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ABSTRACT

Continuous monitoring of sensor data from smart phones to identify human activities

and gestures, puts a heavy load on the smart phone’s power consumption. In this

research study, the non-Euclidean geometry of the rich sensor data obtained from the

user’s smart phone is utilized to perform compressive analysis and efficient classifica-

tion of human activities by employing machine learning techniques. We are interested

in the generalization of classical tools for signal approximation to newer spaces, such

as rotation data, which is best studied in a non-Euclidean setting, and its application

to activity analysis. Attributing to the non-linear nature of the rotation data space,

which involve a heavy overload on the smart phone’s processor and memory as op-

posed to feature extraction on the Euclidean space, indexing and compaction of the

acquired sensor data is performed prior to feature extraction, to reduce CPU over-

head and thereby increase the lifetime of the battery with a little loss in recognition

accuracy of the activities. The sensor data represented as unit quaternions, is a more

intrinsic representation of the orientation of smart phone compared to euler angles

(which suffers from gimbal lock problem) or the computationally intensive rotation

matrices. Classification algorithms are employed to classify these manifold sequences

in the non-Euclidean space. By performing customized indexing (using K-means al-

gorithm) of the evolved manifold sequences before feature extraction, considerable

energy savings is achieved in terms of smart phone’s battery life.
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Chapter 1

INTRODUCTION

Human activity recognition generally can assume many forms. Among them the

principal methods include on-body sensor-based approach and the vision-based ap-

proach. The former method involves the use of sensors like accelerometers, on body or

body worn sensors, active badge systems etc. which provide multi modal input. The

latter approach involves video processing, where the input images from a camera are

tracked and processed to identify potential features that best classifies the activity.

This technique is chiefly employed in user-interface design and in the field of Human

Computer Interaction [21]. Recognition and classification of activities of daily living

like walking, climbing stairs, sitting, standing, running or jogging etc. has become

quite significant in the areas of mobile and ubiquitous computing. Some of the ap-

plications include health monitoring – detecting falls in elderly subjects which could

cause potential injury, fitness tracking – identifying total number of calories burnt for

every mile of running activity, social networking [? ] – updating current user activity

like jogging or running on user profiles of social websites like twitter or facebook and

several context driven or context-aware approaches – playing a soundtrack while the

user is jogging in leisure etc.

Accelerometers are the most common sensors that have been widely used in sensor

based activity recognition over the past few decades. In the past, several biaxial

accelerometers (modules that provide acceleration information in the X and Y axes)

placed on various sites of the body like forearm, wrist, thigh and legs have been used

to classify upto 20 different activities with significant accuracy [3]. With the advent

of a tri-axial accelerometer (which provides acceleration in the Z axis in addition to X
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and Y dimension) , the need for multiple sensor placements is avoided and it became

possible to use a single tri-axial accelerometer to classify the ADL activities with

good accuracy. Then over the last decade smartphone driven Activity Recognition

(AR) applications have become significant as most of the modern mobile devices

are equipped with a tri-axial accelerometer together with the rich set of embedded

sensors like orientation sensor, gyroscopes, microphones, GPS etc. which enabled

better classification results to be obtained from the rich set of sensor information.

Further, considering the processing power, storage capabilities and other resources

of todays smartphone, we can see that establishing a data mining and classification

algorithm on board is highly feasible.

The recent trend in smartphone based activity recognition shows that continuous

sampling of sensor data leads to better classification results. However tradeoff lies in

terms of drastic consumption of battery power and significant utilization of the CPU

resources. To solve the above problem, symbolic representations of the sensor data

are considered to reduce the size of the acquired raw sampled data and subsequent

feature computation steps are employed on these symbols to reduce the computa-

tional overload by almost half thus leading to energy savings by a significant factor.

These discretization techniques are widely used in many domains which involve motif

discovery in telemedicine time series, DNA sequencing etc.

Also, past research has shown clearly that a single tri-axial accelerometer can

classify translational activities like walking, running, climbing and static activities like

sitting and standing. However they do not consider the geometry of the rich 3D data &

are insufficient to classify orientation related activities like turning, twisting and inter

classification between static activities like standing, sitting and lying down. Hence, we

consider quaternion-based orientation information obtained from the smartphone and

study their representation and utility in activity recognition. However the quaternion

2



space is a non-Euclidean space and the general notions of Euclidean geometry cannot

be used. Hence, metrics on the spherical manifold are considered in this study for

effective signal matching and feature computation.

Contributions and Organization:

The main contributions made to this Activity Recognition study are as follows:

1. Geometrical consideration of the non-Euclidean group of 3D rotations in the

form of unit quaternions towards rich feature computations and better classifi-

cation of activities.

2. Conservation of smart phone’s battery resources through approximation of the

rich sensor data sampled for subsequent computations.

The Document is organized into the following parts:

Chapter 3 Identifies the general notion towards human activity recognition with time series

accelerometer data. Study on the effects of placing the sensor at various parts of

the body on the classifier efficiency is made. Also identifies the implementation

of Symbolic Approximation techniques to the time series accelerometer data.

Studies on the effects of varying the parameters of SAX technique like window

length and the number of symbols or alphabets used for discretization is studied

and an optimum pair is identified.

Chapter 4 Discusses the use of orientation information from the smartphone in the form

of quaternions for achieving better classification efficiency after computing the

features from the non Euclidean manifold sequences.

Chapter 5 Discusses the experimentation performed and results obtained. Finally, the

document suggests potential future extension of this work.
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Chapter 2

LITERATURE REVIEW

In this chapter, we discuss the existing methodologies of human activity recognition

from multi-modal sensor platforms.

Tapia et.al (2007) used wireless heart rate monitor and wireless accelerometer to

detect not only the type of physical activity performed but also the intensity of such

activity [19]. However, at the end of the study it was found that Heart rate has

negligible significance in detection of the type of activity as it is found to be altered

by the subjects emotional states as well.

Gyllensten et.al (2011) employed multi-sensor input information for activity recog-

nition. Activites such as Walking, Running, Lying, Sitting and Standing were classi-

fied and the results are compared with a commercially available activity recognition

device IDEEA [9]. Some of the features considered in this study are mean, variance,

skewness, Fourier transform & kurtosis etc.

Ravi et.al (2005) performed analysis between base-level and meta-level classifier

performances for different test conditions like gathering data from a single subject

over several days, from multiple subjects over different days. Several classifiers were

tested, such as Decision trees, SVM , Nave Bayes etc., Plurality voting was found to

perform consistently well [18].

