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ABSTRACT

In many fields one needs to build predictive models for a set of related machine learn-

ing tasks, such as information retrieval, computer vision and biomedical informatics.

Traditionally these tasks are treated independently and the inference is done sepa-

rately for each task, which ignores important connections among the tasks. Multi-task

learning aims at simultaneously building models for all tasks in order to improve the

generalization performance, leveraging inherent relatedness of these tasks. In this

thesis, I firstly propose a clustered multi-task learning (CMTL) formulation, which

simultaneously learns task models and performs task clustering. I provide theoret-

ical analysis to establish the equivalence between the CMTL formulation and the

alternating structure optimization, which learns a shared low-dimensional hypothesis

space for different tasks. Then I present two real-world biomedical informatics appli-

cations which can benefit from multi-task learning. In the first application, I study

the disease progression problem and present multi-task learning formulations for dis-

ease progression. In the formulations, the prediction at each point is a regression task

and multiple tasks at different time points are learned simultaneously, leveraging the

temporal smoothness among the tasks. The proposed formulations have been tested

extensively on predicting the progression of the Alzheimer’s disease, and experimental

results demonstrate the effectiveness of the proposed models. In the second appli-

cation, I present a novel data-driven framework for densifying the electronic medical

records (EMR) to overcome the sparsity problem in predictive modeling using EMR.

The densification of each patient is a learning task, and the proposed algorithm si-

multaneously densify all patients. As such, the densification of one patient leverages

useful information from other patients.
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Chapter 1

BACKGROUND AND INTRODUCTION

1.1 Multi-Task Learning

1.1.1 Early Works of Multi-Task Learning

In many machine learning tasks, the quality of a model is limited by information

contained in the training data of the learning task. Examples of machine learning

tasks are regression, classification (Li et al., 2012), clustering (Chang et al., 2013b),

estimation of means (Feldman et al., 2012), metric learning (Chang et al., 2013a;

Li et al., 2013) and etc. The fundamental hypothesis of the multi-task learning is

to assume that if tasks are related and then learning of one task can benefit from

learning of other tasks.

Dating back to 1962, Zellner studied the seemingly unrelated regression equations

(SURE), where there are a set of regression models (the learning of each regression

model is a task) and Zellner proposed a procedure to perform the regressions simul-

taneously by applying Aitken’s generalized least-squares, and showed that for general

scenarios the proposed procedure is asymptotically more efficient than learning re-

gression models independently (Zellner, 1962). The SURE models have high impact

in the econometrics (Srivastava and Dwivedi, 1979), and is similar to the mutli-task

learning, which use information from other tasks to improve efficiency rather than

generalization performance.

Is it necessary for all tasks related in order to perform multi-task learning? The

answer is no. This is rather surprisingly answer, known as the Stein’s paradox : Dating

back to 1956, Stein has shown that estimating the mean of one T distribution can
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benefit from samples drawn from different means. Here consider the estimation of

the mean of one T distribution is a learning task, and there are tasks for distributions

with different means. And the implication is that the learning of one task can benefit

from seemingly unrelated tasks. This problem was revisited in a recent study by

Romera et. al. (Romera-Paredes et al., 2012), which learned a set of related tasks

with another group of unrelated tasks, aiming at transfer beneficial information from

the unrelated tasks.

The multi-task learning is also motivated from the human life-long learning pro-

cess (Thrun, 1996b): human beings encounter multiple learning tasks in their life-

time, and thus improve their ability to learn. Thrun defined machine learning al-

gorithms that are capable of learning to learn: Given 1) a set of tasks, 2) training

experience for each of these tasks, and 3) a set of performance measures (e.g., one for

each task), the learning to learn algorithm is expected to have improved performance

with both experience and the number of tasks. Such algorithms must be able to

transfer knowledge from tasks to task and improve the expected task-performance.

Thrun and O’Sullivan (1996) proposed the task-clustering (TC) algorithm, which

learns tasks into clusters. When a new task arrives, the TC algorithm firstly select

the most related task and leverage knowledge only within the cluster. In (Caruana,

1997) Caruana for the first time formally defined the term multi-task learning and

showed how multi-task learning works in neural network setting, and demonstrated

that multi-task learning is effective in several real domains. Baxter approached multi-

task learning in a Bayesian model (Baxter, 1997). Because that the tasks to be learned

are sampled from a distribution over an environment or context of related tasks, the

author modeled the environment using a shared objective prior distribution which is

learned from the tasks. Moreover, the author provided some theoretical guarantees

related to the multi-task learning in this context. The idea of obtaining a share prior

2



is also explored in (Mallick and Walker, 1997).

The formal definition of multi-task learning is given as follows:

Definition Multi-Task Learning (Caruana, 1997). Multitask Learning is an ap-

proach to inductive transfer that improves generalization by using the domain in-

formation contained in the training signals of related tasks as an inductive bias. It

does this by learning tasks in parallel while using a shared representation; what is

learned for each task can help other tasks be learned better.

The definition points out several key aspects of multi-task learning:

• Multi-task learning is one type of domain adaptation (or transfer learning) (Thrun,

1996a; Daumé III, 2007; Qi et al., 2011), and belongs to inductive transfer (Bax-

ter, 2000; Pan and Yang, 2010).

• Multi-task learning simultaneously learns tasks in parallel.

• Multi-task learning emphasizes on generalization performance of all tasks in-

volved.

The shared representation has many different forms, as will elaborated later. It can be

a shared feature representation in neural network, the same set of features in sparse

linear models or the same subspace with different coefficients in low rank modeling.

We note that in the transfer learning, typically a source domain and a target

domain are defined and we transfer knowledge from the source domain to the target

domain. In the transfer learning, we only care the generalization of the target domain.

In multi-task learning, however, because that we care the generalization performance

of all tasks, each task is both a source domain (transferes knowledge to other tasks)

and a target domain (use knowledge from other tasks).

3



1.1.2 Multi-Task Learning Frameworks

In this section, we show three main approaches for multi-task learning: neural

network approach, bayesian approach, and regularization-based approach. We note

that the three approaches are not mutually exclusive and they are overlapped in some

ways, as elaborated later.

Neural Network Approach

Multi-task learning can be naturally incorporated in the context of neural networks.

When building neural network models for multiple tasks, one may train one network

for each task. In (Caruana, 1997), inductive transfer among the tasks is achieved

by using multi-task neural network and used the multi-task ANN: training one ANN

with a set of output nodes (one for each task) and all outputs are fully connected to

a hidden layer that they share. The shared hidden layers serve as the shared (low

dimensional) representation that transferes knowledge between tasks. The figure is

shown in 1.1.

Baxter (1997) proposed to use Bayesian model of multi-task learning and illus-

trate how the Bayesian inference can be done in the neural network for learning low

dimensional representation. Heskes presented a practical implementation of Baxter’s

neural network framework for multi-task learning in (Heskes et al., 2000). Bakker and

Heskes (2003) offered a neural network model to perform task clustering and gating,

in which parameters of the hidden low dimensional feature space are shared for all

tasks (as in (Baxter, 1997)) and output model parameters are connected using a joint

prior distribution learned from the data. Heskes et al. (1998) proposed to solve a huge

number of similar tasks by combining the neural network and hierarchical Bayesian

approach. In (Collobert and Weston, 2008), Collobert and Weston proposed a unified

4
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Output Layer 

Hidden Layer 

Task 1 Task 2 Task 3 

Input Layer 

Shared Low 
Dimensional 

Representation 

Raw Feature 
Space 

The output node 
is independent for 

each task 

Figure 1.1: Illustration of Multi-Task Neural Network (MTNN) (Caruana, 1997).
There are three layers in the MTNN. In the input layer, all tasks have the same feature
space; in the hidden layer, all tasks share the same low-dimensional representation; in
the output layer, each task has an output node that is independent from other nodes.

convolutional neural network (CNN, one type of deep NN) for different natural lan-

guage processing (NLP) tasks. The proposed network jointly learned all tasks using

weight-sharing strategy, and the multi-task model was shown to have significantly

outperformed the stat-of-the-art performance.

Wilson et al. (2012) introduced the Gaussian Process Regression Networks (GPRN),

which combines the structural properties of Bayesian neural networks and the non-

parametric flexibility of Gaussian processes. The CPRN can be considered as a mix-

ture of Gaussian processes.

5



Hierarchical Bayesian and Random Process Approach

One important approach of the multi-task learning the Hierarchical Bayesian (HB)

approach, which places common priors on the hyperparameters of the task mod-

els to model task relatedness. The random process such as Gaussian process (GP)

and Dirichlet process (DP) can be used to model the multi-task learning. Unlike

the Bayesian approach, in which priors are placed in parameters, in random process

models directly assume prior over functions (Rasmussen and Williams, 2006). The

methods in this approach capture correlation between outputs/responses of the re-

lated tasks, and the correlation can be used to improve the performance of these

tasks.

Hierarchical Bayesian

In the Bayesian approach, the model parameters θ is a multivariate random vari-

able, and during the learning we estimate the posterior density p(θ|D) from data D

and the prior p(θ):

p(θ|D) =
p(D|θ)p(θ)
p(D)

In traditional Bayesian inference, the prior p(θ) reflects our (weak) confidence about

the parameter θ, and thus is called subject prior. In the multi-task learning, it is

reasonable to assume that all tasks are sampled from an environment, which describes

how tasks are related (Baxter, 1997). Since we are learning a set of related tasks, and

it is possible to learn an objective prior that reflects the environment p(θ|π∗). We are

able to infer the posterior probability using the Bayes’ rule:

p(π|θn) =
p(θn|π)p(π)

p(θn)
.

which indicates that as n → ∞, then the posterior asymptotically converges to the

true posterior π∗. Therefore, in the context of HB, parameters for different tasks are

6



assumed to be drawn from a common hyper prior distribution (π), which enables the

knowledge transfer among tasks and through which the tasks regularize each other.

Baxter (1997) formally introduced the objective prior in the multi-task learning

and the true prior can be learned using Bayesian inference on neural network. The

author provided bounds from the perspective of information theory, showing how

much information is needed to learn a task when it is learned simultaneously with

other tasks. The bounds also showed that sampling from multi-tasks can be highly

beneficial when we have little information about the true prior while its dimensionality

is small.

Gaussian Process

Minka and Picard (1997) firstly inspected the relationship between GP and neural

network model in (Baxter, 1997) and linked the multi-task learning problem to the

fitting of the covariance matrix in a GP. In the paper the authors also introduces how

data from tasks can be automatically separate using a mixture model, and discussed

the issue of performing task clustering. Learning multi-task covariance matrices are

expensive, and in (Lawrence and Platt, 2004) the authors used sparse approxima-

tion of GP and provided a more general GP approach for multi-task learning with

parametric covariance function. By assuming that the training sets of tasks are in-

dependent, the covariance is thus block diagonal, and the authors applied standard

information vector machine (Lawrence et al., 2003) algorithm to estimate the param-

eters using the maximum likelihood. In (Schwaighofer et al., 2004) Scwaighofer et.

al. introduced a GP that firstly considered the (non-parametric) covariance matrix

of GP, followed by a second extrapolation step to learn kernel functions. In (Yu

et al., 2005), Yu et. al. exploited the equivalence between parametric linear and

non-parametric CP, and introduced a hierarchical Bayesian model to learn multiple

tasks with a Normal-Inverse-Wishart prior, and proposed an EM-algorithm to solve

7



the model. The model was later applied to solve stochastic relational models involv-

ing multiple related GPs (Yu et al., 2006). Teh et. al. introduced a semi-parametric

latent factor model (Seeger et al., 2005), which assumed that the multiple related re-

sponse variables came from a linearly mix of a set of Gaussian processes. The authors

also presented an efficient algorithm that has linear complexity w.r.t. the number of

training samples. In (Bonilla et al., 2007), Bonilla et. al. proposed Gaussian process

two models to perform multi-task learning when task-specific features present (the

setting in (Bakker and Heskes, 2003)): one approach combining data from different

tasks and one combining models. In order to identify outlier/irrelevant tasks, Yu et.

al. introduced the t-processes (TP) which allows robust multi-task learning (Yu

et al., 2007), which is capable of identifying outlier tasks. Bonilla et. al. introduced

a multi-task GP approach that directly induce correlations between task (Williams

et al., 2007). The approach assumes that the covariance matrix is consist of two

components: one PSD matrix that models inter-task similarities, and a parametric

covariance function. This approach was later applied to model robot inverse dynam-

ics (Williams et al., 2008). Zhang and Yeung (Zhang and Yeung, 2010b) proposed

to extend the covariance matrix in (Williams et al., 2007) by considering it to be

a random matrix with an inverse-Wishart prior, leading to a multi-task generalized

t-process. Lazaric and Ghavamzadeh (Lazaric and Ghavamzadeh, 2010) considered

a bayesian approach for multi-task reinforcement learning, which assumes that the

value functions of different tasks are all sampled from a common Gaussian process

prior. To overcome the problem of computational complexity, Pillonetto et. al. of-

fered a Bayesian online multi-task learning of Gaussian processes. The focused GP,

proposed in (Leen et al., 2012), introduced an “explaining away” model for each of the

additional tasks to model their non-related variation, in order to focus the transfer

to the task-of-interest. Swersky et. al. (Swersky et al., 2013) applied the frame-

8



work of Bayesian optimization on the multi-task GP, which significantly reduced the

computational costs of the optimization process.

Chai quantified the generalization error and learning curve for the multi-task

Gaussian Process in the asymmetric two multi-task scenario (Chai, 2009, 2010). The

learning curve with arbitrary number of tasks is studied in (Sollich and Ashton, 2012).

Dirichlet Process

In (Yu et al., 2004), Yu et. al. introduced a nonparametric hierarchical Bayesian

framework for information filtering. Learning preference models for each user can

be considered as task, and the proposed method proposed a nonparametric common

prior among the tasks, assuming a sample is generated from a Dirichlet process (DP).

However, the approximate DP prior in (Yu et al., 2004) cannot be used to improve

the generalization performance of multiple tasks when learning them together, and

in (Xue et al., 2007b), Xue et. al. introduced a multi-task classification framework

using Dirichlet process priors, which can learn similarity between tasks and thus can

obtain task clusters. In (Xue et al., 2007a), Xue et. al. proposed a new matrix

stick-breaking process (MSBP) to perform multi-task learning. The MSBP improved

the DP prior by allowing ‘local clustering’ over different feature components. An et.

al. extended the MSBP to incorporate kernels and applied the proposed kernel stick-

breaking process to perform image analysis (An et al., 2008). While aforementioned

methods model the multi-task learning when data from all tasks is available, Ni et. al.

studied the multi-task learning model for sequential data (Ni et al., 2007), in which

the authors imposed a nested Dirichlet process (nDP) prior on the base distribution

of the infinite hidden Markov model (iHMM).

In (Li et al., 2011), Li et. al. proposed a nonparameteric bayesian multi-task

learning method with (cluster-wise) feature selection. The model is achieved by em-

ploying a DP and beta-Bernoulli process (BBP), where the DP clusters the tasks into
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groups, and for each BBP selects features that are relavant to the group. Passos et.

al. (Passos et al., 2012) offered a flexible nonparametric Bayesian model, which used

DP and Indian Buffet Process/Beta Process so that the number of mixture com-

ponents and the number of latent dimension do not need to be specified a prior.

Gupta et. al. (Gupta et al., 2013) offered the factorial multi-task learning method,

which clusters the tasks by their relatedness in a subspace and enables different relat-

edness by sharing the subspace across the groups. This is done by a nonparametric

prior that extends the beta process prior using a DP, which allows infinite child beta

processes.

The multi-task learning with DP priors was applied to compressive sensing (Qi

et al., 2008), in which each task is defined to be a compressive sensing problem. Li et.

al. offered a multi-task reinforcement learning, in which the modeling the agent’s

behavior in each environment is a task and is given by a parametric model (Li et al.,

2009). The authors imposed the nonparametric DP prior on the model parameters

to transfer knowledge between tasks.

Other Hierarchical Bayesian Approaches

Besides the random process approaches, there are other hierarchical Bayesian ap-

proaches. Heskes et al. (1998) proposed a multi-task learning approach that combines

neural network and hierarchical Bayesian approach. In (Arora et al., 1998), Arora et.

al. introduced a hierarchical Bayesian model for marketing, which considered both

the primary demand and the second demand. Consider the modeling of each of these

demands as task, the model is to transfer knowledge among the tasks using a hier-

archical Bayesian model. In (Bakker and Heskes, 2003) Bakker and Heskes used a

hierarchical Bayesian approach to learn multiple tasks, in which some of the model

parameters are shared and others are related through a prior distribution. Müller et.

al. (Müller et al., 2004) proposed a nonparametric hierarchical model, combining in-
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ference across related nonparametric Bayesian, with a special case of Dirichlet process

mixtures. In (Zhang et al., 2005), Zhang et. al. (Zhang et al., 2008) assumed that the

tasks parameters are generated from independent sources and the tasks are related

through these latent sources. They thus proposed a probabilistic multi-task learning

model based on Independent Component Analysis. The authors later extended the

latent variable approach to handle different relatedness. In (Daumé III, 2009), Daume

III offered a Bayesian latent hierarchical model for multi-task learning, with shared

covariance structure across tasks. The model subsumed (Yu et al., 2005) and (Xue

et al., 2007b) as special cases. Rai (Rai and Daume, 2010) proposed a nonparamet-

ric Bayesian multi-task learning model that assumed tasks parameters share a latent

subspace, the same assumption as in (Ando and Zhang, 2005).

Ji et. al. (Ji et al., 2009) proposed to use hierarchical Bayesian model to learn

multiple compressive sensing tasks, using a common prior (Gamma prior) on the

hyper-parameters. In (Hernández-Lobato et al., 2010), Hernández-Lobato et. al. in-

troduced a Bayesian model for multi-task feature selection, which utilizes a general

spike and slab sparse prior to enforce the selection of a common set of features dif-

ferent across tasks. Titsias and Lázaro-gredilla (Lázaro-gredilla and Titsias, 2011)

proposed a variational Bayesian inference for multi-task and multiple kernel learning,

based on the spike and slab prior. Hernández-Lobato et. al. (Hernandez-Lobato and

M. Hernandez-Lobato, 2013) proposed to use the horseshoe prior to learn dependen-

cies in the process of identifying relevant features for prediction.

While most nonparametric Bayesian multi-task models influence posterior by im-

posing common priors on the model parameters or functions, Zhu et. al. (Zhu et al.,

2011) proposed to impose posterior regularization by combining the large-margin idea,

learning predictive latent features.
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Regularized Linear Approach

The linear models assume that the response is a function of the linear combination

of the input. Linear models are simple and yet powerful in that flexible regularization

can be designed according to desired structures and assumptions. Moreover, the point

estimation of linear models often yields efficient optimization algorithms.

