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ABSTRACT 

Cell-cell interactions in a microenvironment under stress conditions play a critical 

role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in 

carcinogenesis, which induces selective pressure in this process. Understanding the role 

of intercellular communications and cellular adaptation to hypoxia can help discover new 

cancer biosignatures and more effective diagnostic and therapeutic strategies.  

This dissertation presents a study on transcriptomic and metabolic profiling of 

pre-malignant progression of Barrett’s esophagus. It encompasses two methodology 

developments and experimental findings of two related studies.  

To integrate phenotype and genotype measurements, a minimally invasive method 

was developed for selectively retrieving single adherent cells from cell cultures. Selected 

single cells can be harvested by a combination of mechanical force and biochemical 

treatment after phenotype measurements and used for end-point assays. Furthermore, a 

method was developed for analyzing expression levels of ten genes in individual 

mammalian cells with high sensitivity and reproducibility without the need of pre-

amplifying cDNA. It is inexpensive and compatible with most of commercially available 

RT-qPCR systems, which warrants a wide applicability of the method to gene expression 

analysis in single cells. 

In the first study, the effect of intercellular interactions was investigated between 

normal esophageal epithelial and dysplastic Barrett’s esophagus cells on gene expression 

levels and cellular functions. As a result, gene expression levels in dysplastic cells were 

found to be affected to a significantly larger extent than in the normal esophageal 

epithelial cells. These differentially expressed genes are enriched in cellular movement, 
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TGFβ and EGF signaling networks. Heterotypic interactions between normal and 

dysplastic cells can change cellular motility and inhibit proliferation in both normal and 

dysplastic cells. In the second study, alterations in gene transcription levels and metabolic 

phenotypes between hypoxia-adapted cells and age-matched normoxic controls 

representing four different stages of pre-malignant progression in Barrett’s esophagus 

were investigated. Through differential gene expression analysis and mitochondrial 

membrane potential measurements, evidence of clonal evolution induced by hypoxia 

selection pressure in metaplastic and high-grade dysplastic cells was found. These 

discoveries on cell-cell interactions and hypoxia adaptations provide a deeper insight into 

the dynamic evolutionary process in pre-malignant progression of Barrett’s esophagus. 
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CHAPTER 1  

OBJECTIVES AND CONTRIBUTION 

1.1 Significance and objectives 

Cell-cell interactions and metabolism are essential for growth and function of 

multicellular organisms. Aberrant intercellular communication plays a key role in 

carcinogenesis and tumor progression (Hanahan and Weinberg 2011, Hanahan and 

Coussens 2012). Metabolic reprogramming is one of the emerging hallmarks of cancer 

(Hanahan and Weinberg 2011). Understanding the role of intercellular communications 

and hypoxia-adapted metabolic reprogramming in pre-malignant progression could aid in 

early diagnosis and help discover more effective prognostic, diagnostic and management 

strategies of cancer.  

Barrett’s esophagus is a precancerous condition which predisposes to esophageal 

adenocarcinoma, a cancer type with high mortality rates (Shaheen and Ransohoff 2002). 

Barrett’s esophagus is one of the best characterized models for studying pre-malignant 

progression due to its relative easy access to biopsies that can be taken at multiple time 

points from the same patient, following current standard-of-care procedures (Barrett, 

Yeung et al. 2002). Two important factors in the clonal evolution of Barrett’s esophagus 

neoplastic progression are intercellular communications and hypoxia-selection pressure. 

Gene expression profiling (Helm, Enkemann et al. 2005) and metabolic phenotype 

measurements (Suchorolski, Paulson et al. 2013) indicate that Barrett’s esophagus cells 

undergo a series of transcriptional and metabolic changes in the context of cell-cell 

interactions or hypoxia. However, the mechanisms underlying these changes remain little 

known. In this thesis, one hypothesis is that intercellular communications between 
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normal and dysplastic cells affects cellular proliferation and motility. Barrett’s esophagus 

cells can reprogram their metabolisms to adapt to hypoxia selection pressure. 

Understanding the mechanisms and molecular signatures of cell-cell interactions and 

hypoxia adaptation in Barrett’s esophagus will open new ways for designing diagnosis 

and treatment strategies for Barrett’s esophagus and adenocarcinoma. The biosignatures 

discovered in this study can be used for early diagnosis, treatment and risk stratification 

for Barrett’s esophagus. As cell-cell interactions and hypoxia -adaptations widely exist in 

other cancers, the pre-malignant evolutionary process characterized in this study will be 

transferrable to other cancer types and can help advance the field of cancer research. 

 The goal of this doctoral dissertation project is to study gene transcription and 

metabolic profiles of pre-malignant progression in Barrett’s esophagus. The objectives of 

the project are: 

i) Conceive, develop and optimize a minimally invasive method for 

retrieving single adherent cells of different types from cultures. This method will be used 

for harvesting single adherent cells from a glass substrate after metabolic phenotype 

measurement.  

ii) Develop and optimize a reverse transcriptase quantitative polymerase 

chain reaction (RT-qPCR) method for measuring expressions that does not require a pre-

amplification step of more than five genes within a single cell. This single cell RT-qPCR 

method will detect heterogeneity in gene expression levels in a cell population and 

provide information on hypoxia response. 

iii) Characterize differential gene expression profiles as a result of heterotypic 

cell-cell interactions in Barrett’s esophagus using whole transcriptome RNA-Seq. 
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Identify functional relevance of gene expression changes and correlate with cellular 

functional phenotypes. This will allow unprecedented inquiries into pre-malignant 

progression in Barrett’s esophagus. 

iv) Study whole-transcriptome profiles and mitochondrial functions in pre-

malignant Barrett’s esophagus cell lines adapted to hypoxia and compare them with age-

matched normoxic control cells. The result will lead to a better understanding of the 

pathways that regulate cell metabolism in pre-malignant stages, and potentially warrant 

deeper insight into cancer cell development and progression.  

An overall study schematic goal is depicted in Figure 1-1. Single cell harvesting 

and RT-qPCR methods will be developed and optimized for implementing a multi-

Figure 1-1 Overview of experimental process. 
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parameter single-cell analysis pipeline. Whole transcriptome analysis of cell-cell 

interactions and hypoxia responses in Barrett’s esophagus cells will identify differentially 

expressed genes in the neoplastic progression. The findings will provide a set of gene 

candidates for gene expression profiling using RT-qPCR and be correlated with 

functional level alterations in this process.  

1.2 Scientific contributions 

Based on the results of this doctoral dissertation project, all objectives have been 

successfully achieved. The scientific contributions of the research are the following:  

(i) A new method was developed for retrieving individual adherent cells with 

minimal perturbation using a combination of mechanical forces and biochemical 

treatment. A method to selectively harvest individual cells of different types from 

microwells with co-cultured cells was demonstrated using a fluorescence-assisted single-

cell harvesting platform.  Stress gene responses to varying levels of mechanical forces 

and biochemical treatment were measured. The findings of this part of work are useful 

for studies focused on single-cell analysis that involve any mechanical manipulation of 

live cells. 

(ii) A SYBR green-based RT-qPCR method was developed for detecting 

expression levels of up to ten different genes without pre-amplification of cDNA. Gene 

expression heterogeneity can be detected in single cells with good reproducibility and 

specificity. This method is inexpensive and compatible with most commercially available 

RT-qPCR instrumentation. It can be easily integrated in many applications focused on 

gene expression analysis in single cells, which will provide further insights into the 

cellular mechanisms involved in physiological and pathological processes at the single-
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cell level and has the potential of becoming a tool for future point-of-care medical 

applications. 

(iii) In the transcriptome-wide study of effects of cell-cell interactions in pre-

malignant progression of Barrett’s esophagus a set of genes was found whose expression 

is down-regulated in dysplastic cells when they are co-cultured with normal esophageal 

epithelial cells. Upstream regulators, TGFβ and EGF, that act as “first responders” of 

cell-cell interactions are also identified.  Normal cells are found to inhibit the growth of 

dysplastic cells which is mediated by growth factor signaling pathways. This study 

indicated that the fraction of normal to dysplastic cells can be used as risk stratification 

markers for Barrett’s esophagus and esophageal adenocarcinoma. TGFβ, EGF and their 

downstream genes have great potential to become biosignatures for esophageal 

adenocarcinoma diagnosis and disease management.  

(iv) Whole transcriptome analysis and metabolic phenotypic measurements of 

hypoxia response in Barrett’s esophagus cells representing different stages of pre-

malignant progression revealed a series of transcriptional alterations and changes in 

mitochondrial function. It was found that the mitochondrial functions as measured by 

mitochondrial membrane potentials are suppressed in hypoxia-selected Barrett’s 

esophagus cells as compared to their age-matched normoxic controls. Hypoxia-adapted 

cells reprogrammed their metabolism and retained functional plasticity to survive and 

thrive under hypoxia stress. Adaptation to hypoxia can be used as a risk prediction 

marker for progression towards esophageal adenocarcinoma. Functional plasticity in 

hypoxia-adapted cells also suggested that physicians need to design multiple targets such 
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as oxidative phosphorylation and glycolysis to treat pre-malignant conditions in Barrett’s 

esophagus.  

With these results, one paper was published, one manuscript was submitted and 

two more manuscripts are in preparation for publication. All of them are listed below. 

1. Zeng, J.*, Wang, J.*, Gao, W., Mohammadreza, A., Kelbauskas, L., 

Zhang, W., Johnson, R. H., and Meldrum, D. R. (2011). Quantitative single-cell gene 

expression measurements of multiple genes in response to hypoxia treatment. Analytical 

and Bioanalytical Chemistry 401, 3-13. (*Co-first authorship) PMID:21614642. 

Published in a special, accelerated section, “Paper in Forefront.” 

2. Zeng, J., Mohammadreza, A., Gao, W., Merza, S., Smith D., Kelbauskas, 

L., and Meldrum, D. R. A minimally invasive method for retrieving single adherent cells 

of different types from cultures. Under review. 

3. Whole transcriptome and metabolic profiling of intercellular interactions 

between normal and pre-malignant esophageal cells. In preparation. 

4. Alterations in gene expression levels and metabolic phenotype in response 

to hypoxic selection in pre-malignant Barrett’s esophagus cells. In preparation. 
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CHAPTER 2  

INTRODUCTION 

2.1 Cancer 

2.1.1 Hallmarks of cancer 

Cancer is a major cause of death in the United States and many other parts of the 

world (Siegel, Ma et al. 2014). Although a great amount of effort has been devoted to 

cancer research and clinical practice, we still cannot eradicate or control the advanced 

disease of cancer. The complexity and diversity of cancer lay both roadblocks to, and 

stepping stones for successful treatment (Greaves and Maley 2012).  

In 2000 and 2011, Hanahan and Weinberg proposed and updated cancer 

hallmarks: sustaining proliferative signaling, evading growth suppressors, resisting cell 

death, enabling replicative immortality, inducing angiogenesis, activating invasion and 

metastasis, reprogramming of energy metabolism and evading immune destruction 

(Hanahan and Weinberg 2000, Hanahan and Weinberg 2011).Genome instability and 

mutation and tumor-promoting inflammation are two characteristics enabling cancer cells 

to acquire hallmark functional capabilities (Hanahan and Weinberg 2011). Tumor 

microenvironment – the signaling interactions between cancer cells and their supporting 

normal cells—also contribute to the acquisition of hallmark traits, further diversifying the 

mechanisms of cancer pathogenesis (Hanahan and Weinberg 2011). 

2.1.2 Neoplasia 

Neoplasia is unregulated growth of cells. Neoplastic cells can proliferate without 

the influence of any external stimuli while ignoring growth-controlling signals. Neoplasia 

usually results in an abnormal mass of tissue, known as neoplasm. 
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Before cells become neoplastic, they often first become metaplastic or dysplastic. 

Metaplasia is a transformation of one differentiated cell type into another. One typical 

example is Barrett’s esophagus, in which the esophageal squamous epithelium transforms 

into intestinal-like columnar cells. Dysplasia is the fractional increase of immature cells 

compared to matured and differentiated cells in a sample. It is mainly due to genetic 

alterations, changes in gene expression, and dysregulation of cell maturation. Metaplastic 

or dysplastic cells may progress to cancer or regress to normal cells (Schlecht, Platt et al. 

2003).  

Neoplasms are usually caused by genetic mutations. They can be benign, pre-

malignant or malignant (cancer). Recognized as an evolutionary process (Nowell 1976), 

neoplastic progression is characterized by genomic instability and clonal expansion. 

Neoplastic cells accumulate genetic and epigenetic alterations--which contribute to clonal 

heterogeneity--and undergo evolution by natural selection. Acquiring the hallmark traits 

of cancer provides an evolutionary advantage to neoplastic cells (Hanahan and Weinberg 

2000). Based on the scope of this dissertation work, microenvironment and metabolic 

reprogramming in cancer are the primary areas of discussion. 

2.1.3 Microenvironment 

2.1.3.1 Intercellular interactions within the tumor microenvironment 

Over the past several decades, the prevailing view towards neoplastic progression 

and carcinogenesis is that cancer cells act autonomously in isolation. Yet, more and more 

evidence has shown that a tumor is not merely a collection of homogenous cancer cells 

transforming autonomously. Its genesis and progression is rather an ecological process 

involving a dynamic interplay between malignant and non-malignant cells (Barcellos-



 

9 

Hoff, Lyden et al. 2013). Tumors are recognized as complex organs consisting of various 

types of cells: cells at different stages of tumor progression, cancer-associated fibroblasts, 

angiogenic vascular cells and infiltrating immune cells (Hanahan and Weinberg 2011). 

Tumor cells are affected by reciprocal interaction between the parenchymal and stromal 

cells either through direct contact or through signaling molecules. Therefore, the tumor 

microenvironment is an integral part of cancer initiation, growth and progression. 

Intercellular communications between tumor cells and their microenvironment create a 

context that promotes tumor growth and evasion from immune attack. This new 

perspective will reveal more underlying organizing principles of tumorigenesis and 

progression. The functions of the tumor microenvironment that contribute to sustained 

growth and survival of neoplastic cells during neoplastic progression is illustrated here. 

2.1.3.2 Sustaining proliferative signaling 

An indispensable feature of the tumor microenvironment is the ability to support 

and promote the proliferation of cancer cells (Hanahan and Weinberg 2011, Hanahan and 

Coussens 2012). Normal epithelial cells are connected with each other to form cellular 

apical and basal surfaces and maintain the differentiated state. The basement membrane, 

a specialized form of extracellular matrix, provides both structural support and a variety 

of polarization cues to the epithelium. Genetic alterations can cause the loss of polarity in 

dysplastic or metaplastic cells (Alison, Hunt et al. 2002). Aberrant interactions between 

epithelial cells and the basement membrane can support genomic instability within the 

epithelium. Alterations in communications between tumor cells and their environment 

have been proposed to account for increased proliferation (Hanahan and Coussens 2012).  
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2.1.3.3 Evading Growth Suppressors 

Tumor cells circumvent growth suppression in various ways, by inactivating or 

down-regulating tumor suppressor genes, or by evading cell-to-cell contact inhibition. 

Physical contacts among dense populations of normal cells can suppress further cell 

proliferation. This contact inhibition is an intrinsic mechanism for maintaining normal 

tissue homeostasis (Gatenby and Gillies 2008). Tumor cells, which carry mutations 

enabling neoplastic growth, can be suppressed when introduced into a context of normal 

connective tissue fibroblasts. The malignant phenotype of epithelial tumor cells could be 

reversed by the normal tissue microenvironment; normal fibroblasts hence act as an 

extrinsic epithelial growth suppressor at the early stage of cancer (Bissell and Hines 2011, 

Flaberg, Markasz et al. 2011). When the fibroblasts convert from normal tissue to cancer 

associated fibroblasts, the contact inhibition is abrogated (Bissell and Hines 2011, 

Flaberg, Markasz et al. 2011). The conversion might be driven by reprogramming of 

fibroblasts by dysplastic or metaplastic cells, or extrinsic conditions such as infection or 

fibrosis. The interplays between aberrant epithelial cells and their supporting fibroblasts 

might eventually relieve the inhibition of epithelial cell growth. As a result, neoplastic 

development takes place (Hanahan and Coussens 2012).  

2.1.3.4 Resisting cell death 

One barrier to tumorigenesis is programmed cell death, or apoptosis, which can be 

induced by various physiological stresses during tumorigenesis or anticancer therapy. 

Two machineries can trigger apoptosis: the extrinsic program, by which cells detect, 

receive and process extracellular death signals, and the intrinsic program, by which cells 

sense intracellular signals and initiate the apoptosis pathway.  
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When normal cells surrounding neoplastic cells sense the “invasion” or presence 

of foreign cell types, they will convey apoptotic signals to the neoplastic cells. Neoplastic 

cells have evolved diverse extrinsic and intrinsic strategies to avoid apoptosis and survive. 

In the microenvironment, cancer-associated fibroblasts synthesize molecules to form a 

neoplastic extracellular matrix for tumor cell survival (Lu, Weaver et al. 2012). 

Traditionally, normal immune cells combat pathogens and clean up the apoptotic cells. 

On the contrary, tumor-associated macrophages can bind to tumor cells, activate 

PI3K/AKT signaling, and suppress apoptosis (Chen, Zhang et al. 2011).  Tumor-

associated macrophages also guard tumor cells against chemotherapy-induced cell death 

in breast cancer (Shree, Olson et al. 2011). The interactions between cancer-associated 

fibroblasts and neoplastic cells facilitate evasion of apoptosis in the latter thus helping 

them evade the surveillance processes taking place in normal tissue. The resulting 

selective pressure for apoptosis-resistant tumor cells can lead to a significantly lower 

efficacy of cytotoxic and targeted therapy. Reprogramming energy metabolism 

Metabolic reprogramming in tumor cells was proposed more than eighty years 

ago (Warburg, Wind et al. 1927) and is recognized as an emerging hallmark of cancer 

(Hanahan and Weinberg 2011). Neoplastic cells need to adjust their energy metabolism 

to support rapid growth and proliferation. They can use a variety of fuel sources to 

generate energy, synthesize biomaterials such as nucleotides, amino acids, and organelles 

for assembling new cells.  The most prominent change is that cancer cells mainly rely on 

glycolysis rather than oxidative phosphorylation for their energy even in the presence of 

oxygen (Warburg, Wind et al. 1927). Metabolic reprogramming has been considered as 

the consequence of intrinsic mechanisms. However, more and more evidence is 
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substantiating the roles of reciprocal interactions between tumor cells and tumor 

microenvironment in metabolic reprogramming (Rattigan, Patel et al. 2012, Sotgia, 

Martinez-Outschoorn et al. 2012). 

Cancer-associated fibroblasts can switch to glycolytic pathway once they are 

induced by reactive oxygen species released by breast cancer cells (Rattigan, Patel et al. 

2012, Sotgia, Martinez-Outschoorn et al. 2012). Tumor cells can then uptake the lactate 

and pyruvate secreted by cancer-associated fibroblasts, to match their proliferation needs 

(Rattigan, Patel et al. 2012, Sotgia, Martinez-Outschoorn et al. 2012). In other cases, 

tumor cells utilize glucose and export lactate. Cancer-associated fibroblasts consume 

lactate, which acts as a paracrine modulator in driving tumor progression.  Lactate 

shuffling suggests a symbiotic relationship between tumor cells and tumor 

microenvironment (Rattigan, Patel et al. 2012), which promotes the tumor growth. 

2.1.3.6 Summary 

The contributions from the tumor microenvironment to neoplastic progression 

have recently attracted substantial attention in the field. Understanding how multiple types 

of cells are co-opted to support different stages of carcinogenesis and progression is 

fundamental in studying the cross-talk between tumors and their microenvironment. One of 

the central challenges in tumor microenvironment studies is the delineation of 

intercellular communication signaling networks in greater detail and clarity. Cells at 

different stages of progression may activate different molecular pathways to recruit, adapt 

to and interact with their microenvironment. Subpopulations of cells might become more 

malignant or resistant in the shelter of their microenvironment. New discoveries in the 

tumor environment field will help physicians design innovative multi-target strategies for 
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both primary tumors and metastatic stages and revolutionize the treatment and 

management of cancer. 

2.1.4 Metabolic reprogramming 

One of the emerging hallmarks of cancer is metabolic transformation, which 

supports cell growth and proliferation (Hanahan and Weinberg 2011). In 1927, Otto 

Warburg discovered that, in contrast to normal cells, cancer cells under normoxic 

conditions rely primarily on glycolysis instead of oxidative phosphorylation to support 

their energy needs (Warburg, Wind et al. 1927). This metabolic phenomenon is known as 

the “Warburg effect”. The Warburg effect has been both supported and refuted during the 

past century. In normal cells, the primary role of mitochondria is to produce energy in the 

form of ATP through oxidative phosphorylation. The hypothesis that tumor mitochondria 

are damaged was challenged because tumor mitochondria do respire and produce ATP 

through oxidative phosphorylation (Weinhouse 1976). In certain cancer types, the 

reprogramming of energy metabolism does not correlate with mitochondrial defects 

(Gogvadze, Orrenius et al. 2008), although some aggressive tumors do display 

mitochondrial deterioration (Gogvadze, Zhivotovsky et al. 2010).  

2.1.4.1 Hypoxia 

Hypoxia is a condition when the oxygen level in tissue is reduced to lower than 

80-100 Hg (Barer, Howard et al. 1970). It is implicated as a factor in a variety of diseases, 

including cancer. Hypoxic conditions are known to arise in intermediate stages of tumor 

growth. As tumor cells proliferate rapidly and massively, the distance between cells and 

the vasculature increases, which eventually creates a local microenvironment deficient in 

oxygen supply. Such hypoxic conditions become a selection pressure for tumor growth. 
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Tumor cells undergo genetic, transcriptional or metabolic level reprogramming in order 

to survive and proliferate under hypoxia (Harris 2002). Therefore, hypoxia is closely 

related to malignant phenotype and aggressive tumor behavior. 

Even though hypoxia is recognized as instrumental in tumor progression, its role 

in earlier premalignant progression is poorly understood. Hypoxia can also occur in 

chronic inflammation, a risk factor for cancer, in several forms such as ulceration, 

scarring or burns. Acute tissue oxygen level changes between hypoxia and 

reoxygeneration can generate reactive oxygen species. Deep ulceration in Barrett’s 

esophagus creates a periodic hypoxic environment for the esophageal epithelial cells 

(Suchorolski, Paulson et al. 2013). Barrett’s esophagus develops as a protective 

mechanism to the acid-bile reflex, which can result in hypoxic conditions. It is poorly 

understood how cells alter their genotypes and phenotypes under selective pressure of 

hypoxia during premalignant progression. 

In eukaryotic cells, the hypoxia-inducible factor (HIF) is a key molecular 

mediator under hypoxic conditions. HIF is a heterodimeric transcription factor, whose 

transcriptional activation function is inhibited under normoxic conditions. The inhibition 

is exerted via post-translational hydroxylation by oxygen-dependent oxygenases, prolyl 

hydroxylase domain proteins (PHD) (Masson, Willam et al. 2001) and factor inhibiting 

HIF (FIH) (Semenza 2002). Under hypoxia, HIF1-α translocates into the nucleus and 

interacts with co-activators p300/CBP to regulate a broad range of genes participating in 

adaptation to hypoxia (Semenza 2002). These proteins are involved in angiogenesis, 

metabolism, cell proliferation, apoptosis, immortalization and migration. The interplay 

between oncogenic pathways and hypoxia responses are discussed below. 
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2.1.4.2 Angiogenesis 

HIF1-α triggers the expression of genes involved in blood-vessel formation, such 

as vascular endothelial growth factor-A (VEGF-A) and angiopoietin (Ang-2) (Oh, Takagi 

et al. 1999). VEGF can be secreted by cancer cells and normal cells in response to 

hypoxia. Consequently, new vasculatures can be formed to provide oxygen and nutrition 

to the cells. Nonetheless, the newly generated vessels are usually distorted, irregular, and 

leaky, which results in oxygen supply deficiencies. 

2.1.4.3 Metabolism 

Hypoxic cells usually switch from mitochondrial oxidative phosphorylation to 

glycolysis to meet their energy needs. This is promoted by HIF-mediated expression of 

both glucose transporters and enzymes in the glycolytic pathway. Glucose transporters 

GLUT1 and GLUT3 facilitate cellular glucose uptake (Vannucci, Seaman et al. 1996). 

Two enzymes in the pyruvate metabolism pathway are known to be mediated by HIF1-α. 

Lactate dehydrogenase A (LDH-A) is responsible for converting pyruvate to lactate. 

Pyruvate dehydrogenase kinase 1 (PDK1) is enzyme that phosphorylates and inactivates 

pyruvate dehydrogenase (PDH), thereby feeding pyruvate into the glycolysis rather than 

oxidative phosphorylation (Kim, Tchernyshyov et al. 2006). 

The mammalian target of rapamycin (mTOR) pathway is inhibited by HIF 

downstream of O2-sensing. Under normoxic conditions, diverse signals converge to the 

mTOR kinase and the latter transmits the signal to regulate cell survival and growth 

through mRNA translation, ribosomal biogenesis and metabolism. Hypoxia can inhibit 

mTOR pathway and thereby control protein synthesis, energy metabolism and cell 

survival under the selection pressure (Brugarolas, Lei et al. 2004). 
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2.1.4.4 Proliferation 

Hypoxia affects cell proliferation by inducing the production of growth factors, 

such as transforming growth factor-β and platelet-derived growth factor (Lal, Peters et al. 

2001). Some factors upstream of HIF-1α expression or function also regulate cell 

proliferation. Proteins in oncogene signaling pathways, such as p42/p44 mitogen-

activated protein kinases (Berra 2000) and phosphatidylinositol 3-OH kinase (PI3K) 

(Zundel, Schindler et al. 2000) regulate HIF-1α either transcriptionally or post-

transcriptionally and synergistically promote cell growth. 

2.1.4.5 Apoptosis or Necrosis 

Hypoxia can induce apoptotic and necrotic cell death. HIF-1α increases the 

expression of NIX (Sowter, Ratcliffe et al. 2001) and NIP3 (Bruick 2000, Velde, Cizeau 

et al. 2000). Activated NIP3 can cause early plasma-membrane permeability, cytoplasmic 

vacuolation, mitochondrial damage and mitochondrial autophagy, which can eventually 

lead to necrosis.  

The way HIF-1α interacts with p53-dependent apoptosis is determined by HIF-1α 

phosphorylation status (Suzuki, Tomida et al. 2001). When HIF-1α is dephosphorylated, 

there are two possible scenarios: HIF-1α stabilizes p53 and activates apoptosis, or p53 

blocks HIF-1α and inhibits the transcriptional activation of anti-apoptotic genes. When 

HIF-1α is phosphorylated, it binds to ARNT (Bacon and Harris 2004) and regulates 

cytochrome c-independent apoptosis via NIX and NIP3. 

Tumor cells have developed strategies to evade the apoptosis induced by HIF-1α. 

In the early stages of tumor progression, the activation of pro-apoptotic genes can be 

induced by hypoxia. Circumventing apoptosis due to hypoxia becomes a selective factor 
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for tumor cells. Cells that survive hypoxia would gain advantage in the clonal evolution 

of cancer and exhibit aggressive phenotypes that is associated with hypoxia. 

2.1.4.6 Genomic instability 

Hypoxia can alter cell cycle checkpoint control as well as sensing and repair of 

DNA damage. Acute hypoxia usually generates reactive oxygen species during the 

anoxia and re-oxygenation cycle. Acute hypoxia can activate cellular ataxia telangiectasia 

mutated (ATM) – ataxia telangiectasia- and Rad3-related kinase (ATR)-mediated cell 

cycle check points to arrest the cell cycle and repair DNA damage caused by reactive 

oxygen species (Bristow and Hill 2008). Failure in repairing DNA breaks will contribute 

to a markedly increased genomic instability.  

Chronic hypoxia can cause genomic instability because translation of DNA repair 

proteins is slowed down. This will result in defective DNA repair, chromosomal 

aberrations, fragility, and aneuploidy in proliferating cells. 

2.1.4.7 Migration 

HIF-1α activation enhances esophageal adenocarcinoma migration and invasion 

(Jing, Wang et al. 2013). HIF-1α activation attenuates the expression of E-cadherin, a 

component of adherens junctions which bind cells within tissues together (Imai, Horiuchi 

et al. 2003).  HIF-1α also enhances the expression matrix metalloproteinase-2 (MMP-2), 

which disrupts cell-cell and cell-matrix interactions) (Semenza 2003), twist family bHLH 

transcription factor 1 (TWIST1), which regulates epithelial-mesenchymal transition) 

(Yang 2008), and c-met, which promotes invasive growth (Pennacchietti, Michieli et al. 

2003). 
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2.2 Barrett’s esophagus 

2.2.1 Overview 

Barrett’s esophagus (BE) is a pre-malignant condition of esophageal 

adenocarcinoma. Barrett’s esophagus develops when esophageal squamous epithelium is 

damaged by chronic acid-bile reflux and replaced by columnar epithelium. Barrett’s 

esophagus is the strongest risk factor for esophageal adenocarcinoma (EAC). Patients 

with Barrett’s esophagus have 30- to 60-fold greater risk of developing esophageal 

adenocarcinoma than the general population (Cameron, Ott et al. 1985, Drewitz, 

Sampliner et al. 1997, Kim, Weissfeld et al. 1997). Recent studies suggest that an 

approximate yearly rate of 0.5% of Barrett’s esophagus patients who progress to 

adenocarcinoma (Shaheen, Crosby et al. 2000). The incidence of EAC has increased 7-

fold from 1973 (3.6 cases per million) to 2006 (25.6 per million) in the United States 

(Spechler 2013). The increasing trend of esophageal adenocarcinoma is greater than that 

reported in melanoma, breast cancer and prostate cancer. The prognosis of esophageal 

adenocarcinoma is poor, with a five-year survival rate of only about 10% in most 

Western countries (Portale, Hagen et al. 2006). Introduction of screening and surveillance 

programs for early BE and EAC detection have resulted in greater survival rates. 