Takumi et.al designed an algorithm to cancel out the effects of rotation of a phone

on its 3D axis accelerometer data output [13]. The principal feature extracted from

the signals in this study is the Fourier transform of the sample window. Invariance

to rotations & temporal shifts of the smartphone is provided by the formation of an

auto-correlation matrix of the complex fourier features. Due to the unitarity nature of

4



the rotation matrix, the rotational effects are unseen in the auto-correlation matrix,

rendering it suitable for rotation invariant feature extraction.

Bagala et al made a comparative study on performance of thirteen different fall-

detection algorithms when they are applied to a database of 29 real-world falls [7].

These algorithms apart from detecting a fall also detected parameters like the posture,

velocity before/after a fall. The study helped to benchmark the performance of fall

detection in terms of sensitivity & specificity.

Yan et al worked towards reducing the energy overhead of continuous sampling of

accelerometer data towards activity recognition through the concept of A3R adaptive

accelerometer-based activity recognition [23]. It was found that the choice of parame-

ters like accelerometer sampling frequency & classification features affects the energy

overhead vs. classification accuracy tradeoff for each activity separately. The princi-

pal idea behind A3R approach is to continuously track the current/ongoing activity

of the user and then adjust the above two parameters dynamically which makes the

choice optimal for detecting that activity efficiently. Time domain features like mean,

rms value, variance & covariance etc., or frequency domain features like energy (FFT

components) , entropy (FFT histogram) or a combination of both are used as fea-

tures depending on the type of activity. It was found that time-domain features are

computationally less expensive than a combination of both time+frequency domain

features. The overall energy savings of the A3R approach applied on Android phones

was found to be 20 – 25 %.

Kose et al compared the performance of naive-Bayes classifier vs. the perfor-

mance of clustered KNN online classification algorithms. The clustered KNN uses a

combination of both minimum distance and k-nearest neighbour classification algo-

rithms. It was found that clustered KNN has an overall average accuracy rate far

higher than the naive-Bayes algorithm [14]. Also the study compared the execution
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times & resource consumptions for both the algorithms on the smartphone platform.

Increasing K in clustered KNN considerably increased the execution time. The re-

source consumption study shows that applications using minimum distance classifier

and clustered KNN consume nearly the same amount of CPU resources. On the

other hand naive-Bayes algorithm has a considerably higher amount of CPU usage.

For benchmarking the CPU usage, studies are carried out by comparing with text to

speech and other internet-based applications.

Viet et al performed a comparative study between Support Vector Machine (SVM)

based classification and Dynamic Time Warping (DTW) method of classification con-

sidering both time and frequency-domain features. Results show that SVM and DTW

methods using time-domain features produce higher levels of classification accuracy

than using frequency-domain features. It is also found that frequency-domain fea-

tures have more computational complexity than time domain features & that SVM

classifier consumes less average power when compared to DTW technique utilizing

the time domain features.

Rachuri et al [17] proposed SociableSense – a smartphone application which cap-

tures user behavior in an office setting through activity recognition. The system

employs an adaptive sampling mechanism as well as models to perform computation

of tasks such as classification algorithms locally on the smartphone device or on the

cloud. The algorithm assigns weights to various parameters like energy, latency and

amount of data sent over the network for performing a classification task depending

on the user needs. For example, if a smartphone user has unlimited data plan, then

he or she can send the raw accelerometer data to a server on the cloud to perform

further computations and classification if battery life is considered a higher priority.

Linear, quadratic & exponential functions are utilized to adaptively adjust the sam-

pling rate based upon the events (missable or unmissable) which are marked from

6



the raw sensor data by a GMM classifier. Missable events are not of interest, hence

the sampling rate can be decreased at these events. On the contrary the sampling

rate can be increased if an event is deemed unmissable by the GMM classifier. This

approach serves to conserve the CPU resources of the smartphone.

Vega et al [5] worked towards unconstrained mobile sensor-based human activity

recognition where the activities of daily living are detected irrespective of the user

specific mobile sensor position, orientation and body attachment (as loose device at-

tachment limits the accuracy of the sensor measurements by introducing information

of the self-displacement of the data). The orientation correction is performed by

convolving or multiplying the raw sensor data which is obtained with respect to the

sensor frame with a computed quaternion that describes the sensor frame of reference

with respect to the earth frame of reference. In this way the measurements become

identical for each distinct activity regardless of the smartphone orientation.

Though major research in the past as seen above is focused towards improving the

classifier efficiency, not much focus is given to the geometry of the rich data acquired

from the sensors and the importance of conserving CPU resources to improve battery

life.

A related work in the field of Computer Vision [2] finds the use of symbolic repre-

sentations of motion sequences (video data) which evolve in non-Euclidean spaces like

Kendall’s shape space (spherical manifold) & affine shape spaces (Grassmann mani-

fold) to effect fast, efficient indexing & subsequent computations on the data in such

complex spaces. Inspired by this work on activity recognition, the following research

study is carried out on a signal-based sensor data (unit quaternions) acquired from

smartphones. The study takes into consideration the geometry of the spherical man-

ifold of the unit quaternions while extracting the features & performing compressive

analysis on the sensor data to classify human activities and gestures. Much focus is

7



given to conserve smart phone’s power consumption by implementing optimizations

in terms of choosing the right set of parameters of the approximation algorithms.

The implementations are done in Java-Android framework to study and observe the

improvement in the battery statistics after including the optimizations.
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Chapter 3

SYMBOLIC APPROXIMATION ON ACTIVITY RECOGNITION

Before considering the concepts of non-Euclidean manifold geometry of the sensor

data, we have studied and implemented the importance of sensor data compaction

and indexing, focused towards conservation of battery resources of a smartphone.

For this analysis study, approximation techniques are initially applied to vector time

sequences (which has Euclidean geometry) as obtained by a single tri-axial accelerom-

eter of a smartphone. We have also developed an Android application to study the

effects of approximations in terms of battery performance of the smartphone and the

efficiency of classification of activities is also observed. Common activities of daily

living such as walking, climbing stairs, standing/sitting, bending etc., are considered

for classification in this study.