In the multi-task learning, there are a significant amount of research efforts be-

longing to this approach, in which the regularization terms are designed to bridge the

tasks and transfer knowledge between the tasks. In nature, most of the regularization

terms are coming from our prior knowledge about the models, and however the exact

probabilistic interpretations for many regularization approaches are unknown.

min
W

T∑
i=1

`(Xi, yi, wi) +R(W ) (1.1)

where the regularization function R(.) encourages the shared representation among

the tasks.

1.1.3 Task Relatedness

The key of the multi-task learning is to connect the tasks via a shared repre-

sentation, which in turn benefits (via bias) the tasks to be learned. Each shared

representation encode certain assumptions on the task relatedness. In this section,

we review common assumptions and their associated representations. The realiza-

tion of these share representation can done using the approaches as mentioned in the

previous section.
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Common Prior

One straight-forward assumption on the multiple related tasks is that the parameters

of different tasks come from a common prior. This is the assumption in most hier-

archical Bayesian approaches in the previous section. If the task parameters come

from a Gaussian distribution, then they should be close to some mean values. We

can decompose the parameters into two parts wt = w0 + vt, i.e., the mean and how a

task deviate from the mean. Evgeniou and Pontil (Evgeniou and Pontil, 2004; Evge-

niou et al., 2005) proposed a regularization-based approach to explicit model the two

components and learn them from the training data.

Low-Dimensional Subspace

In many real-world applications, forcing the tasks from the same distribution may

be too restrictive. Instead of assuming that all tasks share the same prior, we can

assume the that there are some latent variables and the tasks are related via the

latent variables.

In the context of linear model, Ando and Zhang (Ando and Zhang, 2005) assumed

that the tasks share a latent low-dimensional subspace and proposed an Alternating

Structure Optimization (ASO) approach explicitly learn this subspace in the learning

formulation. The formulation of ASO is non-convex and in (Chen et al., 2009),

Chen et. al. proposed a convex relaxation of ASO. In (Xu and Lafferty, 2012), Xu ad

Lafferty proposed a model that assumed that the group of regression models shared

a common low-rank matrix dictionary and the model matrix is a sparse combination

of the dictionaries. The shared representation was also explored in the multi-task

clustering (Gu and Zhou, 2009), and nonparametric hierarchical Bayesian (Rai and

Daume, 2010).
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A closely related approach is multi-task feature learning (Argyriou et al., 2008e;

Evgeniou and Pontil, 2007; Argyriou et al., 2008a), which learns a feature mapping

from the original feature space and then enforces all tasks to select a shared subset of

features after mapping. The formulation leads to a low-rank structure on the model

matrix W . Formulations directly involving on the rank function are intractable, and

the trace norm regularization is used as a convex alternative (Amit et al., 2007; Ji

and Ye, 2009; Pong et al., 2010).

In some scenarios the matrix W may be close to but not low-rank, and thus

assuming the matrix W is low-rank may be too restrictive. In (Chen et al., 2010a,

2012a), Chen et. al. offers an approach to decompose W into a low rank matrix

and a sparse matrix. Another extension is to assume the model matrix W is both

low-rank and sparse (Mei et al., 2012; Chen and Ye, 2013). In (Argyriou et al.,

2008b,c), Argyriou et. al. proposed to first cluster samples into groups and encourage

a shared representation within the groups. Kang et. al. (Kang et al., 2011) offered

an approach that simultaneously learned shared feature representation and modeled

task relatedness.

Shared Feature Subset

Another popular approach for modeling task relatedness is to assume that tasks have a

shared subset of features, or joint feature learning. For linear models, the joint feature

learning can be done via imposing a group lasso on the model matrix W (Jebara, 2004;

Turlach et al., 2005; Yuan and Lin, 2006; Obozinski et al., 2006, 2010), where each

column of W is treated as a group, and the corresponding feature is selected for all

tasks if the group is non-zero after learning. The tasks can be either homogenous

or heterogenous (involving regression and classification tasks) (Yang et al., 2009), as
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long as they have the same feature space.

R(W ) = λ‖W‖1,q = λ
d∑
i=1

‖wi‖q

Given q ≥ 1 and the loss function is convex, then the group Lasso problem with

the above group Lasso regularization is also convex, leading to efficient algorithms

to obtain optimal solutions (Liu et al., 2009a,b; Quattoni et al., 2009). And the

regularization has equipped with a probabilistic interpretation (Zhang et al., 2010).

Otherwise the problem is non-convex and is discussed in (Rakotomamonjy et al.,

2011). From the perspective of theory, Lounici (Lounici et al., 2009) showed that the

joint feature learning formulation enjoys nice sparsity oracle inequalities and variable

selection properties. Also, the union suport recovery of these joint feature learning

formulations was studied in (Kolar et al., 2011), offering analysis on properties of

different regularizations. Being a group Lasso problem, the joint feature learning can

be efficiently done in an online fashion (Yang et al., 2010).

Models combining the feature learning and joint feature selection are offered

in (Argyriou et al., 2008e; Evgeniou and Pontil, 2007; Argyriou et al., 2008a), which

learn a shared feature mapping and enforce all the tasks to select the same set of

features after mapping. In (Jalali et al., 2010), Jalali et. al. proposed a dirty model

for joint feature learning, assuming that the underlying model matrix W is corrupted.

The model decomposes the model matrix into two components: a clean joint sparse

model and a component with element-wise sparsity. In (Xu and Leng, 2012) Xu and

Huan considered a joint feature learning assumption where the responses are cor-

rupted by gross sparse error, and designed a learning formulation that is robust to

the sparse error.

The joint feature learning model has many extensions and relevant multi-task

learning models. Usually the regularization parameter for the group Lasso is set ei-
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ther manually or determined using cross validation. In (Lee et al., 2010), Lee et.

al. proposed to adaptively learn the parameters and incorporate external knowledge.

Swirszcz and Lozano (Swirszcz and Lozano, 2012) offered a multi-level lasso that has

two levels of sparsity and one of which enables joint feature selection. In (Balasub-

ramanian et al., 2013), the authors presented a method to consider the joint feature

selection from another perspective: perform joint selection based on a random effects

model. Jebara (Jebara, 2011) proposed to perform multi-task joint feature selec-

tion under the framework of maximum entropy discrimination. Another multi-task

learning approach that imposes an totally different assumption: encourage features

to share different sets of features, called exclusive Lasso and was proposed in (Zhou

et al., 2010).

The joint feature learning can also be done in the hierarchical Bayesian (Hernández-

Lobato et al., 2010) and probabilistic framework (Xiong et al., 2007; Zhang et al.,

2010). In (Hernández-Lobato et al., 2010), Hernández-Lobato utilizes a spike and slab

sparse prior to achieve common feature selection among tasks. Zhang et. al. (Zhang

et al., 2010) considered a family of `1.q norm instead of selecting a specific norm.

The joint feature learning has a wide range of applications because of its excellent

interpretation. For example, Tomioka and Haufe applied group sparsity in the area of

Brain Computer Interface (Tomioka and Haufe, 2008); Rao (Rao et al., 2013) designed

a sparse overlapping sets Lasso for fMRI analysis.

Learning task relationship

In most task relatedness methods, the tasks are assumed to be equally related, i.e.,

each task contributes equally to the shared representation, and the tasks are equally

related. In many real-world applications such an assumption is too strong, which leads

to a significant amount of efforts on the study of task relationship. While in some
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applications, we may be able to come up with similarity among tasks using domain

knowledge (e.g., when a task network is available (Kato et al., 2007)). When such

side information is not available, however, one is able to use a data driven approach to

learn task relationships from data. The approaches can be grouped into the following

categories:

Identifying outlier tasks. In this class of approaches the models assume that most of

the tasks are related to each other, while there are a few outlier tasks that do not

relate to other tasks. The approaches are called robust multi-task learning, aiming to

be robust against outlier tasks. In the shared low-dimensional subspace setting (Chen

et al., 2011), we can assume that the model W can be decomposed into two parts,

where in one part is the low-dimensional subspace for all tasks, and the other part

captures the information that cannot fit into the shared subspace. A similar robust

models for feature learning is offered by Gong et. al. (Gong et al., 2012). The robust

model can also be used in the Bayesian setting (Yu et al., 2007).

Learning task clusters. In this approach we assume that the tasks form some clusters

and the tasks are related to each other via the clusters. Within each cluster the tasks

are related and share a common representation. In early researches, this was done

in a two step fashion, where the tasks are first clustered and then learned within

the tasks (Thrun and O’Sullivan, 1996, 1998; Bakker and Heskes, 2003). In recent re-

searches the task cluster and model inference can be done simultaneously (Jacob et al.,

2008; Zhou et al., 2011a; Zhong and Kwok, 2012). In (Zhou et al., 2011a) the authors

established an equivalent relationship between the alternating structure optimization

for shared subspace learning and the clustered multi-task learning, which revealed the

close underlying connection between the two seemingly unrelated multi-task learning

formulations. In (Jacob et al., 2008; Zhou et al., 2011a), the authors offers clustered

multi-task learning formulations which simultaneously performed model learning and
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soft k-means clustering on the model. In (Kumar and Daume, 2012), Kumar et.

al. offered a task grouping method by decomposing the model matrix and applying

sparse inducing norm. Jawanpuria and Nath (Jawanpuria and Nath, 2012) offered a

mixed norm regularization approach that searches the exponentially large space of all

possible task groups and allows shared feature space within groups. In (Passos et al.,

2012), Passos et. al. proposed a model for learning latent tasks structures for multi-

task learning, which seek a proper latent structure and subsumed many multi-task

learning formulations including the clustered multi-task learning.

Modeling task similarity. A more general way is to directly learn a task covariance

(or similarity) matrix, which evaluates the pairwise relationship between all tasks.

In this approach, the outlier tasks and task clusters can be naturally given in the

covariance matrix. When such a matrix is given, it can be incorporated in the learning

formulations (Han et al., 2010). It is more interesting to infer such a covariance matrix

from data. When task-specific features are available, these features can be used to

evaluate task similarity (Bonilla et al., 2007; Yu et al., 2006, 2009). While in some

applications of multi-task learning, these task-specific features are not available, and

therefore the task similarity is evaluated from the entire data directly (Williams et al.,

2007).

In (Williams et al., 2007), Bonilla et. al. used the covariance matrix for task

relationship for not only positive correlation between the tasks, but also negative

ones. The authors proposed to use a low rank approximation of the task covariance

to reduce computational complexity. In (Zhang and Yeung, 2010a) Zhang and Yeung

proposed a convex multi-task relationship learning formulation to learn the covariance

matrix. In (Zhang and Yeung, 2010c), the authors proposed to use task covariance

matrix to perform transfer learning among metric learning tasks. Rai et. al. (Rai

et al., 2012) offered a model based on the conditional covariance structure, which
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subsumed (Zhang and Yeung, 2010a) as a special case. In (Zhang and Schneider,

2010), Zhang and Schneider proposed to use sparse inverse covariance to couple the

multiple tasks, which captures both task relatedness and feature representation. Fei

and Huan (Fei and Huan, 2011) proposed to consider structured feature selection

along with the learning of the task relatedness. In (Zhang and Yeung, 2013), Zhang

and Yeung offered a learning formulation that considered high-order task relationships

instead of the pairwise relationships. The task similarity is also extensively explored

in the Bayesian settings (Williams et al., 2007; Passos et al., 2012; Yang and He, 2013;

Gupta et al., 2013; Yang et al., 2013).

1.1.4 Other Task Relatedness

In addition to the aforementioned methods, there are many other approaches

for modeling task relatedness: the models come from a manifold (Lin et al., 2012;

Agarwal et al., 2010; Lin et al., 2012); tasks have hierarchical structure (Daumé III,

2009; Görnitz et al., 2011) or tree/graph structure (Kim and Xing, 2010; Chen et al.,

2010b; Kim and Xing, 2012; Chen et al., 2012b; Widmer et al., 2012).

1.2 Disease Progression via Multi-Task Learning

Alzheimer’s disease (AD), the most common type of dementia, is characterized by

the progressive impairment of neurons and their connections resulting in loss of cogni-

tive function and ultimately death (Khachaturian, 1985). AD currently affects about

5.3 million individuals in United States and more than 30 million worldwide with a

significant increase predicted in the near future (Association, 2010). Alzheimer’s dis-

ease has been not only the substantial financial burden to the health care system but

also the psychological and emotional burden to patients and their families. As the

research on developing promising new treatments to slow or prevent AD progressing,
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the need for markers that can track the progress of the disease and identify it early

becomes increasingly urgent.

A definitive diagnosis of AD can only be made through an analysis of brain tissue

during a brain biopsy or autopsy (Jeffrey et al., 2003). Many clinical/cognitive mea-

sures have been designed to evaluate the cognitive status of the patients and used as

important criteria for clinical diagnosis of probable AD, such as Mini Mental State

Examination (MMSE) and Alzheimer’s Disease Assessment Scale cognitive sub-scale

(ADAS- Cog) (McKhann et al., 1984). MMSE has been shown to be correlated with

the underlying AD pathology and progressive deterioration of functional ability (Jef-

frey et al., 2003). ADAS-Cog is the gold standard in AD drug trial for cognitive

function assessment (Rosen et al., 1984). Since neurodegeneration of AD proceeds

years before the onset of the disease and the therapeutic intervention is more effective

in the early stage of the disease, there is thus an urgent need to address two major

research questions: (1) how can we predict the progression of the disease measured by

cognitive scores, e.g., MMSE and ADAS-Cog? (2) what is the smallest set of features

(measurements) most predictive of the progression? The prime candidate markers for

tracking disease progression include neuroimages such as magnetic resonance imaging

(MRI), cerebrospinal fluid (CSF), and baseline clinical assessments (Dubois et al.,

2007).

The relationship between the cognitive scores and possible risk factors such as age,

APOE gene, years of education and gender has been previously studied (Tombaugh,

2005; Ito et al., 2010). Many existing works analyzed the relationship between cogni-

tive scores and imaging markers based on MRI such as gray matter volumes, density

and loss (Apostolova et al., 2006; Chetelat and Baron, 2003; Frisoni et al., 2002, 2010;

Stonnington et al., 2010), shape of ventricles (Ferrarini et al., 2008; Thompson et al.,

2004) and hippocampal (Thompson et al., 2004) by correlating these features with
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baseline MMSE scores. In (Duchesne et al., 2009), the intensity and volume of medial

temporal lobe altogether with other risk factors and the gray matter were shown to

be correlated with the 6-month MMSE score, which allowed us to predict near-future

clinical scores of patients. Relations between 6-month atrophy patterns in medial

temporal region and memory declination in terms of clinical scores had also been ex-

amined in (Murphy et al., 2010). To predict the longitudinal response to Alzheimer’s

Disease progression, Ashford and Schmitt built a model with horologic function us-

ing “time-index” to measure the rate of dementia progression (Ashford and Schmitt,

2001). In (Davatzikos et al., 2009), the so-called SPARE-AD index was proposed

based on spatial patterns of brain atrophy and its linear effect against MMSE was

reported. In a more recent study by Ito et al., the progression rate of cognitive scores

was modeled using power functions (Ito et al., 2010).

Most existing work employed either the regression model (Duchesne et al., 2009;

Stonnington et al., 2010) or the survival model (Vemuri et al., 2009) for modeling

the disease progression. The correlation between the ground truth and the predic-

tion is used to evaluate the model (Duchesne et al., 2009; Stonnington et al., 2010).

When the size of covariates is small, each covariate can be individually added to the

model to examine its effectiveness for predicting the target (Ito et al., 2010; Walhovd

et al., 2010), or univariate analysis is performed individually on all covariates and

those who exceed a certain significance threshold are included in the model (Murphy

et al., 2010). When the number of covariates is large and significant correlations

among covariates exist, these approaches are suboptimal. To deal with the curse of

dimensionality, dimension reduction techniques are commonly employed. Duchesne

et al. used principle components analysis (PCA) to build a low dimensional feature

space from image data (Duchesne et al., 2009). An obvious disadvantage of dimen-

sion reduction techniques such as PCA is that the model is no longer interpretable,
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since all features are involved. Stonnington et al. used relevance vector regression

(RVR), which integrated feature selection in the training stage (Stonnington et al.,

2010). These approaches only predict clinical scores at a single time point and their

performances are far from satisfactory to be clinically useful for AD prognosis.

In this thesis, I propose a multi-task learning formulation for predicting the pro-

gression of the disease measured by the clinical scores at multiple time points and

simultaneously selecting markers predictive of the progression. Specifically, I for-

mulate the prediction of clinical scores at a sequence of time points as a multi-task

regression problem, where each task concerns the prediction of a clinical score at one

time point. Multi-task learning aims at improving the generalization performance by

learning multiple related tasks simultaneously. The key of multi-task learning is to

exploit the intrinsic relatedness among the tasks. For the disease progression con-

sidered in this thesis, it is reasonable to assume that a small subset of features is

predictive of the progression, and the multiple regression models from different time

points satisfy the smoothness property, that is, the difference of the cognitive scores

between two successive time points is small. To this end, I develop a novel multi-task

learning formulation based on a temporal group Lasso regularizer. The regularizer

consists of two components including an `2,1-norm penalty (Yuan and Lin, 2006) on

the regression weight vectors, which ensures that a small subset of features will be se-

lected for the regression models at all time points, and a temporal smoothness term,

which ensures a small deviation between two regression models at successive time

points.

I have performed extensive experimental studies to evaluate the effectiveness of

the proposed algorithm. I use various types of data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database including MRI scans, CSF, and clinical

scores at the baseline to predict the MMSE and ADAS-Cog scores for the next three
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years. Our experimental studies show that the proposed algorithm better captures

the progression trend and the cross-sectional group differences of AD severity than

existing methods. Results also show that most markers selected by the proposed

algorithm are consistent with findings from existing cross-sectional studies.

1.3 Multi-Task Learning for Patient Record Densification

Patient Electronic Medical Records (EMR) are systematic collections of longitudi-

nal patient health information generated from one or more encounters in any care de-

livery setting. Typical information contained in EMR includes patient demographics,

encounter records, progress notes, problems, medications, vital signs, immunizations,

laboratory data and radiology reports, and etc. Effective utilization of EMR is the

key to many medical informatics research problems, such as disease early detection

(Wu et al., 2010), comparative effectiveness research (Markatou et al., 2012) and risk

stratification (Persell et al., 2009).

Working directly with raw EMR is very challenging because it is usually sparse,

noisy and irregular. Deriving better and more robust representation of the patients,

or phenotyping, is very important in many medical informatics applications (Lasko

et al., 2013). One significant challenge for phenotyping with longitudinal EMR is

data sparsity. To illustrate this, we show the EMR of a Congestive Heart Failure

(CHF) patient in Fig.1.2, which is represented as a matrix. The horizontal axis is

time with the granularity of days. The vertical axis is a set of medical events, which

in this example is a set of diagnosis codes. Each dot in a matrix indicates that the

corresponding diagnosis is observed for this patient at the corresponding day. From

the figure we can see that there are only 37 nonzero entries within a 90-day window.