Other than early identification and stratification purposes, Barrett’s esophagus is 

considered as a valuable model for studying premalignant progression of cancer. Most 

premalignant conditions are difficult to follow, either because they are removed upon 

detection (colonic polyps) or hard to biopsy (pancreatic cancer) (Paulson and Reid 2004). 

In contrast, periodic biopsies of Barrett’s esophagus patients can be taken from the same 

patient to test for dysplasia as a part of standard-of-care. This allows researchers to study 
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premalignant progression longitudinally and evaluate genetic alteration during clonal 

evolution in cancer. By studying the different steps during pre-malignant progression in 

Barrett’s esophagus, researchers can gain insights into molecular mechanisms and 

potentially expand the findings to other types of cancers. 

Pathological examination of tissue architecture has been the standard detection 

and classification method for Barrett’s esophagus diagnosis and treatment. Dysplasia in 

Barrett’s esophagus is the neoplastic epithelium which is still confined within the 

basement membrane and has not formed a mass. Dysplasia has been used as a marker for 

patient’s stratification for the risk of developing adenocarcinoma (Reid, Levine et al. 

2000, Weston, Sharma et al. 2000, Schnell, Sontag et al. 2001, Overholt, Lightdale et al. 

2005). Barrett’s esophagus ranges from metaplasia, low-grade dysplasia, high-grade 

dysplasia and invasive carcinoma. Challenges with using histology-based clinical care 

involve variation among pathologists’ interpretations, high biological heterogeneity 

within the same grade of dysplasia and so forth (Ong, Lao-Sirieix et al. 2010). Therefore, 

identifying molecular and/or imaging markers for Barrett’s esophagus neoplastic 

progression and esophageal adenocarcinoma risk prediction is urgent and necessary. 

Besides tissue architecture, promising biomarkers for surveillance of Barrett’s 

esophagus patients include DNA content abnormalities and loss of heterozygosity 

(9pLOH , 17pLOH) (Galipeau, Li et al. 2007), and markers of proliferation 

(minichromosome maintenance protein (Mcm) 2, 5 and Ki67 (Sirieix, O’Donovan et al. 

2003), p53 positivity by immunohistochemistry (Weston, Banerjee et al. 2001, Murray, 

Sedo et al. 2006), cell cycle marker (CDKN2A, cyclin A and cyclin D) (Lao-Sirieix, Lovat 

et al. 2007), epigenetic changes (methylation markers) (Schulmann, Sterian et al. 2005, 
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Jin, Cheng et al. 2009). These markers have gone through the third or fourth stage of 

biomarkers development as defined by the Early Detection Research Network (EDRN) 

(Pepe, Etzioni et al. 2001, Ong, Lao-Sirieix et al. 2010). These markers, representing 

genomic instability, disruption of regulatory pathways and genetic divergence, also 

feature fundamental properties of neoplastic progression. However, most of these 

biomarkers are not clinically available because the biomarker lacks sufficient sensitivity 

and specificity (Pepe, Etzioni et al. 2001, Ong, Lao-Sirieix et al. 2010). This calls for 

large scale translational research to advance the field of biomarker discovery and clinical 

implementation. 

2.2.2 Hallmarks of pre-malignant progression in Barrett’s esophagus 

Neoplastic progression in Barrett’s esophagus arises from a series of genetic and 

epigenetic changes. These changes can be categorized according to the cancer hallmark 

traits that they affect. The hallmarks contribute to the evolution and progression from 

Barrett’s metaplastic cells to esophageal adenocarcinoma (Morales, Souza et al. 2002).  

2.2.2.1 Sustaining proliferative signaling 

Genetic alterations in cell-cycle control genes usually can affect cell proliferation. 

Growth factors, hormones, and cytokines can activate transmembrane receptors and 

downstream signaling pathways that include pro-growth cyclin protein family. In 

Barrett’s esophagus, cyclin D1 and cyclin E (Bani-Hani, Martin et al. 2000) are 

overexpressed. They form complexes with cyclin-dependent kinases and drive cell-cycle 

progression. Tumor cells can also promote their own growth via autocrine signaling with 

growth factors or by modifying the growth-factor receptors to achieve growth self-

sufficiency. The pre-malignant progression in Barrett’s esophagus is also associated with 
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upregulation of epidermal growth factor (Pande, Iyer et al. 2008), Erb family of tyrosine-

kinase ligands and receptors (Miller, Moy et al. 2003), transforming growth factor (Rees, 

Onwuegbusi et al. 2006), and fibroblast growth factor (Lord, Park et al. 2003). 

2.2.2.2 Evading growth suppressors 

Mutations of TP53 (Gonzalez, Artimez et al. 1997) and CDKN2A (Klump, Hsieh 

et al. 1998, Wang, Guo et al. 2009), promoter hypermethylation of CDKN2A and APC 

(Wang, Guo et al. 2009), and non-random losses of heterozygosity (Barrett, Sanchez et al. 

1999) are common inactivation mechanisms of tumor suppressor genes. Abnormalities in 

these genes block anti-growth signals. Hypermethylation of p16 and APC is a frequent 

and early event during the progression from normal esophagus through Barrett’s 

esophagus to esophageal adenocarcinoma. It is a strong predictor of progression to high-

grade dysplasia or esophageal adenocarcinoma in Barrett’s esophagus patients (Wang, 

Guo et al. 2009). Loss of p53 function also occurs at an early stage of progression, which 

inactivates cell cycle check point mechanisms and increases the fraction of 4N cells with 

4N DNA amount (Galipeau, Cowan et al. 1996). 

2.2.2.3 Resisting cell death 

Inhibition of apoptosis occurs early in the dysplasia-carcinoma sequence of 

Barrett’s esophagus (Katada, Hinder et al. 1997, Halm, Tannapfel et al. 1999). In both 

Barrett’s metaplasia and esophageal adenocarcinoma, the overexpression of 

cyclooxygenase-2 (COX-2) (Wilson, Fu et al. 1998, Morris, Armstrong et al. 2001, Souza, 

Shewmake et al. 2004) and Bcl-2 (Shimizu, Vallböhmer et al. 2006) inhibits the apoptotic 

pathways.  
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In normal cells, severe DNA damage causes an accumulation of p53 and 

apoptosis.  But in Barrett’s esophagus cells, loss of heterozygosity of p53 occur in 57% 

of patients with high-grade dysplasia. The loss of heterozygosity of p53 helps the cells 

with DNA damage evade apoptosis and thereby increases the genomic instability. These 

patients are at increased risk for neoplastic progression to esophageal adenocarcinoma 

(Reid, Prevo et al. 2001). 

2.2.2.4 Enabling replicative immortality 

To overcome the replicative limit and gain replicative potential, neoplastic cells 

need to stabilize their telomeres by reactivating telomerase (Shay and Bacchetti 1997). In 

the Barrett’s metaplasia, dysplasia, and esophageal adenocarcinoma sequence, the 

expression of telomerase progressively increases (Morales, Lee et al. 1998, Lord, Salonga 

et al. 2000). Telomerase activation may be the main reason why Barrett’s esophagus cells 

become immortal. 

2.2.2.5 Inducing angiogenesis 

Any neoplasm larger than a few milligrams requires sustained angiogenesis to 

survive (Ausprunk and Folkman 1977). Vascular endothelial growth factors (VEGFs) 

family stimulate endothelial cells of blood vessels to grow and migrate, thus inducing 

angiogenesis. Different members of VEGF family are expressed in epithelial and 

endothelial cells during the neoplastic progression of Barrett’s esophagus, correlating 

with angiogenesis in the same process (Couvelard, Paraf et al. 2000). Expression levels of 

VEGF and fibroblast growth factor (FGF) were significantly increased in 

adenocarcinoma compared with in normal squamous mucosa or intestinal metaplasia 

(Lord, Park et al. 2003). Microvessel intensity and the percentage of immature blood 
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vessels also increase in this progression (Sihvo, Ruohtula et al. 2003). Therefore, 

angiogenesis and neovascularization may emerge early in Barrett’s esophagus and 

develop progressively in the metaplasia-dysplasia-adenocarcinoma sequence. 

2.2.2.6 Activating invasion and metastasis 

Esophageal adenocarcinoma is prone to early metastasis (Dulak, Stojanov et al. 

2013). Alterations in cell-cell adhesion as well as motility signals may contribute to 

invasion and metastasis. The expression of E-cadherin, which bridges two cells, is 

significantly down-regulated as the Barrett's metaplasia-dysplasia-adenocarcinoma 

sequence progresses (Bailey, Biddlestone et al. 1998). Recurrent mutations in RAC1 cell 

motility signaling pathway are identified in esophageal adenocarcinoma (Dulak, Stojanov 

et al. 2013). Activated RAC1 signaling can enhance cell invasiveness and motility. These 

genetic changes may alter cytoskeletal structure, increase invasive properties, induce 

mitosis, and thereby increasing tumor fitness (Dulak, Stojanov et al. 2013). 

2.2.2.7 Reprogramming of energy metabolism 

In esophageal adenocarcinoma, cells mainly rely on glycolysis rather than 

oxidative phosphorylation to produce ATP with damaged mitochondria, known as the 

Warburg effect (Warburg, Wind et al. 1927, Taylor, Smith et al. 2009). A panel of 

metabolic related or hypoxia response genes, such as Glut-1 (Younes, Ertan et al. 1997), 

pyruvate kinase isoform M2 (PKM2) (Koss, Harrison et al. 2004), VEGF and 

erythropoietin (EPO) (Griffiths, Pritchard et al. 2007) have been reported in Barrett’s 

esophagus tissue. 

Barrett's metaplastic cells generate energy through normal mitochondrial 

phosphorylation. In the intermediate stages of Barrett’s dysplasia, cells retained 
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functional mitochondria, employ oxidative phosphorylation to produce energy and 

increase glycolysis in response to substrate (Suchorolski, Paulson et al. 2013).  

2.2.2.8 Evading immune destruction 

FasL (death-promoting ligand) is a surface protein usually expressed by activated 

lymphocytes and binds to Fas (death receptor) on lymphocytes and gut-epithelial cells. 

The lymphocytes received the death signal and attack neoplastic cells. In Barrett’s 

metaplastic tissue, neoplastic cells express an excess amount of FasL, which occupies 

Fas on the surface of lymphocytes and kills them (Younes, Schwartz et al. 1999, Younes, 

Lechago et al. 2000). This is mechanism how Barrett’s esophagus cells evades immune 

surveillance.  

2.2.2.9 Genomic instability 

Chromosomal and genomic instability predicts the progression of Barrett’s 

esophagus (Rabinovitch, Reid et al. 1989, Galipeau, Cowan et al. 1996, Barrett, Sanchez 

et al. 1999, Paulson, Maley et al. 2009). 17p (p53) allelic losses, methylation of 

CDKN2A/p16, loss of heterozygpsity at 5q, 9p, 13q, 17p and 18q, DNA-content 

aneuploidy or increased 4N (G2/tetraploid) populations are all associated with Barrett’s 

esophagus neoplastic progression (Barrett, Sanchez et al. 1999). Genome-wide analysis 

shows the number of copy number alterations predicts the progression as well (Paulson, 

Maley et al. 2009).    

2.2.2.10 Tumor-promoting inflammation 

Tumor tissues are often infiltrated by immune cells that enable or promote tumor 

growth. Acid and bile reflux causes inflammation in esophagus, which potentially causes 

Barrett’s metaplastic cells to progress (Fitzgerald, Abdalla et al. 2002). The inflammatory 
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cell infiltrate generates reactive oxygen species (Naya, Pereboom et al. 1997), which 

might contribute to DNA damage. Reactive oxygen species may also induce growth 

factors, survival factors or Fas ligand secretions (Younes, Schwartz et al. 1999). 

Inflammatory cell infiltrate themselves produce many cytokines, such as transforming 

growth factor β (TGFβ), interleukin one β (IL-1β), interferon γ (IFNγ), interleukin six 

(IL-6) (Zhang, Zhang et al. 2011) and TNFα (Tselepis, Perry et al. 2002). Persistence of 

Barrett’s metaplasia and the development of dysplasia and adenocarcinoma are closely 

associated with IL-1β and TNFα (Jankowski, Harrison et al. 2000). 

2.2.2.11 Tumor microenvironment 

Barrett’s esophagus cells evolve under the influence of their surrounding cells and 

other factors in the environment. Acid and bile in Barrett’s luminal refluxate can induce 

double-stranded DNA breaks or promote oxidative DNA damage (Clemons, McColl et al. 

2007).  

In the stromal compartment of Barrett’s esophagus, the gene expression profiles 

are different between different stages of progression (Lao-Sirieix and Fitzgerald 2010). 

Thrombospondin-1 (TSP1) is overexpressed in stroma from Barrett’s esophagus biopsy 

samples. TSP1 can activate TGFβ, which either controls proliferation or promotes 

epithelial-mesenchymal transition in Barrett’s esophagus and esophageal adenocarcinoma 

(Rees, Onwuegbusi et al. 2006, Onwuegbusi, Rees et al. 2007). Furthermore, co-culture 

of squamous carcinoma and Barrett’s carcinoma cells produces more pro-inflammatory 

cytokines compared with cells cultured individually (Fitzgerald, Abdalla et al. 2002). 
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2.2.3 Models of Barrett’s esophagus neoplastic progression 

Pre-clinical models of Barrett’s esophagus neoplastic progression exist in both 

tissue culture and animal models. Tissue culture models include (1) squamous cell culture: 

EPC2 cells (Harada, Nakagawa et al. 2003), an esophageal epithelial cell line 

transformed with hTERT; (2) Barrett’s esophagus cell culture: CP-A, derived from a 

patient with metaplastic BE, immortalized with hTERT transfection, with inactivated 

CDKN2A and wildtype TP53; CP-B, CP-C and CP-D derived from patients with high-

grade dysplasia and display CDKN2A and TP53 abnormalities (Palanca-Wessels, Barrett 

et al. 1998); BAR-T, immortalized with hTERT, initially show both functioning CDKN2A 

and TP53, and lost CDKN2A during adaptation to culture conditions (Jaiswal, Morales et 

al. 2007) (3) esophageal adenocarcinoma cell culture, 10 cell lines have been verified to 

be derived from human esophageal adenocarcinoma, including FLO-1, KYAE-1, SK-GT-

4, OE19, OE33, JH-EsoAd1, OACP4C, OACM5.1, ESO26, and ESO51 (Boonstra, van 

Marion et al. 2010). Recently, Okawa T et al. (Okawa, Michaylira et al. 2007), Koskoff et 

al. (Kosoff, Gardiner et al. 2012) and Stairs et al. (Stairs, Nakagawa et al. 2008) created 

organotypic models of Barrett’s esophagus and esophageal adenocarcinoma to mimic the 

tumor microenvironment in vivo. Rat, mouse and dog models exist for Barrett’s 

esophagus study. Surgical models are created by inducing reflux of gastrodeudenal acid-

bile reflex into the esophagus, or removing the mucosa of the distal esophagus and 

generating a hiatal hernia thus inducing columnar epithelium. Surgical models are 

difficult to implement and have not been popular. Genetic models for Barrett’s esophagus 

are up-and-coming. One of the latest developments of genetic models include rat models 

expressing intestinal transcription factor Cdx2 ectopically in esophageal squamous tissues, 
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which demonstrate a progression from squamous epithelium to Barrett’s esophagus 

(Kong, Crissey et al. 2011). In 2011, Wang and Ouyang et al. reported that p63-deficient 

mice develop intestine-like metaplasia similar to Barrett’s esophagus in a process that 

p63-null embryonic cells migrate towards epithelium and facilitate the proliferation of 

columnar epithelial cells (Wang, Ouyang et al. 2011). 

In this study, cell lines representing normal squamous (EPC-2), early (CP-A) and 

late (CP-B, CP-C, and CP-D) in Barrett’s esophagus neoplastic progression are used to 

characterize intracellular interactions and energy metabolism changes in pre-malignant 

progression that have persisted in culture. 

2.2.4 Genome and transcriptome study of Barrett’s esophagus 

Genome-wide study of neoplastic progression in Barrett’s esophagus started more 

than 10 years ago. In 2001, Riegman et al. reported an inventory of genetic aberration 

during the malignant transformation in Barrett’s esophagus, using comparative genomic 

hybridization method to evaluate esophageal adenocarcinomas, as well as metaplasia, 

low-grade dysplasia and high-grade dysplasia in Barrett’s esophagus (Riegman, Vissers 

et al. 2001). They identified losses of 5q21-q23, 9p21, 17p12–13.1, 18q21, and Y in low-

grade dysplasia, loss of 7q33-q35 and gains of 7p12-p15, 7q21-q22, and 17q21 in high-

grade dysplasia, and a variety of known and novel aberrations in adenocarcinoma as well. 

This study also revealed potential discriminators between different stages of neoplastic 

progression and adenocarcinoma.  

Furthermore, Barrett et al. performed transcriptional profiling on biopsies 

obtained from Barrett’s metaplasia and normal upper gastrointestinal mucosae, including 

gastric, duodenal, and esophageal squamous epithelium using oligonucleotide microarray 
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in 2002 (Barrett, Yeung et al. 2002). They identified tissue-specific cluster of genes 

whose expression was elevated in each of the four tissues. The Barrett’s esophagus 

cluster showed genes are associated with a panel of different functional categories 

including cell cycle alteration, apoptosis, cellular movement, and stress responses, which 

are all associated with neoplasia. With the advancement of technology, researchers have 

performed differential gene expression profiling on normal, Barrett’s esophagus and 

adenocarcinoma tissues, and found out genes involved in epidermal differentiation are 

suppressed during the progression to adenocarcinoma (Kimchi, Posner et al. 2005, Luthra, 

Wu et al. 2006). In 2009, Wang et al. analyzed three publically available microarray 

datasets and one public serial analysis of gene expression (SAGE) dataset using Gene Set 

Enrichment Analysis and immunohistochemistry methods. The results suggested that 

transcription factors such as CDX1 and CDX2, as well as BMP/TGFβ pathways might be 

involved in the development of Barrett’s esophagus (Wang, Qin et al. 2009). 

Genome-wide single nucleotide polymorphisms (SNPs) studies provide a 

powerful tool to discover genetic cause and premalignant neoplastic progression of 

Barrett’s esophagus. A study using high resolution array-comparative genomic 

hybridization by Lai et al. showed that copy number and allelic changes, corresponding 

to genomic instability, increase during the course of neoplastic progression (Lai, Paulson 

et al. 2007). Notably, the first genome-wide association study of Barrett’s esophagus also 

employed a SNP test to analyze samples from more than 10,000 cases and controls (Su, 

Gay et al. 2012). The paper reported two SNPs on chromosomes 6p21 and 16q24 

predispose to the development of Barrett’s esophagus. The lead SNP 6p21 is close to the 

major histocompatability complex (MHC) region, where immune system, inflammation 
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and olfactory related genes are located. The other region 16q24 is close to FOXF1, which 

is involved in gastrointestinal tract development. 

2.3 Single cell transcription analysis 

2.3.1 Single cell analysis 

Many traditional biochemical approaches rely on the presumption that cells within 

a population appear similar and behave like each other. Most assays are based on the lysis 

of hundreds or thousands of cells and the discernment of their component parts. However, 

cell-to-cell differences widely exist in multiple cell and tissue types, ranging from uni-

cellular organisms to complex tissues (Lidstrom and Meldrum 2003, Raj and van 

Oudenaarden 2008). Cellular heterogeneity within genetically similar or identical cell 

populations usually arises from stochastic expression of genes, proteins and metabolites 

(Wang and Bodovitz 2010). The sources of such variability can be ascribed to extrinsic 

factors, such as subtle differences in the microenvironment (growth factors, oxygen and 

other environmental components), or intrinsic factors which are due to the inherently 

probabilistic and discrete nature (Snijder and Pelkmans 2011). Therefore, biochemical 

research at the bulk-cell level is prone to average out the cellular heterogeneity and mask 

the presence of functionally important subpopulation of cells.  

Single cell analysis is a new frontier for gaining insights into cancer (Dalerba, 

Kalisky et al. 2011). A tumor is not merely a collection of malignant cells with identical 

behavior. Solid tumors are usually composed of molecularly distinct clones that differ in 

growth rates, metastatic potential and responses to drug treatment. Tumor heterogeneity 

adds complexity and difficulty in discovering diagnostic and prognostic cancer 

biomarkers, as well as finding effective target therapies of disease. Single cell analysis 
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can not only measure intratumor heterogeneity, but detect rare tumor cells at early stages 

(Russnes, Navin et al. 2011) and monitor circulating tumor cells. Investigating cancer at 

single-cell resolution has the potential to resolve fundamental biological questions and 

improve disease management. 

Currently, single cell analysis has been challenging for several reasons: (1) the 

scarcity of the components, such as DNA, RNA and proteins, inside a single cell and (2) 

the lack of integrative analysis tools for “omics” data at the single-cell level. Over the 

past decade, significant efforts have been made towards developing tools to overcome the 

limitations and uncover the biology inside a single cell (Van Gelder, von Zastrow et al. 

1990, Chiu and Lorenz 2009, Tang, Barbacioru et al. 2009, Zhu, Holl et al. 2009, Anis, 

Holl et al. 2010, Taniguchi, Choi et al. 2010, Tay, Hughey et al. 2010, Anis, Houkal et al. 

2011, Bendall, Simonds et al. 2011, Fan, Wang et al. 2011, Flatz, Roychoudhuri et al. 

2011, Gao, Zhang et al. 2011, Navin, Kendall et al. 2011, Schubert 2011, Zeng, Wang et 

al. 2011, Bartfai, Buckley et al. 2012, Kelbauskas, Ashili et al. 2012, Xu, Hou et al. 2012, 

Zong, Lu et al. 2012, Shi, Gao et al. 2013, Wang, Shi et al. 2013). Specifically, the ability 

of dissecting the transcriptome at the single-cell level, using next-generation sequencing 

(Tang, Barbacioru et al. 2009, Navin, Kendall et al. 2011, Xu, Hou et al. 2012, Zong, Lu 

et al. 2012, Lasken 2013), quantitative polymerase chain reaction (qPCR) (Flatz, 

Roychoudhuri et al. 2011, Zeng, Wang et al. 2011) and microscopy (Taniguchi, Choi et 

al. 2010), has greatly advanced our knowledge in understanding complex systems such as 

cancer and development. 
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2.3.2 Methods for transcript profiling at the single-cell level 

Three major categories of transcript profiling methods exist for single-cell 

analysis: (1) whole-genome RNA-Seq, (2) real-time qPCR (RT-qPCR), and (3) image-

based single molecule RNA fluorescence in situ hybridization (FISH). Both RNA-Seq 

and RT-qPCR take cell lysate as the input, while RNA FISH examines fixed and 

permeabilized cells. The former two approaches share common steps: single cell 

harvesting, cDNA synthesis and detection.  

2.3.2.1 Harvesting 

Prior to end-point analysis of transcripts, single cells need to be isolated from 

culture or tissue, or retrieved from experimental platforms. Single cells should be 

harvested with minimal perturbation to their original state.  

2.3.2.1.1 Micromanipulation 

Micromanipulation has been the gold standard method for handling single cells. 

There are two types of micromanipulation: mechanical and optical manipulations. A 

mechanical micromanipulation system usually has an inverted microscope, a motorized 

platform operated by a joy-stick, and a microcapillary pipette connected to a pump for 

aspirating and dispensing single cells. Using a mechanical micromanipulator, single cells 

can be individually captured from a cell population and transferred to other culture 

conditions or end-point experimental vials. A more advanced system with vision-based 

feedback control can help users verify the successful transfer of single cells into a new 

experimental condition or vial, adding a straight-forward quality control step (Anis, Holl 

et al. 2010, Anis, Houkal et al. 2011, Zeng, Wang et al. 2011, Kelbauskas, Ashili et al. 
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2012). Current mechanical micromanipulation platforms largely rely on the expertise of a 

well-trained experimentalist, have low throughput and are difficult to automate. 

Optical tweezers are another micromanipulation method. Single cells can be 

trapped and manipulated by highly focused, near-infrared laser beams (Arai, Ng et al. 

2005, Zhang and Liu 2008). Two forces applied by the light, the scattering force and the 

gradient force, can move the trapped cell and transfer it to another compartment for later 

analysis. The optical manipulation is sterile because it does not need physical contact. 

Fortunately, visual evaluation of single cells is an inherent advantage of optical tweezer 

manipulation. However, the throughput of optical micromanipulation is also limited and 

automation is hard to achieve. At present, micromanipulation is probably the most precise 

method for single-cell isolation and transfer. Nonetheless, implementation of high-

throughput and automated platforms, with minimal damage to the cells, is needed 

urgently for single-cell analysis (Yun, Kim et al. 2013). 

2.3.2.1.2 Laser capture microdissection 

Laser capture microdissection is a method to obtain single cells from a fixed 

tissue or live cell culture under the guidance of microscopic visualization. A typical laser 

capture microdissection process includes the following steps: (1) visualizing cells via 

light microscopy, (2) transferring infrared laser energy to melt a thermolabile polymer 

and form a polymer-cell composite (capture method), or transferring ultraviolet laser 

energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (3) 

removing single cells from the tissue or live culture (Emmert-Buck, Bonner et al. 1996, 

Suarez-Quian, Goldstein et al. 1999). One outstanding advantage of laser capture 

microdissection is that samples can be preserved in the condition closest to its original 
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one, without physical contact or contamination. However, even though laser capture 

microdissection has visual-feedback control during cell collection, it does not have this 

control when it places single cells into tubes or other vials. The throughput is also limited 

because it could only capture one cell at a time. Laser capture microdissection is a precise 

single cell sampling technique that could be used in DNA, RNA (Tietjen, Rihel et al. 

2003), protein and metabolite level analysis (Suarez-Quian, Goldstein et al. 1999, 

Golubeva, Salcedo et al. 2013). 

2.3.2.1.3 Fluorescent-activated cell sorting 

Fluorescent-activated cell sorting (FACS) is an automated, high-throughput 

method for harvesting single cells. In FACS, cells from tissue or culture are dissociated, 

suspended and then mixed with a carrier fluid. A stream of cells is generated by 

hydrodynamic focusing. Only single cells could pass through an illumination zone where 

forward and side light scatter and several fluorescence parameters can be measured. An 

intense vibrator underneath the illumination zone creates droplets from the stream. Each 

droplet contains only one single cell. Droplets carrying individual cells are charged and 

deflected into a micro-titer plate. FACS can sort single cells with a rate up to 40 cells per 

second (El-Ali, Sorger et al. 2006). Nonetheless, because cells should be dissociated from 

the tissue or culture, the transcriptome changes due to microenvironment alteration may 

cover up the original subtle RNA profiles of the cell of interest. Moreover, FACS 

requires a relatively large volume of sample and reagent for analysis, which limits the full 

utilization of the FACS system in precious biological samples. 
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2.3.2.1.4 Microfluidics 

The microfluidic lab-on-a-chip platform has emerged as a powerful technology to 

analyze microscale to nanoscale biological systems (Zare and Kim 2010). It can handle 

rare cells and streamline multiple procedures on a single chip with high-throughput (Chiu 

and Lorenz 2009). A plethora of microfluidic single cell sorting/isolation techniques have 

been developed based on various forces, including optical (Krishnan and Erickson 2012), 

magnetic (Liu, Lien et al. 2009), electrical (Prinz, Tegenfeldt et al. 2002, Peitz and van 

Leeuwen 2010) and mechanical force (Di Carlo, Wu et al. 2006).  

In optical manipulation, target cells in a microfluidic channel can be 

simultaneously measured and sorted based on their physical properties, such as size, light 

absorption and refractive index (Zhang and Liu 2008). Optical trapping can be combined 

with a microfluidic system, which helps investigators manipulate the microenvironment 

and study cell behavior and response under physical and chemical stimulation.  

Magnetic-activated cell sorting techniques sort single cells based on their 

membrane-conjugated magnetic nanoparticles or internalized magnetic nanoparticles 

(Schmitz, Radbruch et al. 1994, Tseng, Judy et al. 2012). Microfluidic channels or 

microwells can be integrated with magnets to generate a magnetic field and trap single 

cells attached to magnetic beads (Tseng, Judy et al. 2012). 

Dielectrophoresis is a noncontact, noninvasive method to trap and isolate cells 

from a heterogeneous culture (Pohl and Pohl 1978). A microfluidic cytometer utilizing 

dielectrophoresis was developed to trap cells against fluid flows (Hu, Bessette et al. 2005, 

Hunt and Westervelt 2006). Dielectrophoresis operates on the motion of dielectric cells, 
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focuses on cells within the fluid stream and then traps single cells into the center of the 

microchannel.  

Hydrodynamic manipulation is the most common mechanical approach for 

isolating cells (Yang, Li et al. 2002, Wheeler, Throndset et al. 2003, Lee, Hung et al. 

2005). Cells can be hydrodynamically focused into a narrow stream inside a 

microchannel. This is then followed with accurate positioning of cells by balanced flows.  

Microfluidic single-cell isolation techniques hold great potential for engineering 

and biotechnological studies because they are handy, inexpensive and high throughput. 

When combined with other upstream (microenvironment monitoring, drug treatment, 

imaging and so on) or downstream biochemical assays, microfluidics can become more 

versatile in the blooming field of single-cell analysis.  

2.3.2.1.5 Summary of harvesting methods 

Each of the current single cell harvesting techniques has its own advantages and 

drawbacks. The micropipette manipulation method has almost the highest precision but 

its throughput is low. Laser capture microdissection does not perturb the original states of 

the cell but the cost is expensive. Fluorescent-activated cell sorting is a traditional method 

for sorting cells. However, non-cellular particles or multiple cells can be collected as a 

single cell in the process. The achievements of microfluidic single-cell isolation 

techniques are encouraging in mimicking tissue or organ-like network environments in 

vitro. The above-mentioned techniques will become more useful when combined with 

other phenotype measurement techniques to explore various aspects of single cells. 
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2.3.2.2 Next-generation sequencing 

Next-generation sequencing has become a revolutionary approach for acquiring 

genome-scale data since 2005 (Margulies, Egholm et al. 2005). It allows for more 

qualitative and quantitative DNA to be acquired than the automated Sanger sequencing 

method (Sanger, Nicklen et al. 1977) which is considered “first-generation” technology. 

