representation 19, 4, 270–282 (2008a).

106

http://www.jstor.org/stable/2239727


Bryt, O. and M. Elad, “Improving the k-svd facial image compression using a linear
deblocking method”, in “Electrical and Electronics Engineers in Israel, 2008. IEEEI
2008. IEEE 25th Convention of”, pp. 533–537 (IEEE, 2008b).

Cai, J. F., E. J. Candes and Z. Shen, “A singular value thresholding algorithm for
matrix completion”, preprint (2008).

Candes, E. and Y. Plan, “Matrix completion with noise”, Proceedings of the IEEE
URL http://arxiv.org/pdf/0903.3131 (2009).

Candes, E. and J. Romberg, “l1-magic: Recovery of sparse signals via convex pro-
gramming”, URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf 4
(2005).

Candès, E. J., J. Romberg and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information”, Information Theory,
IEEE Transactions on 52, 2, 489–509 (2006).

Chang, C.-C. and C.-J. Lin, “LIBSVM: A library for support vector machines”, ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27, software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm (2011).

Chen, S., C. Cowan and P. Grant, “Orthogonal least squares learning algorithm for
radial basis function networks”, Neural Networks, IEEE Transactions on 2, 2, 302–
309 (1991).

Collins, M., “Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms”, in “Proceedings of the ACL 2002”,
vol. 10, pp. 1–8 (Association for Computational Linguistics, 2002).

Cong, Y., J. Yuan and J. Liu, “Sparse reconstruction cost for abnormal event detec-
tion”, in “CVPR 2011”, pp. 3449 –3456 (2011).

Dollar, P., V. Rabaud, G. Cottrell and S. Belongie, “Behavior recognition via sparse
spatio-temporal features”, in “Visual Surveillance and Performance Evaluation of
Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop on”, pp.
65 – 72 (2005).

Donoho, D. L., “Compressed sensing”, Information Theory, IEEE Transactions on
52, 4, 1289–1306 (2006).

Duan, F., Y. Zhang, N. Pongthanya, K. Watanabe, H. Yokoi and T. Arai, “Analyzing
human skill through control trajectories and motion capture data”, in “Automation
Science and Engineering, 2008. CASE 2008. IEEE International Conference on”,
pp. 454 –459 (2008).

El Ayadi, M., M. S. Kamel and F. Karray, “Survey on speech emotion recognition:
Features, classification schemes, and databases”, Pattern Recognition 44, 3, 572–
587 (2011).

Elad, M. and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries”, Image Processing, IEEE Transactions on 15, 12, 3736–
3745 (2006).

107

http://arxiv.org/pdf/0903.3131
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Felzenszwalb, P., R. Girshick, D. McAllester and D. Ramanan, “Object detection
with discriminatively trained part-based models”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 32, 9, 1627–1645 (2010).

Figueiredo, M. A., R. D. Nowak and S. J. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems”,
Selected Topics in Signal Processing, IEEE Journal of 1, 4, 586–597 (2007).

Fox, E., Bayesian Nonparametric Learning of Complex Dynamical Phenomena, Ph.D.
thesis, MIT, Cambridge, MA (2009).

Gao, D., S. Han and N. Vasconcelos, “Discriminant saliency, the detection of suspi-
cious coincidences, and applications to visual recognition”, PAMI 31, 6, 989 –1005
(2009).

Garcia-Diaz, A., X. R. Fdez-Vidal, X. M. Pardo and R. Dosil, “Decorrelation and
distinctiveness provide with human-like saliency”, in “Advanced Concepts for In-
telligent Vision Systems”, pp. 343–354 (Springer, 2009).

Georghiades, A., P. Belhumeur and D. Kriegman, “From few to many: Illumination
cone models for face recognition under variable lighting and pose”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 23, 6, 643–660 (2001).

Goldfarb, D. and S. Ma, “Convergence of fixed-point continuation algorithms for
matrix rank minimization”, Foundations of Computational Mathematics pp. 1–28
(2011).

Gorelick, L., M. Blank, E. Shechtman, M. Irani and R. Basri, “Actions as space-time
shapes”, PAMI 29, 12, 2247–2253 (2007).

Guha, T. and R. K. Ward, “Learning sparse representations for human action recog-
nition”, Pattern Analysis and Machine Intelligence, IEEE Transactions on 34, 8,
1576–1588 (2012).

Guo, C., Q. Ma and L. Zhang, “Spatio-temporal saliency detection using phase spec-
trum of quaternion fourier transform”, in “CVPR 2008”, pp. 1 –8 (2008).

Guo, C. and L. Zhang, “A novel multiresolution spatiotemporal saliency detection
model and its applications in image and video compression”, Image Processing,
IEEE Transactions on 19, 1, 185 –198 (2010).