3.1 Activity Recognition: Overall Approach

The basic approach of activity recognition from the time series data of a smart-

phone is shown in Figure 3.1. The Java-Android application running on the smart-

phone acquires the accelerometer sensor information along the various orthogonal

axes of the smartphone (X, Y & Z). The acquired sensor data is transmitted to the

server application running on the PC side over bluetooth. The desired bluetooth

MAC address of the PC and the com port of the server has to be specified in the

application. Suitable overlapping windows of size N are chosen and applied on this

acquired time series data and features are extracted along each axis & stored in a

separate file for subsequent analysis. Once computation is performed for the entire

set of windows, classification is attempted in Weka. Weka is a popular machine learn-

9



Figure 3.1: Overall Block Diagram

ing software which has a collection of visualization tools and algorithms to perform

standard data mining or analysis tasks such as data preprocessing, clustering, regres-

sion and classification using the various available inbuilt classifiers. Alternatively,

this Java-based weka library packages can be imported into the android platform to

create a stand alone real time activity classifier application (as shown by the dotted

lines in the figure 3.1).

3.2 Smartphone: Device coordinate frames

The native co-ordinate system of the accelerometer with respect to the smartphone

is given below:

1. X axis is aligned along the body axis of the smartphone.

2. Z axis points downwards so that it is aligned with the gravity when the smart-

phone is kept flat on a table.

3. Y axis is orthogonal to both X and Y axes as shown in Figure 3.2.

10



Figure 3.2: Device Coordinate System & Axis of Rotations

The rotations of the device brought about the axes X, Y and Z are termed roll, pitch

and yaw respectively.

3.3 Signal Acquisition

3.3.1 Smartphone placements

In addition to power consumption and classification accuracy studies, we also

study the effect of sensor placement/location relative to the human body, on the

classification results. The following four locations for smartphone placements are

considered for this analysis. It is found that smartphone placement near the waist

has good classification results.

1. Chest (Center position).

2. Waist (Center position).

3. Thigh (Left or Right).

4. Above ankle joint (Left or Right) (as shown in Figure 3.3a).
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(a) Phone Placements (b) Positioning belts

Figure 3.3: Setup

3.3.2 Positioning belts

The main purpose of using positioning belts is to prevent translational movements

or slipping of the phone during signal acquisition process which might affect the clas-

sification efficiency at the output. Hence, for each activity measurement and for each

location, suitably sized belts/wraps are worn by the user before the commencement

of the signal acquisition (as shown in Figure 3.3b).

For each smartphone placement location, each specific activity say walking, climb-

ing stairs, sitting/standing, reaching for an object etc., is performed continuously for

a period of 100 seconds. Every trial is repeated sufficient number of times to obtain

a large feature set and the same activity is repeated for the same period of time but

with a different placement location (say waist). The physical environments considered

for each activity is discussed in Table 3.1.

3.4 Signal Processing

This section deals about the windowing (overlapping windows) and feature ex-

traction operations performed on the acquired 3 channel time series data.

12



Table 3.1: Physical Environments for various activities

Activity Environment

Walking Subject is made to walk in both rough and even

terrain.

Climbing Normal pace climbing (Upstairs or Downstairs).

Standing/Sitting Subject is made to periodically sit/stand in a chair.

Reaching for an object (Bending) Subject is asked to grab an object in the ground

from the standing position.

3.4.1 Windowing

Windowing operation is performed on the data obtained from each axis. A suitable

window size of about 5 seconds (500 samples if the sampling frequency is 100 Hz) is

chosen. The periodic amount of time required to perform each activity is taken into

account while choosing the window length (N samples) such that, each window has

sufficient information about an activity performed. After extracting the samples in a

particular window, the window is then time shifted by an order of 2.5 s and the signal

sample of size N is obtained again. Thus, window is time shifted in such a way that,

each window overlaps by half amount (50%) with its subsequent window (as shown

in Figure 3.4). This process is continued for the entire signal length (100 seconds).

Thus a total of 36 windows are obtained for each activity performed with the phone

placed in one of above discussed placements.

3.4.2 Features: Time-domain & Frequency-domain

For each window of sample size N, features are extracted. The various features

which are considered are discussed below.

13



Figure 3.4: Overlapping / Sliding Windows

Time-domain features:

Mean:

The mean over the window of sample size N can be obtained with little computational

cost and it requires minimal memory requirements. This metric is primarily used to

differentiate between activities which are static and activities that are dynamic and

also used to recognize user posture.

Standard Deviation:

Standard deviation metric is used to define the stability of the signal. For example,

it was expected that when the accelerometer is worn on the waist and if the subject

walks, they sway to a greater extent than when sitting/bending down. Thus the

standard deviation parameter helps to achieve classification between these activities

[10].
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Range:

This metric is defined as the difference between the minimum and maximum sam-

ple value in any given window and they are primarily used to differentiate between

activities such as walking and running.

RMS (Root Mean Square)

The root mean square of a signal Si is defined as

RMS =
1

n

n∑
i=1

√
x2 + y2 + z2 (3.1)

Here x,y & z denotes the resolved components of the signal along X,Y & Z axes

respectively. The RMS value of a signal as shown by 3.1 is primarily used to identify

falls and to distinguish behavior patterns in walking.

Correlation Coefficient:

The strength and the direction of a linear relationship between two correlations is

given by signal correlation. This metric is useful for distinguishing activities that

involve translation in a single dimension. The correlation coefficient (See Equation

3.2) is evaluated between any two axis (say X and Y) at a time. Correlation is

quite helpful in classifying dynamic activities that involve multi-dimensional move-

ments. For example walking and sitting can be distinguished from climbing upstairs

or downstairs using the correlation coefficient.

CorrelationCoefficient(X, Y ) =
Covariance(X, Y )

Std(X)Std(Y )
(3.2)
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Zero Crossings:

The number of times the given signal in a window crossing the mean value (or typically

half the signal range) is termed as Zero Crossing count. This metric is found to be

useful to classify activities that involve periodic movements like walking and running

and also can detect more complex human gestures.

Angular Velocity:

This metric when combined with other sensor data is used to identify the user orien-

tation.

Signal Magnitude Area:

Signal Magnitude Area or SMA as given in Equation 3.3 is principally used to

discriminate between dynamic and resting physical activities. It is defined as the

magnitude sum of the areas under each axial curve over the given window size N

SMA =
1

N
(

∫ N

0

|x(t)| dt+

∫ N

0

|y(t)| dt+

∫ N

0

|z(t)| dt) (3.3)

Frequency-domain features:

In terms of frequency-domain, the fourier transform of each window can also be

computed. Activities such as walking, running are cyclic in the sense that they

can be well distinguished from non cyclic events using their frequency distribution.

Spectral Energy (squared sum of the spectral coefficients normalized by the length

of the sample window) metric is used to identify the mode of transport like walking,

running, cycling and driving. Similarly Entropy metric can be used to identify the

patterns in similar activities like walking and jogging. It is the normalized entropy of

16



Figure 3.5: Feature Computation

the FFT coefficient magnitudes excluding the DC component in the FFT spectrum.