Next-generation sequencing brought paradigm shifts in many perspectives including 

template preparation, sequencing, and data analysis (Reis-Filho 2009). 

2.3.2.2.1 Template Preparation 

Next-generation sequencing does not require a cloning step as needed in the 

Sanger sequencing approach (Metzker 2010, Mardis 2011, Mardis 2013). DNA are 

randomly broken into smaller sizes and covalently linked with adapters. The DNA library 

fragments are clonally amplified by emulsion PCR or on a solid-phase, either on a bead 

or a flat glass microfluidic channel instead of microplate wells used in Sanger sequencing 

(Mardis 2013). The digital nature of clonal amplification results in a population of 

identical templates, each of which originates from a single fragment and undergoes the 

sequencing reaction.  

2.3.2.2.2 Sequencing 

The process of next-generation sequencing is massively parallel (Mardis 2013). 

After fragment amplification, the nucleotide addition reaction and imaging detection 

happen simultaneously. Repeated cycles of nucleotide synthesis and sequence extensions 

can yield hundreds of megabases to gigabases of output in one single instrument run. 

Four major platforms based on different sequencing mechanisms are reviewed below. 
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2.3.2.2.2.1 Pyrosequencing 

The first commercially available next-generation sequencing platform is based on 

pyrosequencing technology developed by Roche/454 in 2005. It relies on detecting 

pyrophosphate released during nucleotide incorporation. Each cycle of pyrosequencing 

consists of (a) the addition of a single nucleotide, (b) the introduction of substrate and 

enzymes (adenosine 5’-phosphosulphate, sulphurylase, luciferase, and luciferin), (c) the 

generation of ATP from PPi and the emission of light during the luciferin reaction driven 

by ATP, (d) a wash step by apyrase to remove unincorporated nucleotide (Shendure and 

Ji 2008). Two of the most outstanding characteristics of pyrosequencing by Roche/454 

are reading length and speed (Liu, Li et al. 2012). The 454 GS FLX sequencer can read 

up to 1,000 bp in length and the run time is 23 hours. 

2.3.2.2.2.2 Sequencing by synthesis 

The cyclic reversible termination sequencing method, developed by Solexa 

(acquired by Illumina in 2007), dominates the current next generation sequencing market. 

After the adaptor-flanked fragment is PCR amplified, a dense array of sequences will 

form on the solid platform. A typical sequencing cycle usually consists of the following 

steps: (a) the addition of a mixture of four dideoxynucleotides, each labeled with a 

different dye, (b) a wash step of unincorporated nucleotides, (c) four-color imaging 

detection of the incorporated nucleotide, (d) cleavage of both the fluorescent labels and 

terminating groups (Mardis 2013).  

2.3.2.2.2.3 Sequencing by ligation 

Sequencing by Oligo Ligation Detection (SOLiD) is a sequencing platform based 

on two-base-encoded probes in the sequencing by ligation process. It is also a cyclic 
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method with the following steps: (a) the hybridization of a fluorescent probe to the target 

sequence and the ligation between the probe and the sequence primer, (b) a wash step to 

remove non-ligated probes, (c) four-color imaging and (d) the cleavage of the fluorescent 

probe. SOLiD sequencing has extraordinary sequencing accuracy. The SOLiD 5500xl has 

the accuracy of 99.99% when it came to the market in 2010 (Barba, Czosnek et al. 2014).  

2.3.2.2.2.4 pH change monitoring 

In 2010, Ion Torrent commercialized a semiconductor-based sequencing 

instrument. It detects the pH change upon the incorporation of a new nucleotide during 

the synthesis process (Rothberg, Hinz et al. 2011). During sequencing, different types of 

nucleotides flow across the chip in a systematic order. When a nucleotide is incorporated, 

a proton is released. The pH change can be detected by the hydrogen ion detector and the 

signal can be translated into a quantitated readout of nucleotide bases. In Ion Torrent 

sequencing, incorporating nucleotides are not modified with fluorescence dyes or 

blocking groups. A semiconductor sensor replaced a camera in recording signals. Both 

factors speed up the sequencing process and lower the cost (Mardis 2013). Ion Torrent 

has the potential of becoming a fast sequencer in detecting new pathogens. 

2.3.2.2.2.5 Single-molecule real-time sequencing 

Single-molecule real-time sequencing is one of emerging third-generation DNA 

sequencing technologies (Eid, Fehr et al. 2009, Schadt, Turner et al. 2010). It is distinct 

from aforementioned next-generation sequencing methods because it detects single 

molecules without washing steps during DNA synthesis. It directly observes kinetics of 

DNA polymerase as it incorporates nucleotides. The DNA polymerase is modified to 

lower the rate of polymerization and can incorporate fluorescently-tagged nucleotides. 
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This approach requires neither PCR amplification nor synchronized synthesis and 

detection, thereby reducing amplification biases and dephasing errors. Since no scanning 

and washing steps are needed, the rate of sequencing could be accelerated from days to 

minutes. The read lengths of single-molecule real-time sequencing are 1,000 bp on 

average, reaching 10,000 bp at maximum. It is an unmatched capability so far, enabling 

de novo assembly (Schadt, Turner et al. 2010). 

2.3.2.2.3 Sequencing alignment and assembly 

The first step to understand the sequence reads is to align them to a reference or to 

assemble them de novo (Flicek and Birney 2009).  

Alignment programs for Sanger sequencing, such as BLAST (Altschul, Gish et al. 

1990), were designed to search for homologous sequences in large databases. In contrast, 

short-read alignment algorithms for next-generation sequencing tend to assume the 

sources of expected mismatches are species polymorphisms and the technology error rate 

(Flicek and Birney 2009, Li and Homer 2010). Two major categories of alignment 

algorithms are (a) hash table-based implementations, which build a hash table of either 

the input reads or the reference genome assembly, and (b) alignment based on 

suffix/prefix tries, such as Burrows Wheeler Transform, which enables fast string 

matching (Li and Durbin 2009, Li and Homer 2010). 

The framework for assembly is based on the notion of a k-mer in a de Bruijn 

graph data structure. In this graph, k-mers are collected into nodes and the nodes are 

adjacently combined to form continuous linear stretches and combined further into larger 

nodes. Finally, the sequencing errors will be corrected to create a final graph structure 

representing the original genome sequence (Miller, Koren et al. 2010).  
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2.3.2.3 RNA-Seq 

The advent of next-generation sequencing technologies brought unprecedented 

changes in characterizing and quantifying transcriptome by introducing RNA (cDNA) 

sequencing at massive scale (Wang, Gerstein et al. 2009). A population of RNA can be 

reverse-transcribed into cDNA and fragmented, followed with library construction which 

adds adaptors to both ends of the cDNA for sequencing. The sequence reads are aligned 

with the reference genome or transcriptome. The aligned reads are classified as rRNA, 

snRNA, exon, intron, junction and intergenic reads. Exonic reads and junction reads are 

used to generate a base-resolution expression profile for each gene. The applications of 

RNA-Seq are versatile: mapping transcriptional structure, splicing patterns and other 

post-transcriptional modifications, cataloguing mRNAs, non-coding RNAs and small 

RNAs, and identifying differentially expressed genes between different conditions 

(Pareek, Smoczynski et al. 2011). 

One of the advantages of RNA-Seq is its accuracy in quantifying RNA expression 

levels. Compared with hybridization-based approaches such as microarrays, RNA-Seq 

can detect novel transcripts that do not exist in current genome databases. The sequences 

throughout the exon are uniformly covered. The gene expression levels can be quantified 

by normalizing the total number of reads that fall into the exons of a gene against the 

length of the exons that can be uniquely mapped (RPKM). In principle, by increasing 

coverage, depth and amplification capability, RNA-Seq can capture the presence of every 

RNA molecule from a cell (Wang, Gerstein et al. 2009). It also does not have an upper 

limit of quantification, either. RNA-Seq greatly expands the dynamic range of 
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quantifying gene expression level--more than 8,000-fold (Nagalakshmi, Wang et al. 

2008). 

2.3.2.4 Single cell RNA-Seq  

The total RNA from one single cell is about 1-10 picograms (Iscove, Barbara et al. 

2002). Many researchers are working on lowering RNA input requirements for next-

generation sequencing. Particularly, real-time single-molecule sequencing holds promise 

in analyzing RNA at the single cell level. Nevertheless, the amount of RNA from a single 

cell does not meet the microgram level input on any current platforms. Therefore, 

amplification is an indispensable and the most critical step for RNA-Seq at the single-cell 

resolution. So far, four main amplification approaches have been reported for amplifying 

RNA from single cells for RNA-Seq (Hebenstreit 2012).  

The initial mRNA-Seq method was reported in 2009. (Tang, Barbacioru et al. 

2009). Tang et al. described an amplification method to generate as long as 3 kilobases of 

cDNA without bias. The mRNAs obtained from a single cell are reverse-transcribed into 

cDNA, using a poly-T primer anchoring on its 3’ end. Excess primers are digested with 

exonuclease. Poly-A sequence is added to the 3’ end of the first-strand cDNAs and then 

second-strand cDNAs are synthesized using another poly-T primer with another anchor 

sequence. The cDNA is amplified using two anchor sequence primers by PCR. After that, 

the cDNAs are fragmented, ligated with adaptors and further amplified (Tang, Barbacioru 

et al. 2010). However, the strand information is not preserved since PCR amplification 

occurs before fragmentation. 

Another major category of amplification uses the “template-switching” method 

(Cocquet, Chong et al. 2006). This method is recently commercialized by Clontech as the 



 

42 

SMARTer (Switching mechanism at the 5’ end of the RNA transcript) Ultra Low RNA 

Kit for Illumina sequencing. The SMART-Seq method starts with lysing individual cells 

in a hypotonic solution containing a high concentration of RNase inhibitors. It also uses 

poly-T primer to synthesize the first strand from the poly-A RNA. It employs Moloney 

murine leukemia virus (MMLV) reverse transcriptase to add a few nontemplated C 

nucleotides to the 3’ end of the cDNA. The oligonucleotide with ribonucleotide G forms 

base-pairs with the additional C nucleotides and become an extended template for the 

second strand synthesis. The MMLV reverse transcriptase switches templates and 

synthesizes DNA until the end of the sequence. The oligonucleotide with ribonucleotide 

G and poly-T serve as the priming sites for PCR amplification. This ensures only the 

cDNAs with ribonucleotide G priming site can be amplified and sequenced, improving 

the read coverage across full-length transcripts (Goetz and Trimarchi 2012, Ramsköld, 

Luo et al. 2012, Picelli, Björklund et al. 2013). RNA-Seq data generated using SMART-

Seq showed a substantial increase in the number of alternative transcript isoforms and 

identification of single-nucleotide polymorphisms. 

In 2012, Tamar Hashimshony et al. presented Cell Expression by Linear 

amplification and Sequencing (CEL-Seq) method using linear in vitro transcription (IVT) 

(Hashimshony, Wagner et al. 2012). This strategy begins with reverse transcription of 

RNA from individual cells. The primer is designed with an anchoring poly-T, a 

sequencing adaptor, a unique barcode for individual cells, and a T7 promoter. After the 

second-strand synthesis, the cDNA is pooled from multiple cells with unique barcodes 

for RNA synthesis. RNA is then fragmented and ligated with another adapter. Finally, 
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RNA is reverse transcribed to DNA. The linear amplification method is claimed to 

outperform single cell RNA-Seq with PCR amplification in sensitivity and accuracy. 

Recently, Xinghua Pan et al. developed two methods for amplifying cDNA for 

single cell RNA-Seq (Pan, Durrett et al. 2013). One approach uses Phi29 DNA 

polymerase, an active player in multiple displacement amplification. After full-length 

cDNAs are synthesized from RNA, cDNAs are circularized at the intramolecular level 

for efficient amplification by Phi29 DNA polymerase. Another approach is called semi-

random primed PCR-based mRNA transcriptome amplification. RNAs are also reverse-

transcribed into cDNA first. Semi-random primers are then used to generate a library of 

overlapping cDNA fragments. Both methods can cover RNA (cDNA) in the full-length, 

as long as 23 kb. The Phi29-based method uses an isothermal reaction and produces 

longer products; while the semi-random primed PCR method detects more genes when 

the transcript level is low. 

Amplification for single-cell RNA-Seq faces several challenges including 

deepening transcript coverage, reducing amplification bias and increasing reproducibility. 

Besides amplification, single-cell RNA-Seq technology also needs to meet several 

requirements (Hebenstreit 2012). Quantification of transcripts at the single cell level 

lacks controls. Spike-in controls or endogenous RNA controls can help calibrate the 

original number of transcripts given the information on sequencing reads. Another issue 

is parameter estimation for mathematical models of transcript regulation. At least a few 

hundred cells in each experimental condition should be analyzed for modeling purposes. 

Amplification methods with multiplexing of different cells, such as SMART-Seq and 

CEL-Seq, will help accelerate the process. 
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2.3.2.5 Single-cell real-time quantitative polymerase chain reaction 

Real-time quantitative polymerase chain reaction (RT-qPCR) is a classical 

method for analyzing transcript levels. It is characterized by a large dynamic range, 

excellent reproducibility and sufficient sensitivity to detect a single transcript. Single-cell 

RT-qPCR includes several sequential experimental steps: cell collection, cell lysis and 

RNA extraction, reverse transcription, pre-amplification (if needed), real-time PCR and 

data analysis (Stahlberg and Bengtsson 2010).  

Current RT-qPCR systems depend on the detection and quantification of 

fluorescent reporters. Two of the commonly used reporters are SYBR Green and Taqman 

Probe (Kubista, Andrade et al. 2006). SYBR Green dye binds to all double-stranded 

DNA. As the double-stranded DNA is synthesized throughout the cycle, the fluorescent 

signal increase can be measured and is proportional to the amount of PCR products. The 

SYBR Green probe is inexpensive and easy to use. However, it could bind to primer-

dimers and other non-specific amplification products, which become background signals. 

Taqman probes are oligonucleotides with a fluorescent dye on the 5’ base and a 

quenching dye on the 3’ base. Once a Taqman probe hybridizes to an internal region of a 

PCR product, its fluorescent and quenching dyes are separated and the former one emits 

light. Fluorescence signals increases each cycle, proportional to the rate of cleaving 

fluorescent and quenching dyes (Parashar, Chauhan et al. 2006). Taqman probe-based 

qPCR has significantly higher specificity, because its probe is targeting specific 

amplicons. It also provides feasible multiplexing strategy, because multiple primers with 

different fluorescent probes could be designed to target different genes from a single cell.  
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Since transcript variability is intrinsic to different cells, special consideration is 

required in both experimental and data analysis processes. Theoretically, no gene could 

be used as a reference gene for normalization in single cells (Bustin, Benes et al. 2009). 

In this scenario, an RNA spike-in control can be used to separate experimental variability 

from biological variability at the single-cell level (Shi, Gao et al. 2013). The spike-in 

RNA can be a RNA sequence that does not exist in the species being studied. One 

challenge with spike-in RNA is that it should be injected into the cell so that it will go 

through the same lysis process as the endogeneous RNAs do.  

High-content microfluidic RT-qPCR platforms have made great strides in 

analyzing transcripts at the single-cell level (Marcus, Anderson et al. 2006, White, 

VanInsberghe et al. 2011). Microfluidic platforms can limit the loss of the picogram 

amounts of RNA present in single cells (Marcus, Anderson et al. 2006). They also get rid 

of variances brought by manual handling. Most importantly, they increase the reaction 

throughput and minimize batch-to-batch variations. Commercially available high-

throughput systems, such as Fluidigm’s BioMark™ and Applied Biosystems’ 

OpenArray® can measure transcript levels of up to 96 genes in 96 samples and 48 genes 

for 48 samples, respectively. 

2.3.2.6 Single-molecule RNA fluorescence in situ hybridization 

Single-molecule RNA fluorescence in situ hybridization (FISH) is based on the 

use of fluorescence labeled oligonucleotides, each targeting RNA of interest (Taniguchi, 

Choi et al. 2010). Hybridization of fluorescent probes to fixed single cells enables direct 

counting of mRNA abundance at the single-cell level. 
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Standard RNA FISH can quantify up to three genes simultaneously within single 

cells (Tischler and Surani 2013). Using spectral barcoding, an approach dividing 

individual probe sets into subsets and coupling each subset with a different fluorescent 

probe, researchers can simultaneously detect up to seven RNAs in individual cells 

(Femino, Fay et al. 1998, Levsky, Shenoy et al. 2002). For RNA FISH, researchers do not 

need to lyse individual cells and extract RNA. RNA FISH acts directly on mRNA within 

a fixed cell, thereby preserving the spatial information of the transcripts (Tischler and 

Surani 2013). Because RNA FISH directly counts the number of transcripts, it does not 

need internal references for quantification. It holds the potential to be combined with 

genomic (DNA FISH) or proteomic (protein labeling) approaches for studying “omics” 

within single cells.  One limitation of RNA FISH is that it only measures the copy 

number of known transcripts (Tischler and Surani 2013). 

2.3.2.7 Summary 

The approaches mentioned above can provide gene transcription information at the 

single-cell level. The information will be revolutionary in revealing discrete molecular 

states within heterogeneous cell populations and identifying aberrant subpopulations. In 

this study, RNA-Seq and RT-qPCR were integrated to explore a little-known area in 

tumor neoplastic progression. The transcriptomes of cell-cell interactions and hypoxia-

adaptations using RNA-Seq were analyzed. After statistical filtering and gene ontology 

study, changes were correlated with metabolic phenotype measurements and transcript 

states were analyzed using RT-qPCR. The lower cost of RT-qPCR allows analysis of a 

larger number of individual cells, providing higher statistical power. By combining 

different approaches, insights were gained into previously unknown cellular decision-
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making processes in normal and aberrant states. It is expected that the progress of single-

cell transcription profiling will advance personalized medicine.
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CHAPTER 3  

A MINIMALLY INVASIVE METHOD FOR RETRIEVING SINGLE 

ADHERENT CELLS OF DIFFERENT TYPES FROM CULTURES 

3.1 Abstract 

The field of single-cell analysis has gained significant momentum over the last 

decade. Separation and isolation of individual cells is an indispensable step in almost all 

currently available single-cell analysis technologies. However, stress levels introduced by 

such manipulations remain largely unstudied. In this thesis a method is presented for 

minimally invasive retrieval of selected individual adherent cells of different types from 

cell cultures. The method is based on a combination of mechanical (shear flow) force and 

biochemical (trypsin digestion) treatment. Alterations in the transcription levels of stress 

response genes in individual cells exposed to varying levels of shear flow and 

trypsinization were quantified. Optimal temperature, RNA preservation reagents, shear 

flow rate and trypsinization conditions necessary to minimize changes in the stress-

related gene expression levels are reported. The method and experimental findings are 

broadly applicable and can be used by a broad research community working in the field 

of single cell analysis.  
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3.2 Introduction 

The field of single cell analysis has experienced a tremendous growth over the 

last decade owing to the intense interest in intercellular heterogeneity and its functional 

role at the tissue level and disease states in vivo (Eberwine, Yeh et al. 1992, Elowitz, 

Levine et al. 2002, Lidstrom and Meldrum 2003, Irish, Hovland et al. 2004). New 

technological advancements have enabled the exploration of biological phenomena with 

single-cell resolution (Arai, Ng et al. 2005, Anis, Holl et al. 2010, Wang and Bodovitz 

2010, Kelbauskas, Ashili et al. 2012). Almost all existing methods for single-cell analysis 

that require isolation of (Arai, Ng et al. 2005) individual cells involve some type of 

mechanical transportation or manipulation of single cells for sample preparation and/or 

analysis purposes. One of the current technological challenges is the minimization of 

perturbation to the cells as a result of such transportation to make biologically relevant 

inferences about cell function possible. If the resulting stress to the cell is significant it 

can alter cellular profiles at the physiological, gene transcription and/or expression levels 

and confound experimental results. Although widely used, stress levels introduced to 

cells by manipulation and, more importantly, their potential effects on cell function 

remain largely unknown. Mechanical cues and mechanical stress have been found to 

strongly affect most cellular functions and critically influence gene transcription during 

embryogenesis, organogenesis (Mammoto, Mammoto et al. 2012) and embryonic 

vasculature development (Roman and Pekkan 2012). Mechanical stress also exhibits a 

direct effect on the nuclear architecture-mediated gene transcription regulation (Martins, 

Finan et al. 2012), oncogenesis (Jean, Gravelle et al. 2011), stem cell differentiation, 

cancer metastasis and the immune response (Hynes 2009) among others. It is thus likely 
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that mechanical stress introduced during cell manipulation can significantly alter gene 

expression profile in cells resulting in atypical both gene expression profile and cellular 

function. Therefore, characterization of stress levels that can significantly perturb cell 

function is necessary for studies that utilize single-cell analysis techniques. 

In the context of single-cell analysis methods, perturbations can be divided into 

two major categories with regard to time scales. One category is perturbations that cause 

reversible alterations that occur on a timescale that is much shorter than the time between 

the perturbation and analysis. By definition, perturbations of this type do not result in 

significant changes in the cell at the time of analysis and thus can be considered 

negligible. The second category is perturbations that induce a long-lasting (on timescales 

comparable or longer than the time between stress administration and analysis) response 

in the form of a modified gene expression profile. These perturbations can introduce 

modifications to the cell function, mRNA or protein expression levels or all of them 

simultaneously and thus need to be properly assessed before reaching any conclusions 

about experimental findings. It is likely that adherent cell types should be affected by 

manipulation more than non-adherent cells simply due to the fact that the former need to 

be detached from the growth substrate or dissociated from tissue before any kind of 

manipulation can be performed. Owing to changes in cellular tension, the detachment 

step itself could cause the cell to respond with an altered gene expression profile 

mediated by mechanosensing through e.g. integrin-actin linkages and 

mechanostransduction via downstream signaling cascades such as receptor-type tyrosine-

protein phosphatase alpha (RPTP-α), Src family kinases (SFKs) (von Wichert, Jiang et al. 

2003, Jiang, Huang et al. 2006, Yu, Law et al. 2011), focal adhesion kinase (FAK) (Wang, 
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Dembo et al. 2001, Schober, Raghavan et al. 2007) and others. In addition, any type of 

manipulation can induce additional cellular responses at biomolecular and/or organelle 

levels. Epithelial cells adhere to the extracellular matrix through transmembrane adhesion 

protein complexes. At the basal membrane, the adhesion of epithelial cells to the 

extracellular matrix is built upon different types of cell-ECM adhesions, including focal 

adhesions and hemidesmosomes, both of which are mediated by integrin connections 

(Balda and Matter 2003), nascent adhesions, focal complexes, focal adhesions, 

podosomes and others (Dubash, Menold et al. 2009). These protein complexes, including 

integrin-actin networks and integrin-intermediate filament networks, regulate the 

adhesion but also mediate mechanosensing and signal mechanotransduction into the cell 

(Roca-Cusachs, Iskratsch et al. 2012). To remove cells from a given culture substrate, 

various mechanical and chemical methods have been employed. For instance, proteolytic 

enzymes, such as trypsin, or chelators, can break the integrin-ligand bonds that mediate 

cell attachment to the substrate (Phelan 2007). However, enzymatic dissociation can 

damage cells, especially the cell surface. Moreover, alterations of gene expression levels 

in cells treated with trypsin were discovered using global gene expression profiling on the 

microarray platform (Chaudhry 2008). Therefore, trypsinization should be performed 

with caution, by optimizing both the duration of trypsinization and the concentration of 

trypsin. 

Mechanical means such as scraping or shear flow were employed to remove cells 

from substrates (Zhang, Jones et al. 2008). However, mechanical methods are usually 

disruptive to the cells and potentially result in a loss of cellular contents. When combined 

with chemical force, shear flow can remove cells from the surface and transfer them 
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without causing damage to the plasma membrane. Still, even under relatively mild 

conditions, shear stress can affect signal transduction pathways, especially in endothelial 

cells (Chen, Li et al. 1999). Because epithelial cells experience much less shear stress in 

the body, gene expression alterations within those cells in response to shear stress could 

be significant and need to be explored. So far, expression levels of chemokine (C-C motif) 

ligand 2 (CCL2) have been shown to be upregulated in epithelial cells in response to 

shear flow stress (Flores, Battini et al. 2010).  

In this study a new method is developed for retrieval of individual adherent cells 

from cell cultures that is based on a combination of mechanical forces and biochemical 

treatment. Stress response induced by the method in terms of gene expression levels in 

individual cells is investigated. Alterations in expression levels of stress response-related 

genes in single cells are quantified as a function of varying mechanical stress while 

employing both shear flow and trypsin digestion to detach single cells from glass 

substrates. Treatment conditions were optimized in a highly controllable manner to 

minimize the effects of gene expression changes that could be induced by stresses. An 

optimal range for mechanical force needed to efficiently detach single cells with no 

detectable change in expression levels of the studied stress-response genes is reported. 

The utility of this technique is expanded to distinguish and harvest co-cultured cells from 

microwells using a fluorescence-assisted single-cell harvesting method. These findings 

can be useful for studies focused on single-cell analysis that involve any mechanical 

manipulation of live cells. 
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3.3 Experiments 

3.3.1 Microwell design 

Arrays of 3 × 3 microwells were used for culturing single-cells. Each microwell 

has an inner diameter of 50 µm and is 20 µm deep (Figure 3-1) (Zhu, Holl et al. 2009). 

The microwells were fabricated in fused silica substrates using wet-etch lithography. The 

dimensions of these microwells were optimized for cell-cell interaction studies to monitor 

cellular gene expressions in a controlled microenvironment.  

3.3.2 Cell culture  

The normal cell line, EPC-2 (Harada, Nakagawa et al. 2003), the metaplastic cell 

line, CP-A, and the pre-malignant cell line, CP-D, were derived from a healthy, 

Figure 3-1 Microwell array design 
3 × 3 arrays of wells with 300-μm center-to-center spacing were fabricated on 
fused silica wafers using hydrofluoric acid (HF) deep wet etch lithography. Each 
well is 20-µm deep and has a diameter of 50 µm.  
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metaplastic and dysplastic human esophageal region in Barrett’s esophagus (Palanca-

Wessels, Barrett et al. 1998), respectively. Cells were cultured using Gibco keratinocyte 

serum-free cell growth medium (Invitrogen, Carlsbad, CA, USA), supplemented with 

hEGF (Peprotech, Rocky Hill, NJ, USA) at 2.5 μg/500 mL, BPE (bovine pituitary extract) 

at 25 mg/500 mL and penicillin–streptomycin solution (Invitrogen) at 100 units/100 

μg/mL. Cells were grown at 37 °C under 5% CO2. Prior to experimentation, cells were 

cultured in a 75 cm2 flask to approximately 80% confluency.  

3.3.3 Cell loading into microwells 

Individual cells were loaded into microwells using a single-cell manipulation 

platform as previously described (Anis, Holl et al. 2010, Kelbauskas, Ashili et al. 2012). 

Briefly, the platform is built around a diaphragm micropump that can aspirate and 

dispense sub-nanoliter volumes of liquid. Single cells in suspension were aspirated and 

dispensed into microwells using a 40-μm diameter glass capillary micropipette utilizing 

closed-loop microscopic vision-based feedback. Cells can be aspirated from a Petri dish 

by a drag force generated through a negative pressure applied to the micropipette 

capillary. Cells can be dispensed through the micropipette capillary into the microwell by 

applying a positive pressure to the capillary, generating an ejection force on the cell 

(Kelbauskas, Ashili et al. 2012). Glass substrates containing 3 × 3 arrays of microwells 

were glued to the bottom of a Petri dish with a pre-cut hole using medical-grade epoxy 

glue (K45-S-14ML, Chemical Concepts, Huntingdon Valley, PA). Loading 9 single-cells 

in a 3x3 array of microwells with one cell per well takes approximately 5-8 minutes, 

while loading two cells per well requires 20-25 minutes. After loading into the 

microwells, the cells were incubated in Keratinocyte SFM, at 37 °C under 5% CO2 for 
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16-24 hours to allow for cell adhesion and recuperation from potential stress caused by 

manipulation.  

3.3.4 Direct lysis of single cells in microwells 

The microwell substrate was placed on the stage of a pick-and-place single-cell 

manipulation platform. The micropipette was filled with Cell Lysis Buffer (Zymo 

Research, Orange, CA, USA) and lowered until it touched the substrate.  The 

micropipette orifice was aligned with a selected cell inside a microwell and encapsulated 

by the micropipette tip. The Cell Lysis Buffer was dispensed for 1 minute with enough 

volume to thoroughly coat the cell. After this, the lysate was immediately aspirated into 

the micropipette for 1 minute to minimize the diffusion of the lysate from the microwell. 

The lysate was then dispensed through the micropipette into the cap of a 1.5 mL 

microcentrifuge tube for 1 minute. 

3.3.5 Single-cell collection 

The pick-and-place single-cell manipulation platform (Anis, Holl et al. 2010, 

Kelbauskas, Ashili et al. 2012) (Figure 3-2) was used to collect single-cells from 

microwells. The microwell substrate containing individual cells was washed three times 

with 1 mL of warmed 1× PBS, and exposed to 1 mL of 0.05% v/v trypsin-EDTA for 8-12 

minutes at 37 °C. Subsequently, 1 mL of trypsin inhibitor (DTI) was added to the 

trypsinized cells to deactivate trypsin, which was followed by adding 1 mL of 

Keratinocyte SFM medium. The selected cell was first aligned with the micropipette 

orifice and then aspirated into the micropipette capillary. The aspirated cell was 

dispensed from the microcapillary tip into the cap of a 1.5-mL microcentrifuge tube 
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(VWR, West Chester, PA, USA) containing 200 μL of Keratinocyte SFM, Cell Lysis 

Buffer, or RNALater (Life Technologies, Austin, TX, USA). 