With those sparse matrices, many existing works just treat those zero values as

actual zeros (Wu et al., 2010; Wang et al., 2012; Sun et al., 2012), and construct
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Figure 1.2: An example of the patient’s EMR. The horizontal axis represents the
number of days since the patient has records. The vertical axis corresponds to different
diagnosis codes. A green diamond indicates the corresponding code is diagnosed for
this patient at the corresponding day.

feature vectors from them with some summary statistics, then feed those feature

vectors into computational models (e.g., classification, regression and clustering) for

specific tasks. However, this may not be appropriate because many of those zero

entries are not actual zeros but missing (the patient did not pay a visit and thus

there is no corresponding record). Thus, the feature vectors constructed in this way

are not accurate. As a consequence, the performance of the computational models

will be compromised.

To handle the sparsity problem, I propose a general framework, Pacifier (PAtient

reCord densIFIER), for phenotyping patients with their EMRs, which imputes the

values of those missing entries by exploring the latent structures on both feature

and time dimensions. Specifically, I assume those observed medical features in EMR

(micro-phenotypes) can be mapped to some latent medical concept space with a much

lower dimensionality, such that each medical concept can be viewed as a combination

of several observed medical features (macro-phenotypes). In this way, we expect to
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discover a much denser representation of the patient EMR in the latent space, and the

values of those medical concepts evolve smoothly over time. I develop the following

two specific formulations to achieve such goal:

• Individual Basis Approach (Iba), which approximates each individual EMR

matrix as the product of two latent matrices. One is the mapping from those

observed medical features to the latent medical concepts, the other describes

how the values of those medical concepts evolve over time.

• Shared Basis Approach (Sba), which also approximates the EMR matrix for

each patient as the product of two latent matrices, but the mapping matrix

from those observed medical features to the latent medical concepts is shared

over the entire patient population. Treating the densification of each patient as

a task, the Sba approach is a multi-task learning problem.

When formulating Pacifier, I enforce sparsity on the latent medical concept

mapping matrix to encourage representative and interpretable medical concepts. I

also enforce temporal smoothness on the concept value evolution matrix that captures

the continuous nature of the patients. I develop an efficient Block Coordinate Descent

(BCD) scheme for both formulations, that has the capability of processing large-scale

datasets. I validate the effectiveness of our method in two real world case studies on

predicting the onset risk of Congestive Heart Failure (CHF) patients and End State

Renal Disease (ESRD) patients. Our results show that the average prediction AUC

in both tasks can be improved significantly (from 0.689 to 0.816 on CHF prediction,

and from 0.756 to 0.838 on ESRD respectively) with Pacifier.
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Chapter 2

CLUSTERED MULTI-TASK LEARNING

In the multi-task learning there is an important class of approaches, which as-

sume that multiple predictors for different tasks share a common structure on the

underlying predictor space. Alternating structure optimization (ASO) is one of the

representative approach in this class, which is for linear predictors. ASO simultane-

ously performs inference on multiple tasks and discovers the shared low-dimensional

predictive structure. In the high- dimensional setting, however, the computational

cost of ASO is typically very high.

In this chapter I present a multi-task learning formulation called clustered multi-

task learning (CMTL), which assumes models of the tasks form some types of clusters,

and models within the same cluster is more similar to each other than those in dif-

ferent clusters. I establish the equivalence relationship between the CMTL and ASO,

which means when the data is high-dimensional we can perform CMTL as an efficient

alternative to ASO.

2.1 Alternating Structure Optimization and Clustered Multi-Task Learning

Assume we are given a multi-task learning problem with m tasks; each task i ∈ Nm

is associated with a set of training data {(xi1, yi1), . . . , (xini
, yini

)} ⊂ Rd×R, and a linear

predictive function fi: fi(x
i
j) = wTi x

i
j, where wi is the weight vector of the i-th task,

d is the data dimensionality, and ni is the number of samples of the i-th task. We

denote W = [w1, . . . , wm] ∈ Rd×m as the weight matrix to be estimated. Given a loss
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function `(·, ·), the empirical risk is given by:

L(W ) =
m∑
i=1

1

ni

(
ni∑
j=1

`(wTi x
i
j, y

i
j)

)
.

We study the following multi-task learning formulation: minW L(W ) + Ω(W ), where

Ω encodes our prior knowledge about the m tasks. Next, we review ASO and CMTL

and explore their inherent relationship.

Alternating structure optimization. In ASO Ando and Zhang (2005), all tasks

are assumed to share a common feature space Θ ∈ Rh×d, where h ≤ min(m, d) is

the dimensionality of the shared feature space and Θ has orthonormal columns, i.e.,

ΘΘT = Ih. The predictive function of ASO is: fi(x
i
j) = wTi x

i
j = uTi x

i
j +vTi Θxij, where

the weight wi = ui + ΘTvi consists of two components including the weight ui for

the high-dimensional feature space and the weight vi for the low-dimensional space

based on Θ. ASO minimizes the following objective function: L(W ) + α
∑m

i=1 ‖ui‖2
2,

subject to: ΘΘT = Ih, where α is the regularization parameter for task relatedness.

We can further improve the formulation by including a penalty, β
∑m

i=1 ‖wi‖2
2, to

improve the generalization performance as in traditional supervised learning. Since

ui = wi −ΘTvi, we obtain the following ASO formulation:

min
W,{vi},Θ:ΘΘT =Ih

L(W ) +
m∑
i=1

(
α‖wi −ΘTvi‖2

2 + β‖wi‖2
2

)
. (2.1)

Clustered multi-task learning. In CMTL, we assume that the tasks are clustered

into k < m clusters, and the index set of the j-th cluster is defined as Ij = {v|v ∈

cluster j}. We denote the mean of the jth cluster to be w̄j = 1
nj

∑
v∈Ij wv. For a given

W = [w1, · · · , wm], the sum-of-square error (SSE) function in K-means clustering is

given by Ding and He (2004); Zha et al. (2002):

k∑
j=1

∑
v∈Ij

‖wv − w̄j‖2
2 = tr

(
W TW

)
− tr

(
F TW TWF

)
, (2.2)
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where the matrix F ∈ Rm×k is an orthogonal cluster indicator matrix with Fi,j = 1√
nj

if i ∈ Ij and Fi,j = 0 otherwise. If we ignore the special structure of F and keep the

orthogonality requirement only, the relaxed SSE minimization problem is:

min
F :FTF=Ik

tr
(
W TW

)
− tr

(
F TW TWF

)
, (2.3)

resulting in the following penalty function for CMTL:

ΩCMTL0(W,F ) = α
(
tr
(
W TW

)
− tr

(
F TW TWF

))
+ β tr

(
W TW

)
, (2.4)

where the first term is derived from the K-means clustering objective and the second

term is to improve the generalization performance. Combing Eq. (2.4) with the

empirical error term L(W ), we obtain the following CMTL formulation:

min
W,F :FTF=Ik

L(W ) + ΩCMTL0(W,F ). (2.5)

Equivalence of ASO and CMTL. In the ASO formulation in Eq. (2.1), it is clear

that the optimal vi is given by v∗i = Θwi. Thus, the penalty in ASO has the following

equivalent form:

ΩASO(W,Θ) =
m∑
i=1

(
α‖wi −ΘTΘwi‖2

2 + β‖wi‖2
2

)
= α

(
tr
(
W TW

)
− tr

(
W TΘTΘW

))
+ β tr

(
W TW

)
, (2.6)

resulting in the following equivalent ASO formulation:

min
W,Θ:ΘΘT =Ih

L(W ) + ΩASO(W,Θ). (2.7)

The penalty of the ASO formulation in Eq. (2.7) looks very similar to the penalty

of the CMTL formulation in Eq. (2.5), however the operations involved are funda-

mentally different. In the CMTL formulation in Eq. (2.5), the matrix F is operated

on the task dimension, as it is derived from the K-means clustering on the tasks;
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while in the ASO formulation in Eq. (2.7), the matrix Θ is operated on the feature

dimension, as it aims to identify a shared low-dimensional predictive structure for all

tasks. Although different in the mathematical formulation, we show in the following

theorem that the objectives of CMTL and ASO are equivalent.

Theorem 2.1.1. The objectives of CMTL in Eq. (2.5) and ASO in Eq. (2.7) are

equivalent if the cluster number, k, in K-means equals to the size, h, of the shared

low-dimensional feature space.

Proof. Denote Q(W ) = L(W ) + (α+β) tr
(
W TW

)
, with α, β > 0. Then, CMTL and

ASO solve the following optimization problems:

min
W,F :FTF=Ip

Q(W )− α tr
(
WFF TW T

)
, min

W,Θ:ΘΘT =Ip
Q(W )− α tr

(
W TΘTΘW

)
,

respectively. Note that in both CMTL and ASO, the first term Q is independent of F

or Θ, for a given W . Thus, the optimal F and Θ for these two optimization problems

are given by solving:

[CMTL] max
F :FTF=Ik

tr
(
WFF TW T

)
, [ASO] max

Θ:ΘΘT =Ik
tr
(
W TΘTΘW

)
.

Since WW T and W TW share the same set of nonzero eigenvalues, by the Ky-Fan

Theorem Fan (1949), both problems above achieve exactly the same maximum objec-

tive value: ‖W TW‖(k) =
∑k

i=1 λi(W
TW ), where λi(W

TW ) denotes the i-th largest

eigenvalue of W TW and ‖W TW‖(k) is known as the Ky Fan k-norm of matrix W TW .

Plugging the results back to the original objective, the optimization problem for both

CMTL and ASO becomes minW Q(W ) − α‖W TW‖(k). This completes the proof of

this theorem.

2.2 Convex Relaxation of CMTL and Its Equivalence to cASO

Convex Relaxation of CMTL. The formulation in Eq. (2.5) is non-convex. A

natural approach is to perform a convex relaxation on CMTL. We first reformulate
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the penalty in Eq. (2.5) as follows:

ΩCMTL0(W,F ) = α tr
(
W ((1 + η)I − FF T )W T

)
, (2.8)

where η is defined as η = β/α > 0. Since F TF = Ik, the following holds:

(1 + η)I − FF T = η(1 + η)(ηI + FF T )−1.

Thus, we can reformulate ΩCMTL0 in Eq. (2.8) as the following equivalent form:

ΩCMTL1(W,F ) = αη(1 + η) tr
(
W (ηI + FF T )−1W T

)
. (2.9)

resulting in the following equivalent CMTL formulation:

min
W,F :FTF=Ik

L(W ) + ΩCMTL1(W,F ). (2.10)

Following Chen et al. (2009); Jacob et al. (2008), we obtain the following convex

relaxation of Eq. (2.10), called cCMTL:

min
W,M
L(W ) + ΩcCMTL(W,M) s.t. tr (M) = k,M � I, M ∈ Sm+ . (2.11)

where ΩcCMTL(W,M) is defined as:

ΩcCMTL(W,M) = αη(1 + η) tr
(
W (ηI +M)−1W T

)
. (2.12)

The optimization problem in Eq. (2.11) is jointly convex with respect to W and

M Argyriou et al. (2008d).

Convex Relaxation of ASO. A convex relaxation (cASO) of the ASO formulation

in Eq. (2.7) has been proposed in Chen et al. (2009):

min
W,S
L(W ) + ΩcASO(W,S) s.t. tr (S) = h, S � I, S ∈ Sd+, (2.13)

where ΩcASO is defined as:

ΩcASO(W,S) = αη(1 + η) tr
(
W T (ηI + S)−1W

)
. (2.14)
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The cASO formulation in Eq. (2.13) and the cCMTL formulation in Eq. (2.11) are

different in the regularization components: the respective Hessian of the regularization

with respect to W are different.

Equivalence of cCMTL and cASO. Similar to Theorem 2.1.1, our analysis shows

that cASO and cCMTL are equivalent.

Theorem 2.2.1. The objectives of the cCMTL formulation in Eq. (2.11) and the

cASO formulation in Eq. (2.13) are equivalent if the cluster number, k, in K-means

equals to the size, h, of the shared low-dimensional feature space.

Proof. Define the following two convex functions of W :

gcCMTL(W ) = min
M

tr
(
W (ηI +M)−1W T

)
, s.t. tr (M) = k,M � I, M ∈ Sm+ ,

(2.15)

and

gcASO(W ) = min
S

tr
(
W T (ηI + S)−1W

)
, s.t. tr (S) = h, S � I, S ∈ Sd+. (2.16)

The cCMTL and cASO formulations can be expressed as unconstrained optimization

w.r.t. W :

[cCMTL] min
W
L(W ) + c · gCMTL(W ), [cASO] min

W
L(W ) + c · gASO(W ),

where c = αη(1 + η). Let h = k ≤ min(d,m). Next, we show that for a given W ,

gCMTL(W ) = gASO(W ) holds.

Let W = Q1ΣQ2, M = P1Λ1P
T
1 , and S = P2Λ2P

T
2 , be the SVD of W , M ,

and S (M and S are symmetric positive semi-definite), respectively, where Σ =

diag{σ1, σ2, . . . , σm}, Λ1 = diag{λ(1)
1 , λ

(1)
2 , . . . , λ

(1)
m }, and Λ2 = {λ(2)

1 , λ
(2)
2 , . . . , λ

(2)
m }.

Let q < k be the rank of Σ. It follows from the basic properties of the trace that:

tr
(
W (ηI +M)−1W T

)
= tr

(
(ηI + Λ1)−1P T

1 Q2Σ2QT
2 P1

)
.
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The problem in Eq. (2.15) is thus equivalent to:

min
P1,Λ1

tr
(
(ηI + Λ1)−1P T

1 Q2Σ2QT
2 P1

)
, s.t. P1P

T
1 = I, P T

1 P1 = I,

d∑
i=1

λ
(1)
i = k. (2.17)

It can be shown that the optimal P ∗1 is given by P ∗1 = Q2 and the optimal Λ∗1 is given

by solving the following simple (convex) optimization problem Chen et al. (2009):

Λ∗1 = argmin
Λ1

q∑
i=1

σ2
i

η + λ
(1)
i

, s.t.

q∑
i

λ
(1)
i = k, 0 ≤ λ

(1)
i ≤ 1. (2.18)

It follows that gcCMTL(W ) = tr ((ηI + Λ∗1)−1Σ2). Similarly, we can show that gcASO(W ) =

tr ((ηI + Λ∗2)−1Σ2), where

Λ∗2 = argmin
Λ2

q∑
i=1

σ2
i

η + λ
(2)
i

, s.t.

q∑
i

λ
(2)
i = h, 0 ≤ λ

(2)
i ≤ 1.

It is clear that when h = k, Λ∗1 = Λ∗2 holds. Therefore, we have gcCMTL(W ) =

gcASO(W ). This completes the proof.

Remark 2.2.2. In the functional of cASO in Eq. (2.16) the variable to be optimized

is S ∈ Sd+, while in the functional of cCMTL in Eq. (2.15) the optimization variable

is M ∈ Sm+ . In many practical MTL problems the data dimensionality d is much

larger than the task number m, and in such cases cCMTL is significantly more ef-

ficient in terms of both time and space. Our equivalence relationship established in

Theorem 2.2.1 provides an (equivalent) efficient implementation of cASO especially

for high-dimensional problems.

2.3 Experiment

In this section, we empirically evaluate the effectiveness and the efficiency of the

proposed algorithms on synthetic and real-world data sets. The normalized mean

square error (nMSE) and the averaged mean square error (aMSE) are used as the

performance measure Argyriou et al. (2008a). Note that in this proposal we have
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not developed new MTL formulations; instead our main focus is on the theoreti-

cal understanding of the inherent relationship between ASO and CMTL. Thus, an

extensive comparative study of various MTL algorithms is out of the scope of this

proposal. As an illustration, in the following experiments we only compare cCMTL

with two baseline techniques: ridge regression STL (RidgeSTL) and regularized MTL

(RegMTL) Evgeniou and Pontil (2004).

Simulation Study We apply the proposed cCMTL formulation in Eq. (2.11) on a

synthetic data set (with a predefined cluster structure). We use 5-fold cross-validation

to determine the regularization parameters for all methods. We construct the syn-

thetic data set following a procedure similar to the one in Jacob et al. (2008): the

constructed synthetic data set consists of 5 clusters, where each cluster includes 20

(regression) tasks and each task is represented by a weight vector of length d = 300.

Details of the construction is provided in the supplemental material. We apply

RidgeSTL, RegMTL, and cCMTL on the constructed synthetic data. The corre-

lation coefficient matrices of the obtained weight vectors are presented in Figure 2.1.

From the result we can observe (1) cCMTL is able to capture the cluster structure

among tasks and achieves a small test error; (2) RegMTL is better than RidgeSTL in

terms of test error. It however introduces unnecessary correlation among tasks pos-

sibly due to the assumption that all tasks are related; (3) In cCMTL we also notice

some ‘noisy’ correlation, which may because of the spectral relaxation.

Effectiveness Comparison Next, we empirically evaluate the effectiveness of the

cCMTL formulation in comparison with RidgeSTL and RegMTL using real world

benchmark datasets including the School data1 and the Sarcos data2. The regular-

ization parameters for all algorithms are determined via 5-fold cross validation; the

1http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
2http://gaussianprocess.org/gpml/data/
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Truth RidgeSTL

RegMTL cCMTL

Figure 2.1: The correlation matrices of the ground truth model, and the models
learned from RidgeSTL, RegMTL, and cCMTL. Darker color indicates higher corre-
lation. In the ground truth there are 100 tasks clustered into 5 groups. Each task
has 200 dimensions. 95 training samples and 5 testing samples are used in each task.
The test errors (in terms of nMSE) for RidgeSTL, RegMTL, and cCMTL are 0.8077,
0.6830, 0.0354, respectively.
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Table 2.1: Performance comparison on the School data in terms of nMSE and
aMSE. Smaller nMSE and aMSE indicate better performance. All regularization
parameters are tuned using 5-fold cross validation. The mean and standard deviation
are calculated based on 10 random repetitions.