However, since frequency-domain features computations are more expensive than the

time-domain features [8] they are disregarded in this study.

3.4.3 Feature computation & Storage

The computation of the above features are done in MATLAB for each window

& for each axis (X, Y & Z) as shown in Figure 3.5 .Thus procedure is iterated for

the total set of 36 overlapping windows (total period of 100 seconds).The computed

features are stored in either csv or arff format and the class label for a given computed

feature vector is appended to the end of the feature vector as nominal values. A sample

Feature vector is shown in Table 3.2

3.4.4 Training: Classifier models

Neural Networks are models that are built for learning and optimization. More

closely they resemble the biological neuron. A neural network consists of large num-
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Table 3.2: Sample Feature Vector

Mean

X

Std

X

Mean

Y

Std

Y

Mean

Z

Std Z Corr

(X,Y)

Corr

(X,Z)

Corr

(Y,Z)

..... Class

0.23 0.34 0.22 0.1 -0.23 -0.01 1.23 0.59 -0.89 ..... 1

ber of simple processing elements called neurons or nodes. Each neuron or node is

connected to an adjacent node through links which has an associated weight wi. with

it as shown in Figure 3.6. Training a neural network model means adapting these

weights on the links so that the input X is matched with its correct target value Y.

Some few neural network models considered in this study are discussed here under.

Decision Trees

A decision tree is a way of splitting a large data set into branch like segments arranged

in an inverted fashion that reflects a tree like appearance with the root node on the

top of the tree. The main purpose of building a decision tree is to arrive at a target

value for an end variable, based upon the input from several variables. Decision trees

can predict the values for unseen observations for which input is known but target

value is unknown [6]. Figure 3.7 shows a simple decision tree model for classification

Figure 3.6: A simple neuron.
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Figure 3.7: A simple Decision tree structure

of 5 different activities based on three computed features (as discussed in the previous

sections) from the time series data. The numbers in parenthesis next to the activity,

signifies the number of observations of that activity class.

Naive-Bayes Classifier

Bayesian classifiers are particularly used when the number of input feature vectors to

the model are very high. The algorithm is based on the Bayes rule. They can be

built with real valued inputs. A naive-Bayes Classifier performs decision making based

on prior experience or information which is given (Probability of occurrence of

event A given B) i.e. it can predict the outcome, without the need for them to

actually occur. For this purpose, two parameters are evaluated- Prior probability

and Posterior probability.

Considering the event of classifying an object X between A and B, with prior

information given as M > N where M is the number of objects in A and likewise N

in B, the Posterior probability measures the likelihood of the unknown object X

in the vicinity of A/B as follows
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Posterior probability of X being A/B = Prior probability A/B * Like-

lihood of X given A/B.

The object X is classified to the class A or B which assumes the largest Posterior

probability value.

Advantages of naive-Bayes Classifier:

1. Reduced computational complexity as compared with decision trees.

2. Bayesian models easily adapts to the environment and they are resistant to

irrelevant attributes [1].

The main disadvantage of Bayes classifier is that they are limited to only simplified

models.

Support Vector Machines

Support Vector Machines is a classification technique introduced in 1992 by Boser,

Guyon and Vapnik. Due to its high accuracy and ability to accept a high dimension-

ality of input data, it is widely used in the area of Bio-Informatics. Support Vector

Machines are unique in the sense that they can efficiently create non linear decision

boundaries based on kernel algorithms especially when the feature input space has

non linearities ( i.e. when a linear decision boundary is difficult to construct). Before

training an SVM model care has to be taken while pre processing the data, choosing

the kernel and while setting the parameters of SVM. Otherwise, they would lead to

reduced classification efficiencies. In cases where the two classes are not linearly sepa-

rable, a nonlinear mapping function ϕ is used which non linearly transforms the input

space into a separate feature space where the inputs are linearly separable. Once the

above step is done, the algorithm now follows Linear SVM where a linear decision

boundary or hyperplane is created in the feature space between the classes.
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3.5 Approximation of the sensor information

Classification of activities of daily living using a single tri-axial accelerometer

of the mobile phone will help in a long way towards activity driven context aware

applications. Though the accuracy of detecting these day to day activities has been

reported high in various research work, only a few contribution has been done towards

optimizing the battery life of the smartphones.

In this research, we adopt and extend the signal approximation strategy first

proposed in [16], who applied it to scalar-valued signals. The sensor data is subjected

to preprocessing where the dimensionality of the signal is reduced by many folds.

Symbolic representation allows a time series data which is a series of continuous

values to be compressed and represented by a discrete set of symbols. The time series

data Sj of length n is first subjected to Piecewise Aggregate Approximation (PAA)

as shown in figure 3.8 which simply means that the original data series Sj is divided

into chunks/frames as determined by a window size (n/w) (where w denotes the

number of frames), the mean of the samples in these equal sized frames are computed

and the vector of these values becomes the approximation of the original time series

data Si Equation 3.8. Here for a frame, the mean parameter is chosen as opposed

to minimum, maximum or median values to mitigate the adverse effects of noise (if

any) in the signal data from affecting the quality of approximation. Also it has to be

noted that the original time series has to be normalized to have zero mean and unit

variance.

Si =
w

n

n
w
i∑

n
w
(i−1)+1

Sj (3.4)

The next step called Symbolic Approximation involves discretization of the PAA

sequence by quantizing each value in the sequence to the nearest symbol [4] in the
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discrete set of symbols as shown in figure 3.9. The discrete set of symbols are usually

formed by determining the breakpoints in the Gaussian distribution of the time series

data (it is assumed Gaussian as the data is normalized).

Considering an instance, say the activity – Sitting class consists of 59,939 ac-

quired float samples of data. It requires a total storage size of about (59,939 * 4

bytes) 2,39,756 bytes or 240 KB. If the above time series data is subject to symbolic

approximation with a window size of 4 samples, then the approximated data will have

a total size of about 60KB (240KB/4) . Thus we have a reduction factor of 4 in the

total storage size. In addition, the computational overload / feature computational

time will be reduced by means of working with the approximated data. This is clearly

reflected in Figure 3.10 which shows a simulated CPU computational time for feature

Figure 3.8: Piecewise Aggregation (PAA). C̄ denotes the approximation of the Orig-

inal signal C
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Figure 3.9: Symbolic Approximation: Symbols a, b, c are assigned to the piecewise

aggregated time series.

extraction from a Compressed vs Uncompressed version of the data.