3.3.6 Preservation of RNA at low temperatures 

After trypsin deactivation, the substrate containing the 3 × 3 array of microwells 

with cells was placed inside a 4 °C refrigerator for 15 minutes. Simultaneously, the pick-

and-place manipulation platform was cooled using four ice-packs for 15 minutes. The 

substrate was placed on the cooled stage, and the temperature was monitored with a 

thermometer, ranging from 2 °C to 10 °C on the station. The pick-and-place cell 

manipulation system was used to aspirate the harvested cells and dispense them into caps 

Figure 3-2 The single cell manipulation platform used in this study 
(A) A side view of the platform built on a microscope. (B) Micropipette 
controlled by a piezoelectric pump is used for aspirating cells from and 
dispensing them into microwells located in the petri-dish. 
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of 1.5-mL microcentrifuge tubes as described in the Single-cell Collection Section above. 

A control group of cells was kept at room temperature during the harvesting process.  

3.3.7 Flow rate and trypsinization time 

The two major determinants of successful cell detachment are the trypsinization time and 

the applied shear flow rate. Each trypsinization time point and flow rate was selected 

Figure 3-3 Flow rate conversion 
Flow rate values of 1, 5, and 10 V/s were converted to units of nL/s. The inner 
diameter (i.d.) of the tip orifice is 40 µm. They were based on the assumption 
that the diaphragm of the piezoelectric pump is a fixed-fixed bending beam and 
that the piezoelectric actuator acts on the center of the beam. 
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based on preliminary experiments that showed a range of possible values that 

demonstrated noticeable changes in detachment, from no detachment, partial detachment 

to full detachment. Flow rate was converted from the voltage change rate of the 

piezoelectric pump to volume change rate (Table 1, Figure 3-3).  

Table 1 Voltage-to-flow rate conversion 

 

To measure the success of each combination of flow rate and trypsinization time 

(Table 2), the micropipette tip was positioned vertically at a 90 degree angle with the 

substrate surface so that it enclosed the cell without making direct contact with the cell. A 

selected flow rate was then applied to aspirate the cell from the substrate. A successfully 

harvested cell is considered one that detaches without visible tearing of the plasma 

membrane and leaving remnants on the substrate. After a visual inspection and 

confirmation, the harvested cells were dispensed through the micropipette capillary into 

the caps of 1.5-mL microcentrifuge tubes as described in the Single-cell Collection 

Section above. The success rate of each combination of parameters is summarized in 

Table 2.  

V/s Flow rate (um3/s) Flow rate (nL/s) 

1 2513.27 0.002513 

5 12566.35 0.012566 

10 25132.7 0.025133 
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Table 2 Success rate of single-cell harvesting 

Flow rate 
(nL/s) 

Trypsinization Time 
(minutes) 

Success rate of 
cell harvesting 

2.5 5 6.7% 

2.5 8 13.3% 

2.5 10 40.0% 

12.5 5 20.0% 

12.5 8 46.7% 

12.5 10 66.7% 

25 5 80.0% 

25 8 73.3% 

25 10 93.3% 
 

3.3.8 Primer design for the shear flow stress response gene CCL2 

The chemokine (C-C motif) ligand 2 (CCL2) gene is upregulated in epithelial 

cells under shear flow stress (Flores, Battini et al. 2010). The qPCR primer was designed 

using the Primer-BLAST tool (www.ncbi.nlm.nih.gov/tools/primer-blast/ ). Multiple 

primer pairs were designed with a length range of 100-400 bp and appropriate GC 

content to provide a sufficient thermal window for efficient annealing. The selected 

primers were first evaluated at the bulk sample level. Optimized primer oligos for single-

cell analysis of the target genes were obtained from Fisher Scientific (Pittsburgh, PA, 

USA). The selected genes and their corresponding primers are listed in Table 3. 
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Table 3 Primer sequences used in the study 

Gene Description Sequence GenBank 
Access No. 

28S 
Homo sapiens RNA, 

28S ribosomal 1 
(RN28S1) 

F: CCGCTGCGGTGAGCCTTGAA  
R:  TCTCCGGGATCGGTCGCGTT  NR_003287.2 

ACTB Homo sapiens actin, 
beta mRNA (ACTB) 

F:  CATGTACGTTGCTATCCAGGC  
R: CTCCTTAATGTCACGCACGAT  NM_001101.3 

GAPDH 

Homo sapiens 
glyceraldehyde-3-

phosphate 
dehydrogenase 

(GAPDH) 

F: TGTTGCCATCAATGACCCCTT  
R: CTCCACGACGTACTCAGCG  NM_002046.3 

Hsp70 

Homo sapiens heat 
shock 70kDa protein 
1A (HSPA1A), 1B 

(HSPA1B), 2 
(HSPA2) 

F: CGACCTGAACAAGAGCATCA  
R: AAGATCTGCGTCTGCTTGGT  

NM_021979.3 
NM_005346.4 
NM_005345.5 

CCL2 
Homo sapiens 

chemokine (C-C 
motif) ligand 2 

F: CATCTGGCTGAGCGAGCCCT 
R: GCTGAGCGAGCCCTTGGGGA  NM_002982.3 

Turbo 
GFP 

From TurboGFP 
vector (Sigma 

Aldrich) 

F: AGGACAGCGTGATCTTCACC 
R: CTTGAAGTGCATGTGGCTGT N/A 

 

3.3.9 On-chip lysis of single cells in microwells 

For on-chip lysis of single cells, individual cells were loaded into microwells 

using the pick-and-place single-cell manipulation platform (Anis, Holl et al. 2010, 

Kelbauskas, Ashili et al. 2012). Glass substrates containing 3 × 3 arrays of microwells 
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were simply placed in a Petri dish, rather than glued to the bottom of the dish. A total of 9 

cells were loaded into the 3 × 3 array of microwells (1 cell/well). The cells were 

incubated in Keratinocyte SFM, at 37 °C under 5% CO2 for 16-24 hours. The cells in the 

microwells were visually inspected under the microscope prior to the experiment for 

occupancy and/or morphological abnormalities. It was observed that after incubation, an 

average of 7 out of 9 cells were in the microwells due to cell motility, with the remaining 

2 cells usually located in the interstitial area just outside of the microwells. The 

microwell chips were picked up and placed into a 1.5-mL Eppendorf tube containing 200 

μL of RNA Lysis Buffer (Zymo Research, Orange, CA, USA) using tweezers. The cells 

on the chip were lysed in the tube for 30 seconds. After that, the microwell chip was 

taken out of the tube, and RNA isolation from the lysis buffer was immediately 

performed. 

3.3.10 RNA isolation, reverse transcription, and qPCR 

Single cell RNA isolation, reverse transcription, and qPCR were performed as 

previously described (Gao, Zhang et al. 2011, Zeng, Wang et al. 2011). The 1.5-mL 

microcentrifuge tubes, each containing an individual cell in the cap, were spun down at 

4 °C and 17,000 g for 10 minutes. After 160 µL of medium was taken out, 320 µL of 

RNA Lysis Buffer from the ZR RNA MicroPrep Kit (Zymo Research, Orange, CA, USA) 

was added into the tube. The RNA from each cell was extracted using the ZR RNA 

MicroPrep Kit according to the manufacturer’s instructions. A total volume of 6 µL of 

extracted RNA solution was obtained from the isolation steps and immediately used for 

the reverse transcription step. A total volume of 10 μL of the cDNA synthesis mixture 

contained the following reagents: 2 μL of 5 × VILO Reaction Mix (Invitrogen, Carlsbad, 
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CA, USA), 1 μL of 10 × SuperScript Enzyme Mix (Invitrogen, Carlsbad, CA, USA), 

including SuperScript III RT, RNaseOUT Recombinant Ribonuclease Inhibitor, and a 

proprietary “helper” protein (Invitrogen, Carlsbad, CA, USA), 6 μL of total RNA from a 

single cell, and 1 μL of DEPC-treated water (Ambion, Austin, TX, USA). The contents in 

each tube were gently mixed and spun down, and the cDNA synthesis was performed in 

the following thermal steps: a) 25 °C for 10 min, b) 42 °C for 60 min, and c) 85 °C for 5 

min to inactivate the reverse-transcriptase. The cDNA obtained from these reactions was 

stored at -20 °C until further use.  

Prior to qPCR, 10 µL of cDNA obtained from each single cell was diluted by 

adding 20 µL of DEPC-treated water (Ambion, Austin, TX, USA) for detecting multiple 

genes from a single cell with technical replicates. The qPCR runs were conducted using 

the following reagent mixtures: 5 µL of EXPRESS SYBR GreenER qPCR SuperMix 

Universal (Invitrogen, Carlsbad, CA, USA), 1 µL of each primer (4 µM), 0.1 µL of ROX 

Reference Dye (25 µM) (Invitrogen, Carlsbad, CA, USA), 2 µL of diluted cDNA (1/15th 

of the cDNA in 30 µL obtained from each single cell) and 0.9 µL of DEPC-treated water 

(Ambion, Austin, TX, USA). For negative controls, 2 µL of DEPC-treated water was 

used instead of cDNA. The thermal cycling profile was set up as follows: one cycle at 

95 °C for 10 min; 40 cycles consisting of 95 °C for 15 s; 60 °C for 1 min; and 80 °C for 

10 s with signal detection; melt-curve analysis at 60 °C for 1 min and the temperature 

increased in 0.3 °C increments to 95 °C, then at 95 °C for 15 s. The experiments were run 

on a StepOne Real Time PCR System (Applied Biosystems, Carlsbad, CA, USA). Data 

analysis was carried out using the StepOne software (Applied Biosystems, Carlsbad, CA, 

USA). 
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3.3.11 Lentiviral transfection of cells  

The CP-D and EPC-2 cell lines were tagged with TurboGFP and TagFP635, 

respectively, to distinguish different cell types in one microwell using the single-cell 

manipulation platform equipped with an epi-fluorescence imaging mode. CP-D cells 

were transfected with Lentiviral MISSION® pLKO.1-puro-UbC-TurboGFP™ Positive 

Control Transduction Particles (Sigma-Aldrich, St Louis, MO, USA), which contained a 

gene encoding TurboGFP under the control of the UbC promoter at a multiplicity of 

infection (MOI) of 2 following manufacturer’s instructions. Similarly, EPC-2 cells were 

transfected with lentiviral MISSION® pLKO.1-puro-UbC-TagFP635™ Positive Control 

Transduction Particles (Sigma-Aldrich, St Louis, MO, USA), which contained a gene 

encoding TagFP635 under the control of the UbC promoter at a MOI of 2. 96 hours post-

infection, the cells were imaged using a Nikon C1si (Nikon Inc., Melville, NY, USA) 

confocal microscope to inspect the expression of cytosolic TurboGFP in CP-D cells and 

TagFP635 in EPC-2 cells. After the culture was expanded into 75 cm2 flasks, a 

puromycin kill curve experiment was performed to determine the minimum concentration 

of puromycin to cause 0% viability of treated cells. 1.0 μg/mL and 0.5 μg/mL of 

puromycin were found to effectively kill the CP-D and EPC-2 cells, respectively, in 

which the TurboGFP or TagFP635 was not successfully expressed after 96 hours. CP-D 

and EPC-2 cells were grown in Keratinocyte serum-free medium containing puromycin 

(1.0 μg/mL for CP-D cells, 0.5 μg/mL for EPC-2 cells) for five passages, and then grown 

in normal Keratinocyte SFM. The expression of cytosolic TurboGFP or TagFP635 was 

retained in CP-D and EPC-2 cells, respectively, when checked under a Nikon C1si 

confocal microscope.  
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3.3.12 Fluorescence-assisted single cell harvesting  

To distinguish and harvest different types of cells (CP-D/TurboGFP and EPC-

2/FP635) from the co-culture in microwells, a fluorescence-assisted single cell harvesting 

platform was developed. To this end, a mercury arc epi-fluorescence illumination lamp 

and a cooled CCD camera were installed onto the pick-and-place single-cell manipulation 

platform equipped with appropriate excitation/emission filters. A LabVIEW program 

(National Instruments, Austin, TX, USA) was written for adjusting exposure time and 

gain settings of the fluorescent microscope. After cells were trypsinized as described in 

the Single-cell Collection Section, they were visualized under transmitted light 

illumination. Co-cultured cells were then imaged with the camera in epi-fluorescence 

mode using the different filter cubes. CP-D/TurboGFP and EPC-2/FP635 cells can be 

easily distinguished in green and red channels, respectively. The two types of cells were 

then collected separately into 1.5-mL Eppendorf tubes as described in Section 3.3.5 

Single-cell Collection.  
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3.4 Results and discussion 

3.4.1 Comparison between in-situ direct lysis and “pick-and-place” harvesting of 

single cells in microwells 

In order to perform end-point gene transcription analysis of single cells, the total 

RNA from individual cells needs to be harvested with minimal loss. First, the ability of 

different single-cell harvesting methods to preserve and recover the maximum amount of 

total RNA using several different buffers was tested. The in-situ direct lysis of single 

cells in microwells (Figure 3-1) contained three steps: (1) lysing single cells in 

microwells; (2) aspirating the lysate using a micropipette and a custom high-precision 

pump; (3) dispensing the lysate into the cap of a microcentrifuge tube for RT-qPCR 

analysis. The in-situ direct lysis method was initially used to eliminate the steps of cell 

 

 

 

Micropipette 

Petri dish 

Microscope 

Pico-pump 

Figure 3-4 Schematic view of the single cell manipulation platform 
The single-cell manipulation platform uses a micropipette controlled by a 
piezoelectric pump. Single cells can grow in microwells which are glued to the 
bottom of the Petri dish. The micropipette is used for aspirating and dispensing 
single cells. 
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detaching and transferring from microwells to analysis vials and avoid potential stress 

during the cell detachment process. As a comparison to the first method, a “pick-and-

place” cell harvesting method (Zeng, Wang et al. 2011, Kelbauskas, Ashili et al. 2012) 

using the single-cell manipulation platform (Anis, Holl et al. 2010) developed in the 

Center for Biosignatures Discovery Automation (D. Meldrum, Director) was tested 

(Figure 3-2, Figure 3-4). The method combines trypsinization and shear flow to detach 

single cells from the bottom of the microwells and collect them for downstream analysis, 

e.g. RT-qPCR (Figure 3-5). Esophageal epithelial cells (CP-A cell line) in microwells 

were treated with 0.05% Trypsin for 6 minutes until they were partially detached as 

judged from the change in the cellular morphology from fully stretched to a more 

spherical shape. Single cells were then collected from the microwells using the 

micropipette in the single-cell manipulation platform using 12.5 pL/s flow rate.  

Using the in-situ direct lysis method, the single cells were immediately lysed in 

microwells by adding the RNA lysis buffer into the microwell. The addition of the lysis 

Figure 3-5 Single-cell harvesting steps 
The single-cell harvesting procedure contains three major steps: (A) 
trypsinization to partially detach the cell from the substrate; (B) trypsin 
deactivation with trypsin inhibitor (DTI) and cell aspiration into the micropipette 
tip; (C) transfer of the cell into the cap of a PCR tube for downstream analysis. 
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buffer resulted in substantial morphological changes. It was observed that the lysate 

diffused out of the microwell prior to being collected rendering this method inappropriate 

for collecting total RNA from single cells. Compared with in-situ direct lysis, single-cells 

can be harvested without physical tearing or morphological changes to the cell using the 

pick-and-place harvesting method. Therefore, the pick-and-place harvesting was further 

developed and optimized in later experiments. 

3.4.2 Usage of cellular RNA preservation solution for single-cell harvesting 

Stabilization of the total RNA is an important aspect of gene transcription assays. 

To preserve the RNA quality, RNA degradation by RNase should be minimized during 

cell harvesting and until RNA extraction. Three different solutions - RNA Later®, RNA 

Lysis Buffer and Keratinocyte serum-free medium - were tested for their ability to 

preserve RNA in single cells harvested at room temperature. The RNA Later® solution 

(Ambion, Austin, TX, USA) is a concentrated salt solution (25 mM Sodium Citrate, 10 

mM EDTA, 70 g ammonium sulfate/100 ml solution, pH 5.2) that rapidly permeates 

tissues to stabilize and protect cellular RNA (Lader 2001). RNA Later® was mixed with 

Keratinocyte serum-free medium at a 5:1 v/v ratio in my experiments. RNA Lysis Buffer 

(Zymo Research, Orange, CA, USA) is composed of guanidinium thiocyanate, which can 

both lyse cells and deactivate RNases by denaturing them (Forman and Jia 2012). 

Keratinocyte serum-free medium was used as a control for RNA preservation 

experiments. In the harvesting experiments, 200 μL of the corresponding solution was 

added into the cap of a microcentrifuge tube. After the single cell was aspirated into the 

micropipette tip, it was directed into the cap and dispensed into the liquid solution in the 

cap. The tube was immediately closed and placed on dry ice.  



 

68 

First, the total RNA was extracted from single cells using ZR RNA MicroPrep Kit 

(Zymo Research) and expression levels of the 28S and actin β (ACTB) housekeeping 

genes were measured. Both genes are highly expressed in human cells and show low cell-

to-cell copy number variability. They can easily be detected using qPCR and used as 

references for total RNA extraction efficiency in comparison studies. The amount of 28S 

rRNA and ACTB mRNA was measured with reverse transcription quantitative PCR (RT-

qPCR) using the Superscript VILO cDNA synthesis kit and EXPRESS SYBR GreenER 

qPCR SuperMix Kit (both kits are from Invitrogen, Carlsbad, CA, USA). Compared with 

the quantification cycle (Cq) values of the two genes in the group where only cell medium 

was used for storing the harvested cells, the Cq values of the two genes in both the RNA 

Later® and the Lysis buffer groups are higher. The differences in Cq values of 28S and 

ACTB genes are shown in Figure 3-6. The Cq of both genes in the lysis buffer groups are 

significantly different from that of the medium group (p = 0.02 for 28S, p = 0.04 for 

ACTB, calculated using the non-parametric Mann-Whitney statistical significance test, α 

= 0.05, two-tailed). Higher amounts of 28S and ACTB mRNA in the medium group 

indicate that the medium outperforms RNA Later® and lysis buffer in preserving RNA. 

RNA Later® contains ammonium sulfate which can permeate the cellular membrane and 

lead to a leakage of cellular components including RNA (Park, Yu et al. 2006). In 

addition, it was not possible to spin down picogram levels of single cell RNA from RNA 

Later® solution, which may have further reduced the RNA extraction efficiency. RNA 

lysis buffer, on the other hand, lyses cells almost instantaneously, potentially exposing 

the picogram levels of single cell RNA to environmental RNases. Another RNA-

preserving agent, RNAstable (Biomatrica, San Diego, CA, USA), was tested by adding 
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200 µL of RNAstable LD into the cap prior to harvesting. Results (data not shown) 

indicated that RNAstable LD is inferior in preserving cellular RNA as compared with the 

medium. Based on these results it was found that the Keratinocyte cell growth medium 

Figure 3-6 Comparison of RNA preservation levels between medium, RNALater 
and RNA Lysis Buffer 
The quantification cycle (Cq) values are higher in the lysis buffer group for the 
28S (Panel A) and higher in the RNALater group for the ACTB gene (Panel B) 
as compared with the medium group. The corresponding Cq mean values are 
shown on top of the bars to compare the three conditions. Errors and error bars 
are corresponding standard deviations. The number of cells analyzed (n) for 
each harvesting condition is shown at the bottom of the graphs. Each qPCR 
reaction was run with three technical replicates. The difference between the lysis 
buffer and medium preservation group is statistically significant for the 28S 
gene and between the RNALater and medium group for the ACTB gene (both 
tested with the two-tailed Mann-Whitney test, α = 0.05). Therefore, dispensing 
cells in cell culture medium can better preserve mRNA. 
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exhibits the highest level of protection against RNA degradation/loss among the four 

solutions. Single-cell collection method was optimized by using 200 µL of Keratinocyte 

SFM in the 1.5-mL microcentrifuge tubes. 

3.4.3 Low temperature harvesting for preserving cellular RNA 

Low temperatures are known to inhibit enzymatic activity of cellular proteins, 

including RNase. To determine whether lowering the temperature can facilitate RNA 

preservation due to RNase inactivation, two ice packs were placed on the stage of the 

single-cell manipulation platform for 15 min before the harvesting experiment to pre-cool 
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Figure 3-7 Comparison between low temperature and room temperature 
harvesting conditions for preserving cellular RNA 
Three individual cells were harvested for each condition and each qPCR 
reaction was run with three technical replicates. The differences between the Cq 
mean values (shown above each box with S.D. as error) between the two groups 
in the 28S, ACTB and HSP70 genes are not statistically significant (Mann-
Whitney test, α = 0.05, two-tailed).  Error bars represent the standard deviations. 
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the platform. During the entire harvesting procedure, the Petri dish containing cells in the 

microwells was surrounded by the ice packs. Room temperature harvesting without ice 

pack cooling was used as the control. RT-qPCR analysis was performed on three genes-

28S, ACTB, and HSP70 from the harvested cells to assess the preservation efficiency. The 

HSP70 gene was chosen due to its role in cold response (Fujita 1999) and cellular stress 

response in general (Guzhova and Margulis 2006, Murphy 2013). Gene transcription 

levels of all three genes in the ice cooled harvesting group do not exhibit statistically 

significant changes compared with room temperature harvesting control (Figure 3-7). 

This indicates that the mRNA of the studied genes is stable under both cool and room 

temperature conditions, while other genes, such as ACTB, may be more sensitive to 

degradation at room temperature. Furthermore, the unchanged level of HSP70 mRNA 

indicated that the low temperature condition did not introduce an additional stress factor 

to the cells. Even though no statistically significant differences were observed between 

the room temperature and the ice-cooled conditions for the studied genes, the ice-cooled 

condition was used throughout the study to avoid potential degradation of the total RNA 

at room temperature.  

3.4.4 The effects of flow-rate and trypsinization time on harvesting success rate 

and RNA preservation 

In order to detach adherent cells from the microwell glass surface with minimal 

perturbation, a combination of mechanical force and enzymatic digestion was used. Shear 

flow through the micropipette tip can aspirate single cells out of the microwell; however, 

applying shear flow can result in damages to the plasma membrane and loss of the 

cellular RNA. Trypsin is a traditional protease which can cleave membrane adhesion 
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proteins, primarily integrins, and detach the cells from the substrate. Excessive 

trypsinization, however, especially with regard to trypsinization time, can alter the gene 

expression profile and affect cell viability (Wassarman and Keller 2003, Rasmussen, 

Frøbert et al. 2011). To minimize potential perturbations to the gene transcription profile 

and the loss of total RNA during harvesting, a combination of both methods was 

employed. First, trypsinization followed by applying a shear flow was performed to 

harvest single cells. Because either step can damage the cell integrity and/or mRNA 

profile, the approach was optimized by testing different combinations of mechanical, 

chemical, and temporal parameters. The purpose was to examine how the trypsinization 

time, trypsin concentration, and flow rate affect the harvesting success rate (HSR) and 

gene transcription levels. The main goal was to identify the lowest flow-rate and shortest 

trypsinization time needed to achieve reliable detachment of cells with the highest HSR 

while causing minimal changes in gene transcription levels. 

A total of nine different conditions (Table 2) were tested, including three rates of 

the shear flow (2.5 pL/s, 12.5 pL/s, 25 pL/s) and three trypsinization times (5 min, 8 min, 

10 min).  

Fifteen cells were treated under each condition and the successfully harvested 

cells were used for RT-qPCR analysis (Table 4). The success rate of cells harvested 

under each condition without taking into account cell stress levels demonstrates that 

trypsinizing cells for 10 minutes and harvesting at a flow rate of 25 pL/s has the highest 

success rate of 93.3% (Table 2).  
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Table 4 Two-way multivariate ANOVA of the effects of flow rate and trypsinization time 
on gene transcription analysis 

(* Significant at p = 0.05 level) 

Gene Flow rate (FR) Trypsinization 
time (TT) 

FR and TT 
combined 

HSP70 p = 0.367 p = 0.000* p = 0.493 

ACTB p = 0.014* p = 0.082 p = 0.048* 

28S p = 0.000* p = 0.000* p = 0.000* 

CCL2 p = 0.022* p = 0.000* p = 0.018* 

 

To assess the stress levels resulting from the different harvesting conditions, the 

mRNA levels of 28S, ACTB, HSP70 and CCL2 genes were analyzed in harvested cells 

using RT-qPCR. The cDNA extracted from single cells obtained for each harvesting 

condition was pooled and qPCR was performed on them. The results show that the 

transcription levels of the HSP70, 28S and CCL2 genes are generally higher in cells 

harvested after 5 min trypsinization as compared to cells harvested after 8 or 10 min of 

trypsinization. The difference in their expression levels in cells between 5 min, 8 min and 

10 min trypsinization groups is statistically significant (Table 4, Table 5). Moreover, the 

transcription levels of the ACTB, 28S and CCL2 genes are markedly affected by the flow 

rate. In general, the flow-rate of 12.5 pL/s yields the lowest Cq values for these genes. 

Different combinations of the flow rate and trypsinization time also significantly affect 

the gene transcription levels of the ACTB, 28S and CCL2 genes. The two-way 

multivariate ANOVA test (α = 0.05) performed on the Cq values as a function of 
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trypsinization time (TT) or flow rate (FR) shows (Table 4) that both the trypsinization 

time and flow rate have a statistically significant impact on the transcription levels of 

these genes. If the cells are trypsinized for a shorter time, a higher flow rate needs to be 

applied to retrieve the cells and vice versa. Interestingly, the p-values of the two factors 

(Table 4, combined FR and TT p-values) indicate that enzymatic cleavage and 

mechanical shear flow have a collective effect on the transcription of the ACTB, 28S and 

CCL2 genes. Since shorter trypsinization times and low flow rates are desired for 

preserving cellular RNA, the trypsinization time was limited to 5-7 minutes and a flow 

rate of 12.5 pL/s was utilized for single cell harvesting. 

Table 5 The effects of flow rate and trypsinization time on the mRNA 
preservation/retrieval efficiency 

Flow 
Rate 

(nL/s) 

Trypsini-
zation 
Time 

(minutes) 

ACTB 
 

28S 
 

HSP70 
 

CCL2 
 

Cq ± S.D. Cq ± S.D. Cq ± S.D. Cq ± S.D. 

2.5 5 32.27 ± 0.19 13.52 ± 0.27 29.64 ± 0.38 30.16 ± 0.37 

2.5 8 34.97 ± 3.04 15.01 ± 0.05 36.05 ± 2.03 36.69 ± 2.51 

2.5 10 35.33 ± 2.10 13.60 ± 0.90 31.00 ± 1.79 33.90 ± 0.56 

12.5 5 33.60 ± 1.05 18.23 ± 0.62 29.30 ± 0.88 31.43 ± 1.13 

12.5 8 33.22 ± 3.13 19.45 ± 0.03 33.52 ± 0.40 36.50 ± 0.80 

12.5 10 not detected 18.94 ± 0.59 31.45 ± 1.45 34.38 ± 0.00 

25 5 26.69 ± 0.74 13.81 ± 0.14 29.30 ± 0.62 32.79 ± 0.83 

25 8 34.87 ± 0.31 29.10 ± 1.20 34.21 ± 1.77 36.49 ± 0.62 

25 10 27.93 ± 0.39 14.81 ± 0.13 30.03 ± 1.80 37.07 ± 0.15 

 



 

75 

3.4.5 Comparison between on-chip lysis of cells in microwells and harvesting cells 

from microwells 

With the preservation medium, temperature, trypsinization time and flow-rate 

conditions optimized, it was important to determine whether the harvesting procedure 

itself under those conditions causes any observable RNA loss or changes in gene 

transcription. To this end a comparison was made between the amounts of mRNA 

extracted from cells that were harvested with those that did not undergo harvesting. 

Individual cells were directly lysed in microwells on the chip and this condition was used 

as the untreated control group. If no significant differences in gene transcription levels of 

the selected genes can be detected between the control group and the harvested group, the 

harvesting procedure can be considered suitable to collect cells for gene transcription 

analysis. 

In the on-chip lysis experiment, 9 single cells were loaded into a 3 × 3 array of 

microwells made in fused silica chips, and the chips were placed in a Petri dish. The cells 

on the chip were incubated overnight. After being visually inspected under the 

microscope for cell occupancy in the microwells, the glass chips with cells adhered to the 

well bottom were placed into a 1.5-mL microcentrifuge tube containing 200 μL of RNA 

Lysis Buffer. In the harvesting experiment, single-cells were harvested from the 

microwells on the cooled stage, using 12.5 pL/s flow-rate and 6 min trypsinization time, 

and placed into the cap of a microcentrifuge tube containing 200 μL of cell growth 

medium. The mRNA levels of the 28S, ACTB, GAPDH and HSP70 genes in cells lysed 

on the chip or harvested were analyzed using RT-qPCR. 
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Cq values of the four genes were compared between the on-chip lysis and 

harvesting groups to assess the capability of the two methods to preserve cellular RNA. 

The Cq values of 28S, ACTB, GAPDH and HSP70 genes in harvested cells were found to 

be very close to those measured in on-chip lysed cells (Figure 3-8). The Cq values of the 

28S, ACTB and GAPDH genes in harvested cells are slightly lower (ΔCq = -0.79 for 28S, 

-1.10 for ACTB and -0.57 for GAPDH), indicating a larger amount of mRNA in the 

harvested group; while the Cq values of the HSP70 gene in harvested cells are slightly 

higher than in on-chip lysed cells (ΔCq = 0.65), indicating a smaller amount of RNA in 

harvested cells. However, the Mann-Whitney test showed that the Cq differences between 

the two groups in all of the genes are not statistically significant. This suggests that the 

parameters used for harvesting preserve cellular RNA efficiently and do not induce 

detectable changes in the mRNA profile or in the amount of the total RNA extracted from 

the cell. 
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Figure 3-8 Comparison of gene transcription levels between the on-chip lysis of 
cells in microwells and harvesting cells from microwells 
(A) Cq values of the 28S, ACTB, GAPDH and HSP70 genes. The corresponding 
Cq mean values are shown on top of the bars. Error bars show the standard 
deviations. ΔCq between the two groups in all of the genes (Panel B-E) are not 
statistically significant (Mann-Whitney test, n=6, α = 0.05, two-tailed). 
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3.4.6 Fluorescence-assisted single cell harvesting 

Cell-cell communications are critical to regulating various core cellular responses, 

such as metabolism and homeostasis. Understanding gene transcription changes as a 

result of intercellular interactions in cells at different stages of pre-malignant progression 

may help discover new cancer biosignatures.  