Measure Ratio RidgeSTL RegMTL cCMTL

nMSE 10% 1.3954± 0.0596 1.0988± 0.0178 1.0850± 0.0206

15% 1.1370± 0.0146 1.0636± 0.0170 0.9708± 0.0145

20% 1.0290± 0.0309 1.0349± 0.0091 0.8864± 0.0094

25% 0.8649± 0.0123 1.0139± 0.0057 0.8243± 0.0031

30% 0.8367± 0.0102 1.0042± 0.0066 0.8006± 0.0081

aMSE 10% 0.3664± 0.0160 0.2865± 0.0054 0.2831± 0.0050

15% 0.2972± 0.0034 0.2771± 0.0045 0.2525± 0.0048

20% 0.2717± 0.0083 0.2709± 0.0027 0.2322± 0.0022

25% 0.2261± 0.0033 0.2650± 0.0027 0.2154± 0.0020

30% 0.2196± 0.0035 0.2632± 0.0028 0.2101± 0.0016

reported experimental results are averaged over 10 random repetitions. The School

data consists of the exam scores of 15362 students from 139 secondary schools, where

each student is described by 27 attributes. We vary the training ratio in the set

5 × {1, 2, · · · , 6}% and record the respective performance. The experimental results

are presented in Table 2.1. We can observe that cCMTL performs the best among all

settings. Experimental results on the Sarcos dataset is available in the supplemental

material.

Efficiency Comparison We compare the efficiency of the three algorithms including

altCMTL, apgCMTLand graCMTL for solving the cCMTL formulation in Eq. (2.11).

For the following experiments, we set α = 1, β = 1, and k = 2 in cCMTL. We observe

a similar trend in other settings. Specifically, we study how the feature dimensionality,
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the sample size, and the task number affect the required computation cost (in seconds)

for convergence. The experimental setup is as follows: we terminate apgCMTL when

the change of objective values in two successive steps is smaller than 10−5 and record

the obtained objective value; we then use such a value as the stopping criterion in

graCMTL and altCMTL, that is, we stop graCMTL or altCMTL when graCMTL

or altCMTL attains an objective value equal to or smaller than the one attained

by apgCMTL. We use Yahoo Arts data for the first two experiments. Because in

Yahoo data the task number is very small, we construct a synthetic data for the third

experiment.

In the first experiment, we vary the feature dimensionality in the set [500 : 500 :

2500] with the sample size fixed at 4000 and the task numbers fixed at 17. The ex-

perimental result is presented in the left plot of Figure 2.2. In the second experiment,

we vary the sample size in the set [3000 : 1000 : 9000] with the dimensionality fixed

at 500 and the task number fixed at 17. The experimental result is presented in the

middle plot of Figure 2.2. From the first two experiments, we observe that larger

feature dimensionality or larger sample size will lead to higher computation cost. In

the third experiment, we vary the task number in the set [10 : 10 : 190] with the

feature dimensionality fixed at 600 and the sample size fixed at 2000. The employed

synthetic data set is constructed as follows: for each task, we generate the entries of

the data matrix Xi from N (0, 1), and generate the entries of the weight vector from

N (0, 1), the response vector yi is computed as yi = Xiwi + ξ, where ξ ∼ N (0, 0.01)

represents the noise vector. The experimental result is presented in the right plot

of Figure 2.2. We can observe that altCMTL is more efficient than the other two

algorithms.
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Figure 2.2: Sensitivity study of altCMTL, apgCMTL, graCMTL in terms of the
computation cost (in seconds) with respect to feature dimensionality (left), sample
size (middle), and task number (right).
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Chapter 3

MODELING DISEASE PROGRESSION VIA MULTI-TASK LEARNING

In the longitudinal AD study, we measure the cognitive scores of selected patients

repeatedly at multiple time points. By considering the prediction of cognitive scores

at a single time point as a regression task, tasks at different time points are temporally

related to each other. In this chapter, I formulate the prediction of clinical scores at

multiple future time points as a multi-task regression problem. We employ multi-task

regression formulations instead of solving a set of independent regression problems

since the intrinsic temporal smoothness information among different tasks can be

incorporated into the model as prior knowledge.

3.1 Modeling Disease Progression via Temporal Group Lasso

Consider a multi-task regression problem of t time points with n training sam-

ples of d features. Let {x1,x2, · · · ,xn} be the input data at the baseline, and

{y1,y2, · · · ,yn} be the targets, where each xi ∈ Rd represents a sample (patient), and

yi ∈ Rt is the corresponding targets (clinical scores) at different time points. In this

proposal we employ linear models for the prediction. Specifically, the prediction model

for the ith time point is given by f i(x) = xTwi, where wi is the weight vector of the

model. Let X = [x1, · · · ,xn]T ∈ Rn×d be the data matrix, Y = [y1, · · · ,yn]T ∈ Rn×t

be the target matrix, and W = [w1,w2, ...,wt] ∈ Rd×t be the weight matrix. One

simple approach is to estimate W by minimizing the following objective function:

min
W
‖XW − Y ‖2

F + θ1 ‖W‖2
F ,

where the first term measures the empirical error on the training data, θ1 > 0 is a regu-

larization parameter, and ‖W‖F is the Frobenius norm, defined as
√∑d

i=1

∑t
j=1W

2
i,j.
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The formulation is illustrated in Figure 3.1. The regression method above is known

as the ridge regression and it admits an analytical solution given by:

W = (XTX + θ1I)−1XTY.

In building models with high dimensional features (d� n), feature selection meth-

ods are typically employed to identify a small set of relevant features. Lasso Tibshirani

(1996), is a popular method for sparse linear regression, which simultaneously per-

forms feature selection and regression. In the context of disease progression, the Lasso

formulation solves the following optimization problem:

min
W
‖XW − Y ‖2

F + θ1 ‖W‖1 ,

where ‖W‖1 is the `1 norm of W defined as
∑d

i=1

∑t
j=1 |Wi,j|.

One major limitation of the regression models above is that the tasks at different

time points are assumed to be independent with each other, which is not the case in

the longitudinal AD study considered in this proposal.

3.1.1 Temporal Smoothness Prior

Applying single task learning methods such as ridge or Lasso regression on mod-

eling disease progression often yields fluctuated prediction values at different time

point for one patient, as shown in Figure 3.2. In the course of disease progression, it

is reasonable to assume that the difference of the cognitive scores between two succes-

sive time points is relatively small. During the inference of our models, for a patient i

with two consecutive predictions ŷ
(j)
i and ŷ

(j+1)
i at time point j and j+1 respectively,

a large difference between the predictions |ŷ(j)
i − ŷ

(j+1)
i | is discouraged. Since we use

linear models (y
(j)
i ≈ ŷ

(j)
i = xTi wj), the difference between the predictions can be
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Figure 3.1: Illustration of disease prediction modeling. We denote X =
[x1, · · · ,xn]T ∈ Rn×d as the data matrix, Y = [y1, · · · ,yn]T ∈ Rn×t as the target
matrix, and W = [w1,w2, ...,wt] ∈ Rd×t as the weight matrix. Specifically, for the
input matrix X, each row represents a patient and each column represents a feature
at baseline, and for the output matrix Y , each row corresponds to a patient, and each
column corresponds to the score at a future time point. In the prediction model we
assume a linear relationship between input X and output Y , i.e., for the i-th patient,
we have xTi W ≈ yTi .

related to the difference between models at those time points:

|ŷ(j)
i − ŷ

(j+1)
i | = |xTi wj − xTi wj+1| = |xTi (wj −wj+1)|. (3.1)

Inspired by Eq. (3.1), in order to capture the temporal smoothness of the cognitive

scores at different time points, we introduce a regularization term in the regression

model that penalizes large deviations between predictions at neighboring time points,

resulting in the following formulation:

min
W
‖XW − Y ‖2

F + θ1 ‖W‖2
F + θ2

t−1∑
i=1

∥∥wi −wi+1
∥∥2

2
, (3.2)
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Figure 3.2: Illustration of temporal smoothness. We assume that the difference
of the cognitive scores between two successive time points is relatively small (right
figure). Since we use linear predictive models, the difference between the predicted
cognitive scores can be related to the difference between models at those time points,
and therefore the temporal smoothness can be enforced by penalizing the difference
between models of consecutive time points. In single task learning formulations, such
as Ridge and Lasso, the predicted scores of the same patient at different time points
may fluctuate as shown in the left figure.

where θ2 ≥ 0 is a regularization parameter controlling the temporal smoothness. This

temporal smoothness term can be expressed as:

t−1∑
i=1

∥∥wi −wi+1
∥∥2

F
= ‖WH‖2

F ,

where H ∈ Rt×(t−1) is defined as follows: Hij = 1 if i = j, Hij = −1 if i = j + 1, and

Hij = 0 otherwise. The formulation in Eq.(3.2) becomes:

min
W
‖XW − Y ‖2

F + θ1 ‖W‖2
F + θ2 ‖WH‖2

F . (3.3)

We now show that the optimization problem in Eq.(3.3) admits an analytical

solution. Denote Pr(.) as the row selection operator parameterized by a selection

vector r. The resulting matrix of Pr(A) includes only Ai such that ri 6= 0, where

Ai is the ith row of A. Let Si be the ith column of S. We therefore denote X(i) =

PSi(X) ∈ Rni×d as the input data matrix of the ith task, and y(i) = PSi(Y i) ∈ Rni×1

as the corresponding target vector, where ni is number of samples from the ith task.
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First, we take the derivative of Eq. (3.3) with respect to W and set it to zero:

XTXW −XTY + θ1W + θ2WHHT = 0, (3.4)(
XTX + θ1Id

)
W +W

(
θ2HH

T
)

= XTY, (3.5)

where Id is the identity matrix of size d by d. Since both matrices (XTX + θ1Id) and

θ2HH
T are symmetric, we write the eigen-decomposition of these two matrices by

Q1Λ1Q
T
1 and Q2Λ2Q

T
2 , where Λ1 = diag(λ

(1)
1 , λ

(2)
1 , . . . , λ

(d)
1 ) and Λ2 = diag(λ

(1)
2 , λ

(2)
2 ,

. . . , λ
(d)
2 ), are their eigenvalues, and Q1 and Q2 are orthogonal. Plugging them into

Eq. (3.5) we get:

Q1Λ1Q
T
1W +WQ2Λ2Q

T
2 = XTY, (3.6)

Λ1Q
T
1WQ2 +QT

1WQ2Λ2 = QT
1X

TY Q2. (3.7)

Denote Ŵ = QT
1WQ2 and D = QT

1X
TY Q2. Eq. (3.7) becomes Λ1Ŵ + ŴΛ2 = D.

Thus Ŵ is given by:

Ŵi,j =
Di,j

λ
(i)
1 + λ

(j)
2

. (3.8)

The optimal weight matrix is then given by W ∗ = Q1ŴQT
2 .

We want to emphasize that the temporal smoothness is only employed during

the inference of the model, and when it comes to the prediction phase only baseline

features are needed to compute the predicted cognitive scores at the future time

points. This is also the case for other models in the proposal.

3.1.2 Dealing with Incomplete Data

The clinical scores for many patients are missing at some time points, i.e., the

target vector yi ∈ Rt may not be complete. A simple strategy is to remove all

patients with missing target values, which, however, significantly reduces the number
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of samples. We consider to extend the formulation in Eq. (3.3) with missing target

values in the training process. In this case, the analytical solution to Eq. (3.3) no

longer exists. We show how the algorithm above can be adapted to deal with missing

target values.

We use a matrix S ∈ Rn×t to indicate missing target values, where Si,j = 0 if the

target value of sample i is missing at the jth time point, and Si,j = 1 otherwise. We

use the component-wise operator � as follows: Z = A� B denotes zi,j = ai,jbi,j, for

all i, j. The formulation in Eq. (3.3) can be extended to the case with missing target

values as:

min
W
‖S � (XW − Y )‖2

F + θ1 ‖W‖2
F + θ2 ‖WH‖2

F . (3.9)

The optimization problem in Eq. (3.9) can be solved efficiently as shown below.

Similar to the case without missing target values considered in Section 3.1.1, we

take the derivative of Eq. (3.9) with respect to wi (2 ≤ i ≤ t− 1) and set it to zero:

Awi−1 +Miw
i + Awi+1 = Ti, (3.10)

where A, Mi, and Ti are defined as follows:

A = −θ2Id,

Mi = XT
(i)X(i) + θ1Id + 2θ2Id,

Ti = XT
(i)y(i).

For the special case i = 1, the term ‖wi−1 − wi‖2
2 does not exist, nor is the term

‖wi − wi+1‖2
2 for i = t. We combine the equations for all tasks (1 ≤ i ≤ t), which can

43



be represented as a block tridiagonal linear system:

M1 A 0

A M2 A

. . .

A Mt−1 A

0 A Mt





w1

w2

...

wt−1

wt


=



T1

T2

...

Tt−1

Tt


(3.11)

For a general linear system of size td, it can be solved using Gaussian elimination

with a time complexity of O((td)3). For our block tridiagonal system, the complexity

is reduced to O(d3t) using block Gaussian elimination. For large-scale linear systems,

the LSQR algorithm Paige and Saunders (1982), a popular iterative method for the

solution of large linear systems of equations, can be employed with a time complexity

of O(Ntd2), where N , the number of iterations, is typically small.

3.1.3 Temporal Group Lasso Regularization

Because of the limited availability of subjects in the longitudinal AD study and a

relatively large number of features (e.g., MRI features) at ADNI, the prediction model

suffers from the so called “curse of dimensionality”. In addition, many patients drop

out from the longitudinal study after a certain period of time, which reduces the ef-

fective number of samples. One effective approach is to reduce the dimensionality of

the data. However, traditional dimension reduction techniques such as PCA are not

desirable since the resulting model is not interpretable, and traditional feature selec-

tion algorithms are not suitable for multi-task regression with missing target values.

In the proposed formulation, we employ the group Lasso regularization based on the

`2,1-norm penalty for feature selection Yuan and Lin (2006), which assumes that a

small set of features are predictive of the progression. The group Lasso regulariza-

tion ensures that all regression models at different time points share a common set
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of features. Together with the temporal smoothness penalty, we obtain the following

Temporal Group Lasso (TGL) formulation:

min
W
‖S � (XW − Y )‖2

F + θ1 ‖W‖2
F + θ2 ‖WH‖2

F + δ ‖W‖2,1
(3.12)

where ‖W‖2,1 =
∑d

i=1

√∑t
j=1W

2
i,j, and δ is a regularization parameter. When there

is only one task, i.e., t = 1, the above formulation reduces to Lasso Tibshirani (1996).

When t > 1, the weights of one feature over all tasks are grouped using the `2-norm,

and all features are further grouped using the `1-norm. Thus, the `2,1-norm penalty

tends to select features based on the strength of the feature over all t tasks.

The objective in Eq. (3.12) can be considered as a combination of a smooth

term and a non-smooth term. The gradient descent or accelerated gradient method

(AGM) Nesterov (2004); Nemirovski (2005) can be applied to solve the optimization.

One of the key steps in AGM is the computation of the proximal operator associated

with the `2,1-norm regularization. We employ the algorithm in the SLEP package Liu

et al. (2009c), which computes the proximal operator associated with the general

`1/`q-norm efficiently.

3.2 Proposed Method II: Fused Sparse Group Lasso

The TGL formulation constrains the models from all time points to share a com-

mon set of features. In order to better capture the temporal patterns of the biomarkers

in disease progression Jack Jr et al. (2010); Caroli et al. (2010), we further propose

a convex fused sparse group Lasso (cFSGL) formulation which allows simultaneous

joint feature selection for multiple tasks and task-specific feature selection, and in

the meantime incorporates the temporal smoothness. Mathematically, the cFSGL

formulation solves the following convex optimization problem:

min
W

L(W ) + λ1 ‖W‖1 + λ2

∥∥RW T
∥∥

1
+ λ3 ‖W‖2,1 , (3.13)
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where ‖W‖1 is the Lasso penalty, ‖W‖2,1 =
∑d

i=1

√∑t
j=1 W

2
ij is the group Lasso

penalty,
∥∥RW T

∥∥
1

is the fused Lasso penalty, R = HT is a (t − 1) × t sparse ma-

trix, and λ1, λ2 and λ3 are regularization parameters. The combination of Lasso

and group Lasso penalties is also known as the sparse group Lasso penalty, which

allows simultaneous joint feature selection for all tasks and selection of a specific set

of features for each task. The fused Lasso penalty is employed to incorporate the

temporal smoothness. The cFSGL formulation involves three non-smooth terms, and

is thus challenging to solve. We propose to solve the optimization problem by the

accelerated gradient method (AGM) Nesterov (2004); Nemirovski (2005). One of the

key steps in using AGM is the computation of the proximal operator associated with

the composite of non- smooth penalties defined as follows:

π(V ) = arg min
W

1

2
‖W − V ‖2

2 + λ1‖W‖1 + λ2‖RW T‖1 + λ3‖W‖2,1. (3.14)

It is clear that each row of W is decoupled in Eq. (3.14). Thus, for obtaining the ith

row wi, we only need to solve the following optimization problem:

π(vi) = arg min
wi

1

2
‖wi − vi‖2

2 + λ1‖wi‖1 + λ2‖Rwi‖1 + λ3‖wi‖2, (3.15)

where vi is the ith row of V . The proximal operator in Eq. (3.15) is challenging to

solve due to the presence of three non-smooth terms. We show that the proximal

operator exhibits a certain decomposition property, based on which we can efficiently

compute the proximal operator in two stages, as summarized below.

Theorem 3.2.1. Define

πFL(v) = arg min
w

1

2
‖w − v‖2

2 + λ1‖w‖1 + λ2‖Rw‖1 (3.16)

πGL(v) = arg min
w

1

2
‖w − v‖2

2 + λ3‖w‖2. (3.17)

Then the following holds:

π(v) = πGL(πFL(v)). (3.18)

46



Proof: The necessary and sufficient optimality conditions for (3.15), (3.16), and (3.17)

can be written as:

0 ∈ π(v)− v + λ1SGN(π(v)) + λ2R
TSGN(Rπ(v)) + λ3∂g(π(v)), (3.19)

0 ∈ πFL(v)− v + λ1SGN(πFL(v)) + λ2R
TSGN(RπFL(v)), (3.20)

0 ∈ πGL(πFL(v))− πFL(v) + λ3∂g(πGL(πFL(v))), (3.21)

where SGN(x) is a set defined in a component-wise manner as:

(SGN(x))i =


[−1, 1] xi = 0

{1} xi > 0

{−1} xi < 0,

(3.22)

and

∂g(x) =


x
‖x‖2 x 6= 0

{y : ‖y‖2 ≤ 1} x = 0.
(3.23)

It follows from (3.21) and (3.23) that: 1) if ‖πFL(v)‖2 ≤ λ3, then πGL(πFL(v)) = 0;

and 2) if ‖πFL(v)‖2 > λ3, then

πGL(πFL(v)) =
‖πFL(v)‖2 − λ3

‖πFL(v)‖2

πFL(v).