Figure 3.10: Effect on SAX on CPU Computational Time

3.5.1 Effects of varying the sampling frequency

Studies have shown that all the common activities of daily living can be classified

with good accuracy when the sensor is sampled at 20Hz. Increasing the sampling

frequency will have no further improvement in the accuracy but will have negative

effects on the battery performance as shown in Figure 3.11. which indicates the
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Figure 3.11: Battery Drain Curves at different Sampling Rates : A 10 % decrease

scenario.

battery drain at different sampling rates.The sample study was implemented in an

Android-based smartphone.

3.5.2 Effects of varying the approximation parameters

Having identified the need for SAX, in this section, variation of the individual

parameters of SAX and their collective influence on recognition accuracy is analyzed.

The PAA window size parameter indicates that lower the window size better will be

the approximation representation (Figure 3.8). with respect to the true time series.

However, there is a trade off in terms of increased number of samples which in turn

would lead to increased computation and thus increased CPU Usage (due to frequent

PAA operation in SAX). This is clearly depicted by comparing the window sizes 5

and 30 in Figure 3.12a However, on the other hand, a further higher window size will

have bad effects on the recognition accuracy due to loss in resolution of the signal.

Hence, an optimum value of window size of around 30 samples is chosen.

Also on the other hand a tradeoff lies in terms of choosing the alphabet or symbol

set size. Choosing a large alphabet set size will lead to more accurate representation
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(a) PAA Window size (b) Alphabet set size

Figure 3.12: Effects of varying Approximation parameters on CPU Computational

Time

of original time series but, a large number of comparisons has to be made to associate

the aggregated output to a symbol which is depicted in Figure 3.12b.

25



Chapter 4

GEOMETRIC PROPERTIES OF QUATERNIONS

4.1 Theory of quaternions

Quaternions are efficient ways of representing 3D rotations finding its much use in

mechanics, aerospace, 3D game development and other graphical applications. They

consists of 4 elements – 3 of which are vector components (x,y,z) which defines the

three dimensional axis about which the rotation will occur and one scalar compo-

nent w which defines the magnitude of the rotation about that axis. The general

representation of quaternions is given by Equation 4.1 where i,j,k denotes the pure

imaginaries/orthogonal vectors which obeys Hamilton’s Rule (Equation 4.2). Thus

quaternions are a kind of axis angle representation as shown in Figure 4.1.

q = w + x ∗ i+ y ∗ j + w ∗ k (4.1)

i2 = j2 = k2 = ijk = −1 (4.2)

Figure 4.1: Axis angle Representation

26



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X axis

Quaternion Rotation: Rotation of the point [1 0 0] about Y axis

Y axis

Z
 a

xi
s

Figure 4.2: Rotation of a point by unit Quaternions

4.1.1 Quaternion rotation

Let P(0,x,y,z) be a pure vector on a unit sphere. Rotation of this vector by a unit

quaternion q to a new point P
′

is obtained by Equation 4.3

P
′
= q

′ ∗ P ∗ q (4.3)

q’ denotes the conjugate of the unit quaternion q & * denotes quaternion multipli-

cation. Figure 4.2 shows the rotation of the pure vector [0 0 1 0] on a unit sphere

about the y axis (change in pitch) by unit quaternions.

4.1.2 Advantages of quaternions: Gimbal lock problem

Gimbal Lock is a condition which signifies the degeneration of a rotation in three

dimension into a two dimensional space, when two of the three gimbals (also called
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Figure 4.3: Gimbal Lock Representation

rotation axis) gets aligned in a parallel plane in a such a way that applied rotation on

one axis is same as the applied rotation in another axis. This condition is depicted

in Figure 4.3.

Figure in the left describes the three gimbals (red, blue and green denoting row,

pitch and yaw) orthogonal to each other. Figure in the right describes two among

the three gimbals (blue and green) getting aligned parallel to each other making

the rotation applied on red gimbal same as rotation applied on blue gimbal, i.e,

degenerating rotation in three dimension to rotation in two dimension.

In euler angles representation, if α, β and γ denotes successive rotations along

X, Y and Z axis, then a three dimensional rotation represented through a rotation

matrix is given by

[


cosα −sinα 0

sinα cosα 0

0 0 1




1 0 0

0 cosβ −sinβ

0 sinβ cosβ




cosγ −sinγ 0

sinγ cosγ 0

0 0 1

]

Now when β=0,

[


cosα −sinα 0

sinα cosα 0

0 0 1




1 0 0

0 1 0

0 0 1




cosγ −sinγ 0

sinγ cosγ 0

0 0 1

]
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Carrying out the Matrix Multiplication, [


cos(α + γ) −sin(α + γ) 0

sin(α + γ) cos(α + γ) 0

0 0 1

]

From the above resultant rotation matrix we find that the axis is now fixed in the

Z direction. Irrespective of the fact that rotation is applied in the X or Y direction

(changing α or γ) there is loss in one degree of freedom.

Since traditionally rotations are represented through euler angles gimbal lock is a

main problem. On the other hand since quaternions are axis angle representations,

orientations are represented as a single value rather than resolving into three separate

axes.

4.1.3 Representation of a unit quaternion

Like unit vectors, unit quaternions are required to perform math like quaternion

multiplication, interpolation etc. A unit quaternion is obtained by normalizing the

quaternion vector Equation 4.4.

magnitude =
√
w2 + x2 + y2 + z2; qunit =

q

magnitude
(4.4)

Unit quaternions denote the ”space of rotations” – the unit sphere S3 in 4-space

(Hypersphere H) with antipodal points +q and -q representing the same rotation as

shown in Figure 4.4.

S3 = qεH : ‖q‖ = 1. (4.5)

With unit quaternions, it becomes easier to visualize 3D rotations and make use of

natural and elegant distance metrics on the S3 manifold.

29



4.2 Manifold theory

A set of points in the set Rn which satisfies an equation f(x)=0 (with conditions

defined on f()) is called a manifold [20]. Manifold theory study is of prime impor-

tance when it comes to feature spaces with non- Euclidean geometry. Here Rn is a

differential manifold, which means that it is locally Euclidean. That is to say, for

a given point p in a topological space M , p ε M, there exists a mapping ∅ : U→

Rn such that ∅(U) is open in Rn, where U is the open neighborhood of p.Using this

mapping chart called the coordinate chart (U,∅), one can move between U and ∅(U)

and perform computations in a more convenient Euclidean space.

4.2.1 Tangent vectors & Tangent spaces

Understanding the tangent space structure of a manifold is required to perform

differential calculus i.e. functional derivatives, critical points etc., on these manifolds.