To enable harvesting of individual cells of different types from co-cultured cell 

populations, a fluorescence-assisted single-cell harvesting modality was added to the 

method. To perform cell harvesting with minimal effect on gene transcription levels, the 

harvesting parameters optimized in the cell stress as presented above were used. Using 

this approach, one can distinguish co-cultured cells of different types utilizing cell-type 

specific fluorescent markers and separately collect individual cells from a single 

microwell. 

To this end, two cell lines were produced, each expressing a different fluorescent 

protein. Normal epithelial EPC-2 cells were transfected with Lentiviral vectors 

expressing cytosolic FP635 to establish the EPC-2/FP635 cell line. Dysplastic Barrett’s 

esophagus CP-D cells were transfected with Lentiviral vectors expressing cytosolic 

TurboGFP to establish the CP-D/TurboGFP cell line. Co-cultured EPC-2/FP635 and CP-

D/TurboGFP cells could easily be distinguished under the fluorescence microscope 

(Figure 3-9).  

The single-cell manipulation platform (Anis, Holl et al. 2010, Kelbauskas, Ashili 

et al. 2012) was equipped with an epi-fluorescence illumination source and 

excitation/emission filter sets for TurboGFP and FP635. With the help of a custom-

written program (LabVIEW) for fluorescence-assisted cell harvesting, EPC-2/FP635 cells 
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and CP-D/TurboGFP cells can be identified within the co-culture in the microwells. They 

can be detached and collected separately using the optimized harvesting conditions.  

 In order to demonstrate the ability of the technique to distinguish specific 

signatures of single cells, the presence of TurboGFP transcripts in harvested cells was 

measured using RT-qPCR. It was expected that the Cq values of the Turbo-GFP gene in 

CP-D/TurboGFP cells would be significantly lower compared with those in EPC-

2/FP635 cells. 

Figure 3-9 Harvesting single cells from a co-culture 
One CP-D/TurboGFP cell and One EPC-2/FP635 cell were co-incubated in 
microwells. Micrographs of: (A) bright field; (B) overlay of green and red 
channel with bright field channel; (C) CP-D/TurboGFP cell in green spectral 
channel, (D) EPC-2/FP635 in red spectral channel. Co-cultured EPC-2/FP635 
and CP-D/TurboGFP cells can be distinguished and harvested using the 
fluorescence-assisted single cell harvesting platform. 
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The amplification plots of RT-qPCR showed the presence of TurboGFP in CP-

D/TurboGFP cells and marked differences in Cq in EPC-2/FP635 cells (Figure 3-10A). 

Normalized Cq values using CP-D/TurboGFP cells as the reference demonstrated a 

significant difference in signal between two types of cells as determined by the Wilcoxon 

test (α = 0.05, two-tailed) with p = 0.0009 (Figure 3-10B). 
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Figure 3-10 RT-qPCR analysis of TurboGFP genes in CPD/TurboGFP and 
EPC2/FP635 cells 
Different cell types can be reliably distinguished using the fluorescent assisted 
harvesting method as proven by the RT-qPCR results. Quantitative cycle values 
on the amplification plots (A) and ΔCq analysis using CPD/TurboGFP cells as 
the control (B) both demonstrate the presence of TurboGFP in harvested 
CPD/TurboGFP cells but not in EPC2/FP635 cells.   
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3.5 Conclusion 

In this study, a method was developed for retrieving adherent cells from 

substrates with minimal disruption and perturbation. The method features combined 

enzymatic cleavage and mechanical force applied by a piezo-pump on a single cell 

manipulation station. Reagents for RNA preservation, temperature settings, flow rate, and 

trypsinization time were also optimized to minimize gene transcription profile changes 

brought by harvesting. Using this method, gene transcription levels were analyzed in both 

harvested and on-chip directly-lysed single cells. The results showed conclusively that 

the harvesting method that was developed and optimized can preserve the RNA profiles 

in the cells retrieved from microwells. The application was expanded to fluorescence-

assisted single cell harvesting from a co-culture of different cell types. This method 

provides an approach to transfer adherent single cells from cell culture to any 

downstream end-point analysis or re-culture. It enables researchers to retrieve adherent 

single cells without perturbation and thus has the potential to become a broadly 

applicable tool in the growing field of single-cell analysis. 
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CHAPTER 4  

QUANTITATIVE SINGLE-CELL GENE EXPRESSION MEASUREMENTS OF 

MULTIPLE GENES IN RESPONSE TO HYPOXIA TREATMENT 

4.1 Abstract 

Cell-to-cell heterogeneity in gene transcription plays a central role in a variety of 

vital cell processes. To quantify gene expression heterogeneity patterns among cells and 

to determine their biological significance, methods to measure gene expression levels at 

the single-cell level are highly needed. Reported here is an experimental technique based 

on the DNA-intercalating fluorescent dye SYBR green for quantitative expression level 

analysis of up to ten selected genes in single mammalian cells. The method features a 

two-step procedure consisting of a step to isolate RNA from a single mammalian cell, 

synthesize cDNA from it, and a qPCR step. The method was applied to cell populations 

exposed to hypoxia, quantifying expression levels of seven different genes spanning a 

wide dynamic range of expression in randomly picked single cells. In the experiment, 72 

single Barrett’s esophageal epithelial (CP-A) cells, 36 grown under normal physiological 

conditions (controls) and 36 exposed to hypoxia for 30 min, were randomly collected and 

used for measuring the expression levels of 28S rRNA, PRKAA1, GAPDH, Angptl4, MT3, 

PTGES, and VEGFA genes. The results demonstrate that the method is sensitive enough 

to measure alterations in gene expression at the single-cell level, clearly showing 

heterogeneity within a cell population. Presented are technical details of the method 

development and implementation, and experimental results obtained by use of the 

procedure. The advantages of this technique are expected to facilitate further 

developments and advances in the field of single-cell gene expression profiling on a 
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nanotechnological scale, and eventually to serve as a tool for future point-of-care medical 

applications. 
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4.2 Introduction 

Cell-to-cell heterogeneity in gene transcription plays a central role in a variety of 

vital cell processes, including differentiation (Losick and Desplan 2008, Furusawa and 

Kaneko 2009), stimulus response (Levsky, Shenoy et al. 2002), survival (Cohen, Geva-

Zatorsky et al. 2008, Fraser and Kaern 2009), and carcinogenesis (Elowitz, Levine et al. 

2002). Therefore, studies of the molecular mechanisms responsible for intercellular 

variability in gene expression levels at the single-cell level are expected not only to 

provide critical insights into core cellular processes but also to pave the way for new, 

more effective disease prevention and treatment strategies. The vast majority of currently 

existing experimental techniques for gene expression profiling are based on analysis of 

bulk samples containing 105–107 or more cells. Inherent to samples of that size is the 

ensemble-averaging of the results over a large number of cells, hiding key information 

emanating from individual cells. Thus, bulk techniques are rendered unsuitable for 

intercellular heterogeneity studies. The emerging importance of cell population 

heterogeneity imposes a demand for reliable gene transcription profiling techniques 

specifically tailored for individual cells. Measuring gene expression at the single-cell 

level is challenging because of the small amounts of total available mRNA (~1 pg). The 

large dynamic range of expression levels among genes is another hurdle that must be 

overcome by developing highly sensitive, specific, and reproducible detection strategies. 

The most reliable quantitative approach suitable for single-cell studies is based on reverse 

transcription (RT) without pre-amplification followed by quantitative polymerase chain 

reaction (qPCR). Besides enabling highly quantitative measurement of mRNA copy 

numbers, RT-qPCR theoretically allows detection of a single copy of mRNA. Several 
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experimental techniques based on RT-qPCR and specialized for quantitative gene 

expression profiling in individual cells have been reported in the literature (Hartshorn, 

Anshelevich et al. 2005, Hartshorn, Eckert et al. 2007, Bengtsson, Hemberg et al. 2008, 

Diercks, Kostner et al. 2009, Taniguchi, Kajiyama et al. 2009, Stahlberg and Bengtsson 

2010). Several of these techniques use a single-tube RT-qPCR approach (Bengtsson, 

Hemberg et al. 2008, Diercks, Kostner et al. 2009, Gong, Ogunniyi et al. 2010), in which 

all steps, including cell lysis, cDNA synthesis by reverse transcription, and quantitative 

PCR, are performed in one tube. This reduces the probability of mRNA loss and possible 

contamination during the sample-handling process. Although advantageous in terms of 

sample conservation, these single-tube methods can generate only one measurement for 

each cell, making it impossible to distinguish biological variation from measurement 

variation. In addition, the single-tube operation limits the number of genes that can be 

detected per single cell to less than five (Taniguchi, Kajiyama et al. 2009, Gong, 

Ogunniyi et al. 2010). To overcome these hurdles, multiple-step RT-qPCR procedures 

were recently developed (Taniguchi, Kajiyama et al. 2009, Joglekar, Wei et al. 2010). 

One of these protocols is based on a reusable single-cell cDNA library immobilized on 

beads for measuring the expression of multiple cDNA targets (from several copies to 

several hundred thousand copies) in a single mammalian cell. The results showed that the 

measurement error of this method is less than 15.9% among replicates (Bengtsson, 

Hemberg et al. 2008). Another procedure has been successful in assessing ten mRNA 

transcripts from a single cell, and each with one technical replicate (Hartshorn, 

Anshelevich et al. 2005). The procedure could potentially be extended to analyze twenty 

different mRNAs from a single cell by use of duplex PCR (Joglekar, Wei et al. 2010). 
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Despite some initial successes (Bengtsson, Hemberg et al. 2008, Taniguchi, Kajiyama et 

al. 2009, Joglekar, Wei et al. 2010, Stahlberg and Bengtsson 2010), analyzing multiple 

genes from one single cell by RT-qPCR remains challenging because the total amount of 

cDNA must be divided into multiple portions, limiting the sensitivity of RT-qPCR 

product detection. 

Molecular oxygen is required for energy production in aerobic organisms. A 

shortage of oxygen (hypoxia) creates significant stress in cells, to which they respond by 

several different molecular mechanisms, including reduction in energy demand, cell cycle 

arrest, production and secretion of survival and angiogenic factors, and so forth. Hypoxia 

plays a pivotal role in cancer, causing alterations in cellular metabolism, increased 

resistance to radiation and chemotherapy (Bertout, Patel et al. 2008), and possibly 

increasing cells’ metastatic potential (Lopez-Lazaro 2007). Oxygen deprivation has been 

shown to cause alterations in stem cell proliferation, differentiation, and pluripotency 

(Mazumdar, Dondeti et al. 2009). Despite recent advances in understanding cells’ 

responses to hypoxia, the underlying molecular mechanisms remain unclear. More 

specifically, there is a lack of studies at the single-cell level that could provide deeper 

insights into hypoxia-driven selection and survival among different cell populations. 

To gain better understanding of the molecular mechanisms contributing to the 

hypoxia response pathways, an experimental technique based on the DNA-intercalating 

fluorescent dye SYBR green was developed and evaluated. The method enables 

quantitative expression level analysis of up to ten genes of interest in single mammalian 

cells. 
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The technique is a modification of one initially developed for gene expression 

analysis in single bacterial cells (Gao, Zhang et al. 2011) and has so far not been tested in 

mammalian cells. The choice of SYBR green for qPCR is based on its relative ease of use, 

low cost, and suitability for development of high throughput, lab-on-chip procedures for 

RT-qPCR in single mammalian cells. The procedure presented here enables detection of 

up to ten genes, each with three technical replicates, from a single cell, with high 

repeatability (i.e. low standard deviations of quantification cycle, Cq). In addition, the 

SYBR-based chemistry used in the protocol provides greater flexibility to measure more 

genes in the future than Taqman-based technology. 

The method features a two-step procedure consisting of RNA isolation from a 

single mammalian cell followed by cDNA synthesis and a qPCR step. The expression 

levels of multiple genes of interest can be quantified simultaneously in single mammalian 

cells. The primers were designed for selected gene targets known, on the basis of bulk-

cell studies, to be involved in hypoxia response (Arany, Huang et al. 1996, Yoshiji, 

Gomez et al. 1996, Zhong, Agani et al. 1998, Mu, Brozinick et al. 2001, Wang, Wood et 

al. 2008, Murata, Yudo et al. 2009, Lee, Natsuizaka et al. 2010). The primers were 

evaluated at both bulk-cell and single-cell levels. The method was applied to cell 

populations exposed to hypoxia and the expression levels of ten genes spanning a wide 

dynamic range of expression in randomly picked, single cells was quantitatively 

measured. The technical details of method development and implementation are 

presented along with experimental results obtained by use of the procedure. The results 

showed significant gene expression level heterogeneity among the analyzed cells for each 

of the target genes. Detailed interpretation of the observed heterogeneity among cells 
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from an isogenic cell population and its biological significance requires more 

experimental data. However, the results presented here demonstrate that the method is 

sensitive enough to quantify cellular responses at the single-cell level and to reveal gene 

expression heterogeneity in a cell population. The advantages of this technique will 

facilitate further developments and advances in single-cell gene-expression profiling. 
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4.3 Experiments 

4.3.1 Cell culture 

The Barrett’s esophageal epithelial cell line CP-A was cultured using Gibco 

keratinocyte serum-free medium (SFM) cell growth medium (Invitrogen, Carlsbad, CA, 

USA), supplemented with hEGF (Peprotech, Rocky Hill, NJ, USA) at 2.5 μg/500 mL, 

BPE (bovine pituitary extract) at 25 mg/500 mL and penicillin–streptomycin solution 

(Invitrogen) at 100 units/100 μg/mL. Cells were grown at 37 °C under 5% CO2. Before 

experimentation, cells were cultured in a 75-mL flask to approximately 80% confluency. 

Cells were washed with 1× PBS (Cellgro, Manassas, VA, USA) and detached from the 

flask with 0.05% (v/v) trypsin–EDTA (Invitrogen). The trypsinization was blocked by 

Dulbecco’s modified Eagle medium (DMEM) (Invitrogen) supplemented with 5% fetal 

bovine serum (FBS) (Invitrogen). After trypsinization, cells were centrifuged at 900 rpm 

for 3 min then resuspended in 1 mL cell-growth medium. 

4.3.2 Primer design and selection of gene target 

Thirteen genes were chosen for RT-qPCR expression level analysis. 18S rRNA, 

28S rRNA, ACTB, and GAPDH were selected as reference genes because they are highly 

expressed housekeeping genes in mammalian cells. The 28S rRNA gene is a reliable 

internal control for comparative transcription analyses under hypoxic conditions (Zhong 

and Simons 1999). HSP70 and HSC70 genes were chosen because HSP70 mRNA 

undergoes dramatic changes under stress conditions, whereas HSC70 does not and can be 

used as a matched reference gene (Mayer and Bukau 2005). HIF1α (Zhong, Agani et al. 

1998), VEGFA (Yoshiji, Gomez et al. 1996), PRKAA1 (Mu, Brozinick et al. 2001), p300 

(Arany, Huang et al. 1996), MT3 (Wang, Wood et al. 2008), Angptl4 (Murata, Yudo et al. 
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2009) and PTGES (Lee, Natsuizaka et al. 2010) are involved in hypoxia response 

signaling pathways. Gene sequences were retrieved from GenBank. qPCR primers were 

designed using the Primer-BLAST, Primer 3 or PrimerExpress V2.0 software packages, 

or retrieved directly from PrimerBank (http://pga.mgh.harvard.edu/primerbank/). For 

each gene, multiple primer pairs were designed on the basis of their coding regions with 

amplification product lengths between 100 and 700 bp and annealing temperatures 

mostly between 60 and 65 °C. The amplification efficiencies of the primers were 

evaluated at bulk-cell and single-cell levels. Optimized primer oligos for single-cell 

analysis of the target genes were obtained from Fisher Scientific (Pittsburgh, PA, USA). 

The selected genes and their corresponding primers are listed in Table 6. 

Table 6 Genes and corresponding primers 

Gene  GenBank Access No. and 
Description  Sequence  

28S rRNA  
NR_003287.2, Homo sapiens 

RNA, 28S ribosomal 1 
(RN28S1)  

F: CCGCTGCGGTGAGCCTTGAA  
R:  TCTCCGGGATCGGTCGCGTT  

18S rRNA  
NR_003286.2, Homo sapiens 

RNA, 18S ribosomal 1 
(RN18S1)  

F:  CCCGACCCGGGGAGGTAGTG  
R:  GCCGGGTGAGGTTTCCCGTG  

ACTB  NM_001101.3, Homo sapiens 
actin, beta mRNA (ACTB)  

F:  CATGTACGTTGCTATCCAGGC  
R: CTCCTTAATGTCACGCACGAT  

GAPDH  
NM_002046.3, Homo sapiens 
glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH)  

F: TGTTGCCATCAATGACCCCTT  
R: CTCCACGACGTACTCAGCG  

HIF1A  

NM_001530.3 and 
NM_181054.2, Homo sapiens 

hypoxia inducible factor 1, 
alpha subunit, transcript 
variants 1 and 2 (HIF1A)  

F: CGTTCCTTCGATCAGTTGTGA  
R: CTTCCATACGGTCTTTTGTG  

VEGFA  
NM_001171622-630, 
NM_001025366-370, 

NM_001025376, 

F: GCTACTGCCATCCAATCGAG  
R: TGGTGATGTTGGACTCCTCA  
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4.3.3 Cell staining and fluorescence activated cell sorting 

Cells were stained by incubating in cell medium containing 10 μmol L−1Hoechst 

33342 dye (Invitrogen, Eugene, OR, USA) at 37 °C for 30 min. After staining the cells 

were trypsinized using 0.05% (v/v) trypsin (Invitrogen, Carlsbad, CA, USA) solution and 

NM_001033756, Homo 
sapiens vascular endothelial 
growth factor A (VEGFA) 
transcript variants 1 to 8  

p300  
NM_001429.3, Homo sapiens 

E1A binding protein p300 
(EP300)  

F: GCTTCAGACAAGTCTTGGCAT  
R: GCCTGTGTCATTGGGCTTTTG  

PRKAA1  

NM_006251.5, 
NM_206907.3, Homo sapiens 

protein kinase, AMP-
activated, alpha 1 catalytic 

subunit (PRKAA1), transcript 
variants 1and 2  

F: AACCATGATTGATGATGAAGCCT  
R: GGTGTTTCAGCAACCAAGAATG  

Hsc70  

NM_153201.1, 
NM_006597.3, Homo sapiens 

heat shock 70kDa protein 8 
(HSPA8), transcript variants 1 

and 2  

F: TGTGGCTTCCTTCGTTATTGG  
R: GCCAGCATCATTCACCACCAT  

Hsp70  

NM_021979.3, 
NM_005346.4, 

NM_005345.5, Homo sapiens 
heat shock 70kDa protein 1A 

(HSPA1A), 1B (HSPA1B), 
2(HSPA2)  

F: CGACCTGAACAAGAGCATCA  
R: AAGATCTGCGTCTGCTTGGT 

Angptl4  

NM_001039667.1 
NM_139314.1, Homo sapiens 

angiopoietin-like 4 
(ANGPTL4, ANGPTL2) 

F:  ACCTCCCGTTAGCCCCTG 
R:  CATGGTCTAGGTGCTTGTGGTC 

MT3 NM_005954.2, Homo sapiens 
metallothionein 3 

F: ATGGACCCTGAGACCTGCC 
R: TTGCACACACAGTCCTTGGC 

PTGES  NM_004878.4, Homo sapiens 
prostaglandin E synthase  

F:  TCAAGATGTACGTGGTGGCC 
R: GAAAGGAGTAGACGAAGCCCAG 
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resuspended in keratinocyte SFM containing 10 μmol L−1 Hoechst 33342. Cells were 

kept on ice before sorting with a BD FACS Aria cell sorter (BD Biosciences, San Jose, 

CA, USA). Cells in G1 phase were used in gene expression assays. 

4.3.4 Hypoxia treatment 

CP-A cells at 80% confluency were incubated in keratinocyte SFM cell-growth 

medium containing 2% (v/v) Oxyrase (Oxyrase, Mansfield, OH, USA) at 37 °C for up to 

30 min (see below). Cells were subsequently trypsinized in 0.05% (v/v) trypsin solution 

containing 2% (v/v) Oxyrase at 37 °C for 9 min. The trypsinization was blocked by 

Dulbecco’s modified Eagle medium (DMEM) (Invitrogen) supplemented with 5% fetal 

bovine serum (FBS) (Invitrogen) containing 2% (v/v) Oxyrase. The oxygen concentration 

was determined by use of an optical sensor (Tian, Shumway et al. 2010) calibrated with a 

Clark electrode. To determine the optimum Oxyrase treatment time, the expression levels 

of selected genes in bulk cells exposed to hypoxia for 10, 20, 30, 60, 180, and 360 min 

were measured. 

4.3.5 Single cell collection 

Single cells were collected using a pick-and-place single-cell manipulation 

robot (Anis, Holl et al. 2010). Single cells were aspirated and dispensed using a 40-μm 

diameter glass capillary micropipette under closed-loop microscopic vision-based 

feedback. After a selected cell was aligned with the micropipette orifice, the cell was 

aspirated by applying a negative pressure to the micropipette capillary, generating a drag 

force on the cell and pulling it into the capillary. The micropipette tip containing an 

aspirated cell was directed into the cap of a 1.5-mL microcentrifuge tube (VWR, West 

Chester, PA, USA) containing 200 μL keratinocyte SFM. The cell was dispensed by 
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applying a positive pressure to the micropipette capillary, generating an ejection force on 

the cell. Fluidic aspiration and dispensing of the cells were accomplished with minimal 

shear force on the cells so as to not cause physical damage to the cell. A total of 36 

hypoxia-treated single cells and 36 control single cells were collected and analyzed. 

4.3.6 RNA isolation and reverse transcription 

Each single cell in the cap of a 1.5-mL microcentrifuge tube was centrifuged at 

4 °C and 17,000 g for 20 min. Medium (160 μL) was taken out and 200 μL RNA lysis 

buffer from the ZR RNA MicroPrep Kit (Zymo Research, Orange, CA, USA) was added 

into the tube. The RNA extraction step was carried out using the ZR RNA MicroPrep Kit 

following the manufacturer’s instructions. A total volume of 6 μL RNA was eluted from 

the column matrix and immediately used in reverse transcription reactions. A total 

volume of 10 μL cDNA synthesis reaction mixture contained the reagents: 2 μL of 5 × 

VILO Reaction Mix (Invitrogen), 1 μL of 10 × SuperScript Enzyme Mix, including 

SuperScript III RT, RNaseOUT Recombinant Ribonuclease Inhibitor, and a proprietary 

“helper” protein (Invitrogen), 6 μL of total RNA from a single cell, and 1 μL of DEPC-

treated water (Ambion, Austin, TX, USA). The tube contents were gently mixed and then 

cDNA synthesis was performed at 25 °C for 10 min, 42 °C for 60 min, followed by 85 °C 

for 5 min to inactivate the reverse-transcriptase. The cDNA obtained was stored at 

−20 °C until further use. 

4.3.7 qPCR 

The Express SYBR GreenER qPCR SuperMix Kit (Invitrogen) was used for 

qPCR analysis. Each qPCR reaction for method development, primer testing, and 

optimization, and the hypoxia response experiment was performed using 5% (1/20th) of 
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the cDNA obtained from a single cell. Reactions were conducted in 0.1-mL MicroAmp 

Fast 8-Tube Strips (Applied Biosystems, Foster City, CA, USA). Hypoxia treatment 

expression assays were conducted in adhesive-sealed, clear 384-well PCR plates 

(BioExpress, Kaysville, UT, USA). DEPC-treated water (30 μL) was added to 10 μL of 

cDNA solution obtained from the reverse transcription step. The total reaction volume 

was 10 μL and comprised the reagents: 5 μL of Express SYBR GreenER qPCR 

SuperMix Universal, 1 μL of each primer (4 μmol L−1), 0.1 μL of ROX reference dye 

(25 μmol L−1), 2 μL of cDNA solution (1/20th of a total of 40 μL cDNA solution obtained 

from a single cell) and 0.9 μL of DEPC-treated water (Ambion). In negative control 

reactions, the 2 μL of cDNA solution was replaced with DEPC-treated water. The 

thermal cycling profile was set up as follows: one cycle at 95 °C for 10 min; 40 cycles at 

95 °C for 15 s, 60 °C for 1 min, and 80 °C for 10 s with signal detection; melt-curve 

analysis at 60 °C for 1 min and the temperature increased in 0.3 °C increments to 95 °C, 

then at 95 °C for 15 s. The method development experiments were run in a StepOne Real 

Time PCR System (Applied Biosystems). The gene expression profiling of hypoxia-

treated cells was run in an Applied Biosystems 7900 Real-Time PCR System. 

In order to push the limit on the number of genes whose expression levels could 

be quantified from a single mammalian cell, qPCR reactions were run on 1/45th of the 

cDNA obtained from individual cells. DEPC-treated water (80 μL) was added to the 

10 μL of cDNA obtained from the reverse transcription step. Each reaction was 

conducted in a 0.1-mL PCR tube (Applied Biosystems). The reaction was set up in a total 

volume of 10 μL and contained the reagents: 5 μL of Express SYBR GreenER qPCR 

SuperMix Universal, 1 μL of each primer (4 μmol L−1), 0.1 μL ROX reference dye 
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(25 μmol L−1), 0.1 μL of Taq DNA Polymerase (5 U μL−1; Fermentas, Glen Burnie, MD, 

USA), 2 μL of cDNA solution (1/45th of a total 90 μL of cDNA solution obtained from a 

single cell), and 1.8 μL of DEPC-treated water. The thermal cycling profile was: 1 cycle 

at 95 °C for 10 min; 50 cycles at 95 °C for 15 s, 60 °C for 1 min, and 80 °C for 10 s with 

signal detection; melt-curve analysis at 60 °C for 1 min and the temperature increased in 

0.3 °C increments to 95 °C then at 95 °C for 15 s. These experiments were run in a 

StepOne Real Time PCR System (Applied Biosystems). Data analysis was carried out 

using the StepOne software (Applied Biosystems). ANOVA t-test was used for statistical 

significance analysis. 
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4.4 Results and discussion 

4.4.1 Two-step RT-qPCR analysis of single mammalian cells 

A procedure was developed for quantifying the expression levels of multiple 

genes in a single mammalian cell using SYBR green-based qPCR. The procedure 

comprises six steps: 

1. fluorescence-activated cell sorting to obtain cells in a particular phase of the 

cell cycle, e.g. G1; 

2. single-cell collection; 

3. RNA extraction; 

4. reverse transcription; 

5. qPCR; 

6. data analysis. 

Adapting technology for RNA isolation and reverse transcription from single 

bacterial cells (Gao, Zhang et al. 2011), a new procedure was conceived, developed, and 

optimized for the isolation, purification, and reverse transcription of the total RNA from a 

single mammalian cell. The ZR RNA MicroPrep kit (Zymo Research) was used, followed 

by cDNA synthesis using the SuperScript VILO cDNA Synthesis Kit (Invitrogen). 

Because of picogram levels of available cDNA templates for qPCR in single-cell 

experiments, the probability of primer dimer formation increases. In this case, 

fluorescence signal originating from double-stranded primer dimers confounds 

quantification of the target gene amplification product. To eliminate such interference, 

primer pairs whose amplification product lengths are between 100 bp and 700 bp were 

designed. Therefore, amplification products can be distinguished from primer dimers, 
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which are typically less than 100 bp, in both melt-curve analysis and agarose gel 

electrophoresis. Also, the qPCR thermal cycling program was modified to enable a 

signal-detection step (80 °C for 10 s) after the annealing/amplification step (60 °C for 

1 min). The melting temperatures of primer dimers are usually less than 75 °C, whereas 

those of the target gene amplification products are more than 80 °C. Thus, when the 

fluorescence signal is detected at 80 °C, only the target gene amplification products will 

remain intact and the double-stranded primer dimers will dissociate. A total volume of 

10 μL SYBR GreenER qPCR reagent kit was used for each qPCR reaction (as described 

in Section 4.3.7 qPCR). The total amount of cDNA obtained from a single CP-A cell was 

divided into twenty equal portions and each portion was used for one qPCR reaction. 

Three technical replicates were run for each pair of primers to assess the sample-handling 

error. cDNA obtained from a bulk cell sample was diluted to a level corresponding to the 

amount of cDNA from 10 cells and used as the positive control. One negative control 

reaction was run for each pair of primers, in which cDNA was replaced with DEPC-

treated water. Experiments were conducted in a StepOne Real Time PCR System 

(Applied Biosystems). After qPCR, the contents of each PCR reaction were subjected to 

agarose gel electrophoresis and sequence analysis. 

For method-validation purposes, qPCR analyses were conducted of highly 

expressed genes (18S rRNA, 28S rRNA, ACTB, and GAPDH genes) in single cells. To 

increase primer binding specificity, several iterations of primer optimization were 

conducted. So far, 13 pairs of primers targeting 13 different genes (Table 6) have been 

validated. Specifically, 28S rRNA is a reliable internal control for comparative 

transcription analyses under hypoxic conditions (Zhong and Simons 1999). Therefore, 
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28S rRNA was used as an internal reference for comparing gene expression levels within 

one cell and among multiple single cells. The choice of Hsp70 and Hsc70 genes is based 

on the fact that Hsp70 expression levels change significantly in response to stress 

whereas Hsc70 is a constitutively expressed cognate gene whose levels remain constant. 