It is easy to observe that, 1) if the i-th entry of πFL(v) is zero, so is the i-th entry

of πGL(πFL(v)); 2) if the i-th entry of πFL(v) is positive (or negative), so is he i-th

entry of πGL(πFL(v)). Therefore, we have

SGN(πFL(v)) ⊆ SGN(πGL(πFL(v))). (3.24)

Meanwhile, 1) if the i-th and the i + 1-th entries of πFL(v) are identical, so are

those of πGL(πFL(v)); 2) if the i-th entry is larger (or smaller) than the i+ 1-th entry

in πFL(v), so is in πGL(πFL(v)). Therefore, we have

SGN(RπFL(v)) ⊆ SGN(RπGL(πFL(v))). (3.25)
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It follows from (3.20), (3.21), (3.24), and (3.25) that

0 ∈πGL(πFL(v))− v + λ1SGN(πGL(πFL(v)))

+ λ2R
TSGN(RπGL(πFL(v))) + λ3∂g(πGL(πFL(v))).

(3.26)

Since (3.15) has a unique solution, we can get (3.18) from (3.19) and (3.26). �

Note that the fused Lasso signal approximator Friedman et al. (2007) in Eq. (3.17)

can be effectively solved using Liu et al. (2010). The complete algorithm for solving

the proximal operator associated with cFSGL is given in Algorithm 1.

Algorithm 1 Proximal operator associated with the Convex Fused Sparse Group

Lasso (cFSGL)

Input: V , R, λ1, λ2, λ3

Output: W

1: for i = 1 : t do

2: ui = arg minw
1
2
‖w − vi‖2

2 + λ1‖w‖1 + λ2‖Rw‖1

3: wi = arg minw
1
2
‖w − ui‖2

2 + λ3‖w‖2

4: end for

We illustrate the models built by different approaches in Figure 3.3. In the left fig-

ure we show the model built by Lasso regression. The sparsity introduced by applying

Lasso has no specific patterns across tasks, as the models for different tasks are built

independently. The middle figure shows the model built by TGL. Because of the use

of `2,1-norm regularization to capture temporal relation, the features selected for all

time points are the same. The model built by cFSGL, as shown in the right figure,

has two levels of sparsity: 1) a small set of features shared across all tasks, 2) task-

specific features for each time point. In addition, one key advantage of fused Lasso

in cFSGL is that under the fused Lasso penalty the selected features across different

time points are similar to each other, satisfying the temporal smoothness property,
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Figure 3.3: A comparison of models built by different approaches. In Lasso, the
models for different tasks are built independently, thus no specific sparsity patterns
are observed across different tasks (left figure). The TGL formulation restricts all
models from different time points to select a common set of features (middle figure).
In cFSGL, the selected features across different time points are smooth due to the
use of the fused Lasso penalty (right figure), that is, the selected features at nearby
time points are similar to each other. For the example shown in the right figure, the
models at M06 and M12 differ in one feature (the second feature); the models at M12
and M24 differ in one feature (the sixth feature); the models at M24 and M36 differ
in two features (the first and fourth features); the models at M36 and M48 differ in
one feature (the fifth feature).

while the Laplacian-based penalty focuses on the smoothing of the prediction models

across different time points.

3.3 Longitudinal Stability Selection for Identifying Temporal Patterns of

Biomarkers

Stability selection Meinshausen and Bühlmann (2010), based on subsampling/bootstrapping,

provides a general method to perform model selection using information from a set

of regularization parameters. The stability ranking score gives a probability which

makes it naturally interpretable. Stability selection has been successfully applied to

bioinformatics applications especially in genome-related biomarker selection problems

where sample size is much smaller than feature dimension (n� d) Eleftherohorinou
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et al. (2011); Ryali et al. (2012); Stekhoven et al. (2012); Vounou et al. (2012).

We propose to extend the idea of stability selection to longitudinal study. The

framework, called longitudinal stability selection, is to quantify the importance of the

features selected by the proposed formulations for disease progression. Specifically,

we apply stability selection to multi-task learning models for longitudinal study. The

stability score (between 0 and 1) of each feature is indicative of the importance

of the specific feature for disease progression. In this proposal, we propose to use

longitudinal stability selection with TGL and cFSGL to analyze the temporal patterns

of biomarkers. The temporal pattern of stability scores of the features selected at

different time point can potentially reveal how disease progresses temporally and

spatially.

The longitudinal stability selection algorithm with TGL and cFSGL is given as

follows. Let F be the index set of features, and let f ∈ F denote the index of a

particular feature. Let ∆ be the regularization parameter space and let the stability

iteration number be denoted as γ. For cFSGL an element δ ∈ ∆ is a triple 〈λ1, λ2, λ3〉.

Let B(i) = {X(i), Y(i)} be a random subsample from input data {X, Y } of size bn/2c

without replacement. For a given δ ∈ ∆, let Ŵ (i) be the optimal solution of TGL or

cFSGL on B(i). The set of features selected by the model Ŵ (i) of the task at time

point p is denoted by

U δ
p (B(i)) = {f : Ŵ

(i)
f,p 6= 0}.

We repeat this process for γ times and obtain the selection probability Π̂δ
f,p of each

feature f at time point p:

Π̂δ
f,p =

γ∑
i=1

I(f ∈ U δ
p (B(i)))/γ,

where I(.) is the indicator function defined as: I(c) = 1 if c is true and I(c) =

0 otherwise. The computation of selection probability is illustrated in Figure 3.4.
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Repeat the above procedure for all δ ∈ ∆, we obtain the stability score for each

feature f at time point p:

Sp(f) = max
δ∈∆

(Π̂δ
f,p).

The computation of stability score at one time point is illustrated in Figure 3.5. The

stability vector of a feature f at all t time points is given by S(f) = [S1(f) . . .St(f)],

which reveals the change of the importance of feature f at different time points. We

define the stable features at time point p as:

Ûp = {f : Sp(f) ranks among top η in F} (3.27)

and choose η = 20 in our experiments. We are interested in the stable features at all

time points, i.e., f ∈ Û = ∪tp=1Ûp. Note that S(f) is dependent on the progression

model used.

Note that if we use TGL in longitudinal stability selection, we obtain a common list

of features for all time points. If we use cFSGL in longitudinal stability selection, the

features selected for different time points may differ. However, the selected features at

nearby time points are similar to each other. Thus, the distribution of stability scores

is expected to exhibit the temporal smoothness property, that is, for each feature the

stability score is smooth across different time points.

3.4 Experiments

In this section we perform experimental studies to evaluate the proposed pro-

gression models and analyze the biomarkers identified using longitudinal stability

selection.
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Figure 3.4: Illustration of the computation of selection probabilities for all features
at all time points in longitudinal stability selection. Given a fixed parameter tuple δ,
the selection probabilities are estimated based on a set of γ progression models using
γ bootstrapping samples. For each feature, the selection probability at a particular
time point is estimated by computing the fraction of γ models at this time point that
includes a nonzero coefficient for this feature. The selection probability indicates how
likely a feature is selected at one particular time point by the model parameterized
by δ.
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Figure 3.5: Illustration of the computation of the stability score in longitudinal
stability selection at a particular time point. At each time point, the stability score
of a feature is the maximum selection probability it obtains at this time point over all
δ ∈ ∆. For the example shown in the figure, the maximum selection probability for
the first feature is 0.89. After the stability score is computed, we can select features
at each time point by either providing a threshold on the selection probabilities or
the number of features with top selection probabilities.

3.4.1 Prediction Performance using baseline MRI features

In the first experiment, for each target we build a prediction model using baseline

MRI features and baseline MMSE. We compare the proposed methods including

Temporal Group Lasso (TGL) and Convex Fused Sparse Group Lasso (cFSGL) with

single-task learning methods including ridge regression (Ridge) and Lasso regression

(Lasso) on the prediction of MMSE and ADAS-Cog. Note that Lasso is a special

case of cFSGL when both λ2 and λ3 are set to 0. We randomly split the data into

training and testing sets using a ratio 9 : 1, i.e., we build models on 90% of the

data and evaluate these models on the remaining 10% of the data. Since there are
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model parameters to be selected during the training, we use 5-fold cross validation on

the training data to select these parameters. For the overall regression performance

measures, we use normalized mean square error (nMSE) as used in the multi-task

learning literature Zhang and Yeung (2010b); Argyriou et al. (2008a) and weighted

correlation coefficient (wR) as employed in the medical literature addressing AD

progression problems Duchesne et al. (2009); Stonnington et al. (2010); Ito et al.

(2010). For the task-specific regression performance measures, we use root mean

square error (rMSE). The MSE, nMSE and weighted R-value are defined as follows:

rMSE(y, ŷ) =

√
‖y − ŷ‖2

2

n
, (3.28)

nMSE(Y, Ŷ ) =

∑t
i=1

‖Yi−Ŷi‖22
σ(Yi)ni

ni∑t
i=1 ni

, (3.29)

wR(Y, Ŷ ) =

∑t
i=1 Corr(Yi, Ŷi)ni∑t

i=1 ni
, (3.30)

where for rMSE, y is the ground truth of target at a single time point and ŷ is the

corresponding prediction by a prediction model, for nMSE and wR, Yi is the ground

truth of target at time point i, i = [1 : t] and Ŷi is the corresponding predicted value,

and Corr is the correlation coefficient between two vectors. We report the mean and

standard deviation based on 20 iterations of experiments on different splits of data.

The experimental results using 90% training data are presented in Table 3.1.

Overall our proposed approaches outperform Ridge and Lasso, in terms of both

nMSE and correlation coefficient. We have the following observations: 1) The pro-

posed multi-task learning models (TGL and cFSGL) outperform single task learning

models, which verifies the use of temporal smoothness assumption in our multi-task

learning formulations. 2) cFSGL performs better than TGL. This may be due to

the restrictive assumption imposed in TGL. 3) The proposed cFSGL formulation

witnesses significant improvement for later time points. This may be due to the
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Table 3.1: Comparison of our proposed approaches (TGL and cFSGL) and single-
task learning approaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog pre-
diction using MRI features (M) in terms of normalized mean square error (nMSE),
weighted correlation coefficient (wR) and root mean square error (rMSE) at each time
point. 90 percent of data is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE

nMSE 0.548± 0.057 0.459± 0.042 0.449± 0.045 0.395± 0.052

wR 0.689± 0.030 0.746± 0.031 0.755± 0.029 0.796± 0.031

M06 rMSE 2.269± 0.207 2.071± 0.261 2.038± 0.262 2.071± 0.213

M12 rMSE 3.266± 0.556 2.973± 0.654 2.923± 0.643 2.762± 0.669

M24 rMSE 3.494± 0.599 3.371± 0.747 3.363± 0.733 3.000± 0.642

M36 rMSE 4.003± 0.853 3.786± 0.926 3.768± 0.962 3.265± 0.803

M48 rMSE 4.328± 1.310 3.653± 1.268 3.631± 1.226 2.871± 0.884

Target: ADAS-Cog

nMSE 0.532± 0.095 0.520± 0.084 0.464± 0.067 0.391± 0.059

wR 0.705± 0.043 0.716± 0.036 0.747± 0.033 0.803± 0.024

M06 rMSE 5.213± 0.522 4.976± 0.518 4.820± 0.489 4.451± 0.340

M12 rMSE 6.079± 0.775 6.193± 0.766 5.813± 0.697 5.230± 0.589

M24 rMSE 7.409± 1.154 7.275± 1.099 6.835± 1.052 6.249± 0.996

M36 rMSE 7.143± 1.351 7.139± 1.444 6.938± 1.363 5.928± 1.064

M48 rMSE 6.644± 2.750 6.879± 2.465 6.000± 2.738 5.980± 1.979

data sparseness in later time points, as the proposed sparsity- inducing models are

expected to achieve better prediction performance in this case.

We also explore the prediction models by including baseline demographic infor-

mation: age, years of education and ApoE genotyping information, and baseline
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ADAS-Cog scores of the patients. We follow the same experimental procedure as

above. The prediction performance results are shown in Table 3.2. We see that the

performance of predicting the two scores is improved significantly. For example, the

weighted correlation coefficient between predicted value and true value on testing

data has increased from 0.796 to 0.824 (p < 10e− 5) for MMSE prediction and 0.803

to 0.854 (p < 10e − 5) for ADAS-Cog prediction. We also witness the improvement

in prediction performance at all time points. We show the scatter plots for the pre-

dicted values versus actual values for MMSE and ADAS-Cog on the testing data in

Figure 3.6 and Figure 3.7, respectively. Since there are few samples available at the

last time point (M48), we only show the scatter plots for the first four time points. In

the scatter plots, we see that the predicted values and actual clinical scores have high

correlation. The scatter plots show that the prediction performance for ADAS-Cog

is better than that of MMSE.

In the study of ADNI, cognitive normal individuals and stable MCI patients are

less likely to have significant changes on the cognitive scores and therefore many

existing studies focus on subgroups of patients only (e.g., Duchesne et al. (2009)).

To this end, we apply our models on the subgroup that consists of MCI converters

and AD patients only. At the last time point M48, there are only very few samples

available and we therefore exclude the last time point from our study. We follow

the same experimental setting as in the previous experiment, and the results are

shown in Table (3.3). We observe that cFSGL achieves the best performance among

all methods, with an average performance of R = 0.671(p < 10e − 5) in predicting

longitudinal MMSE scores and an average of R = 0.751(p < 10e − 5) in predicting

ADAS-Cog.
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Table 3.2: Comparison of our proposed approaches (TGL and cFSGL) and single-
task learning approaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog pre-
diction using MRI, demographic, and ApoE genotyping features in terms of normal-
ized mean square error (nMSE), weighted correlation coefficient (wR) and root mean
square error (rMSE) at each time point. 90 percent of data is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE

nMSE 0.477± 0.055 0.368± 0.048 0.364± 0.046 0.341± 0.039

wR 0.743± 0.022 0.809± 0.026 0.811± 0.027 0.824± 0.021

M06 rMSE 2.211± 0.241 1.938± 0.214 1.900± 0.211 1.980± 0.219

M12 rMSE 2.968± 0.685 2.679± 0.769 2.654± 0.767 2.546± 0.748

M24 rMSE 3.454± 0.550 3.107± 0.570 3.133± 0.579 2.943± 0.582

M36 rMSE 3.736± 0.792 3.311± 0.756 3.313± 0.798 3.046± 0.701

M48 rMSE 3.469± 1.030 2.645± 0.845 2.761± 0.883 2.364± 0.792

Target: ADAS-Cog

nMSE 0.396± 0.075 0.335± 0.048 0.317± 0.044 0.296± 0.048

wR 0.791± 0.031 0.830± 0.020 0.837± 0.017 0.854± 0.021

M06 rMSE 4.384± 0.522 3.936± 0.430 3.858± 0.441 3.863± 0.516

M12 rMSE 4.906± 0.708 4.578± 0.756 4.455± 0.661 4.209± 0.564

M24 rMSE 6.587± 1.038 6.153± 1.145 5.945± 1.120 5.657± 1.017

M36 rMSE 6.312± 1.068 5.849± 1.028 5.613± 0.936 5.066± 0.854

M48 rMSE 5.679± 2.200 5.087± 2.082 5.181± 2.383 5.182± 1.606

57



Figure 3.6: Scatter plots of actual MMSE versus predicted values on testing data
using cFSGL based on baseline MRI features, demographic, and ApoE genotyping
features. The black dashed line in each figure is a reference of perfect correlation
(predicted value exactly equals to actual value). We perform least squares regression
on the points shown in the scatter plots and the green solid line is the regression line,
which serves as a visual indicator of overall performance. The closer between the
regression line and the reference line, the better are the prediction results. We see
that the patients with low actual MMSE scores are less predictable, compared to the
ones with high actual MMSE scores.
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Figure 3.7: Scatter plots of actual ADAS-Cog versus predicted values on testing data
using cFSGL based on baseline MRI features, demographic, and ApoE genotyping
features. The black dashed line in each figure is a reference of perfect correlation
(predicted value exactly equals to actual value). We perform least squares regression
on the points shown in the scatter plots and the green solid line is the regression
line, which serves as a visual indicator of overall performance. The closer between
the regression line and the reference line, the better are the prediction results. We
see high correlation between the two values. The visual prediction performance for
ADAS-Cog is better than that of MMSE as shown in Figure 3.6.
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Table 3.3: Comparison of our proposed approaches (TGL and cFSGL) and single-
task learning approaches (Ridge, Lasso) on longitudinal MMSE and ADAS-Cog pre-
diction for MCI converters and AD patients using MRI, demographic, and ApoE
genotyping features in terms of normalized mean square error (nMSE), weighted cor-
relation coefficient (wR) and root mean square error (rMSE) at each time point. 80
percent of data is used as training data.

Ridge Lasso TGL cFSGL

Target: MMSE

nMSE 1.161± 0.269 0.860± 0.137 0.761± 0.143 0.725± 0.128

wR 0.526± 0.080 0.633± 0.068 0.660± 0.059 0.671± 0.054

M06 rMSE 3.420± 0.381 3.031± 0.280 2.881± 0.245 2.862± 0.231

M12 rMSE 4.025± 0.482 3.680± 0.531 3.391± 0.489 3.315± 0.506

M24 rMSE 5.531± 0.756 4.988± 0.924 4.636± 0.883 4.551± 0.870

M36 rMSE 5.971± 1.214 5.011± 1.231 4.686± 1.077 4.422± 1.046

Target: ADAS-Cog

nMSE 1.031± 0.200 0.748± 0.078 0.675± 0.079 0.533± 0.101

wR 0.569± 0.059 0.695± 0.045 0.704± 0.042 0.751± 0.046

M06 rMSE 6.256± 0.813 5.692± 0.591 5.381± 0.583 5.140± 0.800

M12 rMSE 7.320± 0.988 6.334± 1.022 5.934± 0.884 5.196± 0.829

M24 rMSE 10.423± 1.224 9.353± 1.301 8.964± 1.331 7.486± 1.249

M36 rMSE 10.968± 1.833 9.319± 2.082 8.782± 1.801 6.958± 1.499
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Chapter 4

MULTI-TASK LEARNING FOR PATIENT RECORD DENSIFICATION

In this chapter, I present a framework and two concrete algorithms for patient

record densification, which densify the sparse Electronic Medical Records (EMR)

data, imputing the values of those missing entries by exploring the latent structures

on both feature and time dimensions. From the densified EMR data, we expect to

build more effective predictive models than the ones built on raw EMR data. The first

densification algorithm utilizes information within each patient, i.e., the densification

process for one patient is independent from those for other patients. Considering the

densification of each patient as a task, the second densification algorithm performs

multi-task densification. The multi-task densification model utilizes the information

from other patients when densifying one patient, exploring useful information from

patients with similar medical conditions.

The rest of this chapter is organized as follows: Section 4.1 presents the general

representation of EMR and the problem of patient risk prediction which is one impor-

tant problem that patient phenotyping will be applied to. In Section 4.2 we introduce

the details of Pacifier. The experimental results are presented in Section 4.3. In

Section 4.4 we discuss the connection of the proposed approaches to related work and

insights for future works.