To observe the general notions of tangent spaces, let us consider an n dimensional

manifold M as shown in Figure 4.5. For any point pε M, let us consider a differentiable

curve γ : (-ε,ε) → M such that γ(0)=p. The tangent vector is the velocity vector
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Figure 4.4: +q and -q rotation of an arbitrary point [a,b,c].
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γ(0) to manifold M at point p. The set of all such tangent vectors is called the

tangent Space. Thus this tangent space is always linear when compared to the

manifold allowing us to perform easier computations in the linear space and projecting

back the results to the manifold space.

4.2.2 Riemannian metric

Riemannian metric is a mapping 〈.,.〉, that allows one to smoothly transform

points p ε M from the manifold space to the tangent space Tp(M). A manifold with

a Reimannian metric defined on it is called a Riemannian manifold and the metric is

defined as shown in Equation 4.6.

< v1, v2 >= vT1 v2 (4.6)

For any two given points a,b on a Riemannian manifold, it is possible to define

the path length between them in terms of summation of the length of tangent vec-

tors for all the points on the curve between a and b. That is to say, for a path α

:[0,1] on the Riemannian manifold M that is differentiable everywhere in the inter-

val [0,1], then the length of the velocity vector at a point t on the curve is given

Figure 4.5: Tangent vectors, Tangent Spaces on a manifold.
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by

√
(<

dα(t)

dt
,
dα(t)

dt
>)dt. Therefore, the length of the entire path α is given by:

Equation 4.7

L[α] =

∫ 0

1

(

√
(<

dα(t)

dt
,
dα(t)

dt
>)dt) (4.7)

Among all possible lengths from a to b, the shortest possible length is defined as

a geodesic [11] (see Figure 4.6b) which is given by Equation 4.8 . It is the infimum

of the lengths of all smooth paths on M which start at a and end at b.

d(a, b) = infL[α];α(0) = a, α(1) = b (4.8)

4.2.3 Exponential and Inverse exponential maps

For a given Riemannian manifold , an exponential map is used to transform points

from the tangent space to the manifold space, ie. for a point p ε M : TpM −→ M

mapping is given by expp(v) =αv(1) where v denotes the velocity vector at p and αv(1)

is a constant speed geodesic. On the other hand an inverse exponential map helps

to project points from the non-Euclidean manifold to the tangent space as shown in

Figure 4.6a.

4.2.4 Mean computations

Since we perform Piecewise Aggregation (PAA) while approximating sensor data

to symbols as discussed in chapter 3, computations of mean in the non-Euclidean

manifold space has to be studied. Generally there are two significant ways to compute

mean statistics. They are Intrinsic and Extrinsic Statistics
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(a) Mapping (b) Geodesic Arc

Figure 4.6: Riemannian Manifold

Intrinsic Statistics

Mean on a Riemannian manifold is given by karcher mean. The karcher mean of a

set of independent random samples q1, q2, q3..qk is given by the local minimizer of

the function (Equation 4.9)

ρ(p) =
1

k
Σi =

1

k
d(p, qi)

2 (4.9)

An iterative algorithm to minimize the above function (Equation 4.9) from

i=1,2...k yields the karcher mean.

Extrinsic Statistics

Extrinsic statistics simply involves statistics computation on the vector space to sim-

plify calculations and projecting back the final results to manifold space M. The

projection map from manifold M space to vector space V is given by Equation 4.10

π(v) = argminpεM‖v − ε(p)‖2 (4.10)
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where ε is the embedding factor used for proper projection. So now after projection

mean is calculated as in the vector space domain as shown in Equation 4.11

µ = Π(x);x =

∫
V

vf(v)dv (4.11)

Here f(v) denotes the p.d.f (Probability density function of v). Since extrinsic

mean computations involve less computational overload than intrinsic mean compu-

tations as seen above, they are used for mean computations in case of quaternion

sample data from the smartphone.

4.2.5 Extrinsic Mean computations and Distance metrics with respect to unit quaternions

In case of 3D rotations, the most common and essential task that will be encoun-

tered is the measurement of the distance between two 3D rotations (between two unit

quaternions). As unit quaternions +q and -q denote the same rotation, the distance

function should take into account this ambiguity in quaternion representation. That

is to say, for any two quaternions q1 and q2, the function should yield the minimum

of the d(q1,q2)-θ1 or d(−q1,q2)-θ2 as shown in Figure 4.7. Hence, the metric is given

by the absolute value of the inner dot product of the two unit quaternions q1 , q2

representing two different rotations (Equation 4.12) [12].

φ(q1, q2) = arccos(|q1.q2|) (4.12)

The above operation when implemented with unit quaternions involve 4 multipli-

cations, 1 arccos operation and 1 square root operation. The usage of quaternions to

represent 3 D rotations is computationally more efficient than using rotation matrices

where the product of two rotation matrices itself will involve 27 multiplications. Also

in terms of storage, rotation matrices requires space for 9 floating elements.

Rounding off error is one such common problem with rotation matrices, where suc-
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cessive multiplications can result in rotation matrices that are no longer orthogonal.

Though round-off errors are also found to occur in unit quaternion multiplication, it

is more easy to renormalize the quaternion product vector than to reorthogonalize a

distorted matrix [12].

To compute the average of the set of unit quaternions, as required by Piecewise

Aggregate Approximation, we implement the following extrinsic mean computations:

The mean of a set of unit quaternions q1, q2, q3...qn is given by the rank-1 singular

value decomposition (SVD) of the arithmetic mean of the matrix representations of

the unit quaternions given by q
i
qTi .(Equation 4.13)

M =
1

n
Σn

i=1qiq
T
i (4.13)

Figure 4.7: Distance between two quaternions q1 and q2
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Figure 4.8: Mean Computations: Quaternion Space

M = UΣV T (4.14)

U which is a vector representing the singular values of the decomposition, yields the

computed average quaternion.

Figure 4.8 shows the mean computations (denoted by green marker) of the quater-

nions, which operate on an arbitrary point [a b c], producing rotations about X and

Z axes.

4.2.6 Uniform & Trained symbol set

As discussed in chapter 3, to define symbols/alphabets (to compress the sampled

data) on a manifold space, two different approaches are considered.

1. Uniformly Distributed Symbol set

2. Trained Symbol set
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Figure 4.9: Symbol set

Uniformly Distributed Symbol set

Considering the quaternion space, levels or symbols are chosen so as to get them

uniformly distributed about the entire sphere as shown in Figure 4.9a. As shown in

the Figure 4.9a , the 100 levels are uniformly spread across the entire manifold. The

prime advantage of this method is that there is no need for a training data to form

the levels as compared to K-means clustering of levels.