Hale, E. T., W. Yin and Y. Zhang, “Fixed-point continuation for ℓ1-minimization:
Methodology and convergence”, SIAM Journal on Optimization 19, 3, 1107–1130,
URL http://link.aip.org/link/?SJE/19/1107/1 (2008).

Harel, J., C. Koch and P. Perona, “Graph-based visual saliency”, in “Advances in
neural information processing systems”, pp. 545–552 (2006).

Hou, X., J. Harel and C. Koch, “Image signature: Highlighting sparse salient regions”,
PAMI 34, 1, 194–201 (2012).

Hou, X. and L. Zhang, “Saliency detection: A spectral residual approach”, in “CVPR
2007”, pp. 1 –8 (2007).

Hou, X. and L. Zhang, “Dynamic visual attention: Searching for coding length incre-
ments”, NIPS 21, 681–688 (2008).

108

http://link.aip.org/link/?SJE/19/1107/1


Huber, D. E. and C. G. Healey, “Visualizing data with motion”, in “Visualization,
2005. VIS 05. IEEE”, pp. 527–534 (IEEE, 2005).

Itti, L. and P. Baldi, “Bayesian surprise attracts human attention”, NIPS 18, 547
(2006).

Itti, L., N. Dhavale and F. Pighin, “Realistic avatar eye and head animation using
a neurobiological model of visual attention”, in “Optical Science and Technology,
SPIE’s 48th Annual Meeting”, pp. 64–78 (International Society for Optics and
Photonics, 2004).

Itti, L., C. Koch and E. Niebur, “A model of saliency-based visual attention for rapid
scene analysis”, PAMI 20, 11, 1254 –1259 (1998).

Itti, R., Laurent; Carmi, “Eye-tracking data from human volunteers watching complex
video stimuli”, Online, URL CRCNS.org (2009).

Juang, B. and L. Rabiner, “The segmental¡ e1¿ k¡/e1¿-means algorithm for estimating
parameters of hidden markov models”, Acoustics, Speech and Signal Processing,
IEEE Transactions on 38, 9, 1639–1641 (1990).

Judd, T., K. Ehinger, F. Durand and A. Torralba, “Learning to predict where humans
look”, in “ICCV 2009”, pp. 2106 –2113 (2009).

Kadar, I. and O. Ben-Shahar, “Small sample scene categorization from perceptual
relations”, in “CVPR 2012”, pp. 2711 –2718 (2012).

Kahol, K., N. C. Krishnan, V. N. Balasubramanian, S. Panchanathan, M. Smith and
J. Ferrara, “Measuring movement expertise in surgical tasks”, in “Proceedings of
the 14th annual ACM international conference on Multimedia”, MULTIMEDIA
’06, pp. 719–722 (ACM, New York, NY, USA, 2006).

Kanan, C. and G. Cottrell, “Robust classification of objects, faces, and flowers using
natural image statistics”, in “Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on”, pp. 2472 –2479 (2010).

Kim, J. and K. Grauman, “Observe locally, infer globally: A space-time mrf for
detecting abnormal activities with incremental updates”, in “CVPR 2009”, pp.
2921 –2928 (2009).

Kim, K. H., S. Bang and S. Kim, “Emotion recognition system using short-term mon-
itoring of physiological signals”, Medical and biological engineering and computing
42, 3, 419–427 (2004).
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Proposition 1 The sequences of Ỹ t+1
i,j ,

∑

i Ŷ
t+1
i,j ,

∑

j Y
t+1
i,j and Ẏ t+1

i,j are all bounded
∀i, j, where

Yt+1
i,j = µt

i,j(Xi,j −Ct+1
i −At+1

j − Et+1
i,j ) +Yt

i,j

Ŷ t+1
i,j = µt

i,j(Xi,j −Ct
i −At+1

j − Et+1
i,j +Yt

i,j

Ỹ t+1
i,j = µt

i,j(Xi,j −Ct
i −At

j − Et+1
i,j ) +Yt

i,j

Ẏ t+1
i,j = µt

i,j(Xi,j − Ċt+1
i − Ȧt+1

j − Ėt+1
i,j ) + Ẏ t

i,j

and (Ċt+1, Ȧt+1, Ėt+1) is the optimal solution to the problem minC,A,E L(C,A,E, Ẏ
t, µt)

with Ẏ t = {Ẏ t
i,j}N,M

i,j=1.
Proof Let’s write the Lagrange function in 6.11 as:

L({Ct
i}i, {At

j}j, {Et
i,j}i,j, {Yt

i,j}i,j, {µt}i,j)
=

∑

i,j

‖At
j‖∗ + λi,j‖Et

i,j‖1

+
µt
i,j

2
‖Xi,j −Ct

i −At
j − Et

i,j‖2F
+ < Yt

i,j,Xi,j −Ct
i −At

j −Et
i,j >

For simplicity, we will use L(Ct,At,Et+1,Yt, µt) instead of L({Ct
i}i, {At

j}j , {Et+1
i,j }i,j, {Yt

i,j}i,j, {µt}i,j).
The subgradient of L(Ct,At,E,Yt, µt) over Ei,j is

λi,j∂‖Ei,j‖1 − µt
i,j(Xi,j −Ct

i −At
j −Ei,j)−Yt

i,j

As Et+1
i,j is optimal for the problem argmin

Ei,j

L(Ct,At,E,Yt, µt)

0 ∈ λi,j∂‖Et
i,j‖1 − Ỹ t+1

i,j

i.e., Ỹ t+1
i,j ∈ λi,j‖Et+1

i,j ‖1; and according to the Theorem 3 of Lin et al. (2010), Ỹ t+1
i,j

is bounded ∀i, j. Similarly, we can also show that
∑

i Ŷ
t+1
i,j ,

∑

j Y
t+1
i,j and Ẏ t+1

i,j are
bounded ∀i, j.

Proposition 2 The sequences of (Ct+1,At+1,Et+1) is bounded.
Proof For Algorithm 1, we can find that:

L(Ct+1,At+1,Et+1,Yt, µt) ≤ L(Ct,At+1,Et+1,Yt, µt)

≤ L(Ct,At,Et+1,Yt, µt) ≤ L(Ct,At,Et,Yt, µt)

= L(Ct,At,Et,Yt−1, µt−1) +
∑

i,j

µt−1
i,j + µt

i,j

(µt
i,j)

2
‖Yt

i,j −Yt−1
i,j ‖2F

By boundedness of assumption that
∑∞

t=1 µ
t+1
i,j (µt

i,j)
−2 < ∞ and

∑

j Y
t
i,j ∀i, j, we

have L(Ct+1,At+1,Et+1,Yt, µt) is upper bounded. Thus
∑

i,j‖At
j‖∗ + λi,j‖Et

i,j‖1 is
bounded.

Proposition 3 The accumulation point (Ċ∗, Ȧ∗, Ė∗) for sequences (Ċt+1, Ȧt+1, Ėt+1)
is optimal for the problem in Eqn. 4.5.
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Proof For (Ċt+1, Ȧt+1, Ėt+1), we have the following:

L(Ċt+1, Ȧt+1, Ėt+1, Ẏ t, µt) = min
C,A,E

L(C,A,E, Ẏ t, µt)

≤ min
Ci+Aj+Ei,j=Xi,j ,∀(i,j)

L(C,A,E, Ẏ t, µt)

≤ min
Ci+Aj+Ei,j=Xi,j ,∀(i,j)

∑

i,j

‖Aj‖∗ + λi,j‖Ei,j‖1

= f ∗

We also have:
∑

i,j

‖Ȧt+1
j ‖∗ + λi,j‖Ėt+1

i,j ‖1

= L(Ċt+1, Ȧt+1, Ėt+1, Ẏ t, µt)−
∑

i,j

‖Ẏ t
i,j − Ẏ t−1

i,j ‖2F
2µt

i,j

≤ f ∗ −
∑

i,j

‖Ẏ t
i,j − Ẏ t−1

i,j ‖2F
2µt

i,j

= f ∗ +O(
∑

i,j

(µt
i,j)

−1)

where we use the knowledge that Ẏ t+1
i,j is bounded ∀i, j. Take t → ∞, we have

∑

i,j‖Ȧ∗
j‖∗ + λi,j‖Ė∗

i,j‖1 = f ∗. Using (Ẏ t
i,j − Ẏ t−1

i,j ) = µt−1
i,j (Ẋi,j − Ċt−1

i − Ȧt−1
j − Ėt−1

i,j )

and boundedness of Ẏ t+1
i,j ∀i, j, we also have Xi,j − Ċ∗

i − Ȧ∗
j − Ė∗

i,j = 0 ∀i, j. Thus

(Ċ∗, Ȧ∗, Ė∗) is the optimal solution for Eqn. 4.5.
By Xi,j − Ct+1

i − At+1
j − Et+1

i,j = µt
i,j(Y

t+1
i,j − Yt

i,j) and boundedness of Yt
i,j , we

have limt→∞Ct+1
i +At+1

j + Et+1
i,j = Xi,j ∀i, j, i.e., (Ct+1,At+1,Et+1) approaches to a

feasible solution. In addition, we have

‖
∑

i

At+1
j −At

j‖F = ‖
∑

i

(µt
i,j)