4.1 Patient Risk Prediction with Electronic Medical Records

Risk prediction is among the most important applications in clinical decision sup-

port systems and care management systems, where it often requires building predic-

tive models for a specific disease condition. As Electronic Medical Records (EMR)
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Figure 4.1: Granularity of medical features. For diagnosis events, features can be
constructed at different levels of granularity: ICD9 code, diagnosis code (DxGroup)
and HCC code.

data becomes widely available, informative features for risk prediction can be con-

structed from EMR. Based on the EMR data, for example, care providers usually want

to assess the risk scores of a patient developing different disease conditions, such as

congestive heart failure Wu et al. (2010); Fonarow et al. (2005), diabetes Stern et al.

(2008), and end stage renal disease Blacher et al. (2001). Once the risk of a patient

is predicted, proper intervention and care plan can be designed accordingly.

The detailed EMR data documents the patient events in time, which typically

includes diagnosis, medication, and clinical notes. The diagnosis events are among

the most structured, feasible and informative events, and are prime candidates for

constructing features for risk prediction Philbin and DiSalvo (1999); Van Staa et al.

(2002). The diagnosis events, often in the form of International Classification of Dis-

eases 9 (ICD9) codes, also come with well-defined feature groups at various levels of

granularity such as diagnosis group (DxGroup) and higher-level hierarchical condition

categories (HCC). For example, the code 401.1 Benign Hypertension belongs to Dx-

Group 401 Essential Hypertension, which is a subcategory in HCC 091 Hypertension.

One of the key steps of risk prediction from EMR is to construct features vec-

tors from EMR events, which are used as inputs for classifiers. The goal of feature

construction is to capture sufficient clinical nuances that are informative to a specific

risk prediction task. Traditionally the feature vectors are directly derived from the
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Figure 4.2: Construction of the longitudinal patient matrix Wang et al. (2012) from
Electronic Medical Records (EMR). The goal is to predict disease status of a patient
at the operation criteria date (OCD), given the past medical information before the
prediction window. For each patient, we construct a longitudinal patient matrix,
using medical features at a specific granularity. For each patient, the feature vector
for classification/regression is finally generated by extracting summary statistics from
the longitudinal matrix within the observation window.

raw EMR records Wu et al. (2010); Wang et al. (2012); Sun et al. (2012). In this

paper for each patient we first construct a longitudinal patient matrix, with a feature

dimension and a time dimension Wang et al. (2012). Maintaining the time dimension

enables us to leverage the temporal information of the patients during feature con-

struction. We present the procedure of constructing feature vectors via longitudinal

patient matrices as follows.

In a cohort for a disease study, each patient is also associated with a disease status

date called operation criteria date (OCD), on which the disease is diagnosed. A typical

risk prediction task is to predict the disease status of the patients at a certain time

point in the future (e.g., half a year). We call this period as the prediction window.

To build useful predictive models, a prediction window before the OCD is usually

specified, and the records before the prediction window are used to train the models,

i.e., all records within the prediction window before the OCD are considered to be

invisible. Figure 4.2 illustrates the raw EMR data, OCD, and prediction window.

The next step is to construct a longitudinal patient matrix for each patient from
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the available EMR events, which consists of two dimensions: the feature dimension

and the time dimension. One straightforward way to construct such matrices is to

use the finest granularity in both dimensions: use the types of medical events as

the feature space for the feature dimension and use day as the basic unit for time

dimension. Unfortunately the patient matrices constructed in this way are too sparse

to be useful. As a remedy, we use weekly aggregated time, and the value of each

medical feature at one time point is given by the counts of the corresponding medical

events within that week. Recall that the medical features can be retrieved at different

levels of granularity, which also moderately reduces some sparsity in the data. The

choice of feature granularity should not be too coarse, otherwise predictive information

within features at a finer level may be lost during the retrieval, as we will show in

the experiments. Note that after these preprocessing steps, the constructed patient

matrices are still very sparse.

Finally we need to extract summary statistics from the longitudinal patient ma-

trices as the feature vectors for classifiers. Since patients have different lengths of

records, typically an observation window of interest is defined and the summary statis-

tics (e.g., mean, standard deviation) are extracted within the observation window for

all patients. The overall process is given in Figure 4.2.

4.2 Temporal Densification via Pacifier

During the aforementioned feature construction process, there are many zeros in

the longitudinal patient matrices due to the extreme sparsity in the raw EMR data.

However, many of these zeros are not real zeros and instead, they indicate missing

information (i.e, no visit). Treated as informative values in the feature extraction

process, these values are likely to bias the training of classifiers and yield suboptimal

performance. In this paper we propose to treat the zeros in the longitudinal patient
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matrices as missing values, and we densify the sparse matrices before extracting fea-

tures to reduce the bias introduced by the sparsity, in hopes of that, the densified

matrices provide better phenotyping of patients. We propose novel frameworks of

densifying the partially observed longitudinal patient matrices, leveraging their ob-

served medical histories. The proposed framework explores the latent structures on

both feature and time dimensions and encourages the temporal smoothness of each

patient.

Let there be n patients with EMR records available in the cohort, and there

be in total p medical features. After the feature construction process we obtain n

longitudinal patient matrices with missing entries, one for each patient. For the ith

patient, its time dimension is denoted by ti, i.e., there are medical event records

covering a time span of ti before the prediction window. We denote the ground truth

matrix of the ith patient as X(i) ∈ Rp×ti , and in our medical records we only have a

partial observation of the matrix at some locations, whose indices are given by a set

Ω(i). Accrording to the marco phenotype assumption, we assume the medical features

can be mapped to some latent medical concepts space with a much lower latent

dimension of size k, such that each medical concept can be viewed as a combination

of several observed medical features.

Specifically, we assume that the full longitudinal patient matrix can be approx-

imated by a low rank matrix X(i) ≈ U(i)V(i), which can be factorized into a sparse

matrix U(i) ∈ Rp×k whose columns provide mappings from medical features to med-

ical concepts, and a dense matrix V(i) ∈ Rk×ti whose rows indicates the temporal

evolution of these medical concepts acting on the patient over time. We call U(i)

the latent medical concept mapping matrix (abbr. latent mapping matrix ) and V(i)

the concept value evolution matrix (abbr. evolution matrix ). For each patient we

assume that the values of those medical concepts evolve smoothly over time. Given
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Figure 4.3: Illustration of the Pacifier framework. We treat a longitudinal patient
matrix as a partially observed matrix from a complete patient matrix. We assume
the medical features can be mapped to some latent medical concepts with a much
lower dimensionality such that each medical concept can be viewed as a combination
of several observed medical features. For each patient, the values of those medical
concepts evolve smoothly over time. Thus the complete patient matrix for each
patient can be factorized into a latent medical concept mapping matrix and a concept
value evolution matrix.

the values and locations of observed elements in the longitudinal patient matrices,

our proposed densification method learns their latent mapping matrices and evolution

matrices. We call this densification framework Pacifier, which stands for PAtient

reCord densIFIER. The idea of Pacifier is illustrated in Figure 4.3.

Based on different natures of the medical cohorts, homogeneous or heterogeneous,

we propose two densification formulations: an individual basis approach for hetero-

geneous patients and a shared basis approach for homogeneous patients, and then we

provide an efficient optimization algorithm for Pacifier that can be used to solve

large-scale problems. Here and later we abuse the word basis to denote the columns

of a concept mapping matrix, while we don’t require them to be orthonormal. Note

that the real basis of the space spanned by the columns of the latent mapping matrix

can always be obtained by performing QR factorization on this basis matrix Ui.
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4.2.1 Individual Basis Approach for Heterogeneous Cohort

In the heterogeneous cohort where patients are very different from each other in

nature, the medical concepts for each patient may also be different from one patient

to another. In the individual basis approach (Pacifier-Iba), we allow patients to

have different latent medical concepts.

Let Ωc
(i) denote the complement of Ω(i). We adopt the projection operator PΩ(i)

(X(i))

used in matrix completion Cai et al. (2010):

PΩ(i)
(X(i)) =


X(i)(j, k) if (j, k) ∈ Ω(i)

0 if (j, k) ∈ Ωc
(i)

An intuitive approach for formulating Pacifier-Iba is to solve the following problem

for each patient:

min
U(i)≥0,V(i)

1

2ti
‖PΩ(i)

(U(i)V(i) −X(i))‖2
F +R(U(i), V(i)) (4.1)

where R(U(i), V(i)) denotes the regularization terms that encode our assumptions and

prevent overfitting. We also impose a non-negative constraint on the medical con-

cept U(i) because most medical events and measurements in EMR are non-negative,

and meaningful medical concepts consist of these medical events should also be non-

negative. We now discuss how to design proper terms in R(U(i), V(i)) that lead to

some desired properties:

1) Sparsity. We want only a few significant medical features to be involved in each

medical concept so that the concepts can be interpretable. Therefore, we introduce

sparsity in the latent mapping matrix U(i) via sparse inducing `1-norm on U(i). Indeed

the non-negativity constraint may have already brought a certain amount of sparsity,

and it has been shown that for non-negative matrix factorization, the sparsity regu-

larization can further improve the decomposition Hoyer (2004).
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2) Overfitting. To overcome overfitting we introduce an `2 regularization on the

concept value evolution matrix V(i). It can be shown that this term also improves the

numerical condition of computing a matrix inversion in our algorithm.

3) Temporal smoothness. A patient matrix describes the continuous evolution of

medical features for a patient over time. Thus, along the time dimension it makes

intuitive sense to impose the temporal smoothness, such that the value of one column

of a longitudinal patient matrix is close to those of its previous and next columns. To

this end, we introduce the temporal smoothness regularization on the columns of the

concept value evolution, which describes the smooth evolution on the medical con-

cepts. One commonly used strategy to enforce temporal smoothness is via penalizing

pairwise difference Zhou et al. (2011b):

‖V(i)R(i)‖2
F =

∑ti−1

j=1
(V(i)(:, j)− V(i)(:, j + 1))2

where R(i) ∈ Rti×ti+1 is the temporal smoothness coupling matrix defined as follows:

R(i)(j, k) = 1 if i = j, R(i)(j, k) = −1 if i = j + 1, and R(i)(j, k) = 0 otherwise.

In the loss function of Eq. (4.1) we want the values of the low-rank matrix to be

close to X(i) at the observed locations, directly solving which may lead to complex

algorithms. An alternative way is to introduce an intermediate matrix Si such that

PΩi
(Si) = PΩi

(Xi), and we want U(i)V(i) to be close to S(i). An immediate advantage

of propagating the observed information from X(i) to U(i)V(i) indirectly is that we

can derive very efficient algorithms and data structures, which give the capability

of solving large-scale problems, as we will show later. To this end, we propose the
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following Pacifier-Iba learning model for each patient:

min
S(i),U(i),V(i)

1
2ti
‖S(i) − U(i)V(i)‖2

F + λ1‖U(i)‖1 (4.2)

+λ2
1

2ti
‖V(i)‖2

F + λ3
1

2ti
‖V(i)R(i)‖2

F ,

subject to: PΩ(i)
(S(i)) = PΩ(i)

(X(i)), U(i) ≥ 0

which can be collectively written as:

min
{S(i),U(i),V(i)}

n∑
i=1

1
2ti
‖S(i) − U(i)V(i)‖2

F + λ1

n∑
i=1

‖U(i)‖1

+λ2

n∑
i=1

1
2ti
‖V(i)‖2

F + λ3

n∑
i=1

1
2ti
‖V(i)R(i)‖2

F . (4.3)

subject to: PΩ(i)
(S(i)) = PΩ(i)

(X(i)), U(i) ≥ 0,∀i

4.2.2 Shared Basis Approach for Homogeneous Cohort

In homogeneous cohorts where the medical concepts of patients are very similar to

each other, we can assume that all patients share the same medical concept mapping

U ∈ Rp×k. We propose the following Pacifier-Sba formulation:

min
{S(i)},U,{V(i)}

∑n

i=1

1
2ti
‖S(i) − UV(i)‖2

F + λ1‖U‖1 (4.4)

+λ2

∑n

i=1

1
2ti
‖V(i)‖2

F + λ3

∑n

i=1

1
2ti
‖V(i)R(i)‖2

F

subject to: PΩ(i)
(S(i)) = PΩ(i)

(X(i)), U ≥ 0

Since the densification of all patients are now coupled via the shared concept map-

ping, an immediate benefit of the Pacifier-Sba formulation is that, we can transfer

some knowledge among the patients, which is attractive especially when the avail-

able information for each patient is very limited and the patients are homogeneous in

nature. We demonstrate in the experiments that the Pacifier-Sba performs better

than Iba when patients are homogeneous.
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4.2.3 Optimization Algorithm

The formulations of Pacifier are non-convex and we present a block coordinate

descent (BCD) optimization algorithm to obtain a local solution. Note that for each

patient the subproblem of Pacifier-Iba in Eq. (4.2) is a special case of the problem

of Pacifier-Sba in Eq. (4.4) given n = 1. Therefore in this section we present the

algorithm for Eq. (4.4).

1) Solve U+ given V −(i) and S−(i):

U+ = argmin
U≥0

∑n

i=1

1
2ti
‖S−(i) − UV

−
(i)‖

2
F + λ1‖U‖1. (4.5)

This is a standard non-negative `1-norm regularized problem and can be solved effi-

ciently using scalable first order methods such as spectral projected gradient Wright

et al. (2009) and proximal Quasi-Newton method Lee et al. (2012).

2) Solve V +
(i) given U+ and S−(i):

{V +
(i)} = argmin

{V(i)}

∑n

i=1

1
2ti
‖S−(i) − U

+V(i)‖2
F (4.6)

+ λ2

∑n

i=1

1
2ti
‖V(i)‖2

F + λ3

∑n

i=1

1
2ti
‖V(i)R(i)‖2

F

Note that the terms are decoupled for each patient, resulting in a set of minimization

problems:

V +
(i) = argmin

V(i)

1
2
‖S−(i) − U

−V(i)‖2
F + λ2

2
‖V(i)‖2

F + λ3
2
‖V(i)R(i)‖2

F , (4.7)

The problem in (4.7) can be solved using existing optimization solvers. Moreover,

since the problem is smooth, it admits a simple analytical solution Zhou et al. (2011b).

Lemma 4.2.1. Let Q1Λ1Q
T
1 = UTU + λ2I and Q2Λ2Q

T
2 = λ3R(i)R

T
(i) be eigen-

decompositions, and let D = QT
1U

TS(i)Q2, the problem (4.7) admits an analytical

solution:

V ∗(i) = Q1V̂ Q2, where V̂j,k =
Dj,k

Λ1(j,j)+Λ2(k,k)
. (4.8)
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Proof. We first set the gradient of (4.7) to zero:

UTUV ∗(i) − UTS(i) + λ2V
∗

(i) + λ3V
∗

(i)R(i)R
T
(i) = 0

⇒(UTU + λ2I)V ∗(i) + λ3V
∗

(i)R(i)R
T
(i) = UTS(i)

To obtain V ∗(i) we need to solve the above linear system. We perform eigen decompo-

sition Q1Λ1Q
T
1 = UTU + λ2I and Q2Λ2Q

T
2 = λ3R(i)R

T
(i) and it follows that

Q1Λ1Q
T
1 V
∗

(i) + V ∗(i)Q2Λ2Q
T
2 = UTS(i)

⇒Λ1Q
T
1 V
∗

(i)Q2 +QT
1 V
∗

(i)Q2Λ2 = QT
1U

TS(i)Q2

⇒Λ1V̂ + V̂ Λ2 = QT
1U

TS(i)Q2 := D

therefore we can solve V̂j,k =
Dj,k

Λ1(j,j)+Λ2(k,k)
and the optimal solution is thus given by

V ∗(i) = Q1V̂ Q2, which completes the proof.

Note that the parameter λ2 improves the stability of the ‘inversion’ in Vj,k so that

the denominator is guaranteed to be a positive number. Excluding the time of the

two QR factorizations, the cost of computing the analytical form solution for each

sample is given by O(k2pt). The computation can be greatly accelerated as shown

in the next section. Including the time of QR factorizations, obtaining the results

from the analytical form is typically 100 times faster than that of solving (4.6) using

optimization solvers.

3) Solve S+
(i) given U+ and V +

(i):

{S+
(i)} = argmin

{S(i)}

∑n

i=1

1
2ti
‖S(i) − U+V +

(i)‖
2
F . (4.9)

subject to: PΩ(i)
(S(i)) = PΩ(i)

(X(i))

The problem is a constrained Euclidean projection, and is decoupled for each S+
(i).

The subproblem for each one admits a closed-form solution: S+
(i) = PΩc

(i)
(U+V +

(i)) +

PΩ(i)
(X(i)).
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Algorithm 2 The BCD algorithm for solving the Pacifier-SBA in formulation (4.4).

Given n = 1, the algorithm also solves the Pacifier-IBA for each patient in the

formulation (4.2).

Input: Observed locations {Ω(i)}n1 , values of the observed entries for each patient

{PΩ(i)
(X(i))}n1 , initial solutions {V 0

(i)}n1 , sparse parameter λ1, parameter λ2, smooth

parameter λ3, latent factor k.

Output: U+, {V +
(i)}n1 , {S+

(i)}n1 .

Set V −(i) = V 0
(i), S

−
(i) = PΩ(i)

(X(i)) for all i.

while true do

Update U+ by solving (4.5) via `1 solvers (e.g. Lee et al. (2012); Wright et al.

(2009)).

Update V +
(i) by computing (4.8).

Update S+
(i) = PΩc

(i)
(U+V +

(i)) + PΩ(X(i))

if U+ and {V +
(i)}n1 converge then

return U+ and {V +
(i)}n1

end if

Set V −(i) = V +
(i) and S−(i) = S+

(i) for all i.

end while

We summarize the BCD algorithm of Pacifier-Sba in Algorithm 2. In our

implementation, we randomly generate the initial concept evolution matrix V 0
(i), and

set U0
(i) = (0). Therefore the initial value of S−(i) is given by S−(i) = PΩ(i)

(X(i)) +

PΩc
(i)

(0V 0
(i)) = PΩ(i)

(X(i)). Since the problem of Pacifier is non-convex, and thus it

is easy to fall into a local minimum. One way to escape from local minimum is to

‘restart’ the algorithm by slightly perturbing Vi after the algorithm converges, and

compute a new solution. Among the many solutions, we use the one with the lowest

function value. In the following section we discuss how to accelerate the algorithm to
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solve large-scale problems.

4.2.4 Efficient Computation for Large Scale Problems

For large scale problems, the storage of the matrix Si andO(d2)-level computations

are prohibitive. However, we notice that in each iteration, we have that S+
(i) =

PΩc
i
(U+V +

(i)) + PΩi
(X(i)) = U+V +

(i) + PΩi
(X(i) − U+V +

(i)). The “low rank + sparse”

structure of S+
(i) indicates that there is no need to store the full matrices. Instead we

only need to store two smaller matrices depending on k and a sparse residual matrix

PΩi
(X(i)−U+V +

(i)). This structure can be used to greatly accelerate the computation

of Eqs. (4.5) and (4.6). In the following discussion we denote S(i) = US(i)
VS(i)

+ SS(i)
.