Trained Symbol set

In this case, the symbol or alphabet set is customized according to the sensor data

pertaining to activities from an initial training set. As a result, the symbols may be

concentrated only on a particular region of the manifold (see Figure 4.9b) depending

upon the domain application. The main advantage of such trained symbol set is

to represent the non-Euclidean manifold time series with minimum most symbol set

length L with a little trade off in terms of training time in the initial phase.

Generally the pairwise distances as given by Equation 4.12 are computed be-
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tween all possible combinations of symbols in the alphabet set to generate a look

up table. This look up table is referenced while obtaining the distance between the

approximated sequences, thereby leading to less burden on CPU computations.

4.2.7 Distance between two manifold sequences

The closeness of a manifold sequence (corresponding to a particular activity) with

another can be obtained through a nearest neighbor search where the distance metric

is given by the sum of minimum distances function Dmin (Equation 4.15 ). The

function takes into account distances between each point e in one manifold sequence

S1 and the entire other manifold sequence set S2.

Dmin(S1, S2) =
1

2
(
∑
eεS1

∆m(e, S2) +
∑
eεS2

∆m(e, S1)) (4.15)

where ∆m(x, S) returns the distance of the closest point of S for x.
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Chapter 5

RESULTS AND DISCUSSION

In this section, we conduct experiments on available datasets to prove the potential

savings in battery life of the smartphone that can be acheived through signal approx-

imation and the consideration of the geometric constraints of the rich sensor data for

efficient classification results.

5.1 Effects of varying approximation parameters

5.1.1 Battery usage

Before the activity recognition experiments, studies on battery usage were con-

ducted for the choice of pairs of signal approximation parameters like PAA window

size and alphabet set size. The screen shot of the Java-Android app developed for

this purpose is shown in Figure 5.1. The developed algorithm samples the tri-axial

accelerometer values at 20 Hz (X,Y & Z axes), applies symbolic approximations as

discussed in chapter 3 with user defined PAA window size and alphabet set size.

Basic time-domain features like mean, standard deviation, minimum & maximum

values etc., are computed and the app keeps track of the smartphones battery level

and records it against time in an external sd card.

The plot as shown in Figure 5.2 shows the battery usage (drain curves) for various

window sizes chosen for Piecewise Aggregate Approximation. The symbol set size is

kept constant at 20 symbols. It can be inferred from the figure that, smaller the

PAA window size (say 5 samples), more frequently features are computed resulting

in an increased CPU/battery usage than when compared to a slightly larger window
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Figure 5.1: Android App

size (20 samples). However, on other hand, increasing the window size further (say

60 samples) will lead to loss in classification accuracy as features are computed less

frequently.

Hence, an optimum PAA window size of about 20 samples is chosen for the ap-

proximation.

The effect of varying the alphabet set size is shown in Figure 5.3 . For a given

PAA window size (20 samples) if the alphabet set size is increased, the battery usage

will be more as more number of comparisons has to be made to associate a sample

0 20 40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

Time in Minutes

B
at

te
ry

 L
ev

el
 in

 %

 

 
PAA Window Size:  5  Samples
PAA Window Size: 60 Samples
PAA Window Size: 20 Samples

Figure 5.2: Battery Usage: PAA Window Size variation
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with a symbol from the symbol set.

The optimum choice of the approximation parameters goes in par with the recog-

nition accuracy studies conducted below.

5.1.2 Recognition accuracy

To support the studies on approximation parameters, we have considered the

WISDM Actitracker dataset [15] based time series data for performance evaluation

in terms of recognition accuracy. The statistics of the dataset are given in the Figure

5.4. The basic activities considered in this dataset include walking, sitting, standing,

jogging & climbing. The sensor data include tri-axial accelerometer sampled at about

20 Hz. Subjects carried the smartphone in their front pant’s leg pocket.

Table 5.1 shows the per class recognition accuracy under the various test condi-

tions. Class accuracies (hereafter in this document) are given by the area under the

Region of Convergence (ROC) curve. Firstly, the classifier efficiency with a J48 Tree

classifier implemented on the raw dataset (i.e without implementing approximations)

was found to be 92.98%.The time series data is then subject to symbolic approxima-
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Figure 5.3: Battery Usage: Alphabet Set Size variation
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Table 5.1: Recogntion Accuracy: Varying PAA window size

Series Walking Jogging Stairs Sitting Standing Overall

Original Time Series 95.7% 98.7% 90.7% 98.9% 98.3% 92.98%

Win Size: 5 samples 92.5% 95.2% 84.4% 98.7% 98.4% 88.008%

Win Size: 20 samples 87.8% 93.3% 78.7% 97.8% 89.6% 81.37%

Win Size: 40 samples 86.9% 90.1% 76.3% 98.1% 84.6% 77.58%

tion. We can find that the drop in recognition accuracy is insignificant when the data

is subject to approximation. However, it can be seen that for a constant alphabet set

size of 20 symbols, the recognition accuracy drops as expected as PAA window size

increases. To maintain a balance between battery life and classifications results, we

chose an optimum value of window size to be 20 samples.

Now to choose the next approximation parameter the alphabet size, the same

experiment is conducted as above for various alphabet set sizes. Symbols are learned

Figure 5.4: Actitracker Dataset and its Class Distribution
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Table 5.2: Recogntion Accuracy: Varying alphabet set size

Series Walking Jogging Stairs Sitting Standing Overall

Original Time Series 95.7% 98.7% 90.7% 98.9% 98.3% 92.98%

Alphabet Size: 15 symbols 81.6% 86.9% 59.5% 93.5% 66.3% 78.96%

Alphabet Size: 30 Symbols 87.8% 93.3% 78.7% 97.8% 89.6% 81.37%

Alphabet Size: 60 symbols 88.6% 93.7% 80.3% 98.1% 90.4% 82.6%

from a subset of the data through K-means clustering. Figure 5.5 shows a sample

set of 15 learned symbols. From Table 5.2 we can find that larger the symbol

set size better will be the classification results as the time series data will be best

approximated. However, tradeoff lies interms of battery life as seen from Figure 5.3.

Hence, again an optimum alphabet set size of about 30 symbols is chosen.