Thus, Hsc70 can be used as a reference gene (Mayer and Bukau 2005) for Hsp70. HIF1α 

(Zhong, Agani et al. 1998), VEGFA (Yoshiji, Gomez et al. 1996), PRKAA1 (Mu, 

Brozinick et al. 2001), p300 (Arany, Huang et al. 1996), MT3 (Wang, Wood et al. 2008), 

Angptl4 (Murata, Yudo et al. 2009), and PTGES (Lee, Natsuizaka et al. 2010) were 

chosen because of their roles in hypoxia response-signaling pathways.  
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Figure 4-1 Amplification plots of gene transcripts using validated primers 
1/20th of the total cDNA obtained from a single CP-A cell was used for each 
qPCR reaction shown. This includes three technical replicates and the no-
template controls (NTC). Each panel shows real-time amplification signal 
curves obtained from a single cell. 
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Using these primers, the expression levels of genes of interest were quantified by 

RT-qPCR using 1/20th of the cDNA obtained from a single CP-A cell. Representative 

amplification plots for the 13 genes are shown in Figure 4-1. The Cq ratio of 28S rRNA to 

18S rRNA has been found to be typically approximately 1 in mammalian cells (Fleige and 

Pfaffl 2006). The results here showed that the Cq values for 28S rRNA and 18S rRNA are 

19.73 and 20.71, respectively, indicating that the method yields intact mRNA and is 

reproducible and quantitative. The Cq values of 28S and 18S rRNAs are approximately 

10 cycles lower than those of ACTB and GAPDH mRNAs. This is consistent with the 

fact that rRNA concentrations are 100 to 1000 times higher than mRNAs in cells, as 

found in bulk cell studies. Reactions with Cq values lower than 37 and standard 

deviations of technical replicates smaller than 1% were regarded as successful. In most 

reactions, no-template negative controls (NTC) were not detected (Figure 4-1). In some 

reactions residual NTC signals, most likely emanating from primer dimers, were detected 

at cycle numbers significantly higher than the product (at least 3 or 4 cycle difference). 

The spurious NTC signals were clearly distinguishable from those of the amplification 

products (cDNA) because of distinctly higher Cq values (Figure 4-1) and different 

melting peak temperatures (Figure 4-2). The amplification products from the reactions 

containing cDNA showed clear bands of the correct sizes in agarose gel electrophoresis 

(data not shown). The gel bands containing products of the right size were cut, and the 

product was purified for sequencing. Sequences were confirmed using BLAST 

annotation against the NCBI GenBank database. 
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Figure 4-2 Melt curves of gene transcripts using validated primers 
Each panel represents derivative reporter values of real-time fluorescence 
signals in melt curve analysis. 
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4.4.2 Detection of up to ten genes from a single mammalian cell 

A method was developed which uses SYBR green-based RT-qPCR for detecting 

expression levels of up to ten different genes (18S rRNA, 28S rRNA, ACTB, Angptl4, 

GAPDH, HIF1A, HSC70, MT3, PTGES, and VEGFA) in a single CP-A cell. These genes 

span a broad range of copy numbers in cells. A population of CP-A cells was exposed to 

hypoxia, and randomly selected, single cells were collected by use of a single-cell 

manipulation workstation. After RNA extraction and reverse transcription, cDNA 

template obtained from a single CP-A cell was divided into 45 equal portions of 2-μL 

volume each. This dilution enabled up to 45 qPCR reactions to be performed on the 

cDNA obtained from a single cell, enabling triplicate analyses of multiple genes from the 

same cell. Each portion of the template was added to an SYBR GreenER qPCR reagent 

mixture, resulting in a total reaction volume of 10 μL. For each gene one RT-qPCR NTC 

was run in parallel. To increase the amplification level, 0.1 μL of Taq DNA Polymerase 

(Fermentas) was added to each reaction mixture. As in the previous experiments, 

reactions for each of the genes were run in triplicate. To achieve sufficient amplification 

levels of low-abundance transcripts, the thermal cycling profile was modified by 

extending the amplification cycle number to 50. The reactions were run utilizing the 

StepOne Real Time PCR instrument. 
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Using this method, the transcription levels of up to ten genes with Cq values lower 

than 50 can be simultaneously quantified (Figure 4-3). The standard deviations of the 

qPCR Cq value of eight genes (18S rRNA, 28S rRNA, ACTB, GAPDH, Angptl4, MT3, 

PTGES and HSC70) were less than 1 (3%) among the technical replicates (Figure 4-3).  

Figure 4-3 Quantification of expression levels of ten genes in a single, 
hypoxia-treated CP-A cell 
1/45th of the total cDNA obtained from a single CP-A cell was used for each 
qPCR reaction. Each box includes quantification cycle (Cq) values from three 
technical replicates for one gene. Average Cq values and standard deviations 
among three technical replicates are summarized in the table. 
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As expected, larger variations between the technical replicates was observed for 

low-abundance transcripts, for example HIF1A and VEGFA (3.4 (7%) and 1.3 (4%), 

respectively). It is most likely that this is because of picogram levels of available cDNA 

templates, which makes the amplification events at the beginning less probable and 

introduces more noise in Cq values. No amplification signal was detected for the NTC 

reactions of HIF1A, VEGFA, and HSC70, and for NTC reactions of 18S rRNA, 28S rRNA, 

Figure 4-4 Gel electrophoresis analysis of RT-qPCR amplification products 
of 10 genes from a single CP-A cell 
2.5 µL of the qPCR products were loaded on a 2% agarose gel. The bands in 
the frame indicate the correct amplification product. In several cases the 
correctness of the PCR products was confirmed by sequencing the contents 
of the corresponding bands. 
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ACTB, GAPDH, Angptl4, MT3, and PTGES amplification signals were observed after a 

large number of cycles. However, the melting temperatures (Tm value) were 0.4–10.3 °C 

different from the Tm values of the corresponding products in cDNA sample reactions. 

Therefore, amplification products resulting from unavoidable minute contamination 

and/or random, non-specific amplification can be identified by their 

characteristic Tm values. Both length and sequence of the amplification products were 

confirmed by agarose gel electrophoresis (Figure 4-4) and sequencing. 

The Cq values for 28S and 18S rRNAs are approximately 10 cycles lower than 

those of the housekeeping genes ACTB and GAPDH (100–1000 times higher in copy 

number), and 7–17 cycles lower than those of the genes of interest (100–100,000 times 

higher in copy number). 

4.4.3 Gene expression under hypoxia 

One of the research objectives was to understand epithelial cells’ responses to 

hypoxic stress. To address the role of intercellular gene expression heterogeneity under 

different physiological conditions, gene expression levels in CP-A cells in response to 

hypoxia were studied. Oxyrase, an oxygen-scavenging enzyme system, was used to 

produce hypoxic conditions in cell growth medium. Oxygen concentration in the cell 

medium was reduced to <0.01 ppm within 20 min after Oxyrase addition (Figure 4-5).  
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To determine the time course of changes in gene expression, bulk cell samples 

(~104 cells per sample) were analyzed at 0, 10, 30, 60, 180, and 360 min after adding 

Oxyrase to the cell medium, and the expression levels were measured of six genes 

(Angptl4, PTGES, MT3, PRKAA1, VEGFA, and GAPDH) known to be involved in 

hypoxia response, using 28S rRNA as the internal control. A 1:1000 dilution of the total 

synthesized cDNA was used for RT-qPCR. The results showed that mRNA levels of 

Angptl4, PRKKA1, and MT3 increased and that of GAPDH decreased in response to the 

Oxyrase treatment, whereas mRNA levels of VEGFA and PTGES were not significantly 

affected (Figure 4-6). 

Figure 4-5 Oxygen depletion in the cell medium 
Time course of the oxygen concentration in the cultivation medium before 
and after addition of 2.0% (v/v) Oxyrase. Arrows indicate the time points of 
gene expression profiling experiments. Oxyrase was added at time zero. 
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The absence of significant changes in the expression levels of VEGFA and 

PTGES genes in bulk cell samples may be cell type-specific or a result of the relatively 

short hypoxia exposure (30 min). Among the genes studied, MT3 seems to be most 
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Figure 4-6 qPCR results of long time Oxyrase treatment 
Bulk CP-A cell samples were used to determine the treatment time when the 
largest changes in gene expression levels occur. Expression levels of seven 
genes, 28s rRNA, MT3, VEGFA, PRKAA1, Angptl4, PTEGS, and GAPDH, 
were measured using qPCR at bulk cell levels as a function of time at 0, 10, 
30, 60, 180, and 360 minutes after addition of Oxyrase. The gene expression 
levels were indicated as fold-changes normalized against 28s rRNA. The 
fold-changes of gene expression were calculated as 2-Δ(ΔCq), where ΔCq = 
Cq, target - Cq, 28s, and Δ(ΔCq) = Cq, stimulated - ΔCq, control. 
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sensitive to hypoxia, with 3 and 7-fold increases in expression level after 10 and 30 min 

treatments, respectively. At least twofold increases in transcription levels were observed 

for two other hypoxia-response genes, Angptl4 and VEGFA, in response to 30-min 

Oxyrase treatment. On the basis of the higher expression observed in bulk cell 

experiments after 30 min treatment with Oxyrase, this treatment time was chosen for 

single-cell analysis. 

A total of 72 single CP-A cells were collected, 36 grown under normal 

physiological conditions (controls) and 36 exposed to hypoxia for 30 min, the expression 

levels of seven selected genes in each cell were measured. To limit cell-to-cell variability 

that may result from differences in cell cycle phase, cells in G1 phase sorted by means of 

fluorescence-activated cell sorting were used. In addition to six genes (PTGES (Lee, 

Natsuizaka et al. 2010), Angptl4 (Cazes, Galaup et al. 2006, Galaup, Cazes et al. 2006, 

Gentil, Le Jan et al. 2006, Gustavsson, Mallard et al. 2007, Murata, Yudo et al. 2009), 

MT3 (Wang, Wood et al. 2008), GAPDH (Liu, Cox et al. 1995, Iyer, Kotch et al. 1998, 

Foldager, Munir et al. 2009), PRKAA1 (Mu, Brozinick et al. 2001), and VEGFA (Liu, 

Cox et al. 1995, Yoshiji, Gomez et al. 1996, Hu, Fan et al. 2009)) known to be involved 

in the hypoxia response signaling pathway in various bulk cell-based studies,  the highly-

expressed 28S rRNA was included as the reference gene. The number of cells with all 

seven target genes detected was higher in hypoxia-treated cells. For example, PTGES 

transcripts were detected in all 36 hypoxia-treated cells and in 27 control cells (Figure 

4-7A). This can be attributed to higher mRNA copy numbers of these genes in cells 

exposed to hypoxia than in control cells. The 28S rRNA gene was detected in all 72 cells, 

with small cell-to-cell variations (standard deviations of C q < ±0.5). 
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The differences between ΔCq values (ΔCq = Cq, target gene − Cq, 28s (Golding, 

Paulsson et al. 2005)) of the target genes as measured under normoxic and hypoxic 

Figure 4-7 Single-cell gene-expression profiling in control and hypoxia-
treated CP-A cells 
(A) Histograms of gene expression levels in control (green bars) and 
hypoxia-treated (30 min, hatched bars) single CP-A cells in G1. (B) Box 
plots of single-cell gene-expression levels and p-values associated with 
differences between in untreated controls and hypoxia-treated CP-A cells. 
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conditions were highly variable among cells, indicating significant cell-to-cell 

heterogeneity in the cell population. Distribution histograms of gene expression levels in 

control and hypoxia-treated CP-A cells indicate significant cell-to-cell heterogeneity in 

all six studied genes (Figure 4-7A). PTGES and Angptl4 genes showed the largest 

differences in ΔCq values between control and hypoxia-treated cells. The ΔCq values for 

these genes were lower in the treated cells, indicating up-regulation of PTGES and 

Angptl4 in response to hypoxia. Statistical analysis of gene expression levels in hypoxia-

treated vs. control single cells confirmed a significant reduction of ΔCq values for PTGES 

(p < 0.0005) and Angptl4 (p < 0.005) genes, whereas changes in ΔCq for the other four 

genes were not statistically significant (Figure 4-7B). In some early bulk cell studies, 

expression levels of several of the target genes used in this study, for example the MT3 

gene encoding a metal-binding protein metallothionein 3 and the PTGES gene encoding a 

prostaglandin E synthase, were dramatically increased under hypoxia (Wang, Wood et al. 

2008). The hypoxia treatment times used in the studies were 24 h (Lee, Natsuizaka et al. 

2010), much longer than those used in this study (0.5 h) and, therefore, the findings are 

not directly comparable. 
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Interestingly, it was found that the gene-expression patterns obtained from bulk-

cell (Figure 4-8) and single-cell samples (Figure 4-7) differed in terms of response to 

hypoxia. Only two genes, Angptl4 and VEGFA, showed the same trend in both bulk and 

single-cell analyses: Angptl4 was up-regulated and VEGFA did not change significantly 

in response to hypoxia treatment. Whereas no significant changes at the single-cell level 

Figure 4-8 Gene expression levels of bulk cell samples under normoxic and 
hypoxic conditions 
Results from three different experiments are shown. Green bars represent 
control cells that were not exposed to hypoxia. Light blue bars and red 
bars depict gene expression levels from cells exposed to hypoxia for 10 and 
30 min, respectively. The changes of gene expression were calculated as 
2−Δ(ΔCq ) , where ΔCq = Cq, target − Cq, 28s, and Δ(ΔCq) = ΔCq, stimulated − ΔCq, 

control. Asterisks indicate statistical significance at p < 0.05 on the basis of 
ANOVA t-test analysis. 
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were observed for MT3 and PTGES, both genes were significantly up-regulated in bulk-

cell samples, consistent with other bulk-cell studies (Arany, Huang et al. 1996, Lee, 

Natsuizaka et al. 2010). GAPDH was not significantly changed in single cells but 

significantly down-regulated in bulk cells whereas PTGES was significantly up-regulated 

in single cells whereas no significant change was observed in bulk cells. Recent studies 

on mRNA levels in individual cells suggest that cell-to-cell alterations in gene expression 

levels seem to be a result of variations at the bulk mRNA stability and/or translational 

level (Golding, Paulsson et al. 2005, Siegal-Gaskins and Crosson 2008, Le and Cheng 

2009, Valencia-Burton, Shah et al. 2009, Lidstrom and Konopka 2010). A recent study 

showed that single-cell gene expression has a log-normal distribution, reflecting true 

biological variability (Stahlberg and Bengtsson 2010). This finding indicates that average 

gene expression levels quantified in a population of cells may be substantially different 

from expression levels measured in individual cells from the same population (Bengtsson, 

Hemberg et al. 2008). This result also emphasizes the importance of developing and 

applying microfluidics-based instrumentation for high-throughput single-cell gene 

expression measurements with improved statistical power. 
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4.5 Conclusion 

In summary, a qPCR-based method was developed and applied for single-cell 

gene expression analysis, enabling measurement of multiple gene targets in a single 

mammalian cell. The method is based on separate RNA isolation, cDNA synthesis, and 

qPCR steps. Using this method, gene transcription levels were quantified in control and 

hypoxia-treated cells at both bulk and single-cell levels. The results show that 

quantitative analysis of gene expression of multiple genes can be achieved in single cells 

with good reproducibility and specificity. In addition, significant gene-expression 

heterogeneity was observed among the sorted cell population. 

The procedure can be further improved by performing absolute mRNA abundance 

determination in single cells, using a gene sequence cloned into a plasmid as a reference 

to calculate absolute mRNA copy numbers. ACTB mRNA transcribed in vitro using T7 

RNA Polymerase can be used to validate the efficiency and reliability of the reverse 

transcription step of the procedure. Given the compatibility of this method with most 

commercially available RT-qPCR instrumentation and its relatively low cost, it should be 

amenable to many applications focused on gene expression analysis in single cells, for 

example high-throughput, chip-based techniques (Kelly and Woolley 2005), which will 

provide further insights into the cellular mechanisms involved in physiological and 

pathological processes at the single-cell level. 
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CHAPTER 5  

WHOLE TRANSCRIPTOME AND METABOLIC PROFILING OF 

INTERCELLULAR INTERACTIONS BETWEEN NORMAL AND PRE-

MALIGNANT ESOPHAGEAL CELLS  

5.1 Abstract  

Intercellular communications are critical to the growth and function of 

multicellular organisms. The interplay between aberrant cells and their microenvironment 

can drive pathogenesis and progression of many diseases including cancer. Solid tumors 

are organ-like structures with complex and dynamic interactions among different clones. 

Understanding the role of cell-cell communications in the tumor microenvironment could 

lead to new cancer biosignatures and more effective prognostic, diagnostic and 

management strategies of the disease.  This study is about the effects of intercellular 

interactions between normal and late-dysplastic Barrett’s esophagus cells on gene 

transcription levels and metabolic functions. It was investigated how homotypic and 

heterotypic intercellular interactions affect gene expression changes using next-

generation sequencing. Analysis of next-generation sequencing results identified 

differentially expressed genes. These genes were enriched in cellular movement and other 

cancer-related pathways. Heterotypic interactions suppressed downstream genes of TGFβ 

and EGF pathways in late-dysplastic cells, compared with homotypic interactions. Gene 

transcription changes were correlated with cellular proliferation and motility phenotypes 

and their functional relevance during pre-malignant progression was explored. 
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5.2 Introduction 

Cell-cell interactions are essential for growth and function of multicellular 

organisms. Aberrant intercellular communication plays a key role in carcinogenesis and 

tumor progression. More and more evidence has shown that a tumor is not merely a 

collection of homogenous cancer cells undergoing transformation by themselves 

(Hanahan and Weinberg 2011). Tumor genesis and progression is an ecological process 

involving dynamic interplays between malignant and non-malignant cells (Barcellos-Hoff, 

Lyden et al. 2013). Tumor cells are affected by reciprocal interaction between the 

parenchymal and stromal cells in two ways: physically through direct contact or 

intervening extracellular matrix, or biologically through soluble ligands. The 

communication and signaling create a context that promotes tumor growth and helps it 

acquire hallmark traits of cancer (Hanahan and Weinberg 2011).  

Esophageal adenocarcinoma is a highly lethal cancer type (Spechler 2013). It 

arises from metaplasia and dysplasia of the esophageal epithelium (Barrett's esophagus) 

(Shaheen, Crosby et al. 2000). Recent studies and clinical practices have identified and 

used dysplasia and genomic markers for predicting the risk of developing 

adenocarcinoma (Jin, Cheng et al. 2009). However, how the transformation of 

metaplasia-dysplasia-adenocarcinoma occurs still remains to be clarified. 

Neoplastic cells in Barrett’s esophagus collect genetic and epigenetic alterations 

as they undergo evolution by natural selection. This process is influenced by their 

surrounding cells and other factors in the environment. Acid and bile luminal refluxate 

can induce double-stranded DNA breaks or promote oxidative DNA damage (Clemons, 

McColl et al. 2007). Inflammatory cell infiltrate can generate reactive oxygen species 
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(Naya, Pereboom et al. 1997), which might contribute to DNA damage in neoplastic cells. 

Reactive oxygen species might induce growth factors, survival factors or Fas ligand 

secretions (Younes, Schwartz et al. 1999). Inflammatory cell infiltrate can also produce 

cytokines, such as transforming growth factor β (TGFβ), interleukin one β (IL-1β), 

interferon γ (IFNγ), IL-6 (Zhang, Zhang et al. 2011) and tumor necrosis factor α (TNFα) 

(Tselepis, Perry et al. 2002). In the stromal compartment of Barrett’s esophagus, gene 

expression profiles are distinctive among different stages of progression (Lao-Sirieix and 

Fitzgerald 2010). Thrombospondin-1 (TSP1) is overexpressed in stroma from Barrett’s 

esophagus biopsy samples. TSP1 can activate TGFβ, which either controls proliferation 

or promotes epithelial-mesenchymal transition in Barrett’s esophagus and esophageal 

adenocarcinoma (Rees, Onwuegbusi et al. 2006). Furthermore, co-culture of squamous 

carcinoma and Barrett’s carcinoma cells produces more pro-inflammatory cytokines 

compared with cells cultured individually (Fitzgerald, Abdalla et al. 2002). The current 

results suggest that cell-cell interactions in the tumor microenvironment can change 

epithelial cell behavior in Barrett’s esophagus. More systematic research is required to 

elucidate the molecular components contributing to esophageal adenocarcinoma 

development and enhance understanding of this dynamic process. 

Presented here is a study on gene expression and metabolic phenotype profiling of 

heterotypic cell-cell interactions between normal and late-dysplastic Barrett’s esophagus 

cells. It investigated how homotypic and heterotypic intercellular interactions affect gene 

expression changes using next-generation sequencing. Using gene ontology and pathway 

enrichment analysis, a set of genes related to cellular movement and other cancer-related 

pathways is identified. Heterotypic interactions suppressed downstream genes of TGF-β 
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and EGF pathways in late-dysplastic cells. It was also found that heterotypic interactions 

between normal and dysplastic cells inhibited cellular proliferation and changed motility 

in both dysplastic and normal cells. Normal cells are found to inhibit the growth of 

dysplastic cells via TGF-β mediated growth factor pathways. The fractions of normal to 

dysplastic cells can be used as risk stratification markers for Barrett’s esophagus and 

esophageal adeonocarcinoma. TGF-β, EGF and their downstream genes can become 

potential biosignatures for early diagnosis, early detection and risk prediction in pre-

malignant progression of Barrett’s esophagus.  
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5.3 Experiments 

5.3.1 Cell lines  

One normal cell line, EPC-2 (Harada, Nakagawa et al. 2003), and one cell line 

derived from an esophageal region of high-grade dysplasia in Barrett’s esophagus, CP-D 

(Palanca-Wessels, Barrett et al. 1998), were used for cell-cell interaction studies. Cells 

were cultured using Gibco keratinocyte serum-free cell growth medium (Invitrogen, 

Carlsbad, CA, USA), supplemented with hEGF (Peprotech, Rocky Hill, NJ, USA) at 2.5 

μg/500 mL, BPE (bovine pituitary extract) at 25 mg/500 mL and penicillin–streptomycin 

solution (Invitrogen, Carlsbad, CA, USA) at 100 units/100 μg/mL. Cells were grown at 

37 °C in a humidified atmosphere containing 5% CO2.  

CP-D and EPC-2 cell lines were tagged with TurboGFP and TagFP635, 

respectively, to distinguish different cell types using fluorescence microscopy and 

fluorescence activated cell sorting. For lentiviral infection of both cell lines, 1.3 x 104 

CP-D cells and 1.6 x 104 EPC-2 cells were seeded into individual wells of a Costar® 96-

well-plate (Corning, Corning Life Sciences, Corning, NY, USA) containing 100 μL of 

Gibco Keratinocyte serum-free medium. After 24 hours of incubation, the cell culture 

reached about 80% confluency. 100 μL of Keratinocyte serum-free medium containing 8 

mg/mL of hexadimethrine bromide was added to each well. Lentiviral MISSION® 

pLKO.1-puro-UbC-TurboGFP™ Positive Control Transduction Particles (Sigma-Aldrich, 

St Louis, MO, USA), containing a gene encoding TurboGFP under the control of the 

UbC promoter, were added to the well of CP-D cells at a multiplicity of infection of 2. 

Lentiviral MISSION® pLKO.1-puro-UbC-TagFP635™ Positive Control Transduction 

Particles (Sigma-Aldrich, St Louis, MO, USA), containing a gene encoding TagFP635 
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under the control of the UbC promoter, were added to the well of EPC-2 cells at a 

multiplicity of infection of 2 as well. The plate was gently stirred and centrifuged at 1000 

rpm, 37° C for 30 minutes. After 18-20 hours, the medium containing lentiviral particles 

was replaced with 120 μL of Keratinocyte serum-free medium in each well. Four days 

after infection, the cells were imaged using a Nikon C1si (Nikon Inc., Melville, NY, USA) 

confocal microscope to inspect the expression of cytosolic TurboGFP in CP-D cells and 

TagFP635 in EPC-2 cells.  

After the culture was expanded into 75 cm2 flasks (Corning, Corning, NY), a 

puromycin kill curve experiment was performed to determine the minimum concentration 

of puromycin to cause 0% viability ration in puromycin treated cells. 1.0 μg/mL and 0.5 

μg/mL of puromycin were found to effectively kill the CP-D and EPC-2 cells, 

respectively, in which TurboGFP or TagFP635 was not successfully expressed after 96 

hours. CP-D and EPC-2 cells were grown in keratinocyte serum-free medium containing 

puromycin (1.0 μg/mL for CP-D cells and 0.5 μg/mL for EPC-2 cells) for five passages, 

and then grown in normal keratinocyte serum-free medium. The expression of cytosolic 

TurboGFP or TagFP635 was retained in CP-D and EPC-2 cells, respectively, when 

checked under a Nikon C1si confocal microscope. 

5.3.2 Fluorescence assisted cell sorting of co-culture and mono-culture of normal 

and neoplastic cells 

For CP-D and EPC-2 mono-cultures, 2 × 106 cells of each type were seeded into a 

75 cm2 flask. For CP-D and EPC-2 cells co-culture, 1 × 106 CP-D and 1 × 106 EPC-2 

cells suspension were mixed and seeded into a 75 cm2 flask. After 24 hours, cells were 

treated with 0.05% (v/v) trypsin–EDTA (Invitrogen, Carlsbad, CA, USA). The 
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trypsinization was blocked by Dulbecco’s modified Eagle medium (DMEM) (Invitrogen, 

Carlsbad, CA, USA) supplemented with 5% fetal bovine serum (FBS) (Invitrogen, 

Carlsbad, CA, USA). After trypsinization, cells were centrifuged at 900 rpm for 3 min 

then re-suspended in 300 µL of PBS (Gibco, Carlsbad, CA, USA) and kept on ice. CP-D 

and EPC-2 cells were sorted out from co-culture on a BD FACS Aria (BD Biosciences, 

San Jose, CA, USA), using a 488 nm laser to excite TurboGFP in CP-D cells and FP635 

in EPC-2 cells. Manual compensation was performed to correct for spectral cross-over of 

fluorescent proteins. Mono-cultured CP-D and EPC-2 cells were also sorted using the 

same TurboGFP or FP635 gates and regions.  

5.3.3 RNA extraction 

Total RNA was extracted from the sorted cells using RNeasy mini kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer’s protocol. The silica-gel membrane 

and the spin-column technology removed the majority of the DNA. After proprietary 

buffer RW1 treatment, residual DNA in the RNA samples was digested on the column 

using RNase-free DNase set (Qiagen, Valencia, CA, USA) for 15 min at 20–30°C to 

remove DNA more completely. The RNase-free DNase set consists of 10 μL of DNase 1 

stock solution in 70 μL of proprietary buffer RDD. RNA was eluted by adding 30 μL of 

RNase-free water into the silica-gel membrane and stored at -80°C. 

5.3.4 Whole transcriptome amplification 

The quantity and purity of RNA obtained from FACS sorted cells was measured 

using spectrophotometry on a Nanodrop instrument (Agilent Technologies, Santa Clara, 

CA, USA). The concentration of RNA was adjusted to 10 ng/μL. 50 ng of RNA was 

amplified using Nugen Ovation RNA-Seq V2 kits (Nugen Technologies, San Carlos, CA, 
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USA) per manufacturers’ instruction on an Apollo 324 Library Preparation System 

(IntegenX, Pleasanton, CA, USA). Briefly, the RNA was reverse transcribed to the first-

strand cDNA by using a combination of random hexamers and poly-T oligomer. The 

RNA template was fragmented by RNA-dependent DNA polymerase and double-

stranded DNA was generated by the same polymerase. The dsDNA was amplified 

linearly using a single primer isothermal amplification (SPIA) process:  RNase H 

degraded RNA in RNA in the DNA/RNA heteroduplex; the SPIA primer bound to the 

cDNA; the polymerase synthesized new cDNA strand replacing the RNA; random 

hexamers amplified the second-strand cDNA linearly. This technology covered non-

coding RNA and non-polyadenylated RNA besides mRNA and reduced the conversion of 

ribosomal RNA to cDNA (Kurn, Chen et al. 2005). 

Amplified DNA was measured by a Nanodrop instrument for quality control 

purposes. cDNA was sheared to about 250 bp using a Covaris S2 instrument (Covaris, 

Woburn, MA, USA) and checked again using a Nanodrop instrument. 

5.3.5 Library preparation and Illumina sequencing 

Illumina sequencing libraries were prepared on an Apollo 324 Library Preparation 

System using the PrepX™ ILM DNA Library Preparation kit (IntegenX, Pleasanton, CA, 

USA) with four different barcoded adapters for multiplexing. The adapter-ligated 

libraries were amplified by 10 cycles of PCR using a KAPA HiFi Library Amplification 

Kit (Kapa Biosystems, Woburn, MA, USA). PCR amplified libraries were qualified using 

high sensitivity DNA assay on an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa 

Clara, CA, USA) and quantified using a KAPA Library Quantification Kit - 

Illumina/Universal (Kapa Biosystems, Woburn, MA, USA). 
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Clusters were generated using the cBot platform (Illumina, San Diego, CA, USA). 

Four samples were multiplexed per lane with two lane replicates. Single-end sequencing 

with 50 base reads was performed on an Illumina HiSeq 2000 (Illumina, San Diego, CA, 

USA) following the manufacturer’s guidelines. 

5.3.6 Next-generation sequencing alignment 

The sequenced reads were parsed based on the index to allow analysis of the data 

on the individual sample basis. Raw reads were analyzed using the GeneSifter® Analysis 

Edition pipeline (PerkinElmer, Inc., Seattle, WA, USA), a cloud-based software 

architecture. After quality assessment, raw reads were aligned to the Homo sapiens 

genome reference build 37.2 (GRCh37.p2) using Burrows-Wheeler Aligner (Li and 

Durbin 2009) with Genome Analysis Toolkit (McKenna, Hanna et al. 2010) for variant 

calling.  

5.3.7 Differential gene expression 

Three methods were used for identifying differential gene/transcript expressions: 

In the GeneSifter pairwise analysis pipeline, the raw read count was normalized 

by total mapped million reads (RPM) and reported as log2 values. Welch’s t-test (does 

not require equal variance between two groups) was run on the log transformed RPM 

between two conditions to test whether transcript levels were changed due to intracellular 

interactions. A Benjamini–Hochberg correction was performed for multiple testing 

adjustments. Genes were considered as differentially expressed when logarithmic ratio of 

fold change ≥ 2 and false discovery rate (FDR) < 0.05. 