1) Solve U. The major computational cost of Eq. (4.5) lies on the evaluation of the

loss function and the gradient of the smooth part. Taking advantage of the structure

of Si. We show that all prohibitive O(d2) level operations can be avoided given the

special structures of S+
(i).

Gradient Evaluation:

∇U

(∑n

i=1

1
2ti
‖S(i) − UV(i)‖2

F

)
=∇U

(∑n

i=1

1
2ti
‖(US(i)

VS(i)
+ SS(i)

)− UV(i)‖2
F

)
=
∑n

i=1

1
ti

tr
(
UV(i)V

T
(i) − S(i)V

T
(i)

)
=
∑n

i=1

1
ti

(
U(V(i)V

T
(i))− US(i)

(VS(i)
V T

(i))− SS(i)
V T

(i)

)
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Objective Evaluation:

∑n

i=1

1
2ti
‖S(i) − UV(i)‖2

F

=
∑n

i=1

1
2ti

tr
(
ST(i)S(i) − 2ST(i)UV(i) + V T

(i)U
TUV(i)

)
=

n∑
i=1

1

2ti
tr
(

(US(i)
VS(i)

+ SS(i)
)T (US(i)

VS(i)
+ SS(i)

)
)

+

n∑
i=1

1

2ti
tr
(
−2(US(i)

VS(i)
+ SS(i)

)TUV(i) + V T
(i)U

TUV(i)

)
=
∑n

i=1

1
2ti

(
tr
(
V T
S(i)

(UT
S(i)
US(i)

VS(i)
)
)

+ tr
(
STS(i)

SS(i)

)
+ 2 tr

(
(STS(i)

US(i)
)VS(i)

)
+ tr

(
V T

(i)(U
TUV(i))

)
− 2 tr

(
V T
S(i)

(UT
S(i)
UV(i))

)
− 2 tr

(
(STS(i)

U)V(i)

))
For the evaluation of the loss function, it can be shown that the complexity isO(k2npt)

if all patients have t time slices. Similarly the complexity of computing the gradient

is also given by O(k2npt). Therefore in the optimization, the computational cost in

each iteration is linear with respect to n, p and t. Thus the algorithm is scalable to

large data.

2) Solve V. The term UTS(i) can again be computed efficiently using the similar

strategy as above. Recall that in solving V +
(i) we need to perform eigen-decomposition

on two matrices: a Rk×k matrix UTU and a Rt×t tridiagonal matrix R(i)R
T
(i). The

two matrices are equipped with special structures: the matrix UTU is a low-rank

matrix, and the matrix R(i)R
T
(i) is a tridiagonal matrix (a very sparse matrix), whose

eigen-decomposition can be solved efficiently.

Note that the complexity of time dimension is less critical, because that in most

EMR cohorts, the time dimension of the patients are often less than 1000. Recall

that the finest time unit of the EMR records is day. Using weekly granularity, 1000

time dimension covers up to 20 years of records. In our implementation we use the
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built-in eigen-decomposition of Matlab, which typically takes less than 1 sec for a

matrix with a time dimension of 1000 on regular desktop computers.

4.2.5 Latent Dimension Estimation

In the formulations in Eq. (4.2) and Eq. (4.4), we need to estimate the latent

dimension of the patient matrices. Indeed, we can choose the latent dimension via

validation methods, as done for other regularization parameters. As an alternative,

we can use the rank estimation heuristic to adaptively set the latent dimension of

the matrices by inspecting the information in the QR decomposition of the latent

concept mapping matrix U , assuming that the latent dimension information of all

patients is collectively accumulated in U after a few iterations of updates. The idea

was originally proposed in Wen et al. (2012); Shen et al. (2012) to estimate the rank

during the matrix completion of a single matrix.

In order to be self-contained we briefly summarize the algorithm as follows. After

a specified iterations of updates, we perform the economic QR factorization on UE =

QURU , where E is a permutation matrix such that | diag(RU)| := [r1 . . . rk] is non-

increasing after the permutation. Denote Qp = rp/rp+1, and Qmax = max(Qp), and

the location is given by pmax. We compute the following ratio:

τ =
(K − 1)Qmax∑
{p 6=pmax}Qi

.

A large τ indicates a large drop in the magnitude of Qi after pmax elements, and we

thus reduce the latent factor k to pmax, retaining only the first pmax columns of U and

the corresponding rows of the evolution matrices {V(i)}. In our implementation we

only perform the estimation once. Empirically as shown in Section 4.3.3, the latent

dimension estimation works well when the Pacifier-Sba works, i.e., patients are

homogeneous, sharing a few latent concepts.
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In the Iba approach the completion of patients are independent. If we apply latent

dimension estimation on each patient, then each patient matrix may have a latent

dimension different from others. This imposes difficulties when it comes to analyze

the patients, and thus the estimation is not used in Iba.

4.3 Empirical Study

In this section we present the experimental results to demonstrate the performance

of the proposed Pacifier methods Iba and Sba. We first provide a toy example

showing the parameter sensitivity of the Pacifier formulations and discuss when to

choose one approach over another. We then study the scalability of the proposed

algorithm with varying feature dimensions, time dimensions, sample sizes, latent di-

mensions, and ratios of the observed entries. We then apply the proposed Pacifier

framework on two real clinical cohorts to demonstrate the improvement on predictive

performance achieved by our approaches.

4.3.1 A. Toy Example

In this experiment we manually construct two small datasets and explore the

properties of the two proposed methods. We generate a dataset called IND of 3

samples where the samples have different basis, and a dataset SHA of 3 samples

where the samples share the same basis. First we generate a sparse matrix B ∈ R12×6

such that the ith column only has two non-negative numbers at 2(i − 1) + 1 and

2(i − 1) + 1. Therefore the locations of non-sparse elements do not overlap among

different columns. We constructed the datasets as follows:

Dataset IND. For each patient we choose 2 different columns from matrix B to form

U(i) ∈ R12×2, and we generate V(i) ∈ R2×13 such that it simulates temporal smoothness:

every row is given by a scaled and randomly shifted sine function (sin(5(t+x))+1)/2,

76



where t = 0 : 0.1 : 1.2 and x is a random number uniformly drawn from [0, 1] for

each row to introduce randomness. The full matrix for each sample is then given by

X(i) = U(i)V(i). In this way the three samples are spanned by basis orthogonal to each

other with different temporal information. The IND dataset simulates heterogeneous

cohorts.

Dataset SHA. For all patients we choose the same two columns from B to form U(i)

and use the same strategy to form V(i) and compute X(i). Thus all samples can be

seen as being generated from the same set of basis vectors with different temporal

information. The SHA dataset simulates homogenous cohorts.

For each patient in the above datasets, we randomly select 20% elements as ob-

served (denoting their locations as Ω(i)), leaving the rest as testing elements. We use

Pacifier-Sba and Pacifier-Iba formulations to recover the ‘unseen’ elements, and

evaluate the performance by the recovery error defined as follows:

∑n

i=1
‖PΩc

(i)
(X̂(i))− PΩc

(i)
(X(i))‖2

F/n,

where n = 3 in the toy data. We repeat the above procedure for 20 times on 20

randomly generated IND and SHA datasets. The average recovery error are reported

in Figure 4.4.

We see that Pacifier-Iba performs better than Pacifier-Sba on IND datasets,

while the latter performs better on SHA datasets. These results coincide with the

design of the two Pacifier formulations: the Pacifier-Iba performs better on the

heterogenous dataset IND, whereas the Pacifier-Sba performs better on the homo-

geneous dataset SHA. We see that the shared basis assumption improves the per-

formance by better exploiting the sharing information among samples, while in the

case that patients share little information, imposing the assumption may degrade the

performance.
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Figure 4.4: The performance of Pacifier-Iba and Pacifier-Sba in terms of re-
covery error on the two toy datasets. We see that the Pacifier-Iba performs better
on the heterogenous dataset IND, whereas the Pacifier-Sba performs better on the
homogeneous dataset SHA.

In Figure 4.5 we present the convergence plots for the two algorithms on one

dataset. We see that for both algorithms the objective decreases very fast in the

first few iterations, and after that, extra iterations only give a little decrease on the

objective value. This is the case for most of our datasets. When the regularizers are

not dominant (i.e., the value of the regularizers are comparable to the loss function),

then in the later iterations the decrease objective value mainly reflects how closer

between the low rank approximation UV and the data X on the observed elements.

In this sense if the noise level of the data is relatively high, which is the case for

most clinical cohorts, then only a few iterations are needed to obtain a completed

matrix that gives very good predictive performance in practice. In the experiment in

Section 4.3.3, we observe that the completed dataset using only 20 iterations gives

almost the same performance as the one fully converged (relative change of objective

values in consecutive iterations is less than 1e− 5).

In the formulations of Pacifier there are three parameters: sparsity parameter

λ1, ridge-type parameter λ2 and smoothness parameter on the time dimension λ3.
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Figure 4.5: Empirical convergence of Pacifier. Note that the objectives of the two
methods are different and thus are not comparable.

Note that the parameter λ2 serves the sole purpose of improving the numerical con-

dition and we fix it to be a small number 1e− 8 in all experiments. In Figure 4.6 we

present the average recovery error given different combinations of the sparsity param-

eter λ1 and the smoothness parameter λ2 for Iba and Sba, respectively. We find that

1) a proper amount of smoothness regularization can greatly improve the recovery

performance. 2) sparsity regularization can slightly improve the performance, and

parameter is generally not sensitive in terms of the recovery performance. However,

a moderate sparse regularization gives a more sparse solution of the factor U (not

shown in the figure), which may provide better interpretability in practice.

4.3.2 Scalability

In this section we study the scalability of the proposed algorithm using synthetic

datasets. In each of the following studies, we generate random datasets with a spec-

ified sample n, feature dimension p, average time dimension t, latent dimension k,

and observation density ‖Ωi‖. For simplicity we let all samples have the same time

dimension. We report the average time cost over 50 iterations. For the two algorithms

we set all parameters to be 1e− 8 in all studies.

Sample Size. We fix p = 100, t = 100, r = 10, ‖Ωi‖ = 0.01, and vary the sample
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Figure 4.6: Sensitivity study of the sparsity and smoothness parameters of Paci-
fier. The smoothness regularization greatly improves the performance in terms of
recovery error. The sparsity regularization increases the sparsity of the factor com-
ponent, while is not sensitive in terms of recovery performance.

size n = 200 : 200 : 1800. The results are given in Figure 4.7(a). We observe that for

both methods the time costs increase linearly with respect to the sample size. The

cost of Iba grows faster than the Sba version, which is expected because in Iba the

computation costs of the loss and the gradients are more than those of Sba.

Feature Dimension. We fix n = 100, t = 100, r = 10, use ‖Ωi‖ = 0.01, and vary

the feature dimension p = 200 : 200 : 1800. The results are given in Figure 4.7(b).

We see that the time costs for both methods increase linearly with respect to feature

dimension, which is consistent with our complexity analysis. The linear complexity

of feature dimension is desired in clinical applications, since one might want to use

as much information available as possible, resulting in a large feature space.

Time Dimension. We fix n = 100, p = 100, r = 10, ‖Ωi‖ = 0.01, and vary the

time dimension t = 100 : 100 : 900. The results are given in Figure 4.7(c). We find

superlinear complexity on the time dimension for both methods, which mainly comes

from the eigen decomposition. The complexity on time dimension is less critical in

the sense that for most medical records and longitudinal study, the time dimension

is very limited. For example, if the time granularity is weekly, then we have 52 time
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Figure 4.7: Studies of scalability of Pacifier-Iba and Pacifier-Sba. In each study
we vary one of the scale factors while fix other factors, and record the time costs. Both
methods have the same complexity: linear with respect to samples size and feature
dimension; superlinear with respect to time dimension and latent dimension; sublinear
with respect to the number of observed entries.

dimensions each year. If 20-year records are available for one patient, then it yields

only 1040 time dimensions. Besides, the eigen decomposition can be implemented

in the way that utilizes the extreme sparsity of the temporal smoothness coupling

matrix.

Latent Dimension. We fix n = 100, p = 500, t = 500, ‖Ωi‖ = 0.01, and vary the

latent dimension input of the algorithms r = 20 : 20 : 160. The results are given

in Figure 4.7(d). We find that the time costs increase superlinearly with respect to
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latent dimension for both methods, and the complexity of Sba is close to be linear.

Observed Entries. We fix n = 100, p = 1000, t = 500, r = 10, and vary the

percentage of the observed entries ‖Ωi‖ = 0.05 : 0.05 : 0.45. The results are given in

Figure 4.7(d). We see that the time costs increase only sub-linearly with respect to

the set of observed entries.

We note that the complexity of Pacifier-Iba is of the same order as that of

Sba. The difference between the two methods comes from the computation of the

objective value and gradient in the U step. It is obvious that the IBA methods

can be parallelized because the computation of all samples are decoupled. Similarly,

the major computational complexity of SBA comes from the computation of U in

the optimization and eigen-decomposition of V(i), which can also be parallelized by

segmenting the computation of each patient.

4.3.3 Predictive Performance on Real Clinical Cohorts

To gauge the performance of the proposed Pacifier framework we apply the two

formulations on two real EMR cohorts from one of our clinical partners. In one cohort

we study the predictive modeling of congestive heart failure (CHF), and in the other

cohort we study end stage renal disease (ESRD). In both EMR cohorts we are given

a set of patients associated with their outpatient diagnosis events in ICD9 codes and

the corresponding timestamps. In our experiments we use the prediction windows

lengths suggested by physicians (180 days for CHF and 90 days for ESRD), and we

remove all events within the prediction window before the operation criteria date.

To construct the longitudinal patient matrices to be imputed, we use EMR data at

the weekly granularity as discussed in Section 4.1. We select the patients with more

than 100 events. Note that we are working on a large feature dimension, and thus

for a patient with 100 EMR events the longitudinal patient matrix is still extremely
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sparse. Note that in our cohorts the number of case patients is much smaller than

control patients, which is very common in most clinical studies. To avoid the effects

of biased samples, we perform random under-sampling on the control patients so that

we have the equal number of case and control patients in our datasets. To this end,

we have constructed two datasets: 1) CHF dataset with 249 patients in each class; 2)

ESRD dataset with 187 patients in each class.

The raw feature space in the low-level ICD9 codes is 14313. Because the matrix

constructed using the low-level ICD9 codes is too sparse, we retrieve the medical

features at coarser granularities. In order to study the effects of features at different

granularities, we compare the medical features at ICD9 diagnosis group level (Dx-

Group) and HCC level. At DxGroup level there are 1368 features and at HCC level

there are 252 features. In the two studies we consider the following commonly-used

baselines methods:

• Zero Imputation (RAW). An intuitive way to impute missing values, which is

equivalent to mean value imputation when the data set is first normalized (zero

mean and unit standard deviation). This method is standard in the current

medical literature for clinical studies Sun et al. (2012); Wang et al. (2012); Wu

et al. (2010).

• Row Average (AVG). In this baseline approach we fill the missing value using

the average value of the observed values of the feature over time.

• Interpolation (INT) Engels and Diehr (2003). We use the next observation and

previous observation along the timeline to interpolate the missing elements.

• Next Observation Carry Backward (NOCB) Engels and Diehr (2003). Missing

values are filled using the next observation of this medical feature alone the

timeline.
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• Last Observation Carry Forward (LOCF) Engels and Diehr (2003). Missing

values are filled using the previous observation of this medical feature along the

timeline.

We compare the baseline methods with the following competing methods:

• Individual Basis Pacifier (Iba). Each patient is densified using Algorithm 2.

• Iba without temporal smoothness (Iba-NT). This variant of Pacifier-IBA

sets the temporal regularization λ3 to 0.

• Shared Basis Pacifier (Sba) using Algorithm 2.

• Sba without temporal smoothness (SbaNT). This variant of Pacifier-Sba

sets the temporal regularization λ3 to 0.

• Sba with Latent Dimension Estimation (Sba-E). The latent dimension estima-

tion is described in Section 4.2.5, and only used once during the algorithm.

• Sba without Temporal Smoothness and with Latent Dimension Estimation

(SbaNT-E). This variant of Pacifier-Sba sets the temporal regularization

λ3 to 0 and uses latent dimension estimation once.

Note that for the extremely sparse matrix as the clinical data in our studies, classical

imputation methods such as those based on k-nearest neighbor Hastie et al. (1999) and

expectation maximization Schneider (2001) do not work. The methods IbaNT and

SbaNT are included in the study to explore the effectiveness of the proposed temporal

smoothness. For the parameter estimation we have separated an independent set of

samples for validation, and we select the parameters that give the lowest recovery

error on the validation set. In Iba, Sba, and SbaNT, the latent dimension k is also

determined via the validation set.
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We finally test the predictive performance on the completed datasets using sparse

logistic regression classifier (we use the SLEP implementation Liu et al. (2009d)).

From the completed datasets, we derive features by averaging the features along the

time dimension within a given observation window (52 weeks). To this end, each

patient is represented as a vector of the same dimension as the feature dimension.

We then randomly split the samples into 90% training and 10% testing, and train

the classifier on the training data. The classifier parameter is tuned using standard

10 fold cross validation. We repeat the random splitting for 20 iterations, and report

the average performance over all iterations. In order to be comparable, the splitting

is the same for all methods in each iteration.

CHF Cohort. The predictive performance of competing methods is presented in

Table 4.1. We find that in the CHF cohort: 1) most of the proposed Pacifier

approaches and their variants significantly improve the predictive performance as

compared to the baseline RAW approach. The best AUC obtained by Pacifier-IBA

dataset is 0.816 while the baseline is only 0.689 (a gain of 0.127); 2) the individual basis

approaches outperform shared based ones; 3) temporal regularization significantly

improves the predictive performance for all methods; 4) the methods with latent

dimension estimation perform worse than those that do not use latent dimension

estimation on this cohorts; 5) the features at DxGroup level outperform HCC level,

which might be due to that in this predictive task, a fine granularity is likely to

maintain more predictive information, than a coarse one.

ESRD Cohort. The predictive performance on ESRD cohort is given in Table 4.2.

For the DxGroup features we observe similar patterns that is, Iba outperforms all

other methods, which achieves an AUC of 0.828, compared to the baseline RAW

method that achieves 0.756 (a gain of 0.072). The variants with temporal smooth-

ness perform much better than the ones without temporal smoothness. For the HCC
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features we see that: 1) the shared basis approaches perform as well as the indepen-

dent basis, where Sba-E achieves an AUC of 0.827. 2) again the temporal smoothness

significantly improves the performance. 3) latent dimension estimation works well and

outperforms the ones without latent dimension estimation.