−1(Ŷ t+1
i,j − Ỹ t+1

i,j )‖F

With the assumption
∑∞

t=1 (µ
t
i,j)

−1 <∞, boundedness of
∑

i Ŷ
t+1
i,j and Ỹ t

i,j, A
t+1
j has

a limit A∗
j . Similarly:

‖
∑

j

At+1
j −At

j +Ct+1
i −Ct

i‖F = ‖
∑

j

(µt
i,j)

−1(Yt+1
i,j − Ỹ t+1

i,j )‖F

Thus limt→∞
∑

j A
t+1
j −At

j +Ct+1
i −Ct

i = 0. Since At+1
j has limit A∗

j , then Ct+1
i has

limit C∗
i , then Et+1

i,j has limit Xi,j −A∗
j −C∗

i . So (C∗,A∗,E∗) is a feasible solution.

Considering the subgradients and the optimality of Et+1
i,j andAt+1

j , we have Ỹ t+1
i,j ∈

∂‖Et+1
i,j ‖1 and

∑

i Ŷ
t+1
i,j ∈ ∂‖At+1

j ‖∗. According to the property of subgradients:

(
∑

i,j

‖At+1
j ‖∗ + λi,j‖Et+1

i,j ‖1)− (
∑

i,j

‖Ȧt+1
j ‖∗ + λi,j‖Ėt+1

i,j ‖1)

≤
∑

i,j

− < Ŷ t+1
i,j , Ȧt+1

j −At+1
j > − < Ỹ t+1

i,j , Ėt+1
i,j −Et+1

i,j >

=
∑

i,j

−µt
i,j < Et+1

i,j − Et
i,j, Ȧ

t+1
j −At+1

j >

−
< Ỹ t+1

i,j , Ỹ t+1
i,j − Ỹ t

i,j >

µt
i,j

−
< Ỹ t+1

i,j , Ẏ t+1
i,j − Ẏ t

i,j >

µt
i,j
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By Proposition 1 and 2 thatYt+1
i,j , Ẏ t+1

i,j are bounded; by Proposition 3 that
∑

i,j‖Ȧ∗
j‖∗+

λi,j‖Ė∗
i,j‖1 = f ∗; and by assumption limt→∞ µt

i,j(E
t+1
i,j − Et

i,j) = 0, we have
∑

i,j‖A∗
j‖∗+

λi,j‖E∗
i,j‖1 = f ∗. That is (C∗,A∗,E∗) is optimal for the problem in Eqn. 4.5. This

completes the proof of Theorem 1.
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APPENDIX B

COMPARISON OF SALIENCY MAP COMPUTED BY QFT AND FFT
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To compare the performances of combining four visual cue via QFT and perfor-
mances via summation of saliency maps of each visual cues, we design the following
experiment. We run 1000 simulations and in each simulation we generate a r× c× 4
array, where r and c is a random number between [1, 1000] and 4 is the number of
feature channels. We compute the saliency map with different methods then measure
their similarities via cross-correlation, where 0.91 is reported for QFT and FFT. After
smoothing the saliency map with a Gaussian kernel, the correlation is over 0.998. For
natural image, we could expect an even higher correlation.

This suggests that, we can compute the saliency map for each visual cue inde-
pendently and then add them together, which will yield quite similar result by using
quaternion Fourier transform. In addition, the proposed method other than QFT
provides more flexibility, e.g., we can assign different weights to the visual cues as
Judd et al. (2009).
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APPENDIX C

OBSERVATION MODEL WITH MULTINOMIAL DISTRIBUTION
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For multinomial observation model, i.e., p(Xt|φzt) =
∏D

d=1 φzt(l)
Xt(l), where D

is the dimension of each frame, Xt(l) is the lth dimension of Xt and φzt are the
parameters of observation model with State zt, we can further define the following
variables for each sequence Xi:

ni ∈ R
K×1 : ni(k) = δ(zi1 = k)

Oi ∈ R
K×D : Oi(k, d) =

∑

t:zt=k

Xi
t(d)

Mi ∈ R
K×K : Mi(k, l) =

T
∑

t=2

δ(zit−1 = k)δ(zit = l)

where δ(·) is Dirac Delta function. Then the log likelihood with the optimal path can
be written as:

log p(Xi, zi|θ) =
∑

l

ni(l) log π(l)

+
∑

k,l

Mi(k, l) logA(k, l)

+
∑

k,d

Oi(k, d) logφk(d)

= θTh(Xi, zi) (C.1)

where θ = [log π; vec(logA); vec(logφ)], h(Xi, zi) = [ni; vec(Mi); vec(Oi)] and vec
converts matrix to vector.
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