DESeq (Anders and Huber 2010) of R/Bioconductor (Gentleman, Carey et al. 

2004), an analysis based on the negative binomial distribution, was also used for 
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differential expression analysis. The count values from different samples were 

normalized to the library size factors so that they were on a common scale. Genes with 

logarithmic ratio of fold change ≥ 2 and FDR < 0.05 (Benjamini-Hochberg correction) 

were declared significant. 

EdgeR package (Robinson, McCarthy et al. 2010) of R/Bioconductor (Gentleman, 

Carey et al. 2004), another testing based on negative binomial model, was used for 

differential analysis as well. The raw count data was normalized using trimmed mean of 

M-values (TMM) between each pair of samples as the scale factors. After the inter-

library dispersions were estimated, an exact test (Robinson and Smyth 2008) was 

performed to identify differentially expressed genes. Genes with logarithmic ratio of fold 

change ≥ 2 and FDR < 0.05 (Benjamini-Hochberg correction) were identified as 

significant. 

Venn diagrams showing the overlaps of gene candidates from four different 

statistical tests were drawn using Venn Diagram Plotter (PNNL; http://omics.pnl.gov). 

5.3.8 Functional annotations and pathway enrichment 

Functional and pathway analysis of statistically significant gene expression 

changes (candidate genes) were performed using Ingenuity Pathway Analysis (Qiagen, 

Redwood City, CA, USA). Fisher's Exact Test was used to calculate p-values, which 

determined the probability of biological functions/pathways enriched in the candidate 

genes was due to the random effects. A Benjamini–Hochberg correction was performed 

for multiple testing corrections. Functions or pathways with p-values (Fisher’s Exact Test) 

less than 0.05 were considered to be significantly relevant. The activation Z-score was 

calculated by using information about the direction of gene regulation (Kramer, Green et 
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al. 2014). Comparison analysis of pathway enrichment from different statistical tests was 

also carried out using the Ingenuity Pathway Analysis.  

5.3.9 RT-qPCR validation  

Quantitative real-time PCR was used to validate changes in gene expression. 

Primers for each of the target sequences were selected from PrimerBank (Wang and Seed 

2003) or designed using the Primer-BLAST tool (www.ncbi.nlm.nih.gov/tools/primer-

blast/ ). Multiple primer pairs were designed and evaluated at the bulk cell RNA level. 

Optimized primer oligos were obtained from Integrated DNA Technologies (Integrated 

DNA Technologies, Coralville, IA, USA).  

RNA extracted from FACS sorted co-culture and mono-culture cells was used for 

reverse transcription and qPCR. A total volume of 20 μL of the cDNA synthesis mixture 

contained the following reagents: 4 μL of 5 × VILO Reaction Mix (Invitrogen, Carlsbad, 

CA, USA), 2 μL of 10 × SuperScript Enzyme Mix (Invitrogen, Carlsbad, CA, USA), 

including SuperScript III RT, RNaseOUT Recombinant Ribonuclease Inhibitor, and a 

proprietary “helper” protein (Invitrogen, Carlsbad, CA, USA), and 14 μL of total RNA. 

The contents in each tube were gently mixed and spun down, and the cDNA synthesis 

was performed in following thermal steps: (a) 25 °C for 10 min, (b) 42 °C for 60 min, 

and (c) 85 °C for 5 min to inactivate the reverse-transcriptase. The cDNA obtained from 

these reactions was stored at -20 °C until further use.  

Prior to qPCR, cDNA obtained from each single cell was diluted 500 times by 

adding DEPC-treated water (Ambion, Austin, TX, USA). The qPCR runs were conducted 

using the following reagent mixtures: 5 µL of EXPRESS SYBR GreenER qPCR 

SuperMix Universal (Invitrogen, Carlsbad, CA, USA), 1 µL of each primer (4 µM), 0.1 
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µL of ROX Reference Dye (25 µM) (Invitrogen, Carlsbad, CA, USA), 2 µL of diluted 

cDNA, and 0.9 µL of DEPC-treated water (Ambion, Austin, TX, USA). For negative 

controls, 2 µL of DEPC-treated water was used instead of cDNA. The thermal cycling 

profile was set up as follows: one cycle at 95 °C for 10 min; 40 cycles consisting of 95 °C 

for 15 s, 60 °C for 1 min, and 80 °C for 10 s with signal detection; melt-curve analysis at 

60 °C for 1 min and the temperature increased in 0.3 °C increments to 95 °C, then at 

95 °C for 15 s. The experiments were run on a StepOne Real Time PCR System (Applied 

Biosystems, Carlsbad, CA, USA). Data analysis was carried out using the StepOne 

software (Applied Biosystems, Carlsbad, CA, USA). 28S were used to normalize samples 

for comparison. 

5.3.10 Time lapse fluorescent microscopy 

For CP-D and EPC-2 cells co-culture, 3.75 × 104 CP-D and 3.75 × 104 EPC-2 

cells suspension were mixed and seeded into individual wells of a Costar® 24-well-plate 

(Corning Life Sciences, Corning, NY, USA). For CP-D and EPC-2 mono-culture, 7.5 × 

104 cells of each type were seeded into individual wells in a Costar® 24-well-plate. After 

24 hours of growth, cells were stained with nucleus stain Hoechst 33342 (Life 

Technologies, Carlsbad, CA, USA) at 1 µg/mL at 37 °C for 15 min. Time lapse images 

were taken every 5 minutes for 1 hour using a Nikon Eclipse TE2000-E microscope 

(Nikon Inc., Melville, NY, USA). The microscope was equipped with a 20 × phase 

contrast objective (Nikon Inc., Melville, NY, USA)  and a cooled CCD camera 

(CoolSNAP HQ, Photometrics, Tucson, AZ, USA), controlled by NIS-Elements imaging 

software (Nikon Inc., Melville, NY, USA). 
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5.3.11 Image analysis 

Images were analyzed using custom-written MATLAB (MathWorks Inc., Natick, 

MA, USA) code and a Fiji TrackMate plugin (Schindelin, Arganda-Carreras et al. 2012). 

5.3.12 Statistical analysis 

Nonparametric Mann-Whitney test and Kruskal-Wallis test were performed to 

determine significance of differences. P-values of less than 0.05 were considered 

statistically significant. 
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5.4 Results and discussion 

5.4.1 RNA-Seq analysis of the transcriptome in esophageal epithelial normal and 

dysplastic cells 

Over several decades, genetic models of the neoplastic progression in Barrett’s 

esophagus and esophageal adenocarcinoma have been discovered and proposed (Barrett, 

Sanchez et al. 1999, Morales, Souza et al. 2002, Maley, Galipeau et al. 2006, Merlo, 

Pepper et al. 2006), including evolution of neoplastic cell lineages (Barrett, Sanchez et al. 

1999), epigenetically regulated alterations of HOXB genes (di Pietro, Lao-Sirieix et al. 

2012), susceptibility loci (Levine, Ek et al. 2013), and recurrent driver events (Dulak, 

Stojanov et al. 2013). During pre-malignant progression, neoplasms are heterogeneous 

and consist of interactions between normal and neoplastic cells (Anderson, Weaver et al. 

2006, Merlo, Kosoff et al. 2011, Greaves and Maley 2012). In this thesis it was 

hypothesized that heterotypic interactions in the tumor microenvironment can down-

regulate gene transcription, slow down cellular proliferation in dysplastic cells, and thus 

inhibit neoplastic progression. 

Figure 5-1 Workflow of transcriptome analysis of cell-cell interactions 
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To test this hypothesis, a co-culture system containing high-grade dysplastic cells 

(CP-D) and esophageal epithelial squamous cells (EPC-2) was constructed. In order to 

distinguish different cell types in the co-culture, CP-D cells were transfected with 

lentiviral-TurboGFP to stably express cytosolic TurboGFP; EPC-2 cells were transfected 

with lentiviral-FP635 to stably express cytosolic FP635. After co-culturing CP-D and 

EPC-2 cells for 24 hours, fluorescent activated cell sorting (FACS) was used to separate 

two cell types and performed whole transcriptome sequencing, using mono-cultured CP-

D and EPC-2 cells as controls (Figure 5-1). Each condition—co-cultured CP-D cells, 

mono-cultured CP-D cells, co-cultured EPC-2 cells and mono-cultured EPC-2 cells—

contained three biological replicates. Four samples were multiplexed per lane with two 

lane replicates on an Illumina HiSeq 2000 sequencer. The raw reads were aligned to the 

Homo sapiens genome reference build 37.2 (GRCh37.p2) using Burrows-Wheeler 

Aligner (Li and Durbin 2009) with Genome Analysis Toolkit (McKenna, Hanna et al. 

2010) for variant calling. From approximately 100 million single-end 50-bp sequencing 

reads, a median of 72 million mapped reads per sample were recovered. The majority of 

mapped reads are annotated gene features (exon-intron regions) and rRNA or snRNA, 

followed by intergenic regions.  
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Three methods were applied to identify differentially expressed genes: DESeq 

(Anders and Huber 2010), EdgeR (Robinson and Smyth 2008, Robinson, McCarthy et al. 

2010) and welch’s t-test (Dudoit, Yang et al. 2002). For multiple testing corrections, 

Benjamini–Hochberg correction (Hochberg and Benjamini 1990) was performed to 

obtain the false discovery rate (FDR). The pairwise comparisons included three pairs: (1) 

co-cultured CP-D vs. mono-cultured CP-D, (2) co-cultured EPC-2 vs. mono-cultured 

EPC-2, and (3) mono-cultured EPC-2 vs. mono-cultured CP-D. A threshold of 

Figure 5-2 Number of differentially expressed genes 
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Benjamini-Hochberg correction at FDR < 0.05 and another cutoff of logarithmic 

transformed fold change values (log2FC) at 2 were set. Identified by all three methods at 

FDR < 0.05, the numbers of differentially expressed genes with log2FC = 2 cutoff were 

much lower than those without log2FC = 2 cutoff (Figure 5-2). EdgeR found the highest 

number of differentially expressed genes, while DESeq returned relatively few. The 

number of differentially expressed genes determined by all three methods showed the 

same trend in different pairwise comparison groups: more differentially expressed genes 

were found in the co-cultured CP-D vs. mono-cultured CP-D group than the co-cultured 

EPC-2 vs. mono-cultured EPC-2 group; the mono-cultured EPC-2 vs. mono-cultured CP-

D group had the highest number among all three (Figure 5-2). This indicated that gene 

expression profiles in CP-D cells changed more due to heterotypic interactions than those 

in EPC-2 cells. The gene expression difference between CP-D and EPC-2 cells was the 

largest. 

The differentially expressed genes in three pairwise groups determined by 

different tests with FDR < 0.05 and log2FC ≥2 (Figure 5-3) were also compared. All three 

methods were concordant with each other, showing a number of overlapping genes in the 

co-cultured CP-D vs. mono-cultured CP-D group and the mono-cultured EPC-2 vs. 

mono-cultured CP-D groups. Particularly, a large portion of genes with differential 

expression found by DESeq were also identified by EdgeR. Both EdgeR and welch’s t-

test found unique differentially expressed genes in the co-cultured CP-D and mono-

cultured CP-D group, which were not shared by other methods. Previous evaluations 

showed that DESeq was often conservative, while EdgeR was too liberal and yields 

potential false positives (Soneson and Delorenzi 2013). In order to retain the ability to 



 

134 

detect the truly differentially expressed genes, the primary step of functional enrichment 

included all the differentially expressed genes found by three methods. However, to 

control false discovery rates, further functional annotations focused mainly on the genes 

identified by DESeq.  

Figure 5-3 Venn diagrams of differentially expressed genes 
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5.4.2 Function enrichment of differentially expressed genes in heterotypic 

interactions 

To discover pathways related to transcriptome alterations, Ingenuity Pathway 

analysis (IPA) was performed to identify functional categories associated with 

differentially expressed genes. The list of differentially expressed genes identified 

independently by DESeq, EdgeR and welch’s t-test was used for IPA core analysis.  

In the co-cultured CP-D vs. mono-cultured CP-D group, 67 significant bio-

function terms in genes were found by DESeq, 74 in genes by EdgeR, and 70 in genes by 

welch’s t-test (Fisher's Exact Test and Benjamini-Hochberg correction, FDR < 0.05). 

Among the significant bio-functions enriched from genes found by all three methods, 

cellular movement ranked among the top 5 functions in –log(FDR) (Figure 5-4). Most of 

Figure 5-4 Top 5 functions enriched in the co-CPD vs. mono-CPD group 
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the other bio-function terms and pathways were also closely related to neoplasia and 

tumorigenesis, such as tissue morphology, cancer, lipid metabolism and molecular 

transport. How those functions are regulated in co-cultured CP-D cells in the DESeq 

identified genes (threshold: activation z-score = 2, Fisher’s Exact Test, Figure 5-5) was 

investigated. Interestingly, most of the bio-functions were suppressed in co-cultured CP-

D. The biggest category of down-regulated features was cellular movement, which 

included a panel of movement related functions, such as invasion and migration. Other 

cellular movement associated functions—organization of cytoplasm, organization of 

cytoskeleton and microtubule dynamics—were also inhibited in co-cultured CP-D cells. 

Co-culturing with EPC-2 cells decreased cancer related functions (metastasis, neoplasia 

and cell production) as well. 

In the co-cultured EPC-2 vs. mono-cultured EPC-2 group, only a few 

differentially expressed genes (1 by DESeq, 20 by EdgeR and 2 by welch’s t-test) were 

found (Figure 5-2, Figure 5-3B). Most of the enriched functional categories were not 

significantly changed (threshold: activation z-score = 2, p = 0.05, Fisher’s Exact Test).  
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The transcriptomes in CP-D and EPC-2 cells when they were in mono-culture 

were compared. A total of 209 significant bio-function terms in genes was determined by 

DESeq, 69 by EdgeR, and 67 by welch’s t-test (Fisher's Exact Test and Benjamini-

Figure 5-5 Functional annotations in the co-CPD vs. mono-CPD group 



 

138 

Hochberg correction, FDR < 0.05). Cellular movement, cancer, cellular development, cell 

growth and proliferation, as well as cell death and survival ranked as top 5 significant 

functions (Figure 5-6). Most of them were involved in neoplasia and tumorigenesis, 

which emphasized that the transcriptional difference is due to the cell type difference. 

The majority of significantly altered functions were activated rather than inhibited 

(threshold: activation z-score = 2, Fisher’s Exact Test, Figure 5-7). Functions involved in 

cancer, cellular functions and maintenance, cellular development, tissue development, 

tissue morphology and cellular movement were more active in CP-D cells than in EPC-2 

cells, all of which may participate in neoplastic progression.  Morphology of cells was 

less active in CP-D cells, reflecting the changes in cellular shape and size (cytology) as 

well as cell cohesion (architecture) and polarity in the CP-D cells. 

Figure 5-6 Top 5 functions enriched in the mono-CPD vs. mono-EPC2 group 
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5.4.3 Upstream regulator analysis reveals TGFβ and EGF signaling networks are 

inhibited in co-cultured CP-D cells 

To examine the upstream molecules that trigger the transcriptional changes, the 

upstream regulators and their networks were analyzed. Ingenuity Pathway Analysis was 

used to predict the status of upstream molecules and their biological roles in heterotypic 

interactions. 

A total of 40 upstream regulators activated or inhibited (threshold: activation z-

score = 2, p < 0.05, Fisher’s Exact Test) with expression level (log ratio) changes were 

found. These regulators include growth factors, cytokines, transmembrane receptors, 

Figure 5-7 Functional annotations in the mono-CPD vs. mono-EPC2 group 
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transcription regulators, enzymes, kinases, ion channel, ligand-dependent nuclear 

receptors, peptidase and other signal transducers (Figure 5-8). The regulators were sorted 

based on their enrichment p-value within each category and identified regulators of 

pivotal importance in heterotypic interactions.  
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Growth factors TGFβ1 (transforming growth factor β) and TGFβ2 (transforming 

growth factor β2) were predicted to be down-regulated in co-cultured CP-D cells. They 

appeared in the upstream of 19 regulators and affected the expression of 70 genes in their 

Figure 5-8 Upstream regulator analysis in the co-CPD vs. mono-CPD group 
Log ratio: Log ratio of gene expressions in each regulator. Downstream genes: 
downstream genes in the data-set. Regulators in network: downstream regulators 



 

142 

mechanistic network. Among 37 genes which were targeted by TGFβ1 and TGFβ2 in the 

dataset (Figure 5-9), 32 genes were involved in epithelial neoplasia (p = 3.08E11) and 28 

involved in cellular movement (p = 2.24E-17, both p-values calculated by Fisher’s Exact 

Test). TGFβ has dual effects in neoplasia and later stages tumor progression.  It is 

involved in many aspects of the communications between cancer cells and non-neoplastic 

cells in the tumor microenvironment (Ungefroren, Sebens et al. 2011). As an early tumor 

suppressor, TGFβ inhibits proliferation and induces apoptosis. During esophageal 

adenocarcinoma progression, TGFβ loses its anti-proliferative function; instead, it 

mediates epithelial-to-mesenchymal transition by several mechanisms and promotes 

esophageal carcinogenesis (Jankowski, Harrison et al. 2000, Rees, Onwuegbusi et al. 

2006). Intriguingly, DOCK2, a target gene of TGFβ1, is down-regulated in co-cultured 

CP-D cells with single nucleotide variants in one intron region. The splice-site mutant 

human DOCK2 gene has been identified as a recurrent drive event in esophageal 

adenocarcinoma in an exome and whole-genome sequencing study of esophageal 

adenocarcinoma. Mutant DOCK2 family members can enhance cellular motility and 

invasion (Dulak, Stojanov et al. 2013). These results suggest that heterotypic interaction 

can affect neoplastic progression by changing cellular motility via TGFβ-mediated 

networks. 
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It was also observed that EGF (epidermal growth factor) was predicted to be 

down-regulated in co-cultured CP-D cells. It affected 57 genes in its mechanistic network 

and acted in the upstream of 10 transcription regulators as well as 7 other regulators 

(Figure 5-9). All of these regulators in the network were involved in apoptosis (p = 

1.50E-15), proliferation (p = 1.95E-14), differentiation (p = 7.32E-14) and migration (p = 

9.65E-14, all p-values calculated by Fisher’s Exact Test). Downstream of EGF, a panel 

of genes was down-regulated, including Erb and TP53. Increased expression of EGF 

Figure 5-9 Differentially expressed genes in the networks 
(A) TGFB1 and TGFB2 network, (B) EGF mechanistic network shows the 
upstream regulators regulated by EGF. 
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receptors has been implicated in Barrett’s esophagus progression (Jankowski 1993, 

Jankowski, Wright et al. 1999, Pande, Iyer et al. 2008). Abnormal Erb family of tyrosine-

kinase receptors (Miller, Moy et al. 2003) and TP53 (Neshat, Sanchez et al. 1994) 

signaling have been previously implicated in the evolution of Barrett’s metaplasia-

dysplasia-adenocarcinoma. Therefore, inhibited EGF signaling networks indicated that 

EGF can potentially slow down the neoplastic progression in CP-D cells. 

Taken together, the inhibition of growth factors and their downstream 

transcription factors affected cellular motility and proliferation. Given that dysplastic 

cells have relaxed proliferation controls (Jankowski, Wright et al. 1999) and esophageal 

adenocarcinoma is an early invasive cancer (Dulak, Stojanov et al. 2013), heterotypic 

interactions may down-regulate growth factor signaling and contribute to these 

phenotypes. 

5.4.4 Co-culture of CP-D and EPC-2 cells changed the proliferation and motility of 

both cell lines 

To further investigate whether cell motility and proliferation were affected by 

heterotypic interactions, fluorescence microscopy was performed to count cell numbers 

and track cell movements. CP-D and EPC-2 co-culture at a 1:1 ratio, CP-D mono-culture 

and EPC-2 mono-culture in a Costar® 12-well-plate (Corning, Corning Life Sciences, 

Corning, NY, USA) were seeded with the same density in four replicates. After growing 

the cells for 24 hours, the first replicate group (four wells) of cells was stained with 

Hoechst 33342 (Invitrogen, Carlsbad, CA, USA) and they were imaged (Figure 5-10) 

using time-lapse fluorescence microscopy. After 48, 72 and 96 hours, the second, third 

and fourth groups of cells were stained with Hoechst and visualized. 
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After counting the cells (Figure 5-11) it was found that the proliferation of CP-D 

cells was slowed down in the co-culture groups compared with the mono-culture groups.  

Interestingly, the proliferation of EPC-2 cells in co-culture was also slower than mono-

culture, although relevant gene expression did not change significantly according to the 

RNA-Seq analysis. This suggests that heterotypic interaction suppressed the proliferation 

of both dysplastic and normal cell lines. 

Figure 5-10 Fluorescence microscopy of Hoechst 33342 stained cells 
 (A) mono-CPD cells, (B) mono-EPC2 cells, (C) co-culture of CPD and EPC2 
cells. Scale bar: 50 μm. 
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Cell motility was analyzed by comparing the speed, displacement and 

directionality ratio (Euclidean distance/displacement) of co-culture and mono-culture CP-

D and EPC-2 cells, respectively. After 24 hours, co-culture CP-D cells traveled 

significantly further than mono-culture CP-D cells during the one-hour recording (p = 

5E-6, Mann-Whitney test, α = 0.05, Figure 5-12A). They also moved in a significantly 

more directional manner than mono-culture CP-D cells (p = 5E-7, Mann-Whitney test, α 

= 0.05, Figure 5-12C).  

On the contrary, EPC-2 cells moved significantly slower in co-culture than in 

mono-culture (p = 2E-4, Mann-Whitney test, α = 0.05, Figure 5-12A). The displacement 

of EPC-2 cells in co-culture was significantly shorter compared with mono-culture (p = 

2E-2, Mann-Whitney test, α = 0.05, Figure 5-12B). Therefore, heterotypic interactions 

altered the motility of both cell lines in several ways: increased the displacement and 
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directionality of CP-D cells, slowed down the speed of EPC-2 cells and decreased the 

displacement of EPC-2 cells.   

Figure 5-12 Migration of CP-D and EPC-2 cells in mono-culture and co-culture 
Violin plots of migration speed (A), displacement (B) and directionality ratio 
(C). Black dot: mean value, grey dot: individual data point. 
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5.5 Conclusion 

In this study, the effects of intercellular interactions between normal and late-

dysplastic Barrett’s esophagus cells on transcriptome and phenotypic levels were 

examined. It was investigated how homotypic and heterotypic intercellular interactions 

alter gene expressions using next-generation sequencing. Bioinformatic analysis of the 

next-generation sequencing results identified differentially expressed genes in high-grade 

dysplastic cells as a result of heterotypic and homotypic interactions. These genes were 

enriched in cellular movement and other cancer-related pathways. Heterotypic 

interactions suppressed downstream genes of TGFβ and EGF pathways in late-dysplastic 

cells. Taken the results of proliferation and motility studies together, the inhibition of 

EGF signaling networks seem to slow down the proliferation in co-cultured CP-D cells. 

TGFβ signaling networks may be undergoing the transition from anti-proliferation to 

promoting motility. Normal cells seem to inhibit the growth of dysplastic cells via growth 

factor signaling pathways. The fraction of normal to dysplastic cells can be used as the 

risk stratification marker for pre-malignant progression in Barrett’s esophagus. TGFβ, 

EGF and their downstream genes have great potential to become biomarkers for early 

diagnosis and early treatment of esophageal adenocarcinoma. 
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CHAPTER 6  

ALTERATIONS IN GENE EXPRESSION LEVELS AND METABOLIC 

PHENOTYPE IN RESPONSE TO HYPOXIC SELECTION IN PRE-

MALIGNANT BARRETT’S ESOPHAGUS CELLS 

6.1 Abstract 

Hypoxia acts as important selective pressure in the clonal evolution of Barrett’s 

esophagus neoplastic progression. It can trigger metabolic reprogramming, one of the 

emerging hallmarks of cancer. Metabolic phenotype measurements indicated that 

Barrett’s esophagus cells undergo a series of changes under hypoxic conditions. However, 

the mechanisms underlying these changes remain less clear. This study provides a 

comparison of the alterations on transcriptome and metabolic phenotype in hypoxia-

adapted cells and age-matched normoxic control cell lines in Barrett’s esophagus. Gene 

expression differences between hypoxia and control cell lines revealed alterations in the 

metabolic processes, such as glycolysis and oxidative phosphorylation related genes. 

Differential gene expression analysis uncovered drastic differences between one pair of 

hypoxia-adapted high-grade dysplastic cells and age-matched control cells. It was 

discovered that a dynamic evolutionary process of cells adapt to hypoxia. Compared with 

CPA and CPD cells, dysplastic CPB and CPC cells are at transitional states and make lots 

of gene expression changes to adapt to hypoxia. These findings open new ways for 

designing diagnosis and treatment strategies for Barrett’s esophagus and adenocarcinoma. 

Physicians will need to tackle the functional plasticity of hypoxia adapted dysplastic cells 

when designing metabolic targets for treatment. Also, hypoxia adaptation can be used as 
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early diagnosis, treatment and risk stratification biosignatures in pre-malignant 

progression of Barrett’s esophagus.  
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6.2 Introduction 

Hypoxia, the lack of oxygen supply, is a risk factor for cancer. It arises as cells 

grow far away from the vasculature and live in a local hypoxic environment. Acute 

oxygen level changes between hypoxia and re-oxygeneration can generate reactive 

oxygen species. Such hypoxic conditions constitute a selective pressure for cellular 

growth and proliferation. To survive and thrive under hypoxia, cells need to reprogram 

their gene expression and phenotypic profiles (Harris 2002) in various aspects: 

angiogenesis (Oh, Takagi et al. 1999), metabolism (Vannucci, Seaman et al. 1996, 

Brugarolas, Lei et al. 2004, Kim, Tchernyshyov et al. 2006), proliferation (Zundel, 

Schindler et al. 2000, Lal, Peters et al. 2001), apoptosis or necrosis (Bruick 2000, Velde, 

Cizeau et al. 2000, Sowter, Ratcliffe et al. 2001, Suzuki, Tomida et al. 2001), genetic 

instability (Bristow and Hill 2008) and migration (Imai, Horiuchi et al. 2003, 

Pennacchietti, Michieli et al. 2003, Semenza 2003). 

The acid-bile reflux in Barrett’s esophagus damages esophageal squamous 

epithelial cells and may cause deep ulceration. This generates a periodic hypoxic 

environment for the esophageal epithelial cells (Suchorolski, Paulson et al. 2013). A 

panel of metabolic related or hypoxia response genes, Glut-1 (Younes, Ertan et al. 1997), 

pyruvate kinase isoform M2 (PKM2) (Koss, Harrison et al. 2004), VEGF (Couvelard, 

Paraf et al. 2000)and erythropoietin (EPO) (Griffiths, Pritchard et al. 2007) have been 

reported to be up-regulated in Barrett’s esophagus tissue. A series of metabolic changes 

are also observed along the sequence of pre-malignant progression. Barrett's metaplastic 

cells generate ATP through normal mitochondrial oxidative phosphorylation. In the 

intermediate stages of Barrett’s dysplastic cells, mitochondria are still active, electron 
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transport chain remains functional, but the cells boost up glycolysis in response to the 

substrate (Suchorolski, Paulson et al. 2013). However, the transcriptome and metabolic 

profile changes in Barrett’s esophagus cells adapted to hypoxia are less clear. 

In this study, eight hypoxia-adapted (HCPA, HCPB, HCPC, and HCPD) and their 

age-matched normoxic controls (CCPA, CCPB, CCPC, and CCPD) esophageal epithelial 

cell lines were used. These cell lines represent a sequence of pre-malignant progression in 

Barrett’s esophagus from metaplasia to high-grade dysplasia. Whole transcriptome 

analysis of hypoxia-adapted cells and age-matched normoxic control cell lines after acute 

hypoxia treatment showed gene expression differences among the eight cell lines. Gene 

expressions differences between hypoxia and control cell lines indicated alterations in the 

metabolic process. Differential gene expression analysis revealed a drastic difference 

between HCPC and CCPC cells.  The interplay between TGFβ and hypoxia induced 

responses were suppressed in HCPC cells. It was also found that, in contrast to hypoxia 

and control CPA, CPB and CPC cells, mitochondrial membrane potentials in HCPD cells 

were higher than CCPD cells. A better understanding of the resistance to the hypoxia 

mechanism will help physicians design new metabolic therapies for cancer. 
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6.3 Experiments 

6.3.1 Cell lines 

Barrett’s Esophageal cell lines were derived from premalignant Barrett’s 

esophagus tissue (Palanca-Wessels, Barrett et al. 1998), representing early (CP-A) and 

late (CP-B, CP-C and CP-D) stages in neoplastic progression. 

Hypoxia-resistant Barrett’s esophagus cells were selected following this 

procedure: cells were incubated under hypoxic conditions (<1% O2) for 18 hours to reach 

10% surviving rate. The surviving cells were cultured under normoxic conditions (22% 

O2) and returned to the hypoxic condition after expansion. The cells underwent six 

rounds of selection and the surviving population was designated as hypoxia-selected cells 

(HCPA, HCPB, HCPC and HCPD).  Their age-matched control cells are named as CCPA, 

CCPB, CCPC and CCPD. 

Cells were cultured using Gibco keratinocyte cell growth medium (Invitrogen, 

Carlsbad, CA, USA), supplemented with hEGF (Peprotech, Rocky Hill, NJ, USA) at 2.5 

μg/500 mL, BPE (bovine pituitary extract) at 25 mg/500 mL, 5% fetal bovine serum 

(FBS) (Invitrogen, Carlsbad, CA, USA) and penicillin–streptomycin solution (Invitrogen, 

Carlsbad, CA, USA) at 100 units/100 μg/mL. Cells were maintained at 37 °C in a 

humidified atmosphere containing 5% CO2. 