As a summary, the experimental results have demonstrated the effectiveness of

the proposed methods on real clinical data, and the temporal smoothness regulariza-

tion brings significant improvements on predictive performance. In real clinical data,

the samples tend to be heterogenous and therefore the independent basis approaches

perform better. However, using the HCC features of the two datasets, shared basis

approaches perform better than using the DxGroup features. One potential expla-

nation is that, using HCC features where the features space is smaller and features

themselves are coarser (in terms of clinical concepts), the patients tend to be more

homogeneous. We also notice that the latent dimension estimation only works well

when shared basis works well. Recall that the idea of latent dimension estimation is

to detect the jumps in the diagonal elements from the RU factor of QR factorization.

This is expected because if the patients are homogeneous and share only a few basis,

then obviously there are such natural jumps.

4.3.4 Marco Phenotypes Learnt from Data

In this section we show some meaningful medical concepts learnt by the proposed

Pacifier-Sba method. In the latent medical concept mapping matrix U , we are able

to obtain feature groups from data, because of the sparsity on the matrix. We first

normalize weights of the columns such that the sum of each column is equal to 1.

The normalized weights indicate the percentages of medical features contributing to

the medical concept. We rank the medical features according to their contributions

and find that in most of the medical concepts the top medical features are typically
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related and are comorbidities of a certain disease. In Figure 4.3, we show a list of

medical concepts obtained from our CHF cohort. For example, in the first medical

concept, the highly ranked diagnosis groups are all related to Cardiovascular Disease,

e.g., Heart failure (428), Hypertension (401) and Dysrhythmias (427), and the second

medical concepts include features that are typical related to Diabetes and its related

comorbidities such as Hypertension (401), Chronic renal failure (585). In the CHF

cohort, we have also found very similar medical concepts.

Table 4.3: Medical concepts discovered by the Pacifier-

Sba in our CHF cohort. In each medical concept, we

firstly normalize the weights of the medical features in

the medical concepts learnt and rank the features. For

each medical concept we list top 10 medical features and

their diagnosis group codes (DxGrp). We observe that

the medical features in one medical concept are usually

related to a certain type of disease.

Weight DxGrp Description

Medical Concept: Cardiovascular Diseases

0.164 428 Heart failure

0.121 401 Essential hypertension

0.113 427 Cardiac dysrhythmias

0.108 780 General sympt.

0.141 414 Other form of chronic ischemic heart disease

0.053 785 Symp. inv. cardiovascular sys.

Continued on next page
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Table 4.3 – continued from previous page

Weight DxGrp Description

0.052 786 Symp. inv. respir. sys. and other chest sympt.

0.046 402 Hypertensive heart disease

0.042 272 Diso. of lipoid metabolism

Medical Concept: Diabetes

0.211 250 Diabetes mellitus

0.129 272 Diso. of lipoid metabolism

0.115 278 Obesity and other hyperalign.

0.095 593 Other diso. of kidney and ureter

0.093 585 Chronic renal failure

0.068 599 Other diso. of urethra and urinary tract

0.065 790 Nonspe. find on exam of blood

0.058 401 Essential hypertension

0.023 366 Cataract

0.019 285 Other and unspecified anemias

Medical Concept: Lung Diseases

0.117 518 Other diseases of lung

0.112 496 Chronic airways obstruction

0.110 786 Sympt. inv. respir. sys. and other chest symp.

0.098 V72 Special investigations and exam

0.089 493 Asthma

0.087 599 Other diso. of urethra and urinary tract

0.086 466 Acute bronchitis and bronch.

Continued on next page
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Table 4.3 – continued from previous page

Weight DxGrp Description

0.078 780 General symp.

0.067 787 Symp. inv. digestive sys.

0.057 793 Nonspec. ab. find on radio. and other exam of body

structure

Medical Concept: Osteoarthrosis

0.185 729 Other diso. of soft tissues

0.123 715 Osteoarthrosis and allied diso.

0.120 726 Peripheral enthesopathies and allied syndr.

0.118 401 Essential hypertension

0.082 733 Other diso. of bone and cartilage

0.081 366 Cataract

0.069 719 Other and unspec. diso. of joint

0.066 272 Diso. of lipoid metabolism

0.065 780 General symp.

0.008 244 Acquired hypothyroidism

Medical Concept: Disorder of joints and softtissues

0.103 719 Other and unspec. diso. of joint

0.096 729 Other diso. of soft tissues

0.081 789 Other symp. involving abdomen and pelvis

0.078 722 Intervertebral disc diso.

0.058 724 Other and unspec. diso. of back

0.056 780 General symp.

Continued on next page
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Table 4.3 – continued from previous page

Weight DxGrp Description

0.055 721 Spondylosis and allied diso.

0.053 728 Diso. of muscle, ligament, and fascia

0.048 733 Other diso. of bone and cartilage

0.048 723 Other diso. of cervical region

4.4 Related Works and Discussion

In this paper we treat the zeros in the longitudinal patient matrices as missing

values, and proposed a novel framework Pacifier to perform temporal matrix com-

pletion via low-rank factorization. To the best of our knowledge, there are no prior

work that applies matrix completion techniques to solve the data sparsity in EMR

data. The proposed Pacifier framework aims at densifying the extremely sparse

EMR data by performing factorization based matrix completion. The differences

between the proposed completion method and existing works are that: instead of

treating each patient as vectors and forming a single matrix, we treat each patient

as a matrix with missing entries and consider a set of related matrix completion

problems. We further propose to incorporate the temporal smoothness in the matrix

completion to utilize the hidden temporal information of each patient.

The problem of imputation via matrix completion problem is one of the hottest

topics in data mining and machine learning. In many areas such as information

retrieval and social network, the data matrix is so sparse that classical imputation

methods does not work well. The basic problem setting of the matrix completion is

to recover the unknown data from only a few observed entries, imposing certain types
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of assumptions on the matrix to be recovered. The most popular assumption is to

assume that the matrix has a low rank structure Cai et al. (2010); Mazumder et al.

(2010); Wen et al. (2012); Xiong et al. (2010). There are two types of matrix comple-

tion in terms of the assumption on the observed entries: The first type assumes that

the observation has no noise, and the goal is to find a low rank matrix whose values

at the observed locations are exactly the same as the given ones Cai et al. (2010);

Candès and Recht (2009); Meka et al. (2010). In real world applications, however,

noise is ubiquitous and thus the rigid constraint on the observed locations may result

in overfitting. In contrast, the noisy matrix completion methods only require the

values at the observed locations to be close to the given data Mazumder et al. (2010);

Wen et al. (2012). Directly dealing with the rank function in objectives are shown

to be NP-Hard. Therefore many approaches seek to use the trace norm which is the

convex envelope of the rank function Cai et al. (2010); Meka et al. (2010); Mazumder

et al. (2010). Most of these approaches, however, require singular value decomposi-

tion (SVD) on large matrices, the complexity of which is prohibitive for large scale

problems. Recent years have witnessed surging interests on the local search methods,

which seek a local solution with extremely efficient algorithms Salakhutdinov and

Mnih (2008); Wen et al. (2012). The Pacifier framework is among these efficient

local approaches, which does not require SVD and can be applied to solving large

scale problems.

The completed data for each patient has the factorization form of X(i) = U(i)V(i),

and for Sba all patients have the same U(i). Clearly, one advantage of Sba is that we

have simultaneously learned a shared low-dimensional feature space for all patients,

and their coordinates that can be used as new (and reduced) features. To see this,

let U = QURU be the QR factorization of U , then for each patient we have that

X(i) = UV(i) = QU(RUV(i)), indicating that rows of (RV(i)) can be considered as
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coordinates on the low dimensional space whose bases are given by columns of QU .

One issue brought by the shared mapping is that the latent dimension is limited by

the lowest time dimension of the patient, i.e., mini ti > k. One solution is that we

can extend the time dimension of the patients with non-informative time dimensions

of all zeros.

We have shown in the experiments that a shared concept mapping works better

on homogeneous samples while individual mappings work better on heterogenous

samples. In reality the samples may form some groups such that within the groups

the patients are homogeneous and patients from different groups may be heterogenous.

The degree of homogeneous/heterogenous is also affected by feature granularity as

shown in our real clinical experiments, where in finer feature level the patients appear

to be more heterogeneous. It is thus interesting to explore how to simultaneously

identify feature groups and patient groups to further improve the quality of matrix

completion:

min
G,{Si,Uj ,Vi}

1
g

∑g

j=1

1
|Gj |

∑
i∈Gj
‖Si − UjVi‖2

F +R({U}, {V })

where G is the patient group assignment matrix, and patients within each group

Gj share the same basis Uj. To do so, we can incorporate group learning into the

objective as done in Zhou et al. (2011a). We leave this interesting study to our future

works. One final note – the proposed Pacifier framework proposed in this paper is

not limited to healthcare domain, they can also be applied to temporal collaborative

filtering Koren (2009); Lu et al. (2009); Xiong et al. (2010), where each user has a

rating preference that changes overtime.
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Table 4.1: Predictive performance on the CHF cohort using DxGroup and HCC
features.

DxGroup Features

Method AUC Sensitivity Specificity

RAW 0.689± 0.058 0.747± 0.046 0.528± 0.115

AVG 0.671± 0.051 0.744± 0.064 0.482± 0.083

INT 0.644± 0.066 0.803± 0.062 0.468± 0.110

NOCB 0.658± 0.048 0.845± 0.073 0.443± 0.096

LOCF 0.689± 0.055 0.866± 0.082 0.456± 0.087

Iba 0.816± 0.040 0.843± 0.054 0.657± 0.078

IbaNT 0.754± 0.056 0.762± 0.089 0.597± 0.097

Sba 0.750± 0.062 0.776± 0.067 0.640± 0.106

SbaNT 0.706± 0.054 0.672± 0.079 0.631± 0.066

Sba-E 0.730± 0.064 0.695± 0.074 0.653± 0.095

SbaNT-E 0.661± 0.073 0.678± 0.090 0.588± 0.095

HCC Features

Method AUC Sensitivity Specificity

RAW 0.645± 0.089 0.672± 0.086 0.529± 0.072

AVG 0.660± 0.053 0.683± 0.063 0.526± 0.089

INT 0.596± 0.072 0.768± 0.093 0.489± 0.082

NOCB 0.602± 0.081 0.694± 0.088 0.511± 0.093

LOCF 0.625± 0.067 0.852± 0.079 0.480± 0.083

Iba 0.755± 0.071 0.747± 0.085 0.641± 0.084

IbaNT 0.727± 0.060 0.740± 0.087 0.614± 0.070

Sba 0.736± 0.066 0.753± 0.089 0.629± 0.074

SbaNT 0.645± 0.070 0.686± 0.087 0.550± 0.095

Sba-E 0.702± 0.079 0.688± 0.106 0.616± 0.067

SbaNT-E 0.669± 0.062 0.702± 0.082 0.538± 0.079
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Table 4.2: Predictive performance on the ESRD cohort with DxGroup and HCC
features.

DxGroup Features

Method AUC Sensitivity Specificity

RAW 0.756± 0.086 0.831± 0.113 0.581± 0.077

AVG 0.775± 0.079 0.821± 0.093 0.592± 0.084

INT 0.747± 0.083 0.919± 0.104 0.568± 0.110

NOCB 0.766± 0.092 0.914± 0.099 0.556± 0.103

LOCF 0.787± 0.085 0.958± 0.107 0.577± 0.079

IBA 0.838± 0.072 0.842± 0.099 0.658± 0.106

IBANT 0.796± 0.066 0.806± 0.101 0.600± 0.095

SBA 0.811± 0.065 0.769± 0.091 0.722± 0.097

SBANT 0.763± 0.068 0.719± 0.109 0.697± 0.075

SBA-E 0.803± 0.056 0.753± 0.098 0.681± 0.090

SBANT-E 0.770± 0.082 0.689± 0.099 0.700± 0.110

HCC Features

Method AUC Sensitivity Specificity

RAW 0.758± 0.058 0.747± 0.085 0.656± 0.093

AVG 0.778± 0.055 0.789± 0.088 0.660± 0.088

INT 0.729± 0.067 0.752± 0.091 0.652± 0.094

NOCB 0.752± 0.079 0.775± 0.089 0.658± 0.095

LOCF 0.771± 0.068 0.808± 0.082 0.665± 0.081

IBA 0.826± 0.051 0.800± 0.085 0.708± 0.080

IBANT 0.802± 0.064 0.775± 0.094 0.714± 0.089

SBA 0.820± 0.064 0.789± 0.091 0.722± 0.092

SBANT 0.771± 0.082 0.733± 0.084 0.681± 0.102

SBA-E 0.827± 0.067 0.814± 0.077 0.706± 0.096

SBANT-E 0.785± 0.060 0.736± 0.065 0.717± 0.092
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Chapter 5

CONCLUSION AND OUTLOOK

In this chapter, I summarize the major contributions made in this thesis and discuss

possible future directions.

5.1 Summary of Contributions

The major theme of this thesis is to demonstrate that how multi-task learning

can help scientific discoveries in the biomedical field. I present a formulation for the

clustered multi-task learning and show that the clustered multi-task learning is equiv-

alent to another type of multi-task learning that seeks a shared subspace among the

tasks. The finding has provided significant insights into the nature of the two types

of multi-task learning approaches and important implication on computational effi-

ciency of the multi-task learning. In the area of Alzheimer’s disease research, I have

designed effective multi-task learning approaches to model the disease progression,

which lead to improved prognosis and diagnosis of the Alzheimer’s disease. In the

area of biomedical informatics, I have designed novel multi-task matrix completion

methods to learn marco-phenotypes from the patients’ partially observed electronic

medical records (EMR). These methods complete the EMR records during the learn-

ing of the marco-phenotypes, and based on which we can build predictive models with

significantly improved the predictive performance.

In many traditional multi-task learning formulations, it is often assumes that all

tasks are related. However, this assumption is too strong and may not work well in

real applications. In the thesis, I consider the clustered multi-task learning problem

(CMTL) where the tasks form clusters and within each cluster the tasks are closely
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related to each other. I formulate the CMTL and establish the equivalent relation-

ship between clustered multi-task learning to the well known alternating structure

optimization (ASO), which is a multi-task learning approach that learns a low- di-

mensional common subspace shared among tasks. I further provide a convex relax-

ation to the CMTL formulation and establish the equivalent relationship between the

relaxed CMTL and the convex relaxation of ASO. Recall that the CMTL performs

clustering on tasks, and on the other hand the ASO seeks dimension reduction, or,

feature clustering. Establishing the equivalence between CMTL and ASO has signifi-

cant practical implications: feature clustering in multi-task learning can be considered

to be same as the task clustering. Thus when there are more features than tasks,

ASO can be used to solve the problem efficiently and otherwise we can choose CMTL

instead. In addition, I provide three different optimization schemes for the convex

CMTL problem and show efficiencies of the schemes.

In the area of prognosis and diagnosis of the Alzheimer’s disease, I propose a

novel multi-task learning framework for disease progression modeling. Traditionally,

in order to predict the disease status of a patient, one builds regression models to

predict certain measurements/scores in the future. In the framework I propose to

learn a set of regression models together, in which I build one regression model at

each time point. Since the regression models at different time points are collectively

learned, I design algorithms to model the temporal relations among the tasks. In the

first model I propose to use a `2,1-norm regularization to joint select features among

the tasks, and a `1 fuse term is added to enforce similar weights for tasks that are

temporally next to each other. In my experimental results, the model can perform

much better than the single task learning approaches where the temporal relationships

are not modeled explicitly. In the second model I propose to use the fused Lasso term

to model temporal smoothness, in addition to the joint feature selection using the
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`2,1-norm regularization. The advantage of using the fused Lasso is that we allow

the models different time points to have different set of features, however, we ask the

feature selected to be similar when tasks are close to each other temporally. I perform

extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

datasets and demonstrate the effectiveness of the proposed models in predicting future

cognitive scores of the Alzheimer’s disease patients.

In the predictive modeling using electronic medical records (EMR), the quality

of the the predictive models are heavily depend on the quality of the raw EMR

data, which is often sparse, noisy and with tons of missing information. As in each

office visit/hospitalization, the patient only carry out some certain panels or imaging

studies that targets to certain diseases. As such, directly building predictive models

from raw EMR may not be optimal. Therefore, I propose a framework that densifies

the EMR records based on the observed information, and predictive models are built

based on the densified data. In order to densify the EMR records, I design algorithms

to leverage the temporal information within the EMR records, and consider a matrix

representation for each patient, which describes how medical measurements/features

evolve over time. To this end, for each patient I formulate the densification as a matrix

completion task. Furthermore, the completion tasks can be done simultaneously so

that by completing the matrix of one patient, we can transfer knowledge from other

patients with similar medical conditions. During the densification, the formulation

can also learn marco phenotypes from the patients, which are high level medical

concepts consist of groups of fine-grained medical features. For the two propose

densification algorithms, I designed efficient block coordinate descent algorithm that

can handle large scale input data. I perform extensive experiments on real-world data

from hospitals, and the proposed method can significantly improve the performance

of the predictive modeling using EMR data.
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5.2 Future Directions

Non-convex multi-task learning models. Currently most of multi-task learning al-

gorithms are formulated by convex optimization problems. Indeed, the convex has

many merits such as global optimal and in many situations lead to simple optimiza-

tion problems. Especially, cardinality optimization problems are computationally

intractable, and convex relaxations such as `1-norm and trace norm provide feasible

algorithms with theoretical guarantees. However, from the perspective of performance

of original formulations, the convex relaxation solutions may not be good enough.

One future direction of multi-task learning is to explore how non-convex formulation

can benefit. For example, in the low-rank modeling formulation, we can consider a

function that is closer to the original rank function than the trace norm.

Distributed algorithms for multi-task learning. In many real-world applications

the training data of the learning tasks is so large that it cannot be stored in single

computer. In the case that data is stored in multiple computers, we need scale our

learning algorithms into the distributed environment. However, currently many al-

gorithms in multi-task learning involves complex loss functions and/or regularization

terms that are necessary to model the task relatedness, and thus cannot be easily

extended to distributed environment. For example, the low-rank assumption requires

an iterative algorithm involving singular projection, and thus in every iteration we

need transfer the model in a central node to perform singular thresholding, which

may cause huge network transfer overhead. Thus, in order to leverage the benefit of

multi-task learning in big data era, one future direction is to design MTL algorithm

that can be efficiently computed in the distributed environment.

Multi-task learning with asymmetric task relationship. In most current multi-task

learning frameworks, tasks are treated equally and their relationship is symmetric.
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For example, learning a common subspace or shared set of features. However, in real

world scenarios, the task relationship should asymmetric, i.e., the learning one task

may benefit more from a certain task while less from other tasks. As such, each task

can control how much to learn from other tasks. One future direction of the multi-

task learning is to design formulations that allow task relationship to be asymmetric.
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