5.1.2.1 Sensor information

In order to demonstrate the use of orientation sensor to identify orientation related

activities like walk forward, walk left, walk right etc., we have applied again the time

series approximation as before with the chosen approximation parameters to another

dataset (USC-Human Activity Dataset). The dataset [24] typically include most
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Figure 5.5: Trained Symbol set
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Table 5.3: Recognition Accuracy:Sensor Information

Sensors Walk-L Walk R Walk-up Run Walk-S Jump Sit Overall

Acc+ Gyro 94% 94.7% 90.9% 99.4% 91.3% 100% 98.8% 84.3%

Acc 88.2% 89.8% 88.2% 99.4% 88.9% 99.3% 99.7% 81.62%

common low-level daily activities of humans. The data is captured by an interial

sensing device called motion node which integrates a 3 axis accelerometer and a 3

axis gyroscope both of which are sampled at 100 Hz. The sensor device is worn on

the front right hip of the subject & the activities include: walk forward, walk left,

walk right, go upstairs, go downstairs, run forward, jump up and down, sit and fidget,

stand, sleep, elevator up, and elevator down and with a total of 5 trials per activity.

The detailed analysis as shown in table 5.3 is performed with and without taking

into consideration information from gyroscope sensor.

From Table 5.3, we find that orientation related activities like walking (left-L,

right-R, upstairs-up, straight-S) require gyroscope information inorder to be classified

better. Hence, among the orientation sensing methods, we chose to use unit quater-

nions as a measure to identify true orientation of the smartphone as opposed to other

likely measures like euler angles, rotation matrices which suffers from gimbal lock &

computational complexities.

5.2 Human gesture recognition experiment

To demonstrate the idea of considering the non-Euclidean geometry while pro-

cessing unit quaternions , we have designed a smartphone application which would

transmit via bluetooth the quaternion information at about 20Hz to the server PC.

The quaternions are initially normalized to turn them to unit quaternions & further

processed offline using Matlab.
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Five different gestural activities as shown in Figure 5.6 are performed with each

activity repeated for a period of 150 seconds (3000 samples). To trace the movement

of a point on the spherical manifold as manipulated by the quaternions we have

assumed an arbitrary point [a,b,c] on the manifold & rotated this point using the

sampled quaternions as given by Equation 4.4. The traces of different activities

can be found in Figure 5.6. Symbolic approximations are applied on this evolving

manifold sequences where the moving window size is taken to be 150 samples and

thus a total of 70 instances (5 activities * 14(instances per activity) is obtained. (The

smartphone CPU usage as per the different choice of the approximation parameters

is shown in Figure 5.7). While doing PAA, extrinsic statistics are used as they are

computationally less expensive. Approximation of the aggregated manifold sequences

as shown in Figure 5.6(middle row) is then performed using both learned symbols

(through K-means) and uniformly distributed levels on the manifold to study their

implications . The distance metric considered in this case(Equation 4.12) preserves

the non-Euclidean geometry.

The approximated manifold sequences are classified using nearest neighbor algo-
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(a) PAA Window size (b) Alphabet set size

Figure 5.7: Effects of varying Approximation parameters on Battery Usage
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Figure 5.8: Pairwise Distance plots: Rotation Information

rithm which has sum of minimum distances between the sequences compared as the

distance metric (Equation 4.15). A final pairwise distance measure plot as shown in

Figure 5.8 is constructed for a 10 symbol case.

From Recognition Accuracy Table 5.4, it is obvious that for a given fixed alphabet

set size (10 symbols), symbols learned through K-means better classifies the activites

than uniformly distributed symbols on the manifold. Figure 5.8 further emphasizes
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Table 5.4: Recognition Accuracy(Rotation Information).Symbol set size=10.

Symbols (10 Nos) Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Overall

Trained 97.6744% 97.6744% 64.78% 97.6744% 97.6744% 91.09%

Uniformly Distributed 85.71% 76.7% 67.7% 59.8% 97.67% 77.54%

Table 5.5: Recognition Accuracy(Acceleration Information).Symbol set size=10.

Symbols (10 Nos) Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Overall

Trained 91.2% 81.1% 65.3% 75.6% 70.8% 62.16%

Uniformly Distributed 81.9% 49.3% 69.2% 61.2% 56.4% 41.44%

the same. This is because K-means better distributes the symbols, based on the

learned data on the manifold. Whereas in the case of uniform distribution, a major

set of symbols in a region of the manifold might go unused while representing the

evolving manifold sequences, thereby leading to a chance that two closely similar

sequences being assigned the same set of symbols, leading to a drop in classifier

accuracy.

To emphasize the importance of the features from rotational data for better classi-

fication of the gestures, we conducted the classification again using the same Nearest

Neighbor algorithm after extracting 1D features (as discussed in Chapter 3) from the

magnitude component of the accelerometer data. The obtained results (for Symbol

set sizes 10 & 30) are shown in Table 5.5 & 5.6. Figure 5.9 indicates the pairwise dis-

tance plots, where the approximated time series sequences are classified using nearest

neighbor algorithm. The distance metric is the summation of the absolute distances

between the pairs of points of the sequences. Thus evaluating the classification using

the same classifier, we find that features obtained from quaternions have much more

significance in gesture recognition than merely considering the acceleration data.
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Table 5.6: Recognition Accuracy(Acceleration Information).Symbol set size=30.

Symbols (30 Nos) Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Overall

Trained 96.8% 94.6% 92.7% 88.80% 79.4% 84.73%

Uniformly Distributed 95.2% 92.4% 77.8% 83.2% 73.6% 73.28%

Overall Recognition Accuracy:74.2222%
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, while focusing towards smartphone based human activity recog-

nition, we have identified the importance & the need for symbolic representation of

signals with better choice of approximation parameters to reduce computational over-

head and battery usage. The same is demonstrated through the developed android

application. In addition, the non-Euclidean manifold geometry of the sensor signals

is considered to extract a better feature set for classification rather than considering

them to be a single dimensional time series data. As an instance, unit quaternions

are considered in this case for a human gesture recognition experiment and better

results are reported. We have also analyzed the significance of a trained symbol set

over an uniformly distributed symbol set on the manifold to better approximate the

evolving manifold sequences for each activity performed and thereby achieve better

classification results.

As a future work, apart from considering the better choice of approximation pa-

rameters like PAA window size and symbol set size, instead of representing symbols

as points in an N dimensional manifold, they can be better represented through line

or sparse representations [22] which accounts for most of the information on the

original signal & represents the same in a compact sense suitable for high perfor-

mance computing. These representations can be constructed from an over-complete

dictionary of symbols, by which we mean, the number of symbols in the dictionary

exceeds the maximum dimension of the signal so that the signal is efficiently approxi-

mated. These representations will definitely help in further enhancing the recognition

accuracy results.
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