6.3.2 Acute hypoxia treatment 

Cells cultured in 75 cm2 flasks (Corning, Corning, NY) at 80% confluency were 

placed into a 37 °C incubator supplied with 5% CO2 and 1% O2. After 2 hours of 

incubation, cells were immediately lysed using 600 μL of Buffer RLT in an RNeasy mini 

kit (Qiagen, Valencia, CA, USA) according to the manufacture’s protocol.  
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6.3.3 RNA extraction 

Total RNA was extracted from the sorted cells using RNeasy mini kit per 

manufacture’s recommendation. DNA was removed by the silica-gel membrane, the spin-

column technology and DNase treatment. RNase-free DNase set (Qiagen, Valencia, CA, 

USA), which consists of 10 μL of DNase 1 stock solution in 70 μL of proprietary buffer 

RDD, was used to remove residual DNA for 15 min at 20–30 °C. RNA was eluted by 

adding 30 μL of RNase-free water into the silica-gel membrane and stored at -80 °C. 

6.3.4 Whole transcriptome amplification 

The whole transcriptome of the hypoxia-selected and age-matched normoxic 

control cells was amplified using Nugen Ovation RNA-Seq V2 kits (Nugen Technologies, 

San Carlos, CA, USA) per manufacturers’ instructions on an Apollo 324 Library 

Preparation System (IntegenX, Pleasanton, CA, USA) as previously described in 5.3.4 

Whole transcriptome amplification (Kurn, Chen et al. 2005). 

6.3.5 Library preparation and Illumina sequencing 

Illumina sequencing libraries were prepared on an Apollo 324 Library Preparation 

System using the PrepX™ ILM DNA Library Preparation kit (IntegenX, Pleasanton, CA, 

USA) with five different barcoded adapters for multiplexing. The adapter-ligated libraries 

were amplified by 10 cycles of PCR using KAPA HiFi Library Amplification Kits (Kapa 

Biosystems, Woburn, MA, USA). Amplified libraries were qualified using high 

sensitivity DNA assay on an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa 

Clara, CA, USA) and quantified using a KAPA Library Quantification Kit - 

Illumina/Universal (Kapa Biosystems, Woburn, MA, USA). 
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Clusters were generated using the cBot platform (Illumina, San Diego, CA, USA). 

Five samples were multiplexed per lane with two lane replicates. Single-end sequencing 

with 50 base reads was performed on an Illumina HiSeq 2000 (Illumina, San Diego, CA, 

USA) following the manufacturer’s guidelines. 

6.3.6 Next-generation sequencing alignment 

The sequenced reads were parsed and analyzed using the GeneSifter® Analysis 

Edition pipeline (PerkinElmer, Inc., Seattle, WA, USA) as previously described in 5.3.6 

Next-generation sequencing alignment. After quality assessment, raw reads were aligned 

to the Homo sapiens genome reference build 37.2 (GRCh37.p2) using Burrows-Wheeler 

Aligner (Li and Homer 2010) with Genome Analysis Toolkit (McKenna, Hanna et al. 

2010) for variant calling. 

6.3.7 Multiple condition gene expression comparison 

In the GeneSifter project analysis pipeline, the raw read count was normalized by 

total mapped million reads (RPM) and reported as log2 values. A nonparametric Kruskal-

Wallis test was run on the log transformed RPM between eight conditions to test whether 

transcript levels were significantly different. A Benjamini–Hochberg correction was 

performed for multiple testing corrections. Genes were considered as differentially 

expressed when the false discovery rate (FDR) was < 0.05. 

A database for Annotation, Visualization, and Integrated Discovery 

(http://david.abcc.ncifcrf.gov) (Huang, Sherman et al. 2007) was used for functional 

classification and annotation of candidate genes in the glycolysis and oxidative 

phosphorylation pathways. 
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6.3.8 Differential gene expression 

Differential gene expression was identified using three independent methods as 

previously described in Section 5.3.7 Differential gene expression. 

Venn diagrams showing the overlaps of gene candidates from four different 

statistical tests were drawn using the Venn Diagram Plotter (PNNL; http://omics.pnl.gov). 

6.3.9 Functional annotations and pathway enrichment 

Functional and pathway analysis of differentially expressed genes were performed 

using the Ingenuity Pathway Analysis (Qiagen, Redwood City, CA, USA). Fisher's Exact 

Test was used to calculate p-values, which determined the probability of biological 

functions/pathways enriched in the candidate genes was due to random effects. A 

Benjamini–Hochberg correction was performed for multiple testing corrections. The 

activation Z-score was calculated by using information about the direction of gene 

regulation (Kramer, Green et al. 2014). Functions or pathways with p-values (Fisher’s 

Exact Test) less than 0.05 were considered to be significantly relevant.  

6.3.10 Mitochondrial membrane potential measurement using flow cytometry 

Mitochondrial membrane potential was quantified with flow cytometry analysis 

using the potentiometric dye JC-1. Cells cultured in 25 cm2 flasks (Corning, Corning, NY) 

at 80% confluency were incubated in Keratinocyte serum-free medium without serum 

containing JC-1 (100 ng/mL) for 15 min. Cells were washed twice with PBS, trypsinized 

and re-suspended in 300 μL of Keratinocyte serum-free medium. 

Flow cytometry was performed using a Becton Dickinson FACS Calibur flow 

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). FL1 and FL2 corresponds to 

the 530/30 BP and 585/42 BP emission filters respectively. JC-1 fluorescence intensity 
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signals of 10,000 events (cells) were collected in each condition. The flow cytometry data 

was analyzed using custom-written MATLAB (MathWorks Inc., Natick, MA, USA) code. 

6.3.11 Statistical analysis 

Nonparametric Mann-Whitney test and Kruskal-Wallis tests were performed to 

determine the significance of differences. A p-value less than 0.05 was considered to be 

statistically significant.   
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6.4 Results and discussion 

6.4.1 Mitochondrial membrane potential measurement of hypoxia-adapted and 

age-matched control cells 

Mitochondrial membrane potential is an important parameter of mitochondrial 

function. It is generated and maintained by mitochondrial electron transport chain, mainly 

by oxidative phosphorylation. The collapse of mitochondrial membrane potential is an 

early event in apoptosis. High mitochondrial membrane potential is correlated with active 

oxidative phosphorylation. Several human cancers have high mitochondrial membrane 

potential and are resistant to apoptotic cell death (Vander Heiden, Chandel et al. 1997). 

JC-1 is a widely-used fluorescent probe for measuring mitochondrial membrane potential 

(Cossarizza, Baccaranicontri et al. 1993). Flow cytometry analysis of JC-1 stained cells 

revealed marked differences between hypoxia-adapted and age-matched control cells 

(Figure 6-1). Normalized against CCPA cells, the relative mitochondrial membrane 

potentials were significantly lower in hypoxia-adapted cells than control cells (CPA, CPB, 

and CPC); while it was significantly higher in hypoxia-adapted HCPD cells than control 

CCPD cells. This suggests that at later stages of progression, hypoxia adapted CPD cells 

have higher energy needs for proliferation, so they boost up their energy production. 
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Mitochondrial heterogeneity within and between different types of cells has been 

reported before (Huang, Fowler et al. 2004, Wang, Shi et al. 2013). The descriptive 

statistics (Table 7) showed that the kurtosis values were comparable within the same 

hypoxia and control pairs (HCPA and CCPA, HCPB and CCPB, HCPC and CCPC). 

They were higher in HCPC and CCPC cells than the other two pairs, indicating higher 

heterogeneity in HCPC and CCPC cells. However, the hypoxia-adaptation did not 

significantly alter the heterogeneity. The kurtosis value in HCPD cells was the highest 

among all eight cell lines, suggesting a highly heterogeneous population in hypoxia-

adapted CPD cells. The skewness values were negative and comparable in both hypoxia 

and control pairs of CPA and CPB cells. HCPC and HCPD cells have positive skewness 

values; while CCPC and CCPD cells have negative values. The skewness value of HCPD 

Figure 6-1 Violin plot of mitochondrial membrane potentials 
The grey boxes inside the violin plot are the box plot of mitochondrial 
membrane potential distributions. Mann-Whitney test, *p < 0.05. 
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cells was the highest, indicating that extremely high mitochondrial membrane potentials 

appeared in only a few cells. Taken together, HCPA, HCPB and HCPC cells, 

mitochondrial membrane potentials were lower than their age-matched controls, whereas 

membrane potentials in HCPD cells were higher than their controls. Hypoxia selection 

pressure may increase the heterogeneity in both CPC and CPD cells, evidenced by higher 

kurtosis values in HCPC and HCPC cells compared with their age-matched controls.  

Table 7 Descriptive statistics of mitochondrial membrane potentials in eight cell lines at 
the single cell level 

Cell Type N total Mean S.D. Kurtosis Skewness 

CCPA 9952 1.21 0.20 15.50 -3.12 

HCPA 9965 1.16 0.19 15.71 -3.11 

CCPB 8973 0.95 0.27 4.78 -2.16 

HCPB 8652 0.90 0.27 4.49 -2.20 

CCPC 9314 1.32 0.12 36.73 -4.19 

HCPC 9853 1.06 0.19 33.21 0.55 

CCPD 9859 1.17 0.21 15.68 -3.48 

HCPD 8786 1.20 0.50 5849.36 69.04 

 

6.4.2 RNA-Seq of hypoxia-adapted and age-matched control cells 

In pre-malignant progression of esophageal adenocarcinoma, deep ulceration 

generates a periodic hypoxic environment for the esophageal epithelial cells (Suchorolski, 

Paulson et al. 2013). Esophageal cells may change their genotypes and phenotypes in 

response to hypoxia selection pressure. However, very few studies have been reported on 

transcriptome and metabolic changes in Barrett’s esophagus cells under hypoxia selection. 
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To investigate how Barrett’s esophagus cells adapt to selective pressure generated 

via acute repetitive hypoxia insult, hypoxia-adapted and age-matched normoxic control 

Barrett’s esophagus cell lines were generated as described in Section 6.3.1 Cell lines. The 

cells underwent six rounds of selection and the surviving population was designated as 

hypoxia-selected cells (HCPA, HCPB, HCPC and HCPD). Their age-matched control 

cells are named as CCPA, CCPB, CCPC and CCPD. All eight cell lines were treated with 

acute hypoxia (1% O2) for 2 hours in three biological replicates. The total RNA from 

each sample was extracted and subjected to RNA-Seq analysis. Five samples were 

multiplexed per lane with two lane replicates on an Illumina HiSeq 2000 sequencer. The 

raw reads were aligned to the Homo sapiens genome reference build 37.2 (GRCh37.p2) 

using Burrows-Wheeler Aligner (Li and Durbin 2009) with Genome Analysis Toolkit 

(McKenna, Hanna et al. 2010) for variant calling. From approximately 40 million single-

end 50-bp sequencing reads, a median of 35 million mapped reads per sample were 

recovered. Most of the mapped reads fell within annotated gene regions (exon-intron), 

rRNA or snRNA, and intergenic regions.  

6.4.3 Comparisons among hypoxia-adapted and control Barrett’s esophagus cell 

lines 

First, gene expressions among all eight hypoxia-adapted and control Barrett’s 

esophagus cell lines (CCPA, CCPB, CCPC, CCPD, HCPA, HCPB, HCPC, and HCPD) 

were compared. A non-parametric Kruskal-Wallis test was performed on reads per 

million (RPM) of each gene. For multiple testing corrections, a Benjamini–Hochberg 

correction (Hochberg and Benjamini 1990) was applied to obtain the false discovery rate 

(FDR). After the FDR < 0.05 cutoff, it was found that the expressions of 21723 genes 
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were different among these eight cell lines. Sample cluster analysis (Figure 6-2) showed 

that the difference between the hypoxia and control pairs is bigger than that within the 

pairs. Also, the differences between HCPB and CCPB cells, HCPC and CCPC cells are 

bigger than the differences between hypoxia-adapted and control pairs in CPA and CPD 

cell lines. 

Gene ontology analysis of these genes elucidated that metabolism, cellular 

signaling, transport and cell cycle related functions were different among these cell lines. 

Using CCPA cells as a control, most of the enriched metabolism-related functions were 

activated (Figure 6-3, threshold: z-score = 4). This indicated that metabolic 

reprogramming may be taking place during the pre-malignant progression in response to 

hypoxia selection pressure. 

Figure 6-2 Sample cluster of differentially expressed genes 
Distance: correlation; linkage: complete 
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Figure 6-3 Gene ontology analysis of statistically significant genes 
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To gain further insights into the alterations in metabolism, these statistically 

significant genes were sorted based on their functions. Hierarchical clustering of genes 

and cell lines (Figure 6-4) clearly demonstrated that the expression levels of most genes 

in the glycolysis/gluconeogenesis pathway were higher in late-stage dysplastic cells 

(CCPB, HCPB, CCPC, HCPC, CCPD, and HCPD) than in metaplastic cells (CCPA and 

HCPA). The expressions of these genes in hypoxia-adapted cells were generally higher 

than age-matched control cells. The difference between hypoxia-adapted and age-

matched control CPC cells was the largest.  

Intriguingly, the last ten genes in the cluster showed a different pattern from the 

other genes (Figure 6-5): the expressions in hypoxia-adapted cells were higher than 

control cells in the pairs of CPA, CPB and CPC cells; while the expressions in hypoxia-

Figure 6-4 Hierarchical clustering of statistically significant genes in the 
glycolysis/gluconeogenesis pathway 
Distance: correlation; linkage: complete 
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adapted HCPD cells were lower than control CCPD cells. Several alcohol 

dehydrogenases are among these genes. High expression levels of class I (Triano, Slusher 

et al. 2003) and II (Crabb, Matsumoto et al. 2004) alcohol dehydrogenase are associated 

with reduced risk of breast and esophageal cancer. This made for an interesting remark 

on the role of alcohol dehydrogenases in hypoxia-adaptation in esophageal cells.  

Hierarchical clustering of genes involved in oxidative phosphorylation (Figure 

6-5) indicated that expression levels of most genes were also higher in late-stage 

dysplastic cells than in metaplastic cells. In addition, their expressions in hypoxia-

adapted cells were generally higher than in age-matched controls in the pairs of CPB, 

CPC and CPD cells. The last few genes in the cluster also manifested a different pattern, 

including cytochrome c oxidase subunit IV isoform 2 (COX4I2). In contrast, cytochrome 

c oxidase subunit IV isoform 1 (COX4I1) is in the upper part of the cluster. In hypoxic 

human cells, hypoxia-inducible factor 1 (HIF-1) can transactivate the COX4I2 gene and 

mediate the degradation of COX4I1 (Fukuda, Zhang et al. 2007). The COX subunit 

switching mechanism keeps homeostasis by maintaining optimal efficiency of 

mitochondrial respiration under hypoxia. The results suggested that as metaplastic 

(HCPA) and high-grade dysplastic (HCPB and HCPC) cells adapt to hypoxia, COX4I2 is 

induced and acts as a physiological response in these cells. However, this was not 

observed in HCPD cells. 
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Figure 6-5 Statistically significant genes in the glycolysis/gluconeogenesis 
pathway 
Red star: genes in row 1-51 of the cluster. Blue star: genes in row 52-60 of the 
cluster. 



 

168 

6.4.4 Differential gene expression analysis 

Three methods were applied to identify differentially expressed genes: DESeq 

(Anders and Huber 2010), EdgeR (Robinson and Smyth 2008, Robinson, McCarthy et al. 

2010) and welch’s t-test (Dudoit, Yang et al. 2002). For multiple testing corrections, the 

Benjamini–Hochberg correction (Hochberg and Benjamini 1990) was performed to 

obtain the false discovery rate (FDR). The pairwise comparisons of hypoxia-adapted and 

age-matched control cells included four pairs: (1) HCPA vs.  CCPA, (2) HCPB vs. CCPB, 

(3) HCPC vs. CCPC, and (4) HCPD vs. CCPD. The threshold of the Benjamini-

Hochberg correction was set to FDR < 0.05 and a cutoff of logarithmic transformed fold 

change values (log2FC) was set at 2. With a FDR threshold at 0.05, the number of 

Figure 6-6 Hierarchical clustering of statistically significant genes in the 
oxidative phosphorylation pathway 
Distance: correlation; linkage: complete 
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statistically significant genes after log2FC = 2 cutoff was much lower than that without 

log2FC = 2 cutoff (Figure 6-6).  

EdgeR found the largest number of differentially expressed genes, followed by 

welch’s t-test, and DESeq found the smallest number of genes. The number of 

differentially expressed genes determined by all three methods showed that the HCPC vs. 

CCPC group has the largest number, followed by the HCPB vs. CCPB and HCPD vs. 

CCPD groups; the HCPA vs. CCPA group has very few genes identified as differentially 

expressed.  

Figure 6-7 Number of statistically significant genes found by three differential 
gene expression tests 
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The differentially expressed genes in three pairwise groups determined by DESeq, 

EdgeR and welch’s t-test with FDR < 0.05 and log2FC ≥ 2 (Figure 6-7) were also 

compared. In all the groups except for HCPA vs. CCPA, a large portion of genes with 

differential expression found by DESeq were also identified by EdgeR. Previous 

evaluations showed that DESeq was often conservative, while EdgeR was too liberal and 

yields potential false positives (Soneson and Delorenzi 2013). To control false discovery 

rates, further functional annotations emphasized mainly the genes identified by DESeq.  

Figure 6-8 Venn diagrams of differentially expressed genes identified by three 
statistical methods 
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6.4.5 Function enrichment and upstream analysis of differentially expressed genes 

between hypoxia-adapted and age-matched control cell lines 

Gene expressions are significantly changed by hypoxia-adaptation in the pair of 

HCPC and CCPC cells based on the number of genes identified by statistical tests. To 

discover biological relevance of the transcriptome alterations, Ingenuity Pathway analysis 

(IPA) was performed on the list of differentially expressed genes identified independently 

by DESeq. 

Seventy-two 72 significant bio-function terms enriched were in genes found by 

DESeq (Fisher's Exact Test and Benjamini-Hochberg correction, FDR < 0.05, activation 

z-score = 2, Figure 6-8 and Figure 6-9). Interestingly, most of these bio-functions were 

suppressed in HCPC cells. A majority of them are related to the vascular system: 

development of the vascular system, neovascularization, remodeling of blood vessel, 

activation of pericytes, and so forth. Other functional categories, including cellular 

movement, cell death and survival and cell cycle, are also down-regulated.  
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Figure 6-9 Vascular system related functions enriched in differentially expressed 
genes in the HCPC vs. CCPC group 
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To examine the upstream molecules that trigger the transcriptional changes, 

Ingenuity Pathway Analysis was used to predict the status of upstream regulators in 

comparing hypoxia-adapted and age-matched control cells. 

Sixty-four upstream regulators were found to be activated or inhibited (threshold: 

activation z-score = 2, p < 0.05, Fisher’s Exact Test) with expression level (log ratio) 

changes. These regulators include growth factors, cytokines, G-protein coupled receptors, 

transcription regulators, transmembrane receptors, enzymes, kinases, and other signal 

transducers (Figure 6-10 and Figure 6-11). The regulators were sorted based on their 

Figure 6-10 Other functions enriched in differentially expressed genes in the 
HCPC vs. CCPC group 
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enrichment p-value within each category and important regulators in adaptation to 

hypoxia selection pressure were identified. 

 

Figure 6-11 Upstream regulator analysis of differentially expressed genes (part 1) 
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The expression levels of several growth factors and transcription regulators are 

different between HCPC and CCPC cells: TGFβ1 (transforming growth factor β), TGFβ2 

(transforming growth factor β2), SMAD family, HIF-1α and SP1. Noticeably, SMAD2 

and SMAD3 were down-regulated, while SMAD7 is activated in HCPC cells. Low oxygen 

Figure 6-12 Upstream regulator analysis of differentially expressed genes (part 2) 
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levels can induce a cooperative interaction in which the TGFβ pathway interplays with 

promoter (SP1) and enhancer (HIF-1α) regions through SMAD3 and enhances the 

transcription of genes associated with angiogenesis (Sánchez-Elsner, Ramı́rez et al. 2004, 

Basu, Hubchak et al. 2011). Under normoxic conditions, SMAD7 inhibits the 

transforming growth factor-beta-activated signaling pathway and prevents carcinoma cell 

invasion. Hypoxia can convert SMAD7 to a promoter of cancer invasion and progression 

(Heikkinen, Nummela et al. 2010). Given that the expressions of TGFβ, SP1, HIF-1α, 

SMAD2 and SMAD3 are inhibited, the crosstalk and functional consequences of these 

genes are suppressed in HCPC cells. These results suggested that hypoxia-adapted HCPC 

cells are more resistant to short-term acute hypoxia compared with their age-matched 

control CCPC cells. 

  

Figure 6-13 TGF-β mediated hypoxia response is suppressed in HCPC cells 
Adapted from Sánchez-Elsner  et al. 2004. Green: inhibition; red: activation. 
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6.5 Conclusion 

Whole transcriptome profiles and mitochondrial functions have revealed changes 

due to hypoxia-selection in pre-malignant Barrett’s esophagus. Under normal conditions, 

mitochondrial membrane potentials are lower in HCPA, HCPB and HCPC cells 

compared with CCPA, CCPB and CCPC cells. However, HCPD cells have higher 

mitochondrial membrane potential and a higher heterogeneity than CCPD cells. This is 

probably because high grade dysplastic cells have higher energy needs for proliferation 

and other cellular processes. Under hypoxic conditions, transcriptome profiling using 

RNA-Seq showed that more differentially expressed genes are found between the HCPB 

vs CCPB group and the HCPC vs CCPC group. The TGFβ mediated hypoxia response 

network is less active in HCPC than CCPC cells. Metabolism and signal transduction 

related genes are also differentially expressed among all eight cell lines. Taken all these 

together, hypoxia adaptation makes cells more resistant to acute hypoxia by changing 

their metabolism and hypoxia-response signaling pathways. 

From these results, an evolutionary process can be proposed (Figure 6-14): as the 

hypoxic selection pressure is applied to these cells, CPA, metaplastic cells, change their 

phenotypes in adaptation to hypoxia. However, when they are treated by another short-

term acute hypoxia, CPA cells did not retain these changes and the adaptation was 

reversed back. CPB and CPC are the dysplastic cells at transitional states of progression. 

They made a lot of transcriptional changes and retained accumulative effects of hypoxia 

adaptation in this process of pre-malignant progression. CPD cells are at the latest stage 

of esophageal adenocarcinoma. They probably have already gone through several rounds 

of hypoxia selection. Therefore, hypoxia-adaptation did not change too much on CPD 
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cells. Compared with CPA and CPD cells, dysplastic CPB and CPC cells are at a 

transitional state and made lots of gene expression changes to adapt to hypoxia. This 

model suggested that hypoxia adaptation can be used as a risk stratification marker in 

Barrett’s esophagus. Also, because of the functional plasticity in dysplastic cells, 

physicians need to target multiple metabolic pathways such as oxidative phosphorylation 

and glycolysis to treat premalignant conditions and cancer. 

  

Figure 6-14 The proposed evolutionary process of Barrett’s esophagus cells 
adapted to the hypoxic selection pressure 
(A) Before acute hypoxia treatment. (B) After acute hypoxia treatment. 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK  

7.1 Conclusion  

The major findings and contributions of my dissertation include: 

(i) Developed and optimized a new method for retrieving single adherent 

cells of different types with minimal perturbation from growth cultures. The method 

combines mechanical (shear flow) and biochemical (enzymatic digestion) treatments and 

is relatively simple to use and replicate by other research groups in the field. Analyzed 

expression levels of stress-related genes in individual cells to a range of different 

combinations of shear flow and enzymatic digestion. Identified optimal conditions of 

shear force and trypsinization time for retrieving single cells with minimal perturbation. 

The study encompasses two important aspects that are broadly applicable in the field of 

single-cell analysis: (a) a new method for single-cell harvesting of different types of cells 

from growth cultures and co-cultures with minimal perturbation; (b) a detailed study of 

the cell response to a range of mechanical and biochemical stress levels in individual 

cells. This study will be of interest to a broad cell biology research community and 

especially to the researchers working in the field of single-cell analysis. 

(ii) Developed a single cell RT-qPCR method for analyzing expression levels 

of multiple genes in individual mammalian cells with high sensitivity and reproducibility. 

It allows for reliable detection of up to ten genes of interest in a single cell with multiple 

technical replicates. Using this method, hypoxia response genes in 36 single cells 

exposed to hypoxia and 36 grown under normal physiological conditions were analyzed. 

This method can also detect cell-to-cell differences of gene expression levels in single 
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cells under hypoxia treatment. The compatibility of the method with most of 

commercially available RT-qPCR instrumentation and its relatively low cost makes it 

amenable to many applications focused on gene expression analysis in single cells, such 

as high throughput, chip-based techniques, which will enable further insights into cellular 

mechanisms involved in disease genesis and progression at the single-cell level.  

(iii) Characterized the transcriptome wide gene expression changes due to cell-

cell interactions in neoplastic progression of Barrett’s esophagus. The results indicated 

that co-culturing of dysplastic cells and normal esophageal epithelial cells significantly 

changed the expression of hundreds of genes in dysplastic cells. These genes are related 

to cellular movement, tissue morphology and cancer functions. Identified upstream 

regulators of differentially expressed genes. Signaling networks regulated by TGFβ and 

EGF were significantly inhibited in dysplastic cells by heterotypic interactions. 

Functional validations showed that proliferation and cellular motility are also changed in 

co-culture of dysplastic and normal cells. The results suggest that heterotypic interactions 

in Barrett’s esophagus are complicated and dynamic processes involve myriads of 

transcriptional and phenotypic changes. This study provides deep insights into the role of 

cell-cell interactions and the tumor microenvironment in the neoplastic progression of 

Barrett’s esophagus. The transcriptional changes due to the presence of cell-cell 

interactions will shed light on esophageal adenocarcinoma progression, and are likely to 

reveal the mechanisms of neoplastic progressions in cancer as a general disease. 

(iv) Analyzed whole-transcriptome profiles and mitochondrial functions in 

pre-malignant Barrett’s esophagus cell lines adapted to hypoxia. Using RNA-Seq and 

differential gene expression analysis, observed that gene expression differences between 
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hypoxia and control cell lines are related to alterations in metabolic processes. The gene 

expression differences were larger in the HCPB vs. CCPB group and the HCPC vs. 

CCPC group than in the HCPA vs. CCPA group and the HCPD vs. CCPD group. From 

upstream analysis, discovered that the interplay between TGFβ and hypoxia induced 

responses were suppressed in hypoxia-adapted high grade dysplastic HCPC cells 

compared with CCPC cells. Mitochondrial membrane potentials in hypoxia-selected and 

age-matched control cell lines are significantly different: potentials are lower in hypoxia-

selected HCPA, HCPB and HCPC cells than their age-matched controls; potentials are 

higher in hypoxia-selected HCPD cells than the age-matched control. Results from this 

study will lead to a greater understanding of mitochondrial functions in neoplasia and 

tumor progression. It will also help clinicians develop better adjuvant therapeutic 

strategies targeting cancer metabolism.  

With these results, one paper was published, one manuscript was submitted and 

two more manuscripts are in preparation for publication. All of them are listed below. 

1. Zeng, J.*, Wang, J.*, Gao, W., Mohammadreza, A., Kelbauskas, L., 

Zhang, W., Johnson, R. H., and Meldrum, D. R. (2011). Quantitative single-cell gene 

expression measurements of multiple genes in response to hypoxia treatment. Analytical 

and Bioanalytical Chemistry 401, 3-13. (*Co-first authorship) PMID:21614642. 

Published in a special, accelerated section, “Paper in Forefront.” 

2. Zeng, J., Mohammadreza, A., Gao, W., Merza, S., Smith D., Kelbauskas, 

L., and Meldrum, D. R. A minimally invasive method for retrieving single adherent cells 

of different types from cultures. Under review. 
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3. Whole transcriptome and metabolic profiling of intercellular interactions 

between normal and pre-malignant esophageal cells. In preparation. 

4. Alterations in gene expression levels and metabolic phenotype in response 

to hypoxic selection in pre-malignant Barrett’s esophagus cells. In preparation. 

7.2 Future work 

In this dissertation research, single cell harvesting and RT-qPCR methods were 

developed for implementing multi-parameter single-cell analysis and correlating 

genotype to phenotype in various diseases. The transcriptome-wide differential gene 

expression analysis of cell-cell interactions and hypoxia responses in Barrett’s esophagus 

cells allows novel inquiries into neoplastic progression.  

However, more work will be required in the future to apply these single-cell 

technologies in an integrated framework to link genotype to phenotype in neoplastic 

progression. First, the throughput of single-cell harvesting needs to be increased. 

Currently it takes about 1 min to retrieve a single cell from a microwell. A micro-pipette 

array can be designed and tested for collecting single cell or single cell lysate, which may 

enable high-throughput harvesting of single cells from an ultra-high density micro-well 

array. Second, the single cell RT-qPCR method should be combined with Fluidigm’s 

BioMark platform. Even though the single cell RT-qPCR method developed here can 

detect up to ten genes without pre-amplification, a larger number of genes is still desired. 

It will be helpful if an interface or pipeline can be built in the future, bridging the 

extraction-reverse-transcription step of the RT-qPCR method developed here and 

Fluidigm BioMark’s 96 cells × 96 genes assays. Third, a 3D culture system of 

intercellular communications in the tumor microenvironment should be created. Cell-cell 
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interactions in Barrett’s esophagus experiments were performed in 2D cell culture. This 

model is still far away from the native state of the cells. Creating a 3D culture system and 

further an organotypic model for cell-cell interactions in the tumor microenvironment 

will allow further inquiries into pre-malignant progression. Fourth, there is a need to 

track cell-cell interactions for longer periods of time. The process of cell-cell interactions 

is dynamic. RNA-Seq analysis after 24 hours of co-culturing dysplastic and normal cells 

only took a snapshot of the ever-changing microenvironment. The landscape of the 

transcriptome might be drastically different after longer culture times, when both cell 

lines have adapted to the environment. Therefore, time series experiments on a multi-

dimensional co-culture system holds the potential to uncover more events and underlying 

mechanisms in neoplastic progression of Barrett’s esophagus. 
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